

Technische Universität München

Department of Informatics

Chair of Computer Architecture

ON USING DOMAIN KNOWLEDGE FOR ADVANCED

PROGRAMMING TOOLS

ANCA BERARIU

Dissertation

September 2015

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl für Rechnertechnik und Rechnerorganisation

On Using Domain Knowledge for Advanced

Programming Tools

Anca Berariu

Vollständiger Abdruck der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation:

 1. Univ.-Prof. Dr. Hans Michael Gerndt

 2. Univ.-Prof. Dr. Dr. h.c. Notker Rösch

Die Dissertation wurde am 29.09.2015 bei der Technischen Universität

München eingereicht und durch die Fakultät für Informatik am 22.12.2015

angenommen.

Ich versichere, dass ich diese Dissertation selbstständig verfasst und nur die angegebe-
nen Quellen und Hilfsmittel verwendet habe.

München, 28.09.2015

Anca Berariu

To my beloved dad.
*

A square is both a rhombus and a rectangle,
but it still remains a square.

ABSTRACT

High Performance Computing (HPC) is becoming available to more and more sci-
entists and end-users, but in order to use HPC power at its full potential, scalable
and well-optimized applications are required. Although performance analysis and
optimization of parallel scientific applications is already a well established field in
computer science, users of HPC are still facing difficulties in the optimization pro-
cess, since they are experts in their domain but without necessarily a lot of experience
with HPC.

Firstly, the challenges come from the complexity of the new hardware and the
variety of the existing parallel programming models. Secondly, the scientific applica-
tions are also gaining in complexity, both as computation models, as well as software
implementations.

Current performance tools cover enough of the first aspects, being oriented towards
low-level measurements and analysis, but lack of solutions for the intricate higher-
level aspects of common large scientific codes. In the same time, most newcomers in
HPC are natural or computational scientists, who bring along great knowledge from
their specific science fields, but have less to no experience in application profiling
and performance analysis.

In this thesis we propose a method to use the potential of Domain Knowledge
(DK) as a solution for narrowing the gap between application developers and HPC.
We define DK as the knowledge from a particular science domain. This knowledge
represents the theoretical foundation and practical core of scientific applications. In
our approach, DK is based on three main concepts: DK Entites, DK Operations and
DK Phases.

We introduce the Language for Domain Knowledge (LaDoK) as a means to express
and handle DK. LaDoK can be used by application developers to enhance their source
code with DK annotations. In this way, application specific DK elements are exposed
for further processing by advanced programming tools.

In the particular case of DK-enhanced performance measurement and analysis,
we successfully deployed our approach in the analysis of ParaGauss, a real-world
quantum chemistry application. By enhancing performance analysis with DK Metrics
like Memory per Entity (MPE), a better insight in the qualitative and quantitative
memory usage behaviour was achieved. Furthermore, we show how DK Operations
could be deployed for analysing load-balancing problems.

Besides quantum chemistry, we show the applicability of our approach in several
other domains like multigrid methods or applications which exhibit performance
dynamics.

vii

ACKNOWLEDGEMENTS

First of all, I would like to thank Prof. Michael Gerndt, who is my Doktorvater in the
true sense of the word. He offered me all necessary support and guidance, leading
me towards the right research questions, pushing me when results were stalling and
fetching me again when in doubt.

Then I would like to thank Prof. Notker Rösch for accepting to be the second
supervisor of this work and for the very motivating insights regarding the next Aha!
in quantum chemistry.

Furthermore, I would like to thank Torsten Hoefler for the short but very fruitful
time I spent in his research group. An important part of the framework was devel-
oped while being there, supported by the many practice-oriented discussions.

I am also grateful to Thomas Soini, Alexei Matveev and Sven Krüger for their
valuable support and patience during our interdisciplinary discussion, and for kindly
sharing their deep knowledge in quantum chemistry.

I would also like to thank my two former office colleagues, Marcel Meyer and
Houssam Haitof, for the very friendly work atmosphere and for the discussions on
parallelism and ontologies. I also thank all my colleagues at the Chair for Computer
Architecture (LRR) for the creative atmosphere and the nice time we shared together.

There are also three extraordinary school teachers to whom I owe any of my aca-
demic results, and to whom I would like to thank now: my maths professor, Mr. Nicu
Miron, who taught us a very structured learning method and targeted problem solv-
ing approach; my physics professor, Mrs. Ana-Maria Nechifor, who showed me that
passion and hard-work can bring together great results; and my computer science
professor, Mr. Mihai Chelariu, who knew how to plant and grow the seed of this
great science field into the hearts and minds of his pupils.

I also thank Daniel Ratiu for always motivating and inspiring me in research and
academia and I thank Carmen Carlan for keeping the young and enthusiastic spirit.

Many thanks go to Bishop Sofian von Kronstadt for not letting me quit at a certain
point in time and for his entire personal support and guidance. A very big thank you
goes to my friends at the St. Silouan Chapel, as well, for their continuous support
and prayers.

And last but by no means least, thank God I’ve come so far!

ix

INTRODUCT ION

The time when people were astonished by what computers and machines in general
could do is long past. Nowadays, using email systems, GPS navigators or smart-
phones comes in as natural as walking or singing. Compared to the beginnings of
computer science, when computers were used only by highly qualified and special-
ized scientists, there is a clearly different trend now, the development of new tech-
nologies being highly targeted towards usability and end-user requirements/satisfac-
tion. It is the case for entertainment and games industry, for mobile communication
and business management. There are gadgets and software tools for almost every-
thing a user might need or wish for.

It is now the turn for the more specialized field of High Performance Computing It is time HPC meets
its users and shapes
itself for their needs.

(HPC) to enter this phase. A couple of years ago there were only few users willing
and able to make use of the tremendous computing power a supercomputer could
offer. These users were mainly big companies or governmental institutions, running
military code, financial forecasts or weather modeling. More recently though, more
and more middle to small research and production projects, from both academia and
industry, request computing power for their applications. It is time HPC meets its
users and shapes itself for their needs.

The presented work deals exactly with this challenge, the challenge of finding and
defining a meeting line between HPC and its users. More precisely, we analyse the
particular case of Performance Measurement and Analysis field, questioning what are
the needs of the current users and defining a means to both meet these needs and
facilitate new usability features.

The main group of users of HPC resources that we address is the one of natural
and computational scientist. Almost each of the main natural sciences has nowadays
developed a corresponding parallel computational track. We talk about physics and
computational physics, chemistry and computational chemistry, biology and com-
putational biology, neuroscience and computational neuroscience, and the list could
go on. Main HPC users are thus scientists and computational scientists of different
fields, who usually produce and work with simulation applications.

The first point on the meeting line is with no doubt the porting and deployment
of the simulations to supercomputers. This is where application developers rely on
the supercomputing centre support for information and know-how regarding that
particular machine on which they want to run their simulation. This step strongly de-
pends on both the implementation of the simulation and the architecture and system
setup of the machine. It means that one might have to cope with issues ranging from
simple library linking, to ports configuration, or even node topologies definition.

The steps we consider in our work though, are only those following the porting
step. We try to define the intersection line for the next two phases in the simulation
deployment, namely the measurement and analysis of the performance of the appli-
cation. The latter one is also very closely related to the optimization following it, as
optimization decisions are based on the performance analysis. We thus always have

xi

in sight that performance analysis and optimization have to share some "points" of
"the intersection line".

We introduce a new paradigm to define (something like) the space of all possible
intersection/meeting lines between HPC and its users. We call it the Domain Knowl-
edge and we define means for expressing and using it in the advanced programming
tools. It is based on the information that typical users already possess about their
applications, like specific parameter constraints, data dependency or execution pat-
terns, information which has to find its way through the code, up to the performance
measurement tools. There are thus three main challenges we have to address:

1. make users aware of the knowledge they hold and educate them in identifying
relevant domain specific information;

2. highlight the Domain Knowledge included in specific applications;

3. express application performance using Domain Knowledge native constructs.

making users aware of their knowledge

It might seem strange at a first glance that we have to convince scientists about the
science they know ... After all, users of HPC are scientists with deep knowledge in
their particular field of study. When translating this knowledge into coded applica-
tions though, most of the information suffers a transformation. What used to be aSimulation

applications reproduce
nature in a virtual

environment by
translating natural

science knowledge to
machine-executable

code.

well documented phenomenon becomes merely a list of function calls, what used
to be empirically studied and theoretically described complex structures become a
set of indexed arrays, and, in general, what used to be explicit knowledge of nat-
ural science, translates into implicit information expressed by means of instructions
and data flow, execution contexts and parameter restrictions. This is what actually
simulation applications primarily are: translations of natural science knowledge into
machine-executable models which reproduce the reality/nature by means of an ar-
tificial/virtual environment. The better the model, the more accurate the simulation
results. But better models usually mean larger models, more complex models, more
computation expensive models. This lead to computation power thirst and actually
to High Performance Computing development.

Natural science simulations in HPC experienced a few adjustment phases. First of
all, existing models had to be adapted and ported to the parallel environment. Af-
terwards, optimization of the used algorithms, methods and solvers gain importance
for the parallel performance improvement. Specialized parallel versions developed
to overcome common encountered issues and bottlenecks, like master overload in
master-slave patterns, or load imbalance for computations based on irregular grids.
In order to cope with and to enhance the features of compilers and hardware develop-
ing alongside the applications, two other means of adjusting and preparing the code
for HPC were taken into considerations: low-level optimization and application tun-
ing. This brought again new improvements in code performance, using techniques
like loop unrolling, array alignment, or cache optimization.

We are thus nowadays facing the challenge of having to run very complex modelsWhere is the natural
science behind all this

code?
and code on very complex systems, and all this with the best performance possible!
We struggle often on several optimization levels to achieve linear scaling and best

xii

execution times for the code we have ... but what is actually the main goal of the
application? What is that is being computed/simulated? Can we still see the forest
behind the trees? Where is the natural science behind all this code?

We introduce by Domain Knowledge the missing information layer, to hold just this
bird’s eye perspective of the application. As level of abstraction, it is situated just
above the application layer. As contents and semantics, it summarizes valuable in-
formation hidden implicitly in code or written down in "passive" comments or even
in published research papers. One could actually build a parallel to the comments
developers usually insert in their code: they do not influence the code execution and,
in general, some of the information is already implicitly included in code. Still, com- Domain Knowledge:

applications perform
just fine without
perceiving it, but they
could perform even
better if they were
aware of it.

ments are useful for further developers, for users of library interfaces, if that’s the
case, or just for the same developer when turning back to this code after a while.
The same could be said about Domain Knowledge too: applications perform just fine
without perceiving it, but they could perform even better if they were aware of it.

So what is this knowledge which scientists have but did not explicitly include
in their applications yet? One simple example could be shown from computational
chemistry field, more precisely from quantum chemistry simulations. Given is an ap-
plication which computes the geometry of a cluster of molecules composed of about
100 molecules of 3 different types. The simulation uses the conventional Fock matrix
construction for the two-electron integrals precomputing step and then the SCF ap-
proach to solve the Kohn-Sham equations. This information could be easily extracted
from the code itself too1, but it does not bring too much insight without the real
domain knowledge behind it. Both methods are, from a computer scientist’s perspec-
tive, computations on some array elements. It is the domain knowledge though, that
could explain what these arrays are and what are the dependencies and resulting
data flow. It is the domain knowledge that groups these arrays into orbitals or func-
tionals and decides upon which molecule type is likely to require more computation
time or more memory space. It is also the domain knowledge that explains which
integrals should be grouped and computed together and whether the resulting Fock
matrix will have a specific structure (and hence a particular memory access pattern).

highlight domain knowledge included in applications

We have shown so far that there is more information in the source code than we
actually use and there is even more information scientists hold and could be very
useful. How to express and highlight this information?

First of all, we have to identify the structure of the information we want to express. Entities

Most of the time simulations start from a set of formulae which are modeled by the
computational branch of that particular science field. Each variable and parameter
of a formula is translated to a variable or constant of the programming language.
But variables in formulae have their well established semantics, whilst variables of
programming languages are just data structures. We thus have a first type of domain
knowledge which has to be highlighted: semantics of the variables in formulae. We
call these constructs DK Entities.

The main part of the code is built on algorithms and solvers based on these formu- Operations

1 Techniques for extracting naming databases from codes are common in Domain Specific Languages
(DSLs)

xiii

lae and working with these variables. They mostly translate to functions or libraries
of functions, but again, there is more about a solver, for example, than it is written
using the programming language. A detail as simple as the current recursion step
is mostly missing. Another case which lacks of information is the case of message
passing implementations (MPI), where usually there is no clue about the pattern or
structure of data being exchanged. We thus identify the next type of domain knowl-
edge, namely DK Operations. These are using and processing the previously defined
DK Entities.

Even less documented in applications are the transitions between the differentPhases

phases of a simulation. Unlike operations, which are more or less statically describ-
ing the planned instruction flow, there are often cases where the application flow
depends on the computed values. A good example are the adaptive solvers, where
depending on the results of the computation for some points of the grid, a refinement
of it might be needed. In this case, usually the same operations will be applied again
for the new grid configuration, but for the simulation semantics it is another phase
of the computation which is being executed now. This is the third type of domain
knowledge, namely the DK Phases.

Looking at the three types of information we identified, one can observe that all this
knowledge is more or less orthogonal to the source code of the specific applications.
Thus the means by which we express the domain knowledge has to provide both
inside the code and outside the code documentation. We propose in this work the Lan-
guage for Domain Knowledge (LaDoK) based on the LaTeX syntax and acting like
both a documentation and annotation language. LaDoK includes exactly the three
identified constructs: entities, operations and phases. It gives developers and domain
experts the opportunity to enhance their application code with domain knowledge,
it helps performance analysis tools to carry out focused measurements, and it sup-
ports domain users in analysing the performance of their simulations, to mention
only some of the use cases.

express performance using domain knowledge native constructs

One of the advantages of using domain knowledge in applications is an enhance-
ment of the performance analysis processes. Structuring, defining and delivering
constructs like entities, operations and phases for own simulation code, gives the
developer the possibility to expose them to the performance measurement, analysis
and visualization processes too.

Performance analysis tools developed primarily as tools for the computer scientists
supervising their clusters and supercomputers. It is thus easy to understand why
such tools are delivering performance results targeted actually towards computer
scientists rather than towards natural or computational scientists, being thus not so
easy to use for common application developers. The same as for the case of different
optimization levels described above, performance measurement and analysis usually
limits itself to either very hardware-close properties like cache misses, stall cycles or
floating point operations number, or to analysing communication behaviour, mainly
MPI, for which it delivers results regarding, for example, broadcast synchronization
times, delayed receives or message size.

We introduce the DK Metrics to help performance tools and simulation develop-DK Metrics combine
domain knowledge

constructs with
common performance

properties
xiv

ers find a common workspace. These new metrics combine the domain knowledge
constructs explained above - entities, operations and phases - with the performance
specific measurements, like memory usage, computation time or communication pat-
terns.

One such metric is, for example, the Memory per Entity (MPE). It is much easier for
an application developer to decide upon performance and possible optimization of
their application if it were provided, for example, not just with the overall memory
usage information or the amount of allocated memory per each allocate function call,
but rather with the MPE information, the memory used by an entity throughout the
execution. For our previous example from computational chemistry, it would thus be
useful to see for which type of molecule is the memory being allocated, than just the
plain information about the function in which the allocation takes place.

Another example is related to the common load imbalance problems. It does bring
more insight into an application if, for example, beside the comparison between the
execution times of a specific function on different processes, the user would be pro-
vided with computation load analysis in terms of computed entities. Solutions for load
imbalance problems could thus be found, in the improved entities distribution, or
also in a per entity type operation customization.

Rather than being stand-alone metrics, DK Metrics are thought to be used in com-
bination with consecrated metrics. As stated before, Domain Knowledge does not
substitute the current performance measurement and analysis techniques, but rather
enhances them by adding to the existing frameworks a level directed towards appli-
cation developers.

For example, timeline visualization is proven to be very useful for visual qualitative
(compared to quantitative) performance analysis. The so called Iterometers, which
are another type of DK Metrics, use the timeline view to insert new information on
runtime events. For example, the multigrid level indicator, which marks the changes
between different levels of detail in the multigrid solvers.

contributions

The main contribution of the current work is the analysis and definition of the Do-
main Knowledge approach. Both the theoretical description as well as practical proof
were considered: related work research, problem formulation and solution descrip-
tion, implementation and evaluation.

Throughout the work:

• we identify and highlight the benefits of using Domain Knowledge. In partic-
ular, we focus on the performance measurement and analysis for simulation
applications in HPC;

• we define the Language for Domain Knowledge (LaDoK) as a means to express
Domain Knowledge;

• we define a new type of performance metrics, the DK Metrics, and analyse
their benefits in the analysis of both tracing and profiling performance mea-
surements;

xv

• we present our implemented LaDoK Framework, which provides the necessary
support to deploy LaDoK on real world applications;

• we present our implemented DK-enhanced performance tracing framework,
which features support for the DK Metrics along with common performance
analysis;

• we evaluate DK on the quantum chemistry application ParaGauss;

• we present deployment methods of DK for different application types: memory-
intensive applications, load-imbalance problems and multigrid methods.

This thesis is structured as follows.
In chapter 1 we describe the evolution of the computational sciences and we give

an overview of the main aspects in simulation engineering and the challenges which
scientific code has to face in HPC.

In chapter 2 we describe the state-of-the-art in performance measurement and anal-
ysis.

In chapter 3 we analyse which other fields from computer science make use of
domain specific aspects. We also look at the related work in the performance tools
context.

We then introduce our approach in chapter 4 and the LaDoK syntax and semantics
in chapter 5.

In chapters 6 and 7 we introduce the two frameworks which we developed.
Lastly, chapters 8 to 10 present a series of use cases for DK and chapter 11 summa-

rizes the thesis and provides future work idea.

xvi

CONTENTS

1 sciences in the hpc context 1
1.1 From natural to computational sciences 1
1.2 Simulation engineering 5
1.3 HPC challenges 8

2 performance measurement and analysis 11
2.1 Profiling vs. tracing 11
2.2 Instrumentation 13
2.3 Visualization and analysis 13

2.3.1 Visualisation 14
2.3.2 Analysis 15

2.4 Existing tools 15
2.4.1 Vampir and Intel Trace Analyser 15
2.4.2 Scalasca 16
2.4.3 TAU 17
2.4.4 Periscope 17
2.4.5 Score-P 18
2.4.6 HPCToolkit 18
2.4.7 Other projects 19

3 addressing domain aspects in applications/computer science 21
3.1 Contextual Design 22
3.2 Literate programming 23
3.3 Documentation extraction 24
3.4 Domain Specific Languages 25

3.4.1 ACES III 25
3.4.2 TCE 27
3.4.3 Broadway and Telescoping Languages 28
3.4.4 Some considerations on DSLs 29

3.5 Input and output formats 30
3.6 Domain-aware performance optimization 30

3.6.1 Performance mapping 32
3.6.2 Phase-based performance analysis 37
3.6.3 Custom metrics 38

3.7 Related work summary and conclusions 39
4 "harvesting" the domain knowledge 43

4.1 On information and knowledge 43
4.2 Our approach 44

4.2.1 Identification 44
4.2.2 Expression / definition 46
4.2.3 Application / usage 47

4.3 DK Concepts 47
4.3.1 DK Entities 48
4.3.2 DK Operations 48
4.3.3 DK Phases 48

xvii

xviii contents

4.4 DK Metrics 49
4.4.1 Memory per Entity (MPE) 50
4.4.2 Computed Entities Count (CEC) 50
4.4.3 Iterometers 50

4.5 Comparison to SEAA and NV 51
4.6 Conclusions 51

5 ladok - language for domain knowledge 53
5.1 Language features 53

5.1.1 LaTeX-like language 53
5.2 LaDoK syntax 54
5.3 LaDoK constructs 56

5.3.1 Entities 56
5.3.2 Operations 58
5.3.3 Phases 60

5.4 Extensions 61
5.4.1 Entitysets 61
5.4.2 Data type annotation 62

6 ladok framework 65
6.1 LDK Extractor 65

6.1.1 LDK Parser 67
6.1.2 LDK Directives Processor 72
6.1.3 LDK Instrumenter 76

6.2 LDK Objects 85
6.3 LDK Interface Library 88
6.4 DK Custom attributes 91

7 a framework for dk-enhanced performance analysis 93
7.1 The detailed performance analysis flow 93
7.2 Framework overview 97
7.3 Instrumentation 98

7.3.1 MPE metric instrumentation support 98
7.3.2 Iterometers instrumentation support 103

7.4 Measurement 105
7.4.1 OTF2 basics 106
7.4.2 DK Measurements Library 107
7.4.3 DK Traces 108

7.5 Analysis and visualisation 109
7.6 Extensions of the DK framework 110

8 use case : memory-intensive applications 111
8.1 Quantum chemistry application: ParaGauss 112

8.1.1 Density Functional Theory (DFT) 112
8.1.2 Implementation 116

8.2 Relevant Domain Knowledge 116
8.3 LaDoK annotations 118
8.4 DK Metric: Memory Per Entity 120

8.4.1 Result: proof of the DK dynamic information feature 121
8.4.2 Result: quantitative assessment of memory usage 124
8.4.3 Result: qualitative assessment of memory usage - evolution 126

contents xix

8.5 Conclusions 127
9 use case : load imbalance problems 131

9.1 Load balancing in ParaGauss 132
9.2 Relevant Domain Knowledge 133
9.3 LaDoK annotations 134

9.3.1 Distribution of quadrupels 134
9.3.2 Computation of quadrupels 134
9.3.3 Scattering of results 134

9.4 DK Traces 135
9.4.1 Work packages 135
9.4.2 Detailed processing costs 135
9.4.3 Results checks 136

9.5 DK Profiles 136
9.5.1 Workpackage grouping per execution time 136
9.5.2 Execution time per entity type 137
9.5.3 Execution time per operations group 138

9.6 Conclusions 138
10 further use cases 141

10.1 Multigrid-based simulations 141
10.2 Applications with dynamic performance 142
10.3 Particle simulator 145

11 summary and outlook 147
11.1 Future work 148

bibliography 151

L I ST OF F IGURES

Figure 1 A representation of the multidisciplinary nature of computa-
tional science both as an overlap and a bridge between natural
science, applied mathematics and computer science (adapted
from [40]). 5

Figure 2 The main phases in performance measurements and analysis:
instrumentation, execution, analysis tool-side, visualisation (anal-
ysis user-side). 12

Figure 3 Screenshot of a trace analysis with Intel Trace Analyzer. On
the top, the timeline view with 8 processes visible. On the
bottom, the pie diagrams for the function execution times per
process - 4 processes visible in the screenshot. The black lines
between processes on the timeline represent groups of MPI
messages. 16

Figure 4 Screenshot of the Scalasca visualisation window. The informa-
tion is being displayed in three fixed views, arranged in three
columns. On the left most column the user can choose the met-
ric to explore. Upon selecting an element in the left column,
the information in the middle column adjusts to show the val-
ues for the metric as per function call. Finally, on selecting a
function call, the distribution over processes and threads can
be seen on the right column. 17

Figure 5 Screenshot of the Periscope plug-in for Eclipse. Performance is-
sues are displayed in a table in the bottom view, together with
the computed severity. Upon choosing a specific item in the ta-
ble, the exact source of the problem is being highlighted in the
source code view in the middle. In the right view, the special
"src" configuration file offers an overview of all instrumented
regions. 18

Figure 6 Research and application fields which relate to Domain Knowl-
edge and their connecting points. 22

Figure 7 Two approaches for the relation between domain and applica-
tion. 23

Figure 8 Dual usage of a WEB file. Source: [37]. 24
Figure 9 CCSD doubles expression from quantum chemistry [5]. 27
Figure 10 Data view in Paradyn. 34
Figure 11 Schematic development timeline of an application and corre-

sponding research and application fields which tackle DK. 39
Figure 12 DK approach overview. 45
Figure 13 The main components of the LaDoK Framework. 66
Figure 14 Integration of the LDK Extractor into the f90inst execution pro-

cess. 67

xx

Figure 15 Integration of the LDK Extractor into the f90inst execution pro-
cess. Blue boxes belong to f90inst, while orange boxes belong
to the LDK components. 68

Figure 16 Usage of lex and yacc to generate the parsing function for pro-
cessing LaDoK annotations. The two generated functions are
used in the central parsing function of LDK Parser to process
the input annotation line. The results of this process are calls to
corresponding routines in the LDK Directives Processor. 69

Figure 17 Automatic instrumentation of calls to routines and interfaces. 81
Figure 18 Automatic instrumentation of definitions of routines and inter-

faces. 84
Figure 19 Data structures used to store the DK Objects. The Map denotes

a uthash implementation, while the element boxes on the right
are of type struct with corresponding fields. 86

Figure 20 The detailed steps of the performance measurement and anal-
ysis flow. 94

Figure 21 The main components of an DK-enhanced framework for per-
formance measurement and analysis. 97

Figure 22 Vampir screen for an MPI application. 110
Figure 23 ParaGauss general execution flow [6]. 117
Figure 24 Left: One call single call using two different entities. Right:

Memory allocations registered separately for each entity. 123
Figure 25 Left: Multiple calls for same entity. Right: 3 executions of the

code on the left: allocation and deallocations cumulated cor-
rectly to the same entity. 123

Figure 26 An initial memory allocation of 4.6 KB for an array with only
3 elements. 124

Figure 27 MPE for the Integrals entity. Top: Pd38-ar-OH configuration on
4 processes. Center: Pd38-ar-C1 configuration on 4 processes.
Bottom: Pd38-ar-C1 configuration on 8 processes. 125

Figure 28 Left: Similar calls for variables of different types. Right: Cor-
rect tracing of the allocated memory considering the different
sizes of the elements of the two matrices. 126

Figure 29 MPE overlay view on timeline. One execution of the do_one_block()
routine with the color-mapped size of the UFandUB entity as
an overlay. 127

Figure 30 MPE behaviour for one run of the do_one_block() routine and
several entities. 129

Figure 31 Message Summary view in Vampir for the default Score-P
tracefiles. 137

Figure 32 Process Summary view in Vampir for the default Score-P trace-
files. 139

Figure 33 Performance of INDEED, measured as CPU time per itera-
tion. 143

Figure 34 Performance properties reported by the automatic analysis method
of the time step adaptation strategy 1 [50]. 143

xxi

Figure 35 Hypothetical case highlighting DK Phases for strategy 1 in fig-
ure 33a. 144

L I ST OF TABLES

Table 1 Some Widely Used Domain-Specific Languages. (Table adapted
from [44]) 25

Table 2 Classification of the related works, based on their contribu-
tions to DK. 41

Table 3 Comparison between the computed size and the actual size of
some variables of custom types, when padding is used on a
64-bit platform. 104

L I ST INGS

Listing 1 A SIAL code fragment [68] 26
Listing 2 A TCE code fragment [5]. 28
Listing 3 A fragment from a CML file storing computational chemistry

output [58]. 31
Listing 4 Example CM Fortran program [34] 32
Listing 5 A hypothetical particles simulation [73]. 35
Listing 6 Integrating the SEAA concept using timers [73]. 36
Listing 7 Grammar of LaDoK . 55
Listing 8 Simple entity definition within a Fortran code fragment. 56
Listing 9 An entity definition example, featuring extension, nesting and

statement interposition within a C code snippet. 58
Listing 10 Declaration of tokens used by LDK parser. File: ladok.l. 70
Listing 11 Definition of rules which match the annotation for the begin-

ning of an entity. File: yacc.y. 70
Listing 12 Comparison between the definition of entities in the LaDoK

grammar and the definitions used in the syntactic specification
for yacc. 71

Listing 13 Semantics of DK operations covering dynamic aspects. 75
Listing 14 Declarations of functions and subroutines in Fortran supported

by our framework. 77
Listing 15 Short example of entities declaration. The dynamic semantics

is given through the subroutine calls. 79
Listing 16 Examples of call statements for routines which have optional

initial arguments and could be instrumented or not with the
optional extra argument ldk_flags. 82

xxii

Listings xxiii

Listing 17 Declaration of three nested entities. 87
Listing 18 Looking up an entity by its name. Implementation based on

the UThash functions. 90
Listing 19 Excerpt from an ASCII file storing DK objects. 91
Listing 20 Instrumentation for MPE support. 101
Listing 21 Typical pseudocode for the main function of a multigrid method. 142
Listing 22 A hypothetical particles simulation [73] with corresponding

LaDoK annotations. 146

1
SC IENCES IN THE HPC CONTEXT

Regardless of the science field we would talk about, one cannot imagine research
nowadays without computers. Be it history or linguistics, geology or music, any re-
search work will be at least written in electronic format, questions and answers will
be exchanged via emails, world wide web will be used as a huge library and results
database.

There are some specific research fields though, where computers became noth-
ing less but the key for their entire research work. It is the case of the relatively
young computational sciences, which developed along the well established natural
science research fields. Almost every natural science has nowadays a correspond-
ing computational branch: chemistry - computational chemistry, physics - computa-
tional physics, biology - computational biology, finance - computational finance, as-
trophysics - computational astrophysics, neuroscience - computational neuroscience,
and the list could go on. As their name implies, the main goal of this class of sci-
ences is to find results and answers to scientific questions using computing methods,
as opposed to the classic methods of theory and experiment. And what else would
suit better for solving computational problems if not computers themselves? As a
result, many scientific applications and simulation software emerged in the comput-
ing world and pushed computer scientists and engineers to deliver more and more
computing power.

High Performance Computing (HPC) came as an answer to the computing demand
and developed meanwhile into a research branch of its own. It aims to provide ad-
vanced computing systems and tools, on which simulations can be run at high per-
formance. As there is no such thing as a free lunch though, using HPC brings along
several challenges which both computational scientists and computer scientists and
engineers have to learn to cope with.

1.1 from natural to computational sciences

At their very beginnings, natural sciences developed from humans’ quest to under-
stand nature, to explain the world surrounding them. At about 600 BC, Thales of
Miletus, who is now considered "the father of western natural sciences", refused to ad-
mit the supernatural or mythological explanations of natural phenomena and set his
purpose on explaining them by referring to the natural processes themselves. Thus
the first principles of the nature of objects appeared and hypothesis regarding their
specific behaviour were advanced. A remarkable contribution followed afterwards
from Aristotle who brought the previously rather speculative work towards a more
empirical approach, based on observation, analysis and categorization. As a result,
physics, cosmology and biology teachings started developing towards stand-alone
sciences; chemistry followed only later in time, when it managed to replace alchemy,
which, in its quest for the philosopher’s stone, managed to carry its mysticism over
centuries to go.

1

2 sciences in the hpc context

Natural sciences started thus as rather descriptive works, mainly based on em-
pirical investigations. The tendency changed gradually towards more explanatory
approaches and along with that grew the importance of mathematics in the study of
sciences too. If at the beginning only few mathematics were used, mostly geometry
and basic algebra in astronomy and physics, the situation changed with the 16th cen-
tury, when the potential of more advanced mathematics tools began to be perceived.
It was not to be waited for too long though, as the period known as the Scientific
Revolution brought along a huge step forward in both natural and formal sciences.
Enjoying now much better means to express thoughts in an abstract manner andFrom philosophers to

scientists disposing also of the scientific methods developed over the time, the once called nat-
ural philosophers changed to become natural scientists. It is at that time that Galileo
promoted the idea that mathematics provided the certainty which was necessary in
science. Hence experimental measurements and observations were now to be com-
pared and validated against the mathematically computed values.

Computing emerged basically as a means to evaluate theories and experimental re-Computing for
evaluating, computing

for exploring
sults against each other. Just a few centuries afterwards though, the advanced mathe-
matical models used in all natural sciences were pushing human curiosity again. This
time the quest was, for example, that of finding valid solutions in a huge spectrum
of candidates, or exploring behaviour of matter at its natural limits, limits which
could not be reproduced in laboratories or, if so, only at very high costs. Knowledge
did not need to be validated anymore, but rather enriched and deepened with new
information, new solutions and insights.

Computing machines came as a solution to overcome the human computing limi-
tations. Even simple pounchcard-controlled systems were able to perform way more
computations than would have been possible by "human force". But operating com-
puters was not really an easy task to do and hence only a limited group of scien-
tists and engineers would eventually learn how to use them. In the last decades this
changed to having scientists that had to develop programming skills, but in the same
time deepen in the computational view of their own research field. These are nowa-
days the computational scientists. They are most like the early natural philosophersComputational

laboratories:
experiment with

virtual replica of the
real world.

and the practical scientists nowadays, in that they have some kind of experimental
laboratories, set up from dedicated hardware, software frameworks and libraries, and
they develop new scientific methods when they design their models and algorithms.
In the same time, they also differ from the previous scientists, due to the great new
challenge they have to face: they basically have to first create a complete virtual replica
of the real world in order to be able to analyse and understand it. They need to mir-
ror all structures, rules and behaviour of nature in a way that they can be processed by
computers but in the same time remain consistent with their initial model, the nature
itself.

computational by nature

Most scientific applications target some kind of numerical calculations of data.
In Computational Chemistry, for example, the goal is to determine different chemi-Computational

chemistry cal and physical properties like energy, forces or geometry of atoms, molecules and
clusters of molecules. The main challenge is that of calculating the electronic struc-
ture of the multi-electron systems, as all other properties can be accessed from this

1.1 from natural to computational sciences 3

information. The starting point is the Schrödinger equation, for which several solv-
ing approaches were proposed over the years. Important to be mentioned here is
the fact that all of these methods eventually use an approximation step - commonly
the Born-Oppenheimer approximations [2] - which means that, except for the most
simple atom - the hydrogen, no exact solution is being computed. This is why several
methods had to be developed, as each of them is suited for a specific use case. It is
thus in "the art of computing" to know which combination of solvers, functionals and
approximation parameters to use for every particular problem. By problem we refer
to both the type and size of the chemical system, as well as its specific property that
has to be computed.

The Hartree-Fock method (HF) was introduced just some years after the Schrödinger
equation was published1. As known to the day, Schrödinger equation cannot be
solved exactly, except for one-electron atoms, and thus the solution of any system
larger than that had to be approximated. Hartree’s assumption was that the exact
N-body wave function of a system can be approximated by the N-spin orbitals of its
components. In other words, the exact molecular orbital (MO) can be approximated
by an expression2 of the individual electron orbitals (atomic orbitals - AO).

The HF method exhibits a high computation demand and it remained poorly used
until the introduction of electronic computers in the 1950’s. Another disadvantage
of the method was represented by the fact that it did not account for the correla-
tion energy of the electrons, which means that the computed energy values were
impracticable for molecules with large number of electrons or with bound breaking
behaviours [26]. There was effort put into finding methods for compensating this
shortcoming by adding approximations for the correlation energy at later steps in
the solving process. Variants of the HF like Møller-Plesset of n-th order (MPn) and
Conjugate Gradient (CG) were developed, but in the end all these methods did not
enjoy a wide spread acceptance.

