
Neural Process Lett (2016) 44:103–124
DOI 10.1007/s11063-015-9478-6

Computation by Time

Florian Walter1 · Florian Röhrbein1 · Alois Knoll1

Published online: 17 November 2015
© Springer Science+Business Media New York 2015

Abstract Over the last years, the amount of research performed in the field of spiking neural
networks has beengrowing steadily. Spikingneurons aremodeled to approximate the complex
dynamic behavior of biological neurons. They communicate via discrete impulses called
spikes with the actual information being encoded in the timing of these spikes. As already
pointed out by Maass in his paper on the third generation of neural network models, this
renders time a central factor for neural computation. In this paper, we investigate at different
levels of granularity how absolute time and relative timing enable new ways of biologically
inspired neural information processing. At the lowest level of single spiking neurons, we give
an overview of coding schemes and learning techniques which rely on precisely timed neural
spikes. A high-level perspective is provided in the second part of the paper which focuses on
the role of time at the network level. The third aspect of time considered in this work is related
to the interfacing of neural networks with real-time systems. In this context, we discuss how
the concepts of computation by time can be implemented in computer simulations and on
specialized neuromorphic hardware. The contributions of this paper are twofold: first, we
show how the exact modeling of time in spiking neural networks serves as an important basis
for powerful computation based on neurobiological principles. Second, by presenting a range
of diverse learning techniques, we prove the biologically plausible applicability of spiking
neural networks to real world problems like pattern recognition and path planning.

Keywords Spiking neural network · Neurobiological learning · Reservoir computing ·
Hierarchical learning · Neural coding · Neuromorphic hardware

B Florian Walter
florian.walter@tum.de

Florian Röhrbein
florian.roehrbein@in.tum.de

Alois Knoll
knoll@in.tum.de

1 Institut für Informatik VI, Technische Universität München,
85748 Garching bei München, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-015-9478-6&domain=pdf

104 F. Walter et al.

1 Introduction

Neural networks are among the oldest and most widespread concepts in artificial intelli-
gence and machine learning. Their early beginnings date back to the time around 1950,
when McCulloch and Pitts published their well-known neuron model [47] and when the
Perceptron was conceived by Rosenblatt [59]. At that time, it was already known that bio-
logical neurons communicate via discrete impulses, so-called action potentials or spikes.
A detailed model of the neural dynamics governing the generation of these action poten-
tials was derived by Hodgkin and Huxley in a seminal study of the squid giant axon [27].
However, due to the complex mathematics involved in computing the neural state updates,
this model is no viable way for simulating neural networks at large scale even today. As
a result, researchers developed phenomenological approximations. With computing power
having become cheaper and cheaper over the last decades, these approximationswhere further
refined and extended. In [42], Maass identifies three distinct generations of neural networks.
Networks of the first generation are composed of neurons as introduced by McCulloch and
Pitts and thus only produce digital output, which can be interpreted as the presence or absence
of a spike. In the second generation, the digital threshold logic of the neuron was replaced
by the more general concept of an activation function which computes continuous output
based on the input provided by its presynaptic afferents. From a biological point of view, the
real-valued output signal can be interpreted as a spike rate. The computational power of this
concept was confirmed by proving that networks of the second generation are universal func-
tion approximators as long as they satisfy a small number of relatively weak requirements
[28].

Neural networks of both generations have yielded remarkable results in such diverse
applications as optical character recognition, natural language processing and robot con-
trol. Recently, especially deep neural networks and deep learning have become popular
due to their unprecedented performance in supervised classification tasks [38,63]. How-
ever, while the main motivation of early artificial neural networks was the study of neural
information processing in biological organisms, most current state-of-the-art neural archi-
tectures and algorithms hardly bear any similarities to their biological counterparts. This
has motivated the development of a third generation of neural networks which captures
the full temporal dynamics present in the nervous systems of biological organisms. Unlike
in the previous generations, the internal processes responsible for the emission of spikes
are modeled explicitly instead of just computing an abstract firing rate based on simpli-
fied activation functions. Available neuron models range from exact quantitative biological
descriptions like the alreadymentionedHodgkin-Huxleymodel to phenomenological approx-
imations like the Leaky Integrate-and-Fire neuron [19] or the Izhikevich neuron [29]. One
can prove that, independently of the actually chosen model, spiking neural networks are
computationally more powerful than their predecessors from the first two generations [42].
More importantly, they build a bridge between the fields of machine learning, artificial
intelligence and robotics on the one hand and neuroscience on the other. Since spiking
neural networks no longer abstract from biological processes but try to reproduce them
as closely as possible, new findings can be easily exchanged among the different disci-
plines. The EU-funded Human Brain Project [69] is specifically designed to promote these
synergistic effects by integrating all available knowledge about the human brain into a large-
scale simulation. The results are intended to advance not only neuroscience but also future
computing technologies which are based on the principles of neural information process-
ing.

123

Computation by Time 105

From a biological point of view, the only means for neurons to transfer information is to
emit spikes.However, every spike is just an impulse and does not carry any data. Experimental
evidence suggests that the actual payloadmust therefore be encoded in the timing of the spikes
[3]. This clearly points out a major drawback of neuron models from the first and second
generation which convey only very limited timing information by indicating whether a spike
has occurred at all or by computing a firing rate. Only spiking neural networks are able to
produce precisely timed spikes as observed in experiments and to implement neurobiological
mechanisms of learning which rely on the relative timing of subsequent spikes. As already
stated by Maass, this opens up the possibility of “using time as a resource for computation
and communication” [42].

While the biological plausibility and the superior computational power of spiking neural
networks have motivated the development of a huge variety of different methods and tech-
nologies for neural information processing based on spikes, a detailed review of how spike
timing and time in general can serve as a means of computation is still missing. In this paper,
we aim to fill this gap by investigating the role of time from three different but coherent
perspectives. Section 2 focuses on single neurons and gives an overview of algorithms for
learning sequences of spikes and corresponding applications. In Sect. 3, we illustrate the
role of time at network level and explain how carefully adjusted relative timing can yield
higher-level cognitive features. When computing the output of a spiking neural network for
the purpose of pure simulation, the execution speed is usually irrelevant in terms of the
results. This changes when the network is attached to an external physical system like a
robot which operates in real-time and in the real world. For this reason, Sect. 4 examines
how neural simulation software and novel neuromorphic hardware support the execution of
spiking neural networks at appropriate timescales. In Sect. 5, we finally conclude the paper
by summarizing the principal results of our review.

2 How Spiking Neurons Learn: The Role of Time at the Neural Level

In spiking neural networks, every single neuron is a complex dynamical system. Unlike
neural models which are based on threshold logic or activation functions, the output not only
depends on the current input received from other neurons but also on an internal state which
evolves over time. This enables spiking neurons to respond individually to differently timed
sequences of input spikes. In the following, we investigate how these temporal dynamics
enable single neurons to perform meaningful computation. The first subsection briefly intro-
duces the foundations of modeling spiking neurons mathematically. Furthermore, different
types of neural coding schemes are discussed to demonstrate how to encode information
based on the timing of spikes. In the second subsection, we review selected learning algo-
rithms which are specifically designed for spiking neural networks. By providing a means to
control the neural response to patterns of input spikes, these algorithmsmake spiking neurons
capable of performing tasks like classification or the generation of specific output patterns
and thereby realize neural computation by time.

2.1 Biological and Mathematical Foundations

Before a learning algorithm can be applied to a spiking neuron, onemust select the underlying
neuron model and choose an appropriate neural code. The following paragraphs provide the
required neuroscientific background.

