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A Multiway Relay Channel with Balanced Sources
Lawrence Ong and Roy Timo

Abstract—We consider a joint source-channel coding problem
on a finite-field multiway relay channel, and we give closed-form
lower and upper bounds on the optimal source-channel rate.
These bounds are shown to be tight for all discrete memoryless
sources in a certain class P∗, and we demonstrate that strict
source-channel separation is optimal within this class. We show
how to test whether a given source belongs to P∗, we give a
balanced-information regularity condition for P∗, and we express
P∗ in terms of conditional multiple-mutual informations. Finally,
we show that P∗ is useful for a centralised storage problem.

I. INTRODUCTION

THE multiway relay channel is a multicast network model
in which many users exchange data via a relay [1, 2].

The model is widely applicable to wireless cellular [3], satel-
lite [4], mesh [5] networks, and storage networks [6], and its
information-theoretic limits will provide design insights for
future cooperative communications systems. Despite much re-
cent attention [2, 7]–[14], the channel’s information-theoretic
limits remain largely unknown. In this work, we consider the
limits of the following setup:
• L ≥ 2 users have correlated data that need to be

exchanged via the relay. The correlated data are generated
by an arbitrary discrete memoryless source.

• The uplink channel (users to relay) and the downlink
channel (relay to users) are memoryless additive-noise
channels defined over an arbitrary finite field.

The discrete memoryless source serves as a simple model
for distributed correlated data in, for example, cloud storage
systems, sensor networks, and mobile applications [15]–[18].
The finite-field channel both generalises the binary-symmetric
channel and serves as a stepping stone to other important linear
additive-noise channels, such as the Gaussian multiway relay
channel.

An efficient communications system for the above problem
needs to effectively integrate distributed data compression
with multiuser channel coding. For such systems, an impor-
tant information-theoretic benchmark is the optimal source-
channel rate—the minimum number of channel uses per
source symbol needed for reliable communications. The main
problem of interest in this paper is to determine the optimal
source-channel rate.

Ong et al. [19] studied a limited version of the above
problem with three users. They determined the optimal source-
channel rate for sources with specific entropic structures, and
demonstrated that strict source-channel separation is optimal
for such class of sources. The present paper strengthens and
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generalises the main ideas and results of Ong et al. [19] to
three or more users.

In Section II, we present lower and upper bounds on the
optimal source-channel rate that hold for any source and L ≥ 2
users. The upper bound (i.e., achievability) is proved using a
standalone distributed source code proposed by Timo et al. [7]
together with a standalone functional-decode-forward channel
code by Ong et al. [2].

We show in Section III that the above lower and upper
bounds coincide for a class of sources P∗—regardless of
the channel parameters—and the result is a closed-form ex-
pression for the optimal source-channel rate. The class P∗
is computable in the usual information-theoretic sense, and
it is determined by the underlying distributed source-coding
problem. We show how to test whether or not any given source
belongs to P∗ by solving a certain linear system.

In Section IV, we give a balanced information regularity
condition for P∗ that can be used whenever the methods
in Section III are either impractical or undesirable. The
balanced-information condition is expressed in term of con-
ditional multiple-mutual informations [20]–[22], which can
be visualised using information diagrams and the I-measure
formalism of Yeung [23]. We use this approach to determine
the optimal source-channel rate of some sources.

Finally, in Section V, we conclude the paper by considering
a centralised storage problem with L clients. The class of
sources P∗ plays an important role in this problem, and we
show how the results of Sections III and IV can be used to
describe the optimal storage rate.

II. OPTIMAL SOURCE-CHANNEL RATE

A. Notation

We denote random variables by uppercase letters, e.g. W ;
their alphabets by matching calligraphic font, e.g. W; and
elements of an alphabet by lowercase letters, e.g. w ∈ W .
The Cartesian product of W and W ′ is W × W ′, and the
m-fold Cartesian product of W is Wm. For integers a and
b, with a ≤ b, we let [a, b] := {a, a + 1, . . . , b}. Subsets and
strict subsets are identified by ⊆ and ⊂ respectively. We will
often consider subsets S ⊆ [1, L] and, in such cases, we let
Sc := [1, L]\S denote the complement of S. When S is a
singleton {`} or the complement of a singleton {`}c, we write
` = {`} and `c = {`}c. We let ‖r‖ := |r1|+ |r2|+ · · ·+ |rL|
denote the L1 norm of a real-valued vector r ∈ RL. The base
of all logarithms in this paper is two.

B. Source model

Consider L arbitrarily-dependent discrete random variables

(W1,W2, . . . ,WL), (1)
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Fig. 1. The uplink and downlink channel laws of the finite-field multiway
relay channel with four users.

where the `-th variable W` is defined on an alphabet W` and
associated with user `. Let

(W1,W2, . . . ,WL) :=
{

(W1,t,W2,t, . . . ,WL,t)
}m
t=1

be a string of m independent and identically distributed (iid)
copies of (1) indexed by t. The source data of user ` is the iid
m-tuple W` = (W`,1,W`,2, . . . ,W`,m). Each user is required
to exchange its source data with that of every other user.

C. Channel model

The uplink channel (users to relay) and downlink channel
(relay to users) are both memoryless and defined over a
finite field F equipped with addition ⊕. The per-symbol law
characterising the memoryless uplink channel is

U := X1 ⊕X2 ⊕ . . .⊕XL ⊕ Z, (2a)

where X` ∈ F is the symbol sent by user `, U is the symbol
observed by the relay, and Z ∈ F is independent arbitrarily-
distributed additive noise. Similarly, the memoryless downlink
is

Y` := V ⊕N`, ` ∈ [1, L], (2b)

where V ∈ F is sent by the relay, Y` ∈ F is observed by
user `, and N` ∈ F is independent additive noise at user `’s
receiver. Figure 1 depicts the setup for L = 4 users. The uplink
and downlink are memoryless; that means Z and all N`’s are
independent, and they are each iid over all channel uses.

D. Codes for full data exchange

An (m,n)-code for exchanging the users’ source data is
specified by a collection of mappings

{
f1,t, . . . , fL,t, φt

}n
t=1

and
{
g1, . . . , gL

}
, (3)

where f`,t : Wm
` × F t−1 → F , φt : F t−1 → F and g` :

Wm
` × Fn → Wm

1 ×Wm
2 × · · · × Wm

L . We assume that the
nodes operate in the full-duplex mode, and the uplink and the
downlink are perfectly synchronised. During the t-th channel
use, each user ` ∈ [1, L] sends

X`,t := f`,t(W`, Y`,1, . . . , Y`,t−1)

over the uplink, and the relay sends

Vt := φt(U1, U2, . . . , Ut−1)

over the downlink. User ` observes Y`,t as per (2b) and the
relay observes Ut as per (2a). After n channel uses, user ` has
observed n symbols Y` = (Y`,1, . . . , Y`,n) from the downlink.
It outputs

(
Ŵ`,1,Ŵ`,2, . . . ,Ŵ`,L

)
:= g`(W`,Y`),

where Ŵ`,i denotes its reconstruction of Wi. Let

Pe := P

[
L⋃

`=1

{
g`(W`,Y`) 6=

(
W1,W2, . . . ,WL

)}
]

denote the average probability of the event that one or more
users make a decoding error, for a given code (3).

E. Optimal source-channel rate κ∗

A source-channel rate of κ channel symbols per source
symbol is said to be achievable if the following holds: For
any ε > 0 there exists non-negative integers m and n (chosen
sufficiently large depending on ε) together with an (m,n)-
code (3) such that

κ =
n

m
and Pe ≤ ε.