What came in as a breakthrough among the computational methods, though, was
the shift towards a more intuitive theory, as introduced by the Density Functional The-
ory (DFT)3. Although not accepted at the beginning in computational chemistry due
to its large errors in molecular calculations, DFT made soon enough its way through
the "legitimate quantum methodologies" and it is now the most widely spread com-
putation method used by computational chemistry in HPC. Using the last develop-
ments in theoretical approximations, DFT delivers almost exact energy values and it
is also much less computation demanding than HF.

Even if the "success key" was the switch from the uninterpretable wave function4 to
the physical observable electron density [12], there was still lot of effort to be invested
in efficient implementations for parallel computers. Jong et al. offers a great survey
in [35] on the development and current status of computational chemistry. We refer
to some of these aspects in section 1.3.

To grasp the real importance of such applications and understand the attention
given towards continuously improving both prediction power as well as computa-
tion speed, it is enough to look at the computational chemistry applications within

1 Schrödinger equation - 1926; Hartree method - 1927; Hartree-Fock method - 1935.
2 Hartree-Fock method uses the Slater determinant.
3 Hohenberg-Kohn theorems - 1964 [30]; Kohn-Sham equations - 1965 [38].
4 As Cramer says in [12] "a wave function is an inscrutable oracle that returns valuably accurate answers

when questioned by quantum mechanical operators, but it offers little by way of sparking intuition".

4 sciences in the hpc context

materials science and within related industries: solar cells are based on the thin-film
material technology, computer chips depend on the nano-materials fabrication, poly-
mers and plastic industry rely on the chemical catalysts [11]. It is no wonder that a
large percentage of CPU hours on supercomputers are currently being used by DFT
computations.

Talking about importance, materials science highly depend on the computationalComputational physics

chemistry, but there is also a strong dependence on other scientific fields, and among
those Computational Physics occupies by far the first place. As a matter of fact, some
fields of the computational chemistry are so tightly connected with computational
physics, that there are even research branches like Physical Chemistry or Chemical
Physics.

There are very many other fields in physics though and most of them have nowa-
days a computational branch. The chronological pattern already described for compu-
tational chemistry applies for most of these other sciences: starting from a given the-
oretical principle, one has developed numerical solutions based on approximations,
existence and convergence theorems. These were translated to corresponding algo-
rithms, once programmable computers appeared, followed by successive improve-
ments of both the implementations and the methods behind.

In the following we mention only few physics branches which are of importance
for the HPC field.

• Molecular Dynamics (MD): unlike computational chemistry which basically looks
inside the molecules, MD looks at molecules and atoms from outside, studying
their physical movements and interactions.
The computations in MD are based on solving Newton’s equation of motion
for a system of interacting particles [62].
MD application fields include biochemistry for molecule docking and protein
structure determination.

• Computational Fluid Dynamics (CFD): aims at analysing problems regarding fluid
flows [88]. CFD methods are based on solving Navier-Stokes equations using
a discretization method like Finite Volume, Finite Element, or Finite Difference.
Application areas range for automotive industry to aircrafts and wind turbines.

• Astrophysics: actually part of astronomy, it deals with the physical properties
of celestial objects, as well as their interactions and behaviour. In astrophysics,
very many disciplines of physics are applied [27].

computational by "brute force"

All of the computational applications mentioned so far could be classified as being
numerical intensive. That means that results are based on a large amount of calcula-
tions, mainly evaluating numerical formulae.

There is another increasing group of applications though, which is gaining field
in the HPC. These applications do not mainly rely on numerical calculations, but
rather on huge data processing activities. They can be characterized as data-intensive
applications. Data in this case can be either input data, as for data mining and other
search-related applications, or output data, as in weather forecasts.

1.2 simulation engineering 5

Natural
Science

application

Math

techniqueshardware
software

Computer
Science

Computational
Science

Figure 1: A representation of the multidisciplinary nature of computational science both as an
overlap and a bridge between natural science, applied mathematics and computer
science (adapted from [40]).

One typical example are the applications for drugs discovery in the biochemistry
field. These applications are based on the molecular docking approach and they
search for combinations of keys - small drug molecules - which fit into the given
lock - proteins [2], [43]. The single fitting checks are not very compute expensive, but
there are very many combinations to try out.

Another interesting example comes from the computational neuroscience [81] which
aims at mimicking the human brain connections and activity by using computers.
The theoretical number of required computing units is comparable to the number of
neurons to be simulated.

1.2 simulation engineering

If theory applies theorems and rules, and practice carries out experiments and mea-
surements, than the computational side of the scientific work uses mainly computer
simulations. At the beginning, simulations emerged as a means to mirror the way
nature works. It was an opportunity to replace expensive or impractical experiments.
Think about crash experiments in automotive industry or star collision, for example.
On the other hand though, simulations do not only replace experiments, but actually
stimulate a new way of thinking. Computational potential inspires new questions to
be answered, new views to be explored. Landau, Paéz, and Bordeianu explains in
[40] that computational science is not just simply the overlapping of three other sci-
ences, namely, Computer Science, Mathematics and a Natural Science (see Figure 1), but
represents a field by its own, bridging these other sciences together.

It is worth having a look at the main components of the bridging area in com-
putational science, as these are the ones leading both the challenges as well as the
achievements of simulation applications.

As seen in the previous section, all computational "native" sciences are based on Mathematical formulae

a mathematically formulated principle from theory: Schrödinger equation for com-
putational chemistry, Navier-Stoke equations for CFD, Einstein’s general relativity
based equations for astrophysics and so on. They define the unknowns or variables
to be computed, and the operators, functions and relations between them. It is im-

6 sciences in the hpc context

portant to be mentioned here, that these mathematical models represent the linking
point between the real nature and its virtual representation. Hence, for the latter
one, mathematical models represent the truth which needs to be followed. The mod-
els could state, for example, which values are allowed for specific variables and in
which parameter configuration, or whether two terms depend on each other or not.

The main issue about the equations mentioned above is that they cannot be solvedNumerical methods

directly, and hence numerical methods have to be applied. In order to do so, most
equations are translated into an algebraic form, involving usually matrix and vector
operations.

Numerical solutions bring along an important challenge: computational errors.
These can result from the numerical approximation, like discretization and trunca-
tion errors, or from computer number representation, like roundoff errors. No matter
which kind of errors, they all have to be assessed quantitatively along with the cho-
sen computational method, but also validated qualitatively from the natural science
point of view.

Classical examples of numerical methods include, but are by far not limited to QR
factorization, Jacobi, Gauss-Seidel and Runge-Kutta methods or multigrid solvers.

The path from the numerical algorithm to the working simulation application isComputer applications

neither straight, nor neat. First of all, one has to carefully select the programming
language. It is not just about learnable programming skills that one or the other might
acquire, but it is more about language particularities and limitations that strongly
influence the quality of the future simulation. Common programming languages for
large simulation codes include C, Fortran or Matlab, but other languages like R or
Python are becoming prevalent too.

Recently, an increased attention has been given to the architecture of the machines
on which simulations are to be executed. Multi- or many-core systems, graphic cards
(GPU) or general purpose processors, clusters or single powerful machines, provide
as many potential execution environments, which should be carefully thought about.

Another trend regarding the simulation applications is the software composability.
This has its roots in the advances of computer science techniques beyond object-
oriented programming, to plug-in based frameworks. Computational scientists dis-
pose nowadays of a large database of libraries and software packages for almost any
method or solver, which are deployed mainly as black-box sub-components of larger
simulations. One is thus spoilt for choice, as it is not an easy job to choose the perfect
solver implementation, given a particular sub-problem. For example, one cannot rely
only on the API description of a library alone. The choice for one specific library or
the other should be backed-up by a good knowledge and practical experience in the
scientific application field.

What Hamming was saying in the 70’s about numerical methods 5 could be ex-Simulation data

trapolated nowadays to simulations: "The purpose of simulations is insight, not data.".
Still, in many cases handling the simulation data requires special attention due to the
challenges it could present.

One such challenge is the size of the data. No matter if input, output or intermediate
data, size has always been a problem. For the first two types of data, I/O operations
are the main issue: reading and writing data has always been slower than process-
ing/using it. As for the runtime or intermediate data, it is the problem of the limited

5 Exact quotation: "The purpose of computing is insight, not numbers." [23]

1.2 simulation engineering 7

main memory size. Although it offers a much better access speed, it does not com-
pare in capacity with the secondary memory. This is the no free lunch of the memory
systems: speed versus capacity.

Fortunately, most simulations only have to deal with one of the two challenges: it
is either I/O or main memory excessive load, but only seldom both at a time. Data-
intensive applications have either large input data sets, for example the data-mining
or visualization applications, or large output data sets, like applications from molec-
ular dynamics, CFD or weather and climate modeling. On the other hand, memory-
intensive applications do not have large input or output data sets, but need and gener-
ate during computation large intermediate data sets. This is the case for applications
from bioinformatics and quantum chemistry and for simulations involving graph
algorithms [75].

As strange this might sound, simulation parameters are the most fuzzy, almost Simulation parameters

mystical part of the simulation engineering. We refer here by parameters to all values
fed to the application either as input data, as environment or startup settings, or even
as hard-coded constants. It is often the case that these parameters, although mostly
simple integer or floating point values, posses a kind of magic, with whose absence
one could not even start the simulation, not to mention about getting correct and
useful data.

Parameters are very tightly related to the scientific domain and particular prob-
lem an application deals with. Much like in the experimental approach, where the
scientists carrying out lab experiments are very much aware of the quantities they
are working with - milligrams of chemical substance, voltage on a circuits board,
radiation intensity, etc. -, the same applies for computational scientists using their
simulations: they have to have a sense of what the maximum iterations count should
be, which extra environment variables to set, or which grid size to use.

More often is not even the exact value that is needed, but at least the order of
magnitude of that parameter. A good example in this sense is given by the time
values for Molecular Dynamics simulations [62]. Newton’s equations of motion for a
very large system of interacting particles have to be solved in this case. There are two
time-related questions for the simulation:

total time duration : what is the time span that should be simulated?

timestep : what is the time span between two successive evaluations of the forces
acting on the particles?

For the first parameter, one has to consider two contradictory aspects: on the one
hand, simulations should be relevant for the natural process they mirror and hence at
least as long as one "step" in the kinetics of the simulated process. One cannot analyse
the walking process from just half of a footstep. On the other hand though, due to
the large amount of particles, simulations are very ill-conditioned, which means that
the computation error propagates and amplifies with the number of iterations, and
hence with the total time duration. Under these constraints, simulations for DNA,
for example, have a total simulated time spanning from nanoseconds (10−9 s) to
microseconds (10−6 s).

Regarding the other time variable, its lower and upper limits are given by other
two constraints. First of all, evaluating the forces acting on the particles is very time
consuming, so one would like to have as less evaluations or iterations as possible,

8 sciences in the hpc context

and hence as large timesteps as possible. Think about the fact that a DNA simulation
of the order of microseconds might require as much as a couple of CPU-months or
CPU-years to complete. In the same time, a too large timestep introduces discretiza-
tion errors, and hence it should be smaller than the fastest vibrational frequency in
the system. This is why a typical time span for an iteration is only in the order of
femtoseconds (10−15 s), which is by some orders of magnitude smaller than the total
time duration mentioned above.

1.3 hpc challenges

We have seen so far that simulations "thirst" for computational power. It is now time
to see which are the challenges that simulations have to overcome in order to access
this power on the HPC systems.

As HPC gains its tremendous computational power by integrating a large amount
of nodes of medium performance, it is obvious that the prerequisite for any applica-
tion to run on such a system is to be implemented with parallel support. Nowadays
solutions include either combinations of a common programming language, like C or
Fortran, and a library for the parallel support - here MPI and OpenMP implementa-
tions are by far the most widespread solutions -, or specialized parallel programming
languages and extensions like UPC, HPF, X10, Charm++, Cilk, and the list could go
on.

It is out of the scope of this section to argue about advantages or disadvantages of
the different programming languages, neither about the parallel software design. For
these topics we refer the interested reader to [look for references]. We rather want
to give a picture of the basic challenges of parallel implementations in general and
move on to the similar issues in the HPC context, always keeping in sight the natural
sciences behind.

Parallel computing implies two closely interrelated concepts:

work distribution : each computing unit executes only a part of the entire com-
putation work

data distribution : each computing unit uses or processes only a part of the sim-
ulation data

In literature one distinguishes between distributed and parallel computing [57], we
shall use the terms in this section interchangeably, closer to the parallel meaning.

Intuitive examples for parallel computing are delivered by CFD simulations. Given
is a simulation domain - a parallelepiped for example -, the properties of a fluid
which flows into this domain, possibly an obstacle inside the domain - a cylinder or
alike -, and the initial pressure, temperature and velocity conditions. Required is the
state of the fluid inside the domain at a given point in time.

In order to solve the Navier-Stoke equations, the domain is discretized to a grid of
points. The way the work should be distributed is straightforward: each processing
unit solves the equation only for a subdomain of the entire computation domain. This
determines the data distribution too, namely each processing unit receives and holds
the data of the grid points it computes for.

Two questions arise though even for this very simple scenario: in order to evaluateData dependency,
communication and

synchronization

1.3 hpc challenges 9

the velocity at one grid point, one needs information about pressure from the neigh-
bouring points. This means that for the grid points situated on the boundary of a
subdomain, information held by another processing unit, the one computing for the
neighbouring subdomain, is needed. Moreover, the values required from the other
processor have to be from exactly the same timestep as the one of the computation
on the current processor. Data dependency, communication and synchronization are thus
key issues in parallel computing.

The same principles apply when talking about High Performance Computing too,
but in this context the large scale characteristic adds up for the level of complexity of
each of them.

We use the same example to show another challenge which comes along with this Granularity

large scale characteristic. Consider now that the number of available processing units
is so large, that each one would receive a subdomain of only few grid points to work
with. In the same time, it will still have to communicate with all of its neighbours to
exchange computed values. Communication is much slower then computation, and
thus too less computation always results in processors being idle while waiting for
communication to finish. One talks about the granularity of an implementation to
relate to the amount of work a processor is executing between two consecutive com-
munications. Embarrassing parallel applications have the ideal situation where no
communication is needed during computation, like the QCD codes for example. All
other applications have to find the optimal combination of computing and communi-
cating.

Another straight forward example of how common issues in parallel computing
grow worse when changing to large scale computing is given by the very common
master-slave paradigm. Consider the case where work packages are not statically de-
fined by the computation domain, like in CFD, but have to be dynamically allocated
at runtime. For a rather small number of total processing units it should be enough,
if one processor took the master role and distributed upon request work packages for
all the other processes, called now slaves. What happens now, if the number of slaves Master-Slave

bottleneck in HPC: too
many slaves for one
master

increases by some orders of magnitude? Depending on the size of the work chunks
too, the master will be soon overloaded by work requests. In the same time, the slaves
will be idle waiting for work packages. This is one kind of performance bottlenecks in
parallel computing which are most easy to be detected.

The talk about dynamic work allocation brings us to the next very interesting and
demanding subject in HPC, namely load balancing. As long as all working nodes have
the same amount of computation to carry out, it is said that the overall execution is
load balanced. If, in contrast, some nodes have more work to do than others, then the
computation is load imbalanced. The problem is that in load imbalanced simulations
some of the nodes are idle, while they could help other nodes and thus the entire
computation would be accomplished faster.

Computational load depends, of course, on the size of the work chunks each node
has to take care of. Again, the ideal situation is the one similar to the CFD example
mentioned previously, where all processing units receive equal subdomains to work
on.

Things are not that trivial in all applications, though. In the implementation of Difficult to balance:
two-electron integralsthe HF and DFT methods referred in the previous section on Quantum Chemistry,

achieving a load balanced computation of the two-electron integrals is a complex

10 sciences in the hpc context

job. The computation time for such an integral depends on the one hand on the
angular momentum of the two electrons considered, and on the other hand on the
contraction of the basis functions. A highly contracted basis function will impose a
larger computation time due to the increased number of floating point operations
required to use this function in the computation of the integral [35]. It is only with
careful consideration for integrals grouping and reusage of intermediate computation
results, that a balanced computation loading could be targeted.

An emerging challenge specific for the large scale computing systems is the faultNew challenge in HPC:
fault tolerance tolerance. Given the increasing number of computing nodes on each machine, the

probability of a fault occurrence is getting large enough to make a difference. For
exascale computing it might be expected for example, that the node fail rate will be
less than an hour. This is much less than complex simulations need to finish their
computations. Current applications do not account for the possibility that a node
delivers wrong or no results at all. Solutions and support is to be sought for at the
edge between computer science and computational science in research topics like
check-pointing or recursive protocols.

2
PERFORMANCE MEASUREMENT AND ANALYS I S

The huge computing power which High Performance Computing systems offer nowa-
days was asked for mainly by simulation developers and scientific application users.
Their argument therefor was commonly expressed as a time requirement: "we need to
compute the results faster". But for such complex hardware architectures and systems
like those in HPC, "faster computing" is not anymore simply based on the improved
CPU clockspeed. Even for simple end-user systems, when it comes to appreciate the
system’s performance nowadays, one considers besides the frequency of the proces-
sor, at least the number of cores and the amount of main memory. Even more for
HPC, one has to consider components and values like cache memory size, bus band-
width, or hardware accelerators to just get to a rough idea about the performance of
a single node or socket. It follows then the network connection between the nodes
and between the racks of nodes, with particular topologies and access speeds and we
start to realize just about how many components contribute to achieve the otherwise
simply formulated requirement - "faster computing".

Unfortunately, simply running an application on a high performance system, does
not implicitly mean that the application executes with a high performance, too. As
also seen in section 1.3, one needs to tune their application in order to take advantage
of the computation power. Even though the system is able to perform a huge number
of floating point operations per second (FLOPS), there might be many idle times,
due to synchronization points for example, where some processes wait for other
processes to finish their work. In this case, the results are indeed computed very fast,
but the overall execution and final results delivery might not be accomplished as fast
as expected.

Moreover, current trends in HPC add new performance requirements for applica-
tions. It is no longer just the time component that is important for the execution, but
also resources utilization, efficiency or power consumption, like in green computing
or environment friendly computing.

In this context, where application performance is influenced by so many hard-
ware and software properties and is combined with different economic terms too, it
is almost impossible to properly track and evaluate performance without using ap-
propriate tools. Such tools have already been developed and they are based on the
performance analysis flow depicted in figure 2.

In the remainder of this chapter we first discuss each of the four main phases of the
performance analysis flow, together with the basic concepts used in the Performance
Measurement and Analysis field, and then we provide a short overview of the main
existing tools.

2.1 profiling vs . tracing

In order to address the performance of an application beyond the mere overall execu-
tion time, one needs a more or less complete image of the behaviour of that specific

11

12 performance measurement and analysis

Instrumentation

Measurement
profiling or tracing

Analysis
tool, automatic

Visualization
user analysis

Figure 2: The main phases in performance measurements and analysis: instrumentation, exe-
cution, analysis tool-side, visualisation (analysis user-side).

application. One needs a profile where relevant information with respect to execution
characteristics and settings are gathered.

There are mainly two methods used by the current tools to create such profiles:
profiling and tracing.

profiling : in the profiling method, performance properties are accumulated and
processed throughout the execution, such that in the end only the representative
value is presented for each such property. For example, the total cache misses
count, or the execution time of each function.

tracing : compared to simple profiling, tracing delivers more detailed information.
Each measured property or intercepted event is stored over the execution, such
that in the end all these values are available, not just the accumulated end val-
ues. For example, one could check how many cache misses occurred throughout
different calls of a function, instead of only considering the overall count.

Very often, a timestamp is associated to the measured values and thus events
can be correlated in order to deliver more insight into the execution flow. For
example, this is the case for send and receive events in a message passing based
implementation: late sends could be detected, in that the timestamps of the
send-receive pairs are compared with each other.

Which exact information is being gathered either by profiling or tracing, depends
on the tool capabilities, the libraries and the hardware support and it can include:

• time information: timestamps, execution times;

• counter values: software counters (e.g. function calls count), or hardware coun-
ters (e.g. cache misses, stall cycles);

• MPI and OpenMP events: MPI sends and receives, OpenMP barriers, etc.

• system status: memory or CPU usage.

2.2 instrumentation 13

Depending on the type of information which has to be gathered, the tools imple-
ment either an event-based strategy, where every new event triggers a new record in the
profile log, or a sampling-based strategy, where the status of the execution is checked at
fixed time intervals. The first strategy applies, for example, for MPI communication
events, while the second strategy is used for counters interrogation.

In order to have a complete performance profile, one would have to store all events Overhead and
limitationswhich occur throughout the execution and all counter values, at the highest sampling

rate possible, of course. But this is mostly impossible, or highly unfeasible, especially
for tracing long-runnig or large scale applications.

On the one hand, large execution times for applications using many processes or
threads, generate a very large amount of tracing data, which might just not fit on
the machine. The size of the data increases with the number of events and with the
sampling rate.

On the other hand, any profiler or tracer introduces some overhead, which also
depends on how "agressive" their measurement strategy is. The more queries or write
commands, the larger the overhead introduced.

A good balance of the amount of measurements and of the stored data is needed.
A common practice is to first run profiling measurements for an application, then

based on the results, spot the possible performance bottlenecks and then run tracing
measurements targeted to the identified possible problematic spots.

2.2 instrumentation

Some of the information gathered by the performance tools can be retrieved directly
from the environment where the application is being executed. Such are the informa-
tion regarding the main memory status, which is received from the operating system,
or the values of the hardware counters, which are provided by special libraries.

But there is also information which cannot be retrieved without direct support from
inside the application itself. Take for example, the value of a loop counter. There is
no means to retrieve this information, but only by inserting in the application a call
to a back-end library in order to expose it. This process of modifying and enriching
the application for performance tools support is called instrumentation.

Current performance measurement tools implement instrumentation either at the Source code and binary
instrumentationsource code level, at some intermediate code level, or directly in the binary of the ap-

plication. If the user is given the possibility to insert own instrumentation calls, then
this will happen at the source code level and it is labelled as manual instrumentation.
The other option is the automatic instrumentation, which is done by tools based on
their standard strategies, as well as based on the parameters and settings specified by
users. For example, one might choose to instrument only MPI calls, or to leave aside
from the instrumentation some modules or source files.

2.3 visualization and analysis

The whole purpose of running performance measurements after all, is that of finding
out how good the performance is and whether it could be improved. Hence, after
having instrumented an application and having executed profiling or tracing runs on

14 performance measurement and analysis

it, it is time to see what the performance is and decide upon possible improvements:
visualisation and analysis are the key steps leading to performance optimization.

Due to their strong interdependence, one could argue about the appropriate order
in which these two steps should be considered. In figure 2 we present analysis as
preceding the visualization step, while here we are stating that one first has to see,
i.e. visualize, in order to be able to decide, i.e. analyse. The key for answering this
problem is to differentiate between the tool-based analysis and users’ analysis. From the
perspective of a profiling tool, the analysis comes right after or during data acquisi-
tion. The raw data is processed and the results are delivered for being visualised by
users. From a user’s point of view, the performance data must be first looked at, in
order to be able to draw some analysis. Following the main idea that Domain Knowl-
edge should penetrate from the abstract layer to the low-level layer, we present in this
section the second perspective.

2.3.1 Visualisation

As shown above, there are many factors and data which build up what is called the
performance of an application. It is thus to be expected that there are also many ways
in which performance profiles can be displayed.

Consider, for example, time measurements. One straightforward solution is the sim-Raw, text output

> Time measurements:
main() 30.5 s
gen_matrix() 8.3 s
distribute() 5.9 s
comp_idx() 5.2 s
...

ple tabular or ASCII output of the elapsed time for each function or instrumented
region. This is useful for a fast check or comparison of execution times.

A step towards improved visualisation and analysis experience is to process the

Processed values
> Time measurements:
main() 30.5s 100.0%
gen_matrix() 8.3s 27.2%
distribute() 5.9s 19.3%
comp_idx() 5.3s 17.3%
...

raw measurement values and to provide with extra information. The most simple
example in our case are the percentage values. The percentage of the total execution
time spent in a specific function is a better means to express the cost of a function,
than the sheer absolute time values.

Another plus is brought along by combining related measurements or informa-

Correlated
measurements

> Time measurements:
 Total Self
main() 30.5s 0.9s
 gen_matrix() 8.3s 2.0s

 comp_idx() 5.3s 5.3s

 distribute() 5.9s 5.9s

...

tion, and thus enabling additional concepts. For example, combining the time mea-
surements we already mentioned and the call tree information, enable the simple
but powerful concept of inclusive/exclusive execution time. The inclusive time is the
time spent from entering a function until returning. The exclusive time is the time
spent in the body of the function alone, also called "self-time". The call tree gives the
information about which functions were called from inside a specific function. The
exclusive time for this function is given by subtracting the time spent in this calls
(inclusive times) from the own inclusive time.

All these types of information - raw, processed, correlated - build up the quanti-

Graphical visualisation

tative and objective support for the performance analysis: fixed values, numbers and
mathematical relations. This might be enough for the few users which are very skilled
and experienced, but the majority users would benefit a lot if this was backed up with
a qualitative and rather subjective support: colors, space perception and data naviga-
tion techniques. Graphical visualisation ease and enrich the analysis process.

One good example in this sense is given by the timeline view of the time measure-
ments. Function or region groups receive a color coding which can be recognized and
qualitatively evaluated on the timeline of the entire execution. Further investigations
on shorter execution intervals are possible by simply selecting the specific interval
on the timeline.

2.4 existing tools 15

Other graphical displays and views used by current tools range from common dia-
grams to processor topology or color-coded table of exchanged messages. A thorough
summary of visualisation techniques could be found in [55].

2.3.2 Analysis

Even the very fact that there are so many visualisation approaches in usage today
leads us to the thought that performance analysis is not a straightforward job to do.
This is true indeed and it is also one reason why there was only little progress in
automatic optimization of HPC applications up to now.

The complexity of performance analysis is manifold. On the one hand, the mea-
sured performance values have to be given a meaning, they have to be associated with
specific performance properties. It is mostly the case that these are not one-to-one
mappings: different hardware counters can be influenced by the same performance
aspect and, again, different performance issues add up to alter the value of a single
counter.

On the other hand, performance measurements have to be interpreted according
to the platform/architecture/machine on which the application was ran. Even for
similar measured values, due to different system configurations, poor performance
numbers on a particular machine might be acceptable performance for another one.

And then finally everything depends on the application itself. Having drawn some
conclusions regarding the behaviour of the application on a specific machine, it is still
a challenge to conclude upon the general performance and then to suggest possible
improvements. In the HPC context one has to get beyond the already common opti-
mization hints which focus basically on the source code level like loop unrolling or
appropriate data localization. Optimization hints for HPC applications have to take
into consideration higher level issues too, like the parallelization approach used or
execution phases.

2.4 existing tools

At the time of writing this thesis there is only a handful of well-known profilers
and tracers which are used in the supercomputing centres. We shortly present in
the following what we consider to be their most relevant features in the context of
this work. Our intention is to give an overview from a high-level point of view of a
common user, rather than technical and implementation details interesting for tool
developers.

2.4.1 Vampir and Intel Trace Analyser

Often seen as two close versions of the same product, Vampir and Intel Trace Anal-
yser (ITA) share indeed the same roots. Currently they are being developed on inde-
pendent tracks, though: Vampir at the Center for Information Services and High Perfor-
mance Computing (ZIH) of TU Dresden and ITA by Intel.

16 performance measurement and analysis

Both are very mature projects offering well-proven solutions for performance anal-
ysis. Vampir reads Open Trace Format (OTF) files which can be generated by tools
like TAU [80] or VampirTrace [84]. ITA uses instead the Structured Trace Format (STF),
which is a proprietary format owned by Intel. ITA is used in combination with Intel
Trace Collector (ITC) [32], which generates STF traces.

The most distinguishing feature of both ITA and Vampir is probably the timeline
view. As described above, this is a great means to investigate the acquired perfor-
mance measurements. Moreover, these tools add along the timeline analysis also
other secondary, synchronized views, which display information like hardware coun-
ters or exchanged messages size for the time interval selected on the timeline. See
figure 3 for an explanatory screenshot.

Figure 3: Screenshot of a trace analysis with Intel Trace Analyzer. On the top, the timeline
view with 8 processes visible. On the bottom, the pie diagrams for the function
execution times per process - 4 processes visible in the screenshot. The black lines
between processes on the timeline represent groups of MPI messages.

2.4.2 Scalasca

Another very mature performance tool is Scalasca [69]. This is an open-source joint
project of the Jülich Supercomputing Centre from the Forschungszentrum Jülich and
the Laboratory for Parallel Programming from the German Research School for Sim-
ulation Sciences.

Scalasca offers a complete solution for performance measurement and analysis,
from the instrumentation phase, to the visualisation. A specific feature for Scalasca is
the automatic analyser for possible inefficient communication patterns. Cases of late
senders, for example, can be detected post-mortem from the trace files automatically,
thus being of grate help in analysing large scale applications with huge performance
traces.

While ITA and Vampir use the timeline as the guiding mechanism for navigating
through the traces, Scalasca adopted another approach for exploration. The focus is

2.4 existing tools 17

on the measured metrics. One has to choose a metric from a metrics tree and then
the values for this metrics are shown in the call-path tree. It is thus a mapping from
the measurements to the location in the source code, whereas in ITA and Vampir
one looks first for the location and then to the metrics values. See figure 4 for an
explanatory screenshot of Scalasca.

Figure 4: Screenshot of the Scalasca visualisation window. The information is being displayed
in three fixed views, arranged in three columns. On the left most column the user
can choose the metric to explore. Upon selecting an element in the left column, the
information in the middle column adjusts to show the values for the metric as per
function call. Finally, on selecting a function call, the distribution over processes
and threads can be seen on the right column.

2.4.3 TAU

A somehow different software approach was adopted by the TAU [80] project. In-
stead of delivering one solution for the complete profiling flow, TAU (Tuning and
Analysis Utilities) offers an entire toolkit, a framework which is able to make use
of separate tools to accomplish the different phases of the flow. Noticeable is that
late versions of TAU also offer integration of Vampir to be used as an analyser and
visualiser for the generated tracefiles.

One feature supported by the TAU framework is the integration of runtime instru-
mentation using the Dyninst [16] implementation. Another interesting feature is the
3D visualisation of performance measurements with ParaProf [72].

2.4.4 Periscope

Periscope [18] [19] is a freely available performance analysis tool, currently being
developed at TU München. It distinguishes itself from other tools through the ability
to perform automatic online performance analysis. Following predefined strategies,
a hierarchy of analysis agents carry out on-the-fly analysis of performance and adapt
their measurement parameters online, or even re-run critical regions of the code when
more detailed measurements are necessary.

18 performance measurement and analysis

The guiding navigation mechanism through the performance data is neither the
time, nor the metrics, but the severity of the identified issues. See figure 5 and caption
for an explanatory screenshot.

Figure 5: Screenshot of the Periscope plug-in for Eclipse. Performance issues are displayed in
a table in the bottom view, together with the computed severity. Upon choosing a
specific item in the table, the exact source of the problem is being highlighted in the
source code view in the middle. In the right view, the special "src" configuration file
offers an overview of all instrumented regions.

2.4.5 Score-P

Score-P [71] was a successful initiative aiming at building a system which delivers
some standardized support for performance optimization. The results of the Score-P
project is a measurement infrastructure which offers a common backend integrating
all tools mentioned above: Vampir, Scalasca, TAU and Periscope.

2.4.6 HPCToolkit

HPCToolkit [31], as the name recommends it, is an integrated suite of tools for mea-
surement and analysis of application performance. It is similar in this sense to TAU.
Due to the fact that it uses sampling methods for measurements acquisition, HPC-
Toolkit has a very low measurement overhead. It offers two visualisation tools, spe-
cialized each one for either profiling views or trace views. The first one uses as main
navigation mechanism the callpath of the execution, while the second one is based
on timeline views.

2.4 existing tools 19

2.4.7 Other projects

Besides the already mentioned projects, there are also several smaller initiatives or
tools which either provide only very specific solutions, or did not developed to a
mature product.

First to be mentioned here is the Dyninst [16] project which offers a library for run-
time code patching. Especially interesting for performance measurements, Dyninst
API provides the possibility to insert instrumentation into the binary of an applica-
tion. It is currently being developed within the Paradyn team of the University of
Wisconsin and University of Maryland.

Paradyn [56] is the performance measurement tool developed inside the group
which is providing Dyninst. A special feature of Paradyn is the Performance Controller
which automatically checks for predefined performance bottlenecks patterns and in-
forms the user on potential problems.

Another tool worth to be mentioned here, and which is also based on Dyninst, is
MATE (Measurement, Analysis and Tuning Environment) [45] from the Barcelona
Supercomputing Center. MATE offers a framework for automatic performance op-
timization. Users define tunelets - performance models and possible optimization
decisions - for their applications and MATE carries out performance measurements
and adapts at runtime the tasks of the application based on the tunelets.

3
ADDRESS ING DOMAIN ASPECTS IN
APPL ICAT IONS/COMPUTER SC IENCE

There are several research and application fields within computer science, which over-
lap with the Domain Knowledge area. As we can only loosely define the overlapping
borders, and because the contributions come from so different directions, we do not
intend in the following to give an exhaustive survey of all related work carried out so
far. We rather aim at providing the reader only with an overview of the main results
and projects relevant to this thesis.

We consider works from Computational Science and Engineering (CSE), Programming,
Software Engineering (SE), and High Performance Computing (HPC). The diagram in
figure 6 shows these fields and their connections to Domain Knowledge. Although
not part of Computer Science, we also included Natural Sciences in the diagram, as
being an important factor for at least two of referenced topics. One could argue that
the overlapping between Natural Sciences and Domain Knowledge (DK) should be
broader, as the knowledge is from, or inside the sciences; yet, we consider DK as a
holistic approach which serves as a bridge between the different fields.

Given their approach with respect to the concepts of domain and application, the
research topics we consider below subscribe to one of the two cases depicted in
figure 7:

1. the domain is perceived as outside the application

2. the domain is perceived as within the application

The sections 3.1 to 3.5 focus on the same general aspect, namely that of supplying
applications with domain specific information. Issues like how to identify and model
domain information at the design level, how to express and encode it through the
implementation process, or how to embed it alongside the source code, all belong to
the case depicted in figure 7a. Here the domain is perceived as being outside, external
to the application. Thus, the focus is set on transferring/mapping it towards the appli-
cation. First of all, different constructs and aspects are identified inside the domain
- represented here by the red contours inside the blue form. Afterwards, by means
of different actions such as marking, formatting, or referencing, these fragments of
domain information are translated towards the application and, in the end, an appli-
cation with domain specific information is obtained. An important notice is that the
initial domain is herewith only partially and more or less inaccurate imaged within
the application.