123

106 F. Walter et al.

Fig. 1 Basic components of a
neural cell. The drawing depicts a
pyramidal cell from the cortex of
a rat. Drawn and extended based
on a figure from [11]

2.1.1 Mathematical Models for Spiking Neurons

Biological neurons have a branching spatial structure and an internal state which is deter-
mined by chemical processes. An example can be seen in Fig. 1 which depicts a drawing
of a cortical pyramidal cell. Incoming spikes travel along the dendrites towards the soma
and elicit a change of the neuron’s membrane potential. As soon as this potential crosses
a threshold, a spike is generated and propagated along the axon. Synapses between the
axon and the dendrites of other neurons transmit the spikes between the cells. In spiking
neural networks, this complex structure is usually simplified by assuming that every neu-
ron is just a single point. Moreover, as already stated earlier, detailed conductance-based
models like the one derived by Hodgkin and Huxley are often replaced by phenomenologi-
cal approximations. One of the simplest and also most commonly used models of this type
is the Leaky Integrate-and-Fire neuron, which is characterized by the following equations
[19]:

τm
du

dt
= −u(t) + R I(t) (1)

t (f) : u
(
t (f)

)
= ϑ (2)

Equation 1models themembrane potential u of the neuronwhich is thought of as an electrical
circuit consisting of a capacitorC and a linear resistor R. The factor I (t) denotes the electrical
current and is composed of a leak term and an external driving input current. τm denotes
the membrane time constant and is decisive for the temporal behavior of the neuron. The
emission of spikes is described by Eq. 2 which states that the neuron fires at time t (f) when
the membrane potential reaches a threshold value ϑ from below. Note that not all spiking
neuronmodels are based on differential equations. For example, a model proposed by Thorpe
simply computes a weighted sum of all incoming spikes and assumes that every neuron only
emits at most one spike [62]. A new spike can only be generated after resetting the neuron
state. Stochastic models describe neural dynamics using tools from probability theory in
order to allow for the incorporation of noise.

123

Computation by Time 107

Fig. 2 Schematic overview of selected neural codes. Neurons are depicted by the black circles. Input spike
sequences from presynaptic afferents are indicated by the simplified spike raster plots on the left of the neurons.
The actual coding schemes are shown on the right

2.1.2 Neural Coding

Based on experimental evidence and theoretical considerations, different types of potential
neural codes have been conceived. However, the general problem of deciphering the neural
code which is actually implemented in the brain still remains an open question [19]. In the
following, we will provide an overview of commonly employed coding schemes based on
the reviews by Gerstner et al. [19], Ponulak et al. [57] and Grüning et al. [22]. These reviews
also provide extensive pointers to references discussing the problem at a more elaborated
level of detail which is beyond the scope of this paper. The schema in Fig. 2 gives a graphical
summary of the neural codes presented in the next two paragraphs.

When considering only a single neuron, rate coding is the possibly simplest way of
encoding information with spikes. Asmentioned before, rate codes do not necessarily require
spiking neuron models but can also be implemented using second generation networks with
continuous activation functions. This is not true for Time-to-First-Spike coding which relies
on the precise timing of a single spike. All information is carried solely in the latency time
of this spike with respect to some stimulus. Phase coding is a slightly modified approach
where the measurement of the relative timing is not based on the onset of an event but on
periodic background oscillations in the considered neural system. Thus, timing in this context
refers to a phase shift. Oscillatory behavior has been observed in biological nervous systems
in the form of rhythmical spike patterns emitted by populations of neurons. In a somewhat
degenerated version of single-spike codes, the whole information is carried by the fact that
a spike has occurred or not [24]. The time of spike emission is considered irrelevant.

While the codes presented above are equally suited if more than one neuron is involved,
other coding schemes are explicitly defined for populations of neurons. Population activity
coding is an augmented rate code for neural populations. Assuming that a single neuron
receives synaptic input from all neurons belonging to a certain population, it can measure
their overall activity, i. e. the fraction of neurons emitting spikes within a certain period of
time. Like rate coding for single neurons, encoding information solely via the overall activity
of a huge neuron population seems rather inefficient. Rank order coding therefore takes into
account the firing order of a selected group of neurons. A drawback of this approach is that
at most one spike per neuron is considered. Neural codes based on synchrony or correlation

123

108 F. Walter et al.

Fig. 3 Learning in spiking neural networks. In analogy to Fig. 2, the black circle denotes a single spiking
neuron. The presynaptic input spike trains are depicted on the left. The parameters ωi store the synaptic
properties governing the spike transmission. The input is processed by the neuron and yields an output spike
train which is shown on the right. In unsupervised learning, only the input spike trains are provided to the
algorithm. Reinforcement learning relies on an additional reward signal to guide the adaption of network
parameters. In supervised learning scenarios, the desired output spike train has to be provided explicitly as
teaching input

encode information by the synchronous firing of selected neurons or by precisely defined
correlations between the timing of their spikes, respectively. Finally, any sequence of spikes
emitted by a single neuron or a population of neurons can be regarded as a neural code.

2.2 Learning Techniques for Spiking Neurons

A specific combination of a neuron model and a coding scheme defines a basic framework
for neural information processing based on spikes. However, to achieve a desired behavior
or to implement a certain functionality, additional parameters need to be set. Like in classical
artificial neural networks, a graph-like network structure must be defined in order to specify
the number of neurons and their connectivity. The flow of information within the network can
be controlled by adjusting synaptic efficacies (i. e. the weights of the edges of the network
graph) and other parameters like the delays of synaptic spike transmission. Positive efficacies
indicate that a synapse is excitatory, which means that the membrane potential increases
on spike arrival. Negative synaptic weights denote inhibitory synapses which decrease the
membrane potential in response to incoming action potentials. Note that while it is easily
possible for a model synapse to switch between excitatory and inhibitory mode by simply
adapting the sign of the corresponding weight, the properties of biological synapses depend
on physiological parameters and thus cannot alter between excitation and inhibition [34].
Although methods for automatically deriving or adapting the topology of neural networks
have been proposed [13,52,72], the focus of research is clearly on algorithms for learning
optimal values for the synaptic weights. Figure 3 illustrates the basic learning task for a
single spiking neuron. Based on the incoming spike trains, the general goal of all learning
algorithms for spiking neurons is to adjust the synaptic efficacies to make the neuron produce
the desired output spike train. Over the last years, the research in machine learning and
computational neuroscience has yielded a huge and diverse variety of different learning
techniques, ranging from approaches specifically designed for a certain neuron model to
more general algorithms only relying on basic properties which are common to all spiking
neurons. Another important classification criterion is the biological plausibility. It describes
whether the neural implementation of a learning algorithm is in accordancewith data available
from nervous systems in biological organisms. The next paragraphs provide an overview over
the current state of the art in spike time-based neurobiological learning. Using the common
notions from the field of learning, we will distinguish between methods for unsupervised
learning, reinforcement learning and supervised learning.