Definition 1: The optimal source-channel rate is

κ∗ := inf{κ ≥ 0 : κ is achievable}.
We now present a lower and an upper bounds on κ∗. For

any subset S ⊆ [1, L], let WS := (W` : ` ∈ S) denote the
tuple of source variables with indices in S. Let

C` := log |F| −max{H(Z), H(N`)}. (4)

Theorem 1:
κ∗ ≥ Ψ,

where
Ψ := max

`∈[1,L]

1

C`
H(W`c |W`).

Proof: See Appendix A.
Let P denote the set of all joint probability mass functions

(pmfs) on W1 × · · · × WL, so that any source (W1, . . . ,
WL) is specified by some p ∈ P . For brevity, we write
(W1, . . . ,WL) ∼ p. Let R(p) denote the set of all non-
negative real-valued tuples r = (r1, . . . , rL) satisfying

∑

i∈S
ri ≥ H(WS |WSc), ∀ S ⊂ [1, L]. (5)

Theorem 2:
κ∗ ≤ min

r∈R(p)
Υ(r), (6)

where the minimum is attained by a tuple r on the boundary
of R(p) and

Υ(r) := max
`∈[1,L]

1

C`

∑

i∈`c

ri,

Proof: See Appendix B.
Theorem 2 is proved using standalone source and channel

codes, and, in this context, R(p) represents the achievable rate
region of the underlying distributed source coding problem.
The reader may recognise that R(p) is closely related to the
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Slepian-Wolf rate region [24, Sec. 15.4.2]. Indeed, the Slepian-
Wolf region for (W1, . . . ,WL) ∼ p is given by

{
r ∈ R(p) :

L∑

`=1

r` ≥ H
(
W[1,L]

)
}
. (7)

In other words, R(p) is the Slepian-Wolf rate region without
the total sum-rate constraint. Intuitively, the additional sum-
rate constraint in (7) does not play a role in R(p) and
Theorem 2 because user ` always has its own source data
W` as side information. The omission of this constraint is an
important characteristic of the rate region R(p) that shapes
much of the following discussion.

F. When Theorem 1 meets Theorem 2

Constraints (5) in the definition of R(p) dictate that for any
r ∈ R(p), we must have that Υ(r) ≥ Ψ. When this inequality
is an equality, we have the following lemma:

Lemma 1: The lower bound in Theorem 1 meets the upper
bound in Theorem 2 if and only if there exists a rate-tuple
r ∈ R(p) such that Υ(r) = Ψ. Under this condition, κ∗ =
Ψ, and source-channel separation (as specifically described in
Appendix B) is optimal.

Proof: Recall that for any r ∈ R(p),

Ψ
a
≤ κ∗

b
≤ min

r′∈R(p)
Υ(r′) ≤ Υ(r),

where inequalities (a) and (b) follow from Theorems 1 and 2
respectively. It follows immediately that if Υ(r) = Ψ, then
the lower bound in Theorem 1 meets the upper bound in
Theorem 2, and κ∗ = Ψ.

Conversely, if the lower and upper bounds meet, then the
rate tuple r ∈ R(p) that minimises Υ(r) attains the required
condition Υ(r) = Ψ.

The main contribution of this paper is to establish nontrivial
sufficient conditions for which there exists an r ∈ R(p) such
that Υ(r) = Ψ.

III. P∗ — A CLASS OF SOURCES FOR LEMMA 1

The existence of an r ∈ R(p) satisfying Υ(r) = Ψ depends
on both the joint pmf p of the source and the entropies of
the channel noises in (2). Such an r can always be found for
the following class of sources, irrespective of the particular
channel noise entropies:

P∗ :=

{
p′ ∈ P : ∃ r ∈ R(p′) satisfying

∑

i∈`c

ri = H
(
W ′`c

∣∣W ′`
)
, ∀ ` ∈ [1, L]

}
. (8)

Proposition 1: If (W1, . . . ,WL) ∼ p ∈ P∗, then there exists
an r ∈ R(p) such that Υ(r) = Ψ.

The class P∗ is a useful regularity condition for Lemma 1.
Here are two simple examples.

Example 1: If L = 2, then P∗ = P .
Example 2: If (W1, . . . ,WL) ∼ p are independent random

variables, then p ∈ P∗.

We now show how one can establish whether an arbitrary
source (W1, . . . ,WL) ∼ p belongs to P∗ by checking whether
a specific rate tuple satisfies the conditions in (8). To this end,
we re-write the L equalities in (8) as a linear system:

r T = h(p). (9)

Here we are to solve for the rate vector r = [r1 r2 · · · rL],
where T is the fixed (L× L)-matrix

T :=




0 1 . . . 1
1 0 1
...

. . .
1 1 . . . 0


 ,

and

h(p) := [H(W1c |W1) H(W2c |W2) · · · H(WLc |WL)]. (10)

The matrix T has full rank, and we denote the unique solution
of (9) by

r∗(p) := h(p)T−1, (11)

where r∗(p) = [r∗1 r
∗
2 · · · r∗L] and

r∗` =
‖h(p)‖
L− 1

−H(W`c |W`), ∀ ` ∈ [1, L]. (12)

The conclusion from the above discussion is that we can test
whether or not p ∈ P∗ by numerically checking whether
r∗(p) ∈ R(p). The next lemma follows immediately.

Lemma 2:

P∗ =
{
p′ ∈ P : r∗(p′) ∈ R(p′)

}
.

We now use Lemma 2 to give an example of a source in
P∗, and a source that is not in P∗. We will see in the next
section that all “balanced” sources are in P∗.

Example 3: Let B1, B2, B3, B1,2, B1,3 and B2,3 be inde-
pendent and uniformly distributed Bernoulli random variables.
Suppose that random variable associated with user one, W1,
is string of three bits, B1, B1,2, and B1,3, i.e.,

W1 := (B1, B1,2, B1,3).

Similarly, let W2 := (B2, B1,2, B2,3) and W3 :=
(B3, B1,3, B2,3). If p is the joint pmf of (W1,W2,W3), then

R(p) =

{
(r1, r2, r3) ∈ R3 :

r` ≥ 1, ∀ `
r` + r`′ ≥ 3, ∀ ` 6= `′

}
,

r∗(p) = (3/2, 3/2, 3/2), and therefore p ∈ P∗.
Example 4: Remove the Bernoulli variables B1,2 and B1,3 in

Example 3 to obtain (W1,W2,W3) ∼ p given by W1 := B1,
W2 := (B2, B2,3) and W3 := (B3, B2,3). We have

R(p) =





(r1, r2, r3) ∈ R3 :

r` ≥ 1, ∀ `
r1 + r2 ≥ 2
r1 + r3 ≥ 2
r2 + r3 ≥ 3




,

r∗(p) = (1/2, 3/2, 3/2), and therefore p /∈ P∗.
Remark 1: If p ∈ P∗, then Proposition 1 guarantees that

the lower bound in Theorem 1 meets the upper bound in
Theorem 2. Otherwise (i.e., if p /∈ P∗), there is no such
guarantee. The upper and the lower bounds can still be tight,
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depending on the particular source model and channel noises.
The following example describes such a situation.

Example 5: Let T1, T2, T3, T1,2, T2,3, and T1,3 be inde-
pendent random variables with entropies H(T1) = H(T2) =
H(T3) = 1, H(T1,2) = H(T1,3) = 3, and H(T2,3) = 8.
Let L = 3, W1 = (T1, T1,2, T1,3), W2 = (T2, T1,2, T2,3),
W3 = (T3, T1,3, T2,3), and p be a source pmf that sat-
isfies these conditions. This gives H(W2,W3|W1) = 10,
H(W1,W2|W3) = H(W1,W3|W2) = 5, r∗1 = 0, r∗2 = r∗3 =
5. Clearly, r∗(p) /∈ R(p), and thus p /∈ P∗. Consider the
following two sets of channel parameters:

1) C` = 1 for all ` ∈ [1, 3]: This gives Ψ = 10. Choosing
r = (1, 5, 5) ∈ R(p), we obtain Υ(r) = 10. The bounds
in Theorems 1 and 2 meet for these channel parameters.