In the last section of this chapter, section 3.6.1, we focus on the research directions
which map to the second setting, depicted in figure 7b. The focus drops here firstly
on the implemented application, unlike the previous case, where the first concern
is the domain. Potential domain aspects are perceived within the application itself -
the dotted blue contours on the top-right form - and hence the identification of the
domain constructs is strongly depending on the application. This also leads to the

21

22 addressing domain aspects in applications/computer science

Domain
Knowledge

Programming

Natural
Sciences

Computational
Science and
Engineering

Software
Engineering

High
Performance
Computing

Doxygen

Literate
programming

Domain Specific
Languages

Input file
formats

Contextual
Design

High-level language
profiling

Custom metrics

Performance
modeling

Performance
mapping

Figure 6: Research and application fields which relate to Domain Knowledge and their con-
necting points.

concepts being only roughly outlined. More explanations on the representation on
figure 7b are provided in section 3.6.1.

In the following, we present the projects from the point of view of their contri-
butions to the general "picture" of Domain Knowledge, and leave the discussions
regarding their relation and influence on our own work for chapter 4, when present-
ing our own approach.

3.1 contextual design

It might be considered as a true outsider among the other related projects we take
into account for this overview, but Contextual Design has an important contribution
in understanding Domain Knowledge.

Introduced in the mid-90’s by Beyer and Holtzblatt in [8], Contextual Design is a
software design process which targets great usability of designed systems by focusing
on understanding the needs and requirements of the future users. This idea actually
lies at the foundation of the entire User-centered design (UCD). What is special about
Contextual Design though, is that designers are brought into their users’ real work
environment, they are observing users in their "context". Also, in the interpretation
and consolidation steps which follow this first step of information gathering, the
"contextual" component is being preserved by teaching the designers to extract and
use in their diagrams the same technical term they have learned from their users
while interviewing and observing them.

Apart from being an appealing design strategy to apply to the current profiling
tools, Contextual Design also offers an insightful parallel for the Domain Knowledge
based performance optimization: user context influences and is present in the entire
design process, the same way as domain knowledge influences and is present, for
example, in the optimization process.

3.2 literate programming 23

Domain Application

Application with
domain specific
constructs

DSL

ML

Design

Model

(a) domain perceived outside the application re-
sults in a kind of movement from domain
towards the application

Application

Application after
optimization

Application

Application after
domain-aware
optimization

(b) domain perceived as within/along the ap-
plication, hence there are adjustment ac-
tions needed

Figure 7: Two approaches for the relation between domain and application.

The drawback of the above described method in Software Engineering, consists
in the difficulty to actually produce structural diagrams directly from the contextual
information. The designers lack the means to express the knowledge, especially if How to express an

application beyond the
programming
language?

not used with the type of diagrams. This is similar to another issue encountered in
computer science: how to encapsulate more information into an application than the
sheer source code written out for instructing the machine what to execute.

3.2 literate programming

One seminal proposal was made back in 1984 by Knuth when he coined the term Lit-
erate Programming (LP) in his paper [37]. The main idea was that programmers should
not write code just for computers, but they should write code for humans. In order
to do so, Literate Programming emphasized the importance of a good documentation
of an application alongside the source code. Thus, developers should actually write
their programs as if their were explaining them to another person. The documenta-
tion should be more like an essay about the solution being implemented, while the
source code text should be written in the order which makes sense for the flow of
a logical explanation and not in the flow of the execution. The WEB1 system, which
was the original system implementing the literate programming methodology, is a
combination of a document typesetting system and a source-to-source processor. The
typesetting was being taken care of by a tool called weave, based on the TEX system,
while the application code generation was achieved by a second tool called tangle,
which originally produced PASCAL code (see also figure 8).

1 This was before the World Wide Web appeared and it referred to exactly what it means in English, a
woven piece of material

24 addressing domain aspects in applications/computer science

WEB

TEX DVI

PAS REL

WEAVE

TANGLE

PASCAL

TEX

Figure 8: Dual usage of a WEB file. Source: [37].

As opposed to TEX, which soon became popular and today is the typesetting sys-
tem to be used in scientific papers, Literate Programming did not enjoy the same accep-
tance. There were indeed several programming environments developed to support
LP - Pieterse, Kourie, and Boake give a good summary of LPEs (Literate Program-
ming Environments) in [59] -, but it never advanced to become a standard or common
programming paradigm. In the recent years, though, one could observe a fine move-
ment towards revitalizing LP through works like [60], [29], or [61]. They advocate for
LP given today’s application development context, especially in the computational
science fields, like that of quantum chemistry or molecular physics. Furthermore,
Palmer and Hillenbrand propose in [54] a new language for writing literate pro-
grams. Ginger can represent both code and prose, as well as the literate connections
needed in the original webs. Also, Schulte et al. present in [70] a working extension
to Emacs [20], not only to support LP, but actually to enhance it with new possibili-
ties for documentation, like project management details and diagrams or tables with
execution results.

3.3 documentation extraction

If Literate Programming was a first trial to get more knowledge into the code, then
the actual successful strategy, in terms of user acceptance, proved to be almost the
opposite one, namely getting the knowledge out of the source code itself. This is what
documentation extraction systems provide, at different levels of detail, automation and
usability.

The most widespread documentation systems to date are those respective to the
most widespread active programming languages: on the one side, there is the Javadoc [53]
native for Java language, and on the other side, there is Doxygen [25] which was na-
tive for C/C++ languages. Nowadays Doxygen also supports the Javadoc notations
and it can be used with a considerable number of other programming languages [25].

The main idea behind documentation extraction is very simple: encapsulate the knowl-
edge about the application inside comments with predefined format and then parse
the source code to extract the comments and generate documentation files. Very use-
ful is that the generated documentation files are provided nowadays in many formats.
Such are HTML, LATEX, hyperlinked PDF, RTF (MS-Word), and Unix man pages. Also
very welcome is the integration of document extraction systems within different IDEs,
in order to display documentation as context information while writing source code.

3.4 domain specific languages 25

DSL Application Domain

BNF Syntax specification

Excel Spreadsheets

HTML Hypertext web pages

LATEX Typesetting

Make Software building

MATLAB Technical computing

SQL Database queries

VHDL Hardware design

Table 1: Some Widely Used Domain-Specific Languages. (Table adapted from [44])

An even more advanced feature is the extraction of the documentation from within
the code text. That means that given a source file, the system will try to generate
the appropriate documentation based on a complex analysis of function and variable
names, function prototype, variable types and code statements [77].

3.4 domain specific languages

Another successful approach to binding together knowledge and applications are
the Domain Specific Languages (DSL). Mentioned already in the late 60’s as application-
oriented languages in [67], DSLs have experienced an impressive growth, as nowadays
there are probably thousands of such languages. Deursen, Klint, and Visser [15] de-
fine DSLs as follows: A domain-specific language is a programming language or executable
specification language that offers, through appropriate notations and abstractions, expressive
power focused on, and usually restricted to, a particular problem domain.[51]

A list of some of the most widely used DSLs to date, along with their application
domains is given in table 1.

The important characteristic which all DSLs share is their expressiveness. As shown
in [44] and later in [51], this main characteristic results from the fact that DSLs are
rather declarative and descriptive languages, as opposed to the common General Pur-
pose Languages (GPL), which are imperative languages.

Of special interest for our study on Domain Knowledge, are those DSLs belonging
to the particular class, for which "domain" represents one of the computational or
natural science domains.

We give in the following two examples of projects from the Quantum Chemistry
field and a third one from the broader scientific computing area.

3.4.1 ACES (Advanced Concepts in Electronic Structure) III

One mature and, in the same time, complex project is ACES III [41]. It offers a com-
plete framework for developing simulations based on the electronic structure theory.
The main idea, upon which the entire system is built on, is that each computational
chemistry program can be expressed in terms of Super Instructions operating on Su-

26 addressing domain aspects in applications/computer science

pardo M,N,I,J

tmpsum(M,N,I,J) = 0.0

do L

do S

get T(L,S,I,J)

compute_integrals V(M,N,L,S)

tmp(M,N,I,J) =

V(M,N,I,J) * T(L,S,I,J)

tmpsum(M,N,I,J) += tmp(M,N,I,J)

enddo S

enddo L

put R(M,N,I,J) = tmpsum(M,N,I,J)

endpardo M,N,I,J ✆
Listing 1: A SIAL code fragment [68]

per Numbers, also called blocks [68]. The programming model resembles the parallel
task-based model, where each worker executes a set of instructions on a given chunk
of data. The important difference is that in ACES III on the one hand, the parallelism
details are transparent to the user and, on the other hand, in the implementation of
the parallel methods the specific domain particularities are being taken into consid-
eration. The is is achieved by combining a DSL with a virtual machine:

1. the user writes the code in the Domain-Specific Language called SIAL (Super
Instruction Architecture Language). See listing 1;

2. the code is compiled to SIA bytecode;

3. the bytecode is executed by SIP (Super Instruction Processor), a parallel virtual
machine which manages all details related to the parallel, optimized execution.

The most important features of SIAL, as presented recently in [14] and [68], are:

• the particular types of data structures, like AO (Atomic Orbitals) indices, occu-
pied MO (Molecular Orbitals) and unoccupied MO indices;

• intrinsic distributed arrays;

• PARDO - an explicit parallel execution controlling statement.

SIAL also offers intrinsic super instructions which express common operations needed
when writing quantum chemistry code, like a block contraction operator, for example.
Moreover, ACES III comes with several SIAL implementations of the most common
methods, such as HT (Hartree-Fock), CCSD (Coupled Cluster with Single and Double
excitations) or MP2 (Second Order Møller-Plesset Perturbation Theory.

A particular detail of the SIP processor, which is of importance in the current con-
text, is its support for performance measurement [4]. Using a tracing mechanism, SIP
offers the user the possibility to query timers recording super instructions execution
or even timers monitoring the MPI traffic. Due to SIP being targeted for executing
programs resulting specifically from SIAL code, tracing information can be mapped
back up to the line number of the initial source code. This is a known challenge for

3.4 domain specific languages 27

Figure 9: CCSD doubles expression from quantum chemistry [5].

High-Level-Languages based on GPLs: through the process of compiling first high-
level constructs into GPL constructs and then the GPL code to final binary, while in
the latter several compiler optimizations are usually being applied to the GPL source
code, only less of the initial source code layout is being preserved. Hence, mapping
the performance information to the exact line number or instruction turns out to be
very cumbersome, almost impossible.

3.4.2 TCE (Tensor Contraction Engine)

Another example of a DSL for quantum chemistry is the TCE (Tensor Contraction
Engine) [3], mainly known as a module of the NWChem software2. Unlike ACES III,
which addresses a broad range of computational chemistry methods and problems,
TCE is targeted towards a very particular aspect, namely the evaluation of tensor
contraction expressions. These expressions are very often encountered in quantum
chemistry and general many-body problems, as for example in the "golden method"
of computational chemistry [68], the CCSD. A tensor contraction is essentially a col-
lection of multi-dimensional summations of the product of several input arrays [5], which
for complex systems might get really hard to manage manually (see figure 9 for an
example).

TCE offers a means to easily declare operators using a High-Level Language, which
qualifies as a DSL for quantum chemistry (see listing 2 for an example). After parsing
the code, the engine undergoes several stages to synthesize the final expression of the
tensor contraction [5][3]:

1. algebraic transformations: use algebraic properties like commutativity, associa-
tivity and distributivity, to generate an equivalent expression with minimal op-
eration cost;

2 NWChem [82] is a known software package, widely used in the computational chemistry field.

28 addressing domain aspects in applications/computer science

range N = 3100;

range V = 3000;

range O = 100;

index la,mu,nu,om : N;

index a,b,c,d,e,f : V;

index i,j,k : O;

mlimit = 100GB;

function F(N,N,N,N);

procedure P(in Co[N,O], in Cv[N,V], in T[O,O,V,V], out E)=

begin

E==sum[sum[sum[sum[sum[sum[F(mu,nu,om,la)*Co[la,k],{la}]*
Cv[om,b],{om}]*Cv[nu,f],{nu}]*Cv[mu,a],{mu}]

*
sum[sum[sum[sum[F(mu,nu,om,la)*Co[la,k],{la}]*Cv[om,b],

{om}]*Cv[nu,e],{nu}]*Cv[mu,c],{mu}], {b,k}]

*
sum[T[i,j,a,e]*T[i,j,c,f],{i,j}],

{a,e,c,f}];

end ✆
Listing 2: A TCE code fragment [5].

2. memory minimization: annotate the expression tree with information about
best loop fusion3 options;

3. parallel optimizations: apply common optimization strategies like efficient data
distribution and partitioning - to minimize parallel communication -, or space-
time transformation - for the best trade-off between storing and recomputing
data;

4. code generation: TCE generates Fortran code which implements the optimized
tensor contraction expression, using the Global Array Toolkit [48] for parallel
computing. Recent work also targets generating CUDA code, in order for TCE
to be able to address heterogeneous systems [39].

3.4.3 Broadway and Telescoping Languages

A different approach to the pure DSLs presented above has been followed by two sim-
ilar projects: the Broadway Compiler, introduced by Guyer [21], and the Telescoping
Languages, introduced by Kennedy et al. [36]. Although there is no recent activity for
either of the projects, they still provide a good reference for how domain knowledge
can be fostered within applications.

3 Loop fusion is nowadays a common compiler optimization step. It essentially joins two or more loops
which run over common indices, mostly to spare the memory used otherwise for storing the intermedi-
ate results exchanged between the loops.

3.4 domain specific languages 29

The idea behind was to make use of the information which could be added to
domain-specific libraries. Following the trend towards modularization and component-
based development of software, the authors claimed that some scientific applications
lack on performance because of their using of unspecialised library calls or unopti-
mized combinations of them [22].

In order to achieve an improvement of the final application, the libraries have to be
enhanced with annotations describing details such as:

• variable types;

• dependencies of routines on the input and output parameters;

• per-routine code transformations for some defined guarding conditions.

The Broadway compiler offers as a result an optimized version of the initial source
code, while TeleGen (Telescoping Languages Generator) produces a complete DSL
to be used from within a scripting language. It also produces an optimized script
processor.

An important secondary result can be implied from these two research projects,
namely that library-based code optimization cannot be achieved without additional
information from within the original application domain.

3.4.4 Some considerations on DSLs

There is no doubt that DSLs are a good example to follow when considering Domain
Knowledge usage.

First of all, there are the language components, i. e. variables, types, operations, which
not only succeeded in the user acceptance test, but actually polished continously
their usability and improved their semantics. As such, there is a proof that domain
information can be expressed using rather few language constructs and, even more,
there is a large database of concrete sets of such constructs for each of the common
application domains.

Then there are the DSL frameworks, which in turn provide valuable information
on how particular domain knowledge, like for example the algebraic properties of
the tensor operations, can be used in the optimization decisions, like in this case the
expression simplification through algebraic transformations.

On the other hand, it is also generally accepted, that DSLs do not always represent
a solution for the scientific or industrial projects. A very simple proof is the plethora
of scientific and industrial code still being developed using GPLs. Hence one also has
to consider the limitations of DSLs with regard to implementation process. Oliveira
et al. [51] explain the differences and limitations of DSLs versus GPLs through three
pairs of dichotomous characteristics:

1. Abstractness vs. Concreteness;

2. Low-Level vs. High-Level

3. Expressiveness vs. Computational Power

In the end one actually has to decide how much does the domain information have
to be separated from the implementation information.

30 addressing domain aspects in applications/computer science

3.5 input and output formats

Strongly depending on the domain, type of problem and particular implementa-Input and output files:
real "knowledge

containers"
tion, the inputs and outputs of applications do carry along a fair amount of domain
specific information. By this we do not refer to the special case of data-intensive ap-
plications, like for example genome applications, where the main task is to process
huge input data for extracting or searching specific information. We rather look at
the information included implicitly in the structure of such files. In this case it does
not really matter, for example, how many different genomes or DNA structures are
stored in a file, but rather how is one genome described, how are its components
defined, how is the relation between these components represented, and so on.

One could consider in this sense that input files are a kind of initial configuration
setup, thus many of the structure elements encountered in an input file map directly
to data structures and parameters inside the application. The same applies, of course,
for output data too.

Important work has been done towards standardization of such input and output
formats. On the one hand, common formats support the cooperation and exchange
between research groups, and, on the other hand, storing computation results in an
appropriate format makes them available for reference and reusage in a long-term
basis.

The general widely accepted solution for defining such standard formats is to use
Markup Languages (MLs), mostly XML based languages. The general structure of
the files are being described using XML Schemas, while the technical terms are usu-
ally grouped in Dictionaries. There is quite a large number of existing MLs, which
were defined for different application fields, like AML (Astronomical ML), CML
(Chemistry ML), MathML (Mathematics ML), NeuroML (Neuronal ML), PhysicsML
(Physics ML), SBML (Systems Biology ML), and so on. As for any standard though,
its success only depends on whether or not it is accepted by the target users.

This is the case, for example, for the CML (Chemistry Markup Language), which
was introduced early in 1999 by Murray-Rust and Rzepa [47] and which is now
being accepted as the standard for many chemistry applications. Recently, an exten-
sion to the CML Schema was proposed, CompChem [58], which targets the quan-
tum chemistry subdomain. CompChem also includes a CML Convention and CML
Dictionary to encapsulate the special requirements and methodologies imposed in
quantum chemistry. See listing 3 for an example.

Another interesting initiative is the SED-ML (Simulation Experiment Description
ML) [85], which aims at providing a standard to encode the description of simulation
experiments. It is thus not only the knowledge from a specific domain to be encoded,
but also the specific knowledge from the simulation process itself.

Application

Application after
optimization

Application

Application after
domain-aware
optimization

Domain inside app.
(see figure 7b)

3.6 domain-aware performance optimization

As indicated at the beginning of this chapter, we switch now to another group of
research projects, namely those perceiving the domain from, or within the application.

The main research field we consider in this context, is that of performance opti-
mization. The goal is to produce a well tuned application, by means of performance
measurement, analysis and optimization decisions. Two common and rather simplis-

3.6 domain-aware performance optimization 31

<module dictRef="cc:jobList">

<module dictRef="cc:job" title="Geometry optimization with Gaussian 03">

<molecule id="m-int" formalCharge="0" spinMultiplicity="1"

convention="convention:molecular">

<atomArray>

<atom id="a1" elementType="O" x3="0.0" z3="-0.39016"/>

<atom id="a2" elementType="H" x3="0.76357" y3="0.0" z3="0.19508"/>

<atom id="a3" elementType="H" x3="-0.76357" y3="0.0" z3="0.19508"/>

</atomArray>

</molecule>

<parameterList>

<parameter dictRef="cc:method">

<scalar>B97-1</scalar>

</parameter>

<parameter dictRef="cc:basis">

<scalar>6-311+G(d,p)</scalar>

</parameter>

<parameter dictRef="cc:goal">

<scalar>Geometry Optimization</scalar>

</parameter>

<!-- omitted lines -->

</parameterList>

</module>

<!-- omitted lines -->

</module> ✆
Listing 3: A fragment from a CML file storing computational chemistry output [58].

tic understandings of an optimized application, as also depicted at the bottom of
figure 7b, are that of a

• smooth execution: the square on the left-hand side, as a regular geometric figure,
or a

• perfect fit: the figure on the right-hand side, with optimal space usage.

These are not the only representations, nor the most accurate ones, and in practice
one often encounters a combination of such "pure" understandings. They do serve
our goal, though, to explain the domain-aware performance optimization.

Without considering the domain specific constructs or the semantics of the high-
level programming languages, the optimization result tends towards the picture on
the left: the "corners" and "irregularities" with respect to the performance data are
cut or polished to achieve a good performance. This performance though, is mostly
based on metrics related to the hardware, the system, or maybe the middle-ware
being used. Thus the resulting optimized application is modeled to fit exactly to the
machine.

On the other hand, if the semantics and the abstractions at the application level
would be accounted for in the performance analysis, the optimization result would
tend more towards the picture on the right-hand side.

The very fact that there do exist different optimized versions of the same applica- Whether, and how, does
the domain specific
information influence
the performance
optimization?

32 addressing domain aspects in applications/computer science

PROGRAM example

parameter (N=1000)

integer A(N+1,N+1), B(N,N), asum

A = 0

DO k = 1,10

FORALL (i = 2:N+1, J = 2:N+1) A(j,i) = k * (i+j)

asum = SUM(A)

FORALL (i = 1:N/2, J = 1:N/2) B(j,i) = A(j,i) + A(j+1,i+1)

END DO

END ✆
Listing 4: Example CM Fortran program [34]

tion raises up a question: Whether, and how, does the domain specific information influence
the performance optimization?

We already saw in chapter 2 that the performance measurement and analysis work-
flow implies several challenges, starting from the very definition of the performance
itself, to the many theoretical and practical issues associated to each step in the pro-
cess - instrumentation, measurement, visualisation, and analysis. Each of these issues
bring their contribution to the question above, and they, in turn, are also being in-
fluenced by the more general approaches regarding the performance optimization
process. One example is the concept of domain-specificity or domain-awareness. We al-
ready presented in the first part of this chapter, the implications of the domain related
concepts into other branches of computer science. In the remainder of this chapter
we focus on the research projects which either contributed to, or actually used the
domain specific information in performance optimization.

We start with the research concerning performance mapping and data-centric perfor-
mance, which we consider to be the building blocks for introducing domain specific
information into the optimization process. We then introduce two projects addressing
to some extent conceptual extensions of the performance mapping, namely custom
metrics definition and phase-based performance analysis. In the end we present perfor-
mance modelling and auto-tuning as complementary techniques, which also employ
domain specific information.

3.6.1 Performance mapping

Performance mapping was first introduced by Irvin [33] and extended later by Shende
[73]. The main idea is that of propagating performance data between the different ab-
straction layers of complex applications. The goal is to achieve a better profiling for
high-level languages.

Irvin assessed the need of expressing performance in terms of the semantics of theExpress performance in
terms of the semantics

of the programming
language.

programming language, such that programmers could react and adapt their applica-
tions, while remaining at the abstraction level of the initial source code. He proposed
as a solution the Noun-Verb (NV) model, a framework which provides the support for
several performance mapping techniques.

3.6 domain-aware performance optimization 33

The code snippet in listing 4 is an example of a fragment of source code written
in CM Fortran [78] with common variable declarations, subroutine calls and loops.
Based on this example, the NV model consists of [34]:

1. nouns (N): any program elements for which performance measurements can be
made; such are the FORALL loops, the arrays (A and B), the A = 0 statement, but
also the program (first line of the code);

2. verbs (V): any potential action that might be taken by a noun or performed on a
noun, e. g. statements execution, array assignments, or reduction ASUM = SUM(A);

3. mappings: relations between nouns and verbs from one level of abstraction, to
the nouns and verbs of another level of abstraction. The CM Fortran code is
compiled into a sequential program and a set of node routines. The node level
is the lowest level of abstraction in this case. Some verbs at this level include
Compute, Wait, or Broadcast Communication and the nouns are all the compute
nodes. One mapping could in this case relate a particular array (a noun in the
higher level) to a set of particular compute nodes (nouns in the lower level).

4. sentences (S): particular execution instances of the program constructs described
by verbs. A sentence consists of a verb, a set of participating nouns, and a cost,
where the cost could be a metric like time or channel bandwidth.

This model was integrated within the ParaDyn tool [56] and several experiments
were ran on CM Fortran applications. Figure 10 shows a histogram produced with
Paradyn using the NV model, where the cost function was chosen to be the compu-
tation time. The upper trace shows the overall computing time, while the lower two
lines represent the computation time used for a particular data structure and one
of its subcomponents. This illustrates very well one of the main outcomes of Irvin’s Performance problems

are localized among a
few parallel arrays,
while being diffused
among many code
statements.

work, namely that of having shown that "data views of performance can lead to more
focused explanations of performance", and, in particular, that "performance problems
are localized among a few parallel arrays, while being diffused among many code
statements" [34].

While being probably the first research towards a semantics-aware performance
and, particularly, a data-centric approach of performance, the NV model exposes
though several limitations at both conceptual and implementation levels:

a. the nouns are bound to the programming level structures, whereas higher levels
of abstractions would also be useful.

b. in some cases the cost function of a sentence at higher abstraction level can-
not be derived exactly from the cost functions of the sentences at the lower
abstraction level. For example, given a mapping of type many-to-one which is
associating several sentences on the higher abstraction level to one sentence of
the lower abstraction level, then the cost at the higher level will be either ex-
pressed as an aggregated value (only one cost for all sentences together), or
each sentence will be assigned the same cost (with the cost on the lower level
being thus evenly split to the sentences at the higher level). None of the two
strategies is an optimal one.

34 addressing domain aspects in applications/computer science

Figure 10: Data view of time performance measurements, generated with Paradyn using the
NV model. The green line shows the computation time for the array RIGHT declared
in function CALC in the file bow.fcm. Source: [34].

c. the model lacks a technique for handling asynchronous executions of verbs at
different abstraction levels. More precisely, it can only map the costs between
sentences which are being active at the same time. If, for example, a data trans-
fer is implied by the sentence at a higher-level, but the actual communication at
the lower-level is being postponed, then the cost for the latter one is not going
to be accounted for, when determining the cost of the sentence at the higher
level.

d. the cost function cannot refer to hardware counter values, being limited to met-
rics measurable based on instrumentation.

The first three issues were also observed by Shende [73], who addresses them in
the extension of the NV model that he proposes. The Semantic Entities, Attributes, and
Associations (SEAA) dynamic mapping technique is focusing on enhancing even more
the role of semantics within performance measurements:

• Semantic Entities: the nouns in the NV model are replaced by semantic enti-
ties, which are not necessarily bound to program constructs. This way a higher
abstraction level is allowed, actually the domain specific information level we
encountered before.

• Attributes: any entity can receive semantic attributes and thus the issues regard-
ing asynchronous activities are solved.

• Associations: entities or application objects can be associated directly with per-
formance metric entities, overcoming this way the cost accounting problems.

Shende explains the importance of semantics using the example in listing 5. The
code fragment mimics a simulation where particles belonging to the six faces of a
cube have to be processed, given that the characteristics of the particles depend on

3.6 domain-aware performance optimization 35

Particle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all surfaces of the cube */

for (int face=0, last=0; face < 6; face++){

int particles_on_this_face = ... face ; /* particles on this face */

for (int i=last; i < particles_on_this_face; i++) {

P[i] = ... f(face); /* properties of each particle are some function f

of face */

}

last+= particles_on_this_face; /* increment the position of the last

particle */

}

}

int ProcessParticle(Particle *p){

/* perform some computation on p */

}

int main() {

GenerateParticles(); /* create a list of particles */

for (int i = 0; i < N; i++)

ProcessParticle(P[i]); /* iterates over the list */

} ✆
Listing 5: A hypothetical particles simulation [73].

the face they are belonging to. Using the NV model described above, one could only
generate performance data at the particles level, since these are represented through
program constructs and can be defined as nouns. What the application developer
would probably like to analyse though, is the performance data measured per face,
since this is the actual approach followed by the simulation.

Listing 6 shows how to integrate the SEAA concept within the same code frag-
ment, using a set of library calls. The faces entities are implicitly declared through
the time counter created for each of them within the iterations of the outer loop in
GenerateParticles. The particles are then being assigned to faces by adding a map-
ping to the appropriate timer, which is then going to be started throughout the time
of computing that each specific particle.

The custom timers support was integrated within the TAU [80] performance toolkit.
Shende presents the results for running performance analysis on two C++ based
applications and shows that performance for semantic entities like tasks and general
array operations could be measured and analysed.

Although the SEAA model managed to bring another important step towards
semantics-aware performance analysis, it also inherited some important limitations:

a. lack of formalization: no means are provided to actually define the semantic
entities and the semantic attributes. The use of custom timers keeps the appli-
cation semantics still "implicit", or at the "logical level", which is exactly what
one would like to avoid.

36 addressing domain aspects in applications/computer science

Particle* P[MAX]; /* Array of particles */

int GenerateParticles() {

/* distribute particles over all surfaces of the cube */

for (int face=0, last=0; face < 6; face++){

int particles_on_this_face = ... face ; /* particles on this face */

t = CreateTimer(face); /* information relevant to domain */

for (int i=last; i < particles_on_this_face; i++) {

P[i] = ... f(face); /* properties of each particle are some function f

of face */

CreateAssociation(P[i], t); /* Mapping */

}

last+= particles_on_this_face; /* increment the position of the last

particle */

}

}

int ProcessParticle(Particle *p){

t = AccessAssociation(p); /* Get timer associated with particle p */

Start(t); /* start timer */

/* perform some computation on p */

Stop(t); /* stop timer */

}

int main() {

GenerateParticles(); /* create a list of particles */

for (int i = 0; i < N; i++)

ProcessParticle(P[i]); /* iterates over the list */

} ✆
Listing 6: Integrating the SEAA concept using timers [73].

b. restrictive metrics set: there is only a limited choice of performance data which
could be gathered and analysed for the entities, namely time and channel band-
width.

c. implementation restrictive to language: due to it being based on the capability
of accessing the C++ object addresses (which cannot be done for a Fortran im-
plementation), the implementation solution provided for the timers association
is rather restrictive.

We leave the discussion on how these shortcomings could be overcome for the next
chapter, where we give a presentation of our Domain Knowledge approach.

Further research using the concepts of performance mapping followed mainly two
directions:

• data-centric profiling, based on the observation of Irvin [33] regarding the im-
portance of relating performance to data: "Performance problems are localized
among a few parallel arrays, while being diffused among many code state-
ments.".

3.6 domain-aware performance optimization 37

• dynamic performance analysis, based on features like the dynamic timers and
associations integrated within TAU.

While data-centric profiling is a valuable approach in performance measurement
and analysis, the works dealing with this subject focused rather on the technical chal-
lenges of the exact mapping of the collected performance data onto the application
data structures. The semantics level highlighted within SEAA and which is also of
interest for Domain Knowledge, did not receive further attention within this context.

As of the second research path, that of performance dynamics, we detail on the
particular concept of phase-based performance analysis in the following section.

3.6.2 Phase-based performance analysis

The concept of phases in scientific applications has long been introduced and used in
the context of performance visualisation and analysis [24], as well as in performance
modelling [87]. It is common practice for application developers to think of their
code structure and execution in terms of phases or stages of the natural phenomena
modelled/simulated therein. Hence, the performance analysis tools should give the
user the opportunity to associate performance data with the corresponding phases
of the application.

A straightforward approach is the one considering the time characteristic of phases. Phases =
segments of time.During its execution, an application passes through different consecutive computa-

tion phases. This time development could be tracked by means of phase start and end
timestamps. Entering and leaving a phase can be signalled based on events, which in
turn have to be defined by the application developers. Current tools like Vampir [83]
and TAU [80] support this through their manual instrumentation features.

An interesting on going work is that of automatically detecting performance pat-
terns and application phases out of the performance traces [10].

Obviously, this time-related approach can be applied only with techniques which
keep track of the timestamps of the performance data, i.e. performance tracing. The
current issue with performance traces for HPC applications though, is that they imply
considerable overhead due to the large amount of data which has to be gathered
and stored, thus often producing costly writings/flushes to the secondary memory.
Moreover, large trace files also imply increased post-mortem processing times.

The common alternative in this case is to apply profiling instead of tracing. Profilers Phases =
execution context.use different techniques to process at runtime the retrieved performance data, thus

keeping in the memory only a summary or an aggregated value of the retrieved
performance data. This implies, of course, that no information with respect to the
timestamps can be stored or used, and thus phases in profiling techniques cannot be
characterized by the time dimension in this case.

Malony, Shende, and Morris [42] offered a new view on phases, highlighting their
context holding property and showing how they can be used in performance profiling.
Continuing the direction of SEAA, they stress the fact that a phase "generally repre-
sents logical and runtime aspects of the computation, which are different from code
points or code event relationships", thus repositioning phases at the higher abstrac-
tion layer of semantics, as opposed to the layers of the source code and application
events.

38 addressing domain aspects in applications/computer science

Phase-based profiling was integrated within TAU, using the concepts presented above
for SEAA. The technique resembles the callpath profiling technique, where at the oc-
currence of an application event, the tool also checks the current phases stack in
addition to the common callstack query. An important role play the dynamic phases
which are nothing else but additional events associated with dynamic timers as al-
ready presented with SEAA. A detailed example of applying phase-based profiling
can be found in [74].

Another view on phases was explored by Szebenyi, Wolf, and Wylie [79] in thePhases =
recurring operations. context of performance dynamics. Considering that in HPC one often encounters long-

running applications, or also applications using adaptive algorithms, it is expected
that the performance of these codes will vary during one execution. In order to track
these changes, while still using profiling instead of tracing technique, a particular
type of phases are used. Based on the observation that most scientific codes iterate
over a main loop to compute the final solution, one chose this recurring unit of ex-
ecution to be defined as a phase. More precisely, each iteration of the main loop is
recorded as a separate phase in the execution. Thus, changes on the performance be-
haviour can be observed as changes between different recurring phases or iterations.
In their work, Szebenyi, Wolf, and Wylie integrated this feature in the Scalasca [69]
tool, using a manual instrumentation technique similar to the dynamic phases pre-
sented above for TAU.

All three cases presented above actually share the same idea: the user can con-
tribute to the performance measurement and analysis by explicitly specifying through
phase definitions the logic and semantic structure of their application.

3.6.3 Custom metrics

Another means for users to interact/intervene in the performance analysis and mea-
surement process is to specify the performance metrics which they consider relevant
for their application. As described by [17], performance optimization is driven by
"programmers’ hypothesis on potential performance problems". It would thus be
useful, if they were given the opportunity to model and express by themselves these
possible bottlenecks and subsequently check out the corresponding measurements.

User custom metrics offer to users exactly this possibility: to define the metrics which
the performance tools should measure and display for them.

In essence, this is also a great opportunity to link performance with application
semantics, as users define performance metrics or properties and make assumptions
on performance problems based on their mental model of the application execution.
Current implementations though, limit themselves to at most application level met-
rics. It is rather like applying the "printf debugging"4 technique, just that in this case
one tries to eliminate performance bottlenecks instead of application bugs.

Custom metrics were introduced early in performance analysis, mostly as the mere
combination of the predefined low-level metrics. An important step towards includ-
ing semantics within metrics was done in EARL and G-PM projects. The latter one
added to metrics also the application events dimension. Thus users could obtain cus-

4 Commonly known as "printf debugging", this technique is aiming to find software bugs by watching
output traces. The name comes from the printf statement used in C for printing out the needed values
and information.