123

Computation by Time 109

Fig. 4 Plot of a STDP learning
window. The two curves which
are fitted to the experimental data
indicate how the relative timing
between presynaptic and
postsynaptic spikes relates to
changes in the synaptic efficacy.
From [2]. Reproduced with
permission of Annual Review of
Neuroscience, Volume 24 © by
Annual Reviews, http://www.
annualreviews.org

2.2.1 Unsupervised Learning

In unsupervised learning tasks, the system is only provided with a set of input values. There is
neither information available on thedesiredoutput nor anykindof feedback signal. In classical
machine learning, the main applications for unsupervised methods are clustering and pattern
recognition. The absence of any kind of external supervision makes unsupervised learning
a central mechanism in self-organizing distributed biological information processing. In
the context of spiking neural networks, it enables a natural way of biologically plausible
learning since every neuron in the network can adjust its synaptic efficacies solely based
on information which is available locally. Two of the most basic neurobiological learning
techniques of this class are habituation and sensitization [33]. Habituation describes a decay
of synaptic efficacy caused by the repeated occurrence of a stimulus. On the behavioral level,
an organism habituates when it becomes insensitive to an irrelevant stimulus. For example,
people living near a freeway get used to the noise over time until they no longer care about it.
Sensitization, the opposite phenomenon, can be triggered by unpleasant and harmful events
and causes an increase of the neuron’s synaptic efficacies. Therefore, it can also counteract
previous habituation. Depending on the duration of a series of stimuli, both habituation and
sensitization can yield short-term or long-term synaptic plasticity, which again highlights the
importance of time.

The plasticity effects explained above mainly depend on the occurrence frequency of
some input event rather than the precise timing of single spikes. The importance of the
latter was anticipated by Hebb already in 1949 [25] when he stated that synaptic plasticity
might be induced if the firing of a postsynaptic neuron is repeatedly causally related to the
firing of a presynaptic neuron. More recent work in both theoretical [18] and experimental
neuroscience [45] formalized and confirmed this early hypothesis with the discovery of spike-
timing dependent plasticity (STDP) [65]. STDP adapts the efficacy of a synapse based on
the relative timing of spike emission by its two adjacent neurons. This is illustrated in Fig. 4.
If the postsynaptic neuron fires a spike after the presynaptic neuron within a certain time
window, i. e. Δt > 0, the synaptic connection is strengthened. Otherwise, if Δt < 0, there
is no causal relationship between the two spikes and the synapse is depressed. Based on
the original learning window from Fig. 4, a huge number of different variations has been
proposed [49]. For example, in anti-STDP non-causal spikes yield potentiation and causal
spikes elicit synaptic depression. More recently, a study of a STDP learning rule which is
based on triplets of spikes rather than pairs was published [54].

123

http://www.annualreviews.org
http://www.annualreviews.org

110 F. Walter et al.

Fig. 5 Unsupervised learning of visual features based on STDP and spiking neurons. Input is processed by
a feedforward neural network architecture with four hierarchical layers. Simple cells in the S1 layer perform
edge detection based on a convolution operation on the input image. The complex cells in layer C1 compute
a max-operation by only propagating the first spike received from the corresponding S1 cells. Analogously,
S2 neurons detect visual features of intermediate complexity while layer C2 performs another max-operation.
STDP is implemented by the synapses between layer C1 and layer S2. There are multiple instances of all
layers in S1, C1 and S2 in order to achieve scale-invariance. The extracted visual features can serve as input
for an image classification algorithm. Reprinted from [46]. This work is licensed under a Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

It is obvious that the simple learning rules from above alone not automatically give way to
advanced cognitive capabilities. To fulfill their potential, they must be embedded in an appro-
priate neural network. The authors of [46] propose a layered feedforward architecture for
unsupervised feature detection which is inspired by the visual ventral pathway as described
in the HMAX model. Figure 5 provides a schematic overview. The first layer S1 contains
neural cells performing edge detection in the visual input based on a convolution operation.
There are four different types of cells, yielding a total of four retinotopic maps, each of
which is sensitive to a different edge direction. On presentation of a new input stimulus,
the cells with the best matching direction emit their spikes first and thus realize a time-
to-first-spike code. Inhibition between the retinotopic maps ensures that only one spike is
emitted for each position. All subsequent layers are comprised of Leaky Integrate-and-Fire
neurons. The neurons in layer C1 perform a max-operation by only forwarding the earli-
est arriving spikes from predefined sampling regions. An STDP process which adapts the
synaptic weights between cells in layers C1 and S2 makes individual S2 neurons sensitive to
specific visual features of intermediate complexity. The learned weights are shared between
the different retinotopic maps using a winner-take-all mechanism. In addition, the complete
S1–C1–S2 pathway is instantiated multiple times to support processing at different scales.
The neurons in layer C2 finally select the maximum input from all retinotopic maps and all
scales, which enables position- and scale-invariant feature detection. When presented with

123

http://creativecommons.org/licenses/by/4.0/

Computation by Time 111

a series of input images, STDP extracts common visual features in a self-organized manner
while the inhibitory winner-take-all mechanisms prevent the system from storing redundant
information.

In addition to the approach discussed above, many other STDP-based unsupervised learn-
ingmethods have been conceived. In [5], a newpopulation coding scheme is introducedwhich
allows for an efficient clustering of data using a network of spiking neurons. The underlying
learning rule was originally developed in [50] and realizes a winner-take-all mechanism by
potentiating synapses which were active only a short time before the emission of a postsy-
naptic spike. In [10], the authors combine STDP and habituation to create a network with
only three neurons which implements operant conditioning. Finally, anti-STDP is used in
[55] for a spiking neuron-based implementation of the wavefront path planning algorithm.

2.2.2 Reinforcement Learning

The range of applications for unsupervised learning is narrowed down by the fact that there
is no way of guiding the learning process towards a desired goal. Reinforcement learning
overcomes this limitation by not only providing input data but also a reward signal which
encodes feedback for the produced output. Since the reward is delivered dynamically in
response to interactions with an external system, reinforcement learning is especially suited
for applications like robotics which involve interactions with a physical environment. From a
neural perspective, reinforcement learning adds a third factor to the learning process besides
presynaptic and postsynaptic spike times [15]. In general, the synaptic efficacy change Δw

can therefore be expressed as follows (from [64]):

Δw = R · PI (3)

In the above equation, R denotes the received reward and PI the plasticity induction resulting
from the spikes emitted by the presynaptic and postsynaptic neurons. A possible example
for the choice of PI is the STDP learning window from Fig. 4. The main challenge of
reinforcement learning at the neural level is to determine to which neurons and synapses the
current reward applies. Compared to the duration of a spike or the length of the learning
window, which are in the order of milliseconds, the delivery of the reward depends on the
environment and can be delayed by several seconds. Reward-modulated STDP (R-STDP)
solves this issue by storing spikes which are potential candidates for eliciting synaptic change
in an eligibility trace as depicted in Fig. 6. The temporal contribution of related pairs of
spikes to the trace is determined by an eligibility function. As soon as a reward signal is
received, all synaptic weights are updated by computing the product of the reward and the
current value of the corresponding synaptic eligibility trace. In [30], a biologically inspired
implementation of R-STDP is proposed. Every synapse is assigned an additional synaptic
tag which stores the eligibility trace and decays over time if no further spike pairs occur.
In analogy to biological nervous systems, reward is emitted in form of the neuromodulator
dopamine. The synaptic change is finally computed as a product of the current value of
the synaptic tag and the dopamine concentration. Theoretical studies based on statistical
modeling have proven the computational power of R-STDP which enables a neuron to learn
classification tasks and spike sequences [40]. A study focusing more on exact modeling in
accordance to experimental results is available in [12]. Importantly, the authors point out the
problems involved in teaching a set of neurons to reproduce individual sequences of spikes
when only a single global reward signal is available. The problem of credit assignment is
completely neglected. Instead, a possible biological implementation of reward prediction is
discussed theoretically.