2) C1 = 10 and C2 = C3 = 4: This gives Ψ = 1.
Conditions for R(p) dictate that r2 + r3 ≥ 10 and
r1 ≥ 1. This implies max{r1 + r2, r1 + r3} = r1 +
max{r2, r3} ≥ r1 + r2+r3

2 ≥ 6, and consequently,
Υ(r) ≥ max{ r2+r3

C1
, r1+r3

C2
, r1+r2

C3
} ≥ 1.5 > Ψ. The

bounds do not meet for these channel parameters.

IV. BALANCED SOURCES AND THE I -MEASURE

A. Balanced sources

It is sometimes infeasible or undesirable to apply Lemma 1
by numerically testing whether r∗(p) ∈ R(p). For example,
suppose that we need to verify that a source-channel rate κ is
achievable for every source within some uncountable set (such
a situation is described later in Example 8). In such cases, it
is helpful to study more general structural properties of P∗.
The next proposition suggests that P∗ is a rather complicated
set, and its proof is omitted.

Proposition 2: P∗ is closed for all L, but it is not convex
for any L ≥ 3.

The next proposition was proved by Ong et al. [19].
The proposition determines the optimal source-channel rate
κ∗ for a special case of three users and “balanced mutual
information” sources.

Proposition 3 (Ong et al. [19, Thm. 1]): If we have L = 3
users and the discrete memoryless source (W1,W2,W3) sat-
isfies

I(Wi;Wj |Wk) ≤ I(Wj ;Wk|Wi) + I(Wi;Wk|Wj) (13)

for all permutations of i, j, k ∈ [1, 3], then the optimal source-
channel rate is given by κ∗ = Ψ.

It is relatively easy to prove1 Proposition 3 using the ideas
in Section III, as shown below:

Proof: From (12), we get

r∗1 :=
1

2

(
H(W1,W2|W3) +H(W1,W3|W2)

−H(W2,W3|W1)
)
,

r∗2 :=
1

2

(
H(W1,W2|W3) +H(W2,W3|W1)

−H(W1,W3|W2)
)
,

1Ong et al. [19] gave a direct proof of Proposition 3 using slightly different
techniques.

r∗3 :=
1

2

(
H(W1,W3|W2) +H(W2,W3|W1)

−H(W1,W2|W3)
)
.

By construction, we clearly have

r∗1 + r∗2 = H(W1,W2|W3),

r∗1 + r∗3 = H(W1,W3|W2),

r∗2 + r∗3 = H(W2,W3|W1).

Moreover, it follows from (13) that

r∗1 ≥ H(W1|W2,W3),

r∗2 ≥ H(W2|W1,W3),

r∗3 ≥ H(W3|W1,W2),

and, therefore, (r∗1 , r
∗
2 , r
∗
3) ∈ R(p). This implies that p ∈ P∗,

and Proposition 1 gives the desired result.
Given the above proof, it is natural to wonder whether one

can find a similar “balanced mutual information” condition
that works more generally for L ≥ 3. It turns out that such a
generalisation is possible, and we now formalise this idea.

Fix L ≥ 3 and (W1, . . . ,WL) ∼ p. Consider any nonempty
subset

K = {`1, . . . , `k} ⊆ [1, L]. (14)

The conditional multiple-mutual information2 between the ran-
dom variables (W`1 ,W`2 , . . . ,W`k) was defined by Hekstra
and Willems [22, Sec. II.D]

I(W`1 ;W`2 ; · · · ;W`k |WKc)

:=

k∑

t=1

(−1)t−1
∑

T ⊆K
s.t. |T |=t

H(WT |WKc).

In this paper, it will be convenient to define I∅ := 0 and
the notation

IK := I(W`1 ;W`2 ; · · · ;W`k |WKc)

for any nonempty subset (14).
Definition 2: We say that a source (W1, . . . ,WL) ∼ p is

balanced3 if
µk ≤ gapk µk, (15)

holds for all k ∈ [2, L− 1], where

µk := max
S⊆[1,L]
s.t. |S|=k

IS ,

µ
k

:= min
S⊆[1,L]
s.t. |S|=k

IS ,

and
gapk := 1 +

1

k

(
L− 1

2L− k − 3

)
.

2Conditional multiple-mutual information is also called conditional k-
information [20]–[22].

3The definition of a balanced source here is different from that by Haitner
et al. [25, Sec. 3]. Here, we consider a source consisting of multiple “com-
ponents”, and require that the components {W`} have “roughly” the same
conditional multiple-mutual informations. Haitner et al.’s balance condition is
defined for any pmf, and requires that the pmf be “close to uniform most of
the time.”
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Fig. 2. Conditional multiple-mutual informations IK, I-measures µ∗, and information diagram for (W1,W2,W3). The source is balanced if the largest
I-measure of the shaded areas is not larger that two times the smallest I-measure of the shaded areas.

Let Pbal denote the set of all balanced sources.
Theorem 3: Pbal ⊆ P∗.

Proof: See Appendix E.
It immediately follows from Theorem 3 that the optimal

source-channel rate of any balanced source (regardless of the
channel noise entropies) is κ∗ = Ψ. While the set Pbal may
not be as large as P∗, we will see in Section IV-B that Pbal
has a measure-theoretic interpretation via the I-measure [23,
Chap. 3]. Consequently, checking condition (15) to determine
if a source is balanced is equivalent to comparing different
areas in information diagrams.

The key idea underlying Definition 2 is that a balanced
source will have

IK ≈ IK′ , ∀ K, K′ with |K| = |K′|.
Here the approximation becomes more stringent as the number
of users L and the subset cardinalities grow large, in which
case the multiplicative factor gapk in (15) approaches unity
from above.4

Condition (15) for balanced sources suggests certain “sym-
metry” of the source pmf. In particular, if the source pmf p is
symmetrical in the sense that

p(w1, w2, . . . , wL) = p(w`1 , w`2 , . . . , w`L)

for all permutations of `1, `2, . . . , `L ∈ [1, L], then IK = IK′

for all K and K′ with |K| = |K′|. So, a source with a
symmetrical pmf is balanced. We extend this idea in the
following example:

Example 6: Consider a random event B ∈ {0, 1} with
P{B = 0} = ρ, and three sensors each taking a noisy
measurement of the event, W` = B ⊕E` for ` ∈ [1, 3]. Here,
E` ∈ {0, 1} is the measurement error with P{E` = 0} = σ`.
If the pmf is symmetrical, i.e., σ1 = σ2 = σ3, then the source
(W1,W2,W3) is balanced. In addition, since the balance
condition (15) does not require all {IK : |K| = k} to be

4As a result, we expect the class of Pbal to be relatively smaller as L
increases.

equal, the source is still balanced if σ`’s are close, e.g.,
(a) ρ = 0.2, σ1 = 0.10, σ2 = 0, 12, σ3 = 0.14; and (b)
ρ = 0.2, σ1 = 0.40, σ2 = 0, 41, σ3 = 0.42. Otherwise, the
source is not balanced, e.g., if ρ = 0.2, σ1 = 0.1, σ2 =
0, 12, σ3 = 0.2.

Balanced conditional mutual-informations lead to balanced
conditional entropies in (5) by invoking the next lemma. This
lemma plays a key role in the proof of Theorem 3.

Lemma 3:

H(WS |WSc) =
∑

K⊆S
IK, ∀ S ⊆ [1, L]. (16)

Proof: See Appendix C.