3.7 related work summary and conclusions 39

Design

Contextual
Design

Specification

Implementation

Literate
programming

Domain Specific Languages

Documentation
extraction

Execution

Performance
Optimization

I/O formats

Performance mapping
Phase-based profiling

Custom metrics

|

|

|

|

|

Figure 11: Schematic development timeline of an application and corresponding research and
application fields which tackle DK.

tom metrics by combining existing predefined low-level metrics, but also specifying
particular application events for which these metrics should be computed. G-PM uses
the PMSL language to specify the custom performance metrics, while the application
events are declared by instrumenting the source code with function dummies.

A similar approach, but with an easier to use instrumentation API, was to be in-
troduced through the already mentioned dynamic counters technique of the SEAA
and TAU. Reimplemented later in the Score-P [71] project, dynamic counters offer
a good support for custom metrics definition. Using a simple code instrumentation,
e. g. DEFINE_CUSTOM_METRIC(var), users are being given the possibility to pass to
the performance measurement framework any application information, like variable
values or strings.

One could argue that custom metrics are the right technology to support semantics
and with this, higher abstraction levels of information. Nevertheless, it is still lacking
a better formalization to support, for example, the connection between metrics and
other semantics-based concepts, e. g. the phases discussed in the previous section.

3.7 related work summary and conclusions

We have seen throughout this chapter that there are many computer science areas
in which different aspects related to Domain Knowledge have been explicitly or im-
plicitly employed throughout the years. One could follow these areas on a schematic
application development timeline, like that in figure 11. In some cases, there is no
clear delimitation with respect to the development phases influenced by one partic-
ular field. For example, the Domain Specific Languages could cover all phases from
design to execution, and sometimes even performance optimization. Nevertheless,
we use this schematic timeline to point out the segments where there are special
contributions of these fields with respect to Domain Knowledge.

To begin with, we consider the design phase of applications. We saw that Contex-
tual Design sets the focus on observing the user in their environment and also reveals
the importance of the terminology used by users in their domain of activity. The
designers have to identify and integrate domain specific words in the application
development. This is similar to the case where a performance engineer from a com-

40 addressing domain aspects in applications/computer science

puting center receives the task to help in optimizing the performance of a particular
scientific application. He or she has to identify in that particular scientific domain,
the concepts and the definitions that scientific applications are working with.

With respect to the next phase, the application specification, we have presented the
early idea of Literate Programming (LP). LP is actually spanning over both phases of
specification and implementation, conforming to the idea that the two phases should
actually merge into a single one. The specification of the yet to be implemented appli-
cation should be written as explanations within the source code. This is to say that the
actual implementation is driven by the semantics of the application, as the programmer
is mainly describing the solution and the implementation is "naturally" following it.

As the LP approach did not enjoy a good acceptance among programmers, we also
had a look at other possibilities of embodying and extracting documentation to and
out of the source code, such as the Javadoc and Doxygen documentation frameworks.
Using corresponding annotation rules, valuable information can be carried over with
the source code and, when needed, properly extracted and visualized. The informa-
tion is mostly related to details of the code structure or functions description. These
approaches are not targeting higher abstraction levels, like domain information, but
mostly stay within the code level information. Nevertheless, they are of importance
in our study, as they do enjoy a great acceptance in software engineering, and thus
provide a valuable hint on preferred documentation method.

Further on in our schematic timeline, we considered the Domain Specific Languages.
This is again a field which spans over several application development phases. As
a matter of fact, there are complex frameworks like the ACES III which support the
complete development process. DSLs are high-level languages which encompass do-
main specific information directly within their syntax and semantics. From the users’
point of view, this is the ideal case, as they can express themselves "naturally" in such
a programming language. The pitfalls of DSLs are their limitation to mostly very par-
ticular application fields and also the mostly untouched parallel performance aspects.
To our knowledge, there are no performance measurement tools which support ap-
plications written in a DSL language.

Searching for other Domain Knowledge resources in current application develop-
ment, we highlighted the potential which different Input and Output formats expose in
this context. In particular, the different Markup Languages (MLs) shaped for specific
scientific domains offer a great means to store and handle domain specific informa-
tion. CML, for example, shaped its terms and identifiers over several years in the
community and could now serve as a template for pasting domain information onto
source code.

In the last part of this chapter we had a more detailed look inside research fields re-
lated to the last phase in our timeline, namely the performance optimization. A very
important work in the strive towards Domain Knowledge is constituted by the Per-
formance Mapping methodology. The goal is to involve semantics in the performance
analysis process, by mapping the low-level performance data to the high-level code
structures. This is also an important backbone on which to build the support for DK
in performance analysis. Other results came from phase-based profiling and custom met-
rics, which also tackle the importance and usage of semantics and thus narrowing
down towards the DK philosophy.

3.7 related work summary and conclusions 41

Identification Definition Application

Contextual De-
sign

domain terminol-
ogy

LP solution descrip-
tion

Documentation
extraction

Annotation Lan-
guage

DSL language design special syntax data structures,
operations

I/O formats structures, rela-
tions

Markup Lan-
guage

Performance
mapping

code semantics

Phase-based pro-
filing

execution phases

Custom metrics user-based flexibility

Table 2: Classification of the related works, based on their contributions to DK.

To conclude on the various related works presented above, we structure them in ta-
ble 2, based on their contributions to DK. We consider three guidelines in developing
a proper support for DK: first, the users have to become aware of their knowledge -
identification; then they need a means to express and pinpoint the knowledge - defi-
nition; and finally, there have to be the means to work with and use the knowledge
- application. We detail on each type of contribution in the next chapter, when we
present our approach, the Domain Knowledge paradigm.

4
"HARVEST ING" THE DOMAIN KNOWLEDGE

In this chapter we introduce the Domain Knowledge (DK) approach. The focus here is
on improving the performance optimization process, but we show that DK can and
should go along with and enhance the other application development phases as well.

We start with a short discussion on the differences between domain specific informa-
tion and domain knowledge. We then continue with the description of the DK philoso-
phy and the design considerations, based on the related work previously discussed.
Then, in the last part, we present the three main constructs on which is the DK built
upon: entities, operations and phases, and we introduce the new DK Metrics for perfor-
mance analysis.

4.1 on information and knowledge

In the previous chapters we used the terms information and knowledge almost inter-
changeably. We would like to point out here though, the light but important differ-
ence between the two of them.

The DIKW (Data Information Knowledge Wisdom) pyramid [65] is a well known
representation in Information Management and in Knowledge Management. The
four concepts, data, information, knowledge and wisdom, are presented as the layers
of a pyramid, with the data being on the bottom and wisdom on the top. Each layer
builds on the next layer below itself. Thus information is the layer which gives seman-
tics to raw data and knowledge is the layer which gives the active reasoning, based
on the information below. Without entering the recent polemics as whether it should
really be just a pyramid, or the iterative aspects of the process, we extract those char-
acteristics of knowledge and information which are most relevant to us: knowledge is
subjective, belonging or depending on a person, while information is objective and can be
formalized and transmitted as such.

Extending these remarks to our research context, one could observe, that previous
related work always refer to domain specific information or application specific informa-
tion. Even semantics and higher abstraction levels eventually do map to the concept of
information, as they receive a formalized, objective expression.

In contrast, domain knowledge is not the mere information on a specific domain, but
actually all the information, reasoning and maybe even particular approach style, one
person could have for that specific domain.

One could even say that applications could, and some actually do carry along
domain specific information, but the knowledge related to the domain will still be
held by the developers or the users.

A good example is given by the different domain specific libraries. If well designed
and well documented, they can offer rather complete domain specific information, as
for example, the parameters required for a particular solver, or the mathematical
model being used by a method. But the knowledge about which solver to choose
for a given particular problem, how to combine them, or how to go about different

43

44 "harvesting" the domain knowledge

limitations of the library, this has to be provided by the person using that library. It
thus depends on how skilled the user is in that specific domain.

A very simplified definition would be that domain information is eventually the
object of the formulations and expression process of domain knowledge. Furthermore,
we could also say that previous related work mainly focused on finding out most
appropriate format and properties of this objects, such that it could be used within
application development. In our work though, we do not target the form, but rather
the means of generating and using such objects.

Also worth mentioning is the fact that data and information are "raw matter" and
thus locally understandable, while knowledge and wisdom represent holistic, global
aspects.

4.2 our approach

It is widely accepted in the HPC community that developing applications for super-
computing still poses a great challenge for the HPC users. One of the main challenges
in this sense is to achieve a good performance of the applications on those very com-
plex systems, that supercomputers are nowadays.

We address this particular challenge and propose as a solution the integration
of the Domain Knowledge (DK) paradigm within the application development and
optimization process.

DK implies a twofold general view on the application. Firstly, a general view on the
semantics of the application. It is like having in mind the final picture of a puzzle,
when searching and fitting the single pieces. Secondly, a general view of the appli-
cation development process. Almost every phase in the development encapsulates
pieces of knowledge.

At the conceptual level, we refer by Domain Knowledge to the knowledge which
developers and users have about the particular scientific domain their application re-
sides within. These could be, for example, acquired skills regarding different solving
methods or limitations of the mathematical models. These skills usually come from
own experiences with applications/packages or can be adapted from others sharing
their knowledge.

At the implementation level, the Domain Knowledge paradigm is supported through
the Language for Domain Knowledge (LaDoK) and the particular performance metrics,
as well as their corresponding extensions of the performance tools (figure 12).

We define DK by means of the following three elements: identification, expression/def-
inition and application/usage.

4.2.1 Identification

It is common practice to depict the task of having to put in relation two or more
groups (of people or elements) which expose evident differences and challenges, as
having to "build a bridge", to "bridge a gap" or to "close a gap". Although this could
apply also in the case of scientific code and HPC, or natural scientists and computer
scientists, we instead find it more suitable to present this task more like having to
"cut a path through a forest", in order to use the various wood essence present in
there.

4.2 our approach 45

Application Domain

DOMAIN KNOWLEDGE

FRAMEWORK

Source code

DK Constructs Management Library

Profiling/tracing tools

Performance data

IDENTIFICATION

EXPRESSION
USAGE

Operations

RulesAlgorithms

Structures

A
b
st

ra
ct

io
n

le
v
e
l

IDENTIFICATION

CompilationInstrumentation
Execution /
Measurements

DK Metrics Support

DK Metrics
Analysis

Visualization

DK Constructs

LaDoK

DK Constructs
Scientific
application

Work Experience

Figure 12: DK approach overview.

The main idea is that DK relies on the elements which are already present in the
application development process, offering tools to extend the usage of those elements.
One does not have to build an additional "system", a bridge, but rather structure and
exploit what is already provided. In this sense, the knowledge from different scientific
domains is already there, otherwise the developers could not actually generate their
applications either. But they need to get aware of this knowledge, such that one can
take advantage of it throughout the entire application development.

In Contextual Design (see section 3.1), the application developers are getting in
the working context of the future users to observe them on-site. This gives them the
opportunity to identify the specific terminology their users employ. Even if they do
not completely understand all terminology, they are able to identify it. Actually, it
is because they are from outside the application domain and the terminology is not
common for them, that they can easily identify these special terms.

In common application development for HPC, the prerequisites are somehow dif-
ferent. Here, the application developers can also be considered as application users.
They do not have the advantage of an "outside observer" to easily identify all special
terms, but they do have the great advantage of being able to master all the terminol-
ogy for that specific domain.

Considering the case of applications developed using Domain Specific Languages
(see section 3.4), one could compare the domain knowledge identification to the learn-
ing phase of a new DSL. While learning a DSL, the future developers eventually map
the terms they have been using so far for reasoning inside their scientific domain, to
the data structures and operations provided by the new programming language. It
is for sure easier to identify this way the terminology and knowledge one already
holds, but it is also to some extent limiting: DSLs might be very domain specific,
and thus leave no room for adaptation, when the "hardcoded" knowledge does not
entirely overlap with the knowledge the developers already hold.

46 "harvesting" the domain knowledge

As pointed out in the previous section, knowledge has also a subjective component.
It is thus rather difficult to formalize and elaborate a general method for identifying
DK. For the purpose of this work, one could follow the example of DSLs and start
with reading Language for Domain Knowledge (LaDoK) samples. We present LaDoK
later in chapter 5.

4.2.2 Expression / definition

Having identified knowledge, one needs the proper framework to also make use of it.
Knowledge processes, analyses, uses information. It is based on information. Thus,
above all, the framework has to provide a means to express/define domain specific
information.

The key point in designing such a framework is to keep in mind that the end pur-
pose is not just carrying or pinpointing the domain specific information, but rather
that of providing the necessary support to apply domain knowledge for improved
application development.

Good examples of such frameworks are given by the more advanced DSLs pre-
sented in the related work chapter, like ACES III (section 3.4.1) or TCE (section 3.4.2).
In these cases, the developer implicitly provides the necessary domain specific infor-
mation, through the very fact of writing the program using the specialized language.
The language encapsulates by its nature domain information.

There is no doubt, specialized languages offer a suitable solution for expressing
domain information. But while high-level languages like the DSLs above are very
promising, one should also consider the limitations which come therewith due to
their high specialization.

A good alternative is given by annotation languages, as those used by the Doxygen
and Javadoc documentation frameworks (section 3.3). One preserves thereby a fair level
of abstraction, and in the same time separate the actual implementation of the appli-
cation from its description. This provides the flexibility required when it comes to
adopting slightly different semantics.

In order to answer the requirement that information has to be expressed in such a
way that it offers support for the application of knowledge, one should consider the
important observations raised up by Literate Programming (LP). In LP, the programs
had to be written in such a way that other developers, e. g. students, could easily
read them and understand the solution. The documentation in this case explains the
implemented solution. Likewise, in our context, the developers make use of their
domain knowledge to process the information delivered along with the application.

The suggested solution is to use a markup language to highlight information directly
in the source code. If we were to think of scientific applications as scientific papers
rewritten in a programming language, then the LATEX instructions used to mark the
raw text in order to properly format and highlight the actual information in the
document, could be "rewritten" in LaDoK instructions which mark the source code in
order to properly highlight the actual domain specific information in the application.

4.3 dk concepts 47

4.2.3 Application / usage

As specified earlier in this chapter, we will limit the presentation of our approach
to the context of performance measurement and analysis. Nevertheless, DK could
be applied in a broader spectrum of software development fields, as explained in
chapter 11.

The actual utilization of DK is conditioned by the following three aspects:

1. DK management: the domain specific information has to be registered, stored,
and retrieved when needed. The object of this management process are a set of
DK constructs, which we present in the next section. Chapter 7 then gives more
detail on our implementation of such a DK management library.

2. DK integration in profiling and tracing: the actual performance measurements
have to be enhanced with domain knowledge elements, in close connection
with the DK management system. A good example is given by the dynamic
counters introduced already in TAU and Scalasca (see section 3.6.1). We detail
more also on this subject in chapter 7.

3. DK support in performance analysis: this is the "reward" for all the effort made
so far. The developers can use their domain knowledge to reason on the per-
formance results, based on the domain information which penetrated through
the entire process. Specialized analysis instruments are also available, like, for
example, the DK Metrics we describe in section 4.4.

One of the important contributions of DK is that of easing and improving the de-
velopers’ experience in performance analysis. They can analyse performance using
constructs which are familiar to them and suited for the specific scientific domain,
but without being restricted to predefined structures. In the same time, through the
underlying framework they are also given guidance on how to wield their applica-
tions to obtain suitable performance information.

4.3 dk concepts

In this section we elaborate on the particular information structures and concepts,
which constitute the building blocks for the Domain Knowledge paradigm.

Shortly re-rendering the observations in chapter 1, we saw that the development
of new scientific applications includes somewhere in the process, the transition from
phenomenon and observations to formulae and methods/algorithms and finally to
the variables and functions/routines of the written source code.

The only research we could find related to keeping the connection between the
initial scientific formulations and the final executable code is still rather far from
our current context. These are the specialized Markup Languages used to describe
input and output scientific data formats (section 3.5). Their purpose is to offer a means
to describe the results and input of scientific computations. The main concepts the
languages are based on are those of containers and controlled vocabularies. The first ones
are self-describing, the data being packed together based on different rules. The latter
ones, offer a standard list of terms to be used as tags or attributes. See section 3.5 for
a code snippet.

48 "harvesting" the domain knowledge

The very fact that there are so many MLs, one or more for each of the computa-
tional sciences, shows clearly that it is a hard task to find only one set of constructs
to use in all scientific applications. On the one hand, there is the need to provide
general semantics, but on the other hand, there are many particularities in each of
the sciences which have to be preserved.

We thus have to turn back to the higher abstraction level of mathematical formulae,Mathematics are the
common language for

all computational
sciences.

as it seems that mathematics are the common language for all computational sciences.
Therefore, we reconsider the transition from formulae and methods to written source
code and search at this level for the basic constructs.

4.3.1 DK Entities

First of all, each variable and parameter of a formula is translated to a variable or
constant of the programming language. But variables in formulae have their well es-
tablished semantics, whilst variables of programming languages are just data struc-
tures. We thus have a first type of information which has to be preserved: semantics
of the variables in formulae. We call these constructs DK Entities.

An entity is to some extent similar to the notion of container mentioned above. It
groups together programming variables which describe one semantic construct and
it can also hold different attributes to better characterize them.

4.3.2 DK Operations

The main part of a scientific code is built on algorithms which either emulate some
complex mathematical operations or implement methods solving equations and alike.
These are the next building blocks for domain knowledge, we call them DK Operations.

Again, operations could be thought of as containers which group together a set of
functions in the source code. The important feature, though, is that DK Operations
not just group functions, but also enhance them with domain semantics, which can be
used later on. For example, a function which simply processes the grid in a multigrid
solver, does not keep the information regarding the current coarsening level. But this
would be a valuable information in the performance analysis process and could be
delivered as an attribute of a corresponding DK Operation.

Also, DK Operations can be linked to DK Entities. It is natural and mostly only
implicit information, that specific actions are performed using or generating specific
data. One is now provided the possibility to explicitly link instantiations of these two
concepts.

4.3.3 DK Phases

There are cases in mathematics too, where one has to consider exceptions from the
general rule or theorem being applied. This usually depends on some particular val-
ues or combination of conditions which fulfil simultaneously. When implemented
in an application, running such a code would lead to the situation that sometimes,
special tracks in the code will be executed, given that special results occur in compu-
tations.

4.4 dk metrics 49

We relax a bit the "exceptional" aspect of such events, as not to conform just to
the exception handling common in programming, but rather to denote all particular
cases which might appear during the execution of a scientific code. We call these
cases DK Phases.

From a pure developer’s point of view, the main purpose of DK Phases is to mark
down runtime events - execution branches which depend on the computed data. For
a computational scientist however, DK Phases empower the expression of the logical
aspects or stages of the modelled phenomenon. In any case, the result is a better
experience in performance analysis.

We already saw in section 3.6.2 different approaches towards application phases
definition. DK Phases are introduced at a rather conceptual level, and hence they
could function as any of the mentioned phase types - time segments, execution context,
or recurring operations.

One specific property is that, unlike DK Entities and DK Operations which are
a kind of containers, DK Phases hold a global status of the execution. To relate to
the previous parallels between the DK constructs and the ML constructs: there is no
direct correspondence between the DK Phases and the ML constructs, as the first
ones refer to runtime events, and the latter ones to input and output static properties.

4.4 dk metrics

As pointed out earlier in this chapter, the main purpose of the DK paradigm is to
improve the performance analysis experience. Following the idea, that HPC users
should be able to interact with the performance tools in a "natural" manner, i.e. using
concepts and domain specific terms which are common for them, we introduce the
DK Metrics. These new metrics combine and integrate the DK Constructs explained
above - entities, operations and phases - with performance specific information like
memory usage, computation time or communication patterns. They are the applica-
tion instrument of DK in performance analysis.

We distinguish three types of DK Metrics and counters:

• extension metrics: DK is being integrated within existing metrics, extending their
semantics over DK Constructs or other components to support DK. Such are,
for example, the Iterometers presented below.

• pure metrics: these are "stand-alone" metrics, for which special targeted measure-
ments are being conducted, rather than re-using performance data from other
metrics. An example is given below by the MPE metric.

• support parameters: application specific counters, variables and parameter values
which provide dynamic runtime information.

We would like to stress the fact that the DK Metrics are thought to be tools for
performance analysis. This means that the application developers are expected to
utilize them as they need and based on the particular domain knowledge they have.
These tools are designed to work with the previously custom defined constructs. One
could "pick" a DK Entity and "measure" it as needed.

The difference to the Custom metrics we presented in section 3.6.3, is first of all
the integration of the DK elements. The new metrics we propose are not just the

50 "harvesting" the domain knowledge

combination of the existing metrics, but they add a reference to the main constructs
and concepts of DK. Secondly, there is a difference with respect to the flexibility of
these metrics. With DK Metrics, users are more restricted with respect to defining
own metrics, but they have more flexibility regarding the measured object, in the
sense that they already customly defined the DK Constructs.

We give in the following a brief description of three DK Metrics. For examples and
results of applying the metrics on real applications, we refer the reader to chapters 8
to 10.

4.4.1 Memory per Entity (MPE)

As the name implies, Memory per Entity (MPE) provides information with respect to
the memory used by an entity throughout the execution of an application. It is more
useful for a developer in reasoning about performance and possible optimization of
their application, if it has the opportunity to inspect, for example, not just the appli-
cation overall memory usage or the amount of allocated memory per each allocate
function call, but also the memory used by one particular entity throughout the exe-
cution. One use case is provided by the applications in Quantum Chemistry, which
are known to produce large amounts of intermediate data. It is of great help in this
case to have a better insight of when and what was the memory used for. Chapter 8
gives a complete use case evaluation.

4.4.2 Computed Entities Count (CEC)

This is one example of a common metric extension. Execution time and its specialized
variant, Computing time, are by far the most used metrics in performance analysis. Es-
pecially in load imbalance problems, it is common to compare these times considering,
for example, the duration of the same function call on different processes. CEC builds
on top of these metrics. It integrates the previously defined entities, in the time per-
formance analysis, giving better insights. Expressing the computation load in terms
of how many entities were computed, assists the developer in decisions regarding, for
example, the entities distribution method, or the customization of domain specific
operations, based on entity types.

4.4.3 Iterometers

Iterometers are a class of extension metrics which target the analysis of issues re-
lated to the iterative processes within applications. Most scientific applications are
composed of one or a few main loops, which iterate over application-wide dimen-
sions like the timestep or the number of particles in a simulation. Given the common
timeline visualization, an iterometer adds domain specific runtime events, like, for ex-
ample, the multigrid level indicator, or the residual value for some current timestep.

An iteration implies the existence of a loop and one or more iteration indexes
which run between given start and end boundaries. Sometimes the indexes or the
boundaries might not be given explicitly. For example, a while-loop executing some
convergence algorithm until the residual is reaching an acceptable value. The seman-

4.5 comparison to seaa and nv 51

tic is still that of an iteration, but the code structure might lack of corresponding data
structures. DK annotations would provide here the necessary semantic information
which could then be used for targeted analysis with Iterometers.

4.5 comparison to seaa and nv

In the chapter 3 we presented two important related works: the Noun-Verb (NV) and
the Semantic Entities, Attributes and Associations (SEAA) paradigms (see section 3.6.1).
We showed that NV was the first to use a mapping technique to explain performance
data by mapping it to the structures of the high-level language, and that SEAA ex-
tended the concept introducing for the first time a reference to the higher abstraction
level represented by the semantics of an application. We presented in section 3.6.1
both the features and the shortcomings of these two paradigms. In the following,
we would like to highlight the differences between our approach and these two ap-
proaches.

There is first of all a difference at the very general point of view, regarding the
perspective offered by each of the paradigms. NV and SEAA approach the problem
from the source code towards application semantics, while DK starts from the sci-
entific context of the application towards its implementation. The first ones aim at
adding semantics to the given code structures, while DK aims at marking code struc-
tures with the given domain semantics.

Semantic Entities extended the Nouns concept by detaching them from the strict
source code data structures. DK Entities are closer to the Nouns concept, due to their
container characteristic, as explained above. Nevertheless for the particles simulator
described in section 3.6.1, DK Operations linked to DK Entities are more suitable to
handle the computation of the particles on different faces. We provide the entire
example in section 10.3.

Also, SEAA practically eliminated the Verbs and Sentences concepts original in NV,
introducing instead the dynamic Associations and Attributes to handle the implemen-
tation difficulties of the initial Active Sentences. As a consequence, from the user point
of view, all profiling work/instrumentation has to be done now in a "printf"-manner,
by switching on and off the defined dynamic counters. The combination of DK Oper-
ations and DK Phases offers instead a different approach, in the sense that it provides
both a natural and a well formalized means of expressing semantics and domain infor-
mation.

The main idea of performance mapping is to relate performance issues to the code
structures responsible for them. NV is rather focused on identifying the data struc-
tures and data structures operations, while SEAA tends more towards exact time
costs accounting for tasks-based like executions. While these are similar to what our
extension metrics also offer, both NV and SEAA lack a clear integration of the applica-
tion semantics within the metrics. Also, the other two types of DK Metrics, the pure
metrics and the support parameters do not have a counterpart in either NV or SEAA.

4.6 conclusions

The Berkley’s technical report on the evolution of the parallel computing research,
published in 2006, states:

52 "harvesting" the domain knowledge

"We believe that future successful programming models must be more human-centric. They
will be tailored to the human process of productively architecting and efficiently implement-
ing, debugging, and maintaining complex parallel applications on equally complex manycore
hardware." [1]

We consider that our approach is conforming to the trend foreseen here. We are
extending programming tools to facilitate the deployment of the subjective expertise
which humans/scientists have in their research fields, into the process of analysing
the performance of their applications on HPC systems.

The key point of Domain Knowledge is to offer a framework which provides both
a useful guidelines, as well as the necessary flexibility in order to first integrate do-
main specific elements into applications and then to use them in the analysis process.
These two features are achieved through the combination of a familiar syntax for an
annotation language on the one side, and three basic constructs on the other.

Moreover, DK fosters a global view of scientific applications as well, supporting
metrics which address global performance of programs.

In the following chapters we detail on the implementation and evaluation of DK.
We present the markup language LaDoK in chapter 5, an implementation of a frame-
work supporting DK in 7 and real use case results in chapters 8 to 9.

5
LADOK - LANGUAGE FOR DOMAIN KNOWLEDGE

In this chapter we present LaDoK , the Language for Domain Knowledge. The purpose
of LaDoK is to support developers in expressing the domain specific information and
skills they hold, in order to use them further in the Domain Knowledge approach.

5.1 language features

The design of LaDoK is based on five main features, which we identified as impor-
tant language features in our given context. They resulted from both the analysis of
the related work, as well as from common practical experience in the performance
measurement and analysis in the HPC field:

• familiar syntax: a rather general requirement for languages is to have an easy
to learn syntax. We have to take into consideration the fact that LaDoK will be
used in addition to common GPLs, and thus the extra learning effort should be
kept at minimum.

• unintrusive relative to source code: there should be a clear distinction between the
source code of the scientific application and the DK related insertions in the
code. Also, it should be very clear that LaDoK only marks-up/highlights the
information and does not interfere with it.

• orthogonality1: LaDoK is an instrument used by developers in the DK context in
order to make explicit the implicit domain specific issues. The orthogonality of
the language would promote a precise and clear means of expression.

• composability: LaDoK addresses scientific code and it is known that scientific
applications use overy often special libraries or re-use own application parts de-
veloped in related research tracks. LaDoK should support a component-based
application design.

• flexibility and extensibility: the main usage context of LaDoK is the performance
analysis process in the broader HPC context. As this is itself a dynamic field,
with changing requirements, it is necessary that the new language is prepared
to support changes and extensions.

In order to respond to all these requirements, both at the syntactical as well as
the semantic level, we designed LaDoK to closely follow the line given by the well
known typesetting language LATEX.

5.1.1 LaTeX-like language

LATEX is by far the first choice, when it comes to scientific papers and books. Hence,
most scientists are familiar with the language, its syntax and semantics. These same

1 For a definition of orthogonality for programming languages, see [63]

53

54 ladok - language for domain knowledge

scientists should apply now LaDoK in the source code, to highlight information
which is closely connected to the information which they markup with LATEX, maybe
on the very paper describing the results they obtained with the application. There is
an obvious similarity between these two tracks. We aim at keeping it in the actual
markup language as well.

Besides the familiar syntax, LATEX also has the advantage of being very distinct
from the common GPLs, and thus the second requirement is also fulfilled.

As with respect to orthogonality, LATEX is probably not the best candidate, since
there are many situations where more than a command exists for the same function-
ality. Even more, the final typesetting of the document depends on an entire combina-
tion of commands and parameters. Often, changing a parameter of a command will
influence the result of other commands too. At this point we count on the simplicity
of LaDoK for yielding a better orthogonality than LATEX usually does.

The last three requirements are "naturally" supported, by the way LATEX is built:
composability - one can include other files in the current one; flexibility - there is sup-
port for defining new commands; and extensibility - the support for the packaging
system.

5.2 ladok syntax

The LaDoK syntax is mostly identical to the LATEX syntax, there are only few other
keywords and a different order for the optional parameters block, as we describe in
this section.

LaDoK is a markup language and, hence, there is no stand-alone LaDoK file, but
rather source code files written in common GPLs and enhanced with Domain Knowl-
edge based markups.

The markups are defined through LaDoK commands. The general syntax of one
command is:

\commandName{paramSet1}{paramSet2} ... [optParamSet] ✆
The parameter sets are comma-separated lists of either single parameter names or

pairs of parameter name and parameter values:

paramSet: parameterName1, parameterName2, ...

paramSet: parameterName1 = parameterValue1, parameterName2 =

parameterValue2, ... ✆
Although following the same syntax, there are two distinct types of commands

in LaDoK : stand-alone and coupled commands. A stand-alone command has no other
restrictions besides the given syntax and it refers to the global context. See the \phase
command below.

The coupled commands must be given as pairs. They can be nested but not inter-
leaved and function as a container or context for the defined properties and action.
They correspond to the environment commands in LATEX. See, for example, the entity
definition below.

Listing 7 gives the grammar of LaDoK in the BNF notation.

5.2 ladok syntax 55

construct: phase | entity | operation

phase:

"\phase{" PHASENAME "}" |

"\phase{" PHASENAME "}[" phaseattrlist "]"

phaseattrlist:

phaseattrval |

phaseattrval "," phaseattrlist

phaseattrval:

"type" "=" ("communication" | "computation" | "I/O") |

STRING "=" STRING

entity:

("\begin{entity}{"ENTITYNAME"}" |

"\begin{entity}{"ENTITYNAME"}["entityattrlist"]")

statements

"\end{entity}"

statements:

statement |

statement statements

statement:

construct | GPL-STATEMENT

entityattrlist:

entityattrval |

entityattrval "," entityattrlist

entityattrval:

"type" "=" ("dynamic" | "static") |

"typevar" "=" VARIABLENAME ["typefield" "=" STRING] |

STRING "=" STRING

operation:

("\begin{operation}{" OPERATIONNAME "}" |

"\begin{operation}{"OPERATIONNAME"}["operationattrlist"]")

statements

"\end{operation}"

operationattrlist:

operationattrval |

operationattrval "," operationattrlist

operationattrval:

"type" "=" ("commcontrol" | "commdata" | "commsend" |

"computation" | "initialization") |

"param" "=" VARIABLENAME |

"linkedentity" "=" ENTITYNAME |

"linkedentityset" "=" ENTITYSETNAME ["idx" "=" VARIABLENAME] |

"iterometervar" "=" VARIABLENAME |

"dstproc" "=" VARIABLENAME |

"checkop" "=" ("SUM" | "PROD" | "AVG") |

STRING "=" STRING ✆
Listing 7: Grammar of LaDoK .

56 ladok - language for domain knowledge

program simplevectors

integer :: i, j

\begin{entity}{myVectors}

real, dimension(10) :: a

integer, dimension(:), allocatable :: b

\end{entity}

j = 3

a = (/ (i*2, i=1,10) /)

allocate(b(10))

b = j*a;

end ✆
Listing 8: Simple entity definition within a Fortran code fragment.

5.3 ladok constructs

LaDoK is composed from a small set of constructs, which leverages a good orthogo-
nality. The constructs closely follow the DK Concepts presented in section 4.3, with
some extensions imposed by the implementation aspects.

5.3.1 Entities

A DK Entity is defined using the following construct:

\begin{entity}{entityName}[parameterList]

% GPL source code containing

% definitions of variables

% ...

\end{entity} ✆
where \begin and \end are LaDoK commands and entity is a special keyword,

which has to appear between the first curly brackets. entityName and parameterList

are to be replaced with the corresponding string values.
All data structures defined between the begin and end commands are going to beEntities regard data

structures declaration. assigned to the entity identified by entityName. Listing 8 gives a minimal example
of an entity definition within a Fortran code. For details regarding our solution for
implementing the variable-to-entity assignments, as well as the entity identification,
please refer to chapter 7.

The semantics of the LaDoK Entity construct complies to the minimal requirement
of DK Entities of exposing a container-like characteristic, and even add a few more
important features:

container-like : first of all, assigning data structures to an entity is as straight for-
wards as surrounding their definitions between the \begin{entity} and \end{entity}

constructs.

Secondly, more data structures can be added to an existing container by using
the same entityName at any subsequent entity definition. In this sense, the first

5.3 ladok constructs 57

definition of a particular entity is treated as such, while any further definitions
are treated as extensions to the previous ones.

robustness : a very important feature for a markup language is to be able to
cope with various code structures and constraints. Developers should not be
forced to rewrite or restructure the code especially for being able to apply the
markups.

The entity definition fulfils this requirement, in the sense that it is robust to "for-
eign" statements appearing inside the \begin ... \end pair. All programming
statements referring to variable definitions are accounted for registration to the
current entity, while any other programming statement is being ignored.

hierarchic : many natural, as well as abstract structures, expose a hierarchical
characteristic. There are entities which logically belong, or are part of other
larger entities. They could be called "sub-entities".

LaDoK does not use an extra definition for "sub-entities". It rather supports
this feature through the nesting concept. An entity definition which is enclosed
inside another entity definition preserves the natural semantics of being a "sub-
entity" of the enclosing one.

Any LaDoK implementation thus has to offer support for hierarchical entity
identification. Here again, we refer to chapter 7 for details regarding our imple-
mentation solution.

Listing 9 illustrates the features above using a C code snippet:

1. container → the Collection entity is defined at lines 2-11 and then extended with
2 more variables at the lines 15-18;

2. robustness → other programming statements besides the variable declarations
are also allowed, like those at the lines 5-6;

3. hierarchic → the Index entity definition at lines 8-10 is nested within the broader
Collection definition, and thus Index is a "sub-entity" of the Collection.