123

112 F. Walter et al.

Fig. 6 Credit assignment in
reward-modulated STDP through
eligibility traces. The eligibility
function fc(t) in the upper part
determines how pairs of spikes
contribute to the eligibility trace
c(t) below. The synaptic weights
w(t) are adjusted based on the
eligibility trace and the reward
signal d(t). Reprinted from [40].
This work is licensed under a
Creative Commons Attribution
4.0 International License (http://
creativecommons.org/licenses/
by/4.0/)

A common way of making neurobiological reinforcement learning methods analytically
tractable is to embed them into classical frameworks from the field of machine learning.
This allows for mathematical deduction and analysis of new learning rules based on Policy
Gradient methods and Temporal Difference learning. Algorithms of the former type adapt
synapticweights by computing the gradient of a functionwhich estimates the expected reward
[64]. In [14], a policy gradient algorithm for reinforcement learning in partially observable
Markov decision processes is employed to derive a reinforcement learning rule for spiking
neurons. Temporal difference (TD) learning is a more advanced approach since it not only
tries to maximize the reward of the next action but the complete future expected reward.
As in the case of Policy Gradient methods, this requires an approximation function. During
runtime, this function is continuously updated. A neural implementation of such a so-called
critic is developed in [15]. The authors introduce the resulting learning rule as TD-LTP to
highlight that synaptic plasticity is modulated by a product of the TD error and synaptic long
term potentiation. A comprehensive overview of further reinforcement learning algorithms
is available in [64].

2.2.3 Supervised Learning

Supervised neural learning techniques provide the most direct control over the output of a
neuron. In terms of Fig. 3, the shape of the output spike train produced in response to a given
input can be fully controlled by a teacher. Up to now, all learning methods considered were
defined locally for single neurons. The additional reward signal in reinforcement learningwas
defined globally at network scope. All learning rules considered so far thus worked indepen-
dently from the connectivity of the neural network. In contrast, supervised learning methods
must consider all output neurons individually in order to make them reproduce predefined
sequences of spikes. This explains why many algorithms for supervised neural learning only
work for single neurons. In the following, we will therefore state explicitly if a method sup-
ports neural networks with hidden neurons and more complex connectivity patterns. Like
before, the focus will be on the learning of precisely timed spikes rather than firing rates.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Computation by Time 113

Basic unsupervised neural learning based on STDP can be used to implement a simple
mechanism for supervised learning of sequences of spikes. In Supervised Hebbian Learning
[57], the emission of the desired spike trains is forced by current injection into the corre-
sponding neurons. While this approach ensures that the neuron learns to emit spikes at the
desired firing times through STDP, unwanted spiking is suppressed by the current injec-
tion and thus has no effect on the synaptic strengths. Convergence can consequently only
be proofed on average when modeling the input and output via Poisson spike trains [39].
The Remote Supervision Method is a more advanced supervised learning algorithm which
implements an adaption of the Widrow-Hoff learning rule from classical artificial neural
network theory for spiking neural networks [56]. It employs relative spike timings to adjust
the synaptic efficacies and works without currency injection (adapted from [56]):

d

dt
wi j (t) = Xdj (t) + Xi j (t) (4)

The synaptic weight change d
dt wi j (t) between the postsynaptic neuron i and the presynaptic

neuron j is computed as a sum of an STDP process Xdj (t) and an anti-STDP process Xi j (t).
While the former models the correlation between the desired output and the input spike train
provided by the teacher, the latter models the anti-causal correlation between the presynaptic
and postsynaptic spikes. The convergence of ReSuMe is theoretically proven. The original
version only works for single layer networks. A gradient-based extension for multilayer
networks with hidden neurons is derived in [66].

The vast majority of supervised learning algorithms for spiking neural networks is not
directly based on STDP. A very recent method is the Finite Precision (FP) learning algorithm
presented in [48]. Based on the assumption that in practice no infinitely accurate spike timing
is required, every spike in the sequence to be learned may occur within a certain tolerance
window of width ε. The actual process of learning is illustrated in Fig. 7. The topmost graph
depicts the initial output of the neuron and the time windows for the desired spikes. The
initial spike train contains three errors. The FP algorithm iteratively corrects one error after
the other starting from the first one. This avoids the uncontrolled emergence of new errors
due to “crosstalk” caused by the nonlinear neural dynamics. Weight updates are proportional
to the neuron’s postsynaptic potential. The authors were able to prove both the convergence
and the stability of the algorithm and also demonstrated its applicability to networks with
recurrent connections.

A quite different approach for feedforward networks with hidden layers is proposed in
[4]. The SpikeProp algorithm is an adaption of the well-known backpropagation algorithm
for spiking neural networks based on the Spike Response neuron model. It adapts synaptic
weights by computing the gradient of a linearized version of the thresholded membrane
potential and propagates the error back to the hidden network layers. A major drawback of
the original SpikeProp algorithm is that it supports only a single spike per neuron. However,
later extensions enable it to process sequences of spikes [57]. Besides SpikeProp, there is a
very broad and diverse range of many other learning algorithms based on gradient descent.
In particular, some of theme use stochastic neuron models. The approach discussed in [6]
supports learning in recurrent networks by minimizing an upper bound on the Kullback-
Leibler divergence which is used as a means of measuring the difference between statistically
modeled spike trains.

All methods considered up to now can encode information in precisely timed sequences
of spikes. For classification, it is already sufficient to emit a certain number of spikes to
classify input signals. Although this decoding tasks seems to be simpler at first glance, it
is pointed out in [23] that the optimal choice of the times when to emit the output spikes

123

114 F. Walter et al.

Fig. 7 Synaptic weight adaption with Finite Precision (FP) learning. At the beginning, the first error is
corrected. This automatically also cancels the unwanted output spike in the middle. Finally, the synaptic
weights are adjusted to add the second spike at the end of the sequence. Some intermediate states are skipped.
Adapted and reprinted from [48] with permission from Elsevier

adds additional complexity to the learning problem. The Tempotron learning rule introduced
in [24] enables a single neuron to recognize two distinct classes of input by the emission
of a single spike. Like the algorithms before, the method is gradient-based. If no spike is
produced for a positive sample synaptic weights are adjusted by adding a scaled value of the
neuron’s maximum membrane potential which occurs within the considered time window.
False positives are corrected by subtracting this scaled potential. This procedure minimizes
the deviation of the maximummembrane voltage occurring in response to a falsely classified
input pattern from the neuron’s firing threshold.

With the exception of the SpikeProp algorithm, all of the learning methods above were
designed with biological plausibility in mind. However, also more abstract methods focusing
solely on computational aspects have been conceived. The authors of [8] employ methods
from linear algebra to define a vector space of spike trains. For a linear neuron model,
synaptic weights can be computed via orthogonal projection. An iterative approximation of
the projection operation can also be applied to Leaky Integrate-and-Fire neurons. Finally, a
novel approach introduced in [73] transforms the problem of learning sequences of spikes
to a classification problem which can be solved using the Perceptron learning rule for non-
spiking artificial neural networks. The resulting Perceptron-Based Spiking Neuron Learning
Rule is developed based on the Spike Response neuron model. An application of the method
to other types of neurons requires individual mathematical derivations.

3 The Role of Timing at Network Level for Advanced Cognitive
Capabilities

Theprevious section covered the role of time at the level of single neurons. In the following,we
provide a more coarse-grained perspective by reviewing selected aspects of time in networks

123

Computation by Time 115

Fig. 8 Schematic illustration of
the three main components of
reservoir computing. Input units
provide data to the recurrent
network in the reservoir. The
current state of the reservoir is
accessed by another separate set
of output units

of neurons. In particular, we present two different concepts which rely on temporal dynamics
to perform complex computations. The first subsection introduces the concept of Reservoir
Computingwith a special focus on Liquid StateMachines. An even higher level of granularity
will be considered in the second subsection where we explore the interactions between
different networks of neurons which operate at individual timescales.