B. Visualising balanced sources with the I-measure and in-
formation diagrams

Definition 2 and Theorem 3 can be visualised using in-
formation diagrams and the I-measure [23, Chap. 3]. Fix
L ≥ 3 and the source (W1, . . . ,WL) ∼ p. In the notation
and terminology of Yeung [23, Chap. 3], let us associate an
arbitrary set W̃` to each random variable W`. The I-measure
µ∗ (defined shortly) is a signed measure on these sets that is
chosen in a specific way so that all of Shannon’s information
measures for (W1,W2, . . . ,WL) can be recovered from set-
theoretic operations on W̃1, W̃2, . . . , W̃L. More specifically,
let Fn denote the field5 generated by W̃1, . . . , W̃L. For any
S ⊆ [1, L], let

W̃S :=
⋃

`∈S
W̃`

denote the union of all sets with indices in S. The I-measure
µ∗ on Fn is defined by

µ∗(W̃S) := H(WS), for all non-empty S ⊆ [1, L].

5The collection of all sets that can be generated from W̃1, W̃2, . . . , W̃L

by applying any sequence of the usual set-theoretic operations, i.e., union,
intersection, complement, and difference.
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It turns out that this signed measure is the only measure
that agrees with all Shannon’s information measures [23,
Thm. 3.9]. For example, the I-measure relates to the mutual
information I(W1;W2) by

I(W1;W2) = H(W1) +H(W2)−H(W1,W2)

= µ∗(W̃1) + µ∗(W̃2)− µ∗(W̃1 ∪ W̃2)

= µ∗(W̃1 ∩ W̃2).

Or, more generally, the I-measure µ∗ relates to conditional
mutual-information via

IK = µ∗
((
∩`∈K W̃`

)
\W̃Kc

)
.

The next example uses µ∗ and information diagrams to visu-
alise balanced sources.

Example 7: Consider L = 3 users and an arbitrary source
(W1,W2,W3). Figure 2 depicts the corresponding information
diagram, and it lists the values of µ∗ and conditional mutual-
information for all subsets of {1, 2, 3}. Definition 2 concerns
the I-measures of

(W̃1 ∩ W̃2)\W̃3, (W̃1 ∩ W̃3)\W̃2, and (W̃2 ∩ W̃3)\W̃1,

which are shaded in Figure 2. In particular, we have

µ2 = max
{
I(W1;W2|W3), I(W1;W3|W2), I(W2;W3|W1)

}
,

µ
2

= min
{
I(W1;W2|W3), I(W1;W3|W2), I(W2;W3|W1)

}
,

and the source is balanced if µ2 ≤ 2µ
2
.

C. Source-channel rate κ and an achievable rate region
The next example shows how one can use Lemma 1 and

Theorem 3 to obtain achievable rates for the multiway relay
channel with common messages.

Example 8: Suppose that we have L = 3 users. For each
nonempty S ⊂ [1, 3], let

BS ∈
[
1, 2RS

]

be an independent and uniformly-distributed random variable,
where RS ≥ 0 and 2RS is an integer. Fix the source-channel
rate κ > 0, and let (W1,W2,W3) ∼ p be given by

W1 := (B{1}, B{1,2}, B{1,3}),

W2 := (B{2}, B{1,2}, B{2,3}),

W3 := (B{3}, B{1,3}, B{2,3}).

We wish to characterise the set of all tuples (RS : S ⊂ [1, 3])
for which κ is achievable.

We have IS = RS for all S ⊂ [1, 3]. We say that the rate
tuple (RS : S ⊂ [1, 3]) is balanced if the corresponding source
is balanced, that is, when

max
{
R{1,2}, R{1,3}, R{2,3}

}

min
{
R{1,2}, R{1,3}, R{2,3}

} ≤ 2. (17)

Applying Lemma 1 and Theorem 3, we have that κ is
achievable for a balanced rate tuple (RS : S ⊂ [1, 3]) if (and
only if)6

κ > max

{
R{2} +R{3} +R{2,3}

log |F| −max{H(Z), H(N1)} ,

6Replace the strict inequality > with an inequality for the case of only if.

W 1

W 2

W L

R1

R2

R1

M1

M2

ML

M

··
·

··
·

1

2

L

1

2

L

W 1

W 2

W L

Fig. 3. A centralised storage system with L clients.

R{1} +R{3} +R{1,3}
log |F| −max{H(Z), H(N2)} ,

R{1} +R{2} +R{1,2}
log |F| −max{H(Z), H(N3)}

}
.

V. BEYOND RELAYING: AN APPLICATION OF P∗ TO
CENTRALISED STORAGE SYSTEMS

The ideas in Sections III and IV concern the class of sources
P∗, and they can be applied to any multiterminal problem for
which R(p) is a meaningful rate region. To illustrate this idea,
we now present one such example concerning the centralised
storage of correlated data.

A. Problem setup

Consider the data-storage system depicted in Figure 3. The
L clients have correlated source data that they wish to write to
the storage device. Suppose that the clients’ data is generated
by the source in Section II, and that the data of client ` is the
iid m-tuple W` = (W`,1,W`,2, . . . ,W`,m). We assume that
the method of storage must allow any client in the future to
reliably recover the source data of any subset of clients. We
also assume that the storage device is “dumb” in the sense
that the clients can read and write, but the device itself does
not process the stored data.

Client ` writes M` = fi(W`) to the storage device, where
f` : Wm

` → M`. At some future time, client ` will attempt
to recover the source data of all other users source data by
computing
(
Ŵ`,1,Ŵ`,2, . . . ,Ŵ`,L

)
:= g`(W`,M1,M2, . . . ,ML),

where g` : W` ×M1 × · · · ×ML → Wm
1 × · · · × Wm

L . We
call (f1, . . . , fL, g1, . . . , gL) an m-code. Let

Pe := P

[
L⋃

`=1

{
g`(M1, . . . ,ML) 6=

(
W1, . . . ,WL

)}
]

denote the code’s average probability of error, and let

rΣ :=

L∑

`=1

1

m
log |M`|

denote the total storage rate needed by the device (that means
the device needs at least mrΣ bits to store the clients’ data).
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B. Optimal storage rate

We say that a storage rate of rΣ is achievable if for any
ε > 0 there exists a sufficiently large m and m-code where
Pe ≤ ε. The optimal storage rate is

r∗Σ := inf
{
rΣ ≥ 0 : rΣ is achievable

}
.

The next theorem is proved in Appendix I.
Theorem 4: Considering (W1, . . . ,WL) ∼ p,

r∗Σ = min
r∈R(p)

‖r‖. (18)

The next corollary specialises Theorem 4 to give a closed-
form expression for the optimal storage rate of any source in
P∗.

Corollary 4.1: If (W1, . . . ,WL) ∼ p with p ∈ P∗, then

r∗Σ =
1

L− 1
‖h(p)‖,

where

h(p) = [H(W1c |W1) H(W2c |W2) · · · H(WLc |WL)].

Proof: Recall the rate tuple r∗(p) = [r∗1 , . . . , r
∗
L] in (11)

defined by

r∗` =
‖h(p)‖
L− 1

−H(W`c |W`), ∀ ` ∈ [1, L].

Lemma 2 showed that r∗(p) ∈ R(p) if and only if p ∈ P∗.
We will next show that the rate tuple r∗(p) attains the right
hand side of (18), and therefore we have

r∗Σ = ‖r∗(p)‖. (19)

To see why (19) must be true, let us suppose, to the contrary,
that there exists another r′ ∈ R(p) with ‖r′‖ < ‖r∗(p)‖. By
construction, r∗(p) is the unique solution of the linear system

∑

i∈`c

r∗i = H(W`c |W`), ∀ ` ∈ [1, L].

Hence, there exists an ` ∈ [1, L] such that r′ satisfies
∑

i∈`c

r′i <
∑

i∈`c

r∗i = H(W`c |W`).

This strict inequality leads to the contradiction r′ /∈ R(p),
and thus r∗(p) must achieve the minimum in (18). Finally,
(19) simplifies to

r∗Σ = ‖r∗(p)‖

=

L∑

`=1

(‖h(p)‖
L− 1

−H(W`c |W`)

)

=
L

L− 1
‖h(p)‖ − ‖h(p)‖

=
‖h(p)‖
L− 1

.