DK Entities can receive a list of attributes, as shown in listing 7. The grammar
gives a set of predefined attributes, but it also leaves the possibility to freely define
new attributes. The only constraint is the attribute-name/attribute-value pairwise
declaration. Depending on the actual scientific domain of the application, as well as
on the programming tools which use the annotations, there might be new attributes
required.

The predefined attributes are as follows:

• type: defines a type for the entity. Allowed values are dynamic and static. Dy-
namic entities can receive further attributes via DK Operations of type initialization.

• typevar: defines the variable registered with the current DK Entity whose value
is going to represent an identification for the DK Entity at runtime. See sec-
tion 10.3 for an example.

58 ladok - language for domain knowledge

1 ...

2 \begin{entity}{Collection}

3 int* a;

4 const int MAX_SIZE = 1000;

5 a = (int*)malloc(sizeof(int), MAX_SIZE)

6 read_in(a);

7 double pi = 3.14;

8 \begin{entity}{Index}

9 int* idx1;

10 \end{entity}

11 \end{entity}

12 ...

13

14 % possibly in another file

15 \begin{entity}{Collection}

16 int* b,c;

17 initialize(a, b, c);

18 \end{entity}

19 ... ✆
Listing 9: An entity definition example, featuring extension, nesting and statement

interposition within a C code snippet.

• typefield: used only in combination with typevar, it defines the field of the iden-
tification variable to be used as the representing value. In order for this to work,
the identification variable should have a composed type, like structure or user
defined types in Fortran.

5.3.2 Operations

The way DK Operations are defined using LaDoK is very similar to the entities defi-
nition:

\begin{operation}{operationName}[parameterList]

% GPL source code containing

% any executable statements,

% declarations, or definitions

% ...

\end{operation} ✆
where \begin and \end are LaDoK commands and operation is a special keyword,
which has to appear between the first curly brackets. operationName and parameterList

are to be replaced with the corresponding string values.
All executable statements enclosed between the begin and end commands are go-

ing to be accounted for the operationName operation.
The observations regarding the extension and the nesting of entities definition ap-

ply for the operations definition too:

• repeating the same operationName in a subsequent definition extends the previ-
ous one;

5.3 ladok constructs 59

• nesting operation definitions results in the inner operation to be treated as sub-
operation, or part of the outer operation.

There are two important aspects which are different from discussions on entities,
and which we would like to present below.

First of all, operations can be linked to entities. This is accomplished by adding the Operations can be
linked to entities.attribute linkedentity having as value the name of the entity to which the current

operation has to be linked with:

\begin{operation}{Distribution}[linkedentity=Collection]

% ... some statements here

\end{operation} ✆
The importance of this feature for the performance analysis will be discussed later

in the chapters presenting the use cases.
The second aspect concerns the usability of the actual definition of an operation, Operations include

various types of
programming
statements.

very much like the discussion on the robustness of entities definition. While the latter
ones target only one type of programming statements, namely the declarations of
variables, in the case of operations definition, there is a considerably difference of the
required behaviour. One distinguishes here several use cases (note that by function
we generally define subprograms - thus also including procedures or methods; and
by header files we generally refer to the file containing declarations - these could also
be modules or any other types):

• function declarations: there are cases where all functions of a given application
component should be categorized as being one single operation. In this case,
it is desirable that the operation is defined where all functions are declared
together, e. g. in the header file, and not necessarily where they are implement-
ed/defined. Hence, operation definitions have to recognize function declaration
statements.

% function declarations

\begin{operation}{LibraryOperation}

double processDoubles(double* a, int size);

int processInts(int* b, int size);

\end{operation} ✆
• function definitions: there are also cases where there are no such previous decla-

rations of the functions, or where it is simply more convenient for the developer
to just mark the operation in the current working file, than to search for the cor-
responding header files. For this case, operation definitions have to recognize
function definition statements.

% function definition

\begin{operation}{ProcessArray}

double processDoubles(double* a, int size){

for(int i=0; i < size; i++){

a[i] = % ...

}

% ... other statements

}

\end{operation} ✆

60 ladok - language for domain knowledge

• function calls: finally, there are cases where only a code fragment should be cate-
gorized as a particular operation. It follows, that operation definitions also have
to recognize function call statements, as well as common execution statements.

% code fragments and function calls

double processDoubles(double* a, int size){

\begin{operation}{Interpolation}

for(int i=0; i < size; i++){

a[i] = % ...

}

normalize(a); % function call

\end{operation}

% ... other statements

} ✆
Other attributes which can be set for DK Operations are given in listing 7. Similar

to the case of DK Entities, the list of predefined attributes can be extended according
to the deployment necessities.

The predefined attributes for DK Operations are:

• type: gives the type of the operation. Accepted values are commcontrol, commdata,
commsend, computation, and initialization. All these values were defined in
relation to their usage within performance analysis tools. For the semantics
of the commcontrol and commdata, please see chapter 9. The computation and
initialization are well described in section 10.3, while the commsend is ex-
plained in the implementation section 7.4.2.

• param: receives as value the name of a variable. Its semantics is given only in
relation with the type attribute.

• checkop: provides the mathematical operation which will be performed on the
variable set by the param attribute. This is used in DK Operations of type
commdata.

• linkedentityset: like linkedentity described above, but it links an entityset. We
introduce entitysets below, in section 5.4.1.

• idx: used only in combination with an entityset, it receives as value the name
of the variable which is used as the index of the respective entityset.

• iterometervar: receives as value the name of a variable which is to be consid-
ered further as the Iterometer of this DK Operation. We defined Iterometers in
section 4.4.

• dstproc: used only for DK Operations of the type commsend, it accepts as value
the name of the variable which defines the destination process of the communi-
cation.

5.3.3 Phases

Defining DK Phases in LaDoK is achieved by issuing the phase command at the
desired place in the source code:

5.4 extensions 61

% ...

\phase{phaseName}[parameterList]

% ... ✆
where \phase is a command and phaseName has to be replaced with the corresponding
string value.

As explained in section 4.3, phases are not container-like concepts as entities and
operations, but rather represent a global status of the application. In this sense, the
execution context of the application is set to be the phaseName phase from the point
where this command is encountered. The context will be changed again when execu-
tion meets the next \phase markup.

Phases cannot be nested. Any new \phase just starts a new phase. Nevertheless, the
application can enter one particular phase several times during the execution. This
can happen if the same \phase call is executed several times, or if the same phaseName

is being used for different \phase calls.
The grammar in listing 7 provides one predefined attribute for DK Phases, the type

attribute. The actual semantics of the given attribute values are actually depending
on the particular programming tool where DK is applied. A good example are the
profiling tools, which might use such type specification for a better targeted measure-
ment process.

5.4 extensions

In this section we consider two extensions which could be added to LaDoK, namely
the entitysets and the data type annotations. We show that the first one is a natural
addition to the DK Concepts, while the latter does not really follow the DK design
guidelines.

5.4.1 Entitysets

Besides the three main concepts represented by the DK Constructs, LaDoK can also
provide a derived concept: entityset. An entitset is not a "stand-alone" concept in
the sense of the semantics described by the DK approach, but it is rather a conve-
nience extension, mainly motivated by the granularity of the semantics and the limita-
tions/characteristics of the implementation.

In many scientific applications, the actual algorithms or computations are per-
formed on a group of elements. Such are, for example, applications working with clus-
ters of atoms, or molecules, with sets of particles, or grid units. In order to apply the
DK approach, one is provided in this case mainly with two options: either mark the
entire group as one DK Entity, or mark each element of the group as an entity by its
own. This is the granularity of the semantics.

At the source code level, when taking into consideration programs written in com-
mon GPLs, such groups of elements are represented as arrays. Either as one array
of structures/objects, or as several arrays storing different properties of the elements
and sharing some index for proper alignment. Hence we have different implementa-
tion characteristics.

62 ladok - language for domain knowledge

In LaDoK though, entities annotations only allow single entity definitions. Thus,
arrays could only be marked together as one large entity

\begin{entity}{AllParticles}

particle_type* particleTypes;

pos_type* particlePositions;

\end{entity} ✆
In order to apply a finer semantics granularity, LaDoK can also provide the derived

construct entityset. The code snippet above thus becomes:

\begin{entityset}{Particles}

particle_type* particleTypes;

pos_type* particlePositions;

\end{entityset} ✆
Each array declaration between the \begin and \end commands will be assigned to

the given entityset. The elements at a given index i from all arrays will be registered
as one single entity.

For the example above, particleTypes and particlePositions represent the Particles

entityset and one entity Particles[i] consists of the two elements particleTypes[i]

and particlePositions[i].
The index of an entityset can be defined at the moment when the entityset is used.

One defines a DK Operation and gives the two attributes linkedentityset and idx,
as described above in section 5.3.2.

5.4.2 Data type annotation

One question arising when designing LaDoK was: Should LaDoK also annotate data
structure types, or limit only to the data structure declarations?

Annotating a data type would then look like in the listing below:

\begin{entitytype}{Molecule}

typedef struct{

oribitals_t* orbitals;

position_t pos;

} molecule_t;

\end{entitytype}

molecule_t MoleculeA;

molecule_t MoleculeB; ✆
and declaring variables of the annotated type should result in the DK framework

registering them as DK Entities.
The listing above would target the same effect as the case below, where the data

structure declarations are being annotated instead of the data type declaration:

\begin{entity}{MoleculeA}

molecule_t MoleculeA;

\end{entity}

\begin{entity}{MoleculeB}

molecule_t MoleculeB;

\end{entity} ✆

5.4 extensions 63

There are several benefits which data type annotations could bring to LaDoK:

• there would be less annotations required;

• it complies to the "programming spirit";

• offers the possibility to address substructures like the fields of a custom type.

In the same time, there are more important issues which plead against such anno-
tations:

• it is not following the main DK design guidelines of directly explaining data;

• it would be difficult to identify entities, especially if one combines both entity-
and entitytype- declarations.

Further investigations using real code implementations as study cases might bring
more light into this issue.

6
LADOK FRAMEWORK

In this chapter we present our LaDoK framework implementation. The main goal of
the framework is to deliver the DK information associated to an application in such
a form that it can be directly used by advanced programming tools. The framework
receives as input an application enhanced with LaDoK annotations. As output, it
delivers a set of DK objects and a new instrumented version of the application, which
should be used together later by the advanced programming tools.

The main components of the framework are:

1. LDK Extractor, including:

a) LDK Parser;

b) LDK Directives Processor; and

c) LDK Instrumenter.

2. LDK Interface Library; and

3. LDK Objects.

Figure 13 presents an overview of these components, along with the data and
control flows.

The LDK Extractor is responsible for extracting the DK information from the source
code enhanced with LaDoK annotations. The LDK Objects component acts like a
database. It stores the DK objects identified and instantiated by the LDK Extractor.
The LDK Interface Library provides the necessary functionality for handling the DK
objects.

Although not a component by itself, an important part of the framework is repre-
sented by the new instrumented source code which is generated in the end, along
with the DK objects in the database. These instrumentations are necessary at runtime
to provide dynamic information and thus support the management of dynamic DK
objects, as well as of some property changes of the static DK objects stored in the
database.

6.1 ldk extractor

Our implementation of the LDK Extractor is based on f90inst, the Fortran instru-
menter of the Periscope tool introduced in section 2.4. f90inst is implemented in C
and uses for the source code parsing the NAGf90 library from the Numerical Al-
gorithms Group (NAG). f90inst can parse Fortran files, one at a time, and insert
Periscope specific instrumentation calls.

We integrated the LDK Extractor based on the native instrumentation process of
f90inst, as seen in figure 14.

65

66 ladok framework

LDK
Interface
Library

LDK
Objects

src file

src file

LDK Instrumenter

LDK Parser

LDK Constructs Processor DK
Custom

Attributes

Program execution

\begin{...}
\end{...}

call ...(..., ldk_flags)
ldkStartPhase(...)

LDK Extractor

Figure 13: The main components of the LaDoK Framework.

Following the syntax and semantics described above in sections 5.2 and 5.3, devel-
opers manually instrument the source code of their application with LaDoK annota-
tions. The framework uses first the NAGf90 library functionality to read-in the file
and build the parse tree (PT) of the source code.

In the next step, f90inst starts traversing the parse tree in order to operate Periscope
specific instrumentation. We connect here the LDK Extractor by means of a test com-
mand performed on the currently visited node. There are three types of nodes which
switch on LDK processing:

1. nodes containing LaDoK annotations;

2. nodes containing routine calls; and

3. nodes containing routine declarations.

If the currently visited node is of one of these three types, then the instrumenting
process enters the execution defined by the LDK Extractor. More precisely, there is
one particular flow sequence defined within the LDK Extractor for each type of node.
See figures 15, 17 and 18, which we describe in more detail in the sections below.

During its execution, the LDK Extractor generates DK objects, or uses the existing
ones, depending on the particular flow sequence.

From the LDK Extractor, the execution flow returns back to f90inst. Upon finishing
the parse tree traversal, source files with new instrumentations are being generated.

This entire process is repeated twice for the entire application, thus we talk about
two processing phases:

1. First processing phase.
In the first run, the LaDoK annotations are "consumed" and replaced, where
necessary, with LDK Interface Library calls. The DK objects are created as well.

6.1 ldk extractor 67

Parse file
NAGf90

Traverse tree
f90inst

is LDK
relevant
node?

finished
traversing?

LDK Extractor

yes

no

no

yes

parse tree

src file

\begin{...}
\end{...}

src file

call ...(..., ldk_flags)
ldkStartPhase(...)

DK objects

Figure 14: Integration of the LDK Extractor into the f90inst execution process.

In this first phase, only the first of the three types of nodes above are used to
enable the LDK Extractor (figure 15).

2. Second processing phase.
The second run is dedicated to instrumenting the source code with support for
dynamic information and dynamic objects. In this second phase, the nodes of
the types 2 (figure 17) and 3 (figure 18) are used to switch to the LDK Extractor.
The instrumentation also takes into account the information stored by the DK
objects generated in the previous phase.

The separation in two processing phases is necessary due to the global character
of the DK Objects. Before running any automatic instrumentation of the code in the
LDK Instrumenter, the entire DK information needs to be gathered and this is fully
accomplished only at the end of the first processing phase.

In the following subsections we present the three components of the LDK Extractor:
the LDK Parser, the LDK Directives Processor and the LDK Instrumenter. Starting
from the two processing phases described above, we show for each of them the main
functionality and implementation strategy.

6.1.1 LDK Parser

The LDK Parser comes into play during the first processing phase and it is the first

Parse line
LDK Parser

start/end entity
start/end operation

start phase

component being called in the execution flow, as seen in figure 15 as well.

68 ladok framework

is LDK
annotation?

finished
traversing?

Parse line
LDK Parser

Process semantics
LDK Constr. Processor

yes

no

no

yes

start/end entity
start/end operation

start phase

Modify parse tree
LDK Instrumenter

DK objects

LDK Extractor

Figure 15: Integration of the LDK Extractor into the f90inst execution process. Blue boxes
belong to f90inst, while orange boxes belong to the LDK components.

As already mentioned, the input file is read-in by the NAGf90 library, which gen-
erates the parse tree of the source code. In this tree, all LaDoK annotations are stored
as comment nodes. The convention is to prepend every LaDoK annotation line with
the identifier !$LDK. For example, annotating the start of a new phase in the source
code would look like this:

!$LDK \phase{MyComputationPhase}[type=computation]

If the node is a comment node and it starts with the predefined sequence !$LDK,
then it is a node which switches to LDK processing. It is the first type of nodes listed
above.

The first step in this sequence is parsing the entire annotation line. Being given as a
comment line in the source code, the annotation is considered by the NAGf90 parser
as one single token and stored within a single node. What the LaDoK parser needs to
do now, is to split the line into valid tokens and interpret them based on the LaDoK
syntax. This is generally known as lexical analysis and syntactic analysis, which are the
common components of any parser.

The LDK Parser uses Lex and Yacc [9] to automatically generate the appropriate
parsing routine for the annotation lines. Lex is a lexical analyzer generator. The gen-
erated routine is used to split or "tokenize" input strings into tokens. Yacc is a parser
generator. The generated function performs a syntactical analysis on a "tokenized"
input, based on a defined grammar.

Figure 16 presents a scheme of how lex and yacc work together. We adapted the
initial figure from [9] to depict the particular case of our framework.

The lexical rules which lex transforms into a callable routine are given in our frame-
work in the file ladok.l. It contains the definition of all tokens which have to be
identified in the input string line, see listing 10.

The syntactic rules are provided in the yacc.y file. The syntax of yacc is similar
to the common BNF grammar definitions. In addition, it allows to declare for each
grammar rule a code snippet as well, which is going to be executed every time this
rule is applied. For example, listing 11 shows the rules which match the annotation
marking the beginning of an entity. Every time the rule is applied to the given anno-

6.1 ldk extractor 69

lexical rules

lex

ldklex()

parseLDK()

syntactic rules

yacc

ldkparse()

ldkBeginEntity()
ldkEndEntity()
ldkBeginOperation()
...

\begin{entity} ...
call

yacc.yladok.l

lex.ldk.c y.tab.c

parseLDK.c

ldkConstructsProcessor.c

Figure 16: Usage of lex and yacc to generate the parsing function for processing LaDoK an-
notations. The two generated functions are used in the central parsing function of
LDK Parser to process the input annotation line. The results of this process are
calls to corresponding routines in the LDK Directives Processor.

tation line the call to ldkBeginEntity() is also going to be executed. As can be seen
in the function calls, the tokens which are identified in the input string are available
as special variables in the code snippet.

One could observe in listing 11 that we used in the rules definition some aliases.
For example, instead of T_LBRACE as defined in listing 10 we used "{", and instead of
T_COMMA we used ",". This is a convenience option in yacc which provides a better
readability to the list of rules and can be easily implemented by adding to the list of
tokens declarations in yacc.y the corresponding aliases:

%token T_LBRACE "{"

%token T_RBRACE "}"

%token T_COMMA ","

In section 5.2, when we introduced the syntax of LaDoK , we also provided the
grammar of the language in BNF format, in listing 7. It is important to observe that
the grammar defined here, in the yacc.y file, is a derived grammar from the initial
one. The reason behind this is the fact that in our framework we are parsing the
LaDoK annotations while traversing the source code parse tree node by node. As
explained above, we are actually feeding the LDK Parser only one annotation at
a time. Hence, the input for our parser in most cases does not represent a valid
LaDoK construct, but only one fragment of a construct.

More precisely, we split the rules for Entity and Operation from the initial defini-
tions including both the start and the end commands, into pairs of rules, one pair
for each construct and one rule for each of the start and end commands. Listing 12
gives a comparison between the rules used to define an entity in the LaDoK grammar
and those used in the syntactic specifications in the yacc.y file. It can be seen that
the latter ones do not refer to the source code statements enclosed by the entity, the
GPL-STATEMENTS in the grammar. This is because these statements do not even get to
the parser, since only comment lines beginning with the !$LDK identifier are being
considered here.

The new grammar has the advantage of being able to process annotations line-
by-line, as provided by the traversal of the parse tree of the source code. However, it
does not cover the entire syntax definition of LaDoK . For example, the new grammar

70 ladok framework

%%

\\phase return T_PHASE;

\\begin return T_BEGIN;

\\end return T_END;

entityset return T_ENTITYSET;

entity return T_ENTITY;

operation return T_OPERATION;

\{ return T_LBRACE;

\} return T_RBRACE;

\[return T_LBRACKET;

\] return T_RBRACKET;

= return T_EQ;

, return T_COMMA;

[0-9]+ return T_NUMBER;

[a-zA-Z][a-zA-Z0-9]* {

ldklval.string=strdup(yytext);

return T_WORD;

}

[\t]+ /* ignore whitespace */;

\n /* ignore */; ✆
Listing 10: Declaration of tokens used by LDK parser. File: ladok.l.

/*
rules matching beginning of entity:

\begin{entity}{MyEntity}[refvar=myvar]

*/

beginentity:

T_BEGIN "{" T_ENTITY "}" "{"T_WORD "}" "[" attributeslist "]"

{

ldkBeginEntity(actNode, $6);

};

attributeslist:

attributevaluepair "," attributeslist

|

attributevaluepair ;

attributevaluepair:

T_WORD "=" T_WORD

{

ldkAddAttribute($1, $3);

}; ✆
Listing 11: Definition of rules which match the annotation for the beginning of an entity. File:

yacc.y.

6.1 ldk extractor 71

% rules defining a DKEntity in the LaDoK grammar

dkconstruct:

dkentity |

dkoperation |

dkphase ;

dkentity:

beginentity statements "\end{entity}" ;

beginentity:

"\begin{entity}{" ENTITYNAME "}[" entityattrlist "]"

|

"\begin{entity}{" ENTITYNAME "}" ;

statements:

statement | statement statements;

statement:

dkconstruct | GPL-STATEMENT ;

% rules in yacc.y for parsing annotation lines

dkconstruct:

beginentity | endentity |

beginoperation | endoperation |

dkphase ;

beginentity:

"\begin{entity}{" ENTITYNAME "}[" entityattrlist "]"

|

"\begin{entity}{" ENTITYNAME "}" ;

endentity:

"\end{entity}" ; ✆
Listing 12: Comparison between the definition of entities in the LaDoK grammar and the

definitions used in the syntactic specification for yacc.

72 ladok framework

allows that a beginentity statement is immediately followed by a endoperation.
Thus, in the new grammar the following construction is syntactically correct:

\begin{entity}{MyEntity}

\end{operation}

Seen from the level of the entire source file, the way we process the LaDoK annota-
tions is similar with how an event-based parser works. For example, a SAX parser for
XML reports a start or end event each time it encounters a opening or closing tag. In
the same way, we report if the annotation line is starting or closing a DK construct. By
default, this kind of parsing does not have any "memory" of what happened before.
It cannot decide whether a closing event is valid at the place where it is encountered
or not.

The solution commonly used in this case is to use a stack data structure to "mem-
orize" past events. We implemented the same solution using a stack of environments,
envStack. Every time a beginning of an entity or operation is encountered, the DK
construct is pushed into the stack. Every time an ending annotation is encountered,
first a test is performed to check whether the current ending construct is matching
the construct at the top of the stack. Since the end commands do not specify particular
instances of DK constructs, it is enough to compare the type of the ending construct
with the type of the construct in the stack. If the types match, then there is a syntacti-
cally valid ending operation. A pop operation is then performed on the stack. In this
way we ensure the proper nesting of DK constructs and avoid interleaving.

6.1.2 LDK Directives Processor

The LDK Directives Processor is the semantics analysis component of the LDK Ex-

Process semantics
LDK Constr. Processor

DK objects

tractor. It comes into play in the execution flow described in figure 15, after the
parsing action. After having parsed the current LDK annotation line, the next step to
be fulfilled is to apply the corresponding semantics.

We described the semantics of the DK concepts in section 5.3 and we showed in
the previous section, that the output of the LDK Parser component is represented by
three types of events:

1. start phase;

2. start/end entity; and

3. start/end operation.

The LDK Directives Processor receives these events and applies a series of actions
such that in the end the semantics of the corresponding DK Concepts are fulfilled. It
is important to observe here that the semantics of the LDK Directives is an adapta-
tion of the semantics of the DK Concepts, based on the implementation restrictions.
This is closely related to the fact that the actual implementation grammar of the
LDK Directives is also an adaptation of the original LaDoK grammar, as we already
described in the previous section.

For example, the LaDoK semantics gives one definition of a DK Entity, while the set
of events passed to the LDK Directives Processor contains two types of events related
to entities: start entity events and end entity events. The semantics of the LDK

6.1 ldk extractor 73

Directives is thus deriving from and fulfil the overall semantics of the DK Concepts,
but is not identical.

In general, the start events are related to generating the DK Objects and storing
the declarative attributes, like the name and the type. The end events are then related
to storing the structural information, like the enclosed code variables or routines.

The DK Phase concept is the most simple concept available in LaDoK. Its semantics DK Phase = generate
object + insert phase
trigger.

is that of a markup signalling that the execution flow entered a defined particular
phase.

The DK Phase has only a corresponding start LDK Directive. Upon encountering
such an event, the LDK Directives Processor generates a new DK Object for the phase,
if this is its first occurrence, and it stores along the attributes declared within the LDK
Directive.

It then passes the id of the phase to the LDK Instrumenter, which inserts the
corresponding call in the parse tree for triggering the start of this phase at runtime.

The semantics of the DK Entities is more complex than the one of DK Phases. Be- DK Entity = generate
object + gather
variables.

sides the declarative attributes, like name and type, DK Entities also have the struc-
tural related meaning, namely that all variables declared between the begin and end
markups of a DK Entity are assigned to this entity.

We have two corresponding events triggered by the LDK Parser for entities: a start
entity and an end entity event.

The semantics associated with the start event is similar to that for DK Phases: the
new DK Object for an entity needs to be created, if it does not already exists, and the
name and all the declared attributes have to be stored along in the DK Object.

The remaining part of the semantics of the DK Entities, namely the one referring
to the enclosed variables, is then applied when the end entity event is encountered.
This is a more complex aspect than the one regarding the declared attributes. The
complexity comes from the fact that one needs to analyse here the actual structure of
the source code, whereas in the previous case the attributes of an entity were directly
provided through the LDK Directive and passed along in the event call.

Given now that the LDK Directives Processor encountered an end entity event,
how does it find all the variable declarations included between the start and the end
directives for the current DK Entity? Regardless of the programming language of the
source code, this information can be retrieved from the parse tree. It is sufficient to
know the node corresponding to the start markup and the node corresponding to
the end markup.

In our framework, the parse tree is already provided by the Periscope instrumenter.
Since we use an event-based parsing method for the LDK annotations, we need again
a mechanism to memorize the information provided in past events. For example,
upon encountering an end entity event, we need to know the node in the parse tree
at which the corresponding begin event was encountered.

We therefore make use again of the envStack data structure introduced in the
parsing process of the LDK Parse component. When a start event is encountered,
the stack is fed not only with the kind of the directive, needed for the syntactic
analysis described above, but also with the reference to the begin node. The listing
below shows the definition of the type of elements which are stored in the envStack:

typedef struct {

char* name;

74 ladok framework

enum EnvType type;

Inode beginnode;

UT_array* attributes;

} EnvElem;

For DK Entities, the beginnode field is initialized when the start entity event is
encountered. When an end entity event is encountered afterwards, it means that the
DK Entity which is at the top of the stack has to be processed from a semantic point
of view. More precisely, one needs to identify the variables declarations in the source
code and register them to the current DK Entity.

We use in our implementation the low-level operations provided by the NAGf90
library to move within the parse tree:

• NEXT(): returns the right sibling of the given node, or 0 if there is no sibling;

• DOWN(): returns the left most child of the given node, or 0 if there is no child;

• UP(): returns the parent node of the given node, or 0 if this is the root.

As already mentioned, our implementation supports Fortran codes. For declara-
tions of variables, we considered the following four cases and all combinations of
them:

• simple variable declaration:
INTEGER :: simplevar, anothervar;

• declaration of arrays:
INTEGER, DIM(:), ALLOCATABLE :: array;

• declaration with initial values:
INTEGER, DIM(:):: initarray = (/1,2,3/)

• declaration of pointers:
POINTER, INTEGER :: mypointer;

Each type of declaration generates a different parse sub-tree which requires a partic-
ular implementation in the tree traversal.

The semantics of the DK Operations is very similar to the one of the DK Entities.DK Operation =
generate object +
gather routines.

First of all, there are the type, the name and other attributes declared in the begin

operation directive and passed directly to the LDK Directives Processor through the
start operation event.

A particular aspect is given here by the reference attributes. We call reference at-
tributes, those attributes which receive as value a reference to another element or
object, usually the name of that element or object. For example, the type attribute is
not a reference attribute, as its value does not represent a source code element or DK
Object. In contrast, the value assigned to the attribute dstproc in listing 13, refers to
the actual variable j, which is an element in the source code. We thus call the dstsrc

attribute a reference attribute. The same holds for the linkedentity attribute in the
same listing, which points to a DK Entity, which is a DK Object.

Processing the semantics of such attributes extends the simple DK Object creation
and storage with an extra validation which has to be performed in forehand. The
LDK Directives Processor thus has to run one of the two types of tests to semantically
validate this kind of attributes:

6.1 ldk extractor 75

j = get_worker()

\begin{operation}{CommExample}{type=Comm_Send, dstproc=j, linkedentity=MyEntity}

call MPI_Send(myArray, length, INTEGER, j, myTag, comm, ierror)

\end{operation} ✆
Listing 13: Semantics of DK operations covering dynamic aspects.

1. validate source code references; or

2. validate DK Objects references.

The first type of tests has to check whether the referenced variable exists, and if so,
whether it is defined in the scope where the DK Operation is declared.

In our implementation, we perform this test using the symbol table provided by the
NAGf90 parser. The test ensures only that the variable is defined within the current
Fortran subprogram. It does not ensure though, that the variable is also accessible
in the scope where the DK Operation is declared, if there is such a particular scope
defined. Nevertheless, since in Fortran the variable declarations are to be found at
the beginning of a subprogram, our implementation covers the major cases found
in applications. For all other cases, a compilation error will be thrown for the unde-
fined variable, since it will be used in the instrumentation calls inserted for the DK
Operation.

For the second type of test, one needs to validate whether the referenced DK Ob-
ject is defined in the context of the current application. Although this check could be
easily accomplished with a query to the LDK Objects component, the overall seman-
tics of the DK Objects and the current parsing implementation makes the things a
bit more complicated. First of all, we explained in section 4.3 that the DK Concepts
have global semantics, which means that the DK Objects are defined in the global
scope, as well. This means that the DK Object referenced by the current attribute of
a DK Operation does not necessarily need to be defined in the scope of the currently
processed source file. We recall that the LDK Parser processes only one file at a time.

We thus cannot fully validate semantically the attributes referencing a DK Object
during the first processing phase. This can only be accomplished after the first pro-
cessing phase finished and all DK Objects were generated. Our solution is to store
during the first processing phase either the id of the DK Object, if that exists already,
or otherwise to store the name of the DK Object in a temporary attribute of the DK
Operation, which can then be processed when the entire application ran once through
the LDK Extractor.

Besides the attributes, we also need to apply the semantics referring to the rou-
tines enclosed between the begin operation and end operation directives. Similarly
to processing the variables assigned to DK Entities, we need to deploy again the
mechanism used for memorizing the node in the parse tree corresponding to the
begin operation directive. Upon encountering an end operation event, we traverse
the parse tree looking for routine declarations.

76 ladok framework

In the particular case of Fortran codes, one has to distinguish between several types
of routine declarations. First of all, there are function declarations and subroutine dec-
larations. Then, the routines can also be nested, with functions having, for example,
other locally declared functions. And finally, there are also routines declared within
modules and thus have a different semantic scope.

Our framework considers the following cases of declarations, with examples given
in listing 14:

• function declarations;

• subroutines declarations;

• declarations of nested functions and subroutines; and

• declarations of module functions and subroutines.

All these different types of declarations result in slightly different parse sub-trees
which have to be traversed accordingly. We use in this case the low-level functions
provided by the NAGf90 library.

6.1.3 LDK Instrumenter

The LDK Instrumenter is the component responsible for performing the modifica-
Modify parse tree

LDK Instrumenter

tions in the parse tree. This generally means adding extra nodes which define either
routine calls or variable declarations.

The LDK Instrumenter is being used in the both processing phases of an applica-
tion. In the first phase it is responsible for inserting the so called event triggers, as
demanded by the LDK Directives Processor. In the second phase it runs in a more
autonomous mode, enhancing the source code with support for exposing dynamic in-
formation, based on an extra ldk_flags argument which is added to routines.

6.1.3.1 Event triggers

In the first processing phase, the LDK Instrumenter is modifying the parse tree ac-
cording to the information received from the LDK Directives Processor. There are two
cases where such an action is required:

1. when entering a DK Phase; and

2. when a code region (inside a routine or program) is declared as a DK Operation.

In both cases, the LDK Instrumenter needs to insert a call to the corresponding
function of the LDK Interface Library. This is an event trigger to announce that either
a given DK Phase was entered, or that a given DK Operation either started or ended.

These events are exposed through the LDK Interface Library to the programming
tools using the LDK Framework. These can register specialized callback functions to
handle the specific events.

The modifications of the parse tree are accomplished in our framework by means
of the two low-level functions provided by the NAGf90 library:

6.1 ldk extractor 77

PROGRAM exampleroutines

! program body

! ...

CONTAINS

! function declarations

INTEGER FUNCTION myfunc()

! function body

! ...

END FUNCTION

! SUBROUTINE declaration

SUBROUTINE mysubroutine

! SUBROUTINE body

! ...

END SUBROUTINE

! routine in another routine

! (function or subroutine)

INTEGER FUNCTION parentfunc()

! function body

! ...

CONTAINS

INTEGER FUNCTION childfunc()

! function body

! ...

END FUNCTION

END FUNCTION

END

MODULE examplemodule

! module body

! ...

CONTAINS

! routines declarations in modules

INTEGER FUNCTION mymodulefunc()

! function body

! ...

END FUNCTION

END MODULE ✆
Listing 14: Declarations of functions and subroutines in Fortran supported by our framework.

78 ladok framework

• PT_addprev(pt_node, new_node) - inserts in the parse tree the new node new_node
as a sibling to the left of the already existing node pt_node; and

• PT_addnext(pt_node, new_node) - inserts in the parse tree the new node new_node
as a sibling to the right of the already existing node pt_node.

6.1.3.2 Expose dynamic information: ldk_flags array

One great characteristic of the DK semantics is the fact that, based on static annota-
tions it extracts dynamic information at runtime. Formulated from the domain level
point of view, this means that data and actual values take precedence in front of the
solution specific structural organization. Or, from an implementation oriented point
of view, the DK objects have a global scope and lifetime.

For example, the code in listing 15 comprises two entity declarations, two subrou-
tine calls on variables assigned to entities and other routine calls on formal arguments.
Following the two possible approaches above, the dynamic characteristic is given by
the following:

• The set of matrix processing operations are structurally enclosed into one sub-
routine, but the results obtained herein refer to a concrete entity. Which of the
two entities exactly, is defined only at runtime.

• The definition of the two entities includes at the first level the local variables en-
closed between the markups. Due to the global semantics of the entities though,
all formal parameters within routines calls, which map to the initially assigned
values, regardless of the nesting level of the call, are also semantically assigned
to the entities. Execution branches and recursive calls make some of the formal
parameters identifiable only at runtime.

Dynamic information is definitely a requirement for any DK enhanced framework.
Moreover, it has to be provided in both directions: from the outer-most to the inner-
most context and back from inside outwards. Outer-most context would be the entity
declaration, while the inner-most context is the last level of nested subroutine calls.
The solution which we provide in our framework uses the call stack as the transfer
channel of the dynamic information, along with the global identification system of
the DK Objects.