3.1 Reservoir Computing

The additional computational power enabled by accurate modeling of neural dynamics was a
central point in the last subsection. The fact that a dynamical system can compute more than a
static structurewas early recognized in neural networks research and led to the investigation of
network architectures with recurrent connectivity. Independently from the underlying neuron
model, recurrent edges add memory to the network and thus yield temporal dynamics at the
network level. There is no need to say that the enhanced computational capabilities enabled by
these dynamics come at the price of increased complexity in the learning phase. Algorithms
for recurrent neural networks like Backpropagation Through Time [71] suffer from vanishing
gradients and convergence problems [41]. Reservoir Computing is a new learning paradigm
for recurrent neural networks which has the potential to overcome these limitations [43]. The
basic principles and components of reservoir techniques are summarized in Fig. 8. The central
element is the reservoir, a usually randomly generated recurrent neural network with fixed
synaptic weights. External input is provided via separate input units which are connected to
the reservoir based on some connectivity pattern. The weights of the synaptic connections
emerging from these units are fixed, too. Another set of dedicated output units is driven by the
internal dynamic state of the reservoir and produces the actual output. The synapticweightswi

of these neurons are adjusted using some selected learning algorithm. Consequently, there is
no need to perform complex learning in the recurrent reservoir network. The basic idea behind
this approach is that the dynamics of the reservoir project the input into a high-dimensional
space representation which allows for a simple mapping to the desired output.

The Liquid State Machine (LSM) is an instantiation of the reservoir paradigm specifically
targeted at recurrent networks of spiking neurons as found in the brain [44]. It is based on
the idea of a liquid which is perturbed by some external influence. The temporal dynamics
caused by this perturbation form continuous states which carry information about both their
past and their future behavior until they finally fade away. A basic description of the overall
approach is given by the following two equations (from [44]):

xM (t) =
(
LMu

)
(t) (5)

y(t) = f M
(
xM (t)

)
(6)

123

116 F. Walter et al.

Fig. 9 Hierarchical learning in a
Multiple Timescales Recurrent
Neural Network (MTRNN). The
network architecture is based on
two complementary pathways for
propagating intentions top-down
(left side) and acquiring sensory
information bottom-up (right
side). While the top-down
direction predicts, the bottom-up
direction is responsible for
learning. The high-level network
runs at a slower timescale than
the low-level network. © 2014
IEEE. Reprinted, with
permission, from [68]

The first line describes the mapping of the input spike train u(t) to the high-dimensional
representation xM (t) by a liquid filter LM . In Fig. 8, the filter corresponds to the neural
network, i.e. the reservoir.1 Equation 6 computes the output y(t) by applying a memoryless
readout map f M (t) to the current liquid state xM (t). The theory of LSMs introduces a new
definition of computational power which is implemented by a concrete LSM if LM fulfills
the Separation Property (SP) and if f M (t) fulfills the Approximation Property (AP). Formal
definitions of these properties are provided in [44]. In the same paper, the authors implement
a liquid state machine with a random network of Integrate-and-Fire neurons. The synaptic
efficacies of the output neurons are adapted using a modified perceptron rule.

Besides LSMs, there is a huge variety of other implementations of the reservoir computing
paradigm. Echo State Networks were developed in parallel to LSMs but rely on rate-based
neural networks of the second generation [41]. The output weights are typically computed
using linear regression. In another LSM-based approach proposed in [53], the synaptic con-
nections between the neurons of the liquid weremodified via STDPwhich led to better results
for real-world data. An extensive review of the vast amount of further work on reservoir com-
puting methods is provided in [41].

3.2 Hierarchical Models of Learning and Cognition

In the reservoir computing paradigm discussed above, temporal dynamics are considered at
the global scale of the underlying recurrent neural circuitry.However, processing all data at the
same timescalemight not always be appropriate. From a very high-level perspective, complex
tasks like baking a cake are composed of many different subtasks like heating up the oven or
fetching milk from the refrigerator. These subtasks are valid on a shorter timescale than the
main task. In the following, we will study a conceptual framework presented in [68] which
enables higher order cognitive capabilities through linked recurrent artificial neural networks
operating at different dynamical timescales. The main components of this framework are
depicted in Fig. 9. The schema illustrates that the approach is based on two complementary
pathways. The first one is a top-down intentional pathway which generates action plans

1 Note that although LM is usually implemented as a spiking neural network, the theory of LSMs allows
arbitrary implementations as long as they meet a set of formal mathematical requirements.

123

Computation by Time 117

based on an intentional state and predicts the network output Yt+1 for the next timestep.
The second pathway propagates perceptual information bottom-up and is responsible for
correcting errors through learning. A neural implementation of this concept is defined by
the Recurrent Neural Network with Parametric Biases (RNNPB). The top-down prediction
computed by this network is given by the following update rule (from [68]):

(Yt+1, Xt+1) = f (Yt , Xt ,W, ξ) (7)

Xi denotes the internal network state and Yi refers to the observable perceptual state. The
prediction of these states at timestep t + 1 depends on the synaptic weights and biases W
and the intentional state ξ . Learning and thus also the bottom-up pathway are realized via
backpropagation through time.

The key to a functional hierarchy with different timescales lies in the hierarchical con-
nection of the RNNPBs defined above. The resulting state prediction for two concatenated
networks is stated below (from [68]):

⎧⎪⎨
⎪⎩

(Yt+1, Xt+1) = f l
(
Yt , Xt ,W

l , ξt

)

(ξT+1, XT+1) = f h
(
ξT , XT ,Wh, ξ h

) (8)

The variable T denotes the slower timescale of the RNNPB at the higher level which predicts
the intentional state ξt of the RNNPB at the lower level. Compared to the speed of the low-
level network, the prediction for ξt changes slowly and thus provides a persistent context
for the fast low-level dynamics. The discrete prediction steps in equation 8 are a major
drawback of RNNPB networks. However, a continuous extension of the concept is available
and the resulting hierarchies of networks are referred to as Multiple Timescales Recurrent
Neural Networks (MTRNNs). In a series of real-world experiments with robots controlled by
MTRNNs, the author of [68]was able to demonstrate the emergence of functional hierarchies.
In particular, it was shown that a robot which had already been trained to perform primitive
actions was able to learn new action sequences by only adapting the plans through solely
changing the weights of the high-level network running at slow timescale. The fast low-level
network which performed the primitive actions remained unchanged.

The concept discussed above is inspired by findings from brain research but implemented
using classical artificial neural networks. Nevertheless, it highlights how carefully adjusted
relative timing of neural dynamics can enable the emergence of higher cognition. Related
work on the general concept of hierarchical task structuring based on different timescales
was also considered in other contexts and for different applications. Under the assumption
that temporal dependencies in the input data are structured hierarchically, the authors of [26]
introduced hierarchical recurrent networks. Long-lasting context information is processed
at a slower timescale than other data by incorporating synaptic delays in parts of the net-
work. In addition to the neural implementation, a possible realization with hidden Markov
Models was proposed. Different concurrent timescales also were considered for hierarchical
reinforcement learning in [67].

