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Abstract

Vehicular Ad-hoc Networks (VANET) provide wireless communication among
vehicles to exchange information for better traffic safety and efficiency. Safety
applications broadcast beacon messages periodically and unencryptedly which
contain a pseudonym, a time stamp and the vehicle state (position, speed and
heading). Pseudonyms are changed regularly to avoid messages linkability.
However, beacons of the old and new pseudonyms are still linkable by exploit-
ing their spatiotemporal information. If the adversary is global and covers a
sufficiently large area of the road network, it could track all vehicle movements.
Furthermore, the adversary can identify the drivers’ sensitive whereabouts, so-
cial activities and personal preferences remotely and globally without control
or knowledge of the driver. This privacy risk must be handled to ensure the
public acceptance of VANET.

Although there are some privacy schemes for VANET, only few schemes con-
sider their impact on safety applications. Privacy schemes are usually com-
posed of anonymization along with data obfuscation or beacon elimination.
These mechanisms reduce the quality of the exchanged information and may
hinder the operations of safety applications. Therefore, it is essential to ana-
lyze the impact of privacy schemes on safety applications, when designing or
evaluating a privacy scheme.

In this dissertation, we focus on preserving location privacy without hinder-
ing the operations of safety applications. To accomplish this goal, we investi-
gated methods of measuring both the location privacy and quality of service
(QoS) of safety applications. To measure the location privacy, a robust and effi-
cient vehicle tracker was developed that achieves a high tracking accuracy with
vehicle traces of various densities, position noises and beaconing rates. This
tracker acts as a global adversary which we employed to measure the protec-
tion level of a privacy scheme. Using this tracker, typical location privacy met-
rics were also discussed and compared. Moreover, we adapted a practical and
extensible methodology based on Monte Carlo analysis to measure the QoS of
two safety applications, forward collision warning and lane change warning.
This methodology is applicable to any privacy scheme and can be extended to
measure the QoS of other applications.

We proposed and evaluated obfuscation privacy schemes showing their in-
effectiveness in preserving privacy and their significant negative impact on
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safety applications. Also, two context-aware privacy schemes were proposed
that consider both the vehicle context and driver preferences to determine the
appropriate situations to change pseudonyms. In addition, we provided a
quantitative and qualitative comparison between our proposed schemes and
other privacy schemes proposed in literature. We employed both simulated
and realistic vehicle traces in all evaluations which provides high trustworthi-
ness in the presented results.

The experiment results show that it is possible to preserve location privacy
with small impact on the QoS of safety applications. In general, location pri-
vacy is not preserved by only frequently changing pseudonyms (even syn-
chronously), but a discontinuity in the spatiotemporal information is addition-
ally required to prevent tracking. A best compromise is to remain silent for a
short period synchronously and globally among all vehicles before a pseudo-
nym change. A practical compromise between privacy and QoS is to select the
appropriate context where a vehicle should change its pseudonym and remain
silent. Also, choosing the appropriate privacy metric is essential because non-
representative metrics results in overestimation of the preserved privacy. A
metric based on the distortion between the tracks that are reconstructed by an
adversary and the actual traces is effective to measure the privacy level. More-
over, QoS metrics should reflect the ability of safety applications to calculate
their requirements rather than estimating the expected distance error or delay
in communication.
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1 Introduction

Vehicular adhoc networks (VANET) provide wireless communication among
vehicles to exchange information autonomously. Over the last decade, VANET
has gained considerable interest in both research and industry for safety, traffic
efficiency and infotainment applications. It is evident that VANET will be re-
alized in near future to minimize traffic fatalities and support self-driving cars.
Our goal in this dissertation is to preserve location privacy in VANET with-
out significantly reducing the quality of service (QoS) of safety applications.
This goal is attained by proposing privacy schemes and evaluating them with
respect to their privacy protection level and their impact on the QoS.

In this chapter, we will present our motivation, objectives and research ques-
tions. A brief overview of the research methodology, system models and vehi-
cle traces are also explained.

1.1 Motivation

Connected and cooperative vehicles are mandatory for future intelligent trans-
portation system. The benefits of vehicle to vehicle (V2V) and vehicle to infras-
tructure (V2I) communication are numerous and involve wide areas of safety
and traffic efficiency. There are several large-scale field operational tests that
have been conducted already in Europe (simTD in Germany [3], DRIVE C2X
in Europe [2]) and in U.S. (Safety Pilot Program [1]) which confirmed the effec-
tiveness of VANET applications in reducing crashes. According to the analysis
conducted by the U.S. Department of Transportation’s (DOT) National High-
way Traffic Safety Administration (NHTSA), crashes, injuries, and fatalities
could be reduced by 50% on average using two potential safety applications,
intersection movement assist and left turn assist [64]. A fully mature VANET
system of V2V and V2I communication could potentially address 81% of all ve-
hicle target crashes involving unimpaired drivers [92]. These safety benefits let
the U.S. DOT accelerate its timetable on the proposed VANET rule that would
require V2V equipment in all new vehicles [51, 93].
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(a) Non-cooperative (b) V2V communication

Figure 1.1: V2V communication offers more comprehensive awareness than
other detection systems (e.g., radar, camera) [Source: [64]]

To attain the benefits of safe and efficient traffic, VANET applications broad-
cast beacon1 messages periodically and publicly. A beacon message usually
contains the vehicle state (position, speed and heading) along with a pseudo-
nym which is changed periodically according to a pseudonym-change scheme
[105]. These beacons enable a 360-degree awareness of surrounding vehicle
states and possible threats, as illustrated in Figure 1.1. The information ex-
changed among vehicles is so precise in position and time to be able to support
the requirements of safety applications. Shladover and Tan [122] claim that a
positioning accuracy up to 1 m is required for most cooperative collision warn-
ing applications.

Since this information is broadcast unencryptedly, a serious privacy threat
arises if all these beacons are collected and analyzed. Although pseudonyms
are changed periodically, beacons of the old and new pseudonyms are still
linkable by exploiting the spatiotemporal information in beacons [27]. If the
VANET adversary would cover a sufficiently large area of the road network,
it could track all vehicles remotely and continuously. Having an external ad-
versary who can cover the whole network seems very difficult, but we assume
the worst case scenario. In addition, this model could be realizable through an
untrusted service provider and its deployed roadside units. Moreover, the ac-
curacy and frequency of VANET beacons are much higher than those expected
from other systems such as traffic monitoring cameras and location-based ser-

1Beacon message is also known as Basic Safety Message (BSM) in U.S. standards and Cooper-
ative Awareness Message (CAM) in European standards.
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vices which make the revealed private information about users more accurate
and detailed.

Although the exchanged beacons are anonymous and contain no identifying
information, further privacy attacks can be performed. The important obser-
vation about vehicle traces is that they are almost unique on their own in most
of the cases. The start and end points and times, the frequency over week and
month and the routes followed are highly discriminating features for vehicle
traces. For example, it is rare to find two neighbors who go to work in the
same or near places every day at the same time and follow the exact route.
Also, quasi-identifiers such as vehicle attributes (e.g., size, type) that would be
included in beacons can differentiate among mixed traces. Moreover, driving
characteristics, whether originating from the vehicle capabilities or driver be-
havior, can be exploited to identify traces of a vehicle, similar to work done
in [151]. Based on these features, the de-anonymization of anonymous traces
is achievable using work/home pairs [59] or top N locations [152] and with
the help of geosocial networks [33]. Once the traces are de-anonymized, the
adversary can identify the user’s sensitive whereabouts, social activities and
personal preferences remotely and globally without control or knowledge of
the user. These privacy risks must be handled to ensure the public acceptance
of VANET.

Although there are some schemes that handle continuous tracking in VANET,
only few schemes consider their impact on safety applications. Privacy schemes
are usually composed of anonymization along with data obfuscation or elimi-
nation [124]. These mechanisms reduce the quality of the exchanged informa-
tion and may hinder the operations of safety applications. For example, if the
privacy scheme decided to keep silent at a safety critical situation, it could pre-
vent the safety application to produce a timely alert. Therefore, it is important
to analyze the impact on the quality of service (QoS) of safety applications,
when designing or evaluating a privacy scheme. The trade-off between pri-
vacy and safety is sporadically studied in literature and still considered as an
open research and deployment challenge, according to a recent survey of Petit
et al. [105].

1.2 Objectives and Research Questions

In this thesis, we aim to protect vehicles from continuous tracking (through
beacon messages) without hindering the operations of safety applications. This
goal is divided into the following objectives:

O1. Develop a state-of-the-art vehicle tracker which is able to track exchanged
beacons effectively in different traffic conditions.
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O2. Investigate the existing location privacy metrics and propose a suitable
metric for the VANET scenarios.

O3. Measure and assess the impact of privacy schemes on the quality of ser-
vice of safety applications.

O4. Design and evaluate one or more location privacy schemes which prevent
vehicle tracking with a minimal impact on safety applications.

O5. Compare the proposed privacy schemes with the existing state-of-the-art
schemes in terms of privacy and safety levels.

According to the presented objectives, this thesis tries to answer the follow-
ing research questions:

RQ1. Based on the fact that vehicle movements are predictable, what is the
most suitable and efficient tracking algorithm for the VANET beaconing
use case? To what extent can beacons be tracked compared with other
tracking methods?

RQ2. What are the main factors that prevent beacon tracking the most? (e.g.,
position accuracy, beaconing rate, type of information)

RQ3. How to measure the location privacy? And what is the most suitable met-
ric for the VANET beaconing use case that ensures correctness, generality
and practicality?

RQ4. How to measure the impact of privacy schemes on safety applications?
Given the diversity of safety applications, is it possible to provide a generic
measurement methodology that is applicable to different applications?

RQ5. Is it effective and safe to use the obfuscation schemes to preserve location
privacy in VANET?

RQ6. How efficient are the context-based privacy schemes? Do they offer a
better compromise between privacy and safety?

RQ7. Based on the proposed privacy and safety metrics, how effective are the
existing schemes in preserving privacy compared with the proposed schemes?
To what extent do they affect the operations of safety applications?
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1.3 Contributions

The main contributions of this thesis are:

1. Develop a robust vehicle tracker that achieves a high tracking accuracy
with vehicle traces of various densities, position noises and beaconing
rates. It outperforms the commonly-used multi-hypothesis tracker (MHT)
in tracking accuracy and efficiency.

2. Propose embedding a vehicle tracker inside vehicles which increases the
awareness of the vehicle about the surrounding traffic even if neighbor
beacons are missed or noised.

3. Adapt a practical and extensible methodology for measuring the impact
of a privacy scheme on two safety applications, forward collision warn-
ing and lane change warning.

4. Propose and evaluate obfuscation schemes showing their ineffectiveness
in preserving privacy and their negative impact on safety applications.

5. Propose two context-aware privacy schemes that consider both the vehi-
cle context and driver preferences to determine the appropriate situation
to change pseudonym.

6. Evaluate privacy schemes using robust tracker and realistic vehicle traces
in terms of a representative privacy metric. This reflects the credibility of
the presented results when compared with other related works.

1.4 Methodology

In this thesis, a quantitative simulation-based approach is adopted to measure
both privacy and safety levels which facilitate attaining our goal. As stated
above, we aim to preserving location privacy in VANET without hindering
the operations of safety applications significantly. We employ various vehicle
traces of different mobility models to evaluate and compare different privacy
schemes. We look at vehicle traces as if they are broadcast by vehicles in a fully
penetrated VANET and collected by a global passive adversary. Vehicle traces
are then modified according to the specifications of the privacy scheme such as
changing the pseudonym and eliminating some beacons during silent periods.

Location privacy is quantified by measuring how effective a tracker can re-
construct vehicle traces from the collected beacons. For this reason, a robust
vehicle tracker, based on a multi-target tracking technique, is developed and

5



1 Introduction

Vehicle Tracker
(Chapter 3)

Location Privacy 
Evaluation
(Chapter 4)

QoS Evaluation
(Chapter 5)

Privacy Scheme
(Chapters 6, 7)

Pseudonymized 
Beacons Reconstructed 

Tracks
Vehicle 
Traces

Original Traces

Data Filtering
Filtered Traces

Privacy Level
(i.e., Distortion %)

QoS %

Traces 
Manipulation

Figure 1.2: Overview of the system blocks

evaluated, as discussed later in Chapter 3. The reconstructed traces by the
tracker are compared with the original vehicle traces to calculate the distortion
percentage which expresses on the privacy level, as will be described in Chap-
ter 4. In addition, the QoS of safety applications is evaluated by estimating the
probability of correctly identifying the fundamental requirements of a safety
application using Monte Carlo analysis. Two safety applications are considered
which are forward collision warning (FCW) and lane change warning (LCW)
applications. We choose these applications because they require the most pre-
cise location information (<1 m) and the highest beaconing rate (10 Hz) [38].
More details about the QoS evaluation can be found in Chapter 5. Moreover,
several privacy schemes are proposed, evaluated and compared with existing
privacy schemes, as will be explained in Chapters 6 and 7.

Figure 1.2 illustrates these building blocks and how they interact. Starting
from vehicle traces, they are obtained from a traffic simulator or a realistic
traces dataset, as will be explained in Section 1.6. They generally consist of
vehicle ID, position and velocity in xy coordinates. They are manipulated so
that they look like beacons broadcast from vehicles by adding noise or drop-
ping some packets. A Gaussian noise of 50 cm standard deviation is added
to the position of each coordinate. In some experiments, random beacons are
eliminated every time step to simulate the effect of packet loss. The considered
privacy scheme modifies the manipulated beacons by adding pseudonyms and
changing them according to the scheme specifications. It may also obfuscate
or eliminate beacons to simulate the effect of obfuscation or silence periods.
The pseudonymous beacons obtained from the privacy scheme are given to
the vehicle tracker to be reconstructed into tracks. The reconstructed tracks are
compared with the original traces to calculate the distortion percentage and
with the filtered traces to obtain the QoS of safety applications. Given the uni-
fied distortion and QoS percentages, we can flexibly compare different privacy
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schemes with respect to their compromise between privacy and safety levels.

Positioning

The research work on security and privacy in VANET can be structured hor-
izontally according to the underlying authentication technique and vertically
according to the pseudonym life cycle. The authentication technique can be
based on the public-key infrastructure, group signature, identity-based cryp-
tography or symmetric cryptography. The pseudonym life cycle includes is-
suance, usage, change, resolution, and revocation phases. On the one hand,
this thesis considers the pseudonym change phase in the public-key infrastruc-
ture. On the other hand, the impact of privacy schemes on the safety applica-
tions is also considered and measured.

1.5 Technical Models

In this section, we describe the system and adversary models which will be
adopted in subsequent chapters.

1.5.1 System Model

We assume each vehicle is equipped with an on board unit (OBU) which it uses
to communicate with other vehicles and broadcast beacon messages periodi-
cally (1-10 Hz). The beacon information includes a pseudonym, a timestamp
and the current vehicle state (i.e., position, speed and heading). Vehicles use
a state-of-the-art pseudonym issuing process such as [78] to retrieve a pool of
pseudonyms to be used one by one in the V2X communication. Pseudonyms
have a minimum pseudonym time during which they must be kept unchanged to
ensure stable communication. After that time, a vehicle changes the pseudo-
nym according to the adopted privacy scheme. The European standard ETSI
TS 102 867 recommends changing a pseudonym every five minutes [8] while
the American SAE J2735 standard recommends changing it every 120 s or 1
km, whichever comes last [6]. Since beacons are essentially used by safety ap-
plications, the broadcast information has to be as precise as possible. Thus,
we assume each vehicle is equipped with a GPS receiver and combines the ob-
tained measurements with its internal sensors to minimize the position error
up to 50 cm. This small error is recommended in [122] and also realized in
systems such as [120] to be able to achieve useful Cooperative Collision Warn-
ing applications (CCW). We assume that a vehicle maintains the states of its
nearby vehicles located within its communication range (e.g., 300 m) using a
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multi-target tracking (MTT) algorithm. The utilization of a MTT algorithm for
neighbor states maintenance is two-fold. First, it allows a vehicle to predict,
with the help of a Kalman filter, the state of neighbors even if their beacons
are delayed or missed due to a communication error or a silence period. As a
result, the MTT algorithm can enhance the effectiveness of safety applications.
Second, the MTT algorithm supports the vehicle in choosing the appropriate
situation to change pseudonyms that increases the likelihood of tracker confu-
sion.

1.5.2 Adversary Model

We assume a global passive adversary (GPA) that deploys low-cost receivers
over a large part of the road network and eavesdrops on all exchanged mes-
sages. Having an external adversary that can cover the whole network may
seem challenging, but we assume the worst case scenario. Also, this model
is realizable, for example, by an untrusted service provider through its de-
ployed roadside units. The main objective of the adversary is a tracking attack
or reconstructing all vehicle traces from their beacon messages. Thus, we as-
sume that the driver’s location privacy is determined by the protection level
against this attack. Although breaching the driver’s location privacy requires
de-anonymization of the reconstructed traces, the de-anonymization process is
out of the thesis scope. However, we assume that the more complete and cor-
rect the reconstructed traces, the more successful the de-anonymization pro-
cess.

The adversary achieves its objective by correlating the beacons of a vehicle
by pseudonym matching. When a vehicle changes its pseudonym, the adver-
sary uses a multi-target tracking algorithm to correlate the messages of the old
and new pseudonyms. If the adversary covers only a small part of the road
network, it can still track vehicles within this limited area, but such tracking
may not be valuable regarding de-anonymization as it does not reflect com-
plete traces. Although powerful adversaries can track vehicles using already-
deployed cameras spread over the road network, the cost and inefficiency of
global camera-based attacks will be much higher than those for global beacon-
based attacks [53].

1.6 Vehicle Traces

We use several vehicle traces datasets in evaluating different parts of this the-
sis. In general, we use traces generated from traffic simulators in measuring
the effect of different parameters on the measured entity. Additionally, we
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use realistic traces to verify its applicability in real-world situations. We use
traces generated from the VISSIM simulator [60] and the STRAW (STreetRAn-
dom Waypoint) vehicular mobility model [36]. The realistic vehicle traces are
obtained from [135]. Next, we explain the details of each dataset.

1.6.1 VISSIM Traces

The VISSIM simulator is a microscopic and behavior-based simulation that
models the vehicle traffic and public transport operations. It uses a micro-
scopic traffic flow simulation model including the car following model and
lane change logic [108]. The VISSIM uses a psycho-physical driver behavior
model developed in [142]. The basic concept of this model is that the driver
of a faster vehicle starts to decelerate as she reaches her individual perception
threshold to a slower vehicle in front. Since she cannot exactly determine the
speed of that vehicle, her speed will fall below that vehicle speed until she
starts to slightly accelerate again after reaching another perception threshold.
This behavior results in an iterative process of acceleration and deceleration.
The VISSIM supports also significant control on the road network and traffic
customization. It supports drawing roads and connection links between them,
adding priority rules, stop signs and traffic signals. It allows traffic composi-
tion of several vehicle types and characteristics. The traffic arrival rate, vehicle
desired speed and route decisions can be efficiently configured in the VISSIM
graphical interface. The VISSIM also supports logging the vehicle and network
information on a discrete time basis down to 100 ms. We used VISSIM for its
realistic mobility model and variety of parameters which provides an effective
control on the generated traces.

We employed the logging feature to generate vehicle traces every 100 ms.
The trace file includes the position in the three coordinates, scalar values of
speed and acceleration, along with the vehicle ID. The vehicle heading is not
directly generated from VISSIM, therefore we calculated it using positions of
every two consecutive time steps. Finally, the velocity and acceleration vec-
tors are calculated for each coordinate. Thus, the final vehicle traces consist of
the position, velocity and acceleration in the three coordinates along with the
vehicle ID and grouped per time step.

We choose two scenarios included in the VISSIM demos that represent ur-
ban and highway road networks. The urban scenario is a part of roads in Lux-
embourg city and consists of three main intersections controlled by fixed-time
traffic signals, and five join and exit roads, as shown in Figure 1.3(a). The main
road is multi-lane single direction and is crossed by two-direction single-lane
roads. The total length of all roads is about 3.18 km. The Figure 1.3(b) shows
the highway scenario which consists of a multi-lane two-direction main road
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(a) Urban Network (b) Highway Network

Figure 1.3: The main parts of the road networks of the VISSIM scenarios

with two roundabouts and a bridge with total road length of 3.87 km. As this
network represents a highway, there is no traffic signal or stop sign.

For both scenarios, the simulation duration is 300 s which is sufficient for
traffic to enter and exit the network several times with all different routes.
The routes that vehicles follow are pre-configured in the VISSIM network files.
However, we changed the density and distribution of the traffic by changing
the arrival rates at all entry points and the vehicle desired speed. There is an en-
try point located in the start point of each road and one can control the vehicle
arrival rate at each point. Since it is important to evaluate the impact of traffic
density, we generated several datasets with different arrival rates. We selected
the ranges of 100 - 600 and 300 - 1000 vehicle/hour in the urban and highway
scenarios, respectively. These ranges result in a maximum number of simulta-
neous vehicles of 25 - 195 and 20 - 64 vehicles in the urban and highway sce-
narios, respectively. These arrival rates are chosen to avoid frequent long traffic
jams. We also generated several datasets for different vehicle desired speeds.
The desired speed is that the driver seeks during the simulation and tries to
keep when there is nothing hindering the vehicle. Thus, it is not necessary for
vehicles to drive in such speed constantly; their actual speed depends on the
surrounding traffic and the logic of the mobility model. The desired speeds
are assigned to vehicles randomly based on the configured distribution. We
assigned a uniform distribution of desired speeds around the specified value.
We selected the desired speeds of 30 - 70 km/h and 80 - 130 km/h in the urban
and highway scenarios, respectively. When the desired speed is varied, the de-
fault arrival rate of 300 and 600 vehicle/hour is used in the urban and highway
scenarios, respectively. Similarly, when the arrival rate is varied, the default
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Table 1.1: Parameters of urban and highway scenarios in VISSIM traces

Parameter Scenario Range Default value

Arrival Rate (Vehicle/h) Urban 100 - 600 300
Highway 300 - 1000 600

Desired Speed (km/h) Urban 30 - 70 50
Highway 80 - 130 100

Max Simultaneous Vehicles Urban 25 - 195 77
Highway 20 - 64 35

Total Roads Length (km) Urban 3.18
Highway 3.87

Sampling Interval (s) Both 0.1
Simulation Time (s) Both 300

desired speed of 50 km/h and 100 km/h is used in the urban and highway
scenarios, respectively. The last parameter is the sampling interval which is as-
signed to 0.1 s, because many safety applications require an update frequency
of 10 Hz [38]. These parameters are summarized in Table 1.1.

1.6.2 STRAW Traces

The STRAW traces are generated by Wiedersheim et al. [143]. They have a road
map of 1 km2 and are generated from the STreetRAndom Waypoint (STRAW)
mobility model [36] on Central Boston map for 1000 s. It provides accurate sim-
ulation results compared with the Random Waypoint (RWP) mobility model
because it uses a vehicular mobility model of real cities in the United States,
based on the operation of real vehicular traffic [36]. As described in [143], the
STRAW model simulates vehicle movements in traffic networks that are com-
posed of road segments, which are sub-divided into lanes. The number of traf-
fic signals, the number of lanes in each direction, and the maximum speed dif-
fer on the basis of the street type. The vehicles in each lane periodically calcu-
late the acceleration or deceleration for the next time step. Because no collision
recognition is implemented, vehicles that simultaneously cross an intersection
may collide. Vehicles cannot change lanes in the road segment, except when
entering a new road segment. The vehicle density is kept constant in each trace
file by making vehicles route within road segments and never exit.

The original traces contain the vehicle ID, time stamp, and position in a 1 s
stepping. We calculate the velocity assuming a constant velocity between every

11



1 Introduction

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

900

1000

Figure 1.4: The road map of the STRAW traces

two consecutive time steps and interpolate the samples to create a 0.5 s step-
ping. The maximum vehicle speed ranges from 11 to 26 m/s depending on the
road, the maximum acceleration is 2.23 m/s2 and the maximum deceleration is
11.15 m/s2. The road map of these traces is shown in Figure 1.4 where snap-
shots of the sparsest case of 50 vehicles and densest case of 200 vehicles are
represented by green points and red circles, respectively. Each vehicle density
has 10 variations with different routes.

1.6.3 Realistic Traces

The realistic vehicle traces are obtained from [135]. This dataset is mainly based
on the data made available by the TAPASCologne project [7] which is an ini-
tiative by the Institute of Transportation Systems at the German Aerospace
Center (ITS-DLR). This dataset reproduces vehicle traffic in the greater urban
area of the city of Cologne, Germany with the highest level of realism possi-
ble. The street layout of the Cologne urban area is obtained from the Open-
StreetMap (OSM) database. The microscopic mobility of vehicles is simulated
using the Simulation of Urban Mobility (SUMO). The source and destination of
vehicle traces are derived through the Travel and Activity PAtterns Simulation
(TAPAS) methodology. Uppoor et al. [136] pointed out several problems when
combining these data sources to produce traffic data. Among these problems,
vehicles are moving rapidly to large traffic jams, travel times are unrealistic and
vehicle speeds turn to very low values. Uppoor et al. resolved these problems
so that the synthetic traffic match that observed in the real world, through real-
time traffic information services. This is why we name this dataset as realistic
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Figure 1.5: (a) The road map of the realistic traces. (b) The vehicle density ver-
sus time.

traces.
We obtained the two-hour sample published online [135] and selected 30

min (from 6:15 AM till 6:45 AM) for the middle 64 km2 region, as shown in Fig-
ure 1.5(a). We selected this time period because the vehicle density increases
dramatically, which provides a challenging evaluation for the operation of pri-
vacy scheme in different densities. As we cropped the vehicle traces in both
space and time, we excluded very short traces that move within 100 m2 or start
and end in less than 15 s. There are 19,704 remaining traces with increasing
density, ranging from 1,929 to 4,572 simultaneous vehicles in the first and last
time steps, respectively, as shown in Figure 1.5(b). The vehicle positions in the
last time step are drawn as red spots in Figure 1.5(a). Moreover, we processed
the dataset to calculate the heading and velocity in the xy-coordinates using
every two consecutive time steps for each vehicle. The last heading value is
preserved when the vehicle stops and is changed when it starts to move.

1.7 Thesis Structure

This thesis is structured into eight chapters. Chapter 1 introduces the whole
thesis showing the motivation, objectives and research questions. It also presents
the research methodology along with system and adversary models and the
employed vehicle traces.

Chapter 2 provides an overview of VANET showing its prospective applica-
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tions, main characteristics and communication protocols. The security and pri-
vacy in VANET is also reviewed discussing their requirements and a detailed
survey on the existing approaches.

Vehicle tracking will be discussed in Chapter 3 which starts with introducing
the problem of multiple target tracking along with its necessary components.
Then, the developed vehicle tracker is explained showing the underlying mo-
tion model used in Kalman filter. The vehicle tracker is evaluated in various
traffic densities, position noises, beaconing rates and packet delivery ratios. It
is also compared with multi-hypothesis tracker that is typically used in related
work.

Chapters 4 and 5 present the adopted metrics for the privacy and QoS of
safety applications. Chapter 4 discusses the existing location privacy met-
rics and explains the adopted distortion metric. It also presents a comparison
among different metrics. Chapter 5 explains the QoS measurement method-
ology of safety applications based on vehicle traces modified by a privacy
scheme. This methodology is applied on two safety applications: forward col-
lision warning and lane change warning applications.

In Chapter 6, two obfuscation privacy schemes are proposed and evaluated:
position perturbation and random beaconing rate. They are also evaluated
in comparison with random silent period in terms of privacy and safety lev-
els. Chapter 7 presents the proposed context-based privacy schemes. The first
scheme lets vehicles select the effective context in which to enter a silence pe-
riod, to change its pseudonym and when to resume beaconing with a high
probability of confusion to a global adversary. A more advanced scheme is also
proposed which adapts its parameters according to the real-time traffic density
and the driver’s privacy preference. Last but not least, a comparative evalu-
ation among some existing privacy schemes is presented in comparison with
the proposed privacy schemes. Finally, Chapter 8 lists the thesis conclusions
and future work.
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Vehicular ad hoc networks (VANET) have emerged in the past years and gained
interest from both academia and industry. Vehicular networks are those net-
works formed among vehicles (V2V communication) and between vehicles and
infrastructure (V2I and I2V communication) to provide diverse traffic-related
and infotainment applications. The most important applications of VANET are
those aimed at enhancing traffic safety and providing a better driving experi-
ence. The principle benefits of VANET include the high quality and quantity
of cooperative information among vehicles and infrastructure, the non-line-of-
sight knowledge and the potential coordination among vehicles [32]. Although
VANET can be envisioned to be the largest realization for mobile ad hoc net-
works (MANET) serving hundreds of millions of vehicles worldwide [89, 110],
protocols and techniques designed for MANET cannot be directly adopted by
VANET. In fact, the size of the network, the high speed of vehicles, the sporadic
connectivity and the slow deployment process add more challenges to VANET
[111].

In VANET, vehicles are supposed to be equipped with computing, sensing,
communication and user interface components. The computing platform is
dedicated for VANET operations with appropriate interfaces to the in-vehicle
system. The on-board sensors are assumed to obtain essential data such as
positioning through GPS, velocity, direction, brakes status and airbags status
[101]. For the communication components, each vehicle is equipped with an
On Board Unit (OBU) which allows one- and multiple hop V2X communica-
tions. The OBU connects to the infrastructure through Roadside Units (RSU)
installed along the road. Both OBUs and RSUs are supposed to support Ded-
icated Short Range Communication (DSRC) standard with a bandwidth of 75
MHz in the 5.9 GHz band and a communication range of 100-1000 meters. Over
other wireless technologies, DSRC provides significant advantages of very low
latency (less than 100 ms) and support for transmitting broadcast messages
[38]. In addition, other wireless technologies can be used (such as cellular com-
munication and WiFi) for infrastructural data access and in non latency-critical
scenarios.

In this chapter, we provide an intensive introduction to VANET including
its applications (Section 2.1), characteristics (Section 2.2) and the underlying
wireless technology (Section 2.3). In addition, Section 2.4 reviews security and
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privacy in VANET explaining their requirements and threat models. Security
techniques are discussed in Section 2.5. Last but not least, the privacy schemes
are categorized and discussed in Section 2.6.

2.1 VANET Applications

VANET applications can be generally divided into three categories: safety, traf-
fic efficiency and infotainment/other applications. Each application has differ-
ent requirements and characteristics to operate and fulfill its use cases. These
characteristics include communication type (V2V or V2I), transmission mode
(periodic or event-triggered), maximum packet size, communication range,
minimum message frequency, maximum allowable latency, information accu-
racy (position accuracy), security level, penetration rate (percentage of vehicles
equipped with VANET technology) and the required infrastructure [65, 101].

Effort has been made to identify and evaluate potential application scenar-
ios that should/can be used in the initial deployment phase of VANET. The
ETSI presented the basic set of applications (BSA) that can be deployed simul-
taneously within a three-year time frame after the standards have been com-
pleted [5]. These BSAs are selected based on questionnaire results obtained
from stakeholders about the societal, customer and business values of the use
cases of several applications. Among 75 investigated application scenarios,
the Vehicle Safety Communication (VSC) consortium identified eight potential
high benefit safety applications whose requirements are assumed to be repre-
sentative of the requirements for safety applications [38]. Recently, NHTSA
reviewed various VANET-based safety applications to verify whether or not
VANET could address crashes resulting from the considered circumstances
[64]. In addition, many application scenarios and use cases can be found in
[13, 47, 80, 132, 144]. Next, we will present application examples from each
category.

2.1.1 Safety Applications

Safety applications are those applications that aim at reducing the probability
of traffic accidents and consequently saving lives on the road. These applica-
tions share information among vehicles and road side units to allow drivers to
avoid collisions and hazardous situations [77]. Most of these applications re-
quire strict requirements such as low latency of 100 ms, frequent update of 10
Hz and precise vehicle positioning less than 1 m [101].

Forward collision warning (FCW) [120] warns the driver of a likely rear-end
collision with a heading vehicle in the same lane and direction of travel. Cur-
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Figure 2.1: Example of V2V Intersection Movement Assist Warning Scenario.
The truck and sports utility vehicle are at risk of colliding because
the drivers are unable to see one another approaching the intersec-
tion and the stop sign is destroyed. (Source: [64])

rent FCW applications based on visual and radar detection systems cannot op-
erate in poor lighting and weather conditions (sunrise, sunset, rain, snow), and
are limited with respect to distance. However, VANET-based FCW applica-
tions can function in conditions beyond the visual and radar detection systems
[64].

Lane change warning (LCW) [120] warns the driver during a lane change
if the blind spot zone, into which the driver intends to switch, is or will be
occupied by another vehicle moving in the same direction. The application has
the potential to address at least 19% of the crashes in the lane change crash
group [64].

Intersection collision warning (ICW) [43, 90] (aka Intersection Movement
Assist IMA) warns the driver when it is not safe to enter an intersection due
to a high collision probability with other vehicles at controlled (with stop-
lights) and uncontrolled (with stop, yield, or no signs) intersections. This ap-
plication might not be available without the VANET technology because it re-
quires awareness beyond the line-of-sight and farther than the range of visual
and radar detection systems. The ICW should address five types of junction-
crossing crashes which together represent 26% of all vehicle crashes [64]. One
example scenario of ICW is illustrated in Figure 2.1.

2.1.2 Traffic Efficiency Applications

Traffic efficiency applications aim at enhancing the efficiency of transportation
network by sharing real-time traffic status provided by vehicles, road side units
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Figure 2.2: SARTRE road trains. Passengers in the five following vehicles can
do other activities during platooning. (Source [4])

and other trusted sources. This information may be collected and processed by
traffic operators to offer recommendations to drivers to reduce delays and en-
hance driving experience. Car-to-Car Communication Consortium (C2C-CC)
[37] selected several potential use cases such as enhanced route guidance and
navigation, green light optimal speed advisory and platooning which are de-
scribed briefly below.

Enhanced route guidance and navigation [5] uses information collected by
an infrastructure administrator about the real-time traffic status to identify con-
gestion, work zones and other factors causing travel delays and to report these
delays to navigation systems inside vehicles. Road side units inform vehicles
within its region about the current and expected traffic conditions and recom-
mends alternative routes to drivers.