VI. SUMMARY AND CONCLUSIONS

Finding the optimal source-channel rate κ∗ of the multiway
relay channel is an open problem whose solution will provide
design insights for cooperative communications systems. We
presented simple lower and upper bounds on κ∗ in Theorems 1
and 2. In Lemma 1, we leveraged these bounds to give a
closed-form expression for κ∗ and a source-channel separation
theorem.

Lemma 1 holds for all combinations of sources and channels
where there exists a rate tuple r ∈ R(p) such that Υ(r) = Ψ
(that is, the lower bound in Theorem 1 meets the upper bound
in Theorem 2). Here R(p) is the achievable rate region of
the underlying distributed source-coding problem, and the
condition Υ(r) = Ψ depends on both the source and the
channel. In general, it remains an open problem to determine
κ∗ for source-channel combinations where there does not exist
such an r, and for these source-channel combinations, it may
be useful to bound the gap between Theorems 1 and 2.

Unfortunately, it can be difficult to determine when
Lemma 1 holds, and for this reason we presented two regular-
ity conditions in Sections III and IV. The first regularity con-
dition describes a class of sources P∗ for which Lemma 1 is
guaranteed to hold, regardless of the channel. Testing whether
or not a given source belongs to P∗ involves solving a linear
system (see (11)). The second regularity condition describes
a class of balanced sources Pbal ⊆ P∗ using conditional
multiple-mutual informations. This balance condition can be
easily understood via the I-measure and information diagrams,
and it is most useful in problems where the source is specified
by its I-measures (see Example 8).

Finally, the source classes P∗ and Pbal concern only the
entropic structure of the distributed source coding rate region
R(p) and, therefore, can be applied to any problem where
R(p) is meaningful. To illustrate this idea, we used P∗ and
Pbal to describe an optimal storage rate for a centralised
storage problem in Section V.

APPENDIX A
PROOF OF THEOREM 1

Suppose that κ > 0 is achievable (κ = 0 is trivial). Fix
0 < ε ≤ 1/2. There exists integers m and n with n/m = κ
and an (m,n)-code (3) satisfying Pe ≤ ε for any ε > 0. For
any ` ∈ [1, L],

mH(W`c |W`)
a
= H(W`c |W`),
b
≤ H(W`c |W`)−H(W`c |W`,Y`) + ε(m, ε),
c
≤ I(V;Y`) + ε(m, ε)

d
≤

n∑

i=1

I(Vi;Y`,i) + ε(m, ε)

e
≤ n

(
log |F| −H(N`)

)
+ ε(m, ε). (20)

Notes on (20):

a. The source is iid.
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b. Noting that Pe ≤ ε ≤ 1/2 and invoking Fano’s
inequality [24, Thm. 2.10.1], we get H(W`c |W`,Y`) ≤
ε(m, ε), where

ε(m, ε) := 1 + εm
∑

i∈`c

log |Wi|.

c. By the chain rule and non-negativity of conditional
mutual information, we have

I(W`c ;Y`|W`) ≤ I(W`c ,V;Y`|W`)

= I(W`c ,W`,V;Y`)− I(W`;Y`)

≤ I(V;Y`),

where the last inequality follows because (W`c ,W`)↔
V↔ Y` forms a Markov chain.

d. The downlink channel is memoryless; in particular,

I(V;Y`) =

n∑

i=1

I(V;Y`,i|Y`,1, . . . , Y`,i−1)

≤
n∑

i=1

(
H(Y`,i)−H(Y`,i|V, Y i−1

`,1 )
)

d.1
=

n∑

i=1

(
H(Y`,i)−H(Y`,i|Vi)

)
,

where (d.1) follows because Y`,i ↔ Vi ↔
(V i−1

1 , V ni+1, Y
i−1
`,1 ) forms a Markov chain.

e. I(Vi;Y`,i) = H(Y`,i)−H(Y`,i|Vi) ≤ log |F| −H(N`),
where H(Y`,i) ≤ log |F|, and H(Y`,i|Vi) = H(N`) fol-
lows from the additive-noise channel law Y`,i = Vi⊕N`.

By similar arguments, we have

mH(W`c |W`) ≤ n
(

log |F| −H(Z)
)

+ ε(m, ε), (21)

Combining κ = n/m together with (20) and (21), we get

κ ≥ H(W`c |W`)− ε(m, ε)/m
log |F| −max{H(Z), H(N`)}

, ∀ ` ∈ [1, L]. (22)

For any ε > 0, since (22) must hold for all sufficiently large
m, we must have

κ ≥ H(W`c |W`)

log |F| −max{H(Z), H(N`)}
, ∀ ` ∈ [1, L]. �

APPENDIX B
PROOF OF THEOREM 2

We use the standard (strict sense) separate source-channel
coding technique to prove Theorem 2. The channel capacity
and source-coding regions of interest are defined next.

A. Channel capacity region

For each ` ∈ [1, L], let M` ∈ M` be an independent
and uniformly distributed random variable (a channel-coding
message) on a finite set M`. Recast the joint source-channel
coding problem in Section II as a pure channel coding problem
with M` in place of W`. More specifically, we
• define an n-code via (3) by setting m = 1 and replacing

W` with M` and W` with M` throughout Section II-D,
and

• require each user to exchange its message with that of
every other user.

For any given n-code, let

Pe := P

[
L⋃

`=1

{
g`(M`,Y`) 6= (M1,M2, . . . ,ML)

}]

denote the average probability of error, and let R =
(R1, R2, . . . , RL) with

R` :=
1

n
log2 |M`|

denote the channel-coding rates of each user (in bits per
channel use).

A channel-coding rate tuple R is achievable if for any ε > 0
there exists an n-code such that Pe ≤ ε. The capacity region
C is the closure of set of all achievable rate tuples.

Lemma 4 (Ong et al. [2]):

C =

{
R ∈ [0,∞)L :

∑

i∈`c

Ri ≤ C`, ∀ ` ∈ [1, L]

}
,

where C` is defined in (4).

B. Source coding region

Consider an arbitrary source (W1, . . . ,WL) ∼ p and recall
the setup of Section II-B. Suppose that the users are required to
exchange their source data via rate-limited noiseless channels,
instead of the noisy finite-field channel. In particular, suppose
that user ` compresses its source data W` to a discrete index
M` := f`(W`), where f` : Wm

` → M`. User ` is given
every index and it attempts to reconstruct the source data of
all users:
(
Ŵ`,1,Ŵ`,2, . . . ,Ŵ`,L

)
:= g`(W`,M1,M2, . . . ,ML),

where g` :Wm
` ×M1 × · · · ×ML →Wm

1 × · · · ×Wm
L . We

call the above collection of compressors and decompressors
an m-code. For any given m-code, let

Pe := P

[
L⋃

`=1

{
g`(W`,M1, . . . ,ML) 6= (W1, . . . ,WL)

}]

denote the average probability of error, and let r =
(r1, r2, . . . , rL) with

r` :=
1

m
log2 |M`|

denote the source-coding rates of each user (in bits per source
symbol).

A source-coding rate r is achievable if for any ε > 0 there
exists an m-code such that Pe ≤ ε. The source coding region
is the closure of the set of all achievable rate tuples.