We automatically instrument routines by extending their signatures with an extra
argument which is added at the end of the list of existing arguments. The extra
argument is called ldk_flags and is an array with one integer entry per formal
argument of the routine. ldk_flags stores at runtime the id of the entity to which an
argument is assigned to, if such a mapping exists. Otherwise, it is initialized to -1.
We thus have at runtime, within the body of a routine:

ldk_flags[i] =

j ∈ N, if ith argument in the formal list of arguments is

mapped to the entity with id j;

−1, otherwise.

6.1 ldk extractor 79

PROGRAM dynamicsemantics

...

!$LDK \begin{entity}{A}

REAL, DIMENSION(:), ALLOCATABLE :: matrixA

!$LDK \end{entitiy}

!$LDK \begin{entity}{B}

REAL, DIMENSION(:), ALLOCATABLE :: matrixB

!$LDK \end{entitiy}

CALL process_matrix(matrixA)

CALL process_matrix(matrixB)

...

CONTAINS

SUBROUTINE process_matrix(m)

REAL, DIMENSION(:), ALLOCATABLE, INTENT(INOUT) :: m

...

! matrix operations

m = ...

! data dependent execution branch

IF (test_matrix(m)) THEN

CALL adjust_matrix(m)

ENDIF

END SUBROUTINE

LOGICAL FUNCTION test_matrix(test_m)

! return value based on values in test_m

test_matrix = ...

END

SUBROUTINE adjust_matrix(h)

REAL, DIMENSION(:), ALLOCATABLE, INTENT(INOUT) :: h

! other operations

h = ...

END

END ✆
Listing 15: Short example of entities declaration. The dynamic semantics is given through the

subroutine calls.

80 ladok framework

The call statements of such routines have to be instrumented as well. In this case,
the dynamic information, if it is provided in the enclosing routine, has to be passed
further:

ldk_flags �[i] =

j ∈ N, if ith argument in the call list is a variable

mapped to the entity with id j;

ldk_flags ��[idx[i]], if ith argument in the call list is the idx[i]-th

local argument of the enclosing routine and

that routine is instrumented;

−1, otherwise.

In our framework, the instrumentation of the code is taking place while the Periscope
instrumenter is processing for the second time the entire source code of the applica-
tion, one file at a time. For each file, the parse tree is built and then it is traversed in
a pre-order fashion.

The call to the LDK Instrumenter is integrated as shown in figures 17 and 18. The
diagrams present the logical processes which are executed for the different types
of nodes. Please note that we present them in separate diagrams only for a better
comprehension, otherwise they are part of the same instrumentation process.

calls to routines or interfaces
The first diagram presents the automatic instrumentation of calls of routines and
interfaces. The goal is to insert as a last argument of the call, the ldk_flags array,
initialized for each of the arguments of the routine or interface with either:

• entity IDs;

• values of the local ldk_flags; or

• -1.

Before the actual modification of the parse tree, there are a couple of preparation
steps, which also depend on the programming language of the source file. For our
Fortran implementation, we first run four test cases:

1. is internal: if the routine is not internal, it means that it belongs to an external li-
brary or module, which is not compiled along with the current application. This
means that the definition of the routine cannot be instrumented and, hence, the
extra argument cannot be added to the signature of the routine. Instrumenting
only the call of the routine would result in an incorrect code.

In our framework, we generate during the first instrumentation phase, when the
DK annotations are processed, a list with all internal routines of the application.
This list is loaded in the second instrumentation phase and can be used to check
whether a routine is internal or not.

2. has arguments: if the routine has no arguments, then there is no information to
store in the ldk_flags array at all. Instrumentation is needed only if the routine
has at least one argument.

6.1 ldk extractor 81

is routine
or interface

call?

finished
traversing?

Run tests
yes

no

no

yes

3. is not intrinsic

2. has arguments

1. is internal

4. is not elemental

AND TRUE?

yes

has optional
arguments?

no

noyes

Generate node for
keyword argument

Generate node for
normal argument

Insert node in
arguments list

LDK Extractor

Figure 17: Automatic instrumentation of calls to routines and interfaces.

3. is not intrinsic: this is similar to the test for internal routines. Intrinsic routines
cannot be instrumented.

4. is not elemental: elemental routines are a particular type of Fortran routines.
They accept only one argument and are usually used as operators. Since it is
not allowed to extend the list of arguments, these routines are also not instru-
mented.

If the current routine passes all tests, then the call is going to be instrumented.
As a general discussion, there might be cases where some call statements are not

considered in the instrumentation process, or, if so, some other limitations might
occur and the respective call remains uninstrumented. In this case, we could have the
situation that for the same routine we have both instrumented and uninstrumented
calls.

Fortran offers a great feature to support such behaviour: optional arguments. Given,
for example, the code in listing 16, where MyRoutine has two optional arguments, one
can use call statements like the first two in the code, omitting optional arguments
from the call list.

For our purposes, it would be useful to have ldk_flags declared optional, as this
allows to also have some uninstrumented calls of the routines. For these cases, the
extra optional argument is omitted, i.e. not inserted in the call statement, leaving only
the initial arguments, which is a valid call.

There are some few considerations which need to be made here for some particular
situations. Listing 16 shows several possible call statements for the case where there
are already some optional arguments declared for this routine.

While the calls 1-3 are correct, the 4th and 5th calls bring along some difficulties.
In the call number 4 the optional argument c is left out from the call statement. This
is in essence, the same as in call 2. If, however, this call needs to be instrumented,

82 ladok framework

PROGRAM hardinstrumentation

INTEGER :: x,y,z

...

! 1. uninstrumented call --> OK

CALL MyRoutine(x,y,z)

! 2. uninstrumented call omitting argument c --> OK

CALL MyRoutine(x,y)

! 3. instrumented call --> OK

CALL MyRoutine(x,y,z, (/-1, -1, -1/))

! 4. instrumented call omitting argument c --> NOT OK

! * incorrect computations or runtime errors are

! * produced due to erroneously assigning the array

! * to the omitted argument c

CALL MyRoutine(x,y, (/-1, -1, -1/))

! 5. instrumented call omitting argument c --> NOT OK

! * compiler error: type mismatch

CALL MyInternalRoutine(x,y, (/-1, -1, -1/))

! 6. instrumented call omitting argument and providing keywords --> NOT OK

! * compiler error: keywords can only be used if the routine

! * has an explicit interface

CALL MyRoutine(x,y, ldk_flags=(/-1, -1, -1/))

! 7. instrumented call omitting argument and providing keywords --> OK

! * the compiler generates interfaces for internal routines

! * and thus keywords are accepted

CALL MyInternalRoutine(x,y, ldk_flags=(/-1, -1, -1/))

CONTAINS

SUBROUTINE MyInternalRoutine(a, b, c, ldk_flags)

INTEGER :: a, b

INTEGER, OPTIONAL :: c

INTEGER, DIM(3), OPTIONAL :: ldk_flags

...

END SUBROUTINE

END

SUBROUTINE MyRoutine(a, b, c, ldk_flags)

INTEGER :: a, b

INTEGER, OPTIONAL :: c

INTEGER, DIM(3), OPTIONAL :: ldk_flags

...

END ✆
Listing 16: Examples of call statements for routines which have optional initial arguments

and could be instrumented or not with the optional extra argument ldk_flags.

6.1 ldk extractor 83

then the array constructor is added at the end of the call for the special ldk_flags
argument. In the given example, the code will compile and the first element in the
array will erroneously be attributed to argument c. If the routine is an internal or
module routine, i. e.declared within CONTAINS or module file, then the compiler is
able to report a type mismatch between the actual and the formal arguments. This
can be seen in the listing in call 5 for the internal routine MyInternalRoutine

The solution is to add a keyword to correctly identify the optional argument. Call
number 4 is then adjusted like in call number 6, but this produces again a compiler
error, since keywords can only be used if there is an explicit interface defined for the
routine.

A correct example is given in call 7. Although this looks like a duplicate of call
6, there is one important difference: the MyInternalRoutine is an internal routine.
Compilers automatically generate interfaces for internal and module routines and
thus keywords can be used in this case.

To summaries, one can always declare the ldk_flags argument as optional, but
using keywords is only possible if one of the three cases apply:

• the routine has an explicit interface defined in the code, e. g.:

INTERFACE

SUBROUTINE MyRoutine(a, b, c, ldk_flags)

INTEGER :: a, b

INTEGER, OPTIONAL :: c

INTEGER, DIM(3), OPTIONAL :: ldk_flags

END

END

• the routine is an internal routine, defined in the CONTAINS section; or

• the routine is a module routine, defined inside a module.

The goal is to cover with the instrumentation strategy as many cases as possible.
If the routine is internal or module routine, then using keywords is always allowed,
but only mandatory for routines which already have optional arguments. If, instead,
the routine is an external routine, then we can differentiate between routines with
and without optional arguments. For those without optional arguments, it is not
necessary to use keywords at all and thus the calls will always be valid, no matter
whether the routine has an explicit interface or not. For the routines which do have
optional arguments, the keywords need to be used to insure valid calls. It is common
that such routines also have an interface declared, since keywords might already
be used in other calls. If this is the case, then the instrumented call with keyword
arguments will also be valid. If the routine does not have an explicit interface, though,
then the instrumentation will not be successful. A quick solution would be to just add
the respective interface in the source code.

We consider that this strategy covers the most cases met in real world codes.
Fortran syntax allows the initialization of arrays with array constructors, as seen

in the calls above. For other programming languages it might be necessary to in-
sert some more nodes in the parse tree for declaring and initializing the ldk_flags

variable and then including it in the call statement.

84 ladok framework

is routine
definition?

finished
traversing?

Run tests
yes

no

yes

2. is not elemental
AND TRUE?

yes

no

Generate node for
optional parameter

declaration

Insert node in
parameter

declaration list

1. has arguments

Generate node
for new argument

Insert node in
arguments list

is interface
definition?

yes for
each

routine

no

LDK Extractor

no

Figure 18: Automatic instrumentation of definitions of routines and interfaces.

When building the list of values for the extra argument, there are several aspects
which have to be taken into consideration.

First of all, the call arguments list may contain not only variables, but also constants,
expressions, or function calls. In DK terms, though, only the variables, including
array elements, can be attributed to a DK Entity.

Secondly, the order of the actual arguments might be different from the order in
the formal list of arguments of the routine and some arguments might be missing
from the call statement altogether. The order is important because in the ldk_flags

array, the elements are associated with the arguments based on their index. It is thus
important to make sure that the ldk_flags array is built based on the indexes in the
formal arguments list.

Lastly, some of the arguments in the call list might be local arguments of the enclos-
ing routine. In this case, if the enclosing routine is also instrumented, i. e.it contains an
ldk_flags array in its signature, then the corresponding index of this local ldk_flags
array has to be inserted in the list of values given to the call statement.

definitions of routines or interfaces
The other type of parse tree nodes which are subject to automatic instrumentation
are the definition nodes, both routines and interfaces definitions. The goal of the
instrumentation is to extend the signature of the routines with the extra argument
ldk_flags.

The logical sequence is presented in figure 18. The steps are similar to those in the
instrumentation of the call nodes with some few differences.

6.2 ldk objects 85

First of all, there is no need to test whether the routine is intrinsic or if it does
not have a definition in the source code. The fact that the current node contains the
definition of the routine excludes these possibilities.

The next step is the insertion of the argument in the list of formal arguments.
Besides generating the corresponding node for the parse tree, the ldk_flags array
must also be registered in the symbol table. In order to do so, we again use in our
framework the low-level functions provided by the NAGf90 library. We declare the
string to be used in the name of the symbol, then create the symbol and set the type
and kind and the flags for formal optional argument and IN intent. In the end, a node
for this argument is generated and inserted in the parse tree at the end of the formal
arguments list.

For Fortran implementations, in addition to the insertion in the arguments list, the
extra argument must also be declared along with all other parameters and variables
in the body of the routine. We thus generate a node for the argument declaration as
well. An important detail is that the ldk_flags array has a fixed length. The declara-
tion of the array thus contains besides the OPTIONAL property explained above, also a
DIMENSION(<n>), with n being the number of formal arguments of the routine.

6.2 ldk objects

The LDK Objects component is the database storing the actual instances of the DK
Objects generated for the current application. The term database refers here only to
the functionality provided by such a component, as we do not deploy any DB spe-
cific technology, such as MySQL or DB2. Our implementation is based on a set of
advanced pure C data structures.

For the data structures we rely on the functionalities provided by the uthash library.
Uthash offers a macros-based implementation of some of the common data structures
used in programming, but which do not have built-in support in C. Such are hashes,
arrays, lists, and strings.

We use hashes to store the instantiations of three DK Concepts: DK Entities, DK
Operations and DK Phases. In addition to these three type of elements, we also store
in the LDK Objects database two more types of elements: Vars and Funcs. These are
the counterpart of the variables and routines which are found in the source code and
which are being assigned to one of the DK Objects. They are thus no DK Objects by
themselves, but are stored in the database for an easier management.

Figure 19 gives an overview of the hashes used in the LDK Objects component.
An element in a UT_hash is a C structure. We defined in total five structures: three

for the DK Objects - entities, operations and phases -, and two more for the variables
and routines which are assigned to entities and operations, respectively.

The DKEntity, DKOperation, and DKPhase structures have in common the id, name,
and type fields:

• id: a positive integer value which uniquely identifies the corresponding DK
Object within the set of objects of the same kind; e.g. the id of an entity is
unique in the set of ids of all declared entities;

• name: a string containing the name of the object. We make use here of a name
mangling/decoration strategy and prepend the initial name in the case of enti-

86 ladok framework

entityMapId

entityMapName

entity 1

entity 2

entity n

key: id

key: name

DK Entity
id
name
type
[setId]
[setIdx]

operationMapId

operationMapName

op. 1

op. 2

op. n

key: id

key: name

DK Operation
id
name
type
refEntId
customAttr

phaseMapId

phaseMapName

phase 1

phase 2

phase n

key: id

key: name

DK Phase
id
name
type

varMap

key: name

dkvar 1

dkvar 2

dkvar n

Var
id
name
entityId

funcMap

key: name

dkfunc 1

dkfunc 2

dkfunc n

Func
id
name
opId

Figure 19: Data structures used to store the DK Objects. The Map denotes a uthash implemen-
tation, while the element boxes on the right are of type struct with corresponding
fields.

ties and operations with a sequence of dot-delimited ids. The sequence of ids
represents the namespace of the current object. Entities and operations can be
nested and the namespace contains the IDs of all parent objects which enclose
the current object.

For example, given the declaration of entities in listing 17, the id and name fields
will be initialized as follows:
A.id = 0

A.name = ".A"

B.id = 1

B.name = "0.B"

C.id = 2

C.name = "0.1.C"

6.2 ldk objects 87

\begin{entity}{A}

INTEGER :: varA

\begin{entity}{B}

INTEGER :: varB

\begin{entity}{C}

INTEGER :: varC

\end{entity}

\end{entity}

\end{entity} ✆
Listing 17: Declaration of three nested entities.

Since DK Phases are not block constructs, it does not make sense to discuss
about nesting of phases. In this case, the name field stores the name of the
phase, which is also global.

• type: an integer value representing the index of the predefined type .

The DKEnity structure requires two more fields used for implementing the entityset
concept:

• setId: the ID of the entityset to which this entity belong to; and

• setOffset: the offset of this entity within the entityset.

The DKOperation structure has two specific fields, as well:

• linkedEntId: a positive integer value representing the ID of the entity to which
this operation is linked to, if any. This is set by means of the linkedentity

attribute explained in section 4.3; and

• customAttr: a UT_hash containing the name/value pairs of all other defined
attributes.

The Var and Func structures have each three fields:

• id: a positive integer value representing the ID of the object;

• name: a string value containing the name of this object. This includes the full
identification of the scope where the variable or routine is declared, thus pro-
viding a global unique name for each object; and

• entityId or opId: the entity or operation to which the variable or, respectively,
the routine is assigned to.

The syntax of the DK annotations include the name of the respective DK Object as
a mandatory string parameter. This is the human-readable identifier of the respective
DK Object. On the other hand, the management system and, much more, the common
tracking systems work with number identifiers. This is common practice due to the
more efficient indexing and handling operations for numeric identifiers, as well as
the less memory required for storing the ids.

We thus need to index our sets of DK Objects both, on their ids, and on their names.
This is accomplished within the LDK Objects component by means of pairs of hashes:

88 ladok framework

one hash per index type and one pair of hashes per DK Object type. In figure 19, for
example, the entityMapId is a hash of DKEntities using as hash key the id field, and
the entityMapName is another hash of DKEntities using as hash key the name field.

Every two hashes in a pair point to the same set of DK Objects. This is indeed the
case in our implementation. The UT_hash data structure only stores the references
to the actual element structures. When creating a new DKEntity, for example, we
allocate once the necessary memory for storing the fields in the structure and then we
feed the reference to this new DKEntity to both the entityMapId and entityMapName

hashes. Thus, the maps provide two different access indexes for the same set of
objects.

For the variables and routines we only need the name hashes, since these struc-
tures are not exposed further to the programming tools using the LDK Framework.
Internally, throughout the execution of the LDK Extractor components, we only need
to access these elements based on their names.

6.3 ldk interface library

The LDK Interface Library provides support for query operations and management
of the objects in LDK Objects. It is a stand-alone C implementation, which, together
with the LDK Objects component, is designed to interact with both the LDK Extrac-
tor, as well as the advanced programming tools which will use the DK information
during the program execution.

There are four types of functions:

1. functions which declare new objects and add them to the database;

2. functions which search objects in the database;

3. functions which store and load the database entries; and

4. utility functions for querying objects properties.

The first type of functions implement the same algorithm for each of the DK Ob-
jects. They are called either by the LDK Directives Processor, when the DK anno-
tations are processed, or by the advanced programming tools which use the DK
information, when they initialize the database or when dynamic objects are created.
They receive as a mandatory argument the name of the DK Object. An optional ar-
gument is the id of the object: if no id is given, then a new object with a new id is
created. Otherwise, the new created object is assigned the given id. This is useful for
the case when the objects are loaded from a dump file, for example, as compared to
the objects generated at instrumentation or runtime.

When a declare function is called, the first step is to check whether there already
exists an object of the given type with the given name. If this is not the case, then
this is the declaration of a new object. The necessary memory is allocated and the
eventually provided attributes are initialized. If an id is given as an argument, then
it is assigned to the object, otherwise a new unique id is generated for this type of
object. In the end, the object is pushed to the corresponding hash structures and the
reference to the object is returned by the function.

If there already exists an object with the given name and type, then according to
the DK semantics, this means either that:

6.3 ldk interface library 89

• an entity is being extended with new variable declarations;

• an operation is being extended with new routine declarations; or

• a phase is begin re-entered.

Thus, for these objects there are no further actions to be taken at this point.
On the other hand, if it is the declaration of a Var or Func structure and such a

structure with the same name already exists, then an error is generated. It would
mean, for example, that the same variable is going to be registered for two different
DK Entities, which is not allowed.

As an implementation detail, there is one particular case which is treated sepa-
rately, namely the declaration of variables in subentities. In section 6.1.2 we showed
that the variable declarations are collected only at the end entity directive. This
means that, given a declaration of nested entities as in listing 17, the declaration of the
variable varC will be identified and registered to entity C when the first \end{entity}
directive is encountered. The next \end{entity} is closing the declaration of the entity
B. The entire parse tree between the beginning and ending of entity B is searched now
for variable declarations. First of all, variable varB is found and added to the database.
Then the declaration of the varC variable is found again. The call to declareDKVar()

for this variable will find it already declared in the database and assigned to entity
C. This is obviously not a semantic error, but an implementation issue. Hence, we
do not directly throw an error when finding a variable with the same name already
in the database. First we check instead whether the entity, to which the variable is
assigned to, is a subentity of the currently processed entity. In the given example, we
check whether entity C is a subentity of entity B.

Checking such a relation between entities is an example of the utility functions
within the LDK Interface, mentioned in the enumeration above at point 4. Theoret-
ically, the function should simply test whether the id of the parent entity is found
in the namespace definition of the subentity. As explained in section 6.2, the names
of entities are decorated with the dot separated list of ids of their parent entities,
in their nesting order. Since these are strings of chars, it is more efficient for our C
implementation to actually compare entire strings. We first extend the namespace of
the parent with the id of the parent and then issue a strncmp() between the extended
namespace of the parent entity and the namespace of the subentity, but only for the
length of the first one.

if (strncmp(extendedParentNS, subentityNS, extendedParentNS_length) == 0){

return 1; // it is subentity

}

The second type of functions in LDK Interface are the search functions. Their im-
plementation is based on the interface provided by the UThash library. For exam-
ple, looking up an entity in the name-keyed hash is accomplished with a call to
HASH_FIND_STR(), like in listing 18.

The standard complexities for the operations on hashes apply to the UThash im-
plementations as well: searching, adding and deleting objects from the hashes are in
average constant-time operations, O(1).

DKEntities, DKOperations and DKPhases, can be looked up either by their name or
their id, while variables (Var) and routines (Func) are indexed only after their names.

90 ladok framework

DKEntity* findEntityByName(char *entityName){

DKEntity* currEntity = NULL;

HASH_FIND_STR(entityMapName, entityName, currEntity);

return currEntity;

} ✆
Listing 18: Looking up an entity by its name. Implementation based on the UThash functions.

As explained above, the names stored for entities and operations are already dec-
orated with the corresponding namespace. This assures both the uniqueness of the
name identifier, as well as the representation of the parent-child relations. Neverthe-
less, there are also cases where the short name of an entity or operation is required.
For example, when the linkedentity attribute of operations is used:
\begin{operation}{MyOperation}[linkedentity=MyEntity]

linkedentity specifies to which entity the current operation applies or refers to. The
DK annotation will contain only the short name of that entity, namely the one used
when declaring it with \begin{entity}{MyEntity}. Such a search operation reduces at
traversing the entities hash and checking whether the given short name matches the
last part of the name of the current entity. In this particular case, searching is of linear
complexity, O(n), with n being the total number of entities.

The third type of functions in LDK Interface are the functions for storing and load-
ing the database entries. As expected, this set of functions is not the result of some
DK semantics, but it is rather a particular implementation aspect of our framework.
Storing and re-loading of the DK objects is required in two cases:

1. when advancing with the instrumentation process from one source file to the
other; and

2. at runtime, when the database is used by the advanced programming tools
using the LDK Framework.

The first case appears due to the fact that the DK Objects have global declarations,
but the Periscope instrumenter only instruments one file at a time. Thus we use the
store and load function from the LDK Interface to dump all entries from the LDK
Objects when the instrumentation of a file is finished and then to re-load them when
starting the instrumentation for the next file.

The second case will be covered in more detail in the next chapter, when presenting
the DK-enhanced performance analysis framework.

The store functions simply dump all entries from the object hashes of LDK Objects
into an ASCII file. Each object is written on a line, starting with the object type, then
the name and the id, and then the rest of the fields, as defined in the corresponding
C structure. For example, in listing 19, there are two entities stored: integrals and
uniqueatoms, respectively. The excerpt also shows three variables registered to the
first entity and other two variables registered to the second entity. The field after the
id of a variable gives the id of the entity to which this variable is registered to. In the
end there are also two phases defined, initmaster and computemaster, with ids 1 and,
respectively, 2, but without a given phase type - hence 0 in the last field.

6.4 dk custom attributes 91

ENTITY .integrals 1 -1 -1

ENTITY .uniqueatoms 2 -1 -1

...

VAR INTEGRALSTORE_MODULE.INTEGRALSTORE_3C_FIELD 1 1

VAR INTEGRALSTORE_MODULE.INTEGRALSTORE_3C_POTEN 2 1

VAR INTEGRALSTORE_MODULE.INTEGRALSTORE_3C_CO 3 1

...

VAR UNIQUE_ATOM_MODULE.MOVING_UNIQUE_ATOM_INDEX 15 2

VAR UNIQUE_ATOM_MODULE.UNIQUE_ATOM_GRAD_INFO 16 2

...

PHASE initmaster 1 0

PHASE computemaster 2 0

...

END ✆
Listing 19: Excerpt from an ASCII file storing DK objects.

6.4 dk custom attributes

DK Custom attributes offer the flexibility necessary for adapting to different applica-
tion domains. The attributes are to be stored within the DK Objects. Any particular
instrumentation strategy can be added as an extension to the LDK Instrumenter. Fur-
ther instrumentation strategies may also be needed in the advanced programming
tools using the DK Objects database.

7
A FRAMEWORK FOR DK -ENHANCED PERFORMANCE
ANALYS I S

In chapter 2 we already described the common process of performance measurement
and analysis. We saw that all existing tools generally follow the same steps in the
performance analysis flow, presented in figure 2 as well. In order to prove the results
which can be achieved when applying the Domain Knowledge (DK) approach, we
developed a prototype framework for performance analysis, which complies with the
mentioned workflow.

In this chapter we present our DK-enhanced profiling framework. We start by giv-
ing a detailed overview of the performance analysis flow. We focus at each step on
distinguishing between the actions which are required from users and those which
are accomplished by tools, and we show, as well, which are the outputs of these ac-
tions, mostly different types of files. We also include in each step examples from the
main performance tools: Periscope, Scalasca and Vampir, which were briefly intro-
duced in section 2.4.

We then go on and present first an overview of our framework with its main
components, their interconnections and main functionalities. More insights are then
provided in the following sections, which are structured based on the steps of the
performance flow: instrumentation, measurement and analysis.

The main goal is to show how we used the DK in each of these steps and, in
particular, how we integrated and used the LDK Framework to build the new DK-
enhanced profiling framework.

The chapter concludes with the potential extensions of the framework. We con-
sider here possibilities for extending the supported functionalities, for widening the
support to other technologies, as well as for improving the framework usability.

In the remainder of this chapter we are going to use interchangeably the terms
performance measurement and analysis and profiling. Based on the classification in sec-
tion 2.1, our framework is in fact a tracing tool, but we keep the convention above for
the sake of simplicity.

7.1 the detailed performance analysis flow

Before delving into the implementation insights of the DK-enhanced framework, a
more detailed view of the performance analysis flow is required. We iterate here
over the representation of the performance analysis flow from section 2.1, figure 2
and extend that flow diagram into an activity diagram like in figure 20. Our goal is
to provide an understanding of the performance analysis process as seen from the
point of view of the application developers, which now become profiling tools users.
In the next sections, we will also add the point of view of the profiling tool developers,
when we consider the design and implementation details of the components of our
DK-enhanced profiling framework.

93

94 a framework for dk-enhanced performance analysis

Instrumenter
Measurement

backend
Analyzer Visualizer

Performance Tool

src file
manually

instrumented

src file

automatically
instrumented

src file

executable
binary

measurements
file

visualisation
file

performance
statistics

optimization
hints ???????

1: manually
instrument

2: compile
3: run profiling
4: inspect results

2a: automatically
 instrument

2b: compile
3a: run binary
3b: track data

3c: automatic
 analysis

4a: display

generate

generate generate generate

g
e
n
e
ra

te

Figure 20: The detailed steps of the performance measurement and analysis flow.

In the performance tuning process, given is the source code of an application and
the ultimate goal is to obtain a new version of the application, necessarily with im-
proved performance. In order to achieve the final goal, two intermediate results are
produced: characterization of the application performance and optimization hints.

There is one main actor in this process: the developer of the application, depicted
in figure 20 in the lower center. To some extent, the performance tool could also be
considered an actor for the steps of the process where automatic actions take place,
like 3b: track data and 3c: automatic analysis.

The flow is started with the instrumentation of the application. As described in1: manually
instrument

2a: automatically
instrument

chapter 2, both manual and automatic instrumentation are possible. If present, the man-
ual instrumentation has to be performed first. This is an action applied by the user
directly to the source code of the application, see action marked with 1 in the diagram.
The automatic instrumentation is usually performed along with the compilation of
the application - actions 2 and 2a.

Most tools have defined a command to be prepended to the call of the compiler
itself. For example, the common way of automatically instrumenting applications
which are built using a Makefile is to declare an instrumentation variable depending
on the tool which is being used:

Instrumenter

Periscope

INST = psc_instrument

Scalasca

INST = scalasca -instrument

Score-P

INST = scorep

VampirTrace

7.1 the detailed performance analysis flow 95

INST = vtcc -vt:cc ✆
and then prepend the common declaration of the compiler with the previously

defined instrumenter call:

C Compiler

CC = gcc -O3 ✆
C Compiler, prepended with instrumentation call

CC = $(INST) gcc -O3 ✆
The automatically instrumented source file generated at this step is then passed to

the compiler itself. This is action 2b in the diagram and has as a result the executable 2b: compile

binary of the application. At this point, the necessary libraries for the performance
measurements get linked as well. It is common practice that the performance tools
have dedicated libraries which are used in the measurements step.

The actual performance analysis starts when the user issues the commands for
running and profiling the application. This is action 3: run profiling in our diagram,
which divides in three sub-actions on the tool side: 3a: run binary, 3b: track data and
3c: automatic analysis.

First of all, starting the application has its own particularities, depending on the 3a: run binary

specific tool which is used. Thus, action 3a in the diagram could assume:

• starting the performance tool and providing the usual command line call of the
application as an argument for the tool, along with other settings. This is the
case for Periscope and Scalasca:

$ psc_frontend --apprun="<CMDLINE>" --mpinumprocs=16 --force-localhost ✆
$ scalasca -analyze mpiexec -n 16 <CMDLINE> ✆

• starting the application normally, with the performance tool running in the
background, like with Score-P and VampirTrace.

In both situations the user has in addition the opportunity to use a wide range
of predefined environment variables to configure and control the execution of each
particular performance tool.

The next step is collecting the measurements data, action 3b in the diagram. Which 3b: track data

type of data is being collected and how it is stored or processed, this is again very
specific to each performance tool. As already described in section 2.4.5, Score-P was
a joint effort to provide a standardization for all these different strategies and, as a
result, the Score-P framework for instrumentation and measurements can be used
in combination with tools like Scalasca, Vampir, Periscope and TAU. Regardless of
the specifics of each measurement backend or library, this step of the performance
profiling is completely transparent to the user.

The next step depicted in the diagram, 3c: automatic analysis, has again some partic- 3c: automatic analysis

ularities. We used a very simplified representation of this step, in order to underline
the concept of using automatic analysis of measured data and to roughly localize it in
the overall performance flow. In practice, there are different approaches to automatic
analysis, based on the main orientation of each of the performance tools.

96 a framework for dk-enhanced performance analysis

Periscope, for example, uses online analysis, which means that the measurements
are processed at runtime and, based on the results of this analysis, new measure-
ments are scheduled. Thus, for Periscope, step 3c is combined with 3b and the anal-
ysis is not applied to some generated measurements file, but directly to the mea-
surements available at given points in the execution of the tool. The analysis is also
transparent to the user.

In contrast, Scalasca provides a specialized tool for post-mortem processing of
measurement files. This can be applied by the user to retrieve performance statistics
and, eventually, to re-run the measurements after configuring the tool to target the
hotspots which were identified, or to filter out the less interesting application parts.
In this case, the automatic analysis step is already part of the next action represented
in our diagram, 4: inspect results, and the output is represented by one of the boxes
on the lower right of the diagram, namely the performance statistics.

The last action in the performance flow is the inspection of the performance results,4: inspect results

or the manual analysis of the performance characteristics. This step always takes place
after the measurements process finished and it is therefore also being called the post-
mortem analysis.

There are mainly two ways of performing the manual analysis: either at command-
line or by means of a GUI. In the first case, the user mostly uses some scripts or
small tools or functionalities provided by the performance tool in order to generate
appropriate statistics and profile numbers from the gathered measurements. This is
basically, as already mentioned above, a mix between manual and automatic analysis.

In most cases though, the measurements are going to be inspected by means of a
GUI provided by the performance tool. VampirTrace measurements are usually visu-
alised with Vampir, Scalasca measurements with Cube, and Periscope measurements
with the Eclipse-based GUI. Besides the GUI visualisation, all tools also provide com-
mand line methods to display information about the measured performance.

This last step concludes the performance measurement and analysis flow. In the
lower right corner of the diagram we represented the actual response which is ex-
pected by users at the end of this flow:

• performance statistics;

• optimization hints; and, as a final goal,

• good performance of the application.

The performance statistics can usually be retrieved either from the automatic analysis
or by generating them from the provided GUIs and command-line scripts.

For optimization hints and good performance though, it is usually up to the experience
and skills of the user to harvest them from the provided measurements. This is where
DK also comes into play. It helps users instruct the tools what is that they need
to measure and then it supports the inspection of the results by embedding users’
experience from their own research domains into the performance metrics.

There is also some effort towards automatic optimization of applications. One ap-
proach is to specialize on some particular implementation aspects, like, for example,
MPI communication or execution loops. The tools implementing this approach usu-
ally combine static with dynamic analysis of applications. One could also call them

7.2 framework overview 97

LDK Extractor
LDK

Interface
Library

LDK
Objects

src file

Instrumenter

DK Performance
Strategy

Measurement
backend

DK Measurements
Library

Program execution

src file

Analyzer
and

Visualizer

trace file

DK
Traces

Figure 21: The main components of an DK-enhanced framework for performance measure-
ment and analysis.

as semi-automatic optimization tools, as they only analyse the application and provide
optimization hints, but do not actually modify the source code.

The other approach is also defined as tuning and it targets the improvement of per-
formance by adjusting the values of different environment parameters or application
internal variables. Such are, for example, the number of MPI processes used to start
the application, the frequency of the CPU cores running the application threads or
processes, or the specific compiler flags used to build the executable of the applica-
tion. The main strategy is to define a set of possible configurations and to run the
application with these different configurations, providing at the end the best one as
a tuning solution. Thus, the resulting optimization hints do not refer to changes to
the source code itself, but only to the values to be used for particular parameters.

7.2 framework overview

In the overall structure of our DK-enhanced profiling framework we can distinguish
two main implementation layers. On the one side, there is the LDK Framework,
which we already described in chapter 6. Represented in the upper part in figure 21,
the LDK Framework is responsible for generating the LDK Objects database and
for preparing or instrumenting the initial source code with support for DK specific
dynamic information.

The second implementation layer represents the components and extensions re-
sponsible for performing the performance measurement and analysis. The blue boxes
in the lower range of the same figure represent the initial components of the profiling
tool. These components can perform a pure performance analysis, without any DK
considerations. From a general point of view, these components could be any com-

98 a framework for dk-enhanced performance analysis

ponents belonging to a performance analysis tool. We use here the generally agreed
terms to define them as Instrumenter, Measurement backend, Analyzer and Visualizer.

In our particular implementation we use the following:

• Instrumenter: the f90inst Fortran instrumenter from Periscope;

• Measurement backend: the OTF2 tracing library from Score-P; and

• Analyzer and Visualizer: the Vampir GUI from the tool with the same name.

