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Abstract—Due to the complexity of Vehicular Ad Hoc Net-
works, future driving assistance systems need to be validated
through virtual test drives in a simulated environment. An
accurate modeling of the vehicle-to-vehicle communication chan-
nel is crucial to enable a precise evaluation of such network-
aware applications. Since existing ray-based methods cause long
computation times, a new parallel GPU-based ray-launching
simulation method is presented. The algorithmic improvements
allow a high utilization of the GPU computing power, which
results in significantly faster simulations while achieving high
accuracy. The validation of the simulation results against real-
world measurements showed a high level of agreement.

Keywords—VANET, Vehicular Communication, Radio Propaga-
tion Simulation, Ray launching, GPU computing

I. INTRODUCTION

Vehicular Ad hoc Networks (VANETs) are envisioned to
improve traffic safety and efficiency as well as driver comfort.
A high variety of applications, such as cooperative driving and
subsequently automated driving, are enabled through wireless
ad hoc communication between the vehicles on the road.
These applications, which often exhibit safety-critical features,
need to be tested extensively before deployment in series
production. Due to the costs and difficulties of conducting
real-world experiments, simulation will be a key methodology
for evaluating real-world implementations of VANET-based
driving assistance systems in virtual test drives.

Accurate modeling of the vehicle-to-vehicle (V2V) com-
munication channel, which is heavily influenced by traffic
dynamics and road surroundings, is crucial to obtain valid
simulation results when investigating upper layer protocols
and applications [1]. Stochastic models are not suitable for
the evaluation of safety applications with the impact of a
single transmission being critical. Several radio-propagation
models targeting large-scale VANET simulation have been
developed [2], [3], which take into account location-specific
link conditions. However, the simplifications made to reduce
computational complexity render them unusable in virtual test
drives. At the other end of the spectrum, ray tracing based
methods provide an accurate model of the V2V communication
channel at the cost of high computational effort. They are
typically used for optimization of antenna systems [4]. The
prohibitively long computation times for path calculations
with high accuracy restrict their area of application to short
simulation scenarios consisting of only very few vehicles.

In order to evaluate and validate real implementations of
VANET applications in virtual test drives, the wireless com-
munication channel needs to be modeled in high fidelity. This
is particularly important for critical situations when Non-Line-
Of-Sight (NLOS) conditions exist, which are caused by static,
e.g. buildings and dynamic obstacles such as large vehicles [5].
However, simulation durations need to be kept reasonable to
enable medium-scale scenarios, i.e. tens of vehicles.

Modern GPUs provide the facilities and computational
power to perform fast ray-based methods [6]. In this paper we
present radio propagation simulation based on ray launching
which exploits the computational power of GPUs to achieve a
high performance, deterministic model of the V2V communi-
cation channel for detailed and dynamic scenes.

The remainder of this paper is organized as follows:
Section II gives an overview of the related work. In section III
we describe our simulation model and the algorithmic im-
provements in detail. In section IV the ray-optical model is
validated by means of measurements and compared against
existing models. Section V concludes the paper and gives an
outlook on future work.

II. RELATED WORK

Before we give an overview of the related work, we dis-
tinguish between deterministic ray tracing and ray launching.
Ray tracing is a generic term for propagating rays through a
virtual scene. However, deterministic ray tracing is commonly
referred to a deterministic calculation of propagation paths,
whereas ray launching involves shooting many rays to sample
the scene in a brute force manner [7].

Ray-based methods are well-suited for parallel computing
architectures such as GPUs. Due to the advances in GPU tech-
nology, parallel ray tracing for image rendering has attracted
a lot of research effort in the last years. Several optimizations,
which enable fast rendering of highly detailed and dynamic
scenes, have been developed such as efficient bounding volume
hierarchies [8].

Maurer [9] was one of the first to apply ray tracing in
order to model the V2V communication channel. Schmitz [10]
used GPU based ray methods to speed up the simulation of
radio wave propagation for static transmitter scenarios. Ray
launching on GPUs was also employed in [11] to simulate
radio propagation in indoor scenarios. It was shown that
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Fig. 1. Simulation pipeline comprising two main phases

exploiting the parallel computing power of GPUs results in
substantial reduction in computing time. However, in [11] only
static scenes without diffractions were considered which are
challenging on GPUs due to their branching nature. In the
following we show how wave propagation at diffractions can
be handled efficiently on GPUs. Another domain in which
ray-based methods are applied is the simulation of sound
propagation [12]. GPU computation is there used to achieve
interactive update rates.