Lemma 5 (Timo et al. [7]): Let (W1, . . . , WL) ∼ p. The
source coding region is equal to R(p).
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C. Source-channel coding with standalone codes

Let us now return to the joint source-channel coding prob-
lem. Denote the interiors of C and R(p) respectively by

int(C) :=
{
a ∈ C : ∃ ε > 0 with a + Ba(ε) ⊂ C

}

and

int(R(p)) :=
{
b ∈ R(p) : ∃ ε > 0 with b + Bb(ε) ⊂ R(p)

}
,

where Ba(ε) := {b ∈ RL : ‖a − b‖ ≤ ε}. We now prove
the first assertion of Theorem 2. Map the output of user `’s
source encoder, i.e., M` ∈ [1, 2mr` ], to the input of its channel
encoder. This mapping is bijective if and only if R` = r`/κ.
If

R = r/κ ∈ int(C) and r ∈ int(R(p)), (23)

then each user can separately perform source and channel
decoding, to reliably decode its required message. This means
the source-channel rate κ is achievable.

We now show that if

κ > min
r∈R(p)

max
`∈[1,L]

1

C`

∑

i∈`c

ri, (24)

then there exists a rate tuple r such that (23) holds, and
therefore κ is achievable.

Firstly, let r† = (r†1, r
†
2, . . . , r

†
L) be a rate tuple that attains

minr∈R(p) max`∈[1,L]
1
C`

∑
i∈`c ri. This means the chosen κ

in (24) can be written as

κ = δ + max
`∈[1,L]

1

C`

∑

i∈`c

r†i (25a)

> max
`∈[1,L]

1

C`

∑

i∈`c

(r†i + ρ) (25b)

= max
`∈[1,L]

1

C`

∑

i∈`c

r′i, (25c)

for some δ > 0, where ρ :=
δmin`∈[1,L] C`

L > 0, and r′i :=

r†i + ρ.
Now, let r′ = (r′1, r

′
2, . . . , r

′
L). Clearly, since r† ∈ R(p),

we have r′ ∈ int(R(p)). Also, for each ` ∈ [1, L], we select

R′` =
r′`
κ
<

r′`
maxk∈[1,L]

1
Ck

∑
i∈kc r′i

.

It follows that, for each ` ∈ [1, L],

∑

j∈`c

R′j <

∑
j∈`c r′j

maxk∈[1,L]
1
Ck

∑
i∈kc r′i

≤
∑
j∈`c r′j

1
C`

∑

j∈`c

r′j = C`.

This means r′/κ ∈ int(C). Since any κ satisfying (24) is
achievable, we have (6).

Finally, since the region R(p) is closed, and
maxk∈[1,L]

1
Ck

∑
i∈kc ri is a strictly-increasing function

of any ri, the right-hand side of (6) is attained by a tuple
r on the boundary of R(p). This completes the proof of
Theorem 2. �

APPENDIX C
PROOF OF LEMMA 3

We now show that

H(WS |WSc) =
∑

K⊆S
IK, ∀ S ⊆ [1, L]. (26)

The proof follows by induction: We first show that (26) holds
for all subsets with cardinality 0 and 1. We then show that
the truth of (26) for any subset S ⊂ [1, L] implies the truth
of (26) for all subsets S ′ ⊆ [1, L] of cardinality |S ′| = |S|+1.

Starting with cardinality 0 and the empty set, we have
∑

K⊆∅
IK = I∅ = H(W∅|W[1,L]) = 0. (27)

Now consider any singleton {`} ⊂ [1, L]. We have
∑

K⊆{`}
IK = I∅ + I{`} = H(W`|W`c). (28)

Suppose now that we are given S ⊂ [1, L] such that
∑

K⊆S
IK = H(WS |WSc). (29)

For any j ∈ Sc, we have

H(WS∪{j}|W(S∪{j})c) = H(WS∪{j}|WSc\{j})
a
= H(WS |WSc\{j},Wj)

+H(Wj |WSc\{j})
b
=
∑

K⊆S
IK +H(Wj |WSc\{j})

c
=
∑

K⊆S
IK +

∑

K⊆S
IK∪{j}

=
∑

K⊆S∪{j}
IK, (30)

where step (a) applies the chain rule for entropy, and step (b)
follows by the inductive assumption (29). Step (c) is the key
ingredient of our argument, and we prove it separately.

Assuming that step (c) holds, we may now conclude the
following: The hypothesis (26) is true for the empty set and
all singletons {`} ⊂ [1, L] by (27) and (28) respectively.
The inductive step (29) holds for all j ∈ Sc, and hence the
hypothesis (26) is true for any subset S with any cardinality
|S| ∈ [2, L]. The next lemma completes the proof by verifying
step (c).

Lemma 6: Let S ⊂ [1, L] and j ∈ Sc be arbitrary. Then,

H(Wj |WSc\{j}) =
∑

K⊆S
IK∪{j}. (31)

Proof: See Appendix D.

APPENDIX D
PROOF OF LEMMA 6

A. A preliminary lemma

Lemma 7: Let S ⊂ [1, L] with |S| ≤ L− 2 and j,m ∈ Sc

with j 6= m be arbitrary. We have

I(Wj ;Wm|WSc\{j,m}) =
∑

K⊆S
IK∪{j,m}. (32)
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I(Wj ;Wm|W ) where W , WSc\{j−m}

+Ws1

+Ws2

...

+Ws|S|

a summation of 2|S| conditional multiple-mutual informations

...

+

+ + +

I
(
Wj ;Wm; Ws1

∣∣∣W
)

I
(
Wj ;Wm

∣∣∣W , Ws1

)

I
(
Wj ;Wm;Ws1 Ws2

∣∣∣W
)

I
(
Wj ;Wm;Ws1

∣∣∣W , Ws2

)
I
(
Wj ;Wm; Ws2

∣∣∣W ,Ws1

)
I
(
Wj ;Wm

∣∣∣W ,Ws1 , Ws2

)

Fig. 4. Recursive method of including each element of WS = (Ws1 ,Ws2 , . . . ,Ws|S| ) into I(Wj ;Wm|W )

Proof: We first recall a useful identity by Hekstra and
Willems [22, Eqn. (10b)]:

I(W`1 ;W`2 ; · · · ;W`k |WT )

= I(W`1 ;W`2 ; · · · ;W`k ;W`k+1
|WT )

+ I(W`1 ;W`2 ; · · · ;W`k |WT ,W`k+1
), (33)

where K = {`1, `2, . . . , `k+1} ⊂ [1, L] and T ⊆ [1, L]\K are
arbitrary.

Consider any subset S = {s1, s2, . . . , s|S|} ⊂ [1, L] with
|S| ≤ L − 2, and some j,m ∈ Sc with j 6= m. We
now take I(Wj ;Wm|WSc\{j,m}) and recursively include each
element of S, starting with s1, using Hekstra and Willems’
identity (33). The procedure is depicted in Figure 4, and it
concludes with an expansion consisting of 2|S| conditional-
multiple-mutual-information terms:

I(Wj ;Wm|WSc\{j,m})

=
∑

K⊆S
I(Wj ;Wm;Wk1 ; · · · ;Wk|K| |WSc\{j,m},WS\K),

(34)

where the sum on the right hand side is taken over all subsets
of the form K = {k1, k2, . . . , k|K|} ⊆ S . Since K ⊆ S and
j,m ∈ Sc, we have

(Sc\{j,m}) ∪ (S\K) = ((Sc\K) ∪ (S\K))\{j,m}
= [1, L]\(K ∪ {j,m}

)
,

and (34) simplifies to

I(Wj ;Wm|WSc\{j,m})

=
∑

K⊆S
I(Wj ;Wm;Wk1 ; · · · ;Wk|K| |W[1:L]\(K∪{j,m}))

=
∑

K⊆S
IK∪{j,m}.

B. Proof of Lemma 6

As before, we use induction to prove (31): We first show
that (31) holds for all subsets S with cardinality 0 and 1. We
then show that the truth of (31) for any subset S ⊂ [1, L]
implies the truth of (31) for all subsets S ′ ⊆ [1, L] of
cardinality |S ′| = |S|+ 1.

Starting with the empty set, S = ∅, we have

H(Wj |WSc\{j}) = H(Wj |W{j}c) =
∑

K⊆∅
IK∪{j} = I{j}.