Traffic (Green) light optimal speed advisory [25] provides information to
drivers on how to avoid stopping at intersections and traffic lights to make
driving smoother and optimize fuel consumption. As a vehicle approaches
an intersection, it receives information regarding intersection location and the
remaining signal timing (the number of seconds until a red light switches to
green). The vehicle can calculate the optimal speed required to reach the traffic
light without necessitating stopping or slowing down.

Co-operative vehicle-highway automation system (Platooning) [20] groups
vehicles into virtual road trains to increase road capacity by decreasing safe
distance needed for human reaction. This application allows many vehicles to
accelerate or brake simultaneously following the dynamics of the lead vehicle
transmitted over VANET. The challenges with platooning is the coordination
of platoon members which is usually done with a platoon leader acting as the
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controlling vehicle. The benefits of platooning are numerous such as optimized
fuel consumption, increased safety, efficient road utilization and better driver
convenience. SARTRE project [4] conducted a field test that includes a lead
truck followed by three cars driven entirely autonomously at speeds of up to
90 km/h with no more than 6 meters gap between the vehicles, see Figure 2.2.

2.1.3 Infotainment Applications

Infotainment applications do not concern safety or traffic, but rather the drivers’
interests and needs. Information and entertainment applications comprise quite
a diverse set of scenarios and use cases such as tolling, point-of-interest noti-
fications, fuel consumption management, podcasting and multihop wireless
Internet access [65]. More infotainment applications can be found in [38].

2.2 VANET Characteristics

According to the presented applications, it is clear that VANET has unique
characteristics when compared with other types of MANET. These characteris-
tics include:

• High topology change. Due to the high speed of vehicles, network topol-
ogy is always changing resulting in sporadic connectivity and difficulty
with long session establishment [13, 82]. Also, the content of VANET
messages can change the network topology [150]. For example, a driver
could be advised by an enhanced route guidance application to change
her route to avoid a traffic jam.

• Large scale and variable density. VANET can grow to a very large scale
especially in city centers and at entrances to big cities [132, 150]. How-
ever, vehicle density will be low during the initial deployment result-
ing in sparse connectivity and network partitioning. In later deployment
phases, the density will be related to the location and time. For example,
consider a road section of three lanes. In normal cases, 70 vehicles can be
found around a given vehicle within 1 km radius assuming 70 m inter-
vehicle distance. However, the number of surrounding vehicles might be
more than 1000 with 5 m inter-vehicle distance during a traffic jam [132].

• Predictable mobility. This is a unique feature in VANET whereby vehi-
cles move in a predefined and known road network. In fact, vehicles are
required to follow the road restrictions and rules such as speed limit, di-
rection and traffic lights [74, 82, 132]. However, whereas the predictability
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of the position of a vehicle allows an improvement in link selection, the
linear topology of VANET decreases the possibility of finding a redun-
dant link [132].

• No significant power and computational constraints. Since batteries in
vehicles are self-rechargeable (at least while driving), power supply is
not as critical in VANET as in MANET applications. Vehicles would be
equipped with powerful computation resources rather than hand held
devices [41, 82].

• Various communication environments and types. There are various
types of communication in VANET. In highway traffic, the communica-
tion environment is straightforward; while it becomes much more com-
plex within cities due to different types of obstacles (e.g., buildings, trees)
[82]. Also, vehicular applications often require communication with other
vehicles in a specific geographical area or location [131].

• Built-in positioning capability. GPS is widely used in modern vehicles
for route guidance and navigation. Therefore, it is commonly assumed
that each vehicle will be equipped with a GPS receiver to obtain location
information required for routing purposes and safety application scenar-
ios.

2.3 Dedicated Short Range Communication (DSRC)

Dedicated Short Range Communications (DSRC) is a suite of standards mainly
used in VANET safety communication. The fast exchange of safety messages,
combined with knowledge about other moving vehicles invisible to drivers
extend the safety concepts of VANET considerably [91]. DSRC is a two-way
short- to- medium-range wireless communications capability that supports crit-
ical data transmission required for cooperative active safety applications [12].
The U.S. Federal Communications Commission (FCC) allocated 75 MHz of a
freely licensed spectrum in the 5.9 GHz band for use by ITS vehicle safety and
mobility applications. However, the European Telecommunications Standards
Institute (ETSI) allocated 30 MHz in the same band. The U.S. DOT commits
to the use of the DSRC technologies for both V2V and V2I active safety appli-
cations because DSRC is the only available technology that fulfills the latency,
accuracy, and reliability requirements of these applications [12]. DSRC is pre-
ferred over WiFi because the huge expansion in the usage of WiFi devices and
hot spots could cause uncontrollable levels of interference which could hin-
der the reliability and effectiveness of safety applications. Also, the typical
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use cases of WiFi are sparse deployment with stationary channels. However,
vehicular communication is required among vehicles, even those moving at a
high speed, with multipath fading channel, and often in dense environments
[145]. Thus, the DSRC is based on an “association-less” version of IEEE 802.11a
standard identified as IEEE 802.11p. The IEEE 802.11 standard is chosen as a
basis in order to benefit from its ad-hoc mode. This ad-hoc mode resembles
vehicle-to-vehicle communications and hence, simplifies the development of
DSRC [91]. In addition, the wide availability of IEEE 802.11a chipsets will fa-
cilitate producing DSRC enabled devices [145].

DSRC can provide a data rate of up to 27 Mbps within 1 km by using a two
way line-of-sight short-range radio. The cost of DSRC is lower than that of cel-
lular, WiMax or satellite communications [91]. However, DSRC is not expected
to replace other wireless technologies nor support all vehicular communica-
tion needs. DSRC is envisioned as the main communication technology for
safety, short-range applications, subscription free services, road toll services,
and other similar localized applications [75]. In fact, a strong research trend
in vehicular networks is moving toward utilizing multiple different technolo-
gies to create heterogeneous vehicular networks [154]. The motivation behind this
trend is that each technology offers unique benefits. WiFi, for example, would
encourage the integration of other road users such as cyclists and pedestrians
into the vehicular network. Cellular technology is widely available and de-
signed for delivering large amounts of data over wide coverage. However,
there is no consensus concerning how to interface different technologies with
the applications [41].

The higher layers of the protocol stack are defined in a suite of standards
known as IEEE 1609 Wireless Access in Vehicular Environments (WAVE). This
suite addresses security (IEEE P1609.2), networking and messaging (IEEE P1609.3),
and channel management (IEEE P1609.4). In particular, IEEE P1609.3 defines
a WAVE Short Message Protocol (WSMP) that allows a vehicle to beacon mes-
sages in the local vicinity. WSMP also allows carrying messages on both the
control and service channels. The applications can directly control the lower-
layer parameters such as transmit power, data rate, channel number and re-
ceiver MAC addresses through WSMP [84]. Furthermore, the WSMP packet is
significantly reduced with an overhead of 5-20 bytes, compared to a minimum
of 52 bytes of a UDP/IPv6 packet. As shown in Figure 2.3, WAVE architecture
uses IEEE 802.11p for physical and MAC layers in addition to IEEE 1609.4 to
support the multichannel operations in the MAC layer. The WAVE architecture
supports two protocol stacks to accommodate both stringent communications
through WSMP and traditional data exchanges through TCP and UDP proto-
cols over IPv6. Both stacks use the same physical and data link layers but differ
from each other in the network and transport layers. Additionally, WAVE has
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a management entity in a management plane corresponding to each layer in a
data plane which is used in system configuration and maintenance [77].

Safety Applications Non-safety Applications

Security 
Services

IEEE 1609.2

WAVE Short Message 
Protocol (WSMP)

IEEE 1609.3

Transport Layer
TCP/UDP

Network Layer
IPv6

LLC Sublayer
IEEE 802.2

MAC Layer
IEEE 802.11p

IEEE 1609.4 (multi-channel)

Physical Layer
IEEE 802.11p

Figure 2.3: WAVE protocol stack

2.4 Security and Privacy in VANET

Security and privacy issues become more challenging in VANET due to the
unique characteristics of VANET. On the one hand, malicious behaviors, such
as injecting false information into the network, could be dangerous to users
[137]. For example, if a vehicle falsely reports a sudden accident on the road,
drivers of nearby vehicles may react incorrectly as they cannot actually see
the accident. This situation may in turn cause a real accident. In non-safety
applications, an attacker may report false traffic jams on his road and make
vehicles take other roads which would lead to low traffic volume on his road
[110]. In addition to providing the protection against different types of attacks,
trusted traffic authorities should be able to trace and reveal the identity of mes-
sage senders as an aid in identifying reasons for accident or finding accident
witnesses. Therefore, user authentication, authorization and data trust must be
included in VANET. Moreover, latency constraints of VANET applications pose
more challenges in case cryptographic techniques would be used. These tech-
niques must not increase the communication and processing overhead. On the
other hand, user privacy is a crucial issue in VANET. The sensitive or identi-
fying information, such as license plate number, vehicle position and traveling
routes, must be well-protected. To ensure privacy, user anonymity should be
maintained when vehicles provide information to the network. Otherwise, at-
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tackers eavesdropping on the wireless medium can track a vehicle and link
its movements with the actual identity. The consequences of this tracking sce-
nario could be annoying targeted ads, movements surveillance and disclosure
of sensitive places. The contradiction between anonymity and identity trace-
ability forms an essential challenge for security and privacy.

Although of theses challenges, some VANET characteristics support security
and privacy techniques [103]. Vehicles are subject to regular inspections which
facilitate update of existing software, download of new certificates and scan-
ning of the system to identify viruses and worms. Moreover, all vehicles must
register in a central authority by default. Vehicle registration makes assigning
keys to vehicles much easier and more secure. Furthermore, law enforcement
mechanisms which support securing the networks against detected attacks al-
ready exist in the transportation system.

2.4.1 Requirements

Security and privacy techniques in VANET need to satisfy a set of require-
ments. Schaub et al. [116] categorized these requirements into basic, security
and privacy requirements. Basic requirements are those arising from the unique
characteristics of VANET. Security requirements are those required to protect
the network and its entities from possible attacks and misuses. Privacy require-
ments are those required to protect the identity of drivers and their movements
from potential misuses by unauthorized entities. Several research works, sur-
veys and standards studied and discussed different security and privacy re-
quirements [9, 48, 58, 62, 109, 111, 137]. We merged and organized these re-
quirements in light of the analysis conducted by Schaub et al. [116] as follows:

Basic Requirements

• Real time constraints. Due to the high mobility and frequent topol-
ogy changes, the communication window between vehicles is very short.
Also, safety applications must respond quickly to the received warning
messages. Therefore, it is crucial to minimize the communication and
processing overhead.

• Robustness and availability. VANET must be robust and provides its
services despite the expected high mobility, frequent topology changes
and security attacks.

• Scalability. On long term basis, VANET will compromise millions of ve-
hicles; therefore, applications and mechanisms should be scalable to han-
dle a large number of nodes.
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• Initial sparse environment. VANET will be gradually deployed [31, 64]
and thus mechanisms should work autonomously without depending
on the existence of a fully deployed infrastructure. Thus, applications
should be able to provide their services in a sparse environment such as
low penetration rate among vehicles and sporadic infrastructure access.

• Support of various communication patterns. VANET applications use
various communication patterns such as broadcasting and geocasting,
along with communication with infrastructure which may be unicast or
multicast. Security and privacy mechanisms should consider and sup-
port these different patterns.

Security Requirements

• Authentication. Authentication is generally used to verify the genuine-
ness of certain claims. Authentication in VANET includes both sender
authentication to verify the legitimacy, and message integrity to ensure
that the message was not modified since it was sent. For privacy pur-
poses, the real identity of the sender should not be exposed during the
verification process and thus anonymous credentials should be used in-
stead.

• Accountability. Since vehicles are authenticated, they are accountable
to legal authorities for messages they send. Accountability implies non-
repudiation which means the sender cannot deny having sent the mes-
sage (non-repudiation of origin) or the recipient cannot deny having re-
ceived the message (non-repudiation of receipt). This requirement is also
applied when anonymous credentials are employed. Trusted authorities
should be able to map anonymous credentials (pseudonyms) to their real
identities for law enforcement and liability purposes.

• Restricted credential usage. When anonymous credentials are used, they
have to be restricted and controlled by an authority to prevent imperson-
ation (acting as another user) and Sybil attacks (using several credentials
in parallel to act as several users simultaneously). Also, the validity pe-
riod of a credential must be limited to prevent an adversary from accumu-
lating credentials for Sybil attacks. However, using short validity periods
increases the number of required credentials to be loaded into vehicles
and the frequency of loading them.

• Credential revocation. The misbehaving vehicles must be prevented
from using the network through revocation of their credentials. The es-
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sential issue of credential revocation is the scalability and efficiency of the
revocation method.

• Authorization. Roles must be assigned to vehicles based on type and ca-
pability to define what is allowed and what protocols to execute [102].
For example, private vehicles have to be prohibited from sending emer-
gency messages.

• Confidentiality. Safety and traffic-related messages should not be en-
crypted so that they are available to everyone [9]. However, in some
cases, such as group communication and key exchange process, the data
should be encrypted to prevent unauthorized access. In general, when
entity identification is required, communication should be kept confiden-
tial [17].

• Data trust. Even with authenticated honest users, malfunctioning sen-
sors, invalid aggregation or malicious applications can provide inaccu-
rate information to other vehicles leading to wrong decisions. Thus, dis-
seminated information should be evaluated against its accuracy and trust-
worthiness. This requirement cannot be achieved by traditional crypto-
graphic techniques but rather by measuring the reported events and pro-
viding a credibility or plausibility rank in real-time. Therefore, vehicles
should be able to discard messages from revoked or untrusted nodes.

• Attack prevention rather than detection and recovery. Security should
focus on preventing attacks rather than detecting them and alarming
users to take actions. For example, in safety applications, attack detec-
tion and warning arrive too late for the user to take an appropriate action
[103].

Privacy Requirements

Privacy requirements are usually considered for private vehicles rather than
for RSUs and public vehicles such as emergency vehicles and buses.

• Minimum disclosure. Information disseminated from vehicles during
communication should be kept to the minimum. Information disclosure
has to be adaptive to application requirements, as coarse as possible and
as detailed as necessary.

• Conditional anonymity. Anonymity means not only the sender identity
should be kept unknown, but also a message cannot be linked to a specific
vehicle using its content. However, vehicles are not totally anonymous in
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nature as their license plate numbers are still visible. Legal authorities
should be able to reveal the identity of the sender of a message when
needed.

• Unlinkability. Unlinkability means two or more items of interest cannot
be linked together. Items of interest can be, for example, messages, cre-
dentials or vehicles. Depending on the item of interest, unlinkability can
refer to other privacy concepts. For example, unlinkability of a sender to
a message it sent is equivalent to sender anonymity. Unlinkability of a
message to its originator is equivalent to untraceability. Unlinkability of
consecutive messages from one vehicle is equivalent to tracking immu-
nity.

• Distributed resolution authority. It is desirable to distribute the ability
to reveal user identity to several trusted authorities. This ensures that
no single authority can misuse the resolution ability in case of hijack or
corruption. Distributed resolution authority makes it more difficult to
launch attacks targeted at trusted authorities.

• Perfect forward privacy. Revealing the identity of a specific credential
should not lead to or help in revealing further credentials of the same
user.

Interrelations of requirements

The discussed requirements pose interrelations and conflicts among each other.
One of the important design issues in designing a VANET security and privacy
technique is to handle these conflicts and trade-offs [116]. Since the basic re-
quirements are obtained from VANET characteristics, they effect all other re-
quirements indirectly. Security and privacy requirements place constraints on
each other.

Authentication and accountability are limited by anonymity; the user iden-
tity must be unknown but authenticated by other users during communication.
User anonymity must be preserved from possible abuse by authorities; hence,
resolution ability should be distributed over several entities. In the same way,
accountability must guarantee unlinkability among users’ pseudonyms and
perfect forward privacy. Restricted credential use and revocation of creden-
tials are derived from and strengthened by authentication and accountability.
Minimum disclosure, anonymity and unlinkability requirements support each
other. Distributed resolution authority and perfect forward privacy do not pre-
vent accountability but also do not allow more information to be revealed than
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required for resolution and support minimum disclosure. In conclusion, meet-
ing all these constrained requirements at once is challenging for any security
and privacy technique [116].

2.4.2 Attack and Threat Models

In this section, security attacks threatening VANET are discussed. By design,
VANET inherits all known and unknown vulnerabilities of MANET; security
issues in VANET, however, are more challenging due to its unique character-
istics and contradicting requirements. Raya and Hubaux [111] classified the
capacity of an attack into four dimensions:

1. Insider vs. Outsider. The insider attacker is an authenticated user in
the network who owns a certified key and can communicate with other
members. The outsider is considered as an intruder and has less privi-
leges than the insider which in turn leads to less threats.

2. Malicious vs. Rational. A malicious attacker aims to harm other mem-
bers or the functionality of the network. A rational attacker seeks per-
sonal benefits and hence her means and target are more predictable.

3. Active vs. Passive. An active attacker may inject packets or signals into
the network, modify relayed messages or jam communication. On the
contrary, the passive attacker eavesdrops on the wireless medium to learn
information about the system entities without affecting them.

4. Local vs. Global. When an attacker is limited in scope even if she com-
promises several vehicles or RSUs, it is called a local attack. An extended
attacker can control several entities scattered across the network.

Threat models subject to vehicular networks are extensively studied in liter-
ature [55, 102, 103, 109, 153]. Next, we briefly list potential threats.

• Bogus information. An attacker diffuses incorrect information to affect
the behavior of other drivers. For example, a driver may try to broadcast
emergency vehicle warnings to free her road. This is usually a rational
active insider attack.

• Sensor data faking. An attacker tries to alter the data perceived by a
local sensor such as location, speed and direction, to escape liability. This
is a local rational active insider attack. In this case, the use of Tamper
Proof Device (TPD) that handles attaching such data to messages far from
applications is suggested.
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• Denial of service (DoS). An attacker floods or jams the wireless channel
with artificially generated or dummy messages in order to bring down
the network. VANET is more vulnerable to DoS attacks due to real-time
constraints of its applications [103]. An initial mitigation for this attack
is to switch to another wireless channel or even to another wireless tech-
nology (celluar or Bluetooth) [111].

• Movement tracking. An attacker who eavesdrops on a wireless channel
over large parts of the network for a range of purposes such as disclosure
of vehicle identity and finding their places of interest. Generally, this
attack is malicious passive and global.

• Message replay attack. An attacker re-injects previously received bea-
cons to poison a vehicle’s location table [153].

• Message modification attack. An adversary tries to change the source or
the content of a message during or after transmission aiming to escape
the liability.

• Message suppression attack. An adversary may use one or more ve-
hicles to selectively drop packets from the network such as congestion
alerts to make other vehicles enter congested traffic. Similarly, the at-
tacker can drop all received messages forming a sinkhole in the network.

• Masquerading. An attacker maliciously or rationally tries to pretend it is
another authenticated vehicle by using a false identity.

• Sybil attack. An attacker uses a large number of pseudonyms at the same
time to pretend it is actually hundreds of vehicles in order to persuade
other vehicles there is a traffic jam ahead they should take an alternative
route.

• RSU replication attack. An RSU can be compromised so that it can be
relocated to make other attacks, such as broadcasting false information,
in its new location.

• GPS spoofing. Since all vehicles include a GPS receiver, an attacker can
act as a GPS satellite simulator to generate signals that are stronger than
genuine ones [153]. Thus it fools other vehicles by producing false loca-
tion readings which means most location-based services will work incor-
rectly.
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2.5 Security Approaches

Numerous research works published in the past decade that address secu-
rity and privacy issues in VANET and have been recently reviewed by Petit
et al. [105] and Qu et al. [109]. The large diversity of the proposed mechanisms
results from the trade-offs between security, privacy, efficiency and trust. How-
ever, there is a consensus towards adopting public key infrastructure (PKI) for
securing VANET [78]. This security approach was initially proposed by Pa-
padimitratos et al. [100] during the SeVeCom project and adopted by standard-
ization bodies (ETSI TS 102 941 [10] and IEEE 1609.2 WG [11]). However, there
are other VANET security architectures that are based on different approaches
such as identity-based cryptography, group signature and symmetric cryptog-
raphy, as discussed next.

2.5.1 Public Key Infrastructure

In the conventional PKI, each node has private and public keys to authenticate
messages. A certification authority (CA) is required to certify public keys and
announce revoked nodes. Although the PKI fulfills many VANET security re-
quirements, it should be modified to support the privacy requirements. For
example, certificates should not contain any identifying information about the
owner. Also, keys should be changed periodically to avoid linking the signed
messages by the same certificate. Therefore, Raya and Hubaux [110] proposed
that each vehicle should be provided with two types of certificates: 1) unique
long-term identity and a key pair and 2) several pseudonyms associated with
anonymous key pairs. The long-term certificate is issued by a CA and should
be installed securely into the vehicle. The anonymous keys are also certified
by the CA and are used in signing messages. To allow message verification,
pseudonym certificates must be sent along with messages. Thus, receivers can
authenticate messages without revealing the identity of the sender. A vehicle
uses a pseudonym for a period of time then switches to another, not previously
used pseudonym. A tamper proof device (TPD) is embedded in vehicles to
generate key pairs and send public keys to the corresponding CA for certifi-
cation [100]. The CA signs the public keys, generates pseudonyms and stores
them with the vehicle’s long-term identity. Each pseudonym certificate con-
tains an identifier of the CA, the lifetime of the pseudonym, the public key, and
the signature of the CA. The TPD manages received pseudonyms and ensures
that only one pseudonym is used at a time to prevent Sybil attacks. The CA
revokes pseudonyms of the misbehaving vehicles by broadcasting a certificate
revocation list (CRL) to the network.
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There are many challenges that appear with this security approach. First,
who will authenticate vehicles in bootstrapping: the transport registration au-
thority or the manufacturer. Second, how are the certification authorities or-
ganized and how is the mapping of keys to the real identities maintained for
accountability and liability purposes. Should it be centralized across regions in
a central CA or hierarchical based on the regional structure. Both options pose
different challenges. The central management challenges the scalability while
the hierarchical management poses questions about the recognition of certifi-
cates issued by different authorities. Third, how and how many pseudonyms
should be loaded into vehicles. Will they be requested by vehicles online or
downloaded periodically during vehicle check ups. When should pseudonyms
be changed: at random periods, in mix zones, in social spots or preceded by a
silent period. Fourth, how are revoked pseudonyms published: through RSU,
forced by a TPD or using revocation lists. Fifth, how is resolution authority
technically guaranteed to be distributed on multiple entities. Last but not least,
does this architecture support the stringent latency constraints of safety appli-
cations. This security architecture is studied intensively in literature such as
[14, 78, 100, 64].

2.5.2 Identity-based Cryptography

Identity-based cryptography (IBC) [24] is a type of asymmetric cryptography
in which any vehicle can form the public key from its corresponding identity
string. The main benefit of IBC is the elimination of the need to certify the
public key and exchange certificates within messages. However, a centralized
trusted authority, which owns a master private key, is needed to generate a
private key for each vehicle. Thus, the vehicle legitimacy is implicitly guaran-
teed, rather than explicitly verified by a certificate, because only an authorized
vehicle would receive a private key corresponding to its identity. The IBC com-
munication and storage overheads are significantly reduced compared with the
PKI-based approach. Instead of using the vehicle identity, the trusted authority
generates and sends pseudonyms to each vehicle along with their correspond-
ing private keys. Since any vehicle can generate the public key of a pseudo-
nym, no additional information is required to be attached to the message. The
main drawback of IBC schemes is the reliance on a centralized trusted author-
ity for private key generation. VANET security mechanisms based on IBC can
be found in [15, 22, 126].
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2.5.3 Group Signature

In group signature [34], each member in a group has a private key to sign a
message anonymously on behalf of the group. Other members use the shared
group key to verify signed messages without revealing who signed them. How-
ever, a group manager can use its key to reveal the original signer of a mes-
sage. Additionally, two messages signed by the same vehicle cannot be linked
together because group members cannot determine if those messages came
from the same or different members. By design, group signature supports
anonymity, untraceability, unlinkability and unforgeablity (non-members can-
not produce authenticated messages). Therefore, there is no need for genera-
tion, storage, verification and revocation of numerous pseudonym certificates
per vehicle as in PKI and IBC approaches. Despite these appealing features,
there are several challenges. Similar to IBC, the verification and authentication
processes are time consuming. Second, group formation, members revocation
and inter-group communication are essential issues for a successful realiza-
tion in VANET. Security mechanisms based on group signature can be found
in [63, 86, 127]. Hybrid mechanisms that utilize group signature partially are
discussed in [30, 88].

2.5.4 Symmetric Cryptography

In symmetric schemes, a Message Authentication Code (MAC) is used for mes-
sage authentication. The sender hashes the message and a secret key. Any re-
ceiver must know the secret key to verify the MAC by performing the same
operation on the message. Thus, any node with knowledge of the secret key
can generate valid MACs, but the sender accountability is not provided. The
main benefits of this approach are the fast encryption and decryption times as
well as less security overhead. In addition, the key distribution mechanism
could be simpler and cost less than the deployment and maintenance of a PKI
scheme. However, a reliable symmetric scheme requires that exposure of single
or some secret keys should not compromise authentication of all vehicles. Xi
et al. [146] proposed the symmetric random key set approach. In this scheme,
sets of symmetric keys are drawn from a shared key pool and one key is shared
by several vehicles. Thus, the identity and the keys are not closely correlated.
This is helpful in key revocation because even if some of the keys have been
revoked, the rest of the vehicles can still be authenticated. Hu and Laberteaux
[70] applied the TESLA symmetric authentication protocol, which does not re-
quire RSU support as in [146]. In TESLA [104], signers use symmetric keys
derived from hash chains for message authentication and release keys after a
certain period of time. A message is authenticated with a key that has not been
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released yet, thus, receivers must store messages until the corresponding key
or a higher key has been released. In [70], key release periods are determined
according to the message frequency and the allowed latency.

2.6 Privacy Approaches

Privacy is preserved by achieving anonymous communication which should be
sufficiently robust against different de-anonymization attempts whether from
internal or external entities. Anonymity is often a method to protect privacy,
as well as a goal in itself [17]. Satisfying privacy requirements, discussed in
Section 2.4.1, depends on the employed security approach. For example, if the
group signature mechanism will be used in message authentication, anonymity
and unlinkability are implicitly guaranteed within the group. However, if the
PKI mechanism will be employed, additional privacy mechanisms are required
such as using pseudonyms for the anonymity requirement and changing it pe-
riodically for the unlinkability requirement.

Since there is a growing consensus towards adopting PKI for securing VANET
[78], we focus on privacy mechanisms for this security approach. As discussed
in Section 2.5, pseudonyms are used instead of long-term certificates to provide
anonymity. Pseudonyms were originally introduced by Chaum for anonymity
of electronic transactions and defined as “a public key used to verify signa-
tures made by the anonymous holder of the corresponding private key” [35].
Pfitzmann and Hansen defined a digital pseudonym as “a bit string which is
unique as identifier (at least with very high probability) and suitable to be used
to authenticate the holder’s item...” [106]. Since a pseudonym is unique, all its
authenticated messages are linkable. To provide unlinkability, a vehicle uses a
set of pseudonyms such that a pseudonym is used for a short period of time.
Based on these definitions and features, Petit et al. [105] identified pseudonyms
requirements in order to ensure privacy requirements as follows:

• Uniqueness. It is guaranteed by the pseudonym provider and the under-
lying security mechanism used to generate the pseudonym.

• Availability A new pseudonym should always be available for the vehi-
cle in case of pseudonym change. A new pseudonym can be provided
by storing a large set of pseudonyms in the OBU or through a dynamic
pseudonym refilling mechanism.

• Time-limited. A pseudonym must have a validity period to avoid track-
ing messages. This time limit is ensured by the signed certificate that
accompanies the pseudonym.
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• Pseudonym change block. The ability to prevent pseudonym change
is sometimes required to ensure resilience against depletion attacks and
preserving safety level.

• Link to other identifiers When a pseudonym is changed, all the other
identifiers (IP and MAC addresses) used by the same vehicle have to be
changed as well.

To prevent linkability of messages, a vehicle must change pseudonyms; thus,
an adversary could only link a few messages. However, pseudonyms should
be changed in appropriate contexts to avoid trivial linkability between old and
new pseudonyms. For example, if a vehicle changes its pseudonym alone in
a small area, the adversary can guess an event of pseudonym change and re-
link them. Simultaneous pseudonym changes are not necessarily sufficient,
unless the trajectories of vehicles are unpredictable by the adversary, as will
be shown in Chapter 3. Numerous research works consider how, where, and
in which situations pseudonyms should be changed in order to be effective.
The pseudonym change mechanisms can be categorized into five groups: pe-
riodical, context-based, in a mix-zone, after a silence period, and collaborative.
When a mechanism employs two or more techniques, we categorize it accord-
ing to its main contribution. In the rest of the thesis, we refer to pseudonym
change mechanisms as privacy schemes .

Most of the privacy schemes assume a worst-case adversary who can eaves-
drop all exchanged messages, especially safety beacon messages. Since these
messages are broadcast frequently and contain spatiotemporal information about
vehicles, linking consecutive messages of new and old pseudonyms is effec-
tively attainable using target tracking techniques [45, 143]. The privacy level is
measured using different metrics such as the anonymity set size, entropy and
the probability of tracking success. The lack of consensus on a standard privacy
metric for vehicular networks makes a comparison of different schemes diffi-
cult [105]. We will provide detailed evaluation and comparison among several
privacy schemes in Section 7.6.

2.6.1 Periodical Change

Periodical schemes change pseudonyms at fixed or random times. Fixed pe-
riods may increase simultaneous pseudonym changes among nearby vehicles
although an adversary would be able to predict when pseudonyms would be
changed. Random periods overcome this prediction issue. Eckhoff et al. [42]
proposed a time-slotted pseudonym pool with a swapping capability. Each ve-
hicle is equipped with a pseudonyms pool whereby each pseudonym is used
for a specific time slot. When all pseudonyms are used, a vehicle starts using
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the pseudonym of the first time slot. Vehicles can swap their pseudonyms valid
for a specific time slot to ensure each vehicle has only one pseudonym in each
time slot. Swapping of currently used pseudonyms is done by carefully in-
vestigating the context information, such as speed, heading, positions of other
vehicles. Swapping is performed only if the environment information leads to
improving the anonymity of both vehicles. This scheme eliminates the map-
ping between pseudonyms and real identities which disables the accountabil-
ity requirement. Freudiger et al. [52] proposed initiating a pseudonym change
when it is considered old and there are other vehicles in proximity. The age of
pseudonym is measured by a linearly increasing function of time and reset to
zero after a successful change. The authors calculated the probability distribu-
tion of the pseudonym age analytically under the assumption that an adversary
becomes confused if two or more vehicles change their pseudonyms followed
by a silence period. Freudiger et al. also studied the probability of cooperation
(i.e., at least one neighbor changes its pseudonym). They found that the proba-
bility of cooperation increases logarithmically with the increase of pseudonym
aging rate and decreases with the larger vehicles meeting rate. Pan et al. [98]
presented an analytical model to quantify the expected anonymity set size in
random pseudonym change schemes. They analytically computed the prob-
ability of the target vehicle to change its pseudonym simultaneously with its
neighbor. Then, they calculated the expected size of the anonymity set. They
considered the anonymity set to be the nearby vehicles with similar direction
and speed. Thus, each vehicle in the anonymity set is equally likely to be the
target vehicle and thus the tracker cannot identify the target. According to
the experiment results, the expected size of the anonymity set ranges from
1.04 to 1.12 depending on the pseudonym change period. These results are
obtained when there are four neighbor vehicles around the target during the
time it changes its pseudonym. This result is important because it shows that
changing pseudonyms randomly does not provide enough anonymity even if
the traffic is dense.

2.6.2 Context-based

In the context-based approach, a vehicle changes its pseudonym based on con-
text parameters whether internal parameters such as the current speed and
direction or external parameters such as the density of the surrounding traf-
fic. Raya and Hubaux [110] proposed changing pseudonyms when the ad-
versary cannot correlate the old and new pseudonyms. They calculated a
lower bound for pseudonym lifetime based on the vehicle transmission range
and the distance over which a vehicle does not change its speed and lane.
Based on this lower bound, they estimated that approximately 43800 keys are
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required per year to be loaded in a vehicle (assuming 2 driving hours per
day). Li et al. [83] proposed two protocols: Swing and Swap. In Swing, ve-
hicles change pseudonyms when changing their velocity (speed and direc-
tion). To increase the probability of simultaneous changes, a vehicle first checks
that there is at least one vehicle in its vicinity and broadcasts its intention to
change its pseudonym to the nearby vehicles. In Swap, vehicles exchange their
pseudonyms with probability 0.5 before a random silent period. Swapping
pseudonyms increases the anonymity set by including vehicles that have not
changed their pseudonyms with the vehicles doing the pseudonym change;
the adversary does not know which vehicle(s) exchanged pseudonyms or if
the vehicle exchanged its pseudonym at all. The Swap scheme challenges the
accountability requirement since the mapping between the pseudonyms and
the real identity is not updated in the central authority.

Gerlach and Guttler [57] proposed the concept of context mix where a vehicle
changes its pseudonym if there are N neighbors within a small radius (4.25 m)
after holding the last pseudonym for a specific stable time (1 min). The vehicle
assesses the situation after each change to ensure it is successful, that is, other
vehicles changed their pseudonyms as well. If this is not the case, the vehicle
restarts the change cycle. Gerlach and Guttler employed a tracker that fails if
two or more similar vehicles changed pseudonym simultaneously. Based on
their experiments, fewer vehicles are tracked when they change pseudonyms
in mix contexts than if they change at random periods. Buttyán et al. [28] pro-
posed the SLOW protocol which stops sending messages when the vehicle’s
speed drops lower than a preset threshold. If a vehicle remained silent for a
while, it changes its pseudonym. The idea behind choosing low speed is that
it is less likely to cause fatal accidents and indicates a natural mix areas where
many vehicles are located in close proximity. Buttyán et al. assumed a global
observer which tracks vehicles by predicating the next position based on in-
formation included in the last two beacons. The observer has knowledge of
probability distribution of traffic flow and time delay through road intersec-
tions. The privacy level is measured by finding the percentage of vehicles that
are tracked completely in the simulated traces. Based on their results, the track-
ing effectiveness is reduced when vehicles pass through several intersections
with silent periods; it depends on the speed threshold and vehicle density.