III. GPU ACCELERATED ELECTROMAGNETIC WAVE
PROPAGATION

As previously stated we want to perform highly detailed
yet fast simulations of the V2V communication channel in
order to conduct virtual test drives of VANET applications.
In order to achieve this goal, we choose ray launching over
deterministic ray tracing because it is better suited for fast
computations of highly detailed and dynamic scenes with
moving transmitters, receivers and obstacles. In the following
we describe the concept and algorithmic improvements for the
parallel scalability of our GPU based ray launching model.

A. Conceptual Overview

In order to reduce the overall simulation time, all steps
of the propagation model are optimized for efficient parallel
computations. In graphic rendering the shading of rays is
usually done on the fly, i.e. colors are determined while the
ray propagates through the scene. However, most of the rays
that are shot in our simulation model never hit a receiver
so computing their electromagnetic properties would waste
computational resources. The model is therefore split into two
separate phases as shown in figure 1. The first phase employs
parallel ray launching to accelerate the visibility computations
for the current scene configuration. The resulting propagation
paths between transmitters and receivers are then passed on
to the post processing phase, in which the material data of
the environment as well as the antenna patterns are taken into
account in order to compute the electromagnetic properties for
each propagation path.

B. Ray Launching Phase

1) Coherent Ray Launching: As a first step, it is essential
to identify the existence of Line-Of-Sight (LOS) paths because
the LOS path dominates the received signal strength since it
is only subjected to free space propagation loss. LOS rays are

therefore shot through the scene to determine the existence
of the LOS path between each sender-receiver pair. While the
LOS paths can be evaluated quickly, multi-path propagation
results in a considerably higher computational effort since
a large number of rays need to be shot. The ray launching
method is based on sending rays from each transmitter antenna
to detect possible propagation paths between transmitter and
receiver. In order to achieve accurate results, the sampling
of the primary rays’ directions must be uniform to avoid
undersampling of specific parts of the scene. This can be
achieved by using geodesic tessellated spheres [13], however
this method limits the number of primary rays.

We therefore employ uniformly distributed random direc-
tions to allow an arbitrary amount of rays. Each primary query
ray following a random direction can be processed in parallel,
however, in order to gain high efficiency, the computation
model of modern GPUs needs to be taken into account. The
SIMT (single instruction multiple threads) execution model
groups multiple threads in so called warps and exhibits the
highest performance if all threads within a warp follow the
same execution path [14]. When tracing rays in randomly
distributed directions in parallel, this leads to a high thread
divergence. Different intersection tests need to be performed
when the rays encounter different scene objects and access
incoherent memory locations. To avoid this efficiency problem
we sort the randomly generated directions using a space-filling
curve. We use the Z-order curve since it can be implemented
and computed efficiently [15]. After the sorting process the
initial directions can be traced coherently. Depending on the
amount of initial directions, the sorting itself can be too time-
consuming despite being performed in parallel as well. We
therefore precompute the sorted random directions before the
actual simulation takes place. In order to avoid aliasing arti-
facts, the uniformly sampled directions are rotated randomly
for each transmitter in every time step.

2) Ray Interactions: In order to find the propagation paths
we shoot rays from the center point of each transmitting
antenna to sample the 3D space. As the rays propagate through
the scene, they interact with the scene geometry and potentially
intersect the receiver antennas, which are modeled as spheres.
The size of these spheres determines how many rays are
collected at each receiver. In analogy to the notation introduced
by Heckbert [16] we generally define the interactions along
the propagation paths between transmitter (T ) and receiver
(R) as either specular (S) or diffuse (D). We concentrate on
reflections as specular and diffractions as diffuse interactions
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in the following, however other ray interactions can be easily
added into the model. Since we apply ray launching, a ray can
miss (M ) the scene geometry. Each valid path can therefore be
characterized by the regular expression T (S|D)∗R. Figure 2
shows how the rays launched from the transmitter propagate
through the scene to determine the visibility of surfaces and
diffraction edges. So every ray launched from the transmitter
queries the scene to evaluate if a given outgoing direction
results in a hit of the receiver. This process creates a tree of
possible propagation paths, which in the following is called
the scene query tree.