The orange boxes depicted inside the blue boxes represent the extensions which we
implemented in order to enable the support for Domain Knowledge. We integrated in
the f90inst instrumenter our own automatic instrumentation strategy, which we call
DK Performance Strategy. As measurement backend, we developed our own library
based on the OTF2 for tracing support. There was no need to extend the Vampir GUI,
but we designed particular DK Traces.

The DK Measurements Library processes at runtime the function calls inserted pre-
viously by the DK Performance Strategy component. It stores the results in the DK
Traces, using the functionalities provided by the Measurement backend. The library
also acquires the necessary information via the LDK Interface Library in order to
store within the DK Traces, besides the values of the measured metrics, also the de-
scription of the DK Objects. The Visualizer relies on these descriptions to properly
display the data. In this way we eliminate any direct dependency between the Visu-
alizer and the LDK Framework.

7.3 instrumentation

The main role of the instrumenter in the performance analysis flow is that of prepar-

src file

Instrumenter

DK Performance
Strategy

src file

ing the application by inserting appropriate calls to the measurement backend. We
use in our framework the f90inst Fortran source code instrumenter of the Periscope
online analysis tool. We extended f90inst with a DK Performance Strategy component,
which automatically inserts appropriate code instrumentation in order enable cap-
ture performance information relevant for DK.

For our profiling framework we implemented two instrumentation strategies for
two of the DK metrics introduced in section 4.4:

• Memory per Entity (MPE) metric; and

• Iterometers.

7.3.1 MPE metric instrumentation support

In section 4.4 we defined MPE as the amount of memory used by an entity through-
out the execution of an application. In this section we show which are the instrumen-
tation strategies applied in our framework for supporting the deployment of MPE
analysis.

There are basically three questions with respect to MPE, which need to be answered
in order to design the instrumentation:

a. what is the object of the metric?

7.3 instrumentation 99

b. when is the metric applied?

c. how is the metric evaluated?

The answers are given in the following paragraphs, along with the implementation
specific details.

A. Dynamic arrays

A DK Entity can have any kind of variables assigned to it. All these variables occupy
some memory attributed in the end to the entity. From all variables, though, it is
natural that the most amount of memory is occupied by arrays. We use here the
Fortran term array to refer to all data types which, in general, represent a set of
elements: lists, maps, vectors, matrices, etc.

In most common programming languages there are two concepts with respect to
memory allocation for arrays: static memory allocation and dynamic memory allo-
cation. In static memory allocation the array is given a fixed size already at compile
time, while in dynamic memory allocation the size is decided during the execution
of the application.

Theoretically, both types of arrays could occupy a considerable amount of memory,
but it is common practice nowadays that the larger arrays are dynamically allocated.
This is due to the fact that these arrays mostly contain data which is read or computed
at runtime and thus the exact size is only available during the execution.

Therefore we set the focus in our framework on dynamic arrays, but the implemen-
tation could be extended at any time to also consider the size of static arrays.

In Fortran, there are two types of dynamic arrays:

• allocatable arrays; and

• automatic arrays.

We do not consider pointers here, although they are classified sometimes as dy-
namic arrays as well.

Allocatable arrays are dynamic arrays for which memory can be allocated and
deallocated at runtime by using the ALLOCATE and DEALLOCATE statements.

REAL, DIMENSION(:), ALLOCATABLE :: A

INTEGER :: n

...

ALLOCATE(A(n))

...

DEALLOCATE(A)

Automatic arrays are local arrays in routines which sizes are declared based on the
value of some formal argument. The memory of such arrays is allocated automatically
upon entering the routine and is deallocated automatically upon leaving it.

SUBROUTINE myRoutine(n)

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n) :: A

...

END

In our framework we demonstrate how both kinds of dynamic arrays can be con-
sidered in the MPE metric.

100 a framework for dk-enhanced performance analysis

B. Code- and user-driven instrumentation

We distinguish two types of instrumentation strategies for MPE, based on the trigger
which enforces the instrumentation: code- and user-driven instrumentation.

By code-driven instrumentation we refer to instrumentation actions which are en-
forced by particular statements or structure of the source code. In the case of MPE,
these statements are the ALLOCATE and DEALLOCATE statements.

We extended the instrumentation process of the Periscope instrumenter to also in-
tegrate this strategy. The connection point is the same as in the case of the LDK Instru-
menter, presented in section 6.1.3: during the second phase of the instrumentation, a
new test condition is introduced to check whether the current node is corresponding
to an ALLOCATE or DEALLOCATE statement. If this is the case, then each of the
variables enclosed in the statement are checked whether they are assigned to any DK
entity. If so, then a call to the ldk_alter_mpe() function of the DK Measurements
Library is inserted in the parse tree for that specific variable. The function receives as
arguments the id of the entity to which the variable is assigned to and the amount of
memory which should be registered.

The other strategy type is user-driven instrumentation. Although it might sound like
manual instrumentation, it is not the case. This instrumentation strategy is still auto-
matic instrumentation, but it is carried out on the basis of the hints and information
specified by the user.

More precisely, in manual instrumentation, the user edits the source and inserts
either markups or even direct routine calls. For DK, the action through which the user
inserts the DK annotations into the code is an example of manual instrumentation.

In user-driven instrumentation, the tool interprets the markups inserted manually
by the user and then it automatically instruments the code, based on the information
provided by these markups.

For MPE in our framework, this strategy is used to instrument the dynamic auto-
matic arrays. We already mentioned that these arrays are local variables of routines.
If the user declares such a routine as a DK Operation and it also specifies that this
DK Operation is linked to one specific entity, then we can account the memory used
by the automatic arrays to that particular entity.

For example, in listing 20, the routine MyRoutine is assigned to the operation
MyOperation which is linked to the entity MyEntity. The local arrays A and B are
not assigned to MyEntity, which contains only the variable myArray. Nevertheless,
since all computations in MyRoutine are semantically linked to MyEntity, then it fol-
lows that the memory allocated for this computations should also be accounted for
in the MPE of MyEntity.

Since we are using the same instrumenter component for both the DK-enhanced
profiling framework, as well as for the LDK Framework, in our implementation,
the instrumentation actions described in this section are carried out along with the
ldk_flags instrumentation for the given routine. The diagram in figure 18 is thus
extended with a second branch containing two steps: one for inserting the calls to
ldk_alter_mpe() at the beginning of the routine and another one for inserting the
matching calls at the end of the routine.

7.3 instrumentation 101

...

\begin{entity}{MyEntity}

REAL, DIMENSION(:,:), ALLOCATABLE :: myArray

\end{entity}

INTEGER :: m, k

ALLOCATE(myArray(m))

CALL ldk_alter_mpe(0, size(myArray), storage_size(myArray)/8) ! <--- inserted

by instrumenter

CALL MyRoutine(k)

...

CALL ldk_alter_mpe(0, -size(myArray), storage_size(myArray)/8) ! <--- inserted

by instrumenter

DEALLOCATE(myArray)

\begin{operation}{MyOperation}[linkedentity=MyEntity]

SUBROUTINE MyRoutine(n)

INTEGER, INTENT(IN) :: n

REAL, DIMENSION(n) :: A, B

CALL ldk_alter_mpe(0, size(A), storage_size(A)/8) ! <--- inserted by

instrumenter

CALL ldk_alter_mpe(0, size(B), storage_size(B)/8) ! <--- inserted by

instrumenter

...

CALL ldk_alter_mpe(0, -size(A), storage_size(A)/8) ! <--- inserted by

instrumenter

CALL ldk_alter_mpe(0, -size(B), storage_size(B)/8) ! <--- inserted by

instrumenter

END

\end{operation} ✆
Listing 20: Instrumentation for MPE support.

102 a framework for dk-enhanced performance analysis

C. Runtime size of arrays

The values of the MPE metric represent an amount of memory expressed in bytes.
Determining the actual memory occupied by a dynamic array at runtime is different
in each programming language. In C, for example, one can use the sizeof() function
to find out exactly how much memory does an array occupy. Fortran also provides
a similar function, the size() intrinsic function, but which only returns the total
number of elements in the array and not the total memory.

We thus defined in our Fortran implementation the memory occupied by a dy-
namic array as the product between the number of elements in the array and the size
of one element.

memoryarray = |elem ∈ array| ∗memoryelem

The size of an element depends first of all on its data type, but it may also de-
pend on the compiler, the machine architecture and the operating system. Since For-
tran2008, there is an intrinsic function which can be used to query the memory foot-
print of variables. The storage_size function returns the number of bits occupied by
the given argument. It works on both standard and custom types of variables. If the
argument is an array, it returns the size of one element in the array.

The formula used for gathering MPE information in bytes is thus:

memory = size(array) ∗ storage_size(array)/8

In the instrumentation process, this is deployed in the calls to the LDK Measure-
ments library, which are inserted as described in the previous paragraph. Listing 20
shows several examples of the inserted calls to ldk_alter_mpe(). It is also worth ob-
serving that, in order to receive the correct results, the size() and storage_size()

functions must be used at the appropriate point in time. One can see that when it
comes to an ALLOCATE statement, the instrumented calls are added after the allocation,
while for DEALLOCATE statement, the calls are inserted before the deallocation. This is
important because the size() function, for example, could not return the number of
elements in myArray, but only after these elements were allocated. Similarly, calling
size() after DEALLOCATE would not be able any more to say how many elements were
in myArray before the deallocation.

If, however, the compiler does not support the newer Fortran2008 standard, and
hence the storage_size() function is not available, or if the programming language
in which the application is implemented does not provide such a function at all, then
another solution for determining the size of elements needs to be applied. We present
here the alternative approach which we tested in our framework as well. Although it
is implemented for Fortran, it can be adapted for other languages as well.

First of all, we defined a set of constants to hold the size in bytes of the standard
types. The constants are given as parameters in a separate module, which can be
changed and adapted by the user, if it is needed on the used platform.

module ldkparams

! size in bytes

integer, parameter :: LDK_Integer_SIZE = 4

7.3 instrumentation 103

integer, parameter :: LDK_Real_SIZE = 4

integer, parameter :: LDK_Double_SIZE = 8

integer, parameter :: LDK_Complex_SIZE = 8

integer, parameter :: LDK_DComplex_SIZE = 16

integer, parameter :: LDK_Char_SIZE = 1

integer, parameter :: LDK_Integer4_SIZE = 8

...

end module ldkparams

Then we designed a function which accepts as a parameter the node of a variable
and returns a string representing summations of string literals like LDK_Complex_SIZE,
LDK_Integer_SIZE, which are defined in the module mentioned above. The function
first identifies in the symbol table the symbol of the given variable. It then recur-
sively traverses the type definition in the symbol table building the return string.
For example, given a variable of a custom type with two integer fields and one real
field, the function will return the string LDK_Integer_SIZE + LDK_Integer_SIZE +

LDK_Real_SIZE. If the argument is of a standard type, the function just returns the
corresponding size parameter.

Although this solution works for most cases, there might also occur situations
where the computed size might not accurately represent the actual size of variables.
In Fortran, for example, the compilers are allowed to use padding in order to generate
structures with aligned fields. Padding means adding bytes of unused memory, either
between the fields, or at the end of the structure. This increases performance at the
expense of memory usage. Table 3 demonstrates the effect of padding comparing the
size computed by our function and the actual size including padding.

Although this solution does not always deliver the exact values for MPE, it could
still be used as a workaround, focusing on the qualitative analysis of the results rather
than the quantitative one.

7.3.2 Iterometers instrumentation support

In section 4.4 we defined Iterometers as a class of metrics which target the analysis of
iteration processes within applications.

Following the same implementation questions as for MPE, we could state the fol-
lowing:

a. what makes the object of the metric?
Answer: iteration parameters.

It is important to differentiate here between the variables in the source code
representing iteration indexes and the possible DK Objects or other code data
structures which might be semantically understood as the iteration parameters.
An iteration step can be identified by means of an index, but it could also be
identified by means of the data which is being processed in that particular step.

b. when is the metric applied?
Answer: user-driven instrumentation.

Iterometers record values of indicated iteration parameters when and where
these parameters are declared in DK annotations.

104 a framework for dk-enhanced performance analysis

Type definition Size string Computed
size

Actual size
(with

padding)

TYPE intreal_t

integer :: a

real :: b

END TYPE intreal_t

LDK_Integer_SIZE +
LDK_Real_SIZE

8 8

TYPE int8real_t

integer(8) :: a

real :: b

END TYPE int8real_t

LDK_Integer4_SIZE +
LDK_Real_SIZE

12 16

TYPE int8realreal_t

integer(8) :: a

real :: b, c

END TYPE int8realreal_t

LDK_Integer4_SIZE +
LDK_Real_SIZE +
LDK_Real_SIZE

16 16

TYPE int8int8real_t

integer(8) :: a, b

real :: c

END TYPE int8int8real_t

LDK_Integer4_SIZE +
LDK_Integer4_SIZE +
LDK_Real_SIZE

20 24

Table 3: Comparison between the computed size and the actual size of some variables of
custom types, when padding is used on a 64-bit platform.

7.4 measurement 105

The needed instrumentation can be carried out already in the first instrumen-
tation phase, when the LDK directives are processed. Iteration parameters are
specified as attributes of DK Operations. There are two attributes which can be
used to specify iteration parameters:

• iterent: the name of a DK Entity; and

• iterparam: the name of a formal argument or local variable.

When such an attribute is encountered in the definition of a DK Operation, a
call to the ldk_alter_iterometer() function of the DK Measurements Library
needs to be inserted in the parse tree. This DK Operation is a region-based
operation and this ensures that the code is already instrumented with proper
calls to markup the start and end of the operation, as explained in the event
triggers instrumentation in section 6.1.3.1.

As in the case of inserting MPE calls for ALLOCATE and DEALLOCATE statements,
there are some particular cases where the positioning of the ldk_alter_iterometer()
call might be important. In the general cases, this call is inserted right at the be-
ginning of the operation. If, however, the operation is of the Comm_Recv type,
then the call needs to be inserted at the end of the operation. Comm_Recv opera-
tions represent communication actions where there is some data to be received.
For example, it might include a MPI_recv() call. In this case, the iteration pa-
rameters should be traced only at the end of the operation, i. e. after their values
were initialized in the receive call.

c. how is the metric evaluated?
Answer: variable values or DK objects ids.

If the iteration parameter is a source code variable, declared with iterparam,
then the value of the Iterometer is given by the value of that variable.

If, instead, the iteration parameter is a DK Entity, declared with iterent, then
the value of the Iterometer is given by the id of the entity.

7.4 measurement

There are mainly two components of our framework which are specific to the mea-
LDK

Interface
Library

Measurement
backend

DK Measurements
Library

Program execution
trace file

DK
Traces

surements step of the performance flow:

• the DK Measurement Library; and

• the DK Traces.

While the DK Traces could also be considered part of the Visualisation step, we
include it here, as part of the tracing approach in the measurement library.

Unlike the DK Performance Strategy component, which is tightly integrated within
the Periscope instrumenter, the two measurements components represent stand-alone
implementations. Their functionality is based however on the API provided by the
OTF2 library.

106 a framework for dk-enhanced performance analysis

7.4.1 OTF2 basics

OTF2 [52] stands for Open Trace Format version 2 and is the follower of OTF. OTF was
developed at the Technische Universität Dresden, in collaboration with the University
of Oregon and the Lawrence Livermore National Lab. OTF2 was developed in the
context of the Score-P project. OTF was producing ASCII trace files, while OTF2 is
using the binary format.

The target of OTF2 is to support an efficient working process with very large trace
files in serial and parallel environment.

At the core of the tracing format are the events, the locations, and the local and
global definitions.

events
At the core of the tracing technique there are the different events, which are neces-
sarily associated with a timestamp. In OTF2 one can register several types of events,
each with corresponding associated properties:

• code region enter or leave;

• metric values;

• MPI operations;

• OMP operations;

• parameter values;

• RMA operations;

• thread operations.

locations
OTF2 supports parallel I/O, providing separate writing streams for each separate
location. Locations are usually associated with execution processes or threads.

The merging of the data gathered by each collection is taking place automatically
through the functionality offered by the OTF2 library.

definitions
Some event types are associated with different code or analysis elements like code
regions, metrics or parameters. When such an event is recorded, only event specific
information is begin stored, like the timestamp or the location of the occurrence. The
properties of the referenced elements are given separately in the so called definitions.

OTF2 supports local and global definitions. The local definitions are given per
location and can be mapped to global definitions, if such a mapping is provided.

An important aspect for the tools which use OTF2 as a writing library, is the fact
that all these definitions can be written at the very end of the tracing processes. This is
particularly convenient, science many of the information to be recorded in definitions
is only given at runtime through the instrumentation calls.

7.4 measurement 107

7.4.2 DK Measurements Library

The DK Measurements Library comprises of a set of functions which build up the
tracing interface of the framework. Calls to these functions are inserted in the in-
strumented version of the application and they are executed at the runtime of the
application.

The component is implemented in C and can be built as a library, separately from
the rest of the framework. It is then linked to the instrumented application and pro-
duces trace files at execution time.

The integration with Fortran applications is natively supported. Function calls from
Fortran are linked to the implementations provided in the C library. The only sensible
aspect is data types of arguments. To be on the safe side, the trace functions use only
integer arguments.

The functions included in our implementation are as follows:

void ldk_start_phase_(int* phaseId, int* phaseType):
Registers the start of the phase with the given Id. The phase type is also pro-
vided and could be used for more specialized tracing. One could, for example
suspend a given type of trace events until the application leaves the current
phase.

Phases are implemented as OTF2 regions. Starting a phase means entering a
new region. Since phases do not have ending commands, before actually reg-
istering the start of a new phase, first the event for leaving the current region,
i. e. phase, is registered.

void ldk_alter_mpe_(int* entId, int64_t* elemCnt, int* elemSize)

Registers changes to the MPE metric. The id of the targeted entity is provided,
along with the value which has to be computed as the product between the
elemCnt and elemSize.

MPE is stored as a metric in OTF2, as described below in the section regarding
the LDK Traces component.

void ldk_alter_iterometer_(int* type, int* opId, int* value)

Registers the changes to a given Iterometer. Iterometers are associated to an
operation, which is provided by the opId argument. The type specifies whether
it is an entity-valued Iterometer, or a variable-valued.

void ldk_comm_entity_(int* type, * entId, int* srcProc, int* destProc)

Registers communication or transfers of entities between application processes.
The type specifies whether it is a send or a receive. The source process and the
destination process are also being given and registered.

This function is not currently associated with an instrumentation strategy in
LDK Strategy or LaDoK implementation. Its functionality was evaluated based
on manually instrumented source files. The visualisation of the results also re-
quires a post-mortem processing step of the trace files, which we implemented
as a command-line tool.

108 a framework for dk-enhanced performance analysis

7.4.3 DK Traces

The DK Traces is represented by the OTF2 trace files generated by our framework at
the end of the performance measurement flow. Besides the registration of the events
themselves, an important aspect is represented by the definitions we use in the OTF2
format in order to express our specialized metrics.

Throughout the entire tracing process, the information with respect to the DK
Objects is retrieved via the LDK Interface Library of the LDK Framework.

mpe storage in otf2
In order to store the MPE metric, the correct references to the DK Entities and the
amount of the memory allocated or deallocated have to be stored.

1. DK Entity: In the LDK Traces each DK Entity has associated one OTF2 metric
with:

• metric identifier: the ID of the DK Entity;

• metric name: the name of the DK Entity;

• metric mode: OTF2_METRIC_RELATIVE_LAST, which means that values
are added/subtracted to/from the last value of the metric.

The DK Entities definitions are received from the LDK Interface component,
which, in turn, first needs to load them into the LDK Objects component, as
described in section 6.3.

2. Amount of memory: The amount of memory is passed as the value of OTF2
metric events OTF2_EvtWriter_Metric()with signed 64-bit integers OTF2_TYPE_INT64
type.

dk phase storage in otf2
DK Phases are defined using the OTF2 code region elements. For each DK Phase
stored in the LDK Objects, one OTF2 code region is defined using:

• region identifier: the ID of the DK Phase;

• region name: the name of the DK Phase;

• region type: OTF2_REGION_FLAG_PHASE.

otf2 traces of dk entities transfers
In order to store the communication or transfers of DK Entities, the OTF2 code region
is used again. This time, there are only two regions with given predefined semantics:
one region where entities are sent and another one where entities are received. The
two regions have a custom chosen identifier and the custom names SENDENT_Region
and RECVENT_Region.

The actual relevant information, namely the id of the DK Entity involved in the
transfer, as well as the identification of the sending and receiving processes are stored
as attributes of the region entering event.

The attributes are defined in the definition section of the LDK Traces. There are in
this case three attributes with hard-coded identifiers:

7.5 analysis and visualisation 109

enum TraceAttrT_Type{

TraceAttrT_ENTID = 0, /* the id of the entity */

TraceAttrT_SRCPROC = 1, /* the source process */

TraceAttrT_DESTPROC = 2, /* the destination process */

TRACEATTRTYPE_CNT

};

Upon calling the ldk_comm_entity_ function, the values retrieved as arguments
are assigned to the attributes. These are then given as the current attributes list to the
enter event for the corresponding region. and added to an attributes list.

OTF2_EvtWriter_Enter(evt_writer, attribute_list, get_time(), regionRef);

OTF2_EvtWriter_Leave(evt_writer, NULL, get_time(), regionRef);

Since the region is only needed to signal the type of the transfer, wither send or
receive, and to store the corresponding parameters, after issuing the enter event, the
region is also begin left immediately.

7.5 analysis and visualisation

There are two main aspects to be considered for the analysis and visualisation com-

Analyzer
and

Visualizer

trace file

DK
Traces

ponent of our DK-enhanced profiling framework.
First of all, the DK Traces generated during the measurements phase are using the

open-source OTF2 format. Hence, any tool capable of reading OTF2 files could be
used to visualise the results.

Secondly, all information regarding the DK approach is already encoded in the DK
Traces through the specialized design of the registered events and metrics. Thus, the
visualisation tool does not need to interact in any way with the LDK Framework.

These two facts allowed us to use for analysis and visualisation within our frame-
work a tool which is not open-source and for which we do not have access to the
source code. The Vampir GUI is able to display out-of-the-box the DK Traces pro-
duced in the measurements phase.

Figure 22 presents the Vampir screen with many views enabled, for one of the stan-
dard example files delivered along with the software, namely the Large_ScoreP/traces.otf2
file.

On the left hand side of the screen there are the trace views displaying different
events in their chronological order, from the left to the right. The most common is
the Timeline view, displayed here at the very top, with one horizontal bar per process.
The next view below is an example of a Summary Timeline. In this case, the number of
invocations for each function is being displayed. The third chart is a Performance radar
view, displaying the values of the PAPI_L2_TCM counter, which is the PAPI counter for
the total cache misses. At the bottom one can see another view for this same counter.
This time the chart is including the results for only one process.

On the right hand side of the screen there are the profiling views and contextual
information. The first diagram on top is the Functions Summary, displaying the total
time spent in each function. The view below this is reserved for the contextual infor-
mation. Upon clicking anywhere on the Vampir screen, the corresponding available
information will be displayed here. Further below there is the Process Summary chart
displaying the accumulated exclusive time per function. Finally, the last view is the

110 a framework for dk-enhanced performance analysis

Figure 22: Vampir screen for an MPI application.

Message Summary chart with a histogram displaying the number of MPI messages per
message size.

All views are connected and responding to the selections performed on the timeline-
based views on the left hand side. One can zoom in and out both on horizontal and
vertical directions.

Vampir manages without a problem very large trace files, scaling well both for a
large number of execution processes, as well as for very long execution times. Here
the capability of aggregating several events, like for example MPI messages, is of a
crucial importance.

7.6 extensions of the dk framework

Through its structure and design, the DK-enhanced framework easily supports the
addition of other custom metrics, for example. Once the corresponding instrumenta-
tion strategy is added to the DK Performance Strategy components, the measurements
library can be adapted to trace the necessary information.

Some special visualisation and analysis extensions could also be considered. These
depend though on the visualisation tool, as presented in the previous section.

8
USE CASE : MEMORY- INTENS IVE APPL ICAT IONS

The term memory-intensive received some few slightly different interpretations within
the application performance community. In this chapter we refer by memory-intensive
to that class of applications, which use throughout their execution a large amount of
intermediary memory, required by the many temporary data structures which are gen-
erated.

This is different from the data-intensive applications which either need to process a
large amount of input data, or which generate large amounts of output data.

Also, memory-intensive is different from memory-bound. The first one is a classifica-
tion strictly referring to the evolution of the memory footprint throughout the execu-
tion of applications, while the second classification refers to the memory access profile
in relation to the computing operations.

The three classifications do not exclude each other, they just refer to different as-
pects when characterizing applications.

Examples of common applications for each classification include [75]:

• memory-intensive: graph-based algorithms, quantum chemistry, (de novo) DNA
sequence assembly;

• data-intensive
large input: data-mining, visualisation applications, genome computation;
large output: climate modelling, molecular dynamics, structural mechanics;

• memory-bound: PDE solvers using stencil-based methods, sparse-matrix algo-
rithms.

Due to the dynamic aspect of the temporary data structures used in memory-
intensive computation, it is often difficult to predict the amount of memory used by
the application throughout the execution. The size of the temporary data structures
usually depends on the input data and sometimes also on the computed data.

Estimations of the amount of required memory exist, of course, as the size com-
plexity analysis of scientific algorithms is common practice, like the time complexity
as well. There are two aspects which need to be considered with respect to size com-
plexity, though. First of all, these are usually only upper limit asymptotic estimations,
expressed mostly using the big O notation. Secondly, the size complexity analysis
only expresses the behaviour or the scalability of the algorithm with respect to some
characteristics of the input dataset. It does not, however, give an estimation of the
actual size of the required memory, e.g. number of bytes or MB. The reason why size
complexity fails in these two aspects, is that it only considers the theoretical formu-
lation of algorithms. In practice, the choice of the implementation approach, as well
as the implementation language do influence the overall behaviour of an algorithm
with respect to the memory requirements.

Some performance tools, like Vampir and data-centric tools [66], offer the possibil-
ity to track memory usage, either at system-level or at single variables-level. For large

111

112 use case : memory-intensive applications

simulations, the first solution is too coarse-grained to be able to deduce problematic
data structures, while the second one usually proves to be too fine-grained and also
lacking context information.

In this chapter we provide a solution to these challenges, based on the three steps of
the DK approach presented in section 4.2. We first introduce the quantum chemistry
application ParaGauss. Then we proceed with the first step of the DK approach:
identifying the relevant knowledge (Domain Knowledge) with respect to the memory-
intensive aspect. We then show how to express the identified knowledge by inserting
LaDoK annotations in the source code. In the third step we focus on the usage of
the expressed knowledge for an improved performance analysis, namely we present
the results obtained using our DK-enhanced profiling framework and the MPE DK
Metric. Finally, we draw conclusions regarding the benefits of DK for this use case
and suggest further performance analysis for the code.

8.1 quantum chemistry application : paragauss

ParaGauss [6] is an application developed at Technische Universität München within
the Theoretical Chemistry research group. It is a "parallel DFT code for solving chal-
lenging electronic structure problems in chemistry, surface science, and the field of
nanostructured materials" [46]. In chapter 1, we already mentioned that, in the HPC
context, DFT (Density Functional Theory) is the most widely applied electronic struc-
ture approximation in computational chemistry and computational materials science.
ParaGauss thus subscribes to the main stream of HPC chemistry applications.

ParaGauss is targeting highly symmetric structures for which matrix blocking
methods can be applied. It is also exposing a good performance for the complex
computations of metallic/conductive systems.

8.1.1 Density Functional Theory (DFT)

Density functional theory is a reformulation of quantum mechanics which, in the
case of electronic ground states, offers an alternative to the Schrödinger equation.
DFT is based on the electron density instead of the complicated many-body wave
functions. Actual DFT approximations provide a computable expression for the total
energy E whose variational treatment leads to the electronic structure of the system
under study.

In the Schrödinger formulation, the total energy is given by:

E =
�Ψ|H|Ψ�
�Ψ|Ψ� , (1)

where Ψ is the electronic wave function depending on the spatial coordinates of all
electrons of the system, and H is the Hamiltonian operator.

On the other hand, DFT is based on the Hohenberg-Kohn theorem which expressesHK: from 3n
arguments to only 3. E as a functional1 of the electron density ρ. The electronic density is the probability

of finding any of the n electrons of a system within volume element d�r. Unlike the
wave function, ρ is depending only on three arguments, namely the three coordinates

1 A functional is a function which has as argument another function, while a common function has as
argument a variable.

8.1 quantum chemistry application : paragauss 113

of the system and it is actually a physical observable. The connection between ρ and
the many-body wave function in Schrödinger’s equation is given by:

ρ(�r) = n

�
...
�
|Ψ(�x1,�x2, ...,�xn)|2d�x2...d�xn, (2)

where xi has both a position and a spin component: xi = {ri,σi}. In the following
though, we are going to use the spin-restricted formulation only.

Most realizations of DFT rely on the Kohn-Sham formalism, which, in turn, uses
the following partitioning of the total energy:

E[ρ] = Eext + Ekin + Ecoul + Exc (3)

• Eext: the potential energy arising from the atomic nuclei of the system;

Eext =

� M�

A

ZA
|�r1A|

ρ(�r)d�r (4)

where

M : number of atoms in the electronic systems;

ZA : atomic number of atom A;

�rA : position vector of nucleus A;

• Ekin: the kinetic energy of all electrons within the system;

• Ecoul: the pairwise classical electrostatic interaction energy between any two
electrons of the system;

Ecoul =
1

2

� �
ρ(�r1)

1

|�r12|
ρ(�r2)d�r1d�r2 (5)

where �r1 and �r2 are the positions of the two different electrons.

• Exc: the exchange-correlation energy including all non-classical quantum me-
chanical electron-electron interactions.

The exact form of the functionals representing the kinetic Ekin and the exchange-
correlation Exc energies are not known. In order to express the kinetic energy term
Ekin, the Kohn-Sham formalism introduces a set of single-electron orbitals under the
assumption:

ρ(r) =

n�

i

|ψi(�r)|
2 (6)

where

n : number of electrons;

ψi : a one-electron wave function (as opposed to Ψ which is the all-electron

wave function in equation 1).

114 use case : memory-intensive applications

In principle, this is only a mathematical approach, which does not change any of
the physical or chemical semantics. The largest part of the kinetic term Ekin can be
expressed now in terms of the one-electron wave functions ψ:

Ekin = −
1

2

n�

i

�
ψi|∇2|ψi

�
(7)

In DFT one seeks to find the ground-state energy, from which many properties ofKS: from
many-electron to

one-electron equations.
the system can be derived afterwards. Following the variational principal, the ground-
state energy is given by minimizing the energy expression. Thus every ψi emerges
as a solution of the Kohn-Sham equation:

ĥKSψi = �iψi (8)

with the one-electron KS operator given by:

ĥKS = hkin + hext + hcoul + hxc (9)

= −
1

2
∇2 −

M�

A

ZA
|�r1A|

+

�
ρ(�r2)

|�r12|
d�r2 + vxc(�r1) (10)

Since ĥKS depends on ρ, which is computed from ψi, the equations 8 cannot be
computed directly and hence an iterative self-consistent field (SCF) approach needs
to be applied.

In order to do so, the equations 8 are adapted for the computer-based calculationsLCAO: from analytic
to algebraic

representation.
by means of the LCAO (Linear Combination of Atomic Orbitals) machinery. LCAO
is used to transform the analytic formulations of the formulae into a linear algebra
formulation. The unknown one-electron wave functions are replaced by a linear com-
bination of known basis functions, called orbital basis functions. The coefficients by
which the basis functions are combined become the unknowns in the new system
of equations. The unknowns are gathered in matrix- or vector-like representations,
which are suitable for computer-based calculations.

There are several types of basis functions which can be used in DFT implemen-
tations, such as Gaussian-type-orbitals (GTO), Slater-type-orbitals (STO), and plane
waves. ParaGauss uses products of Gaussian radial functions and solid spherical har-
monics [49]. The one-electron orbital functions are thus expressed as:

ψi =

N�

µ

cµiχµ (11)

with

χµ ∝ Yml (r−A)e−α(r−A)2 (12)

where:

χµ : atom-centered orbital basis functions;

Yml : polynomial harmonic function;

l : angular momentum;

m : magnetic number;

α : exponent of the gaussian radial function;

N : number of basis functions.

8.1 quantum chemistry application : paragauss 115

An important observation is that the orbital basis functions χµ are atom-centered.
This means that their values depend on the (known) positions of the nuclei and thus
they can be computed in forehand.

Replacing ψi in equation 8 with the linear expression from equation 11, multi-
plying afterwards to the left with an arbitrary orbital basis function χν and then
integrating over the space, leads to the new form of the equations [13]:

�

µ

cµi

�
χν(�r1)ĥKSχµ(�r1)d�r1 = �i

�

µ

cµi

�
χν(�r1)χµ(�r1)d�r1 (13)

This system of N equations can be rewritten in algebraic form as a generalized
eigenvalue problem:

ĤKSĈ = ŜĈ�̂ (14)

where all matrices are of size NxN:

ĤKS is called the Kohn-Sham matrix;

Ŝ is called the overlap matrix; and

Ĉ is the matrix of the unknown coefficients cµi.

and the matrix elements are given by:

ĤKS
νµ =

�
χν(�r1)ĥKSχµ(�r1)d�r1 Ŝ =

�
χν(�r1)χµ(�r1)d�r1 (15)

Expanding ĥKS as in formula 9 and grouping the kinetic and external terms to-
gether, leads to the two groups of integrals specific to DFT:

a. one-electron integrals:

hνµ =

�
χν(�r1)(−

1

2
∇2 −

M�

A

ZA
|�r1A|

)χµ(�r1)d�r1 (16)

b. two-electron integrals:

Jνµ =
�

λ

�

σ

Pλσ

� �
χν(�r1)χµ(�r1)

1

|�r12|
χλ(�r2)χσ(�r2)d�r1d�r2 (17)

where P is called the density matrix and is given by

Pλσ =

N�

i

cνicµi (18)

The two-electron integrals 17 are also called four-center integrals, since there are
four different atom-centered orbital basis functions involved: χν, χµ, χλ and χσ. Four-
center integrals are very computation and space demanding and, hence, there are
often replaced by three-center integrals. The latter are obtained by introducing a

116 use case : memory-intensive applications

new approximation of the electronic density via an additional set of Gaussian basis
functions fk, also called fitting functions [6]. The three-center integrals are thus given
by:

J
�
νµ =

�

k

dk

� �
χν(�r1)χµ(�r2)

1

|�rij|
fk(�r2)d�r1d�r2 (19)

The exchange-correlation term vxc is not included in equations 16 and 17. Due to
its complex form, it is usually computed via numerical integration [6]:

hxcνµ =
�

n

ωnχν(rn)vxc(rn)χµ(rn), rn ∈ grid (20)

The self-consistent field (SCF) method is used to iteratively solve the system of
equations 14. One starts with an initial guess of the solution, the density matrix P
in equation 18. This initial guess is inserted in equation 17 in order to compute the
Kohn-Sham matrix HKS given in equation 15. The next step is to solve equation 13,
expressed as generalized eigenvalue problem in equation 14. The new solution is
compared with the previous one and, if necessary, a new iteration step is started.