Lu et al. [87] proposed to change pseudonyms in social spots such as sig-
naled intersections and parking areas where several vehicles are stopped for a
period of time. Before leaving a social spot, vehicles change their pseudonyms
to create a dynamic mix zone. Lu et al. proposed a self-delegation key gen-
eration model where the driver can generate short-life pseudonyms using an
authorized anonymous key provided by a trusted authority. This model al-
lows vehicles to flexibly change their pseudonyms frequently. The experiment
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Figure 2.4: A mix zone at an intersection controlled by an RSU. The adversary
cannot observe messages broadcast within the mix zone.

results show an increase in the anonymity set size with the increase of the ve-
hicle arrival rate and the stopped time at social spots. However, this scheme
ignores the position precision of safety messages. Such precise spatial informa-
tion can distinguish vehicles stopped at social area. Also, not all social spots
are a perfect place for changing pseudonyms. Social spots such as shopping
malls are considered places of interest of the driver and the adversary con-
siders them the end of the trip. Thus, the adversary may not be interested in
linking pseudonyms before and after such spots.

2.6.3 Mix Zone

A mix zone was first introduced by Beresford and Stajano [18] for preserving
location privacy. This approach is analogous to a mix node of a mix network
[35], which changes the order of messages and their encoding to make linking
the message sender and receiver difficult. In VANET, the mix zone makes it
difficult for the adversary to link the vehicles that exit from the mix zone to
those that entered it earlier. Figure 2.4 illustrates a mix zone controlled by
an RSU at a road intersection. In a mix zone, the adversary cannot observe
broadcast messages and thus cannot predict the movement of the vehicles. If
vehicles would change their pseudonyms within the mix zone, the adversary
cannot correlate leaving vehicles with those entering the zone earlier. Hiding
messages in a mix zone is realized by keeping silence [27] or by encrypting
messages using a shared key obtained from an RSU [53].
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Buttyán et al. [27] introduced the concept of mix zone in vehicular networks.
The authors assumed an adversary who knows the conditional probability of
leaving the mix zone at port j given that the entry point was port i. The adver-
sary calculates the probability distribution of the time delay when traversing
the mix zone between each pair of ports. These probability distributions are
obtained by monitoring vehicle traffic at intersections. To correlate leaving and
entering vehicles, the adversary monitors leaving vehicles and assign them to
entering vehicles where the correlation probability is maximum. Buttyán et
al. showed by simulation that the tracking success increases with the increas-
ing number of attacker receivers at intersections. However, there is a saturation
point when the adversary covers only half of the intersections. These authors
also observed that the success probability of the tracker is nearly independent
from the traffic density above a given tracker strength. Freudiger et al. [53] real-
ized mix zones using symmetric cryptography and introduced cryptographic
mix zones (CMIX). The basic idea of CMIX is that vehicles obtain a symmet-
ric key from the RSU of the mix zone and encrypt all messages while passing
by the zone. Keys are also forwarded upon request from vehicles outside the
range of RSU to be able to decrypt received messages from vehicles within the
zone. Ying et al. [149] proposed a scheme called dynamic mix zone for location
privacy (DMLP). In this scheme, a mix zone is dynamically formed at the time
the vehicle requests it with the aid of RSUs and control servers. DMLP en-
crypts all transmitted messages while the vehicle is within the mix zone. The
size of the mix zone is determined by the vehicle’s predicted location, the traffic
statistics and the level of vehicle’s privacy requirement.

Choosing the effective places to deploy mix zones is a challenging problem
which has gained large consideration in literature. Freudiger et al. [54] pro-
posed an algorithm to find the optimal placement of mix zones by maximizing
the mixing effectiveness of the system at an affordable cost for mobile nodes.
The algorithm ensures a lower bound location privacy by enforcing a maxi-
mum distance between traversed mix zones. Freudiger et al. also proposed a
new metric based on the mobility profiles. In this metric, the traffic at an exit
point is modeled as the conjunction of the flows initialed from all entry points,
then the probability of error of the adversary in assigning an exiting node to the
correct flow is computed. Similarly, Sun et al. [128, 129] proposed a statistics-
based metric for evaluating the effectiveness of a mix zone. This metric is em-
ployed to determine the fewest mix zones that guarantee vehicles at any place
pass through a mix zone in a certain driving time and a small extra overhead
of adjusting routes. Palanisamy et al. [94, 95, 96] proposed the MobiMix frame-
work which is a construction and placement model for mix zones that is robust
against timing and transition attacks. This model takes into account multi-
ple factors in constructing and placing mix zones, such as the road topology
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characteristics, and the timing and the transitioning probability of vehicles in
terms of their movement trajectory. The authors also provided a formal anal-
ysis on the vulnerabilities of directly applying the rectangle mix-zones to road
networks in terms of anonymization effectiveness and resilience to timing and
transition attacks.

2.6.4 Silent Period

The silent period approach can be considered as a special type of mix zone
where it is not necessary to place the zone in fixed locations. Huang et al. [71]
proposed entering a silent period before a pseudonym change to harden track-
ing, especially in highly dense spots such as intersections or traffic lights. How-
ever, silent periods conflict with delay-sensitive safety applications which are
mostly required in these dense spots. Sampigethaya et al. [114, 115] applied
silent period in VANET when vehicles are merging and/or changing lanes
when joining or leaving a freeway. The ramps that allow vehicles to merge into
lanes on freeways are relatively safer locations compared to the main lanes of
freeway [114]. These authors also proposed group communication with silent
period for V2I communication. Each vehicle group has a group leader who
acts as a proxy to all the group members. The group leader can broadcast ag-
gregated traffic information of the group while the other members are silent.
Burmester et al. [26] showed vehicle tracking before and after silence periods
using Bayesian analysis. They claimed that the complexity of the road topol-
ogy, the traffic density, the vehicle proximity and the unpredictable behavior of
drivers are the main factors to harden linkability. For this purpose, they con-
cluded that pseudonyms should only be updated when a vehicle crosses a joint
point during which a short period of silence takes place.

2.6.5 Collaborative

In the collaborative approach, nearby vehicles communicate with each other to
synchronize their pseudonyms change to increase adversary confusion. Liao
and Li [85] extended the context mix approach proposed in [57] to have syn-
chronous pseudonym change with two or more similar vehicles. They pro-
posed to set a flag included in beacons when the minimum stable time of the
pseudonym expires. The vehicle then waits until receiving beacons of k ve-
hicles that have similar status and a set flag as well. The experiment results
show that the synchronous pseudonym change increases the number of suc-
cessful changes and reduces the number of pseudonyms used by vehicles to
a greater extent than the mix context approach. Wasef and Shen [138] pro-
posed a random encryption period (REP) scheme which employs encryption
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to form a secure group among vehicles to change their pseudonyms. A vehicle
intending to change its pseudonym communicates with nearby vehicles and ar-
ranges a period of time in which all messages are encrypted and pseudonyms
are changed. However, an active attacker may participate in the encryption
period and can therefore observe the pseudonym change [117]. Pan and Li
[97] proposed a cooperative pseudonym change scheme based on the number
of neighbors. Vehicles monitor their neighbors within radius R and wait until
they reach a threshold k. When this trigger occurs, the vehicle sets an inter-
nal flag, broadcasts it within its beacon and changes its pseudonym in the next
beacon. When a vehicle receives a beacon with a set flag or its internal flag is
set already, it changes pseudonym immediately. The results of the experiment
show that the expected size of the anonymity set increases with the increase of
traffic density and the radius R; it decreases with the increase of threshold k.
The anonymity set is expected to increase with multi-lane roads. Pan and Li
compared this scheme with a non-cooperative scheme which changes pseudo-
nym once k neighbors were detected. They showed that the enhancement of
cooperative scheme over the non-cooperative scheme increases until the aver-
age number of neighbors of the target vehicle approaches the threshold k and
then it decreases.

2.7 Summary

In this chapter, the underlying theories behind this dissertation are discussed.
First, the vehicular network is introduced explaining its applications, charac-
teristics and enabling wireless technology and protocols. Then, the security
and privacy requirements and possible threat models are presented. Last but
not least, different security and privacy approaches are categorized and sur-
veyed.
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3.1 Introduction

As indicated in Section 1.4, we use an empirical tracker as the adversary model
for privacy schemes evaluation. This tracker tries to link subsequent beacon
messages broadcast from each vehicle even if these messages are identified
by different pseudonyms. Thus, this tracker must be very robust to truly re-
flect the effectiveness of privacy schemes. Beside the adversary model, vehicle
tracking will be used in different aspects of this thesis. We propose using a local
tracker inside vehicles to keep track of the movement of nearby vehicles. This
local vehicle tracker will enhance the quality of service of safety applications,
as will be discussed in Chapter 5. In addition, it can be used to help vehicles
improve its location privacy by determining the appropriate context in which a
vehicle should change its pseudonym, as will be explained in Chapter 7. There-
fore, we discuss vehicle tracking in this chapter to facilitate the discussion in
later chapters.

3.1.1 Vehicle Tracker Model

The vehicle tracker collects beacon messages broadcast by vehicles located within
the coverage range of its receiver. If the tracker uses multiple receivers dis-
tributed over the road network, then it can collect all received messages form-
ing the vehicle traces that passed the covered area. In fact, both tracker models
(i.e., with single or multiple receivers) are used in different parts of this thesis.
The former model is used in the context monitoring module inside vehicles
to enhance their awareness about the surrounding traffic. The latter model is
used as an adversary model to measure the privacy level attained by a privacy
scheme. Regarding the beacon message, we assume it includes at least a time
stamp and the current position, speed and heading of the vehicle. It may also
include other vehicle-related measurements and information such as the ac-
celeration and the vehicle type and size. When the tracker collects beacons, it
quantizes them according to the default beaconing time tb. It rounds the time
stamp included in the beacons to the nearest beaconing time in order to divide
them into time steps. Thus, a new beacon from each vehicle is expected to ap-
pear once in every time step. In this chapter and unless stated otherwise, we
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assume that beacon messages are completely anonymous or, in other words,
that a new pseudonym is used with each beacon message. If a tracker can
achieve high accuracy in this worst case, it will track vehicles more accurately
when a pseudonym is used for several beacons.

3.1.2 Multiple Target Tracking (MTT)

Vehicle tracking using beacon messages can be considered as a typical well-
studied multiple target tracking (MTT) problem. The MTT involves compre-
hensive approaches and algorithms that are employed in several applications
[23, 147]. It assumes a set of measurements or observations detected by a sen-
sor in each time period; this set is referred to as a scan. Its goal is to find the
best estimate of the target states in each scan. Measurements are assumed to be
noisy and include clutter caused by false measurements not originating from
real targets.

T2

T1

Z3

Z4

Z1

Z2

Gate 1

Gate 2

Figure 3.1: Gates of two tracks T1 and T2 with three measurements in each. Two
measurements Z1 and Z2 are located in the intersection of gates.
Only measurements located in the tracker gate are considered in
the data association process of that track.

The MTT can be explained by gradually investigating tracking cases from
simple to complex. The simplest case is tracking a single target with no clutter.
The sensor acquires a noisy measurement every time step and it is required to
obtain an enhanced target state. Thus, a state estimation filter, such as Kalman
filter, is employed to combine the acquired measurement and the calculated
state obtained from a predefined kinematic model for that target. The estima-
tion filter converges overtime to form a more accurate track for the target than
that detected by the sensor. When clutter is present, several measurements are
detected in every scan but only one of them is originating from the target, if
any. In this case, the estimation filter cannot be used directly as it is unknown

42



3.1 Introduction

Gating

Data 
Association

Track 
Maintenance 

State 
Estimation

New Beacons

Track List

Figure 3.2: Phases of multi-target vehicle tracking.

which measurement belongs to the target. A data association process is per-
formed to identify which measurement is most likely originating from the tar-
get. However, a validation process or gating is performed beforehand to avoid
unnecessary computations. Gating forms a validation area around the track
and excludes any measurement located outside this area from being tested in
the computationally intensive data association process, as shown in Figure 3.1.

The complex tracking case is the multiple target tracking in clutter. Assum-
ing that there is a set of tracks already established for the targets, then, a gate
can be formulated around each track. Because these gates can overlap and
measurements can be located in more than one gate, as demonstrated in Figure
3.1, the data association process for all tracks must be handled simultaneously.
Otherwise, the data association will not be globally optimized leading to false
assignments. If the number of targets are unknown or dynamic, a separate or
joint process with data association should handle the track initiation, confir-
mation and deletion, which is referred to as track maintenance. Figure 3.2 shows
the main phases of MTT that will be discussed in more detail in Section 3.2.

3.1.3 Vehicle Tracking as an MTT Problem

According to the description given in the previous two sections, vehicle track-
ing in VANET is a typical MTT problem, but it has different assumptions and
constraints. First, there is no clutter or false measurements assumed in bea-
con messages by default. All received messages reflect real vehicles unless
the adopted privacy scheme uses dummy traffic. Second, some of detection
problems that may occur because of the limitation or deficiency of sensors are
unlikely to occur in VANET domain. Examples of these problems are the un-
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resolved measurements problem, which occurs when a single measurement is
formed from multiple targets, and the multiple detection problem, which oc-
curs when the same target is detected more than once in a single scan. These
problems are considered to be the main challenges for data association [147].
Third, the expected accuracy of beacon information and its broadcast rate are
higher than those expected in MTT algorithms. This can be induced by the
requirements of safety applications which require precise positions with error
less than one meter and a high beaconing rate up to 10 Hz [38]. Fourth, the
vehicle movement is predictable and constrained by roads and driving rules
which leads to simpler vehicle modeling and tracking. These differences pro-
pose that vehicle tracking can be accomplished effectively and efficiently using
non-complex MTT approaches and can achieve a high accuracy.

The rest of this chapter is organized as follows. Our proposed tracker and its
phases are explained in detail in Section 3.2. In Sections 3.3 and 3.4, we explain
the evaluation metric and the experiment results of the tracker, respectively.

3.2 Proposed Vehicle Tracker

As briefly presented in Section 3.1.2, multi-target vehicle tracking consists of
four iterative phases: state estimation, gating, data association and track main-
tenance. State estimation (e.g., Kalman filter) is used to obtain an accurate state
for vehicles using both inaccurate measurements gained from vehicle sensors
and the estimated states obtained from a predefined kinematic model. Because
several beacons are received from different vehicles in each time step, data as-
sociation phase is performed to associate the measurements with their originat-
ing vehicles. However, a validation phase, or gating, is performed prior to data
association to prevent unnecessary computations for unlikely associations. Be-
cause the number of vehicles is unknown and dynamic, a track maintenance
phase is needed to handle track initiation, confirmation and deletion.

Next, we will briefly discuss the phases of vehicle tracking. Although it be-
gins logically with gating, state estimation will be discussed first because it is
crucial to the remaining phases.

3.2.1 State Estimation

A vehicle state expresses on the set of facts about the vehicle, which include
its position, velocity and acceleration. It is practically impossible to determine
the exact vehicle state because sensors such as GPS receiver, speedometer, etc.
have limited precision and are prune to noise. Thus, in order to track vehicles
and link their messages, their state should be better estimated using a state
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estimation filter. The state estimation filter is not an interpolation or extrapo-
lation but it gives a better estimate for a state xk at time k taking into account
both the previous states x1, x2, x3,...,xk−1 and the inaccurate measurement zk
acquired at time k. The most common state estimation filter is the Kalman fil-
ter [76]. The Kalman filter is a set of mathematical equations that provides an
efficient iterative method to estimate the state of a stochastic process so that the
mean square error is minimized. In order to use Kalman filter in estimating
the vehicle state, vehicle dynamics should be modeled in accordance with the
Kalman filter model. The Kalman filter assumes that the underlying system
is linear where the transition between subsequent states is given by a linear
equation. Also, it assumes that the process and the measurement noises are
Gaussian distributed. We define the vehicle motion as a linear dynamic model
with Gaussian-distributed noise as:

xk = Axk−1 + w (3.1)

where xk is the vehicle state vector at time step k and A is the transition matrix
that advances the state by one time step. The random variable w represents
the process noise with a normal distributionN (0,Q) where Q is its covariance
matrix. zk denotes the measurement at time step k and is defined as:

zk = Hxk + v (3.2)

where H is the model matrix that maps from the state space to the measure-
ment space. The random variable v is the measurement noise with a normal
distribution N (0,R) where R is its covariance matrix. Q and R do not change
over time.

The state vector xk consists of the vehicle position p, speed s and acceleration
a in 3D Cartesian coordinates. The transition matrix A is formulated using
motion equations forming a 9x9 matrix. However, such large dimension may
lead to inefficiency in computations. It is recommended in [23] to decouple the
components of each coordinate because they are independent of each other.
Thus, the state vector xk(i) and the transition matrix A(i) of coordinates x, y
and z are defined as:

xk(i) =

pisi
ai

 ,A(i) =

1 tb t2b/2
0 1 tb
0 0 1

 (3.3)

where the subscript i refers to the x, y or z coordinate, and 1/tb is the beaconing
rate. The subscript i is subsequently omitted for simplicity but it is worthy to
note that any reference to the state vector xk means one part of the vector.
We assume that the beacon message contains the current position, speed and
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heading (i.e., cosine of thetas in each direction) according to the specifications
of safety applications [38]. Because the use of the heading in the measurement
vector produces a non-linear model, the vectored velocity is calculated using
the given heading and the speed. Thus, the measurement vector zk and the
matrix H of each coordinate x, y and z are defined as follows:

zk =

[
p
s

]
,H =

[
1 0 0
0 1 0

]
(3.4)

For process noise, we assume that w =
[
t2b/2 tb 1

]T . Thus, the covariance
matrix Q can be defined as:

Q = E(wwT )σ2
ap =

t4b/4 t3b/3 t2b/2
t3b/2 t2b tb
t2b/2 tb 1

σ2
ap (3.5)

where σ2
ap is the acceleration variance in the process noise. For measurement

noise, we assume that the variances in the measurements of position and ve-
locity (σ2

p and σ2
v , respectively) are provided to the Kalman filter as parameters.

Thus, the covariance matrix R is defined as:

R =

[
σ2
p 0

0 σ2
v

]
(3.6)

Values of these parameters are carefully selected, as discussed in Section 3.4.1.
Thus, the vehicle model is formed and can be used in Kalman filter as shown
next.

The Kalman filter is an iterative algorithm and switches between prediction
and update steps. At time step k, the prediction step calculates a predicted (a
priori) state x̂−k using the estimated state x̂k−1 of the previous time step k − 1.
It also calculates a predicted (a priori) error covariance matrix P−k which indi-
cates the accuracy of the predicted estimate, as specified in (3.7). The predicted
state x̂−k is also called a priori because it does not include the measurement of
the current time step yet.

Prediction Step:
x̂−k = Ax̂k−1

P−k = APk−1A
T + Q

(3.7)

where A and Q are matrices defined in (3.3) and (3.5), respectively. It is as-
sumed that the measurements of the first scan initiate the tracks and initialize
the state vector x̂0 at k = 0. Also, the initial error covariance matrix P0 is
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formed to have a parametric error in position while zero error in velocity and
acceleration as follows:

P0 =

p0 0 0
0 0 0
0 0 0

 (3.8)

where p0 is a parameter given to the Kalman filter.
The update step calculates the Kalman gain K to update the predicted esti-

mate by the observed measurement at the current time step. Also, it computes
the residual or innovation z̃k, which is the difference between the actual mea-
surement and the estimated one, and the innovation covariance matrix S which
indicates the accuracy of the residual. Both the residual z̃k and its covariance
matrix S are used later in the gating phase.

Update Step:
S = HP−kH

T + R
K = P−kH

TS−1

z̃k = zk −Hx̂−k
x̂k = x̂−k + Kz̃k
Pk = (I−KH)P−k

(3.9)

where H and R are matrices defined in (3.4) and (3.6), respectively, and I is
the identity matrix. More details about Kalman filter and its derivations can be
found in [140].

3.2.2 Gating

Assuming a track is established for each vehicle, a measurement-to-track as-
sociation should be performed to assign the new measurement to the correct
track. Prior to the association, a gating process is required to eliminate unlikely
associations. The most common gating technique is ellipsoidal. The ellipsoidal
shape is a consequence of the assumption that the error in the residual (z̃k) is
Gaussian [16]. The ellipsoidal gating defines a gate G such that the association
is allowed if the norm of the residual vector (d2) is within this gate G:

d2
i = z̃i

TS−1
i z̃i

d2 =
√∑3

i=1 d
2
i ≤ G

(3.10)

where z̃i and Si are the residual vector and its covariance matrix of the coor-
dinates x, y or z, respectively, defined in (3.9). The norm d2 is calculated for
all combinations of measurements and tracks. When a measurement satisfies
the gating inequality with a track, it is declared as a validated measurement
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for that track. Otherwise, it will be excluded from the possible assignments in
the data association. This gating process will be revisited in the context-based
privacy scheme, as explained in Chapter 7.

The gate size G can be calculated adaptively based on the probability of de-
tection PD and the residual vector. The probability of detection can be en-
visioned as the packet delivery ratio expected in vehicular network context.
However, as stated in [23], d2 is assumed to have Chi distribution χ2

M where M
is the degree of freedom or the dimension of the measurement vector. For the
model specified in the previous section (M = 6), G is set to be more than 19.

3.2.3 Data Association

After measurements are validated for each track, it is likely to have the same
measurement in more than one gate, as illustrated in Figure 3.1. As it is not al-
lowed to assign a measurement to multiple tracks, it is necessary to do associ-
ation for all tracks simultaneously to avoid incorrect or sub-optimal solutions.
There are several association approaches and they differ in how the assign-
ment is accomplished. Some approaches, such as the global nearest neighbor
(GNN), find the best measurement to update each track. However, there are
others, such as joint probabilistic data association (JPDA), that incorporate sev-
eral measurements with weighting probabilities to update a single track. Also,
the assignment decision can be taken based on the measurements of the cur-
rent scan or postponed several scans until finding the best hypothesis, as in
multi-hypothesis tracking (MHT).

The GNN is the simplest data association approach as it handles the associa-
tion problem in a straightforward way. It calculates a cost for each measurement-
to-track assignment forming an assignment matrix. It uses an efficient method
for solving the assignment problem to find the maximum number of possible
assignments which minimizes the total cost. The cost function can be defined in
multiple ways. For example, the cost function can be defined as the statistical
distance of measurement j to track i as follows:

d2
Gij

= d2
ij + ln(|Sij |) (3.11)

where d2
ij is defined in (3.10) and ln(|Sij |) is the logarithm of the determinant

of the innovation covariance matrix Sij defined in (3.9). This last term is used
to penalize tracks with high uncertainty expressed in a large innovation ma-
trix. There are several approaches that enhance the association of GNN such as
branching to multiple hypotheses or calculating the cost function using subse-
quent scans. However, the GNN becomes obsolete because of the feasibility of
more advanced techniques, such as JPDA and MHT [23].
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The JPDA updates the track with a weighted average of all the measurements
within its gate. The weighting function for assigning measurements to a track
can be calculated as follows. For each scan, the probability of each hypothesis
that assigns a validated measurement to a track is calculated. The probability
of a particular measurement-to-track association is calculated as the sum of
probabilities of all hypotheses that include this association. The JPDA is not
appropriate for vehicle tracking because it results in a low tracking accuracy
with closely spaced targets, as shown in [50]. Additionally, updating one track
by multiple measurements is irrational, because it is guaranteed that different
measurements or beacons necessarily correspond to different vehicles. Thus,
updating a vehicle track by states of other vehicles results in deviation in the
generated tracks. Finally, the complexity of JPDA is combinatorial because it
requires generating all association hypotheses.

However, there is another simplified form of JPDA proposed in [50] which
is referred to as nearest neighbor PDA (NNPDA). It aims to simplify the as-
sociation calculations and avoid weighted-average updating feature in JPDA.
It calculates a probability for each measurement to track association similar to
JPDA, without generating the association hypotheses. It forms an assignment
matrix with these probabilities and uses an assignment algorithm to select the
optimal assignments. The probability Pij of assigning a measurement j to track
i is defined as:

Pij =
Gij

Ti +Mj −Gij
, Gij =

e−d
2
ij/2

(2π)Nm/2
√
|Si|

(3.12)

where Gij is the Gaussian likelihood function associated with the assignment
of measurement j to track i, Ti is the sum of likelihood functions Gij of track
i and Mj is the sum of likelihood functions Gij of measurement j. The d2

ij

is the normalized distance between the measurement j and track i defined in
(3.10) and the |Si| is the determinant of the residual covariance matrix defined
in (3.9). Nm is the dimension of the measurement vector. After calculating all
probabilities, an assignment matrix is formed to obtain the optimal associations
that maximize the sum of probabilities. This assignment problem is solved
using an auction algorithm considering tracks as the bidders, beacons as the
items and the bidding price as Pij . We used an MATLAB implementation [112]
of the auction algorithm proposed in [39]. These optimal associations are used
to individually update each track by the associated beacon in the Kalman filter.

The MHT is different from GNN and PDA approaches in that it postpones
the association decision for multiple subsequent scans. It generates hypothe-
ses for all validated measurements with each track but it propagates (a subset
of) them for subsequent time steps aiming to resolve the uncertainty. Since
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the propagation of hypotheses leads to combinatorial explosion, several tech-
niques are used to reduce the complexity such as pruning, clustering or track
merging.

The choice of the appropriate data association approach is crucial and de-
pends on the application specifications and requirements. We used the NNPDA
technique for the data association because it is more efficient than MHT, which
enables real-time calculations even in a dense traffic. In addition, NNPDA
achieves accurate association, as will be shown in Section 3.4.

3.2.4 Track Maintenance

A track maintenance phase is required to initiate, confirm and delete tracks.
When a measurement is received and not assigned to a previously established
track, a new track is initiated. However, this measurement may be a false
alarm, thus this track is considered as a tentative track until it is confirmed
in subsequent scans. The track confirmation can be typically done if M corre-
lating measurements received in N scans and assigned to this track. Another
approach is to define a score function for tentative tracks and confirm them
once they exceed a predefined threshold. When a track is not updated for a
while, it should be deleted to avoid further wrong associations and reduce the
computational overhead. A typical deletion rule is to delete a track after a dele-
tion tolerance interval of N consecutive scans with no update. Also, a score
function can be used for this purpose.

In vehicle tracking, the track maintenance is simpler because lack of clutter.
A track is initiated and confirmed immediately once a beacon is received and
not assigned to a previously established track. For track deletion, the track is
kept for a time-to-live Tttl without an update; it is subsequently deleted. This
Tttl should be carefully handled with respect to the expected packet loss due
to intentional (e.g., silent periods) or unintentional (e.g., channel congestion)
reasons. If this parameter is small and several consecutive beacons are lost,
the track will be rapidly deleted which will cause several discontinuities in the
vehicle track. In contrast, if Tttl is large, multiple vehicle traces may be merged
into a single track.

3.3 Evaluation Metric

In the tracker evaluation, we used the tracking percentage as a metric for the
tracker accuracy. To explain how this metric is calculated, we show first how
the tracker practically works. Initially, it creates a set of tracks for beacons
which appear in the first time step. Next, it assigns beacons of subsequent time
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steps to the established tracks or it may start new tracks. However, it may con-
fuse and assign a beacon to a wrong vehicle track. Later, it may overcome this
confusion and return assigning beacons to the original correct track. Therefore,
the generated tracks must not be the same as the original traces due to these
confusions. One track can be formed from several vehicle traces and one ve-
hicle trace can be composed of multiple tracks at different times. We consider
a successful tracker to be one that can produce continuous and correct tracks as
long as possible. In the optimal case, the whole vehicle trace is assigned to
a single track and each track is assigned to only one vehicle trace, resulting
in 100% continuous tracking. To manage intermediate cases, we calculate the
continuous tracking periods that a tracker can achieve for each vehicle trace.
We then assign one track to only that vehicle trace that maximizes the length of
the total tracking periods for all vehicles. Formally, the tracking metric can be
defined as follows. Let l(v, t) be the continuous tracking period when the ve-
hicle trace v is assigned to the track t, ∀v, t ∈ V, T . τv is the maximum tracking
period of v and obtained by solving the following assignment problem:

maximize
∑
v∈V

τv

subject to τv =
∑
t∈T

l(v, t) · av,t, av,t ∈ {0, 1},∑
v∈V

av,t ≤ 1 ∀t ∈ T and
∑
t∈T

av,t ≤ 1 ∀v ∈ V.

This assignment problem can be solved using an auction algorithm considering
tracks as the bidders, vehicle traces as the items and the bidding price as l(v, t).
Therefore, the tracking percentage can be defined as:

tracking percentage =

∑
v∈V τv∑

v∈V L(v)
× 100 (3.13)

where L(v) is the lifetime of v. This metric is similar to the one used in [143]
except that multiple vehicle traces can be assigned to the same track in different
times and a single confusion is permitted in the tracking period.

3.4 Experiment Results

In evaluation, we use the VISSIM vehicle traces explained in Section 1.6.1. Since
the position and velocity retrieved from VISSIM is accurately measured where
it is not the case in reality. Thus, we add a normally distributed random noise,
typically 1 m, to the position. Also, we assume vehicles obtain accurate speed

51
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Table 3.1: Tracker evaluation parameters in urban and highway scenarios

Urban Highway
Parameter Range Default Range Default

Arrival rate (Vehicle/hour) 100 - 600 300 300 - 1000 600
Desired speed (km/h) 30 - 70 50 80 - 130 100
Beaconing time tb (s) 0.1 - 5 0.5 0.1 - 5 0.5
Position noise σp (m) 0 - 10 1 0 - 10 1
Speed noise σv (%) 0 - 10 2 0 - 10 2
Track time-to-live Tttl (beacons) 1 - 10 2 1 - 10 2
Packet delivery ratio PDR 0.7 - 1 1 0.7 - 1 1

Simulation runs 10

measurements from the wheel speed sensors used in Anti-lock Braking System
(ABS). In typical conditions, the velocity noise can be maintained to be within
2% of the current speed [122]. The beaconing time tb is assumed to be 0.5 s.
Since the traces sampling interval is 0.1 s, we consider only one sample every
five time steps to obtain the 0.5 s beaconing time. We run each experiment
10 times with different random noises. We evaluated a range of values for
each of these parameters along with the traffic density and the desired speed
offered in the simulation scenarios. The evaluated parameter ranges and their
default values are shown in Table 3.1. In the next experiments, we show the
effect of changing two parameters while assigning the remaining parameters to
their default values. The error bars shown in the figures represent the standard
deviation, if any.

3.4.1 Parameters Selection

Before discussing the experiment results of the tracker, parameters of Kalman
filter and Gating should be adequately selected because they influence the
tracking accuracy. We evaluated a wide range of parameter values repeatedly
until the optimized value for each parameter is identified. Table 3.2 shows the
test ranges for each parameter and its optimized value used in all experiments.

3.4.2 Anonymous Beacons

The tracker is evaluated using VISSIM vehicle traces described in Section 1.6.1.
It is worthy to note that beacons are anonymized which means that the tracker
uses only the spatiotemporal information (i.e., time, position and velocity) to
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Table 3.2: Optimized values for Kalman filter and gating.

Parameter Test Range Optimized Value

Kalman filter p0 20 - 70 40

σ2
ap 0.1 - 5 1

σ2
p 1 - 25 7

σ2
v 0.5 - 5 1

Gating G 15 - 50 30

track vehicles. Our hypothesis is that if a tracker can achieve a high tracking
accuracy in anonymous beacons, it will track vehicles more effectively when a
pseudonym is used for several beacons.

The first experiment evaluates the tracker for different vehicle arrival rates
with variant beaconing times tb, as shown in Figure 3.3. In the highway sce-
nario, the tracking percentage decreases with the increase of the length of the
beaconing time tb with a little effect of the arrival rate (for tb ≤ 2 s). This result
is expected because the high speed of vehicles makes the change in their po-
sition faster which makes the tracker needs more frequent updates to achieve
a higher accuracy. In contrast, in the urban scenario, the tracking percentages
of 0.5 ≤ tb ≤ 2 s are almost similar regardless of the arrival rate. This small
difference in the tracking percentages occurs because vehicles move near each
other with small state changes and beaconing times up to 2 s are sufficient to
track vehicles accurately. Also, the tracking percentage for tb = 0.1 s is lower
than those for 0.5 ≤ tb ≤ 2 s. This reduction occurs because frequent updates
in a relatively low speed environment with the presence of noise makes the
tracker confuse more among these nearby updates. In general, the beaconing
times up to 1 s achieve a high tracking percentage of more than 80% in both
scenarios. This finding emphasizes the trade-off between safety applications
requirements of 10 Hz or even 1 Hz beacon rates and preventing tracking.

Next, we evaluate the tracker for different vehicle arrival rates with variant
random noises in position, as shown in Figure 3.4. In both scenarios, the track-
ing percentage is more than 85% regardless of the arrival rate for less noisy
positions (σp ≤ 1 m). This result indicates that the positioning accuracy re-
quirement of safety applications, such as lane change and forward collision
applications, makes vehicles traceable, regardless of the vehicle density. Also,
in intermediate arrival rates in the highway scenario (≤ 800 Veh/h), vehicles
are still highly traceable (above 70%) even with largely noised positions (σp ≤
5 m). This result implies that noising the vehicle information is not sufficient to
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Figure 3.3: Vehicle arrival rate versus beaconing time
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Figure 3.4: Vehicle arrival rate versus random noise in position

avoid tracking in a sparse traffic. In case of more noise in the urban scenario,
the arrival rate becomes a factor and the tracker is more confused in linking
beacons resulting in a lower tracking percentage. However, we can notice the
impact of arrival rate in the urban scenario is greater than that in the highway
scenario because the distances among vehicles are smaller.