T

SM D

S S

R

M

S
R

T

D

S S

M

M

Fig. 2. Left: Rays propagate through the scene; Right: Resulting scene query
tree

The surfaces of the 3D scene are modeled as triangular
meshes with material properties attached to it, which determine
for example if a specific triangle acts as a reflecting or
refracting surface. When a ray hits a reflecting triangle, it is
reflected on the surface and a new ray is traced in the direction
of reflection. This process continues until the configured order
of reflections is reached. Each specular reflection results in a
single additional node entry in the scene query tree.

Since all meshes are assumed to only undergo rigid-body
motion, edges which can cause a diffraction are detected in
an off-line preprocessing step based on a pre-defined angle
criterion. In the ray tracing phase, analogously to the reception
sphere, the diffraction edges are modeled as cylinders centered
around the edges with a configurable radius as shown on
the right in figure 3. This allows to efficiently evaluate the
diffractions at runtime by testing the intersection of a ray
with the cylinder geometry. If a ray intersects a cylinder,
it is considered to be close enough to the edge to cause a
diffraction. The hit point on the cylinder surface is projected
onto the diffracting edge. This point on the edge is then
the new origin for the subsequent outgoing rays, which are
generated according to the formulation of the Uniform Theory
of Diffraction (UTD) [17]. The incident ray has the same angle
relative to the edge as the outgoing rays, which leads to the
new rays being sampled on a cone (left in figure 3).

Each diffraction leads to branching in several new paths in
the scene query tree. This branching continues exponentially if
multiple orders of diffractions are taken into account. In order
to efficiently trace the outgoing ray paths of a diffraction in
parallel, we terminate the tracing of this specific ray and save
the path until the diffraction has occurred as an incomplete
path. GPU memory must be used economically both to save
memory bandwidth and to allow a high number of paths to be
stored. Therefore we only save an implicit version of the path
which just contains the information necessary to re-trace this
specific path later on. Each path can be uniquely defined by its
origin, the direction it is sent from the emitter and all following

Fig. 3. Left: New rays are traced along the diffraction cone; Right: Diffraction
edges are modeled as cylinders

directions after an interaction with a scene object has occurred.
This method has the advantage that specular reflections, which
are unambiguous, do not require any storage and therefore the
amount of necessary memory is reduced drastically.

When all current ray tracing activity is finished, multiple
new rays need to be traced from the previous stop location of
each incomplete path. To improve coherency for the new rays,
their origins are sorted by the Z-order curve before launching
them. This method is also shown in [18] where the rays are
additionally sorted by direction. However, as incomplete paths
do not represent a single ray but a whole batch which in itself
is already coherent, it is sufficient to only sort by the origin.

This process of tracing, terminating and restarting is re-
peated until there are no incomplete paths left. The scene query
tree now contains the implicitly encoded propagation paths
between emitters and receivers. In order to get the full informa-
tion for each path, we perform a gathering step which consists
of tracing one ray per path and following the propagation path
through the scene while recording the information such as
triangle IDs and material data. This detailed per-interaction
data is then stored in the scene query tree.

The scene query tree might contain duplicate sequences of
triangles and diffraction edges denoting the same propagation
path. In order to efficiently eliminate duplicates, the ray
sequences are first sorted in parallel by interaction type and
primitive index. The duplicates are then removed from this
reordered path list to ensure that only unique propagation paths
are contained.

3) Focusing: The propagation paths between transmitter
and receiver depend on the position of the transmitters, re-
ceivers as well as on the location of static and dynamic obsta-
cles. A brute force solution to find these paths would sample
the scene as fine as necessary to reach all receiver spheres
on all relevant paths in order to avoid undersampling artifacts.
As we target large scene dimensions (i.e. city scale), a very
high number of rays is necessary for accurate results. Since
most rays do never reach a receiver, a lot of computational
resources would be wasted. We therefore apply a technique
which we call “focusing”. Its main goal is to achieve a better
utilization of computing resources while maintaining accuracy.
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For reasons of simplicity we illustrate this technique based on
an exemplary 2D street intersection in figure 4, however the
same principle applies for 3D scenes.

T

R

Fig. 4. Focusing applied for an exemplary street intersection

As a first step we quickly detect an approximate set of
surfaces and diffraction edges which are directly or indirectly
(through reflections and diffractions) visible to both receiver
and transmitter. This is done by employing a large receiver
sphere while coarsely sampling the scene with few rays. After
this first coarse pass, the outgoing directions which lead to a hit
are identified and are thus partitioned into sections of interest
(green area in figure 4) and no-interest (red area in figure 4).
Multiple rays are then traced into the sections of interest to
sample this subset of the scene in more detail. The directions
for the finer sampling are again taken from the precomputed
uniformly random directions to achieve coherence between the
rays which lie in each section of interest. Multiple focusing
passes can be performed depending on the desired accuracy,
the scene geometry as well as the computation time budget.