(35)
Now consider any ` ∈ [1, L] and S = {`}. We have

H(Wj |WSc\{j}) = H(Wj |W[1,L]\{`,j})

= H(Wj |W{j}c) + I(Wj ;W`|W[1,L]\{`,j})

= I{j} + I{`,j}

=
∑

K⊆{`}
IK∪{j}.

Suppose now that we are given S ⊂ [1, L] with |S| ≤ L−2
such that (31) holds, i.e.,

H(Wj |WSc\{j}) =
∑

K⊆S
IK∪{j}. (36)

Pick any ` ∈ Sc with ` 6= j. We now prove (31) for the set
S ∪ {`}. We have

H(Wj |W(S∪{`})c\{j}) = H(Wj |WSc\{`,j})
a
= H(Wj |WSc\{j})

+ I(Wj ;W`|WSc\{`,j})
b
=
∑

K⊆S
IK∪{j} +

∑

K⊆S
IK∪{`,j}

=
∑

K⊆S∪{`}
IK∪{j}, (37)
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where (a) uses the chain rule for entropy and (b) applies (36)
and Lemma 7 and j ∈ Sc.

We may now conclude the following from the above argu-
ment: The hypothesis (31) is true for the empty set and all
singletons S = {`}. The inductive step (37) holds for any
` ∈ Sc\{j} and, therefore, the hypothesis (31) is true for any
set with any cardinality |S| ∈ [2, L− 1]. �

APPENDIX E
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If L = 2, then P∗ = P and the theorem is trivial. Suppose
that L ≥ 3 and (W1, . . . ,WL) ∼ p ∈ Pbal. By Lemma 2, we
need only prove that r∗(p) ∈ R(p). We start the proof with a
useful lemma that represents the rate tuple r∗(p) as a weighted
sum of conditional multiple-mutual informations.

Let r†(p) = (r†1, . . . , r
†
L) be defined by

r†` :=
∑

K⊂[1,L]

J`(K), ` ∈ [1, L], (38)

where

J`(K) :=





(
L− |K|
L− 1

)
IK, if ` ∈ K

(
1− |K|
L− 1

)
IK, otherwise.

(39)

Lemma 8: r†(p) = r∗(p) for all p ∈ P .
Proof: See Appendix F.

We now show that r†(p) ∈ R(p) by arguing that r†(p)
satisfies all of the inequalities in (5)—the inequalities defining
R(p)—whenever p ∈ Pbal. We first notice that Lemma 8
implies that

∑

i∈`c

r†i = H(W`c |W`), ∀ ` ∈ [1, L].

Thus, we need only check the inequality in (5) for all S ⊂
[1, L] with cardinality |S| ≤ L− 2.

Let S ⊂ [1, L] be arbitrary subset with |S| ≤ L−2. Consider
the sum

∑

i∈S
r†i

a
=
∑

i∈S

∑

K⊂[1,L]

Ji(K)

b
=

L−1∑

k=1

Γk. (40)

Step (a) follows from (38), and in step (b) we define

Γk :=
∑

K⊂[1,L]
s.t. |K|=k

∑

i∈S
Ji(K).

The next lemma invokes the balanced source assumption and
is a key step in the proof.

Lemma 9: Fix S ⊂ [1, L] with |S| ≤ L − 2. If p ∈ Pbal,
then

Γk ≥





∑
K⊆S

s.t.|K|=k

IK, 1 ≤ k ≤ |S|,

0, |S| < k ≤ L− 1.

Proof: See Appendix G.

Continuing on from (40), we have

∑

i∈S
r†i =

L−1∑

k=1

Γk
a
≥
|S|∑

k=1

∑

K⊆S
s.t.|K|=k

IK
b
= H(WS |WSc),

where (a) applies Lemma 9 and (b) applies Lemma 3. �
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Recall that r∗(p), defined in (11), is the unique solution to
∑

i∈`c

r∗i = H(W`c |W`), ∀ ` ∈ [1, L]. (41)

Now fix ` and consider the same sum over i ∈ `c, but with
r∗(p) replaced by r†(p). We have

∑

i∈`c

r†i
a
=
∑

i∈`c

∑

K⊂[1,L]

Ji(K)

b
=

∑

K⊂[1,L]
K3`

∑

i∈`c

Ji(K) +
∑

K⊂[1,L]
K63`

∑

i∈`c

Ji(K)

c
=
∑

K⊆`c

IK

d
= H(W`c |W`). (42)

Lemma (8) now follows directly from (42) and the uniqueness
of r∗. Notes:

a. Substitute r†i from (38).
b. Split the summation over the strict subsets K ⊂ [1, L]

into two groups: those subsets K that own `, and those
K that do not own `.

c. Consider the sum over subsets K that do not own ` (the
second pair of sums in step (b)): The inner sum over i
includes |K| elements with i ∈ K and

Ji(K) =

(
L− |K|
L− 1

)
IK.

The remaining (L− 1− |K|) elements with i /∈ K have

Ji(K) =

(
1− |K|
L− 1

)
IK.

This observation leads to the expansion shown in (43),
which, in turn, simplifies to

∑

K⊂[1,L]
K63`

∑

i∈`c

Ji(K) =
∑

K⊂[1,L]
K63`

IK.

Consider the sum over subsets K that own `. The inner
sum over i includes |K| − 1 elements with i ∈ K and
(L−1−|K|) elements with i /∈ K. In this case, we have

∑

K⊂[1,L]
K3`

∑

i∈`c

Ji(K) = 0.

d. Apply Lemma 3.
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∑

K⊂[1,L]
K63`

∑

i∈`c

Ji(K) =
∑

K⊂[1,L]
K63`

(
|K|
(
L− |K|
L− 1

)
IK + (L− 1− |K|)

(
1− |K|
L− 1

)
IK

)
(43)

K2

K1

K3

K(L
k)

...

s1 s2 s3 . . . s|S|

Js1
(K1)

Js1
(K2)

Js1
(K3)

Js1
(K(L

k)
) Js2

(K(L
k)

) Js3
(K(L

k)
) Js|S|(K(L

k)
)

Js2
(K1)

Js2
(K2)

Js2
(K3)

Js3
(K1)

Js3
(K2)

Js3
(K3) Js|S|(K3)

Js|S|(K2)

Js|S|(K1)

TABLE I
VISUAL AID FOR THE PROOF OF LEMMA 9.
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Let S = {s1, s2, . . . , s|S|} ⊂ [1, L] be any subset with
cardinality |S| ≤ L − 2, and let k ∈ [1, L − 1] be arbitrary.
Table I will be a useful visual aid throughout the proof. The
table consists of

(
L

k

)
:=

L!

(L− k)!k!

rows and |S| columns—one row for each subset K ⊂ [1, L]
with cardinality k and one column for each element of S. Let
K1,K2, . . . ,K(L

k) be any ordering (for example, lexicographic)
of all the subsets K with cardinality k, and let Ki be the label
for the i-th row of the table. Assign to the cell (Ki, s`) the
value Js`(Ki).

We may rewrite Γk as a sum over all cells in Table I,

Γk =

(L
k)∑

i=1

|S|∑

`=1

Js`(Ki). (44)

Recall that

Js`(Ki) =





(
L−k
L−1

)
IKi

, if s` ∈ Ki
−
(
k−1
L−1

)
IKi

, if s` /∈ Ki.