4 Interfacing Neural Networks with Real-Time Applications

All aspects of the role of time in neural information processing considered so far were
concernedwithmathematical modeling and algorithmic properties. The positive results make
spiking neural networks a promising tool for solving real-world problems. But simulating

123

118 F. Walter et al.

the neural dynamics for thousands or even millions of neurons requires huge computational
power and is thus not easily feasible in real-time. Apart from the fact that it takes more time
until the results are available, this does not pose any limitations in scenarioswhere the network
input comes from an abstract dataset. However, real-time applications like neurorobotics [36]
which integrate the neural simulation in a closed control loop are highly sensitive to the speed
of the network dynamics. As demonstrated in Sect. 3, the execution speed of a neural circuit
has huge influence on its computational properties. In this section, we therefore give a brief
overview of selected techniques for executing spiking neural networks with a special focus
on the supported timescales. While the first part covers simulators implemented in software,
hardware-based approaches will be addressed in the second and the third part. Finally, we
briefly explain factors that could contribute to neural processing at different timescales in one
of the most widespread large-scale neural information processing systems—the mammalian
brain.

4.1 Neural Network Simulators

Themost direct approach of executing spiking neural networks is to implement a correspond-
ing simulation on a standard general purpose computer. NEST, a widely used simulator for
spiking neural networks, follows exactly this paradigm [51]. It supports parallel execution
across many CPU cores and compute nodes via OpenMP and MPI. In [20], NEST is used
to define a neural network with 10,000 Integrate-and-Fire neurons based on a connectivity
structure proposed in [7]. Even on a modern quad-core CPU, simulating this network for a
timespan of only 300 milliseconds requires simulation time in the order of seconds. From
this it becomes clear that classical software simulations are no viable approach for real-time
control tasks with large neural networks. On the other hand, if the control task is modeled
in another simulation, e. g. a robot simulator, real-time execution is not required and the
software-based approach allows for a fine-grained control over the relative timing between
the dynamics of the neural network and the simulation of the control task.

NEST is not the only spiking neural network simulator available. Alternative implementa-
tions include NEURON [9] and Brian [21]. CARLsim [37] has support for GPU acceleration.
Finally, EDLUT realizes an event-driven style of execution based on look-up tables to speed
up the simulation [58].

4.2 Optimized Parallel Architectures

In NEST, the simulation of a neural network could be made real-time-capable by scaling
up the number of CPUs. However, this increases the required physical space and the power
consumption of the system, both of which is problematic especially for robotic applications.
A possible explanation for the high requirements for CPU power imposed by spiking neural
network simulators are the huge conceptual differences between the classical Von Neumann
architecture found in standard CPUs and the massively parallel and distributed information
processing in neural networks. The SpiNNaker architecture is specifically designed to sup-
port the execution of tasks of the latter type [31]. A single SpiNNaker chip comprises 18
ARM cores. Two of them are reserved for administrative tasks and fault tolerance while the
remaining ones perform the actual neural computations [17]. The communication between
the individual cores is handled by a dedicated network-on-chip. A special property of the
SpiNNaker architecture is its integrated support for building large systems from a huge num-
ber of chips which are connected according to the toroidal topology illustrated in Fig. 10.

123

Computation by Time 119

Fig. 10 Illustration of the
physical topology of a
SpiNNaker system [16]. Every
node corresponds to a chip.
Dashed connections wrap around
the borders due to the toroidal
topology. The execution of neural
networks with arbitrary
connectivity structure is achieved
by superposition of a logical
topology through adequate
package routing. Reprinted from
[70] with permission from
Elsevier

0,2 1,2 2,2

1,1 2,10,1

1,0 2,00,0

The communication between different chips across the module is implemented in hardware,
which means that every chip contains an own router.

The computation in a SpiNNaker system is driven by the asynchronous exchange of data
packets based on the concept of Address Event Representation (AER). In the AER protocol,
all information carried by a packet is encoded in its source and the timewhen it was generated.
This clearly corresponds to neural communication via spikes. A single SpiNNaker chip is
capable of simulating up to 20,000 neurons [31]. Note that although the topology of the
SpiNNaker system is toroidal, the hardware is able to simulate neural networks of arbitrary
connectivity. The topology of the simulated neural network is thus virtualized [17].

SpiNNaker is designed to execute spiking neural networks in real-time [17] and supports
neural learning through online adaption of synapticweights [32]. Togetherwith its low energy
consumption, this renders the system an ideal platform for the neural control of physical
systems.

4.3 Neuromorphic Chips

Although the overall architecture of SpiNNaker is clearly inspired by neural principles, the
neuronmodels are still evaluated on standard CPU cores.Neuromorphic chip designs go even
one step further and also implement the neural dynamics in analogy to biological neurons.
The principal feasibility of simulating neurons with electrical circuits was already mentioned
at the beginning of this paper: Like many other neuron models, the Leaky Integrate-and-Fire
neuron from Eq. 1 basically models an electrical circuit. Analog neuromorphic chips directly
implement such circuits to simulate neural networks in continuous time.

The neuromorphicHICANN chip, which was designed as part of the BrainScaleS project,
implements the exponential Integrate-and-Fire neuron model [60]. 384 of these chips are
combined on a single wafer [61] and communicate via an event-based protocol. The neural
dynamics run 103–105 times faster than real-time. While this is a remarkable advantage for
theoretical studies, it remains unclear how such a fast timescale can be integrated in real-
time control tasks. Neurogrid is another neuromorphic design which executes neural circuits
in real-time [1]. But unlike the BrainScaleS system, it has no built-in support for synaptic
plasticity. A recent review of current neuromorphic chip designs with a focus on supported
learning techniques is available in [70].

123

120 F. Walter et al.

Fig. 11 Qualitative overview of different types of dynamics exhibited by cortical neurons Adapted and
reprinted from [29]. Electronic version of the figure and reproduction permissions are freely available at www.
izhikevich.com

4.4 Biological Neurons

Having investigated different types of specialized hardware and software, it is finally worth
considering how biological neurons realize computation at different timescales. Since bio-
logical neurons are the actual subjects of study in the mathematical modeling and simulation
of spiking neural networks, it is clear that networks composed of these neurons operate in
real-time by definition. Simply put, the properties of biological neural dynamics are gov-
erned by the interaction of different types of ion channels [35]. This leads to various types
of neurons which produce different outputs for a given input. Special synapses are able to
change the behavior of the neuron channels and thus also the dynamics of the postsynap-
tic neuron [35]. A qualitative overview of different types of neural response is provided in
Fig. 11. Although all these observations are far from proving the role of different temporal
dynamics and their neural implementation in the human brain, they at least point to a possible
biologically plausible implementation of advanced cognitive capabilities with spiking neural
networks.

5 Conclusion and Outlook

The goal of this work was to review how temporal neural dynamics can enable meaningful
computation in biologically inspired spiking neural networks. Starting by considering single
neurons, we first studied how the detailed dynamical models employed in spiking neural
networks allow for the encoding of information in the precise timing of spikes in Sect. 2.
The second part of the section was dedicated to learning algorithms which enable spiking
neurons to produce specific neural codes based on given sets of input spike trains. Examples
like an algorithm for unsupervised visual feature learning clearly illustrated how powerful
neurobiological implementations of complex algorithms can be enabled by spiking neural
networks.

In Sect. 3, we analyzed the role of time at network level. One of the most important results
in this section was the fact that recurrent neural networks as found in brains exhibit complex
internal dynamics which can be used for computational purposes. Importantly, this is true for

123

www.izhikevich.com
www.izhikevich.com

Computation by Time 121

both artificial neural networks and spiking neural networks. Learning techniques based on
the reservoir computing paradigm use these dynamics to project input into a complex high-
dimensional space. Learning is achieved by training the weights of a set of dedicated output
units. The Liquid State Machine was presented as a spiking neuron-based implementation
of the reservoir concept. In the second part of the section, we showed how neural networks
working concurrently on different timescales enable hierarchical learning and the emergence
of higher-order cognitive functions. In MTRNNs, subnets executed with slow dynamics
represent the current context for the networks at lower levels with faster dynamics.