4) Exploiting Frame Coherence: If the movements of the
vehicles and thus the changes of the scene configuration
between succeeding time steps are relatively small, the results
from the previous frame can also be used to avoid undersam-
pling artifacts. After the determination of the propagation paths
of a frame we store the outgoing directions of the successful
paths which have hit a receiver sphere. When the position
updates have been applied to the scene in the next time step,
this direction information is then used in the coarse phase of
the focusing step. By exploiting the similarity between small
scene updates, paths which are still valid or have only slightly
changed are then again retrieved in the next frame.

C. Electromagnetic Post Processing

All propagation paths that have been determined by the
ray launching phase are passed on to the electromagnetic post
processing phase. In this phase, the 3D electromagnetic wave
propagation is calculated based on the principles of Geometri-
cal Optics (GO) and UTD. The paths are first subjected to the
full-polarimetric antenna gain pattern of the transmitter, which
can be efficiently interpolated on GPUs [19]. Subsequently,
the free space propagation and the effects of each recorded
interaction are applied to the paths before the receiver antenna
pattern is applied. These steps are performed in parallel, as
all paths are independent from one another. Finally, a parallel

reduction yields the superposition of the paths associated for
every transmitter-receiver pair.

D. Implementation

All computations are performed on the GPU in order to
avoid additional latency when copying intermediate results
between CPU and GPU memory spaces. The ray launching
phase is implemented using the NVIDIA OptiX framework,
which provides the basic building blocks to implement ray
tracing based algorithm on GPUs [20]. It features high per-
formance acceleration structures with fast rebuilding between
successive frames, which enables the simulation of highly
dynamic scenes. We employ the sorting algorithms from the
Thrust library [21], which offers state of the art parallel
implementations for the CUDA programming model.

IV. VALIDATION OF THE PROPOSED MODEL

We have shown the correctness of the electromagnetic
calculations in [22] by comparing the simulation results of
our GPU based ray launching model with the results of a
full wave simulation. In order to validate our ray optical
model against real world scenarios, we conducted an extensive
set of measurements. In the following we describe an urban
intersection scenario comprising both LOS and NLOS condi-
tions and compare the results of our model with the recorded
measurements.

A. Measurement Setup and Scenario

The measurements were recorded while driving through the
city of Ingolstadt with two Audi A8L. Both cars were equipped
with an Autotalks PANGAEA31, a development platform for
vehicular communications which also features a GPS receiver,
as well as a prototype antenna. The cars were configured to
continuously send a 400 byte packet containing an increasing
sequence number every 50ms with 6 Mbps. The transmit
power was set to 10 dBm while operating at 5.9GHz. GPS
positions are obtained with an update frequency of 5Hz. The
cars both logged received packets and signal strength as well
as the GPS positions.

In the scenario for which we compare measurement and
simulation, the two vehicles drove behind each other and took
a right turn with a time-delay. This resulted in a LOS situation
before the first car turned right, then in a NLOS situation
before the second car turned right until finally LOS was
reestablished. The intersection and the trajectory are shown
in figure 5.

In order to reconstruct this scenario in our simulation, a
3D model of the environment is necessary. In [23] it has been
shown theoretically that building data from OpenStreetMap2

(OSM) is sufficiently precise for the use of channel modeling.
Hence we converted the 2.5D data from OSM based on the
guideline presented in [23] into a 3D model. This model was
then enriched with the material data for the permittivity εr and
the roughness δ as listed in table I. The diffraction edges were
pre-computed off-line as previously described. Figure 6 shows
the 3D model as well as the determined propagation paths for

1www.auto-talks.com/category/pangaea/
2www.openstreetmap.org
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Fig. 5. Intersection at N48.766328◦, E11.425775◦ with overlayed driving
direction; Image courtesy of Google Earth

a specific time step. Diffracted rays are depicted in magenta,
reflected rays in yellow and rays which hit the receiver turn
green at the end.