Furthermore, the effect of noise in velocity is evaluated in Figure 3.5. Noises
up to 5% of the current velocity achieve the same tracking percentage. Al-
though larger noises in velocity (e.g., 10%) slightly reduces tracking, it has
much lower effect than the noise in position.

The next two experiments test the effect of the vehicle desired speed on the
tracking percentage. Figure 3.6 shows the vehicle desired speed versus the
beaconing time while Figure 3.7 presents the vehicle desired speed versus the
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Figure 3.5: Vehicle arrival rate versus random noise in velocity
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Figure 3.6: Vehicle desired speed versus beaconing time

random noise in position. In general, the desired speed has a slight effect on the
tracking percentage in the highway scenario and almost no effect in the urban
scenario. This behavior comes from that the desired speed does not change the
actual traffic distribution or density in simulation so that it does not change
the tracking percentage. The beaconing time and random noise in position
produce the same tracking percentage as in their corresponding experiments
with arrival rate.

The tracking percentage metric represents the quality of tracking by show-
ing how long the vehicle traces can be tracked. However, it does not show how
many vehicles are completely tracked from start to end (i.e., τv = L(v)). For
example, the tracker can track on average 50% of the vehicle traces but in the
same time there are many vehicles are completely tracked. Thus, we use an ad-
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Figure 3.7: Vehicle desired speed versus random noise in position
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Figure 3.8: Completely tracked vehicles versus tracking percentage

ditional metric to clarify this case which is the percentage of vehicles that are
completely tracked or so called traceability. Using thousands of simulation runs
performed in the previous experiments, the relation between these metrics is
illustrated in Figure 3.8. The samples of both metrics are fitted on a quadratic
polynomial function drawn as red curves. These figures show that it is possible
to completely track many vehicles, although the average tracking percentage
is low. For example, 40% of vehicles can be completely tracked on average in
the urban scenario when only a tracking percentage of 60% is achieved. Also,
in both scenarios, at least 60% of vehicles are completely tracked on average
for tracking percentage of 80%. This result indicates that even with conditions
leading to intermediate tracking percentages, many vehicles can be completely
tracked and totally losing their location privacy. Interestingly noted from Fig-
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ure 3.8, the average of completely tracked vehicles is more in the urban scenario
than the highway scenario.

3.4.3 Packet Delivery Ratio

In the previous experiments, it was assumed that the tracker is perfectly global
so that it can eavesdrop every message broadcast to the network. However,
this assumption is not realistic due to the typical limitations of wireless com-
munication such as packet loss. Packet loss is common in wireless communica-
tion due to several reasons such as signal degradation and channel congestion.
The effect of packet loss on vehicle tracking is that a random set of beacons is
lost every time step and thus the tracker has incomplete knowledge about the
traffic, which in turn reduces its tracking capability. We simulate the packet
delivery ratio (PDR ) by removing a random set of beacons of size equals to the
loss ratio every time step. For example, to simulate a PDR of 0.8, we remove
a one-fifth random set of beacons sent every time step. It may be not the best
way to simulate the PDR because the packet loss is affected by more complex
conditions in reality. However, we assume the tracking percentage will not
differ significantly when the packet loss distribution is non-uniform over time.

In the first experiment, the PDR correlation with the track time-to-live (Tttl)
parameter is investigated. As discussed in Section 3.2.4, Tttl affects the tracking
tolerance against the loss of subsequent messages of a vehicle. A Tttl of one
time step means that the track is deleted if it is not updated for two consecutive
time steps and so on. Both urban and highway scenarios are examined with a
range of PDR between 0.7 and 1 along with several Tttl values range from 1 to
10 beacons. We run simulations using the default values specified in Table 3.1.
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Figure 3.9: Packet delivery ratio versus track time-to-live (Tttl)
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As shown in Figure 3.9, the track time-to-live (Tttl) does not play any role in
the case of the perfect packet delivery (i.e., PDR = 1). This is important as our
previous results assumes a tolerance interval of two time steps and perfect PDR
, thus, we do not need to repeat the previous experiments. However, for lower
PDRs, the tracking percentage is significantly decreased but it can be improved
by using non-short track time-to-live values (i.e., Tttl > 2 beacons). However,
longer Tttl values (Tttl ≥ 4) do not enhance tracking already degraded by the
packet loss. They achieve the same tracking accuracy. Thus, low values of the
track time-to-live decrease the tracking percentage but the longer ones do not
enhance it. Moreover, the tracking percentage is more degraded in the urban
scenario than the highway scenario in lower PDRs (PDR ≤ 0.9). In the urban
scenario, the tracker is more confused because the traffic is denser and the noise
in position leads to wrong beacon associations.

Furthermore, we evaluate the effect of the packet delivery ratio with respect
to the beaconing time, as shown in Figure 3.10. Based on the previous experi-
ment, we choose the track time-to-live (Tttl) to be 4 beacons. For the highway
scenario, the tracking percentage is reduced linearly for short beaconing times
(tb ≤ 2). However, the tracking percentage becomes almost constant for longer
beaconing times regardless of the PDR . In the urban scenario, the tracking per-
centage decreases for all beaconing times with the decrease of the PDR . Thus,
the reduction of the tracking percentage caused by the packet loss can be par-
tially mitigated using short beaconing times.
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Figure 3.10: Packet delivery ratio versus beaconing time (Tttl = 4 beacons)
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3.4.4 Beacon Information

After evaluating the proposed tracker, we evaluate the influence of the in-
formation contained in the beacon message on the tracking. Wiedersheim et
al. [143] employed only time and position in their MHT tracker. However,
their tracker accuracy is degraded significantly (up to 40%) for any random
noise and beaconing times more than 1 s even with small traffic densities (75
vehicles and higher). Although the NNPDA is simpler than MHT, the NNPDA
achieves a tracking percentage above 85% for position noises up to 1 m and
above 70% for beaconing times up to 2 s according to the evaluated scenarios
of different densities. These differences can arise from the tracking method, the
simulation scenarios and/or the vehicle state model. In this section, we present
the impact of the state model and the beacon information on the tracker accu-
racy. This experiment is crucial because it determines what is the necessary
and sufficient information to be able to track vehicles effectively. It validates
the assumption that the more information the tracker knows about vehicles,
the more effective it can track them. To test the correctness of this hypothesis,
we proposed two additional state models, the P and PVA models, similar to the
model defined in Equations 3.3-3.6. The P model uses the vehicle position only
in the measurement vector (zk) while the PVA model uses the position, velocity
and acceleration. Note that the state vector (xk) of the P model includes veloc-
ity for better estimation results. The tracking percentage of both models are
then compared with results obtained from our original model (i.e., PV model).
The P Model is defined as follows:

xk =

[
p
s

]
,A =

[
1 tb
0 1

]
, zk =

[
p
]
,H =

[
1 0

]
(3.14)

Q =

[
t4b/4 t3b/2
t3b/2 t2b

]
σ2
ap,R =

[
σ2
p

]
(3.15)

While the PVA Model is defined as follows:

xk =

ps
a

 ,A =

1 tb t2b/2
0 1 tb
0 0 1

 , zk =

ps
a

 ,H =

1 0 0
0 1 0
0 0 1

 (3.16)

Q =

t4b/4 t3b/3 t2b/2
t3b/2 t2b tb
t2b/2 tb 1

σ2
ap,R =

σ2
p 0 0

0 σ2
v 0

0 0 σ2
a

 (3.17)
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Figure 3.11: Beaconing time versus vehicle state models
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Figure 3.12: Random noise in position versus vehicle state models
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Figure 3.13: Arrival rates versus vehicle state models
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It is worthy to note that the previous matrices are for a single coordinate x, y,
or z. We run the tracker using these models along with the original one (PV
Model) on the highway and urban scenarios with similar parameters specified
in Tables 3.1 and 3.2. As shown in Figures 3.11, 3.12 and 3.13, the P model per-
forms worse than the other models for different arrival rates, position noises
and beaconing times. This confirms that the degradation in the tracking accu-
racy in [143] essentially caused by the employed model. Thus, position infor-
mation is not sufficient to achieve a reliable vehicle tracking. Additionally, em-
ploying the position and velocity information is sufficient for vehicle tracking
and provides similar tracking accuracy to employing acceleration in addition.

3.4.5 Comparison with MHT Tracker

The presented results in previous sections show reasonable effectiveness of the
proposed NNPDA tracker. However, it is important to confirm its robustness
by comparing with other trackers based on advanced data association algo-
rithms such as MHT. The MHT tries multiple hypotheses over subsequent time
steps rather than taking an assignment decision based on the information of
the current time step. Also, it is desirable to apply the tracker on different ve-
hicle trace datasets to confirm its generality. Therefore, we obtained the MHT
tracker and the traces dataset from Wiedersheim et al. [143]. Their tracker uses a
vehicle state model based on positions only which is not sufficient for effective
tracking, as explained in Section 3.4.4. Hence, we modified their MHT tracker
to consider both position and velocity in the state estimation, as defined in
Equations 3.3-3.6. Also, they calculate the tracking period differently because
they allow a single track to be assigned to more than one vehicle trace in dif-
ferent times. We adopted their calculation method but used the mean tracking
percentage (MTP) as the comparison metric which can be defined as follows:

MTP =

∑
v∈V maxt∈T l(v, t)∑

v∈V L(v)
× 100 (3.18)

where l(v, t),∀v, t ∈ V, T is the continuous tracking period when the vehicle
trace v is assigned to the track t and L(v) is the lifetime of v. Finally, they
used their STRAW traces explained in Section 1.6.2 in the tracker evaluation.
It is clear that the STRAW scenario has much more intersections and road seg-
ments than that in VISSIM scenarios. However, the VISSIM provides more
realistic traces because it uses a car-following model that considers physical
and psychological aspects of the drivers. To take advantage of both traces, we
use the STRAW traces and the urban scenario of VISSIM .

In Figures 3.14, we show the MTP of noiseless positions as obtained from
the traces dataset versus the vehicle arrival rate or density. We notice that the

61



3 Multi-Target Vehicle Tracker

NNPDA with the PV model achieves perfect tracking in all densities and sce-
narios. The MHT with PV model achieves a high accuracy in the intermediate
vehicle densities, otherwise its MTP is reduced even to the lowest of all other
variations in the STRAW scenario. The NNPDA with P model is not stable;
its MTP is high in the VISSIM scenario while it is low in the STRAW scenario.
Lastly, the MTP of the MHT with P model is low and reduces with the vehicle
density.

 0

 20

 40

 60

 80

 100

 100  200  300  400

M
T

P
 (

%
)

Vehicle Arrival Rate (Veh/h)

Variation of tracking methods and state models

NNPDA-PV
NNPDA-P

MHT-PV
MHT-P

(a) VISSIM urban Scenario

 0

 20

 40

 60

 80

 100

 50  100  150  200

M
T

P
 (

%
)

Number of vehicles

Variation of tracking methods and state models

NNPDA-PV
NNPDA-P

MHT-PV
MHT-P

(b) STRAW traces

Figure 3.14: Comparison of tracking methods and vehicle state models in
noiseless positions.
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Figure 3.15: Comparison of tracking methods and vehicle state models in noisy
positions of 2 m.

In Figure 3.15, different tracking methods and model are evaluated for noisy
positions of 2 m in both scenarios. The NNPDA with PV model achieves the
highest MTP among the others on average. The MHT with PV model achieves
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a comparable percentage in the intermediate densities, although its MTP de-
creases more in the higher densities. The MHT and NNPDA of P model are
achieves low MTP in the presence of noise, although the NNPDA-P performs
better in the VISSIM scenario. According to these results, the robustness of our
NNPDA tracker in comparison with the MHT tracker [143] is confirmed. We
will use the NNPDA tracker in evaluating privacy schemes as a global adver-
sary and enhancing the quality of safety applications by embedding it inside
vehicles, as will be explained in the next chapters.

3.4.6 Pseudonymous Beacons

When a vehicle uses the same pseudonym for several beacons, the tracker can
easily correlate these beacons. The tracker assigns beacons to the tracks by
matching similar pseudonyms. The tracker uses the data association algorithm
(i.e., NNPDA) only when correlating beacons of new pseudonyms with un-
matched tracks. The tracker keeps all encountered pseudonyms in a list for the
pseudonym maximum lifetime defined by the privacy scheme. After that time,
the pseudonym is removed from this list. A pseudonym is identified as new if
it does not exist in this pseudonyms list.

To give an illustration of how the tracking percentage can be enhanced with
periodically-changed pseudonyms, we evaluate scenarios of 0.5, 5 and 10 m
normally-distributed position noises with pseudonyms changed every fixed
time tp ranging from 0.5 to 300 s. To avoid synchronization effect and en-
sure that a vehicle changes its pseudonym at least once, vehicles are forced
to change its pseudonym within the first 10 time steps of its arrival. Also, it is
worthy to note that the tracker does not exploit the knowledge of that tp has
a fixed length in order to predict when exactly a vehicle change its pseudo-
nym. The fixed tp may harden the tracking vulnerability because it increases
the number of vehicles that change their pseudonyms simultaneously. Since
the average lifetime of vehicles is relatively short in the VISSIM scenarios, we
also evaluated the STRAW vehicle traces. Figures 3.16 illustrate the tracking
percentages versus the pseudonym lifetime tp with different noises. We se-
lected the highest vehicle density from each dataset which harden the tracking
mission. For the VISSIM dataset, the urban scenario of 600 vehicle/hour arrival
rate is selected while, for the STRAW dataset, the vehicle density of 200 vehicles
is chosen. We can notice that a tracking percentage of more than 90% and 70%
can be achieved even with the presence of noise of 10 m (i.e., the common GPS
noise) when pseudonyms are changed every 30 s for the VISSIM and STRAW
datasets, respectively. Higher tracking percentages are attainable with longer
pseudonym lifetimes. We show also the tracking percentage in the theoretical
case where a vehicle uses a new pseudonym every beacon. The tracking per-
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Figure 3.16: Tracking with pseudonyms in the highest vehicle density of the
VISSIM urban scenario and the STRAW traces.

centage is dropped to about 8% in both datasets when the noise in position is 10
m. These results confirm three important findings. First, using pseudonyms for
several beacons increases the tracking vulnerability significantly even if they
are changed every relatively short periods (e.g., 30 s) and the positioning noise
is large (i.e., σp = 10 m). Second, changing pseudonyms frequently does not
reduce tracking vulnerability when small noises in position are expected (e.g.,
σp = 0.5 m) even in dense traffic, as shown in Figures 3.16. Third, simulta-
neous pseudonym changes among nearby vehicles is desirable to confuse the
tracker but it is not sufficient to avoid tracking. The most frequent and simul-
taneous pseudonym change occurs when it is changed every beacon. Based on
these results, vehicles are traceable with a very high likelihood specially when
accurate measurements are used in the beacon messages.

3.4.7 Tracking with Silent Period

When the vehicle traces include a random silent period before a pseudonym
change, the tracker is tuned to handle this expected silence. The tracker basi-
cally holds a vehicle track without update till track time-to-live (Tttl) time steps
and deletes it after that time. We added an extra parameter of the maximum
silence period (max-silence) that can be employed by a privacy scheme. The
tuned tracker only marks a vehicle track as inactive after Tttl time steps and
holds it for additional max-silence time steps. When the tracker assigns beacons
of unmatched pseudonyms to its current tracks list, it only considers inactive
tracks. This modification increases the tracking percentage since it eliminates
matching beacons of new pseudonyms with unrelated tracks.
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Figure 3.17: Runtime of the vehicle tracker using anonymous beacons of the
STRAW traces

3.5 Tracker Complexity and Efficiency

The complexity of the vehicle tracker is O(KVN) where V and N are the num-
ber of beacons and tracks per time step, respectively, and K is the total number
of time steps. Generally, N ' V , but when there are many confusions and the
tracker creates many new tracks for unmatched beacons, then N � V . The
standard implementation of the Kalman filter requires O(d3) [107], where d de-
notes the dimension of the vehicle state, because of the matrix inversion and
multiplication operations. Since d is constant, we assume the complexity of
Kalman filter is constant.

We implemented the tracker using MATLAB and run our experiments on
an Intel QuadCore i7-4800MQ @ 2.70GHz CPU. We calculate the total running
time required to track anonymous beacons of the whole STRAW traces of dif-
ferent densities, as shown in Figure 3.17. We observe an exponential runtime
with the increase of the vehicle density. The exponential rate increases faster
with the presence of position noise due to the increase of tracker confusions and
creation of false tracks every time step. Moreover, we notice that the tracker can
process the whole traces of 2000 time steps in about 1000 seconds with a vehi-
cle density of 100 vehicles. This means that the tracker can track anonymous
beacons in real-time with intermediate vehicle densities. In the pseudonymous
beacons, the runtime is dramatically decreased even with short pseudonym
lifetimes. For example, the tracker can process the whole densest scenario of
200 vehicles with a short pseudonym lifetime of 30 s in less than 100 s regard-
less of the position noise.
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3.6 Tracker Enhancements

Although the proposed NNPDA tracker achieves a reasonable accuracy in track-
ing vehicles in different traces and conditions, this accuracy can be further en-
hanced. First, beacons contain additional static data, such as vehicle type and
size. If this information is additionally used in tracking, it will help in discrim-
inating between confusing beacons.

Second, the road geometry can be exploited in the tracking algorithm itself.
There are several ground target tracking algorithms that use the road map and
its geometry to predict the vehicle state more realistically such as [125, 148, 134].
Road curvature and surface, velocity limit and road direction are examples of
the constraints that can be imposed to the state estimation. These constraints
lead to better estimations which in turn lead to better data association and
tracking accuracy.

3.7 Summary

In this chapter, the multi-target vehicle tracking is thoroughly discussed and
a vehicle tracker based on the NNPDA algorithm is proposed and evaluated
using different vehicle traces datasets. The experiment results can be summa-
rized as follows:

• Anonymous beacon messages can be effectively and accurately tracked
(tracking percentage more than 80%) for beaconing times up to 1 s and
position noises up to 1 m in both urban and highway scenarios and re-
gardless of the vehicle density.

• A reasonable number of vehicle traces can be entirely tracked from anony-
mous beacon messages even in conditions leading to intermediate track-
ing percentages. For example, 30% of traces can be completely tracked
when the tracking percentage is only 60%.

• Low packet delivery ratios (PDR) reduce the tracking accuracy but this
reduction can be mitigated by short beaconing time of 0.5 s or shorter. A
tracking percentage of 80% can be achieved even with a PDR of 0.85.

• The position and velocity are the sufficient and necessary information to
effectively track anonymous beacon messages.

• The proposed tracker and vehicle model achieved higher tracking accu-
racy than the MHT tracker in both noiseless and noisy vehicle traces.

66



3.7 Summary

• Beacon messages identified by periodically-changed pseudonyms can be
tracked more effectively, even with a large position noise up to 10 m. This
result confirms the need for additional mechanisms to prevent tracking
more than the periodical pseudonym change.

Based on these results, the trade-off between the safety application require-
ments and location privacy is clearly highlighted. Safety applications require
beaconing time up to 1 s and position noise up to 1 m which are sufficient for
accurate and continuous vehicle tracking. This finding asserts the need for pro-
tecting the driver’s privacy by preventing vehicle tracking without hindering
the operations of safety applications.
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4 Measuring Location Privacy

4.1 Introduction

Westin defined privacy as that “the right to control, edit, manage, and delete
information about them[selves] and decide when, how, and to what extent in-
formation is communicated to others” [141]. Location privacy is a special type
of privacy which concerns the individual location. Location privacy is studied
in different application areas such as databases, location-based services and
mobile networks. Although there is a large number of privacy mechanisms
proposed for VANET, there is a lack of consensus on suitable privacy met-
rics [105]. Each proposed privacy scheme is evaluated using a different metric
which makes comparing the effectiveness of different schemes difficult.

Privacy is related to other concepts, such as anonymity, untraceability, un-
linkability, unobservability and pseudonymity, which are essential for under-
standing and measuring privacy [29, 106]. We briefly explain these concepts
before discussing the privacy metrics. Anonymity of a subject means that the
subject is not identifiable within a set of subjects, the anonymity set [106]. For
example, the sender of a message is anonymous when it cannot be identified
who sent this message. According to this definition, anonymity is more than
hiding or eliminating the identity of an action (e.g., removing the sender ad-
dress from a message) because the identity can be guessed using other informa-
tion sources or previous knowledge. For example, if a message was sent from
a workplace on the weekend and it was known to the attacker that only Alice
was at work in that day, in this case, the sender of this message could be eas-
ily re-identified even if the message is apparently anonymous. The anonymity
definition states this condition by relating the anonymity of a subject to other
subjects that may perform the action (i.e., anonymity set). If the anonymity set
equals to one or the subject has unique characteristics from other members of
the anonymity set, the subject is not anonymous.

Untraceability concerns making it difficult to correlate different actions per-
formed by the same subject together [29]. Anonymity is necessary but not
sufficient to guarantee untraceability. Subsequent actions can be individually
anonymous but the adversary can use similar attributes of these actions to cor-
relate them. Unlinkability usually generalizes the anonymity and untraceability
concepts [29]. Unlinkability of two or more items of interest (e.g., subjects,
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messages and actions) from an attacker’s perspective means that it cannot suf-
ficiently distinguish whether these items are related or not, as defined in [106].
Therefore, anonymity means the subject and its actions are unlinkable and un-
traceability means actions of the same subject are unlinkable. In contrast to
anonymity, unobservability concerns hiding the item itself instead of the iden-
tity. Unobservability includes the adversary unawareness about the action and
the anonymity of the subject of that action [106]. Pseudonymity means that using
a pseudonym instead of a real identity to identify oneself [29]. A pseudonym
is an identifier of a subject other than and unlinkable to one of the subject’s real
identities. If a subject is using multiple pseudonyms, it is important that they
are unlinkable to ensure untraceability.

Measuring location privacy of a privacy scheme requires quantifying its abil-
ity to fulfill the requirements of each concept against a well-defined adversary.
We consider the adversary model defined in Section 1.5.2 which aims to recon-
struct vehicle traces from their beacon messages. Therefore, we do not measure
the pseudonymity in the metric because it should be fulfilled in the pseudo-
nym issuing process which is out of the scope of this thesis. But we assume
that vehicles use pseudonyms obtained from a service provider and use one
pseudonym at a time. Unobservability is also ignored because it is assumed
for safety applications to frequently broadcast the vehicle state unencrypted.
Therefore, the privacy metrics presented and proposed in this chapter concern
only anonymity, untraceability and unlinkability.

In this chapter, an overview of the existing privacy metrics for VANET is
presented. We then propose the distortion metric that is used throughout the
thesis in evaluating and comparing privacy schemes. An experimental com-
parison among the discussed metrics is explained at the end of the chapter.

4.2 Privacy Metrics

4.2.1 Anonymity Set Size

Vehicles are assumed to broadcast beacon messages continuously with their
pseudonym, position, speed and heading. To provide anonymity and unlink-
ability, they are changing their pseudonyms periodically. Therefore, the basic
location privacy metric is to measure the anonymity set size. The anonymity set
of a target vehicle is the vehicles in which this target vehicle is not identifiable
or distinguishable with respect to its location. For example, an anonymity set
may be formed when two or more nearby vehicles change their pseudonyms
in the same time. In this case, the adversary may confuse about the actual loca-
tion of the target vehicle since it may be any vehicle from the anonymity set. A

70



4.2 Privacy Metrics

closely related metric is the k-anonymity which basically refers to an anonymity
set with a minimum size k, where the target is indistinguishable from at least
k − 1 vehicles.

One shortcoming of this metric is that it is not necessary for all members
of the anonymity set to be equally likely the target vehicle, from the adversary
perspective. The adversary can calculate probability distribution for the anony-
mity set based on the spatiotemporal information in beacons so that less-likely
correlations can be excluded from the anonymity set. Therefore, the anony-
mity set size is not a suitable location privacy metric because it cannot deal
with nonuniform probability distributions of the anonymity set [40, 121]. De-
spite its unsuitability, the anonymity set size is used in some recent works,
especially in analytical approaches, such as [87, 99].

4.2.2 Entropy

To handle the shortcomings of the anonymity set size, Serjantov and Danezis
[121] and Díaz et al. [40] proposed an information theoretic metric, the Entropy,
to measure the anonymity. Let A represent the anonymity set and pi is the
probability assigned by the adversary for each member in A to be the target
such that

∑|A|
i=1 pi = 1, then the entropyH can be defined as:

H = −
|A|∑
i=1

pi · log pi (4.1)

According to this definition, the entropy of a vehicle equals to zero while the
same pseudonym is used for several beacons. Upon a pseudonym change,
the entropy is calculated based on the probability distribution assigned by the
adversary. The entropy achieves its maximum value when the probability dis-
tribution is uniform (i.e., Hmax = log2 |A|). It decreases in other distributions
till it reaches zero when only one pi equals one and the rest equals zero. Since
H is unbounded, Díaz et al. [40] proposed an extended metric, the normalized
entropyHn, to measure the degree of anonymity:

Hn =
H
Hmax

(4.2)

The entropy expresses on the adversary uncertainty about the linkability of
a new pseudonym to the target vehicle. The given definitions measure the en-
tropy of a single mix which is formed by simultaneous pseudonym changes of
several vehicles. To calculate the overall entropy of a vehicle trace, entropies
of individual mixes that occurred in the whole trace are summed together as-
suming entering consecutive mixes is independent, as presented in [72, 53].

71



4 Measuring Location Privacy

Alternatively, the average, minimum and maximum can be calculated over all
mixes to provide the expected, lower-bound and upper-bound of the adversary
uncertainty, respectively, as adopted in [21, 73].

The entropy is intensively used in evaluating location privacy schemes in
mobile and vehicular networks. However, the method that calculates the anony-
mity set and their probabilities differs from a scheme to another based on the
assumed system and adversary models. Beresford and Stajano [19] used en-
tropy to evaluate the anonymity of a mix-zone placed in specific locations.
When users enter a mix-zone, they change their pseudonyms and exit the mix-
zone after an unknown period of time (guaranteed by the mix-zone shape). The
adversary calculates all possible mappings between old and new pseudonyms
based on a movement probability matrix. This matrix is estimated based on
the adversary knowledge of the source/destination frequencies. The normal-
ized probabilities of these mappings are used in calculating the entropy. Later,
Buttyán et al. [27] introduced the mix-zone concept into VANET and used the
entropy to identify the effective size of the anonymity set. The apparent size
of the anonymity set is the number of vehicles that exit a mix zone in the ob-
served period. However, they showed that the effective size is much less due
to the non-uniformity of the probability distribution. For the entropy proba-
bilities, they calculate a probability pjt for each exit event which is given by
pjt = qsjfsj(t). qsj is the probability that the vehicle chooses port j as its exit
port given that it entered the mix zone at port s and fsj(t) is the probability
that the vehicle covers the distance between ports s and j in time t. This proba-
bility calculation is similarly used by Freudiger et al. in [53] for evaluating their
Cryptographic MIX-zones (CMIX) protocol.

Sampigethaya et al. [114] proposed the silent period as a type of dynamic
mix-zones where vehicles keep silent for a random period before changing
their pseudonyms. The anonymity set is considered to be all vehicles that
update their pseudonyms in the reachable area of the target during the silent
time range. The reachable area is calculated based on the target speed range,
the road restrictions and the minimum and maximum silent time specified by
the scheme. They calculated the probabilities of the anonymity set based on
two different tracking methods: simple and correlation tracking. In the simple
tracking method, all vehicles are assigned an equal probability. In the correla-
tion tracking, the estimated location of the target vehicle is calculated based on
its last known location, speed and direction at every time step during silence.
The obtained location estimations are compared with the locations of other ve-
hicles in the anonymity set. The adversary calculates non-uniform probability
distribution based on the proximity between the vehicle locations and the cor-
responding estimated target location.

Although the popularity of entropy metric, it has several shortcomings pointed
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out in the literature. Tóth et al. [133] showed that a high value of entropy may
not mean high anonymity especially when there are many low probable map-
pings that can be ignored by the adversary. Additionally, an entropy threshold
cannot be specified for mix-zones so that the anonymity is confirmed if the
estimated entropy is greater than this threshold value. Palanisamy and Liu
[95] proposed to use the pairwise entropy which measures the deviation of the
mapping probabilities in a pairwise fashion. The pairwise entropy between
two users i and j is the entropy obtained by assuming that users i and j are
the only members of the anonymity set. If the pairwise entropies H(i, j) and
H(j, i) when i exits as i′ and j exits as j′ are both close to 1, it means that the
attacker is highly uncertain about this mix.

Apart from the calculation details, Fischer et al. [49] argued that entropy-
based metrics are not suitable to measure unlinkability because they do not dis-
tinguish among different probability distributions of linking subsequent mes-
sages estimated by different attackers. Moreover, Shokri et al. [123] claimed
that the entropy and, of course, the anonymity set size metrics are not suit-
able for quantifying location privacy. The entropy shows how uniform versus
condensed the estimated distribution and, in consequence, how certain the ad-
versary about his decision. The higher the entropy becomes, the lower the
adversary’s certainty. However, the entropy does not derive any clue about
the correctness of this decision. It may happen that the adversary is certain
about his estimate with a high probability but, at the same time, this estimate
is largely different from the actual user’s location. This occurs because of the
limitation and incompleteness of the adversary’s knowledge about the actual
situation.

4.2.3 Traceability

Another approach for measuring the location privacy is to calculate how long
an adversary can track vehicles. Tracking vehicles or linking segments of dif-
ferent pseudonyms is inversely proportional to the location privacy. Identi-
fying user trajectories and movement patterns is an essential step for privacy
breaches (i.e., re-identification and localization attacks) [69].

There are several approaches to measure traceability. Huang et al. [71, 72]
measured how long a node can be tracked continuously in evaluation of silent
period schemes in mobile networks. They used the terminology of Maximum
Tracking Round (MTR) which is the number of identifier rounds that a node
is tracked continuously after its first identifier update. Consequently, the maxi-
mum tracking time is the MTR multiplied by the lifetime of the identifier. Sampigeth-
aya et al. [114] defined the maximum tracking time differently as the maximum
cumulative time that the target anonymity set size remains as one. Similarly,
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Hoh et al. [69] proposed the time-to-confusion metric which is the tracking
time until the adversary uncertainty (i.e., entropy rather than the anonymity
set) rises above a preset threshold. Also, they proposed another similar metric
based on distance rather time in [68] which is called distance-to-confusion.

In the context of fixed mix-zones at road intersections, Buttyán et al. [27] and
Freudiger et al. [53] evaluated mix-zones by the success probability of an ad-
versary to track vehicles. This success probability is calculated by the ratio of
the number of successfully mapped vehicles to the total number of vehicles in
a mix-zone, averaged over all mix-zones. Furthermore, Buttyán et al. [28] used
the spatiotemporal information in every two beacons to calculate the accelera-
tion of the vehicles to accurately predict the next position. Then, they measure
the tracking success rate which tracked vehicles from their departure to their
destination. Wiedersheim et al. [143] measured the traceability as the average
duration of each correctly tracked vehicle. However, they allow for the recon-
structed traces to include false samples from traces of other vehicles. We used
traceability in [44, 45, 46] with two different definitions. First, it is measured
by the tracking percentage as defined in Equation 3.13. Second, it is measured
by the percentage of vehicle traces whose a tracking percentage more than a
preset threshold (e.g., 95%). Our calculation methods for traceability will be
discussed in detail in Section 4.3.

4.2.4 Distortion

The last approach for measuring location privacy is to calculate the error or
distortion of the reconstructed tracks compared to the actual traces. Hereafter,
a trace refers to the original vehicle trace and a track refers to the reconstructed
trace by the adversary. Hoh and Gruteser [67] proposed the expected distance
error, which captures the adversary accuracy in estimating a user position.
They defined the expected distance error for a path as:

E[d] =
1

NK

K∑
k=1

I∑
i=1

pi(k)di(k) (4.3)

where di represents the total distance error between the correct hypothesis and
the hypothesis i for all user locations at a time step k. pi is the probability
of the hypothesis i obtained from the MHT algorithm used in reconstructing
the user paths from positions sent every time step. N is the number of users
and K is the total time steps. Similarly, Shokri et al. [124] defined an expected
distortion metric which can be calculated as follows. First, they find the latest
position from a user observed at or before a time step t, which is denoted by
et. Then, all paths that start from et and end at t are identified to calculate
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Figure 4.1: Traceability metric illustration

the expected user positions and their corresponding probabilities. At last, the
expected distortion at time step t is the total weighted distance between the
expected positions and the actual position multiplied by their corresponding
probabilities. They also defined the distortion-based traceability which is the
tracking time until the distortion exceeds a preset threshold.

4.3 Proposed Location Privacy Metric

Based on the presented metrics and criteria, we adopt a combined metric that is
based on the traceability and distortion. It is important to measure both aspects
to determine how long the adversary can track a vehicle and how different the
reconstructed tracks from the actual traces. We hypothesize that reconstruct-
ing the entire vehicle trace is necessary to breach the driver privacy. This hy-
pothesis is inferred from research works of re-identifying anonymous traces
which use work/home location pairs [59], top N locations [152] or geosocial
networks [33]. All these works depend on finding the frequently visited places
of the user over a long time (e.g., several weeks). In VANET, these places can
be identified by correlating the source and destination of each trip, which ne-
cessitates the ability of reconstructing the entire user traces. If the adversary
is unable to reconstruct complete traces, then clustering techniques used in the
re-identification process will fail in finding the driver places.