How the temporal features discussed in the sections above can emerge during the execution
of a neural network with a simulator or dedicated hardware was addressed in Sect. 4. The
motivation for studying this topic was drawn from the field of neurorobotics, i. e. the research
on robots controlled by biologically plausible models of nervous systems. It turned out that
standard simulation software for spiking neural networks is not suited for closed-loop real-
time control since the real-time simulation of larger networks requires powerful compute
clusters. The SpiNNaker architecture solves this issue by enabling real-time execution of
spiking neural networks through a highly efficient communication system. Neuromorphic
chips which employ analog computing to simulate neural dynamics are a similar approach
in this direction. However, the presented BrainScaleS system runs too fast for real-time
applications. Finally, we gave a brief overview of different types of temporal dynamics
exhibited by biological neurons in the brain.

In summary, our literature review on the role of time as an important aspect of information
processing in neural networks indicates that temporal neural dynamics can performmeaning-
ful computations. Interestingly, the importance of the factor time has also been recognized in
classical machine learning where different concurrent timescales have been applied in rein-
forcement learning scenarios in order to separate different logical contexts [67]. Since spiking
and recurrent neural networks are capable of producing a broad range of temporal dynamics,
we therefore suggest that they are a very promising approach for realizing computation by
time. The huge variety of neuron models, coding schemes and learning techniques is clear
evidence of a well-established theoretical framework which supports both rigorous mathe-
matical analysis and close correspondence to biology at the same time. Especially the latter
aspect opens up new possibilities for an interdisciplinary exchange between neural informa-
tion processing and neuroscience. But our review also shows that spiking neural networks
are an interesting tool from an engineering point of view. Like analog neural networks of
the second generation, they implicitly realize massively distributed and parallel processing.
But in addition, the interneural communication via spikes enables efficient neuromorphic
chips which simulate temporal neural dynamics in real-time or even faster. Considering the
increasingly growing interest in these novel hardware architectures, spiking neural networks
have a huge potential of becoming the standard programming language of future computing.

Acknowledgments The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007–2013) under grant agreement no 604102 (HBP).

References

1. Benjamin BV, Peiran Gao, McQuinn E, Choudhary S, Chandrasekaran AR, Bussat JM, Alvarez-Icaza
R, Arthur JV, Merolla PA, Boahen K (2014) Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc IEEE 102(5):699–716

2. Bi G, Poo M (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev
Neurosci 24(1):139–166

123

122 F. Walter et al.

3. Bohte SM (2004) The evidence for neural information processing with precise spike-times: a survey:
natural computing. Nat Comput 3(2):195–206

4. Bohte SM,Kok JN, La Poutré H (2002) Error-backpropagation in temporally encoded networks of spiking
neurons. Neurocomputing 48(1–4):17–37

5. Bohte SM, La Poutre H, Kok JN (2002) Unsupervised clustering with spiking neurons by sparse temporal
coding and multilayer RBF networks. Neural Netw IEEE Trans 13(2):426–435

6. Brea J, Senn W, Pfister JP (2013) Matching recall and storage in sequence learning with spiking neural
networks. J Neurosci 33(23):9565–9575

7. Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
J Comput Neurosci 8(3):183–208

8. Carnell A, Richardson D (2005) Linear algebra for time series of spikes. In: Proceedings of ESANN, pp
363–368

9. Carnevale N, Hines M (2015) NEURON for empirically-based simulations of neurons and networks of
neurons: project homepage. http://www.neuron.yale.edu/neuron/

10. Cyr A, Boukadoum M, Thériault F (2014) Operant conditioning: a minimal components requirement in
artificial spiking neurons designed for bio-inspired Robot’s controller. Front Neurorobot 8(21)

11. Diamond MC (2001) Response of the brain to enrichment. Anais da Academia Brasileira de Ciências
73:211–220

12. Farries MA, Fairhall AL (2007) Reinforcement learning with modulated spike timing-dependent synaptic
plasticity. J Neurophys 98(6):3648–3665

13. Floreano D, Mattiussi C (2001) Evolution of spiking neural controllers for autonomous vision-based
robots. In: Goos G, Hartmanis J, van Leeuwen J, Gomi T (eds) Evolutionary robotics, vol 2217., From
intelligent robotics to artificial life, lecture notes in computer scienceSpringer, Berlin, pp 38–61

14. Florian RV (2005) A reinforcement learning algorithm for spiking neural networks. In: Proceedings of the
seventh international symposium on symbolic and numeric algorithms for scientific computing, SYNASC
’05. IEEE Computer Society, Washington, DC, USA

15. Frémaux N, Sprekeler H, Gerstner W (2013) Reinforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS Comput Biol 9(4):e1003,024

16. Furber S, Brown A (2009) Biologically-inspired massively-parallel architectures - computing beyond a
million processors. In:Application of concurrency to systemdesign, 2009 (ACSD ’09).Ninth international
conference on, pp 3–12

17. Furber SB, Lester DR, Plana LA, Garside JD, Painkras E, Temple S, Brown AD (2013) Overview of the
spinnaker system architecture. Comput IEEE Trans 62(12):2454–2467

18. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond
temporal coding. Nature 383(6595):76–78

19. GerstnerW,KistlerWM(2002)Spikingneuronmodels: single neurons, populations, plasticity.Cambridge
University Press, Cambridge

20. GewaltigMO,Morrison A, Plesser HE (2012) NEST by example: an introduction to the neural simulation
tool NEST. In: Le Novère N (ed) Computational systems neurobiology. Springer, The Netherlands, pp
533–558

21. Goodman Dan FM, Brette R (2009) The brian simulator. Front Neurosci 3(2):192
22. Grüning A, Bohte SM (2014) Spiking neural networks: principles and challenges. In: ESANN 2014. 22nd

European symposium on artificial neural networks, computational intelligence and machine learning.
Bruges, April 23–25, 2014. i6doc.com, Louvain-La-Neuve

23. Gütig R (2014) To spike, or when to spike? Theor Comput Neurosci 25:134–139
24. Gütig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions. Nat

Neurosci 9(3):420–428
25. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York
26. Hihi SE, Bengio Y (1996) Hierarchical recurrent neural networks for long-term dependencies. In: Touret-

zky DS, Mozer MC, Hasselmo ME (eds) Advances in neural information processing systems 8. MIT
Press, Cambridge, pp 493–499

27. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol 117(4):500–544

28. Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–
257

29. Izhikevich EM (2003) Simple model of spiking neurons. Neural Netw IEEE Trans 14(6):1569–1572
30. IzhikevichEM(2007)Solving thedistal rewardproblem through linkageofSTDPanddopamine signaling.