Fig. 6. Propagation paths in the 3D model

TABLE I. MATERIAL PARAMETERS USED IN VALIDATION SCENARIO

Material εr δ[m]

Asphalt [24] 4.54 − j0.36 0.4 · 10−3

Concrete [9] 5 − j0.1 0.4 · 10−3

B. Evaluation

We simulated the above described scenario for a time
step width of 100ms. The duration of the whole scenario is
30 s which results in N = 300 discrete configurations. The
maximum order of reflections was set to 4 and the order
of diffractions was set to 1 for this scenario. The machine
on which the simulation was performed is equipped with a
NVIDIA Geforce GTX 680 GPU and a 3.6 GHz Intel Xeon
CPU. CUDA version 6.5 and OptiX version 3.7 were used. For
this configuration one time step can be computed on average
in 103ms.

The measurements recorded by both cars (averaged over
5 time steps) and the simulated received power are shown in
figure 7. It can be seen that there is a good agreement between
simulation and measurement for both the LOS and NLOS
sections of the scenario as well as the transitions between these
sections.
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Fig. 7. Comparison of received power for measurements and ray launching
simulation

The deviations between simulation and measurement can
be quantified using the mean error

µ =
1

N

N∑
i=1

ei (1)

and the standard deviation

σ =

√√√√ 1

N − 1

N∑
i=1

|µ− ei|2 (2)

based on the per time step error

ei = pmeas,i − psim,i (3)

where pmeas,i is the measured and psim,i the simulated re-
ceived power for each time step

When comparing against the raw measurements recorded
for car 1, this results in the mean error µ = −4.56 dB and
the standard deviation σ = 3.73 dB, which indicates that our
model achieves accurate results with a slight offset.

We also simulated the same scenario using two other
models which are less computationally intensive. Virtual-
Source11p [2] is an empirical, low-complexity path-loss model
specifically designed to predict NLOS reception at urban
intersections. It consists of only a single formula taking
into account the receiver’s and transmitter’s distance to the
intersection center. It assumes that the intersection geometry is
perpendicular, which is not fully met in our validation scenario.
Since only one analytical formula has to be evaluated, one time
step takes less than 0.5ms in our MATLAB implementation.
GEMV2 [25] on the other hand uses a geography database
to achieve a location-specific V2V channel model in LOS
and NLOS conditions. It considers both static and dynamic
obstacles and is based on a very simplified ray tracing method,
which tries to capture only the most significant contributions.
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Using its MATLAB implementation3 one time step of the
scenario can be computed on average in 12ms.
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Fig. 8. Comparison of received power between measurement, GEMV2 and
VirtualSource11p

Figure 8 shows the comparison of the obtained measure-
ment for one car as well as the results from the other two
described models. Since the VirtualSource11p model is only
valid for NLOS, the values for the LOS section of this scenario
are obviously incorrect. The shape of the resulting curve
follows the measurements with a great offset which suggests
that the model is not calibrated well enough for this specific
intersection. The street width in this scenario is approximately
10m, which is significantly less than the narrowest street
(18m) used for calibrating the model [2]. A similar issue has
also been reported in [26].

The results from the GEMV2 model show a better match
with the measurements. However, the transitions between LOS
and NLOS are very sharp, which stems from the fact that the
model explicitly distinguishes between these conditions and
does not model the transitions specifically. While this model
provides a very good accuracy to computational effort ratio,
which makes it applicable in large-scale scenarios, it can be
too imprecise when investigating such intersections in detail.

V. CONCLUSION AND FUTURE WORK

The detailed modeling of the V2V communication channel
based on ray-optical models requires a high computational
effort, which usually leads to prohibitively long simulation
durations. In this paper, we presented a ray launching based
simulation model which exploits the parallel computational
power of modern GPU hardware to achieve fast simulations.
We showed algorithmic improvements to efficiently determine
propagation paths in parallel so that a high utilization of the
computing power of GPUs is achieved. This results in fast sim-
ulations, which enables the employment of this highly detailed
propagation model in the envisioned use case of virtually test
driving VANET applications. The validation of the proposed
model exhibited a high level of agreement with real world
measurements for both LOS and NLOS conditions. Finally, we
compared the results against existing low-complexity models
and pointed out that the precise calibration of empirical models

3available at vehicle2x.net

is crucial as well as that these models fail to accurately predict
transitions between LOS and NLOS conditions.

We are further optimizing the calculation of diffractions
since they have the highest impact on computation times by
employing bi-directional ray tracing and precomputing edge
visibility as proposed in [27]. Additionally, we are investi-
gating how the focusing approach can be coupled with the
guidance algorithm presented in [12].
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