We investigate traceability more thoroughly since comparing the reconstructed
tracks with the original vehicle traces is not trivial, as illustrated in Figure 4.1.
In this example, there are three traces V1, V2 and V3 (drawn as solid lines on
the left) that are reconstructed into three tracks T1, T2 and T3 (drawn as dashed
lines on the middle). By visually comparing both sets, it is clear that each track
is reconstructed from partial segments of the original traces. For example, T1 is
reconstructed from segments of V1, V2 and V3. Traceability metrics presented
previously in this chapter may fail to reflect the actual traceability level of this
adversary. The main issue of their operation is that they assign tracks to vehi-
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cle traces during the tracking process. In other words, they assume the track
firstly assigned to a vehicle trace should continue with this trace till its end as in
[67, 71, 114]. However, this early assignment underestimates the length of the
reconstructed tracks. For example, if the traceability of V1 is measured by as-
signing T1 to V1, then this metric shows a very short tracking time, although V1
is reasonably reconstructed by T3. Therefore, it will be more effective if tracks
are assigned to the vehicle traces globally after the tracking process is complete.
The track-to-trace assignment is basically a nonlinear assignment problem where
the total benefit should be maximized. The benefit represents the tracking pe-
riod when a track t1 assigned to a vehicle trace v continuously. The assignment
program is previously presented in Section 3.3 but that metric focuses on mea-
suring the tracker capability, and thus, it considers only how long vehicles are
continuously tracked. However, a traceability metric for privacy should re-
flect how this tracking capability threatens the user privacy. For example, a
traceability-based privacy metric may correlate the tracking percentage to the
probability of re-identifying anonymous tracks.

Therefore, the assignment program is re-discussed here to highlight this dif-
ference. Let l(v, t),∀v, t ∈ V, T be the maximum continuous tracking period
when the track t is assigned to the vehicle trace v. Note that t can be assigned
to v for disconnected segments at different times. In this case, l(v, t) represents
the longest segment. The disconnected segments are not summed together be-
cause the tracking is discontinued and the track may be assigned to another
vehicle trace during this discontinuity. The adversary cannot reconnect these
segments and filter out this wrong assignment period because the adversary
does not know if he is confused or not. Let τv be the maximal tracking period
of v; and it can be obtained by solving the following assignment problem:

maximize
∑
v∈V

τv

subject to τv =
∑
t∈T

l(v, t) · av,t, av,t ∈ {0, 1}, (4.4)∑
v∈V

av,t ≤ 1 ∀t ∈ T and
∑
t∈T

av,t ≤ 1 ∀v ∈ V.

Here, av,t is the assignment function which equals one if the track t should be
assigned to the vehicle trace v and equals zero otherwise. Note that not all
tracks must be assigned to a vehicle trace because the number of tracks can be
greater than the number of vehicle traces as some tracks are reconstructed from
partial vehicle traces. Also, not all vehicle traces must be assigned to a track
because its l(v, t) may not contribute to the maximal

∑
v∈V τv. In this case, τv

1In the rest of this chapter, t refers to a track rather than a time step.
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equals zero. This assignment problem is solved using an auction algorithm
considering tracks as the bidders, vehicle traces as the items and l(v, t) as the
bidding price. After the optimal assignment is obtained, the traceability of the
whole scenario is calculated by counting the percentage of significantly tracked
vehicles. Thus, the traceability metric Π is defined as:

Π =
1

N

∑
v∈V

λv × 100, λv =

{
1 τv

L(v) ≥ 0.90

0 otherwise
(4.5)

where L(v) is the lifetime of v and N is the total number of traces included
in the dataset. This metric allows few confusions around the endpoints of a
vehicle trace (10% of the trace lifetime) since inaccuracies in endpoints can be
smoothed by a clustering technique in a re-identification process, as shown
in [66]. According to this definition, the privacy of the driver is considered
breached if the adversary is able to continuously track 90% of her trace. Also,
this metric reflects the probability of being tracked by calculating the ratio of
tracked vehicles rather than how long a tracker can estimate from the actual
trace as in [45, 143].

When the number of traces and tracks are huge, allocating a single assign-
ment matrix for all of them is significantly memory intensive process. To over-
come this issue, the traces are divided into time windows of 15 min each so that
the traces appear in a window and their corresponding tracks are processed to-
gether. The tracks assigned to traces in a time window will never be processed
in the subsequent windows. This workaround may lead to a non-optimal so-
lution because it gives a higher priority to former traces for track assignment.
However, we compared the assignments obtained from this workaround and
those obtained from the optimal method in several tests and we noticed they
are almost similar.

There is a shortcoming in measuring privacy using traceability only. The
traceability does not consider how distorted the reconstructed tracks if com-
pared to the original traces. In most cases, high traceability indicates low dis-
tortion and vice versa because, at the end, tracks are reconstructed from precise
and frequent spatiotemporal samples exchanged for safety applications. How-
ever, it is not necessarily the case. Figure 4.2 demonstrates four different traces
and their assigned tracks showing the traceability and distortion metrics. Fig-
ure 4.2(a) presents a case where the entire vehicle trace is reconstructed into a
single track, which is never assigned to another vehicle trace, resulting in per-
fect traceability and very low distortion. Figure 4.2(b) illustrates the case when
the assigned track reconstructs only a partial segment of the vehicle trace re-
sulting in low traceability and high distortion. These two examples show the
apparent inverse proportionality between traceability and distortion. How-
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(a) Traceability = 100%, Distortion = 1.7% (b) Traceability = 38%, Distortion = 85%

(c) Traceability = 100%, Distortion = 45% (d) Traceability = 51%, Distortion = 1.8%

Figure 4.2: Traceability and distortion metrics comparison. Each figure illus-
trates a single vehicle trace drawn in blue and its assigned track
drawn in red.

ever, the traceability metric sometimes does not indicate the actual distortion.
For example, it can happen that the assigned track is longer than the original
trace because the adversary is confused at the end of the vehicle trace and it
further associated this track to another vehicle trace, as shown in Figure 4.2(c).
In this example, the vehicle trace starts at the bottom left and assigned to the
track till the end of the trace lifetime. At this point, the adversary assigned this
track further to another vehicle trace (not shown in the figure). The track as-
signment process assigned this track to the first trace, and thus the traceability
metric assumes a perfect tracking because the entire vehicle trace is assigned
to a single track. However, the reconstructed track is largely different from the
original trace which preserves some privacy and must be reflected in the met-
ric. Another example is when the track is assigned to a partial vehicle trace and
then assigned to another near vehicle trace, as shown in Figure 4.2(d). In this
example, the trace spatially appears similar to the assigned track because the
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second vehicle trace follows the same routes of the first trace. Since the adver-
sary is confused in the middle of the trace, the traceability metric shows a par-
tial tracking. However, the privacy is breached indeed since the track spatially
reconstructs the whole trace. Therefore, for a better privacy measurement, the
distortion of the assigned track should be included in the metric.

The distortion-based metric is measured by calculating how different the as-
signed track from the original vehicle trace. The tracks are first assigned to
vehicle traces so that the total tracking periods are maximized for the whole
scenario, as defined in Equation 4.4. Then, the ratio of the distorted segments
to the total trace length is calculated to indicate the distortion ratio. Formally,
let the track t consist of spatiotemporal samples tp, tp+1, ..., tm and it is assigned
to the vehicle trace v which consists of spatiotemporal samples vq, vq+1, ..., vn
(i.e., t ∼ v) where it is not necessary that p = q or m = n. We define the distor-
tion of sample pairs δ(vi, ti) at a time step i,∀i,max(p, q) ≤ i ≤ min(m,n) as
follows:

δ(vi, ti) =

{
1 Ed(vi, ti) > ε or @ ti
0 otherwise

(4.6)

where Ed(vi, ti) is the euclidean distance between vi and ti and ε is a distortion
threshold. According to this definition, δ(vi, ti) qualifies ti as distorted if it is
farther from vi by at least ε or the adversary cannot reconstruct the sample vi
(i.e., @ ti). The distortion threshold ε should be sufficiently large in order to
take into account possible distance errors between vi and ti. For example, let a
track t be assigned to a trace va until a time step k and then t is further assigned
to another trace vb, as in Figure 4.2(d). It is likely that vb lags in time from va
which leads to a spatial distance between corresponding samples of va and vb
at the same time step. These time lag and spatial distance are reflected in the
track samples since they are reconstructed from vb rather than va starting from
the time step k. We assume a time lag of 5 s or a spatial distance of 75 m is
allowed, assuming an average speed of 15 m/s.

The length of the distorted paired segments of t and v is calculated by taking
the longest distorted segment from the reconstructed track or the original trace,
as follows:

∆p = max {
min(m,n)−1∑
i=max(p,q)

Ed(vi+1, vi) · δ(vi, ti),
min(m,n)−1∑
j=max(p,q)

Ed(tj+1, tj) · δ(vj , tj) }

(4.7)

Since the track and the original trace may start and end at different times, a
penalty should be added to take these unmatched segments into account. Thus,
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Figure 4.3: Components of the distortion metric

φs and φe are defined to count this distortion as follows:

φs =


∑p−1

i=q Ed(vi+1, vi) p > q∑q−1
i=p Ed(ti+1, ti) p < q

0 otherwise

, φe =


∑n−1

i=mEd(vi+1, vi) m < n∑m−1
i=n Ed(ti+1, ti) m > n

0 otherwise

(4.8)

Figure 4.3 illustrates an example for calculating the distortion for paired and
unmatched segments. In this example, the track starts before the beginning
of the vehicle trace and ends before the trace end. From their paired samples,
there are four distorted samples because their inter-distances are larger than
ε. The unmatched segments from the trace and track are highlighted by light
orange rectangles.

Given these components, the distortion of the vehicle trace v can be calcu-
lated as the ratio of the total length of the distorted segments to the length of
the original trace or the length of the reconstructed track, whichever is longer,
as follows:

Dv =
∆p + φs + φe

max {
∑n−1

i=q Ed(vi+1, vi),
∑m−1

j=p Ed(tj+1, tj)}
(4.9)

The distortion D of the whole scenario can be expressed as the percentage
of vehicle traces that their distortion exceeds a specific ratio which guarantees
preserving the driver’s location privacy (e.g., Dv > 0.25). Formally, D can be
defined as follows:

D =
1

N

∑
v∈V

αv × 100, αv =

{
1 Dv > 0.25 or t � v ∀t ∈ T
0 otherwise

(4.10)

Here, the trace is considered distorted if its Dv is more than 0.25 or there is no
track assigned to this trace. We assume that traces distorted by this ratio are not
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beneficial in posing further privacy attacks. Since the distortion is calculated
based on a track that continuously reconstructs the vehicle trace, the distorted
segment will be at the trace endpoints. This means that the source and/or
destination of the distorted traces cannot be reconstructed which makes re-
identification very difficult. Lower distortion ratios may be sufficient as well,
but we chose a sufficiently large ratio to ensure a true privacy preserving level.

Furthermore, some vehicles never change their pseudonyms during their
lifetime which leads to perfect tracking by matching the same pseudonym.
Thus, we additionally measure the normalized distortion Dn by excluding these
traces. This normalized metric considers the effectiveness of the privacy scheme
when a vehicle changes its pseudonym at least once and is defined as:

Dn =
1

N

∑
v∈V

αnormv × 100, αnormv =

{
1 αv = 1 ∧ psdv(q) 6= psdv(n)

0 otherwise
(4.11)

where psdv(q) and psdv(n) are the pseudonyms of the trace v at the first and
last time steps of its lifetime, respectively.

Based on the metric definitions in Equations 4.10 and 4.11, the distortion is
calculated as a ratio of the distorted segment to the total trace length rather
than a distance error which provides a unified scale for privacy measurement.
Also, the original traces, used as a ground truth, are the actual vehicle traces
obtained from the dataset without any noise or silence periods. However, they
are trimmed by the time period in which they appear in the dataset obtained
from the privacy scheme. Moreover, this metric considers traceability implic-
itly since the track-to-trace assignment is obtained by maximizing the tracking
period for the whole vehicle traces.

4.4 Metrics Comparison

According to the explanation given in the previous section, the distortion seems
to be the most representative metric for location privacy. In this section, we
provide an experimental comparison among the presented metrics to verify
this finding. The experiment consists of applying a simple privacy scheme
with three parameter sets, which it is known that they result in low, interme-
diate and high privacy levels, respectively. We used STRAW vehicle traces
presented in Section 1.6.2 in both low and high density scenarios (i.e., 50 and
200 vehicles). A good privacy metric should show reasonable variation among
different parameter sets and different densities. We chose the random silent
period (RSP) privacy scheme which keeps the pseudonym for a fixed preset
time (120 s) and then changes it and keeps silent for a random time period.
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We selected random silent periods of (3, 5) s, (3, 11) s and (3, 19) s to achieve
low, intermediate and high privacy levels, respectively. We applied the RSP
with each parameter set on the traces dataset of each density 10 times. Then,
we used the vehicle tracker explained in Section 3.4.7 to track pseudonymous
beacons generated by the RSP.
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Figure 4.4: The AS size and entropy metrics comparison in STRAW vehicle
traces.

The traceability and distortion metrics are calculated as defined in Equations
4.5 and 4.10, respectively. For the anonymity set (AS) size, we calculate the
maximum AS size encountered by each vehicle and then taking the average
over all vehicles. The maximum AS size of a subject vehicle is obtained by
finding the maximum number of nearby vehicles, including itself, that changed
their pseudonyms simultaneously over each pseudonym changed by this sub-
ject vehicle. Two vehicles are considered nearby if they are located within a
distance of 100 m. For the entropy, we calculate the maximum normalized
entropy Hn, defined in Equation 4.2, of the pseudonym changes made by a
vehicle and then take the average over all vehicles.

Figures 4.4 and 4.5 show the results of each metric with the three silent pe-
riods in low and high density scenarios. In Figure 4.4(a), the AS size is almost
the same in all silent periods with a slight difference between low and high
densities. This highlights the inability of the AS size of discriminating the ca-
pabilities of different privacy schemes. The normalized entropy overcomes this
problem and shows consistent variation among different silent periods, as il-
lustrated in Figure 4.4(b). However, the entropy values are misleading because
they do not reflect the true privacy level in different scenarios. For example,
the normalized entropy of the RSP (3, 5) in the dense traffic is higher than the
RSP (3, 19) in the sparse traffic. This is true regarding the adversary uncertainty
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since he will be more uncertain in a dense environment due to, for example, the
larger AS size. However, the gained privacy of the RSP (3, 5) in the dense traffic
is not that high because most of the vehicle traces (≥ 90%) can be reconstructed
effectively, as demonstrated next.
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Figure 4.5: The traceability and distortion metrics comparison in STRAW vehi-
cle traces.

In Figure 4.5(a), we show the reversed traceability (i.e., 100 − Π) instead of
the traceability metric to reflect the privacy level and be consistently compa-
rable with other metrics. It shows a significantly different variation from that
given by the entropy metric. In contrast to the entropy, it demonstrates a low
privacy level in the dense traffic when using a short silent period of (3, 5) s.
Also, it shows that privacy can be effectively preserved in a sparse traffic when
using a relatively long silent period of (3, 19) s. This difference in the variation
distribution of the reversed traceability comes from the fact that it measures
the effectiveness of reconstructing complete vehicle traces rather than the ad-
versary uncertainty. Last but not least, the distortion metric produces similar
variations as the reversed traceability, but it reduces the percentage values in-
dicating lower privacy. This reduction comes from the fact that the distortion
metric filters out the cases when vehicles are completely tracked but their re-
constructed tracks are still different from the original vehicle traces, as illus-
trated in Figure 4.2(c).

Furthermore, we repeat the same experiment on the realistic traces described
in Section 1.6.3. The obtained results are similar to those presented with the
STRAW traces. The AS size is almost the same for all silent periods while the
normalized entropy shows consistent variation. The reversed traceability and
distortion metrics show a lower privacy level than that achieved in STRAW
traces. This may happen because the length of STRAW traces (' 15 min each)
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Figure 4.6: Metrics comparison in the realistic vehicle traces.

is longer than the average length of realistic traces (' 5 min). Longer traces re-
sult in more pseudonym changes which make them more difficult to be tracked
or not distorted which is reflected in the higher reversed traceability and distor-
tion levels for STRAW traces. These results confirm experimentally the suitabil-
ity of the distortion metric over the other presented metrics to measure location
privacy.

4.5 Summary

In this chapter, the location privacy metrics are reviewed in detail and exper-
imentally evaluated. A privacy metric that is based on traceability and dis-
tortion is proposed and formally defined. Experiments on both STRAW and
realistic vehicle traces showed two main conclusions. First, the anonymity set
size and entropy are not suitable location privacy metrics because they do not
provide a reasonable protection variation among different privacy schemes in
different scenarios. Second, the proposed distortion metric effectively mea-
sured the protection level of different privacy schemes on an unified scale. In
chapters 6 and 7, the proposed distortion metric will be used to measure the
location privacy level of the presented and proposed privacy schemes.
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5 Measuring Quality of Service of
Safety Applications

5.1 Introduction

Location privacy cannot be preserved with no cost. Privacy mechanisms mod-
ify the exchanged information whether by elimination or obfuscation to pro-
tect privacy. These modifications affect the quality of service (QoS) of the appli-
cations. The more constrained the application, the more affected by privacy
schemes. For example, safety applications require information about vehicle
states frequently, precisely and with lowest latency. Infotainment applications
have less restricted constraints. It is important to measure the impact of a pri-
vacy scheme on the QoS of applications to ensure they will operate effectively
given the information modified by the privacy scheme. We consider safety
applications in our QoS analysis because privacy schemes modify beacon mes-
sages on which safety applications depend. Besides, safety applications have
the most restricted constraints regarding information accuracy, frequency and
latency. If a privacy scheme does not hinder the QoS of safety applications, it
will not do for other applications as well.

In VANET, the QoS is measured from different perspectives. Most research
works measured it in terms of communication parameters, such as packet loss
and routing efficiency, or in terms of errors in the received information. Only
few researchers who measured the QoS as the expected deficiency of the appli-
cation operations.

In this chapter, we propose a QoS measurement approach for VANET safety
applications given beacon information modified by a privacy scheme. The
main concept of this proposal is that a vehicle tracks the movement history
of its nearby vehicles to enhance and complement its view on the surrounding
traffic. This in-vehicle tracker filters errors of the measurements received from
other vehicles and estimates their states if their beacon messages are missed.
Thus, the QoS should be evaluated considering this enhanced information rather
than the received information. Additionally, we assume that an appropriate
QoS metric should reflect the deficiency in the application performance rather
than absolute distance errors or time delays. The issue in measuring the QoS
as a distance error or a time delay is that it does not explain the actual robust-
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5 Measuring Quality of Service of Safety Applications

ness of the application against information inaccuracy. For example, a QoS of
one meter error in position does not indicate that the safety application will
produce an accurate collision alert because it depends on the application re-
quirements and how they are calculated. Therefore, we propose formulating
the application requirements and using Monte Carlo numerical analysis to es-
timate the QoS given the information enhanced by the in-vehicle tracker. Since
we select specific applications for the QoS analysis, we consider cooperative
collision warning (CCW) applications as representative for safety applications.
They require the most precise (i.e., < 1 m error) and the most frequent (i.e., up
to 1 Hz) information about vehicle states [38, 122]. The CCW applications have
three distinct types of warnings: forward collision, lane change and road inter-
section. We present analysis for the first two types; forward collision warning
(FCW) and lane change warning (LCW) applications.

5.2 Related Work

Some researchers evaluated the impact of location privacy schemes on the QoS
of applications. However, the QoS metric differs from a study to another. In
general, the existing QoS metrics can be divided into three categories based on
the measured aspect whether the communication quality, data quality (position
error) or application requirements. For communication quality aspect, Schoch
et al. [119] analyzed the impact of pseudonym changes on the performance of
geographic routing. Their results confirm serious performance degradation in
case of less-density traffic and frequent pseudonym changes (< 30s). They
suggested introducing a callback mechanism which informs the routing about
failed transmissions to cope better with pseudonym changes. Huang et al. [72]
measured the QoS in terms of the maximum gap within communication and
bit rate of information. They used silent period to provide unlinkability for
a pseudonym change. Their QoS metric is the silent ratio which is the ratio of
silent time to the total time of pseudonym lifetime and silent time. Calandriello
et al. [30] measured the impact of pseudonym change in terms of the reception
timing of the new pseudonym in several distances and relative speeds.

For data quality metrics, Hoh et al. [67] presented a QoS metric for traffic
monitoring application characterized as the error applied to each individual
location sample. For the metrics based on the application requirements, Hoh et
al. [69] measured the data quality through the relative weighted road coverage.
They considered a road segment covered if a data sample with 100 m accuracy
is available. They used several analysis studies for traffic monitoring appli-
cations to identify the requirements and constraints for accurate performance.
Papadimitratos et al. [102] studied the impact of different VANET security and
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privacy schemes on an emergency braking alarm application. They simulated
a dense platoon of vehicles moving with relatively high speed and counted the
occurrences of vehicle collisions upon an emergency braking of the leading ve-
hicle. Lefevre et al. [81] analyzed the influence of the duration of the silent
period on the effectiveness of intersection collision avoidance (ICA) systems
based on VANET. They proposed an ICA system and evaluated a silent period
scheme in terms of missed and avoided collisions. They claim that the ICA
system can function well with silent periods less than two seconds.

5.3 Proposed Measurement Approach

In this section, we explain the proposed QoS measurement approach. We first
describe the measurement methodology and then apply it on two safety appli-
cations which are FCW and LCW applications.

5.3.1 QoS Measurement Concept

The main concept of the proposed QoS measurement approach is to formu-
late the probability of estimating safety application requirements in terms of
the vehicle states. Examples of these requirements are correctly identifying
the lane of the vehicle and calculating the time-to-collision with a leading ve-
hicle. Monte Carlo numerical analysis is used to calculate these probabilities
given the vehicle states which may be obfuscated or eliminated after applying
the privacy scheme. Once the probability of each requirement is estimated, all
these probabilities are combined to express the QoS metric. The advantage of
measuring the QoS in this way is the ability to reflect the realistic performance
of each application by considering its requirements with no need to implement
it. Other generalized QoS metrics, such as the mean location error [67], are not
sufficient because they do not correlate the inaccuracy of the information to the
actual operations of the application.

This QoS measurement method is inspired by the approach presented by
Shladover and Tan [122] to determine the probability of providing useful CCW
warnings as a function of the position and speed accuracy. We apply the same
concept with similar assumptions which are as follows:

• The position and velocity obtained from vehicle sensors are erroneous
and their errors follow Gaussian distribution.

• To simplify the formulation of the requirements, it is assumed that vehi-
cles are driving on straight roads, centered in their lanes and have con-
stant speed without changing their lane.
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5 Measuring Quality of Service of Safety Applications

• Communication and computation delays are ignored.

These assumptions are considered to simplify the Monte Carlo equations
without loss of generality. The second assumption is considered only dur-
ing instantaneous Monte Carlo calculations. If this assumption were to be re-
moved, the equations would become complex because it would be necessary
to consider the vehicle heading, position and velocity in both lateral and lon-
gitudinal coordinates 1. Our novel contribution in this part is the method for
obtaining error samples from privacy schemes, as explained next.

To produce stable estimations, Monte Carlo analysis requires a large amount
of samples drawn from the random distribution of the measurement errors.
As position and velocity measurements are necessarily erroneous and they are
sometimes perturbed or eliminated to increase privacy, generating such sam-
ples should be performed carefully to reflect the correct representation of the
data. Initially, we add a basic noise to positions and speeds specified in the
vehicle traces dataset. The basic position noise is drawn from a Gaussian dis-
tribution with a standard deviation of 0.5 m. The basic speed noise is assumed
to have a Gaussian distribution, and its standard deviation equals 2% of the ac-
tual speed. These small errors are recommended in [122], as they lead to a QoS
of approximately 95% in CCW applications. Also, they are already realized
in systems such as [120] by incorporating information received from a DGPS
receiver along with common vehicle sensors.

To estimate the error distribution originating from a privacy scheme, there
are two options. First, the safety application depends on instantaneous mea-
surements from other vehicles without keeping track of their movement his-
tory. In this case, the quality of service will be directly affected by the amount
of the added noise. In addition, the application will not detect the existence of
vehicles when their beacons are missed due to a silence period or a commu-
nication problem. The second case, which is the one assumed here, the safety
application tracks the surrounding vehicles continuously aiming to enhance
their measurements and also estimate their state when beacons are missed. In
this case, the safety application works like a tracker to track and filter measure-
ments received from other vehicles. Therefore, when evaluating the QoS of a
safety application after applying a privacy scheme, we obtain error samples
from the vehicle tracker.

The error samples of a privacy scheme are generated as follows and as shown
in Figure 5.1. First, the vehicle traces are modified according to the privacy
scheme (pseudonyms are changed, beacons are eliminated during silence) to

1The lateral and longitudinal coordinates are perpendicular and parallel to the road direction,
respectively. In the rest of this chapter, the longitudinal coordinate is referred by x while the
lateral coordinate is referred by y.
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Figure 5.1: Block diagram of the QoS metric

generate pseudonymous beacons. Next, the vehicle tracker operates on theses
pseudonymous beacons and tries to reconstruct the original traces. The posi-
tion and speed errors between the reconstructed tracks and the actual traces are
calculated for all vehicles and time steps. These error samples are collected and
used directly in the Monte Carlo analysis rather than fitting their error distri-
bution. Thus, this method is generally applicable to any privacy scheme, since
the error distribution will differ from a privacy scheme to another. However,
the error estimation is customized to our tracker and thus, different trackers
and state estimation techniques (e.g., Particle filter) may result in different QoS
evaluations. The number of error samples extracted from a single run of the
sparsest vehicle traces equals to one hundred thousand samples, which is a
sufficient number to obtain stable Monte Carlo results. In very large datasets,
we obtain only half a million of error samples distributed over time steps.

The actual traces used in calculating error samples are slightly different from
the original traces in datasets. Generally, the Kalman filter modifies the posi-
tion and speed from those recorded in the traces dataset as a kind of enhance-
ment even if no noise or privacy scheme is applied. These enhancements will
contribute to the extracted error samples if the original traces are used. Thus,
we calculate the error samples by taking the filtered traces as the ground truth.
These filtered traces are obtained by applying the Kalman filter on each vehicle
trace individually and taking the position and speed of the estimated state ev-
ery time step. Thus, the error samples are guaranteed to originate from changes
made by the privacy scheme only, not from changes made by the Kalman fil-
ter. Moreover, the error samples are measured in the scenario global coordi-
nate, but, according to our assumptions, they are needed to be in the vehicle
coordinates (i.e., lateral and longitudinal), as explained in the next sections.
Therefore, the coordinate system of the measurements are rotated by the in-
stantaneous vehicle heading, assuming it drives in the same direction as the
road, before calculating the error. The error sample ∆ is formally calculated as
follows:
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∆ =


δx
δẋ
δy
δẏ

 =

[
R 0
0 R

]
· (x̂p − x̂f ), R =

[
cos θ sin θ
− sin θ cos θ

]
(5.1)

where θ is the vehicle heading, x̂p is the estimated vehicle state by the inside
tracker and x̂f is the filtered state. Both x̂p and x̂f consist of position and veloc-
ity in xy global coordinate. The block diagram of the QoS metric calculation is
illustrated in Figure 5.1. Next, we will show how these error samples are used
to estimate the QoS of the FCW and LCW applications.

5.3.2 Forward Collision Warning Application

The Forward Collision Warning (FCW) application aims to provide the driver
of the subject vehicle (SV) a sufficiently early alert that a possible collision with
another vehicle (OV) in the same lane is likely, as shown in Figure 5.2. The SV
is the vehicle equipped to give the warning, and the OV is any other vehicle.
To achieve this functionality, the application must be able to (1) identify the
correct lane of OVs and (2) estimate the time to collision (TTC) within a small
tolerance. To satisfy the first requirement, accurate lateral positions of the SV
and OVs must be known. To satisfy the second requirement, knowledge of the
longitudinal positions and speeds of the SV and the next OV in the same lane is
necessary. In our analysis, we assume that the errors of the SV measurements
are just the basic error in position and speed as the SV obtains these values
through its own sensors, rather than the VANET communication.

For the first application requirement, the SV must correctly identify that OV1
is in its own path (i.e., high sensitivity) while OV2 is not (i.e., high specificity),
as shown in Figure 5.2. The criteria for identifying an OV as in path is that its
lateral position is within± 1.8 m of the lateral position of the SV, assuming a 3.6
m lane width. Otherwise, it should be identified as not in path. In our analysis,
we set the true lateral position of the SV as same as the lateral position of OV1,
while the true position of the OV2 is located in the center of the next lane. Thus,
the measured lateral positions of SV, OV1 and OV2 are obtained by adding the
errors to their true positions as follows:

ySV = 1.8 +N (0, 0.5)
yOV 1 = 1.8 + δy
yOV 2 = 5.4 + δy

(5.2)
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 3.6 m
 

7.2 m
 

Figure 5.2: Forward collision warning scenario

Therefore, the true and false positive probabilities for correctly identifying
lanes of the OVs can be calculated by:

Ptrue+ = P (|yOV 1 − ySV | ≤ 1.8) (5.3)
Pfalse+ = P (|yOV 2 − ySV | ≤ 1.8) (5.4)

For the second requirement, we assume that the SV is approaching the OV1
at speed differences ∆s of 5 m/s and 15 m/s. The assumed true TTC is set to
three seconds as an example; thus, the true position of OV1 is generated to be
three seconds distance from the true position of SV and is calculated based on
the evaluated speed difference as follows:

xSV = N (0, 0.5)
xOV 1 = 3 ·∆s+ δx
ẋSV = x̂OV 1 + ∆s+N (0, 0.02 · (x̂OV 1 + ∆s))
ẋOV 1 = x̂OV 1 + δẋ

(5.5)

where x̂OV 1 is the filtered longitudinal speed of the OV1. Here, there is no
binary classification to calculate false positives; instead, we calculate the prob-
ability of calculating TTC within a small tolerance of 500 ms. This 500 ms tol-
erance is chosen by Shladover and Tan [122] as the maximum tolerance for
issuing a useful warning. They also analyzed the implication of a desirable
tolerance of 200 ms but they found that it requires a positioning accuracy of
20 cm to attain this restrict tolerance, wherefore we considered only the maxi-
mum tolerance of 500 ms. Therefore, the TTC and the probability of correctly
estimating it within 500 ms can be calculated by:

TTC =
xOV 1 − xSV
ẋSV − ẋOV 1

(5.6)

PTTC = P (|TTC − 3| ≤ 0.5) (5.7)
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Figure 5.3: Probability of correctly estimating the FCW requirements using po-
sitions of Gaussian noise

In this equation, we determine how frequently the difference between the cal-
culated TTC and the true TTC (i.e., 3 s) is less than the tolerance threshold of
0.5 s. Finally, the probability of the FCW application (PFCW ) can be obtained
by multiplying all three probabilities together, assuming they are independent,
as follows:

PFCW∆s = Ptrue+ × (1− Pfalse+)× PTTC∆s (5.8)

As a kind of verification with the results shown in [122], we show the behav-
ior of the various probabilities when the position noise is Gaussian in Figure
5.3. The error samples used in this example are not filtered by Kalman filter as
described in Section 5.3.1 but they are basically sampled from a Gaussian dis-
tribution of the given standard deviation along the x-axis. The obtained results
are similar to those presented in [122]. It is worth to note that the position error
must be at most 50 cm to achieve PFCW of 0.93 or higher in the FCW applica-
tion when the speed difference ∆s equals to 5 m/s. The governing factor is the
PTTC in low noise values (σ < 0.9 m). Also, it can be observed that estimating
TTC in high speed differences is much more accurate than low speed differ-
ences with the same position noise. Therefore, the QoS of the FCW application
(QoSFCW ) is defined as PFCW∆s=5 multiplied by 100 to obtain a percentage, as
follows:

QoSFCW = PFCW∆s=5 × 100 (5.9)
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Figure 5.4: Lane change warning scenario

5.3.3 Lane Change Application

There are two main scenarios that lane change warning (LCW) application con-
cerns which are blind spot and overtaking, as shown in Figure 5.4. In the blind
spot scenario, the OV1 moves in the adjacent lane of the SV at approximately
the same speed and slightly behind it which poses a threat of collision when the
SV changes its lane. Therefore, the LCW application deployed in the SV should
give an alert about OV1, but not about OV3 as it is located in the third lane and
does not threat the SV. In the overtaking scenario, the approaching OV2 comes
from the rear with a high closing speed such that it arrives adjacent to the SV in
the same time of lane change. If the OV2 is moving in a speed allows it to reach
the adjacency of the SV in the time of lane change, then a warning should be
issued as it is an overtaking threat. By this illustration, the overtaking scenario
is just like that of forward collision warning described before, but the positions
of SV and OV are reversed. Thus, we will analyze the blind spot scenario here.