Cereb Cortex 17(10):2443–2452
31. Jin X, Lujan M, Plana LA, Davies S, Temple S, Furber SB (2010) Modeling spiking neural networks on

spinnaker. Comput Sci Eng 12(5):91–97

123

http://www.neuron.yale.edu/neuron/

Computation by Time 123

32. Jin X, Rast A, Galluppi F, Khan M, Furber S (2009) Implementing learning on the spinnaker universal
neural chip multiprocessor. In: Leung C, Lee M, Chan J (eds) Neural information processing, vol 5863.,
Lecture notes in computer scienceSpringer, Berlin, pp 425–432

33. Kandel ER, Siegelbaum SA (2013) Cellular mechanisms of implicit memory storage and the biological
basis of individuality. In: Kandel ER, Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (eds)
Principles of neural science. McGraw-Hill, New York, pp 1461–1486

34. Kandel ER, Siegelbaum SA (2013) Synaptic integration in the central nervous system. In: Kandel ER,
Schwartz JH, Jessel TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science. McGraw-Hill,
New York, pp 210–235

35. Koester J, Siegelbaum SA (2013) Propagated signaling: the action potential. In: Kandel ER, Schwartz JH,
Jessel TM, Siegelbaum SA, Hudspeth AJ (eds) Principles of neural science. McGraw-Hill, New York, pp
148–176

36. Krichmar J (2008) Neurorobotics. Scholarpedia 3(3):1365
37. Krichmar J (2015) CARLsim: GPU-accelerated spiking neural network simulator: project homepage.

http://www.socsci.uci.edu/~jkrichma/CARLsim/index.html
38. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
39. LegensteinR,NaegerC,MaassW (2005)What can a neuron learnwith spike-timing-dependent plasticity?

Neural Comput 17(11):2337–2382
40. Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-modulated spike-timing-

dependent plasticity with application to biofeedback. PLoS Comput Biol 4(10):e1000,180
41. Lukoševičius M, Jaeger H (2009) Reservoir computing approaches to recurrent neural network training.

Comput Sci Rev 3(3):127–149
42. Maass W (1997) Networks of spiking neurons: the third generation of neural network models. Neural

Netw 10(9):1659–1671
43. Maass W, Jaeger H, Steil J, Dominey PF, Schrauwen B (2015) Web portal for reservoir computing. http://

organic.elis.ugent.be/
44. MaassW, Natschläger T, MarkramH (2002) Real-time computing without stable states: a new framework

for neural computation based on perturbations. Neural Comput 14(11):2531–2560
45. Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of

postsynaptic APs and EPSPs. Science 275(5297):213–215
46. Masquelier T, Thorpe SJ (2007) Unsupervised learning of visual features through spike timing dependent

plasticity. PLoS Comput Biol 3(2):e31
47. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math

Biophys 5(4):115–133
48. Memmesheimer RM, Rubin R, Ölveczky BP, Sompolinsky H (2014) Learning precisely timed spikes.

Neuron 82(4):925–938
49. Morrison A, Diesmann M, Gerstner W (2008) Phenomenological models of synaptic plasticity based on

spike timing. Biol Cybern 98(6):459–478
50. Natschläger T, Ruf B (1998) Spatial and temporal pattern analysis via spiking neurons. Network 9(3):319–

332
51. NEST Initiative (2015) NEST: project homepage. http://www.nest-initiative.org/
52. Nichols C, McDaid LJ, Siddique NH (2010) Case study on a self-organizing spiking neural network for

robot navigation. Int J Neural Syst 20(06):501–508
53. Norton D, Ventura D (2006) Preparing more effective liquid state machines using hebbian learning. In:

Neural networks, 2006. IJCNN ’06. International joint conference on, pp 4243–4248
54. Pfister JP (2006) Triplets of spikes in a model of spike timing-dependent plasticity. J Neurosci

26(38):9673–9682
55. Ponulak F, Hopfield JJ (2013) Rapid, parallel path planning by propagating wavefronts of spiking neural

activity. Front Comput Neurosci 7:98
56. Ponulak F, Kasiński A (2009) Supervised learning in spiking neural networks with ReSuMe: sequence

learning, classification, and spike shifting. Neural Comput 22(2):467–510
57. Ponulak F, Kasinski A (2011) Introduction to spiking neural networks: information processing, learning

and applications. Acta Neurobiol Exp 71(4):409–433
58. Ros E, Carrillo R, Ortigosa EM, Barbour B, Agís R (2006) Event-driven simulation scheme for spiking

neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18(12):2959–
2993

59. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in
the brain. Psychol Rev 65(6):386–408

123

http://www.socsci.uci.edu/~jkrichma/CARLsim/index.html
http://organic.elis.ugent.be/
http://organic.elis.ugent.be/
http://www.nest-initiative.org/

124 F. Walter et al.

60. Schemmel J, Brüderle D, Grübl A, Hock M, Meier K, Millner S (2010) A wafer-scale neuromorphic
hardware system for large-scale neural modeling. In: Circuits and systems (ISCAS), proceedings of 2010
IEEE international symposium on, pp 1947–1950

61. Schemmel J, Grubl A, Hartmann S, Kononov A, Mayr C, Meier K, Millner S, Partzsch J, Schiefer S,
Scholze S, Schuffny R, SchwartzM (2012) Live demonstration: a scaled-down version of the BrainScaleS
wafer-scale neuromorphic system. In: Circuits and systems (ISCAS), 2012 IEEE international symposium
on, p 702

62. Schliebs S, Kasabov N (2014) Computational modeling with spiking neural networks. In: Kasabov N
(ed) Springer handbook of bio-/neuroinformatics. Springer, Berlin, pp 625–646

63. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
64. Senn W, Pfister JP (2014) Reinforcement learning in cortical networks. In: Jaeger D, Jung R (eds) Ency-

clopedia of computational neuroscience. Springer, New York, pp 1–9
65. Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical

synaptic plasticity. Neuron 32(6):1149–1164
66. Sporea I, Grüning A (2012) Supervised learning in multilayer spiking neural networks. Neural Comput

25(2):473–509
67. Sutton RS, Precup D, Singh S (1999) BetweenMDPs and semi-MDPs: a framework for temporal abstrac-

tion in reinforcement learning. Artif Intell 112(1–2):181–211
68. Tani J (2014) Self-organization and compositionality in cognitive brains: a neurorobotics study. Proc

IEEE 102(4):586–605
69. The Human Brain Project (2015) Project homepage. https://www.humanbrainproject.eu
70. Walter F, Röhrbein F, Knoll A (2015) Neuromorphic implementations of neurobiological learning algo-

rithms for spiking neural networks. Neural Netw
71. Werbos PJ (1990) Backpropagation through time: what it does and how to do it. Proc IEEE 78(10):1550–

1560
72. Wysoski S, Benuskova L, Kasabov N (2006) On-line learning with structural adaptation in a network of

spiking neurons for visual pattern recognition. In: Kollias S, Stafylopatis A, DuchW,Oja E (eds) Artificial
neural networks—ICANN 2006, vol 4131., Lecture notes in computer scienceSpringer, Berlin, pp 61–70

73. Xu Y, Zeng X, Zhong S (2013) A new supervised learning algorithm for spiking neurons. Neural Comput
25(6):1472–1511

123

https://www.humanbrainproject.eu

	Computation by Time
	Abstract
	1 Introduction
	2 How Spiking Neurons Learn: The Role of Time at the Neural Level
	2.1 Biological and Mathematical Foundations
	2.1.1 Mathematical Models for Spiking Neurons
	2.1.2 Neural Coding

	2.2 Learning Techniques for Spiking Neurons
	2.2.1 Unsupervised Learning
	2.2.2 Reinforcement Learning
	2.2.3 Supervised Learning

	3 The Role of Timing at Network Level for Advanced Cognitive Capabilities
	3.1 Reservoir Computing
	3.2 Hierarchical Models of Learning and Cognition

	4 Interfacing Neural Networks with Real-Time Applications
	4.1 Neural Network Simulators
	4.2 Optimized Parallel Architectures
	4.3 Neuromorphic Chips
	4.4 Biological Neurons

	5 Conclusion and Outlook
	Acknowledgments
	References