Definition 3: We call a cell (Ki, s`) positive if s` ∈ Ki and
negative otherwise.7

Lemma 10: In each and every column in Table I, there are
(
L− 1

k − 1

)
and

(
L− 1

k

)

positive and negative cells respectively.
Proof: Consider an arbitrary column s` ∈ S . Recall that

there are
(
L−1
k−1

)
ways of selecting (k− 1) unordered elements

from the set [1, L]\{s`}. The union of each such selection
with {s`} forms a subset Ki such that |K| = k and Ki 3 s`,

7The terms positive and negative refer to the sign of the coefficient fraction
in Js` (Ki), and not to the sign of IKi

.

so it follows that the column has
(
L−1
k−1

)
positive cells. The

remaining (
L

k

)
−
(
L− 1

k − 1

)
=

(
L− 1

k

)

cells in the column are negative.
Lemma 11: Throughout the entire table, there are

|S|
(
L− 1

k − 1

)
and |S|

(
L− 1

k

)

positive and negative cells respectively.
Proof: The table has |S| columns and Lemma 10 holds

for every column.
We now prove the Lemma 9 individually for each of the

following three cases: k = 1; 2 ≤ k ≤ |S|; and |S|+ 1 ≤ k ≤
L− 1.

A. Case: k = 1

We trivially have

Ji(K) =

{
IK, if K = {i},
0, otherwise,

and therefore

Γ1 =
∑

i∈S
I{i} =

∑

K⊆S
|K|=1

IK. (45)

B. Case: 2 ≤ k ≤ |S|
We now show that Γk is lower bounded as (46). The next

definition and lemma will be useful in explaining the steps
leading (46).

Definition 4: We say that row Ki of the Table I is active if
Ki ⊆ S and inactive if Ki 6⊆ S.

Lemma 12: In Table I, there are

k

(|S|
k

)
and |S|

(
L− 1

k − 1

)
− k
(|S|
k

)

positive cells in active and inactive rows respectively. Simi-
larly, there are

(|S| − k)

(|S|
k

)
and |S|

(
L− 1

k

)
− (|S| − k)

(|S|
k

)

negative cells in active and inactive rows respectively.
Proof: The are

(|S|
k

)
active rows in the table and each

active row has k positive cells, so there are k
(|S|
k

)
positive

cells in active rows. The remaining

|S|
(
L− 1

k − 1

)
− k
(|S|
k

)

active cells (here we have used Lemma 11) belong to inactive
rows. Similarly, there are (|S|−k)

(|S|
k

)
negative cells in active

rows. The remaining

|S|
(
L− 1

k

)
− (|S| − k)

(|S|
k

)
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Γk =

(L
k)∑

i=1

|S|∑

`=1

Js`(Ki)

a
=

(L
k)∑

i=1

|S|∑

`=1

1{Ki ⊆ S} Js`(Ki) +

(L
k)∑

i=1

|S|∑

`=1

(
1− 1{Ki ⊆ S}

)
Js`(Ki)

b
=

(L
k)∑

i=1

1{Ki ⊆ S} IKi
+

(L
k)∑

i=1

1{Ki ⊆ S}
(

(L− |S| − 1)(k − 1)

L− 1

)
IKi

+

(L
k)∑

i=1

|S|∑

`=1

(
1− 1{Ki ⊆ S}

)
Js`(Ki)

︸ ︷︷ ︸
inactive rows

c
≥

(L
k)∑

i=1

1{Ki ⊆ S} IKi +

(|S|
k

)(
(L− |S| − 1)(k − 1)

L− 1

)
µ
k

+

(
|S|
(
L− 1

k − 1

)
− k
(|S|
k

))(
L− k
L− 1

)
µ
k
−
(
|S|
(
L− 1

k

)
− (|S| − k)

(|S|
k

))(
k − 1

L− 1

)
µk

︸ ︷︷ ︸
inactive rows

d
=

(L
k)∑

i=1

1{Ki ⊆ S} IKi +

(
k − 1

L− 1

)
η (46)

negative cells are in inactive rows.
Notes on (46):

a. Split the outer sum (over rows in Table I) into active and
nonactive rows using

1{Ki ⊆ S} :=

{
1 if Ki ⊆ S
0 otherwise.

b. There are k positive cells and (|S| − k) negative cells in
each and every active row. Therefore, for every Ki ⊆ S,

|S|∑

`=1

Js`(Ki) = k

(
L− k
L− 1

)
IKi
− (|S| − k)

(
k − 1

L− 1

)
IKi

=

(
1 +

(L− |S| − 1)(k − 1)

L− 1

)
IKi

.

c. Use Lemma 12 to count the number of positive and
negative cells in the inactive rows (the rightmost pair of
sums in step b), and substitute

µ
k

= min{IK1
, IK2

, . . . , IK
(L
k)
}

and µk = max{IK1
, IK2

, . . . , IK
(L
k)
}.

d. Clean up the terms (outside the sum in step c) into

η :=

(
α(k,S) +

1

k − 1
β(k,S)

)
µ
k
− α(k,S) µk,

where

α(k,S) := |S|
(
L− 1

k

)
− (|S| − k)

(|S|
k

)

and

β(k,S) := |S|
(
L− 1

k

)
− (L− 1)

(|S|
k

)
.

Consider (46):

Γk ≥
(
k − 1

L− 1

)
η +

∑

K⊆S
s.t. |K|=k

IK,

and, in particular, the constants α(k,S) and β(k,S) that make
up η. We have α(k,S) > 0 and β(k,S) > 0, so it follows
that η ≥ 0 whenever

µk ≤
(

1 +
β(k,S)

(k − 1) α(k,S)

)
µ
k
. (47)

The next lemma shows that (47) does indeed hold whenever
p ∈ Pbal, and therefore

Γk ≥
∑

K⊆S
s.t. |K|=k

IK. (48)

Lemma 13: Fix (W1, . . . ,WL) ∼ p with p ∈ Pbal and 2 ≤
k ≤ L− 2. For any subset T ⊂ [1, L] with k ≤ |T | ≤ L− 2,
we have (47).

Proof: See Appendix H.

C. Case: |S| ≤ k ≤ L− 1

We have

Γk =

(L
k)∑

i=1

|S|∑

`=1

Js`(Ki)

a
≥
(
L− 1

k − 1

)(
L− k
L− 1

)
µ
k
−
(
L− 1

k

)(
k − 1

L− 1

)
µk

=
(L− 2)!

(L− k − 1)!k!

(
kµ

k
− (k − 1)µk

)

b
≥ 0. (49)
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Notes:
a. Use Lemma 11 to count the number of positive and

negative cells Table I, and bound the corresponding
conditional multiple-mutual informations by µk and µ

k
.

b. For all k ∈ [2, L], we have

µ
k

b.1
≤ µk

b.2
≤
(

1 +
1

k

(
L− 1

2L− k − 3

))
µ
k

b.3
≤
(

k

k − 1

)
µ
k
.

Step (b.1) follows by definition of µ
k

and µk; step (b.2)
follows because the source is balanced, p ∈ Pbal; and step
(b.3) follows because

1 +
1

k

(
L− 1

2L− k − 3

)
≤ 1

k − 1
, ∀ k ∈ [2, L− 1].

It follows that kµ
k
− (k− 1)µk ≥ 0, since 0 ≤ µ

k
≤ µk.
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Fix 2 ≤ k ≤ L − 2. Let T ⊂ [1, L] be any subset with
cardinality k ≤ |T | ≤ L− 2. We have

β(k, T )

α(k, T )
≥ k − 1

k

(
L− 1

2L− k − 3

)
,

and it then follows that p ∈ Pbal implies

µk ≤
(

1 +
β(k, T )

(k − 1)α(k, T )

)
µ
k
. �
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The centralised storage problem is equivalent to the
distributed source coding problem in Appendix B-B. By
Lemma 8, a total storage rate rΣ ≥ 0 is achievable if and only
if there exists a rate tuple r ∈ int(R(p)) such that rΣ ≥ ‖r‖.
The optimal total storage rate r∗Σ is then

r∗Σ = inf
r∈int(R(p))

‖r‖ = min
r∈R(p)

‖r‖. �

REFERENCES
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