To handle the blind spot scenario, three requirements must be correctly iden-
tified by the SV. The first requirement is to identify the lateral position of OV1
in the adjacent lane (i.e., its true center is 3.6 m away from the SV). Addition-
ally, its longitudinal position should be estimated slightly behind the SV, let’s
say between 1.5 m and 6 m far from the longitudinal position of the SV. Thus,
its true longitudinal position is assumed to be in the middle of this range (i.e.,
3.75 m from the SV). The second requirement is to recognize the OV3 as not
located in the adjacent lane which means its true lateral position is 7.2 m away
from the SV. The last requirement is that the speeds of OV1 and SV should be
recognized to be similar up to a small margin of 3 m/s as an example. There-
fore, the true speeds of SV and OV1 are assumed to be the same. According
to these requirements, the measured positions and speeds of SV, OV1 and OV3
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are defined as follows:

ySV = 1.8 +N (0, 0.5)
xSV = 3.75 +N (0, 0.5)
ẋSV = x̂SV +N (0, 0.02 · x̂SV )
yOV 1 = 5.4 + δy
xOV 1 = δx
ẋOV 1 = x̂OV 1 + δẋ
yOV 3 = 9 + δy

(5.10)

where x̂ is the filtered longitudinal speed and x̂SV = x̂OV 1. The Monte Carlo
equations of each requirement need some further analysis. Assuming 2 m wide
SV and OV1, the OV1 must leave enough space for the SV to enter the adjacent
lane. This means when the SV changes its lane, the center of the OV1 should
be 3 m away from the right edge of the lane. Thus, the warning of a blind
spot should be fired if the estimated distance between SV and OV1 less than
or equal to 4.8 m. To avoid a false alert about OV3, assume a 3 m wide vehicle
moving just along the edge of the third lane. Then, its center is 1.5 m away
from the lane boundary. Thus, when the distance between centers of SV and
OV3 is more than 6.9 m, the system must not warn. Therefore, the true positive
probability is calculated when the OV1 is estimated within a distance less than
6.9 m. The false positive probability is calculated when the OV3 is estimated
within a distance less than or equal 4.8 m. Additionally, the longitudinal po-
sition of OV1 must be estimated within the blind spot so that it is not easily
visible to the SV driver (i.e., 1.5 - 6 m behind the SV). Also, the speeds of SV
and OV1 should be estimated to be similar within small tolerance of 3 m/s.
These probabilities can be formulated as follows:

Ptrue+ = P (yOV 1 − ySV < 6.9) (5.11)
Pfalse+ = P (yOV 3 − ySV ≤ 4.8) (5.12)
Plong = P (xSV − xOV 1 < 6 ∧ xSV − xOV 1 > 1.5) (5.13)
Ps = P (|ẋOV 1 − ẋSV | ≤ 3) (5.14)

The probability of the LCW application (PLCW ) can be obtained by multiply-
ing these probabilities together, assuming they are independent as follows:

PLCW = Ptrue+ × (1− Pfalse+)× Plong × Ps (5.15)

In Figure 5.5, we show the behavior of the various probabilities when the
position noise is Gaussian. The error samples used in this example are not fil-
tered by Kalman filter as described in Section 5.3.1. They are basically sampled
from a Gaussian distribution of the given standard deviation along the x-axis.
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Figure 5.5: Probability of correctly estimating the lane change requirements us-
ing positions of Gaussian noise

They are slightly different from those presented in [122] because the authors
used unexplained criteria when calculating Ptrue+ and Pfalse+ on their corre-
sponding figures. According to results in Figure 5.5, the position error must
be at most 80 cm to achieve a PLCW of 0.94 or higher. The governing factor is
the Plong which needs a position accuracy of 90 cm error at most to achieve an
accuracy of 0.92 in estimating the longitudinal position. Compared to the re-
quirements of the FCW application shown in Figure 5.3, the LCW application
requires slightly relaxed accuracy requirements. Last but not least, the QoS of
the LCW application (QoSLCW ) is defined as PLCW multiplied by 100 to obtain
a percentage, as follows:

QoSLCW = PLCW × 100 (5.16)

To measure the impact of a privacy scheme on the QoS of safety applications,
both QoSFCW and QoSLCW are calculated, and then the minimum value is
taken to express on the final QoS. Formally, the QoS of a privacy scheme is
defined as:

QoS = min{QoSFCW , QoSLCW } (5.17)

5.4 Experiment Results

The proposed QoS measurement approach is applied on the FCW and LCW ap-
plications and evaluated in two scenarios. The first scenario considers STRAW
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Figure 5.6: The QoS of FCW and LCW applications in noisy STRAW traces

vehicle traces with various Gaussian noises where pseudonyms are periodi-
cally changed every two minutes with no silence periods or mix-zones.

In Figure 5.6, it can be noticed that a QoS of 93% or more can be achieved in
a FCW application in both sparse and dense traffic when the vehicle position
noise is up to 2 m. A better QoS of 99% can be achieved in a LCW application
in similar conditions. These QoS values are much higher than those shown in
Figures 5.3 and 5.5. This dramatic improvement of QoS comes from the as-
sumption that a vehicle tracks and filters measurements received from nearby
vehicles. This in-vehicle tracker filters the position and speed noises and al-
lows both applications to better estimate the states of other vehicles. However,
it does not work with large noises (e.g., σ ≥ 5 m) because the tracker is signifi-
cantly confused and it cannot assign vehicle states to their tracks correctly due
to noise.

The second scenario applies the random silent period (RSP) privacy scheme
on STRAW vehicle traces. The RSP keeps the vehicle pseudonym for a fixed
preset time of two minutes. Then, it changes the pseudonym and keeps silent
for a random time chosen from a given period. We selected silent periods of
(3, 5) s, (3, 11) s and (3, 19) s to achieve low, intermediate and high privacy
levels, respectively. A normally distributed position noise of standard devia-
tion 0.5 m is added before applying the privacy scheme. Figure 5.7 shows that
a QoS of 91% or higher can be achieved in both safety applications and both
traffic densities if a silent period of (3, 11) s or less is used before a pseudonym
change. Moreover, it can be observed that the QoS of the LCW application is
slightly higher than that of the FCW application with silent periods up to (3, 11)
s. This behavior is reversed with relatively long silence of (3, 19) s. Therefore,
in further experiments presented in next chapters, we calculate the QoS of both
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Figure 5.7: The QoS of FCW and LCW applications in STRAW traces modified
by random silent period privacy scheme and beacon interval = 0.5 s

applications and take the minimum as the QoS of safety application. The find-
ing of this experiment is different from results claimed by Lefevre et al. in [81].
They claim that an intersection collision system can function well with silent
periods less than two seconds. This difference comes from our proposal that
a vehicle tracks and filters measurements received from nearby vehicles. This
finding combined with results shown in Figure 4.5 confirms our hypothesis
of that it is possible to preserve location privacy without hindering the QoS of
safety applications. For example, the RSP of (3, 19) s can achieve a privacy level
of 80% in terms of tracking distortion with a loss of about 15% in the QoS of
safety applications. Advanced privacy schemes will compromise this trade-off
more effectively, as explained in next chapters.

The second scenario is applied on realistic traces to confirm the achieved
QoS levels, as shown in Figure 5.8(a). It can be observed that the QoS in both
applications are slightly lower than those shown with the STRAW traces. This
reduction in QoS occurs because the time step in the realistic traces is 1 s while
it is 0.5 s in the STRAW traces. This longer time step prevents the in-vehicle
tracker from obtaining the desired accuracy especially for estimating the speed.
We verified this finding by testing the STRAW traces with various time steps
(i.e., 0.5 - 5 s) and RSP of (3, 11) s, as shown in Figure 5.8(b). It is noticed that
the QoS of safety application decreases with longer time steps especially the
FCW application. However, the QoS of the LCW application does not decrease
significantly. For example, the QoS decreased only up to 4% when a beaconing
time of 2 s is used instead of 0.5 s even with using a random silence period of
(3, 11) s. This is an interesting finding because decreasing the beaconing rate
enhances the network performance.
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Figure 5.8: (a) The QoS of FCW and LCW applications in realistic traces modi-
fied by RSP. (b) The QoS of FCW and LCW applications in STRAW
traces with different time steps and silent period of (3, 11) s

5.5 Summary

In this chapter, a measurement approach is proposed to determine the impact
of a privacy scheme on the QoS of safety applications. The proposed approach
is applied on two applications; forward collision warning (FCW) and lane
change warning (LCW) applications. This approach depends mainly on the
assumption that vehicles employ a local tracker to track and predict the move-
ment of the nearby vehicles. According to the experiment results, this local
tracker enhances the expected QoS of safety applications. For example, in the
presence of position noise of 2 m, a vehicle can estimate the requirements of
the FCW application by a probability of up to 92% when using this approach,
while this probability decreases to only 20% when the vehicle depends directly
on the noisy data. Also, using the in-vehicle tracker may relax the requirement
of frequent beaconing rate of some applications. Using Monte Carlo analysis,
the QoS is measured by calculating the probability of correctly estimating the
requirements of the safety application. Finally, the QoS of both applications
is evaluated for the random silent period privacy scheme using STRAW and
realistic traces. In the following chapters, the QoS of safety applications is con-
sidered to be the minimum QoS of the FCW and LCW applications, as defined
in the Equation 5.17.
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6 Obfuscation Privacy Schemes

6.1 Introduction

As discussed in Section 2.6, location privacy in VANET is usually preserved
through changing pseudonyms in an unmonitored area whether a silent pe-
riod or a mix-zone. Although obfuscation mechanisms are so popular in other
domains such as location-based services, they are rarely applied in VANET to
avoid degrading the QoS of safety applications [17]. However, by analyzing
the actual requirements of safety applications, it can be observed that they will
not be entirely dependent on VANET information, but they will also use in-
formation that is sensed by the subject vehicle itself. This assumption is valid
because VANET will not be penetrated into all vehicles in the initial deploy-
ment phase and applications will be designed based on this fact. Also, safety
applications cannot guarantee the accuracy of the information received from
VANET because of the variation in sensors’ accuracy; thus, they have to com-
bine it with self-sensed information. Additionally, safety applications may not
continuously require precise updates, except for situations that may concern
safety. However, precise and frequent spatiotemporal is required continuously
to effectively track vehicles, as discussed in Chapter 3. From this viewpoint,
we hypothesize that obfuscation privacy schemes can be applied in VANET
if they only add a sporadic noise to position in beacons or change the beacon
frequency slightly. These minor modifications may enhance the privacy level
without affecting the operations of safety applications significantly.

In this chapter, we propose and evaluate two privacy schemes: (1) position
perturbation after a pseudonym change and (2) random beaconing rate. We
first discuss related work in Section 6.2. In Section 6.3, the system and adver-
sary models are revisited and important notations are introduced. In Section
6.4, the proposed schemes are presented and evaluated in comparison with
random silent period scheme. Last but not least, an advanced adversary is
presented and the proposed scheme is reevaluated against this adversary in
Section 6.5.
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6.2 Related Work

Obfuscation privacy schemes are commonly used to preserve privacy in loca-
tion based services. One popular privacy mechanism is to degrade the resolu-
tion of location information under restriction of the application requirements.
For example, spatial cloaking [61] obfuscates the exact location into a region
to meet predefined anonymity constraints, such as k-anonymity. Moreover,
Hoh and Gruteser [67] perturb user paths so that the total distance error esti-
mated by the adversary is maximized but constrained by a obfuscation radius
allowed by the application. This algorithm perturbs traces by adding artificial
crossings between near parallel paths to confuse the tracker in an offline cen-
tral way, where true traces of all users are processed together in a proxy server.
Hoh et al. [69] propose to hide location samples that lead the adversary to track
vehicles for a long period without enough confusion. This algorithm operates
iteratively until the optimal location set is reached that confuses tracker. In
VANET domain, Wei and Chen [139] perturbed the beacon information (e.g.,
position, velocity and heading) within a safe radius. This radius is calculated
based on the safety conditions with the surrounding vehicles. In our proposed
perturbation scheme, a random noise is added to positions for random period
after a pseudonym change to provide unlinkability between beacons of new
and old pseudonyms.

Adaptive beaconing rate is often employed in VANET but to enhance the net-
work performance not for privacy preserving purposes [118]. Fukui et al. [56]
proposed to send beacons periodically based on a constant distance a vehi-
cle has to travel. Also, the beacon rate should be reduced when a high node
density or a higher packet error rate are detected. Khorakhun et al. [79] adapt
the beacon rate depending on the current channel load, evaluated through the
channel busy ratio. To adapt beaconing rate smoothly, beacon rates calculated
by individual vehicles are exchanged among vehicles. Then, the average rate
is calculated and applied by each vehicle. Rezaei et al. [113] adapt the bea-
coning rate depending on differences from position predictions. They assume
that all vehicles run an extended Kalman filter locally for each nearby vehicle.
It continuously estimates the current position based on the received beacons.
The vehicle sends a beacon only when there is a difference between its actual
position and the remote estimator.

6.3 System and Adversary Models

We assume a system model similar to that defined in Section 1.5.1. Beacon mes-
sages are broadcast with a beaconing rate 1/tb. Pseudonyms are changed every
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Table 6.1: Table of Notations

Notation Description

tb Default beaconing time between every two consecutive beacons
required by the application (default beaconing rate = 1/tb)

tp Pseudonym lifetime
tc(i) Time series at which pseudonyms are changed, i = 1, 2, 3, ...

ts Tracker sampling time
tr Random multiplier used to broadcast beacons on a random basis

(tr ∈ N)
dn Random multiplier where position is noised during dn ·tb, dn ∈ N
ds Random multiplier where a vehicle is silent during ds · tb, ds ∈ N
N (µ, σ) Gaussian random distribution with mean (µ) and standard devi-

ation (σ)
U(α, β) Uniform random distribution, where a ∈ N,∀a ∈ U(α, β). Also

noted as (α, β)

fixed time tp at times tc(i), i = 1, 2, 3.... To prevent synchronization among ve-
hicles, they start with a random pseudonym lifetime which ranges from 1 to
tp.

The assumed adversary model is similar to that defined in Section 1.5.2. Ad-
ditionally, the adversary may consider all or a selective set of the broadcast
beacons by using a sampling time ts (larger than the beaconing time tb) to skip
noise or silence periods. Furthermore, it is assumed that the adversary can-
not enhance the broadcast information in a pre-tracking process by matching
positions on road maps or by localizing vehicles in the physical layer. It is
not expected that these localization methods will produce more accurate infor-
mation than the broadcast information in beacons. Table 6.1 summarizes the
notations used throughout this chapter.

6.4 Proposed Privacy Schemes

In this section, the obfuscation schemes are presented and evaluated. In eval-
uation, the tracker presented in Section 3.4.6 is employed to reconstruct traces
from the beacons modified by a privacy scheme. We employ the sparsest sce-
nario (50 vehicles) of the STRAW vehicle traces described in Section 1.6.2, un-
less specified otherwise. This low density is selected because the tracker can
track vehicles accurately even in the presence of noise, as shown in Section
3.4.6. Thus, it will be a challenge for the privacy scheme to reduce tracking
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vulnerability in this low density scenario.

6.4.1 Position Perturbation Scheme

The position perturbation scheme adds a large random noise n ∈ N (0, σ) to
a position Pk after a pseudonym change for a relatively short period dn · tb
where dn is an integer sampled from a random noise period U(α, β). Thus, the
modified position P̂k included in a beacon sent at time k is calculated by:

P̂k =

{
Pk + n tc(i) < k ≤ tc(i) + dn · tb
Pk tc(i) + dn · tb < k ≤ tc(i+1)

(6.1)

where tc(i) and tc(i+1) are times of two consecutive pseudonym changes.
We aim to replace the relatively long silence period commonly used before a
pseudonym change with a relatively short noisy period. It is assumed that
noisy updates are better from the application perspective than silence. The
noisy random period prevents the tracker from skipping the noisy positions
when beacons with a new pseudonym are encountered. Intuitively, no noise
is added to positions while the same pseudonym is employed, because the
tracker will correlate beacons by matching pseudonyms and the added noise
will be filtered by the Kalman filter. In real applications, this large noise should
be carefully added to be aligned to a realistic location (e.g., aligned to a parallel
road) to prevent the tracker from filtering it.

This scheme aims to force the tracker to confuse and assign the beacon of a
new pseudonym to another track, which differs from the track assigned to the
vehicle trace before the pseudonym change. Note that the tracker cannot fix it-
self when the noisy period ends, because subsequent beacons are identified by
the same new pseudonym and the tracker matches each beacon to the wrong
track by pseudonym matching. If the assignment decision of the tracker is
modified to be a weighted average of pseudonym matching and the spatiotem-
poral association, it is advantageous for privacy protection. This weighting
causes the tracker to abandon the advantage of simple pseudonym matching
and transforms the problem to (partial) anonymous beacons tracking, which is
challenging, as discussed in Section 3.4.6.

In Figure 6.1(a), the position perturbation scheme is evaluated with variation
of added noises σ of 50 and 100 m and random noise periods of (1, 3) and (3,
7) beacons1. The distortion is significantly increased in proportional with the
amount of the added noise, while the random noise period has almost no ef-
fect. When the added noise is very large of 100 m, the tracker cannot correlate

1For simplicity, we will use this notation (α, β) to express U(α, β) which should not be misin-
terpreted as reference numbers. The notation of [a,b] is used for the latter case.
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Figure 6.1: Privacy and QoS levels of the position perturbation scheme.

beacons of new pseudonyms because they are far away from their predicted
states. For the QoS of safety applications, both the added noise and random
noise period affect the QoS, as illustrated in Figure 6.1(b). The QoS decreases
with the increase of the added noise and the length of the noise period because
the in-vehicle tracker cannot correctly estimate the application requirements
using the noised measurements. However, the QoS can be enhanced by in-
creasing the pseudonym lifetime because the ratio of precise to noisy positions
is increased which is reflected in a better estimation of the application require-
ments.
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Figure 6.2: Privacy of the position perturbation scheme with a tracking sam-
pling ts of 7s.

This result is obtained when the tracker considers all beacons sent from ve-
hicles, that is the sampling time is the same as the beaconing time (i.e., ts = tb =
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0.5 s). We evaluate the case in which the tracker attempts to avoid the noise
period by using a longer sampling time. Figure 6.2 shows the distortion for the
same variations of the added noises and noise periods when the tracker uses a
sampling time of 7 s. The distortion is reduced significantly especially in longer
pseudonym lifetimes (tp ≥ 120 s). Note that the QoS is always reduced when
ts > tb because the in-vehicle tracker cannot estimate the state of surrounding
vehicles correctly over this low update rate. These results show the ineffective-
ness of the position perturbation scheme when the tracker uses long sampling
times.

6.4.2 Random Beaconing Rate

The second privacy scheme is the random beaconing rate. It lets a vehicle
broadcast a beacon within a predetermined interval, but selects randomly when
the vehicle broadcasts the next beacon (in increments of tb). Formally, if bea-
cons are basically sent every beaconing time tb, they will be sent instead every
random time tr · tb where tr is an integer sampled from a random beaconing
interval U(α, β). For example, if the application basically requires sending a
beacon every 0.5 s and a random beaconing interval U(1, 4) is allocated, then
the vehicle uniformly chooses a random beaconing time tr · tb among 0.5, 1,
1.5 or 2 s to send the next beacon. After broadcasting this beacon, it will se-
lect another random integer tr ∈ U(1, 4) to send the next beacon. The uniform
random distribution is used here to ensure that all beacon times have the same
probability. This scheme exploits a tracker constraint that requires measure-
ments to be provided on a fixed timing basis for tracked targets. The major-
ity of advanced tracking algorithms can afford few missed measurements of
tracked targets. However, if these misses occur regularly and frequently, then
the tracks of missed measurements will be mixed with the newly appeared
ones at each time step, which reduces the tracking vulnerability. Because the
tracker assumes a fixed time step for all vehicles and the scheme continuously
changes the beaconing time, the tracker thus must estimate a time step that pro-
duces the best tracking results. Because beacons are identified by pseudonyms,
the reduction in the tracking vulnerability is likely to be small but beneficial in
some cases. One example case involves a beacon of a newly appeared vehi-
cle near a previously encountered vehicle that missed its beacon. In this case,
the tracker may mix the beacon of new vehicle with the track of the encoun-
tered vehicle because it thinks that the vehicle changed its pseudonym. This
situation may generate additional mixes in subsequent time steps, which may
reduce the tracking vulnerability.

Figure 6.3(a) shows two random beaconing intervals of (1, 2) and (2, 4) bea-
cons tracked using two tracking samples of 0.5 and 7 s. This scheme does not
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Figure 6.3: Privacy and QoS levels of the random beaconing time scheme.

provide any reduction in the distortion when the tracker uses the basic sam-
pling time of 0.5 s. However, we notice that the distortion significantly in-
creases in the other sampling time; exactly the reverse behavior of the position
perturbation scheme. Figure 6.3(b) shows the impact of these random bea-
coning intervals on the QoS. We notice that the impact of the random interval
is fixed for all pseudonym lifetimes because this scheme eliminates beacons
independently of the pseudonym change. Additionally, the random interval
of (2, 4) beacons results in a much lower QoS than the interval of (1, 2) bea-
cons because it significantly eliminates a reasonable number of beacons every
time step. These missed beacons prevent the in-vehicle tracker from estimat-
ing the application requirements correctly. These results suggest combining
both schemes so that the distortion is not reduced when the tracker changes its
sampling time as explained in the next section.

6.4.3 Obfuscation Scheme

The obfuscation privacy scheme combines the position perturbation scheme
and the random beaconing rate together in order to avoid reducing the achieved
distortion level using a different tracker sampling time. Formally, the beacon
Bk sent at time k is modified as follows:

Bk =


dropped k mod (tr · tb) 6= 0

B̂k k mod (tr · tb) = 0, tc(i) < k ≤ tc(i) + dn · tb
Bk k mod (tr · tb) = 0, tc(i) + dn · tb < k ≤ tc(i+1)

(6.2)

where B̂k is the beacon of noised position P̂k as defined in Equation 6.1.
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Figure 6.4: Privacy and QoS levels of the obfuscation scheme in a sparse traffic
of 50 vehicles.
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Figure 6.5: Privacy and QoS levels of the obfuscation scheme in a dense traffic
of 200 vehicles.

In Figure 6.4(a), the distortion of the obfuscation scheme with several combi-
nations of random noise periods and random beaconing intervals is evaluated.
In this experiment, a noise of 100 m is added to the vehicle positions for the
specified random period after a pseudonym change. Two tracker sampling
times of 0.5 and 7 s are employed and the average distortion is drawn in the
figure. The obfuscation scheme results in complete distortion for the recon-
structed tracks for tp ≤ 180 s regardless of the noise period, random beaconing
interval and tracker sampling time. The distortion decreases slightly up to 90%
for longer pseudonym lifetimes and according to the employed random noise
periods and random beaconing intervals. The QoS is negatively affected es-
pecially when tp ≤ 120 s or tr ∈ (1, 3) beacons, as illustrated in Figure 6.4(b).
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The QoS behavior of the obfuscation scheme follows the behavior of the posi-
tion perturbation scheme but it is shifted down by the impact of the random
beaconing interval (see Figures 6.1(b) and 6.3(b)). It is important to carefully
choose the random beaconing interval because even a relatively short interval
(e.g., tr ∈ (1, 3) beacons) results in reducing the number of broadcast beacons
significantly per time step which in turn reduces the overall QoS. In Figure 6.5,
the privacy and QoS of the obfuscation scheme are evaluated in the dense traf-
fic of 200 vehicles of STRAW traces. As expected, the distortion is increased due
to the increased vehicle density and thus the tracker is more confused in recon-
structing correct tracks. The QoS is slightly increased due to the low speed of
vehicles in the dense traffic.

According to these results, the obfuscation scheme offers significant confu-
sion to the adversary which is reflected in complete distortion levels but at the
cost of QoS. To achieve a QoS of 80%, beacons should be sent every random
beaconing interval of (1, 2) beacons at most. Also, the pseudonym should be
changed every 300 s followed by a random noise period of (1, 3) beacons. This
configuration results in a distortion of 91%.

6.4.4 Comparison with Random Silent Period

In this section, the obfuscation privacy scheme is compared with the random
silent period (RSP) privacy scheme. The RSP lets a vehicle change its pseudo-
nym after a fixed pseudonym time and keep silent for a uniformly random
period within a range. The current American SAE J2735 standard [6] recom-
mends keeping silent for 3 to 13 s or for duration of 50 to 250 m, which ever
comes first after a pseudonym change. In Figure 6.6, the RSP is evaluated with
several random periods and tracker sampling times between 0.5 s and the max-
imum allowed silence of each period. The RSP achieves a high distortion level
when the silent period is sufficiently long (ds ∈ (3, 13) s or longer) and the
pseudonym lifetime is relatively short (tp ≤ 180 s). The QoS is significantly
reduced in short pseudonym lifetimes due to the frequent silence periods.

We selected a parameter set for the obfuscation scheme and compared it with
the RSP. The selected obfuscation scheme parameters are position noise σ = 100
m, dn ∈ (1, 3) beacons and tr ∈ (1, 2) beacons which result in the highest QoS in
the previous experiments. The RSP is evaluated with two silent periods (3, 13)
and (3, 19), as shown in Figure 6.7. The obfuscation scheme achieves a higher
distortion level than the RSP especially with long pseudonym lifetimes. How-
ever, the QoS of the obfuscation scheme is generally lower than the QoS of the
RSP especially with long pseudonym lifetimes. This reduction in QoS results
from the random beaconing interval which eliminates a reasonable number
of beacons every time step. These eliminated beacons prohibit the in-vehicle
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Figure 6.6: Privacy and QoS levels of the random silent period (RSP) scheme.
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Figure 6.7: Comparison between the obfuscation privacy scheme and RSP in
STRAW traces of 50 vehicles.
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Figure 6.8: Comparison between the obfuscation privacy scheme and RSP in
realistic traces.
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tracker from estimating the states of other vehicles correctly. We repeat this ex-
periment using realistic traces presented in Section 1.6.3. The same parameters
are employed for the obfuscation scheme while the silent period of (3, 19) s is
selected for the RSP. In Figure 6.8(a), the distortion (D) and normalized distor-
tion (Dn) are shown for both schemes. In general, the distortion level decreases
with the increase of the pseudonym lifetime tp because the average lifetime of
traces is not sufficiently long to allow several pseudonym changes when tp is
long. However, the obfuscation scheme results in a higher (normalized) dis-
tortion than RSP especially with long pseudonym lifetimes. The QoS of both
schemes is shown in Figure 6.8(b). The QoS of the RSP does not differ from
that in the STRAW traces and it is much higher than the QoS of the obfusca-
tion scheme. The impact of the beacon elimination in the obfuscation scheme
is increased with the 1 s time step of the realistic traces.

6.4.5 Partial Obfuscation

The results presented in previous sections confirm the effectiveness of the ob-
fuscation scheme in preserving privacy but with a reasonably negative impact
on the QoS, even worse than the RSP scheme. As a workaround, we eval-
uate the behavior of the obfuscation scheme when only a ratio of the vehi-
cles are applying the obfuscation scheme while the remaining vehicles change
their pseudonyms periodically with no other privacy mechanisms. This par-
tial adoption of the obfuscation scheme shows the effectiveness of the scheme
when only some drivers are concerning privacy while the majority of drivers
concern the QoS of applications. In the following experiments, we apply the
obfuscation scheme on a ratio of the vehicle traces and measure the distortion
level of these traces. Nevertheless, the QoS is measured over the whole traces
because the safety applications use information received from all vehicles re-
gardless of applying the obfuscation scheme. The first experiment employs the
STRAW traces of 50 and 200 vehicles. We repeat the experiment of each ratio
10 times where different traces are randomly selected for applying the obfusca-
tion scheme each time. We employed the 10 variations of these vehicle densities
which means that each vehicles ratio is evaluated 100 times.

Figure 6.9(a) illustrates the distortion level of various vehicle ratios apply-
ing the obfuscation scheme with tp = 180 s, σ = 100 m, dn ∈ (1, 3) beacons
and tr ∈ (1, 2) beacons. We applied tracking with several tracker sampling
times ts ranging from 0.5 s to 3 s. We notice that the average distortion level
increases with the increase of the vehicle ratio with a large standard deviation
represented in error bars. However, the average distortion is still high even
for small vehicle ratios (e.g., an average distortion of 88% can be achieved for
a vehicle ratio of 20%). In addition, the QoS is largely enhanced with small
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Figure 6.9: Privacy and QoS levels of partial obfuscation ratios in STRAW
traces. (tp = 180 s)

vehicle ratios (e.g., a QoS of 94% can be achieved for a vehicle ratio of 20%),
as shown in Figure 6.9(b). The same experiment is repeated with the realistic
traces, as shown in Figure 6.10. The vehicle ratio of 20% results in a normalized
distortion of 73% and QoS of 87% which is a much better compromise between
preserving privacy and providing high QoS when compared with the 100% ve-
hicle ratio. According to these results, the obfuscation scheme can be employed
to preserve location privacy without a reasonable impact on the QoS only if a
small ratio (e.g., 20%) of vehicles are applying it.
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Figure 6.10: Privacy and QoS levels of partial obfuscation ratios in realistic
traces. (tp = 180 s)
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6.5 Advanced Adversary

The employed adversary in previous experiments does not exploit the knowl-
edge of the operations of the obfuscation scheme. An advanced adversary may
exploit this knowledge and try to skip the noised beacons and complement
the eliminated beacons. An example of advanced adversaries is illustrated in
Figure 6.11.

Step 1: Merge beacons 
of every 2 time steps

Step 2: Skip the first 2 beacons 
of a new pseudonym

Obfuscated Beacons

Old pseudonyms

New pseudonyms

New pseudonyms & noised positions

Figure 6.11: Advanced adversary for the obfuscation scheme.

In this example, there are three vehicles that apply the obfuscation scheme
of dn ∈ (1, p) beacons and tr ∈ (1, q) beacons where p = 3 and q = 2 beacons.
Their obfuscated beacons over 12 time steps are drawn as circles whose color
refers to the vehicle pseudonym, as shown in the upper part of the figure. The
advanced adversary performs two preprocessing steps on these beacons before
tracking. Firstly, the adversary merges beacons of every q time steps into a
single time step by averaging the beacon data (i.e., position and velocity) of
the same pseudonym, as presented in the middle part of the figure. Secondly,
the adversary eliminates the first dp/qe beacons of a new pseudonym to skip
the noised period after a pseudonym change, as illustrated in the bottom part
of the Figure. This advanced adversary turns the obfuscation scheme into a
silent period scheme with a silence period up to dp/qe beacons after reducing
the beaconing rate by 1/q. Since p and q are expected to be small to minimize
the impact on the QoS, tracking of the processed beacons can achieve a very
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Figure 6.12: The obfuscation scheme evaluation against the advanced adver-
sary.

high accuracy as shown next.
We evaluate the obfuscation scheme of σ = 100 m against this advanced ad-

versary using the STRAW traces. Figure 6.12 shows the distortion level of var-
ious noise periods and random beaconing intervals in both sparse and dense
traffic. The distortion level decreases significantly especially with the sparse
traffic and pseudonym lifetimes tp > 30 s. This result shows the ineffectiveness
of both position perturbation and random beaconing against this adversary.

6.6 Summary

In this chapter, we investigated the applicability of obfuscation mechanisms
in VANET. A combination of position perturbation and random beaconing in-
terval is proposed and evaluated using both STRAW and realistic traces. The
QoS is also evaluated showing the negative impact of the obfuscation scheme
on safety applications. In addition, we come up with an advanced adversary
who can overcome the operations of the obfuscation scheme and track vehicles
with low distortion levels. The random beaconing rate is overcome by merg-
ing beacons of subsequent time steps while the position perturbation period is
avoided by skipping beacons of new pseudonyms for the max noising period.
According to these results, we can conclude that the obfuscation mechanisms
not only have a significant negative impact on the QoS of safety applications
but also are ineffective in preserving location privacy. Therefore, they should
not be used in preserving the location privacy in VANET domain.
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7.1 Introduction

Since the obfuscation privacy scheme do not achieve reasonable privacy and
QoS levels, other schemes are investigated. Elimination-based privacy schemes
are commonly used in vehicular networks whether time-based such as the ran-
dom silent period (RSP) or location-based such as mix-zone. The concept of
these schemes is to hide vehicle information for a sufficient period of time be-
fore a pseudonym change. This discontinuity in the spatiotemporal informa-
tion makes it more difficult to correlate beacons of the old and new pseudonyms.
However, this approach may not be effective in certain cases. For example, in
the random silent period scheme, if a vehicle switches to silence alone, then
an adversary can track it because no other vehicle has changed its pseudonym.
Even if several vehicles enter silence together, the adversary can still track them
if their routes are distinguishable from each other and follow tracks predicted
by the adversary. The RSP may also negatively affect the QoS of safety ap-
plications in relatively long silence, as discussed and illustrated in Section 5.4.
Safety applications evaluate the surrounding traffic and provide information
or warnings to the driver based on the data extracted from beacons received
from other vehicles. Therefore, interruptions in these beacons due to silence
periods may negatively affect the provided warnings.

In this chapter, we propose a context-aware privacy scheme (CAPS) that al-
lows a vehicle to select the effective context in which to enter a silence period
and change its pseudonym and when to resume beaconing with a high prob-
ability of confusion to a global adversary. This scheme monitors surround-
ing vehicles through their beacons using the vehicle tracker proposed in Sec-
tion 3.4.7. The motivation behind using an in-vehicle tracker is to provide
a more realistic view about the surrounding traffic and facilitate estimating
the likelihood of confusion to an adversary. We evaluate this scheme using
both the STRAW and realistic vehicle traces in comparison with the random
silent period scheme. Moreover, we improve the CAPS by proposing a context-
adaptive scheme (CADS) which minimizes the required parameters by adapt-
ing itself according to the vehicle context and the driver’s privacy preference.
Last but not least, several privacy schemes are evaluated and compared with
our context-based schemes.
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7.2 Related Work

Some context-based privacy schemes are proposed in VANET domain, as dis-
cussed in Section 2.6.2. Gerlach and Guttler [57] proposed the concept of a
context mix, where a vehicle changes its pseudonym after holding the pseudo-
nym for a stable time when there are N neighbors within a small radius . Lu
et al. [87] proposed changing pseudonyms in social spots such as signaled in-
tersections and parking areas where several vehicles remain stopped for some
time. Before leaving a social spot, vehicles change their pseudonyms to cre-
ate a mix zone. Some variations of silent period schemes that take safety into
consideration were also proposed. Buttyán et al. [28] proposed ceasing to send
messages when the vehicle moves slowly. The rationale for choosing a low
speed is that silent periods are less likely to cause fatal accidents at low speeds
and these low speeds indicate natural mixing areas, where many vehicles are in
close proximity. Wei and Chen [139] proposed obfuscating the position, speed
and direction within the safe distance radius calculated by a safety analysis al-
gorithm. Additionally, they propose changing the length of the silent period
based on the distance from other vehicles such that the closer the vehicles, the
shorter the silent period.

Our context-based schemes differ from and improve the previously men-
tioned techniques. First, the proposed schemes do not rely exclusively on fixed
heuristics, such as a changing velocity or a density threshold, to choose the
appropriate situations to change pseudonyms. On the contrary, they moni-
tor the vehicle context and decide dynamically when and where keep silent to
change pseudonyms and when to resume beaconing. This dynamic context-
based technique provides short but efficient silence periods so that the QoS of
safety applications is not significantly affected. Second, our schemes conserve
the pseudonyms pool of a vehicle by increasing the minimum pseudonym life-
time when pseudonyms are changed several times with likely tracker confu-
sions. Third, the proposed schemes are evaluated using realistic large-scale
vehicle traces which confirms their practicability, applicability and scalability
in real-world situations.

7.3 System and Adversary Models

We assume the same system model, as defined in Section 1.5.1. For the ad-
versary model, we consider protecting vehicles from both (1) a global passive
adversary (GPA) and (2) a local active adversary (LAA). The GPA can monitor
all exchanged messages, as defined in Section 1.5.2. The LAA can send authen-
ticated messages to the network through a limited amount of compromised ve-
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hicles driving in the road network. It is assumed that it is extremely difficult for
an active adversary to be global. The LAA aims mainly to deplete the pseudo-
nym pools of the victim vehicles by forcing repeated pseudonym changes. If
its pool is depleted, the victim will attempt to refill its pseudonym pool by ini-
tiating a pseudonyms issuing process with a trusted service provider, which is
not always accessible. This adversary tries to mimic conditions that make its
surrounding vehicles change their pseudonyms by exploiting the procedures
of the privacy scheme. Since our proposed schemes depend on the vehicle
context to change pseudonyms, it is important to evaluate them against active
attacks. The encryption-based privacy schemes (such as CMIX [53]) fails in pro-
tecting vehicles from this adversary model because the compromised vehicles
can obtain symmetric keys from RSUs and decrypt all exchanged messages.
This gives another advantage for our proposed schemes.

7.4 Context-aware Privacy Scheme (CAPS)

7.4.1 CAPS Concept

The basic concept of our Context-aware Privacy Scheme (CAPS) is to deter-
mine the appropriate context in which a vehicle should change its pseudo-
nym. This approach aims to increase the effectiveness of such changes against
tracking and avoid wasting pseudonyms in easily traceable situations. More
specifically, a vehicle continuously monitors other vehicles located within its
communication range and tracks their beacons using an NNPDA tracker. As
explained in Chapter 3, the NNPDA is an efficient multi-target tracking algo-
rithm that has exhibited a high tracking accuracy for anonymous beacons with
different amounts of noise and beaconing rates.

As illustrated in Figure 7.1, the CAPS works as follows. During its active
status, the subject vehicle (SV) uses its current pseudonym in beacons until
the pseudonym lifetime reaches a minimum time. Once it exceeds this time,
the vehicle checks whether any of monitored neighbors missed its beacons for
several time steps. Here, neighbors refer to vehicles located within a prede-
fined radius from the subject vehicle (e.g., 50 or 100 m). If the SV finds a silent
neighbor, it turns to silence as well. Otherwise, it continues using its current
pseudonym until its lifetime reaches a maximum pseudonym time and then
the vehicle turns to silence.

When a vehicle is silent, it returns to beaconing under more complex condi-
tions based on the gating phase of vehicle tracking. It was explained in Section
3.2.2 that a gating process is required in target tracking to eliminate unlikely
measurement-to-track associations from being tested. It requires any new mea-
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Subject vehicle (SV)

Monitored vehicles

Neighbors 

Non-monitored vehicles

Vehicle track

Communication range

Neighborhood threshold

Figure 7.1: Illustration for the CAPS operations

surement to be located within the track gate to be a valid candidate for associ-
ation with this track. The most common gating technique is ellipsoidal which
defines the norm of the residual vector (d2):

d2 = z̃TS−1z̃ (7.1)

where z̃ and S are the residual vector and its covariance matrix obtained from
the Kalman filter, respectively. We exploit this fact and require the beacon after
silence to achieve one of the following two conditions to guarantee no correla-
tion with previous beacons. As illustrated in Figure 7.2, the SV state should be
nearer to the track of a silent neighbor than its original track or completely out-
side the gate of its original track. When these conditions hold, the adversary
will most probably become confused when attempting to correlate this new
beacon because it will not be assigned to its original track.

Formally, when the SV is silent, it continues monitoring surrounding vehi-
cles and waits for the minimum silence time. Once exceeded, it checks if one of
the following conditions holds regarding the norm of the residual vector (d2)
between its actual and estimated states:

1. d2 > d2
Nmin, where d2

Nmin is the minimum norm of the residual vector be-
tween the SV actual state and the estimated states of its silent neighbors,
as shown in the upper part of Figure 7.2.

2. d2 > max_gate, wheremax_gate is the maximum gate that the adversary
may use, as shown in the lower part of Figure 7.2.

If one of these conditions holds, this new beacon is likely to be mixed with
one of its silent neighbors or recognized as a new vehicle. Therefore, it is a
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Beacons

Beaconing Silence Beaconing

Max gate

Estimated track of SV during silence

Beacons

Estimated track of SV during silence

Figure 7.2: Illustration for the two conditions to exit silence.

suitable time to exit silence with a new pseudonym. If these conditions never
occur, the SV remains silent until a maximum silence time is reached.

7.4.2 CAPS Algorithm

Algorithm 1 and its supporting functions presented in Algorithm 2 show the
implementation details of the CAPS. Note that the SV uses this algorithm at
every time step to decide on its next status whether active or silent. Algo-
rithm 1 takes as input the tracks maintained for other vehicles (other_tracks),
a track for the SV itself (myself_track), beacons received by the SV at the pre-
vious time step (scan), the current state of the SV obtained from its sensors
(actual_state) and its current status whether active or silent (status).

First, the tracks of the monitored vehicles are updated by the received bea-
cons by calling the update_tracks function, which runs the NNPDA tracker
to assign each beacon in a scan to its corresponding track. Next, these tracks
are stepped forward to the current time step by calling the kalman_predict
function. Next, the candidates of silent neighbors are identified by calling the
get_silent_cand function defined in Algorithm 2. This function finds neighbor
tracks that are not updated by a beacon for at least the lastmiss_beacon_threshold
time steps and are located within the neighborhood_threshold from the SV.
The miss_beacon_threshold aims to discriminate between silent neighbors and
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Algorithm 1 Context-Aware Privacy Scheme (CAPS)

Input: other_tracks,myself_track, scan, actual_state, status
1: update_tracks(other_tracks, scan);
2: kalman_predict(other_tracks);
3: sil_cand := get_silent_cand(other_tracks, actual_state);
4: if status = active then
5: psynm_time := psynm_time+ 1;
6: if psynm_time > psynm_max then
7: status := silent;
8: else if psynm_time > psynm_min then
9: if SIZE(sil_cand) >= sil_node_threshold and RAND() > 0.5 then

10: status := silent;
11: end if
12: end if
13: if status = silent then
14: sil_time := 1;
15: else
16: send_beacon();
17: kalman_update(myself_track, actual_state);
18: end if
19: else . status = silent
20: sil_time := sil_time+ 1;
21: if sil_time ≥ sil_max then
22: state := active;
23: else if sil_time > sil_min then
24: if SIZE(sil_cand) > 0 then
25: myself_dist := calc_dist(myself_track, actual_state);
26: min_neigh_dist := calc_min_dist(sil_cand, actual_state);
27: if (min_neigh_dist < myself_dist or
28: myself_dist > max_possible_gate) and RAND() > 0.5 then
29: status := active;
30: end if
31: end if
32: end if
33: if status = active then
34: psynm_time := 0;
35: psynm := get_new_pseudonym();
36: end if
37: end if
38: kalman_predict(myself_track);
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neighbors whose beacons were missed due to a communication problem. The
neighborhood_threshold aims to discriminate between silent neighbors and neigh-
bors that tend to drive far from the SV. This threshold affects the tendency of
switching to silence. If this threshold is large, then the SV is more likely to find
silent neighbors, and thus, tends to switch to silence sooner and may consume
more pseudonyms in dense traffic. If this threshold is small, then the SV tends
to continue beaconing until a very close neighbor turns to silence.

In Line 8 of Algorithm 1, when the pseudonym lifetime (psynm_time) ex-
ceeds the minimum pseudonym time (psynm_min), the vehicle turns to silence
when there are silent neighbor candidates more than sil_node_threshold. This
threshold is generally set to one but it can be increased to protect against the
LAA pseudonym depletion attack, as will be discussed in Section 7.5.4. We
added randomization to the switching condition to prevent the adversary from
guessing the exact time of turning to silence. In Line 16, if the SV does not turn
to silence, it sends a beacon and updates its own track.

In Line 23, if the SV is already silent and its silence period exceeds the mini-
mum silence time, it switches to active status if there are other silent neighbors
and one of the following conditions holds. First, it calculates the norm of the
residual vector between its actual state and its own track (myself_dist) by call-
ing the calc_dist function. It also calculates the minimum norm of residual
vectors between its actual state and its silent neighbor tracks (min_neigh_dist)
by calling the calc_min_dist function. If the min_neigh_dist is less than the
myself_dist, then the actual state of the SV is most likely to be mixed with a
track of those silent neighbors. Thus, the adversary would also become con-
fused if this silent neighbor did not resume its beaconing in the same time step.
Note that the vehicle track (myself_track) simulates the adversary’s knowl-
edge about the SV because it is updated by the sent beacons only during active
status and predicted during silence. Another condition for switching back to
beaconing is that the myself_dist is larger than the maximum possible gate
used by the adversary (max_possible_gate). In this case, the actual state of
the SV is much farther than the state predicted by the adversary, and thus, a
new track will be created for this new beacon. A randomization condition is
also added to prevent the adversary from guessing the exact time of return-
ing to beaconing. Once the SV exits silence, it uses a new pseudonym from its
preloaded pool and resumes sending beacons at the next time step.

7.4.3 Experiment Results

In this section, we evaluate CAPS in terms of the distortion level and the QoS of
safety applications. The tracker presented in Section 3.4.7 is employed to recon-
struct traces from the beacons protected by CAPS. Unless specified otherwise,
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Algorithm 2 Supporting Functions

1: function get_silent_cand(other_tracks, actual_state)
2: n := SIZE(other_tracks);
3: for i := 1, n do
4: if other_tracks(i).updated_from ≥ miss_beacon_threshold and
5: EUCLID(other_tracks(i).pos, actual_state.pos) <
6: neighborhood_threshold then
7: silent_cand.ADD(other_tracks(i));
8: end if
9: end for

10: return silent_cand;
11: end function
12: function calc_dist(track, state)
13: z̃ = state− track.H · track.x̂;
14: d2 = z̃T track.S−1z̃;
15: return d2;
16: end function
17: function calc_min_dist(tracks, state)
18: n := SIZE(tracks);
19: minD := Inf ;
20: for i := 1, n do
21: d := calc_dist(tracks(i), state);
22: if d < minD then
23: minD := d;
24: end if
25: end for
26: return minD;
27: end function

we employ the sparsest scenario (50 vehicles) of the STRAW vehicle traces de-
scribed in Section 1.6.2 to generate pseudonymous beacons. This low density is
selected because the tracker can track vehicles with low distortion levels even
in the presence of intermediate random silent periods, as shown in Section 4.4.
Thus, it will be a challenge for the CAPS to reduce tracking vulnerability in
this low density scenario. Many experiments with different parameter combi-
nations are performed using ranges specified in Table 7.1. The values of the
minimum and maximum silence times and the maximum pseudonym time are
guided by the European standard ETSI TS 102 867 recommendations [8]. In
the next experiments, we show the effect of changing every other parameter
while assigning the remaining parameters to their default values. Privacy is
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Table 7.1: CAPS parameter test ranges and default values

Parameter Test Range Default Value

Minimum pseudonym time PTmin (s) 60 - 180 60
Maximum pseudonym time PTmax (s) 300 - 540 300
Minimum silence time STmin (s) 0 - 5 3
Maximum silence time STmax (s) 7 - 13 13
Number of vehicles (V) 50 - 200 50
Neighborhood threshold (m) 10 - 100 50
Packet delivery ratio PDR 0.6 - 1 1
Missed beacons threshold (Bcn) 1 - 7 3

measured in terms of the distortion metrics defined in Equations 4.10 and 4.11
while the QoS of safety applications is measured as specified in Equation 5.17.

First, we study the effect of the minimum and maximum pseudonym times.
In Figure 7.3(a), the variation of the minimum and maximum pseudonym times
versus the distortion metric is presented. We notice that the minimum pseudo-
nym time has little effect compared to the maximum time. For a longer max-
imum pseudonym time, the CAPS has a longer time allowance to find other
silent vehicles and thus tends to keep the same pseudonym. This behavior re-
duces the number of pseudonym changes and the accompanying silence peri-
ods in the sparse environment we use. The decrease of the pseudonym changes
reduces the adversary confusions and the distortion level. The impact of the
pseudonym period on the QoS is displayed in Figure 7.3(b). The QoS increases
with longer maximum pseudonym times due to the decrease of the number of
pseudonym changes which helps the in-vehicle tracker to better estimate the
safety application requirements.

In Figure 7.4(a), we show the variation of the minimum and maximum si-
lence times versus the distortion level. We notice again that the minimum si-
lence time has little effect compared to the maximum time. Long maximum
silence times (11 s and longer) give the context monitoring module the oppor-
tunity to find another silent neighbor with a track closer to the actual state of
the subject vehicle than its own track. This opportunity results in an effective
pseudonym change and highly probable confusion for the adversary reflected
in the high distortion levels for maximum silence times of 11 s and longer. The
QoS slightly decreases with the increase of the maximum silence time with al-
most no effect of the minimum silence time, as illustrated in Figure 7.4(b).
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Figure 7.3: Privacy and QoS levels of CAPS in several pseudonym periods.1
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Figure 7.4: Privacy and QoS levels of CAPS in several silence periods.

Furthermore, the effect of the neighborhood threshold and the vehicle den-
sity is evaluated in Figure 7.5. It can be noticed that large neighborhood thresh-
olds are more effective than narrow ones, especially at lower densities, because
a large threshold (i.e., large neighborhood circle) allows a vehicle to change its
pseudonym sooner, as it is more likely to find another silent neighbor within
this large circle. In dense environments, vehicles are already close to each other,
and both narrow and large thresholds provide a sufficient area to find a silent
neighbor, with the larger threshold having a slight advantage. The QoS is gen-
erally increasing with denser traffic because the speed error is lower in denser
traffic. Note that the speed error is assumed to be 2% of the vehicle speed, as

1The error bars in all figures represent the standard deviation.
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Figure 7.5: Privacy and QoS levels of CAPS in several neighborhood thresholds
and vehicle densities.
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Figure 7.6: Privacy and QoS levels of CAPS in various missed beacon thresh-
olds and packet delivery ratios.

explained in Section 5.3.1 and the average speed in the dense traffic is lower
than the sparse traffic.

The effect of the threshold of missed consecutive beacons for identifying
silent neighbors in several packet delivery ratios (PDR) is investigated in Fig-
ure 7.6. It can be observed that when the PDR is less than one, the distortion
increase significantly regardless the missed beacons threshold because of the
large amount of beacon messages that the adversary failed to collect. In the
perfect delivery case (i.e., PDR = 1), the missed beacons threshold affects the
achieved distortion level. Small threshold values (i.e., ≤ 3) achieved a higher
distortion level than large values. A small missed beacons threshold leads a ve-
hicle to turn to silence based on weak evidence of the actual status of the neigh-
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bor. These last two observations regarding neighborhood and missed beacon
thresholds are very important for context modeling. We initially thought that
monitoring closer confirmed-silent neighbors would be the most essential, as
these neighbors are the candidates for confusing the adversary. However, ac-
cording to these findings, this confirmed-silent monitoring is less important
than switching to silence sooner and letting the scheme wait for likely confu-
sion during the silence period. As demonstrated in Figure 7.6(b), the QoS is
the same for the all tested thresholds when the PDR equals one. Although the
QoS generally decreases with lower PDRs, the missed beacons thresholds less
than or equal the minimum silence time reduce the QoS significantly. This re-
duction results from the increased number of pseudonym changes the CAPS
performs when the threshold is small. This increased number of pseudonym
changes prevents the in-vehicle tracker from estimating the safety application
requirements correctly.

Table 7.2: Parameters and results of the CAPS and RSP in STRAW traces for
density of 50 vehicles

Parameters Max silent time (s) CAPS 5 7 9 11

RSP 7 9 11 15

Min silent time (s) Both 3

Max pseudonym time (s) CAPS 300

Fixed pseudonym time (s) RSP 300

Min pseudonym time (s) CAPS 60

Results Med pseudonym time (s) CAPS 297 297 297 296

RSP 294 291 288 286

Med silent time (s) CAPS 5 7 9 11

RSP 5 7 9 10.8

Pseudonym changes CAPS 150 150 150 150

RSP 165 165 165 165

Confusion/Psynm Change CAPS 0.14 0.22 0.32 0.48

RSP 0.01 0.03 0.13 0.23

In addition, we compare the CAPS with the random silent period (RSP)
scheme [115]. The RSP allows a vehicle to change its pseudonym after a fixed
pseudonym time and keep silent for a uniformly random period within a pre-
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set range (e.g., from 3 to 13 s). As the two schemes have different assumptions
and parameters, they are aligned based on the median silent and pseudonym
times for all vehicles, actually performed in the simulation. In other words, we
tried several values for the parameters of the RSP and obtained the resulting
median silence and pseudonym times. We then compared these values with
those obtained from the CAPS and matched the corresponding parameters.
In Table 7.2, we show parameters passed to the CAPS and RSP that result in
similar median silence and pseudonym times in STRAW traces of 50 vehicles.
For example, using 5 and 7 s as maximum silence times in the CAPS and RSP,
respectively, and 300 s as the maximum pseudonym time in both results in me-
dian silence times of 5 s and median pseudonym times of 297 and 294 s in the
CAPS and RSP, respectively. Thus, when comparing these schemes, we use the
corresponding parameter pairs shown in the first two rows in Table 7.2.
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Figure 7.7: Privacy and QoS levels of CAPS compared to RSP in STRAW traces
of sparse and dense traffic.

As shown in Figure 7.7(a), the CAPS significantly increases the distortion
level than the RSP does, especially for dense environments. In addition, the
CAPS can achieve this higher distortion level using fewer pseudonyms. We
added the number of pseudonyms used by all vehicles in the 50 vehicles sce-
nario in the third row of the results section of Table 7.2. It is clear that the CAPS
uses fewer pseudonyms. Furthermore, we measured the ratio of the adversary
confusions per pseudonym change for both schemes to infer the effectiveness
of the pseudonym change. According to ratios presented in the last row in the
results section of Table 7.2, the pseudonym changes, that the CAPS performs,
result in adversary confusions at least twice the confusions resulting from the
pseudonym changes of the RSP. These last two results are important because
they emphasize that choosing the situations in which to change pseudonyms
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Figure 7.8: Privacy and QoS levels of CAPS compared with RSP in realistic
traces.

and keep silence is an effective and efficient way to preserve location privacy.
Although the CAPS achieves higher distortion levels, it results in a higher QoS
in safety applications than the RSP, as demonstrated in Figure 7.7(b). The QoS
reduction of the RSP results from the increased number of pseudonym changes
which are followed by silence periods. In relatively long silence periods, the in-
vehicle tracker cannot estimate the states of the nearby vehicles correctly 2.

We repeat the previous experiment using realistic traces to confirm the appli-
cability and effectiveness of the CAPS in real-world situations. As the distribu-
tion of the realistic traces is dynamic and different from that of the simulated
traces, we found that the parameters, shown in Table 7.2, produce different
median pseudonym times but similar median silence times. Thus, we used a
fixed pseudonym time of 120 s instead of 300 s in the RSP to achieve alignment
in both times, as shown in Table 7.3. Additionally, due to the huge number of
traces, we ran this experiment once for each median silence time. As shown
in Figure 7.8(a), the CAPS increases the distortion level (D) more than that of
the RSP on average for relatively short median silence times (≤ 7 s). How-
ever, the CAPS significantly increases the normalized distortion (Dn) than that
of the RSP. The normalized distortion metric only considers the vehicles that
have changed their pseudonyms during the simulation. Due to the long max-
imum pseudonym time of the CAPS, many vehicles have never changed their
pseudonyms which results in zero distortion for their traces. The operations
of both schemes have been further analyzed in different aspects, as presented
in Table 7.3. We observe that the number of pseudonym changes made by the

2The distortion and QoS levels of the RSP seem different from that presented in Section 6.4.4
because the employed tracker in that section is not tuned to accommodate silence periods.
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RSP are on average 1.6 times the number made by the CAPS, as shown in the
third row of the results section of Table 7.3. This result indicates the efficiency
of the CAPS in increasing the normalized distortion with fewer pseudonyms.
Furthermore, we noticed that the increase in the normalized distortion level
achieved by the CAPS is caused by the effectiveness of the pseudonym changes
rather than their number. We observed that the ratio of adversary confusion per
pseudonym change using the CAPS is 1.5-2.4 times greater than using the RSP
depending on the length of the silence period, as shown in the last row of Table
7.3. This finding confirms the CAPS ability to choose the appropriate context
for changing pseudonyms.

Table 7.3: Parameters and results of the CAPS and RSP in realistic traces

Parameters Max silent time (s) CAPS 5 7 9 11

RSP 7 9 11 15

Min silent time (s) Both 3

Max pseudonym time (s) CAPS 300

Fixed pseudonym time (s) RSP 120

Min pseudonym time (s) CAPS 60

Results Med pseudonym time (s) CAPS 114 112 112 111

RSP 114 111 108 105

Med silent time (s) Both 5 7 9 11

Pseudonym change/vehicle CAPS 1.50 1.49 1.48 1.48

RSP 2.44 2.42 2.41 2.39

Confusion/Psynm change CAPS 0.26 0.55 0.64 0.71

RSP 0.12 0.23 0.36 0.46

Regarding the QoS, we observe that both schemes have a lower QoS than
that shown in the STRAW traces, but the CAPS still achieves an acceptable
QoS of at least 88%, as shown in Figure 7.8(b). There are two issues that may
explain this result. First, the time step of the realistic traces is 1 s but 0.5 s in
the STRAW traces. This longer time step prevents the in-vehicle tracker from
obtaining the desired accuracy especially in estimating the speed. We verified
this finding by testing the STRAW traces again but skipping every other sample
to produce a 1 s time step. The QoS of 1 s time step in the 11 s median silent
period is 90% for both schemes, while it was 93% in the case of a 0.5 s time
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step. Second, the RSP changed pseudonyms much more often than the CAPS
did, as shown in Table 7.3. As pseudonym changes are preceded by silence,
the in-vehicle tracker failed to estimate the state of silent vehicles in the RSP
more than in the CAPS, which is reflected in the lower QoS for RSP, especially
in longer silence periods. This behavior is less noticeable in the STRAW traces
because the increase in pseudonym changes of the RSP over the CAPS was not
significant in the STRAW traces.

Based on these results, we can summarize the following findings. The CAPS
achieves up to 35% increase in the distortion level on average from that of the
RSP in a sparse environment of 50 vehicles where similar median silence and
pseudonym times are used. This increase may reach up to 45% in a denser
environment of 200 vehicles. However, the results show that the distortion
level of CAPS is not sufficiently high and may allow vehicle tracking, especially
with realistic traces. This may occur because of the relatively short length of
traces (15 min in STRAW traces while 5 min in realistic traces). Longer traces
may allow several pseudonym changes and tracker confusions. On the other
hand, the CAPS achieves a better QoS of safety applications than the RSP does
in realistic traces. In general, the impact of the CAPS on safety applications
is not particularly significant, especially when short beaconing times are used
(e.g., 0.5 s).

7.4.4 CAPS Efficiency

Regarding the efficiency of the CAPS, we implemented it using MATLAB as a
centralized program, which operates on samples located in the communication
range of each vehicle separately. We exploit the parallel for loop feature in
MATLAB to iterate on vehicles asynchronously at every time step. We run
our experiments on an Intel QuadCore i7-4800MQ @ 2.70GHz Hyper-threaded
CPU. We calculate the running time of the CAPS to process samples received by
a vehicle in a single time step and average over all vehicles and time steps. We
found that the average running time is 5 ms for realistic traces. Note that this
running time is obtained using a single thread, as the CAPS code is basically
sequential. Thus, this running time is reproducible on single-thread single-core
CPUs of the given speed. Therefore, we can conclude that the CAPS is efficient
when high-end CPUs are used because the most frequent beaconing rate is 100
ms and the vehicle will have plenty of time to do other tasks. However, if
lower-end CPUs are used in vehicles, then further code optimization should
be investigated. The memory is not an issue, as the CAPS uses only a few
hundreds of kBs for the Kalman filter tracks of the nearby vehicles.
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7.4.5 CAPS Shortcomings

We note three shortcomings of the CAPS. First, we observe that some vehicles
change pseudonyms unnecessarily several times with no significant advantage
in increasing the distortion. Having a few confusions per trace is sufficient to
avoid continuous vehicle tracking. However, frequent pseudonym changes
and confusions may negatively affect the QoS of a safety application, as neigh-
bors cannot estimate the vehicle state correctly. Therefore, we propose increas-
ing the minimum pseudonym time each time a vehicle changes its pseudonym
with a probable confusion. Second, the CAPS takes several parameters that
may not be optimized for different traffic densities and situations. For exam-
ple, a wide neighborhood threshold may be more suitable for sparse traffic than
dense traffic. Third, the CAPS does not consider the driver’s preference regard-
ing privacy. In fact, privacy depends on the preferences of the user and the
technical solutions should be adaptable to empower users to determine what
is allowed with their personal information [17]. For example, it may be desir-
able to maximize the privacy level when the driver goes to a sensitive place.
For these reasons, we propose a more advanced scheme that considers these
shortcomings, which we call the context-adaptive privacy scheme (CADS) as
explained next.

7.5 Context-adaptive Privacy Scheme (CADS)

The CADS allows a driver to choose among privacy preferences, whether low,
normal or high. It optimizes the internal parameters dynamically according
to the density of the surrounding traffic and the driver’s privacy preference.
In addition, it preserves the vehicle pseudonyms pool for a longer time if the
pseudonym is already changed with a probable confusion.

To optimize the scheme parameters with respect to the surrounding traffic,
we investigate the performance of the CAPS in two different densities; sparse
and dense traffic. First, we select two relatively short sub-datasets from the re-
alistic vehicle traces with low and high traffic densities. We then test the CAPS
on each sub-dataset with many parameter combinations and obtain the result-
ing distortion and QoS metrics. Second, to incorporate the privacy preference
in CADS, we divide the results of the sub-dataset experiments into three cate-
gories according to the achievable distortion. Next, we identify the parameters
that result in the best compromise between distortion and QoS in each cate-
gory. Third, we insert these categorized parameters of each density into CADS
and bind them according to the real-time vehicle density and the input privacy
preference. We next discuss each step with its accompanying experiments in
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Figure 7.9: Vehicle density of realistic traces with sub-datasets highlighted.

detail.

7.5.1 Sub-datasets Evaluation

As explained in Section 1.6.3, the realistic traces have an increasing density
range from 1,929 to 4,572 vehicles. We selected two sub-datasets, each 6 min
long from the beginning and the end of the vehicle traces, as shaded in Figure
7.9. We excluded traces that last less than one minute from these sub-datasets.
The CAPS is then evaluated using each sub-dataset and the following parame-
ter combinations: maximum pseudonym times of 180, 240 and 300 s, maximum
silence times of 7, 9, 11 and 13 s, neighborhood threshold of 50 and 100 m and
increments of the minimum pseudonym time after a probable confusion of 0
or 60 s. We run the CAPS using these parameter combinations on both sub-
datasets and obtain the achieved privacy and QoS metrics.

7.5.2 Parameters Selection

From all experiments tested in the previous step, we exclude those results with
a QoS less than 85% as we assume that the safety application will not operate
with an acceptable accuracy in such cases. Although the distortion and the
QoS are inversely proportional, we notice that the QoS varies much less than
the distortion. Therefore, the results are categorized based on the QoS instead,
to facilitate categorization. The results are divided into low, normal and high
privacy levels when they achieve the maximum, average and minimum QoS,
respectively in each sub-dataset. Thus, the parameters for a high privacy pref-
erence are selected when a QoS of 85% is attained. The parameters for a low
privacy preference are selected when the highest QoS is obtained but with a
distortion of at least 25%. This low distortion constraint is added to ensure
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Table 7.4: Optimized CADS parameters and their results

Privacy Preference
Parameter/Result Density Low Normal High

Max pseudonym time (s) Sparse 240 300 180

Dense 240 180 180

Max silence time (s) Sparse 11 11 11

Dense 11 13 11

Pseudonym time increment (s) Sparse 60 60 0

Dense 60 60 0

Neighborhood threshold (m) Sparse 50 100 100

Dense 50 50 100

Distortion (%) Sparse 26 37 48

Dense 31 46 55

Normalized Distortion (%) Sparse 35 49 56

Dense 44 57 65

QoS (%) Sparse 90 87 85

Dense 91 88 85

some privacy even when low privacy preference is selected. The parameters
for normal privacy preference are selected when the average QoS is attained
with the highest distortion.

In Table 7.4, we show the selected parameter set for each privacy preference
and vehicle density. In the last three rows, we include the resulting distortion
and QoS of each parameter set when applied to the sub-datasets. We notice that
the achievable distortion in the sparse sub-dataset is lower than that achievable
in the dense sub-dataset. The distortion can be increased using more restrict
parameters but only at the cost of the QoS.

7.5.3 CADS Algorithm

The parameter table 7.4 is integrated into the CADS to let a vehicle choose the
adequate parameter set based on the driver’s privacy preference and the real-
time density of the surrounding traffic. A vehicle can estimate the traffic den-
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(b) Dense sub-dataset

Figure 7.10: Average number of neighbors encountered by a vehicle in both
sub-datasets.

sity by evaluating the average number of neighbors encountered over time. For
this purpose, we analyzed the distribution of neighbors in both sub-datasets,
as shown in Figure 7.10. We notice that the average number of neighbors that
a vehicle encounters is 30 and 68 with 95% confidence in the sparse and dense
sub-datasets, respectively. Therefore, a neighbors threshold of 30 vehicles is
assigned to discriminate between sparse and dense traffic. In other words,
a vehicle continuously counts the surrounding vehicles in its communication
range and calculates the average over time. If the average number of surround-
ing vehicles is lower than 30 then the traffic is considered sparse, otherwise it
is considered dense.

The CADS pseudocode is presented in Algorithm 3. It is similar to the CAPS
code along with some modifications. It additionally takes the driver’s privacy
preference (priv_pref ) and the parameter lookup table (PLT ). In Line 3, the
vehicle updates the average number of neighbors (avg_neig) encountered over
time steps. Upon status switching from silent to active or vice versa, the ve-
hicle looks up the parameter table PLT using the avg_neig and priv_pref to
obtain the optimized parameter set for their values. In Line 17, the vehicle
updates the maximum silence time (cur_sil_max) by the preset value in PLT .
Similarly, in Line 35, if the vehicle switches to the active status upon a likely
confusion, the vehicle increases the minimum pseudonym time (psynm_min)
by the pseudonym time increment obtained from PLT . It is worthy to note
that the minimum pseudonym time is only increased if the silence period led
to a probable confusion.
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Algorithm 3 Context-Adaptive Privacy Scheme (CADS)

Input: other_tracks,myself_track, scan, actual_state, status, priv_pref, PLT
1: update_tracks(other_tracks, scan);
2: kalman_predict(other_tracks);
3: avg_neig := (avg_neig ∗ neigt+ SIZE(other_tracks))/(neigt+ 1);
4: neigt := neigt+ 1;
5: sil_cand := get_silent_cand(other_tracks, actual_state);
6: if status = active then
7: psynm_time := psynm_time+ 1;
8: if psynm_time > cur_psynm_max then
9: status := silent;

10: else if psynm_time > cur_psynm_min then
11: if SIZE(sil_cand) >= sil_node_threshold and RAND() > 0.5 then
12: status := silent;
13: end if
14: end if
15: if status = silent then
16: sil_time := 1;
17: cur_sil_max := PLT [′′max_sil′′, avg_neig, priv_pref ];
18: neigt := 1;
19: else
20: send_beacon();
21: kalman_update(myself_track, actual_state);
22: end if
23: else . status = silent
24: sil_time := sil_time+ 1;
25: if sil_time ≥ cur_sil_max then
26: state := active;
27: else if sil_time > sil_min then
28: if SIZE(sil_cand) > 0 then
29: myself_dist := calc_dist(myself_track, actual_state);
30: min_neigh_dist := calc_min_dist(sil_cand, actual_state);
31: if (min_neigh_dist < myself_dist or
32: myself_dist > max_possible_gate) and RAND() > 0.5 then
33: status := active;
34: cur_psynm_min := cur_psynm_min+
35: PLT [′′psynm_inc′′, avg_neig, priv_pref ];
36: end if
37: end if
38: end if
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39: if status = active then
40: psynm_time := 0;
41: psynm := get_new_pseudonym();
42: cur_psynm_max := PLT [′′max_psynm′′, avg_neig, priv_pref ];
43: cur_neighborhood_thershold := PLT [′′neigh_thre′′, avg_neig, priv_pref ];
44: if cur_psynm_min >= cur_psynm_max then
45: cur_psynm_min := cur_psynm_min− 30;
46: end if
47: end if
48: end if
49: kalman_predict(myself_track);

7.5.4 Experiment Results

The CADS is evaluated against two adversary models: GPA and LAA, as de-
fined in Section 7.3. We consider the CADS distortion and QoS levels in the
GPA experiments while we concern the pseudonym lifetime in the LAA exper-
iments.

Location Privacy under GPA

We evaluated the CADS using realistic traces in two different scenarios. In the
first scenario, all drivers select the same privacy preference, whether low, nor-
mal or high. In Figure 7.11, we show the distortion, the normalized distortion
and the QoS of each privacy level as a bar chart. As a comparison with CAPS,
these metrics are displayed as dashed lines when a maximum silent time of 11
s is set in CAPS.

The distortion and normalized distortion of CADS increases when drivers
select a higher privacy preference with a slight decrease in the QoS. Compared
to CAPS, the CADS achieves a better compromise between distortion and QoS.
Specifically, when a high privacy preference is used, the CADS achieves a 15%
higher distortion, a 8% higher normalized distortion but with a slight decrease
in QoS (only 4%). When a low privacy preference is used, the QoS is enhanced
by 2% while the normalized distortion is still more than 50%. In normal privacy
preference, distortion is increased because of the adaptation of the parameters
based on the traffic density. These results confirm the validity and effective-
ness of the context-adaptability to find a practical compromise between privacy
preference and QoS.

In the second scenario, we allow vehicles to select the preferred privacy level
randomly based on given percentages. In this scenario, we aim to confirm that

134



7.5 Context-adaptive Privacy Scheme (CADS)

 40

 50

 60

 70

 80

 90

 100

100% Low 100% Normal 100% High

D
is

to
rt

io
n
 -

 Q
o
S

 %

Privacy Preference Combination

CAPS: D
CADS: D

CAPS: Dn
CADS: Dn

CAPS: QoS
CADS: QoS

89%
86%

83%

Figure 7.11: Comparison of the CADS evaluation when all vehicles use the
same privacy preference and the CAPS evaluation with 11 s max
silent time.

the privacy is more enhanced for vehicles that select a higher privacy level than
the others. As the vehicles use a mix of privacy preferences, each privacy pref-
erence group is evaluated separately showing its distortion and normalized
distortion. However, the QoS is evaluated over all vehicles, as lower-quality
information obtained from vehicles that use a high privacy preference will af-
fect other vehicles of lower privacy preferences and vice versa. In this scenario,
we repeat each experiment five times with random selection of the privacy
preference assigned to vehicles.

In the first and second experiments, 25% and 75% of vehicles use the normal
privacy preference, respectively, while the rest uses the high privacy prefer-
ence, as shown in Figure 7.12. Although both experiments employ swapped
percentages of normal and high privacy levels, they achieve similar (normal-
ized) distortion for both level groups with slight effect of the major group on
the performance of the minor group.

In the third and fourth experiments, 75% of vehicles use the low privacy pref-
erence while the rest use normal and high levels, respectively. It is observable
that the high level group in the fourth experiment achieves a higher distortion
than that is achieved by the normal level group in the third experiment. Addi-
tionally, we notice that the high level group in the fourth experiment achieves
slightly lower distortion than the same group in the second experiment. This
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Figure 7.12: CADS evaluation when vehicles use a random privacy preference
based on the specified percentages.

result may attributed to the major privacy preference group being low-level in
the fourth experiment but normal-level in the second. Regarding the QoS, we
notice that it follows the QoS of the major group with a slight effect from the
minor. For example, the QoS in the first experiment is higher 1% than that in
the “100% high-privacy” experiment, and the QoS in the fourth experiment is
lower 1.5% than that in the “100% low-privacy” experiment. From all these
observations, we can conclude that the distortion is mainly affected by the con-
figured privacy level with a slight effect from the surrounding traffic. However,
this change in distortion is compensated in the QoS.

Location Privacy under LAA

The local active adversary (LAA) performs a pseudonyms depletion attack
which tries to force victim vehicles to change pseudonyms as soon as possi-
ble. It is important to evaluate context-based schemes under this attack be-
cause these schemes change pseudonyms based on conditions that are external
from the vehicle. Therefore, an adversary may try to mimic these conditions to
force vehicles change pseudonyms frequently and deplete their pseudonyms
pool. We simulate this attack by letting a random number of compromised ve-
hicles drive within the road network. These vehicles act as LAA by changing
their pseudonyms every 5 s and keep silent for 3 s and so on. This behavior is
challenging the practicality of this attack because if the compromised vehicles
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Table 7.5: CADS results under the LAA pseudonym depletion attack in sparse
sub-dataset (silent neighbor threshold = 1; 3967 vehicles)

LAA strength
No LAA 1% 3% 5% 10%

Compromised vehicles 0 40 119 198 397
Concerned vehicles or victims 2106 224 557 1041 1562

Average pseudonym lifetime (s) 114 88 85 80 74
Pseudonym change per Vehicle 1.3 1.8 1.8 1.8 1.9

Normalized distortion Dn (%) 44 56 59 58 58
QoS (%) 88 87 85 83 79

change their pseudonyms, they will suffer from self-depletion in short time
when they use authenticated pseudonyms. If they use fake pseudonyms or do
not change pseudonyms but switch to silence frequently, surrounding vehicles
can detect this behavior and abandon the compromised vehicles from affecting
their decisions. Regardless of the practicability issues, we assume here that the
compromised vehicles own infinite number of authenticated pseudonyms and
is able to change it freely.

In the worst case scenario, a victim vehicle will change its pseudonym every
minimum pseudonym time, but the CADS and CAPS can reduce the effect of
this attack through their parameter: the silent neighbor threshold. When the
silent neighbor threshold is set to be more than one, the scheme requires several
silent neighboring vehicles to switch to silence. This condition hinders the LAA
attack since it is unlikely to have several LAA vehicles neighboring the victim
vehicle. Also, CADS can employ the pseudonym time increment parameter to
increase the minimum pseudonym time when the pseudonym is changed with
a likely tracker confusion.

The CADS is evaluated against the LAA of different strengths in terms of
the number of the compromised vehicles. The protection against this attack is
measured by the number of pseudonym changes and the pseudonym lifetime
made by vehicles on average. When calculating this metric, we considered only
vehicles that met a LAA vehicle within 50 m radius for at least 15 s and changed
their pseudonyms during simulation at least once. We selected the first and
the last 5 min of the realistic traces and run simulation five times for each LAA
strength with different compromised vehicles selected randomly. We selected 2
sub-datasets to show the effect of LAA on both sparse and dense traffic. These
short traces will not affect the generality of the obtained results because we
consider the pseudonym changing behavior rather than a full reconstruction
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Table 7.6: CADS results under the LAA pseudonym depletion attack in dense
sub-dataset (silent neighbor threshold = 2; 7390 vehicles)

LAA strength
No LAA 1% 3% 5% 10%

Compromised vehicles 0 74 222 370 739
Concerned vehicles or victims 3526 744 2015 2946 3855

Average pseudonym lifetime (s) 156 142 132 122 103
Pseudonym change per Vehicle 1.1 1.2 1.2 1.3 1.4

Normalized distortion Dn (%) 43 47 49 49 53
QoS (%) 91 90 89 88 86

of long traces. We tested two thresholds of silent neighbors of 1 and 2 vehicles
where all vehicles choose the normal privacy preference.

Table 7.5 shows the average metrics obtained using a silent neighbor thresh-
old of one for the sparse sub-dataset. Four LAA strengths along with the case
of no LAA are evaluated. The number of the compromised vehicles and the
concerned vehicles, on which the given metrics are calculated, are listed in the
first two rows of Table 7.5. The concerned vehicles are those changed their
pseudonyms at least once and refer to the victim vehicles when LAA is present
or all vehicles for the no LAA case. The next two rows show the average
pseudonym lifetime and the number of pseudonyms changed per vehicle. It
can be observed that the victim vehicles changed pseudonyms 1.38 times more
than the case of no LAA. This small increase in pseudonym changes cannot re-
sult in pseudonym depletion unless the LAA vehicles continuously follow the
victim vehicles. Furthermore, we show the distortion and QoS metrics for each
case. Interestingly, the normalized distortion metric Dn is increased when the
LAA is present because the compromised vehicles force surrounding vehicles
to change pseudonyms. The increased pseudonym changes result in a decrease
in QoS depending on the LAA strength. We repeated this experiment with a
silent neighbor threshold of 2 but we found that the distortion is significantly
reduced because it is rarely to find two silent neighbors in this sparse traffic.

Table 7.6 shows the average metrics obtained using a silent neighbor thresh-
old of 2 for the dense sub-dataset. We use here a threshold of 2 because the
traffic is dense and it is common to meet with a compromised vehicle repeat-
edly. We observe that the victim vehicles changed pseudonyms 1.27 times more
than the case of no LAA at maximum. The same behavior of increased distor-
tion and slight reduction in QoS is also observed.

From these observations, we conclude that a weak LAA of small percent
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of compromised vehicles (e.g., up to 3%) does not add a significant risk of
pseudonyms depletion specially when setting the silent neighbor threshold to
more than one. Also, this attack may hinder the threat of the GPA attack with
a small impact on the QoS of safety applications.

7.5.5 CADS Efficiency

Regarding the efficiency of the CADS, we used the same Intel QuadCore i7-
4800MQ @ 2.70GHz Hyper-threaded CPU and calculated the average running
time of processing a single time step for one vehicle as we did with CAPS. We
found that it takes 5.5 ms on average, which is again computationally efficient
when a high-end CPU is used in the vehicle. However, if lower-end CPUs are
used, then further code optimization should be investigated.

7.6 Comparative Evaluation

In this section, selected privacy schemes are evaluated and compared with our
context-based schemes. We first evaluate SLOW [28], CSP [130] and CPN [97]
quantitatively and evaluate mix zones qualitatively. We then compare these
schemes along with our schemes in Section 7.6.4. A comparative evaluation
with the RSP scheme [71] is already presented in Sections 7.4.3 and 7.5.4. Also,
the tracking vulnerability of the periodical pseudonym change is shown in Sec-
tion 3.4.6 showing its ineffectiveness in preventing tracking.

7.6.1 SLOW Scheme

The pseudo code of the SLOW scheme is presented in Algorithm 4. In SLOW,
a vehicle continuously checks its current speed and broadcasts beacons only
when its speed is higher than a preset threshold SP . If a vehicle does not send
beacons for ST time steps, it changes the pseudonym.

We evaluated the SLOW scheme in STRAW traces in both sparse and dense
traffic, as shown in Figure 7.13. In sparse traffic of 50 vehicles, the distortion
increases with the increase of the speed threshold (SP) because large thresh-
olds let vehicles stop beaconing for long periods of time which, in turn, makes
tracking difficult. The silent time threshold (ST) is relevant with the interme-
diate SP of 6 m/s because relatively short ST (≤ 15s) makes vehicles change
pseudonyms frequently which, in turn, increases tracker confusion. In large
ST, pseudonyms are only changed every long period which increases track-
ing and reduces the distortion. In dense traffic of 200 vehicles, the distortion
is further increased because of the expected low speeds in dense traffic. All
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Algorithm 4 SLOW scheme

Input: SP, ST
1: if speed < SP then
2: silent_time := silent_time+ 1;
3: else
4: if silent_time ≥ ST then
5: psynm := get_new_pseudonym();
6: end if
7: silent_time := 0;
8: send_beacon();
9: end if

thresholds of SP and ST result in frequent pseudonym change and long silence
which significantly increases tracking confusions. The success rates of track-
ing presented in [28] are much lower than ours because of the simplicity of
their tracker model. Their attacker uses information of the last two beacons to
calculate the acceleration of the vehicles.
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Figure 7.13: Privacy level of SLOW in STRAW traces.

The QoS of SLOW is significantly reduced especially with relatively large
speed thresholds (SP) (> 3 m/s) in sparse traffic and with all thresholds in
dense traffic, as shown in Figure 7.14. This significant reduction occurs because
of the large amount of eliminated beacons during low speeds. Buttyán et al. [28]
claimed that keeping silent at low speeds is safe because crashes occurring at
low speeds cause fewer fatalities. However, turning off the transmitter reduces
the awareness of other (fast) vehicles about slower vehicles which challenges
safety applications.
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Figure 7.14: QoS level of SLOW in STRAW traces.

7.6.2 CSP Scheme

Coordinated Silent Period (CSP) is proposed by Tomandl et al. [130] in their
comparison of silent period and mix zone schemes. CSP coordinates all vehi-
cles in the network to remain silent and change pseudonyms synchronously.
CSP seems to be theoretical since the coordination overhead in real world situ-
ations increases dramatically [130]. However, CSP increases the privacy signif-
icantly because it maximizes the size of the anonymity set at every pseudonym
change.

In Figure 7.15, CSP is evaluated in realistic traces using two pseudonym life-
times (tp): 2 and 5 min. The normalized distortion (Dn) increases as the silent
period increases because longer silence periods give a sufficient time for ve-
hicles to change their states from those predicted by a tracker which, in turn,
increases tracker confusions. Also, Dn increases as the lifetime of the pseudo-
nym (tp) decreases because shorter lifetimes increase the frequency of changing
pseudonyms, and thus, tracker confusion. The QoS when tp equals 5 min is al-
most constant because the silent periods are repeated only 6 times for the whole
simulation resulting in fewer incorrect estimations by the in-vehicle tracker.
When tp equals 2 min, the QoS slightly decreases as the silent period increases.

7.6.3 CPN Scheme

The pseudo code of the Cooperative Pseudonym change scheme based on the
number of Neighbors (CPN) [97] is presented in Algorithm 5. In CPN, vehicles
monitor their neighbors within radius R and wait until they reach a thresh-
old K. When this trigger occurs, the vehicle sets an internal flag ready_flag,
broadcasts this flag within the beacon and changes the pseudonym in the next
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Figure 7.15: Privacy and QoS levels of CSP in realistic traces.

beacon. When a vehicle receives a beacon with a set flag or its internal flag is
set already, it changes pseudonym immediately.

Algorithm 5 CPN Scheme

Input: scan, ready_flag,R,K
1: neighbors := get_neighbors(scan,R);
2: if ready_flag == 1 then
3: psynm := get_new_pseudonym();
4: ready_flag := 0;
5: else if IsAnyNeighborReady(neighbors) == True then
6: psynm := get_new_pseudonym();
7: else if SIZE(neighbors) ≥ K then
8: ready_flag := 1;
9: end if

10: send_beacon(psynm, ready_flag);

The distortion of CPN in the realistic traces is presented in Figure 7.16(a).
The distortion increases as the neighborhood radius increases because in large
radii, a vehicle could find more neighbors whose ready flag is set which, in
turn, makes a vehicle change pseudonyms frequently. Distortion also increases
as the threshold of number of neighbors (K) decreases because small thresh-
olds make vehicles trigger to change pseudonyms more frequently. It is im-
portant to note that higher distortion levels of CPN are achieved through fre-
quent pseudonym changes. In Figure 7.16(b), the average pseudonym lifetime
versus neighborhood thresholds is depicted. We notice that the pseudonym
lifetime decreases exponentially to achieve almost linear distortion levels as
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Figure 7.16: (a) Privacy level and (b) Average pseudonym lifetime of CPN in
realistic traces.

shown in Figures 7.16(a) and 7.16(b). For example, when a distortion level of
55% is achieved, vehicles need to change their pseudonym every 4 s on aver-
age, which requires a very large number of pseudonyms to be loaded in vehi-
cles and maintained in the central authority.

The QoS of CPN is presented in Figure 7.17. The QoS is almost constant
(around 91%) for all threshold values because the in-vehicle tracker is able to
estimate the state of nearby vehicles very well. This high quality of estimation
is the result of beacons being broadcast at every time step. Even when con-
fusion occurs and the in-vehicle tracker mixes beacons, the confusion usually
with a vehicle in close proximity whose state is similar to that of the correct
vehicle. Therefore, the error in the estimated states are usually small which is
reflected in a high QoS.

7.6.4 Comparison

In this section, we provide a quantitative comparison between different privacy
schemes and our context-based schemes. Based on experiments performed on
realistic traces, we made the following steps to align and compare the perfor-
mance of privacy schemes. We rounded the QoS to the nearest integer. Then,
the maximum (normalized) distortion that can be achieved in each QoS level
is selected along with the average pseudonym lifetime performed by vehicles
to achieve this maximum distortion. Figure 7.18 illustrates this comparison
among CPN, CSP and RSP schemes along with our context-based schemes
CAPS and CADS. The SLOW scheme is left out because it results in low QoS
levels, as shown in Figure 7.14. The average pseudonym lifetime in seconds is
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Figure 7.17: QoS level of CPN in realistic traces.

written over or under the graph lines.
The CSP provides the highest distortion among all other schemes given a

similar QoS level. It results in a high QoS of up to 91% and requires a reason-
able average pseudonym lifetime of about 3 min to achieve these high distor-
tion and QoS levels. However, a global time synchronization among vehicles is
challenging. Also, further investigation is required to study possible implica-
tions or attacks of this global synchronized silence. The delivery of packets and
handling safety-critical situations during the scheduled silence are just exam-
ples that make the CSP unpractical. The next scheme is the CPN which results
in the highest QoS levels over all other schemes (because it does not employ
any silence before a pseudonym change). It can result in high distortion levels
but with a significantly short pseudonym lifetime of 4 s. This is a serious draw-
back of CPN because it requires so frequent pseudonym changes to preserve
privacy. It requires approximately 657,000 keys per year to be loaded in each
vehicle (assuming 2 driving hours per day). This huge number of keys cannot
be affordable by the certification authority which makes CPN impractical as
well. The RSP achieves a good distortion level but with the cost on the QoS.
Higher QoS levels can be attained but with low distortion levels.

The CADS and CAPS provide practical compromises among the distortion,
QoS and average pseudonym lifetime. The performance of CAPS varies ac-
cording to the provided parameters. CAPS can provide about 60% of normal-
ized distortion when the QoS is 90%. The average pseudonym lifetime ranges
from 1.3 min to 2.2 min depending on the achieved distortion and QoS levels.
CADS gives the choice to drivers which privacy level matches with their pref-
erences. An intermediate privacy preference results in distortion of 60% and
QoS of 86%. The average pseudonym life time ranges from 1.5 min to 3 min.
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Figure 7.18: Distortion versus QoS levels of different VANET privacy schemes
in realistic traces. The average pseudonym lifetime for the maxi-
mum (normalized) distortion is written in seconds.
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7.6.5 Mix Zone

We evaluate mix zones qualitatively because they are usually evaluated against
timing and transition attacks. Since our tracker does not support these attacks,
quantitative evaluation will not represent the actual performance of these schemes.

Mix zones are usually placed at road intersections since vehicle movements
are not predictable. Within a mix zone, the exchanged beacon messages must
be encrypted [53], or vehicles must be silent [27]. If vehicles change their
pseudonyms within the mix zone, the adversary cannot correlate leaving vehi-
cles to those entering the zone earlier because movement cannot be predicted.
Mix zones have the following drawbacks if compared to our proposed context-
based schemes:

• Vulnerability to timing and transition attacks. Since mix zones are placed
in fixed locations, they are vulnerable to timing and transition attacks. An
adversary can utilize additional knowledge about the timing and transi-
tion among different entry and exit points of the intersection. This knowl-
edge can be obtained by visually monitoring the intersection and con-
structing a joint probability distribution for transition and timing. Using
this distribution, the adversary can guess the mapping between the en-
tering and leaving vehicles and thus correlate old and new pseudonyms.
These attacks are effective. For example, Buttyán et al. [27] showed that
a tracking success rate of up to 70% can be achieved by covering only
half of intersections. In addition to timing and transition attacks, statis-
tical features of vehicles, such as the driving behavior and the average
speed before and after mix zones, can be employed to identify vehicles as
shown in [151]. Our proposed schemes are not vulnerable to these attacks
because silent periods are established dynamically based on the vehicle
context and can happen in any part of the road.

• RSU dependability. Mix zones depend on RSUs to coordinate silence
period or distribute encryption keys. However, it is not expected that
RSUs will be widespread deployed especially in the initial deployment
of VANET. CAPS and CADS let vehicles decide autonomously with no
need for RSUs when and where a pseudonym should be changed.

• Vulnerability to active attacks for cryptographic zones. An active at-
tacker may participate in the cryptographic mix zones and obtain the
shared key. Once the key is obtained, the mix zone becomes useless be-
cause all exchanged messages can be observed and decrypted by a global
adversary. Regarding our proposed schemes, an active adversary must
compromise many vehicles (more than 1% of the vehicles) to be able to
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affect the pseudonym change frequency, as shown in Section 7.5.4. Also,
the behavior of the active adversary works in the opposite interest of the
global adversary because it forces vehicles to change pseudonyms more
frequently which hinders the tracking attack. Thus, in our schemes, ac-
tive and passive attacks cannot collude to track vehicles.

• Safety concerns for silence-based zones. Road intersections or joints are
risky places in the road networks. In fact, intersection crashes represent
26% of all crashes [64]. Silence-based mix zones challenges this fact be-
cause it is inappropriate to remain silence in places where it is important
to exchange safety messages.

7.7 Summary

In this chapter, we proposed two context-based location privacy schemes (CAPS
and CADS) that significantly increase the distortion in both STRAW and realis-
tic traces. They utilize a context monitoring module to track surrounding vehi-
cles and identify adequate situations to change pseudonym and determine the
effective length of silence period. In CADS, a driver can choose the desired pri-
vacy level and the scheme can automatically identify the appropriate param-
eters that fit this desired level based on the real-time traffic density. Based on
the experiment results, CADS can increase distortion compared with the CAPS
when normal or high privacy levels are selected with a slight reduction in the
QoS. Also, the CADS can preserve highest distortion for vehicles that select a
high privacy level even when they drive within a majority of vehicles selected
a lower privacy level. Based on these results, choosing the appropriate con-
text for changing pseudonyms is crucial to achieve high levels of both privacy
and safety. Last but not least, various privacy schemes are evaluated and com-
pared with our context-based schemes. CAPS and CADS showed a practical
and reasonable compromise among privacy, QoS and the average pseudonym
lifetime.
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8 Conclusion and Future Work

8.1 Findings and Limitations

In this dissertation, we investigated location privacy in VANET and consid-
ered the impact of privacy schemes on the QoS of safety applications. VANET
will be realized in the near future due to its numerous benefits to traffic safety
and efficiency. Privacy of drivers must be well-protected to ensure the public
acceptance of VANET. Despite there are some privacy schemes that are pub-
lished in the literature, the impact of privacy schemes on safety applications is
overlooked and sporadically measured by generalized network or error-based
metrics. Also, there is no consensus on the privacy metric and their calcula-
tion methods. Consequently, comparison among different privacy schemes in
terms of well-developed privacy and safety metrics is missing. We tried to fill
these gaps in this dissertation. We worked toward our objectives and investi-
gated all research questions that are raised in Section 1.2 and we conclude here
our findings and limitations of each question.

Objective O1: Robust Vehicle Tracker

In Chapter 3, we addressed the research questions RQ1 and RQ2 which con-
sider the most efficient tracking algorithm for the VANET beaconing use case
and the main factors that affect this tracking. According to related studies,
location privacy is inversely proportional to the adversary capability of track-
ing vehicle movements. Tracking vehicles over a wide coverage of the road
network and for long time facilitates the re-identification of the anonymous
reconstructed traces; thus disclosing the drivers’ places of interests and threat-
ening their location privacy. Therefore, we developed a robust tracker that can
be used in evaluating privacy schemes. We conclude the following:

• We developed a vehicle tracker based on the NNPDA algorithm that uses
the pseudonyms and the spatiotemporal information in beacon messages
to reconstruct actual vehicle traces.

• This tracker is evaluated with different vehicle traces of various densities,
position noises, beaconing rates and packet delivery ratios.
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• The experiment results show that anonymous beacons sent every 1 s with
position noise up to 1 m can be effectively tracked regardless of the vehi-
cle density. Anonymous beaconing is equivalent to using a new pseudo-
nym in every beacon which represents the most frequent pseudonym
change possible.

• Pseudonymous beacons, where pseudonyms are changed every a period
of time, are more accurately traceable even with large position noises up
to 10 m.

• Our tracker achieved a higher accuracy than the MHT tracker, that is
commonly-used in related work, in both noiseless and noisy positions.

• The position and velocity are the sufficient and necessary information to
effectively track anonymous beacon messages.

• The main factors that reduce beacons traceability are the shorter pseudo-
nym lifetime, higher vehicle density, less precise positions (noise ≥ 2 m),
packet losses (PDR ≤ 80%) and lower beaconing rate (< 1 Hz).

These results lead to the following findings:

• Since safety applications require a beaconing rate of up to 10 Hz, a posi-
tion noise up to 1 m and authenticated beacons with certified pseudonyms,
all these requirements facilitate continuous and accurate vehicle track-
ing. This clearly highlights the trade-off between the safety application
requirements and location privacy and strongly supports the relevance
of this dissertation.

• Simultaneous pseudonym changes among nearby vehicles do not nec-
essarily cause tracker confusion because the spatiotemporal information
can be employed to correlate old and new pseudonyms.

• Consequently, frequent pseudonym changes do not guarantee a better
location privacy since the tracker is not confused at every change.

• Anonymity set should not be defined as the nearby vehicles that change
their pseudonyms simultaneously. This definition is misleading and over-
estimates the gained privacy because the tracker can effectively discrimi-
nate between members of this set.

• The high accuracy of our tracker confirms its capability and suitability to
act as a global adversary for location privacy evaluation.
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• The high efficiency of our tracker lets us propose embedding it inside ve-
hicles which enhances the vehicle awareness about its surrounding traffic
and help in evaluation of the likelihood of tracker confusion.

However, these findings are restricted by the following limitations:

• Although the high accuracy of the developed tracker, it can be further
enhanced. The tracker considers only the pseudonym and the spatiotem-
poral information included in beacons. There are other important beacon
information that can be exploited to discriminate among mixed beacons
such as the vehicle type and size. Also, the road map and geometry can
be used to better predict the vehicle state especially after silence periods.
However, these enhancements will reduce the efficiency of tracker.

• When using this tracker as a global observer, it will not so effective in
evaluating mix zone privacy schemes. Our tracker does not include tim-
ing and transition attacks that can be posed at road intersections. These
attacks are essential to measure the effectiveness of the mix zone schemes.

Objective O2: Suitable Privacy Metric

The research question RQ3 considers measuring location privacy. In Chapter
4, we investigated different location privacy metrics used in VANET domain.
In fact, each metric is calculated differently in different research works and
evaluated using different adversary models. We reviewed typical metrics and
conclude the following:

• Four location privacy metrics are discussed and reviewed which are anony-
mity set size, entropy, traceability and distortion.

• Traceability and distortion metrics are thoroughly investigated and for-
mally defined to reflect the best knowledge that the adversary can obtain
to re-identify the reconstructed traces.

• To compare these metrics, we employed the random silent period scheme
with three parameter sets which expectedly result in low, intermediate
and high privacy levels, respectively. We used our tracker to reconstruct
vehicle traces from beacons altered by this privacy scheme. We then mea-
sured these four metrics for each parameters set.

According to the comparison results, we found the following:

• The anonymity set size is unsuitable in measuring location privacy be-
cause it does not show any variation with different strengths of a privacy
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scheme. The entropy is also not a good candidate because it does not
provide a unified variation in different traffic densities.

• Traceability and distortion are appropriate metrics, but the distortion met-
ric filters out traces that are completely tracked but not similar to the orig-
inal traces. We assume that the more similar the reconstructed traces to
the original ones, the more successful the tracker in re-identifying these
pseudonymous traces and threatening the drivers’ privacy.

• Employing the distortion metric in measuring location privacy increases
the trustworthiness in the results presented in this dissertation when com-
pared with research works that use unsuitable metrics.

However, the proposed distortion metric is restricted by the following limi-
tations:

• This metric is calculated based on the output of our tracker. Other ad-
vanced trackers may result in lower distortion levels. This means the pre-
sented evaluations of privacy schemes represent an upper-bound rather
than lower-bound location privacy.

• The proposed metric assumes a global adversary who seeks to recon-
struct vehicle traces as accurate and complete as possible to be able to
re-identify them effectively. This metric does not measure location pri-
vacy against other adversaries that have different objectives or exploit
knowledge from other sources. These adversaries may fulfill their objec-
tives even with high distortion levels depending on the type of the attack.

Objective O3: Impact on Safety Applications

The research question RQ4 considers measuring the impact of privacy schemes
on safety applications. Privacy schemes usually eliminate beacons during si-
lence periods which reduces the awareness of the vehicle about the surround-
ing traffic which, in turn, decreases the effectiveness of safety applications sig-
nificantly. Despite the importance of measuring this impact, it is rarely con-
sidered in the literature. Therefore, we thoroughly investigated this issue in
Chapter 5 and conclude the following:

• Two safety applications are considered which are forward collision warn-
ing and lane change warning applications because they require the most
precise information and the most frequent beaconing rate.
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• We proposed a generic methodology that measures the quality of service
(QoS) by calculating the probability of correctly estimating the require-
ments of a safety application. To calculate this probability, this method-
ology uses the expected errors of beacon information after applying a
privacy scheme in a Monte Carlo analysis.

• To estimate the error in beacon information, we assume that a local tracker
is embedded inside vehicles that monitors the nearby vehicles through
their broadcast beacons. This in-vehicle tracker accurately estimates the
states of surrounding vehicles even when position noises are present or
their beacons are missed due to a network error or a silence period.

According to the experiment results, we found the following:

• The proposed methodology is generally applicable to any privacy scheme
because Monte Carlo calculations work directly on error samples obtained
from tracking of beacons modified by a privacy scheme.

• This methodology is also extensible to other applications provided that
the application requirements can be formulated as equations in terms of
error samples of vehicle states.

• Using a local tracker inside vehicles relaxes the requirements of safety
applications. A reasonably high QoS can be achieved even with lower
beaconing rates and imprecise position information.

However, the proposed QoS measurement methodology is restricted by the
following limitations:

• The proposed QoS metric does not measure the quality and timing of the
alerts of a safety application. We are not certain about the effect of differ-
ent QoS levels on providing timely and correct alerts because it depends
on the design of the application to a large extent.

• This metric describes the general performance of the whole VANET sce-
nario rather than specific critical situations. It cannot provide the ex-
pected performance of individual vehicles.

Objective O4: Propose Privacy Schemes

We proposed several privacy schemes in this dissertation. In Chapter 6, we
investigated and proposed obfuscation schemes which address some conclu-
sions and findings for the research question RQ5 as follows:
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• The proposed obfuscation schemes add large position noises for a ran-
dom short period after a pseudonym change and broadcast beacons over
a random rate.

• Large noises added after a pseudonym change can be skipped by the
adversary by ignoring beacons of a new pseudonym for a while. No noise
is added to the vehicle state when the same pseudonym is used because
this noise causes no tracker confusion and can be easily filtered. Thus,
information perturbation schemes are ineffective in preserving location
privacy in VANET.

• Random beaconing rates are also ineffective in preserving privacy be-
cause beacons of consecutive time steps can be merged together to for-
mulate beacons of all vehicles over longer time steps. The merged bea-
cons can then be tracked effectively. Besides, these random rates reduce
the QoS of safety applications significantly because they eliminate large
number of beacons every time step.

We addressed the research question RQ6 which considers context-based pri-
vacy schemes in Chapter 7. We proposed two schemes that choose the appro-
priate context to remain silent and change pseudonyms so that the likelihood
of tracker confusion is increased. We conclude the following:

• These schemes use an in-vehicle tracker to provide a more realistic view
about the surrounding traffic and facilitate estimating the likelihood of
tracker confusion.

• The context-aware privacy scheme (CAPS) allows a vehicle to select the
effective context in which a vehicle should remain silent and change its
pseudonym and when to resume beaconing with a high probability of
confusion to a global adversary.

• CAPS was further enhanced by proposing the context-adaptive scheme
(CADS) which selects an optimized parameters set for CAPS based on
the real-time traffic density and user privacy preference. CADS can keep
a high distortion level for vehicles that select a high privacy preference
even when they drive within a majority of vehicles selected a lower pri-
vacy preference.

Based on these conclusions, we found the following

• Choosing the appropriate context to change pseudonyms and remaining
silent for a sufficient period are two essential factors to increase the like-
lihood of tracker confusion. They avoid useless pseudonym changes and
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unnecessary long silent periods which, in turn, results in a higher QoS of
safety applications.

• Privacy consideration and recognition differ from person to another and
it is beneficial to employ this fact to relax some privacy restrictions to
enhance the safety of the whole system.

However, the proposed context-based schemes are restricted by the follow-
ing limitations:

• Although they showed an efficient performance on the development ma-
chine, they need to be tested on hardware testbed with specifications that
are expected in an automotive environment.

• The distortion achieved by the context-based schemes is not considerably
high. However, we are not certain about how successful the attacks posed
with this level of distortion.

Objective O5: Privacy Schemes Comparison

The last but not least objective and research question RQ7 consider evaluation
of the existing privacy schemes. In Section 2.6, we provided a thorough review
of different approaches of privacy schemes. In Section 7.6, we provided quan-
titative and qualitative evaluations for privacy schemes showing their privacy
and QoS levels. Based on these evaluations, we conclude the following:

• Coordinated silent period scheme provides high distortion and QoS lev-
els by remaining silent synchronously and globally among all vehicles
before a pseudonym change. However, a global coordination among ve-
hicles is challenging and needs further investigation regarding possible
attacks or implications of this global synchronized silence.

• Cooperative pseudonym change scheme can result in a good distortion
level with a reasonably high QoS but with very short pseudonym lifetime
which makes it impractical.

• Both CAPS and CADS provide a more practical compromise among ac-
ceptable distortion and QoS levels and relatively long pseudonym life-
time.

• Although the effectiveness of mix zones in reducing beacons traceability,
they suffer from some issues such as transition and timing attacks, active
attacks and dependability on road-side units.
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8.2 Future Work

The results of this thesis, with contributions and limitations, indicate that it
is possible to design schemes that effectively preserve privacy with a minimal
impact on safety applications. In this direction, some possible future works can
be pursued, as described next:

• Incorporate safety conditions inside context-based schemes. Since ve-
hicles will include a tracker that can effectively monitor and track nearby
vehicles, it would be a good advancement for vehicles to identify safety-
critical situations and stop privacy-preserving operations in these situa-
tions. Also, non-critical situations should be recognized to allow privacy
schemes to operate freely. This research direction opens several new chal-
lenges. For example, if the privacy is dynamically controlled by external
conditions, how to secure vehicles from bogus attacks that try to prevent
vehicles from enabling privacy schemes? Also, what is the safety level
that should be considered as critical? And who should determine that
threshold? Should the recognition of safety level be adaptive according
to the road conditions, drivers’ experience or vehicle capabilities?

• Integrate several privacy models into one general privacy protocol. As
discussed and evaluated in this dissertation, no privacy scheme has an
absolute advantage over all others especially in handling the trade-off
between privacy and safety. It would be valuable to integrate different
schemes in a single large scenario to take the advantage of all schemes.
For example, deploying cryptographic mix-zones in the city center where
RSUs may be widespread installed. In other regions, vehicles should
enable context-based schemes where no RSU is available. Also, vehi-
cles should cooperate to establish a local cryptographic group while they
drive in highways where the network topology is somehow stable.

• Deployment Issues. There are some open issues regarding deployment
of privacy schemes in real-world scenarios. First, context-based privacy
schemes should be evaluated on automotive testbeds to study computa-
tion and communication limitations. Second, how should privacy schemes
handle low penetration rate scenarios that are expected in the initial de-
ployment phase of VANET? Third, privacy schemes should be also eval-
uated against a weaker but practical adversary who covers only some
parts of the road network. Especially, what kind of attacks can this ad-
versary perform against vehicles? How can the privacy be measured in
this case, provided that complete traces cannot be reconstructed?
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