8.1.2 Implementation

ParaGauss is a Fortran 95 parallel application, using MPI and a C wrapper for com-
munication.

The general execution path of ParaGauss is represented in figure 23 and it also
represents the common approach for DFT implementations.

For the purpose of this chapter we concentrate here only on the Integrals step of
the execution. Further details with respect to the implementation and parallelization
strategies used in ParaGauss can be found in [6], [49] and [64]. Also, a very good
survey on parallel implementations for quantum chemistry is given in [35].

In the Integrals step, the set of one- and two-electron integrals are (pre-)computed
and stored. These are the integrals given by the formulae 16 and 17. They are com-
puted here once and then they are reused in each step of the SCF iteration.

As mentioned above, ParaGauss uses two-center integrals for the 1-electron terms
and three-center integrals for the 2-electron term. All necessary data is stored in
dedicated data structures which are grouped in separate Fortran modules. The com-
putation is parallelized based on batches or groups of integrals, called quadrupels. The
name quadrupel comes from the four (quad) indices which identify each such batch:
(ua1, l1,ua2, l2). ua1 and ua2 identify the two atoms involved in the current com-
putation within all unique atoms defining the electronic system. l1 and l2 are the
corresponding angular momentum numbers, as given in equation 12 as well.

The quadrupels are distributed by the master process and the computations are
performed by the slave processes.

8.2 relevant domain knowledge

Throughout this thesis we pointed out that one of the key characteristics with respect
to DK is that it is usually only implicitly present within the source code. In order to

8.2 relevant domain knowledge 117

Input
Symmetry

Geometry
converged?

no

yes

Integrals

SCF
procedure

Forces

Properties

Density
converged?

no

yes

Geometry
Optimization

Figure 23: ParaGauss general execution flow [6].

make it explicit, one first needs to recognize its traces in the multitude of available
information.

In our current use case we could identify three different sources of such informa-
tion.

First of all, we have all the standard information which is present in the quantum
chemistry textbooks when discussing the computation of integrals for DFT imple-
mentations. For example:

• one-electron integrals are easy to compute and do not require a lot of space;

• two-electron integrals are the bottleneck: require huge amount of space and are
very many (up to O(N4));

• vanishing integrals exist, but they cannot be estimated exactly in forehand;

• both computation and storage costs can be reduced by considering symmetry
properties of systems2;

• primitives can be reused within integrals of the same shell.

2 Some electronic systems expose symmetries which are used to group atoms into given types, referred
to as unique atoms. The computations, including integrals evaluation, can then be performed for this
smaller number of unique atoms alone.

118 use case : memory-intensive applications

Secondly, there is the knowledge gathered within the development of ParaGauss,
knowledge which is partially documented in the form of source code comments or
published papers. Three examples are:

• for the two-electron integrals Paragauss uses either 3- or 4-center integrals;

• due to the parallelization of the computation of the integrals, after the com-
putation of each quadrupel, the results need to be scattered among the slave
processes; and

• in the implementation of the relativistic correlation part of the Exc term in
equation 3, large uncontracted basis functions are used, requiring significant
memory space.

Lastly, there are results gathered from performance analysis experiments ran by
the developers of ParaGauss. The software has a built-in measurement system for
execution time, but no support for memory measurements. Examples of acquired
information are:

• the execution time of the Integrals step strongly varies with the input electronic
system and the computation setup and could take anything from 10%, up to
40% of the total execution time; and

• the ratio with respect to execution time of all other computation phases strongly
vary with the input electronic system as well.

8.3 ladok annotations

We are now interested on how we can insert LaDoK annotations to the ParaGauss
source code, given the DK elements listed above. We bare in mind that our goal is to
gain an insight into the memory requirements of the Integrals step within ParaGauss.

To demonstrate the application of LaDoK we chose three statements from the lists
above:

a. Two-electron integrals require huge amount of space.
There is one Fortran module in ParaGauss dedicated to storing the computed
two-electron integrals: integralstore_module.f90. We simply enclose the en-
tire section for variable declaration at the beginning of the module by one DK
Entity definition:

module integralstore_module

\begin{entity}{Integrals}

real(kind=r8_kind), allocatable, target, dimension(:), public :: &

integralstore_2cob_kin, &

integralstore_2cob_nuc, &

integralstore_2cob_efield, &

...

\end{entity}

contains

...

end module integralstore_module

8.3 ladok annotations 119

The LDK Framework reported afterwards at compilation time, that there were
14 variables registered to the Integrals entity.

b. Unique atoms are used when symmetry is considered.
In the file unique_atom_module.f90 we find the data structures designed to
store the unique atoms. Here, again, we enclose all variable declarations within
one DK Entity:

module unique_atom_module

...

type, public :: unique_atom_type

...

end type unique_atom_type

\begin{entity}{UniqueAtoms}

integer(kind=i4_kind), public :: N_unique_atoms = 0

! Number of unique atoms

integer(kind=i4_kind), public :: N_moving_unique_atoms

! Number of non-fixed unique atoms

type(unique_atom_type), pointer, public :: unique_atoms(:)

! unique_atom(N_unique_atoms)

type(unique_atom_type), pointer, public :: unique_atoms_eperef(:)

! unique_atoms(N_unique_atoms_eperef)

...

\end{entity}

end module unique_atom_module

The UniqueAtoms entity is assigned a total number of 15 variables, out of which
4 have complex user-defined types.

c. Significant memory is required for the computation of the relativistic correlations.
In ParaGauss, the main computations for the relativistic correlation contribu-
tions to the Exc take place in the do_one_block() subroutine declared in the
relgrads.f90 file and called in a loop over the total number of irreducible rep-
resentation blocks. In this subroutine, there are a set of local matrices which are
used for the computations. We annotate them as follows:

subroutine do_one_block(irr,n,n_c)

...

\begin{entity}{UFandUB}

type(rmatrix) :: UF,UB

\end{entity}

\begin{entity}{Nuc}

type(rmatrix) :: Nuc

\end{entity}

\begin{entity}{Vrel}

type(rmatrix) :: V_rel

\end{entity}

\begin{entity}{NucInMomSpace}

type(rmatrix) :: VP

120 use case : memory-intensive applications

\end{entity}

\begin{entity}{UncontractedMatrices}

\begin{entity}{UncontractedOverlap}

type(rmatrix) :: S

\end{entity}

\begin{entity}{UncontractedKin}

type(rmatrix) :: T

\end{entity}

\begin{entity}{UncontractedPVSP}

type(rmatrix) :: PVSP

\end{entity}

\end{entity}

\begin{entity}{ContractedMatrices}

\begin{entity}{ContractedOverlap}

type(rmatrix) :: S_c

\end{entity}

\begin{entity}{ContractedKin}

type(rmatrix) :: T_c

\end{entity}

\begin{entity}{ContractedVrel}

type(rmatrix) :: V_rel_c

\end{entity}

\end{entity}

\begin{entity}{DiagT}

type(rdmatrix) :: t_diag

\end{entity}

\begin{entity}{DiagTp}

type(rdmatrix) :: Tp

\end{entity}

...

end subroutine do_one_block

Note that we intentionally used only DK Entity annotations, as these are sufficient
for performing MPE measurements. DK Operations and DK Phases could be used as
well for annotating the code, leading to other types of measurements, as explained
later in chapter 9.

8.4 dk metric : memory per entity

According to the definition given in section 4.4, MPE is a pure DK metric which
shows the memory usage of entities throughout the execution of an application.

Given the LaDoK annotations above, we are interested in analysing the memory us-
age of the given DK Entities. We expect to see large amounts of data allocated for the
Integrals and UncontractedMatrices entity and small to medium amounts for the Diag-
onalMatrices and UniqueAtoms. For the entities of the relative correlation computation
we also expect more variations due to the temporary allocations and deallocations
throughout the computation.

8.4 dk metric : memory per entity 121

The MPE analysis should give some clear figures as regarding the quantitative
aspect of the memory usage. How large are the entities in terms of MB or GB, for
different electronic structures? How does the application and memory usage scale
with increasing number of computing processors?

For this experiment we used the frameworks presented in chapters 6 and 7 to pro-
cess the LaDoK annotations and insert the automatic instrumentations in ParaGauss.
For the visualisation of the trace files we used Vampir 8.5.0.

The input systems are a cluster of 38 Palladium atoms and a smaller one, of only 6
Palladium atoms. For each electronic system we considered combinations of the two
different computation options:

• symmetry: we used either OH or C1. The first one leads to using, for example,
only 3 unique atoms for Pd38, while the second one preserves all 38 atoms as
unique atoms for the same case;

• pseudo-potential or relativistic: labelled with pp and ar, respectively, these
are two mutually exclusive setups. In pp only the valence electrons are used
in computations, while the rest, closer to the atomic nucleus are replaced by
an effective core potential. In contrast, in ar all electrons are used, adding the
relativistic correlation contribution as well.

In the remainder of this section we first prove the success of the combination of the
dynamic information tracking mechanism presented in section 6.1.3.2 with the en-
tity tracing feature implemented in our DK-enhanced performance framework. We
then proceed with a quantitative analysis provided by MPE for the entities anno-
tated above. Lastly, we look at the memory usage behaviour by using a qualitative
approach to the MPE measurements.

8.4.1 Result: proof of the DK dynamic information feature

We consider the DK measurements for one ParaGauss run using the Pd38-ar-OH as
input system and configuration.

The implementation of the do_one_loop() routine which we annotated above, presents
some difficulties for data oriented profiling:

1. the memory allocation calls are encapsulated in separate routines, outside the
scope of the actual variables;

2. all subroutines responsible for allocations are grouped under a unique interface
definition, interface which is used for all calls targeting memory allocation for
variables;

interface alloc

module procedure ralloc

module procedure ralloc_12

module procedure ralloc_many

module procedure calloc

module procedure calloc_12

module procedure calloc_many

!

! rdmatrix:

122 use case : memory-intensive applications

module procedure alloc_rd

module procedure alloc_many_rd

!

! chmatrix:

module procedure challoc

end interface

3. there are multiple levels in the callpath from the call involving the targeted
variable until the actual memory allocation call;

! relgrads.f90

call alloc(n, S, T, Nuc, PVSP)

! matrix_methods .f90

subroutine ralloc_many(n,a0,a1,a2,a3,a4,a5,a6,a7,a8,a9)

implicit none

integer(IK),intent(in) :: n

type(rmatrix),intent(inout) :: a0,a1,a2,a3,a4,a5,a6,a7,a8,a9

optional a2,a3,a4,a5,a6,a7,a8,a9

!** End of interface ***

call alloc(n,a0)

call alloc(n,a1)

if(present(a2)) call alloc(n,a2)

if(present(a3)) call alloc(n,a3)

if(present(a4)) call alloc(n,a4)

if(present(a5)) call alloc(n,a5)

if(present(a6)) call alloc(n,a6)

if(present(a7)) call alloc(n,a7)

if(present(a8)) call alloc(n,a8)

if(present(a9)) call alloc(n,a9)

end subroutine ralloc_many

! matrix_methods .f90

subroutine ralloc(n,a)

integer(IK),intent(in) :: n

type(rmatrix),intent(inout) :: a

!** End of interface ***

! ...

a%n1 = n

a%n2 = n

allocate(a%m(n,n))

...

end subroutine ralloc

4. interface calls can be executed on up to 10 different variables at a time.

Besides these callpath related issues, there is also worth to notice that the variables
are not declared as simple Fortran arrays. Instead, they are of custom defined types,
each of these types containing then at least one field of array type.

Due to the dynamic information tracking capabilities provided by the LaDoK
framework and the specialized entity tracing feature of the DK-enhanced framework,
correct assignment of the memory allocation for the defined entities was obtained.

8.4 dk metric : memory per entity 123

\begin{entity}{Overlap}

type(rmatrix) :: S

\end{entity}

\begin{entity}{Kinetic}

type(rmatrix) :: T

\end{entity}

...

call alloc(n, S, T)

Figure 24: Left: One call single call using two different entities. Right: Memory allocations
registered separately for each entity.

\begin{entity}{UFandUB}

type(rmatrix) :: UF,UB

\end{entity}

...

call alloc(n,UF,UB)

...

call pgfree(UF)

...

call pgfree(UB)

Figure 25: Left: Multiple calls for same entity. Right: 3 executions of the code on the left:
allocation and deallocations cumulated correctly to the same entity.

We would like to point out, that no other user instrumentation besides the LaDoK
annotations of the entities was required.

Figures 24 to 26 highlight three examples of tracing results. The diagrams were
exported from the corresponding metric views in Vampir.

In figure 24 there is one call of the alloc interface for the S and T variables. The
two variables were assigned to different entities via the LaDoK annotations. On the
right hand side, one can see the MPE diagram for each entity. The memory allocation
was registered correctly for each entity.

In figure 25 there is one call of the alloc interface for two variables belonging to
the same entity, followed by consecutive single calls for memory deallocation. On
the right hand side the MPE measurements for the entity and for three consecutive
runs of the do_one_block() routine are displayed. One can see that, in each run
there is one large memory allocation cumulating both variables. The deallocations
are registered correctly in the account of the same entity as well.

Another example we provide here is related to the initialisation phase, at the very
beginning of any ParaGauss run. Upon reading the input file, the necessary data
structures to hold the information for the electronic system are initialized. In sec-

124 use case : memory-intensive applications

Figure 26: An initial memory allocation of 4.6 KB for an array with only 3 elements.

tion 8.3 we have defined the entity UniqueAtoms. One variable belonging to this entity
is an array of elements of the type unique_atom_type.

Due to the OH symmetry, the input Pd38-ar-OH defines only 3 unique atoms.
Looking in figure 26 at the traces for the UniqueAtoms entity, though, one can observe
right at the beginning a large memory allocation of about 4.5 KB. Indeed, checking
the definition of the unique_atom_type type in the source code brought to light a
very complex and large custom type. The detailed logs output by the framework also
report: there were 3 elements allocated, each of 1552 bytes. Thus, our tracing systems
proved to be successful also when working with complex custom types.

8.4.2 Result: quantitative assessment of memory usage

Quantitative assessment refers in our context to the conclusions which can be drawn
from a set of measurements with respect to the quantity represented by the measured
metric values.

We use as input the Pd38 atomic cluster. We already know that, in ParaGauss, the
storage complexity of the two-electron integrals scales with O(N3), with N being the
number of basis functions. For the Pd38-ar input system there are in total N = 1710

basis functions and Nff = 2394 fitting functions. This results in a total number of
3.502.194.570 integrals for the C1 symmetry and at least 350.219.457 integrals for the
OH symmetry version.

The practical question is now: do they fit in the main memory? How many MB or
GB do these numbers mean?

Using the simple annotations for Integrals in section 8.3, we ran ParaGauss with
three configurations:

1. Configuration 1: Pd38-ar-OH on 4 processes;

2. Configuration 2: Pd38-ar-C1 on 4 processes; and

3. Configuration 3: Pd38-ar-C1 on 8 processes.

The results in figure 27 clearly show that Configuration 1 could fit on any common
machine, the Integrals entity occupying only about 9 MB of memory. On the other
hand, Configuration 2 has a very large memory requirement of about 7 GB. Running
it on more processes though, like in Configuration 3, reduces the size of the Integrals
entity on each process. Running with an appropriate number of processes, the C1
symmetry might thus also fit into the main memory of a common machine.

8.4 dk metric : memory per entity 125

Figure 27: MPE for the Integrals entity. Top: Pd38-ar-OH configuration on 4 processes. Center:
Pd38-ar-C1 configuration on 4 processes. Bottom: Pd38-ar-C1 configuration on 8
processes.

126 use case : memory-intensive applications

\begin{entity}{Overlap}

type(rmatrix) :: S

\end{entity}

\begin{entity}{DiagT}

type(rdmatrix) ::

t_diag

\end{entity}

...

call alloc(n, S, ..)

call alloc(n, t_diag)

Figure 28: Left: Similar calls for variables of different types. Right: Correct tracing of the allo-
cated memory considering the different sizes of the elements of the two matrices.

The example in figure 25 also points out the visual aid brought by the quantitative
approach of MPE. The diagram displays three consecutive runs of the do_one_block()
routine. The amount of memory occupied by the same entity is very different from
run to run.

Another example of the MPE quantitative analysis is given in figure 28. There are
two calls to the alloc interface, each for variables of different types. At a fast source
code overview, one would expect the two entities to have comparable MPE values,
given the same size n passed in the call. The traces on the right hand side, though,
report a huge difference. With more than 700 KB, the overlap matrix uses by two
orders of magnitude more space than the diagonal matrix. The explanation lies, on
the different datastructure types of the variables. the rdmatrix is in fact only a one-
dimensional array, while the rmatrix is a full two-dimensional matrix. The definitions
of the custom types are usually grouped in a separate file, far away from the current
place of usage and hence easy to oversee when reading the implementation of an
algorithm. MPE quantitative approach supports thus a better code understanding.

8.4.3 Result: qualitative assessment of memory usage - evolution

Qualitative assessment refers in our context to the conclusions which can be drawn
from a set of measurements with respect to the quality of the measured objects, or to
their evolution in time with respect to a given metric.

The first and rather simplistic way in which MPE can be used to asses the evolu-
tion of the memory usage is the visual assessment of "hills and valleys" in the MPE
diagram. A high frequency of ups and downs of the MPE values would signal pos-
sible suboptimal allocation and deallocation calls. Whether this can be improved, it
strongly depends on the problem and implementation algorithm.

Another example includes higher-level information which can be acquired by com-
bining MPE with DK Operation annotations. Figure 30 presents an overview of MPE
values for some of the entities defined in section 8.3 in the do_one_loop() routine.
The diagrams cover one execution of the routine.

One can see that the MPE profile over the entire routine execution is quite different
for each entity. Some of them are being allocated memory from the very beginning,

8.5 conclusions 127

Figure 29: MPE overlay view on timeline. One execution of the do_one_block() routine with
the color-mapped size of the UFandUB entity as an overlay.

like the uncontracted matrices, others are only being allocated at the very end, like
the ContractedKin matrix. Some of them occupy memory for more than half of the
execution time, while others are only short-lived allocations.

While this is already a valuable information which adds support in performance
analysis, it could be extended even more by using DK Operations as well. One could
annotate the important computation calls within do_one_block() as DK Operations,
and link those operations with the corresponding entities on which the computations
are actually applied. We show how this can be done later, in chapter 9. The visual-
isation would then include in the timeline along with the names of the operations
being executed, also the entities involved in these operations. The MPE view of those
specific entities would then reveal whether there were some too early allocations of
the memory, or too late deallocations.

Vampir already provides a combined view of the timeline with an overlay of the
values of a chosen metric. In figure 29 we chose to visualise MPE for UFandUB
entity.An extension to this display mode picturing the actual used entities as well,
would provide a powerful visual assessment method for the efficiency with which
the allocated memory is being used.

8.5 conclusions

In this chapter we have shown the benefits which the DK approach brings when
it comes to analysing the performance of a specific class of applications, namely
memory-intensive applications.

Quantum chemistry codes are a classic example of memory-intensive applications.
The common computation method used in quantum chemistry is DFT, which fol-
lowing the Kohn-Sham approach results in a large amount of integrals having to be
evaluated and stored. We used ParaGauss as our test application.

Based on the relevant DK-related statements with respect to the integrals compu-
tation, LaDoK annotations with DK Entities are easily inserted in the source code.
For memory-related issues, one performs MPE measurements. MPE is the DK metric
showing the amount of memory used at each point in time by a given entity.

A first analysis on a chosen block of code proved the correctness of the MPE mea-
surements visualised with Vampir. Several implementation aspects which necessar-
ily require dynamic runtime information can be traced by our DK-enhanced perfor-
mance analysis tool.

The MPE results have a two-folded impact on performance analysis. On the one
hand, the actual amount of memory occupied by entities is an aid in estimating the
right input configurations which can be computed on given machines.

128 use case : memory-intensive applications

On the other hand, the evolution of the memory usage of an entity is a helpful
information for optimisation analysis, especially when combined with other DK fea-
tures, like the DK Operations.

8.5 conclusions 129

Figure 30: MPE behaviour for one run of the do_one_block() routine and several entities.

9
USE CASE : LOAD IMBALANCE PROBLEMS

One main issue which needs to be considered for parallel implementations in general,
is the scalability of applications. In HPC, this is even more a crucial issue, as the main
computation power arises from the many computation units which can and should
be used for running applications.

Strong scalability refers to the performance of an application when maintaining
the same input data and increasing the number of used computing units - cores or
processors. Weak scalability allows increasing the size of the input data along with the
number of computing units. Good scalability means, in the case of strong scalability
for example, that the execution time of an application decreases proportionally with
the increasing number of used processes or cores. The metric which is commonly
used in this context is the speedup. The speedup gives the measure of how many
times the execution of an application using p processes is faster than when using a
single process. Ideally, the speedup is linear, or even superlinear for some cases1.

A good speedup of an application running on p processes naturally implies that
the work is well distributed among all p processes. One talks about work or compu-
tation load to refer to the amount of work which needs to be performed by each of
the processes. A poor distribution of the work among processes results in uneven
computation loads, usually labelled as load imbalance. This is a common performance
bottleneck in HPC which can be caused by different factors, for example:

• the computation domain cannot be partitioned in even parts;

• the computation domain is too small;

• the computation tasks have very different computation costs;

• the computation tasks or domain dynamically changes with the computation;

• the costs of the computations cannot be predicted in forehand;

• there are data dependencies between the computation tasks, requiring synchro-
nization points.

Without being exhaustive, the list above shows the variety and complexity of the
situations which could lead to load imbalance problems. Solving such a bottleneck
is in most cases not a trivial task and it commonly implies a good understanding
of the implementation and the application domain itself. This is why our Domain
Knowledge approach has a good potential for supporting the developers in dealing
with this type of bottlenecks.

In the remainder of this chapter we present the dynamic load balance algorithm
implemented within ParaGauss, the quantum chemistry application which we intro-
duced in chapter 8. We then highlight the relevant Domain Knowledge for the load
balancing process, followed by the corresponding LaDoK annotations based on the

1 For example, when the data needed for computations starts fitting inside the cache memory.

131

132 use case : load imbalance problems

pseudocode of the algorithm. In the end we show which metrics and information
could be obtained with the given annotations and we conclude with the benefits
which DK brings in the current use case.

9.1 load balancing in paragauss

In section 8.1 we presented ParaGauss and the basics of DFT, which is the most
common approach for quantum chemistry.

One important step in the implementations of DFT is the evaluation of the two-
electron integrals, equation 17. The importance of the these integrals is given, from
the chemical point of view, by the fact that they are used to compute the most part
of the kinetic energy Ekin, equation 7, which again represents a significant amount
within the total energy.

Moreover, from the computational point of view, the evaluation of the two-electron
integrals enjoyed great attention, due to the fact that they are very computation ex-
pensive, the asymptotic complexity raising formally up to O(N4).

There was a lot of work carried out for finding good parallelization schemes and
corresponding efficient implementations for this step [35]. One common issue is the
one referring to the storage of the necessary data for computations, in our case the
density matrix P in equation 18, and the Kohn-Sham matrix ĤKS in equation 15. For
the purpose of this chapter though, we concentrate on the other commonly encoun-
tered issue: the load balancing of the computation of the integrals distributed among
the application processes.

Finding a balanced work distribution for the two-electron integrals is not a trivial
task. There are several factors which contribute to the complexity of this problem.

First of all, the number of integrals is very large, even for the medium sized elec-
tronic structure. For example, for a cluster of only 38 atoms of Palladium (Pd), there
are more than 1012 integrals.

Secondly, the computational effort varies from one integral to the other, since it
depends on the angular momentum l and the contraction2 of the basis functions
involved within that specific integral, as the equation 12 shows as well.

Thirdly, it is a common practice to perform batch computations of the integrals,
grouping several of them into one single computation task. The criterion upon which
the groups are built is very important for the general performance of the computa-
tion. Usually, the batches are built based on the shells of the atoms, or the angular
momentum. The advantage is that a part of the primitive integrals3 can be computed
once and then used for all the integrals within the batch. The disadvantage is that
this makes it even more difficult to exactly estimate the computation costs for each
batch.

Lastly, when integrals screening is applied, some of the two-electron integrals are
not computed at all. This is based on the principle that the interaction intensity be-
tween two electrons decays with the distance and thus, for a pair of electrons far
away from each other, the integrals vanish as well.

In ParaGauss there are two load balancing approaches available:

2 Linear combination
3 The primitives are the basic components of the contractions of the basis functions.

9.2 relevant domain knowledge 133

1. adjusted Round-robin distribution: this is a static distribution method of the
integral batches. The batches are labelled first with a cost class, based on the esti-
mated computation effort. The Round-Robin method starts distributing batches
from the computationally most expensive class, continuing in descending order
until the least expensive one. The difference in cost between two consecutive
classes is of an order of magnitude [76].

2. work-stealing approach: this is a dynamic enhancement of the Round-robin dis-
tribution. The batches are assigned initially similarly as in the approach above.
Upon finishing evaluating its own set of batches, a processes is allowed to "steal"
remaining work from the other processes [49].

9.2 relevant domain knowledge

In the context of scientific applications, load imbalance is a concept which, by default,
belongs to the computational field, or, more precisely, to the performance optimization.
The main concept behind is the workload, though, which necessarily resides within the
specific natural science field. This is different, for example, from one of the other com-
mon application field for load balancing, namely the internet-based services. There,
the workload is dynamically defined by user behaviour and software response time
characteristics, whereas in our case, the workload is outlined by (strict) natural laws,
expressed in algebraic structures or analytic representations. The field or domain
within which the workload resides is of great importance when it comes to correctly
treating load imbalance issues.

For our current study case, the workload is given by the integrals batches which ParaGauss workload =
batches of integrals.have to be evaluated by each of the processes. In ParaGauss such a batch is called a

quadrupel and it is defined by a tuple of four indices: (ua1, l1,ua2, l2).
The two indices ua1 and ua2 identify the two (unique) atoms which are involved

in the computation. In equation 17, these are the atoms on which the basis functions
χν and χµ and, respectively, χλ and χσ are centred on.
l1 and l2 define the angular momentum values for each of the two atoms. This

further selects only a part from all integrals which could be evaluated for the two
atoms. The mathematical expression is to be followed from equation 12. For every
angular momentum l there are 2l + 1 possible values for the magnetic number m.
The number of values for the exponent of the gaussian radial function α is defined
by the corresponding chosen set of basis functions.

An important observation here is that, theoretically, integrals could have been
grouped based on any of their defining indices. The choice for the current quadrupel
definition is based on the knowledge that those integrals "belong together" due the
way basis functions are defined.

Another important aspect along with the workload discussed above is the so called
load balancer. That is, besides the logic leading the workload distribution, it is impor-
tant how this distribution is actually accomplished. For scientific applications, for
example, it is important whether the data necessary for computation is already acces-
sible by the process, or whether it needs to be received as part of the work package,
bringing to the workload some extra time expenses.

134 use case : load imbalance problems

In ParaGauss, there are two aspects which need to be considered with respect to
time costs due to data transfers for integrals batches computation:No data fetching for

batches, but scatter of
computed results. • all data necessary for the evaluation of the integrals is already distributed to

each process before beginning the Integrals step. Hence, there is no initial setup
time which would need to be accounted for in the total time costs of a batch;

• at the end of each batch computation, the results are scattered to a subset of
processes. This is related to another substep within the two-electron integrals
computation, namely the evaluation of the fit functions fk which are used in
ParaGauss in the 3-center integrals as shown in equation 19.

9.3 ladok annotations

In order to obtain DK-level views of the load balancing status of ParaGauss runs,
the DK Operation concept can be used. There are three main keypoints which are of
interest for the current study case.

9.3.1 Distribution of quadrupels

The distribution of the quadrupels is implemented in ParaGauss as a pure control
communication operation. This means that the main goal of such an operation is to
setup and trigger some action on the target process, usually a more time consuming
one. Consequently, a control communication is also characterized by a relatively short
message size, containing a relatively small set of control parameters.

In ParaGauss, the control parameters are the four indices which we described for
a quadrupel. One can annotate such an operation as:

\begin{operation}{QuadrupelsDistribution}[type=commcontrol,

param=q.ua1, param=q.ua2, param=q.l1, param=q.l2]

...

\end{operation}

9.3.2 Computation of quadrupels

The actual evaluation of the integrals within one quadrupel is a common computation
operation. The data structures which are used in this step are actually DK Entities
and can be linked to the operation correspondingly:

\begin{operation}{QuadrupelComputation}[type=computation,

linkedentity=Hamiltonian, linkedentity=Overlapp, linkedentity=Basis]

...

\end{operation}

9.3.3 Scattering of results

Scattering the results of the computation is a data communication. Unlike the control
communication for the quadrupels distribution where only some parameters were
sent, here the transmitted messages contain data which is directly involved in the

9.4 dk traces 135

further computations. A consequence is that the amount of data is also considerably
larger. In our case, the computed parts of the Hamiltonian matrix are scattered to a
subset of the processes.

\begin{operation}{ResultsScattering}[type=commdata, param=H,

checkop=SUM]

...

\end{operation}

9.4 dk traces

There are several ways in which DK can be used for performance analysis. In sec-
tion 8.4 we showed the benefits of using a specialised DK metric, the MPE. In this
current chapter, we concentrate more on how DK can augment with high-level or
dynamic information the common measurements and visualisation provided by per-
formance tools. We use as a context the investigation of the load imbalance issues.

9.4.1 Work packages

A common issue when analysing load imbalance situations is the identification of the
exact work packages which were being processed by each of the working units. Given
an MPI implementation, one could pin-point, for example, on the timeline view of
the Vampir tool, which one is the problematic work package, either by being too short
or too long in execution. The difficulty occurs in really identifying the characteristics
or parameters which define this particular work package.

In the case of ParaGauss, we already explained that the work packages are com-
pletely defined by the indices in the quadrupels. In the timeline view, though, one
could only see the MPI call from the master to that specific processes, together with
the corresponding low-level information like the number of transmitted bytes, or the
duration of the transfer.

The meaningful information can be provided via the DK approach. Annotating the
communication operation like in section 9, instructs the measurement backend to also
trace the values of the given variables and assign them to the corresponding execution
of the operation. These values are then provided in the context view whenever an
operation is selected in the timeline. This is a high-level dynamic information which
DK provides for the identification of work packages.

9.4.2 Detailed processing costs

For the actual computation of the given work packages, one is usually interested in
the execution time. This performance metric might be combined in some cases with
the analysis of the hardware counters values, like FLOPs or cache misses. The latter,
though, are hard to map to the actual source code and thus the root cause for any
observed metrics or behaviour is hard to detect.

DK offers the possibility to add an extra level of information in this case as well.
The DK Operations can be linked to DK Entities, as we showed above. The time-

136 use case : load imbalance problems

line view can thus be extended to provide hints related to the actual targeted data
structures within the current execution segment.

For the computation of a quadrupel, for example, one can interrogate not only the
elapsed time, but also the total memory needed for the entities involved in the current
execution step. This high-level information is a plus for interpreting the commonly
provided low-level information. For example, a high cache miss rate for a relatively
small entity could mean that the storage pattern does not fit the computation/access
pattern. Given the small size of the entity, one solution might also be the partial
replication of the stored data.

9.4.3 Results checks

In scientific applications it is sometime the case that the current position or status
within the entire simulation or computation processes could be determined by means
of some representative value like, for example, the sum over the elements of an array.

For a scattering process like the one described for the results of the quadrupel com-
putations in ParaGauss, common performance tools would only be able to provide
information regarding the size of the transmitted data. Using the DK approach, one
is able to gain insight in the content of the transmitted data as well.

The main characteristic of data communication, as opposed to control communication,
is that the amount of transmitted data is large. It is impossible to trace the content
of a data communication like we proceeded for control communication. We rather
instruct the DK-enhanced framework to apply and track only the result of a given
check operation, for example, only the sum over the elements of an array. This value
can then be visualised as a property of the annotated operation.

9.5 dk profiles

One key mechanism for performance analysis is represented by the profiling ap-
proach. Profiling offers a summarisation over the entire execution of the measured
values. Besides raw data display for gathered metrics measurements, profiling also
uses histograms and bar charts.

9.5.1 Workpackage grouping per execution time

One example of a histogram in Vampir, is the Message summary view, which displays
the total number of messages per message size, as seen in figure 31. A similar view
could be generated for DK high-level information. In our context we would be in-
terested to see the number of quadrupels for given computation time intervals. As
explained in section 9.1, the quadrupels distribution algorithm in ParaGauss is based
on the classes of quadrupels defined by the estimated computation time. The estima-
tions could be checked using the view of the actual execution times and number of
quadrupels. This is basically an adaptation of the CEC metric which we described in
section 4.4. There, the workpackages were considered identical, while here they have
different execution times.

9.5 dk profiles 137

Figure 31: Message Summary view in Vampir for the default Score-P tracefiles.

LaDoK already provides support for such information and the necessary profil-
ing measurements could be easily integrated in the DK-enhanced framework. It is
sufficient to add to the definition of the computation operation in section 9.3.2, the
param=q.ua1, param=q.l1, ... list of parameters already given for the control com-
munication operation in section 9.3.1. The measurements library would then trace
the quadrupel for every execution of the operation.

A minimal extension of the Vampir tool would be needed in order to generate
histograms with the number of executions of the operation for given execution time
intervals. If the runs were stacked on each other to build the bars in the graph, then
one could also select each run and inspect the corresponding parameters registered
with the annotation we presented above.

9.5.2 Execution time per entity type

One could even get one step further in customizing the views in Vampir . When
analysing the distribution method of the quadrupels in ParaGauss, for example, one
could use a histogram of the total execution time per atom type, or per unique atom.
We consider an adapted annotation version of the unique atoms from chapter 8 as
entityset:

module unique_atom_module

type, public :: unique_atom_type

character*12 :: name

...

end type unique_atom_type

...

\begin{entityset}{UniqueAtom}[typevar=unique_atoms, typefield=name]

type(unique_atom_type), pointer, public :: unique_atoms(:)

...

\end{entityset}

...

end module unique_atom_module

...

138 use case : load imbalance problems

\begin{operation}{QuadrupelComputation}[type=computation,

linkedentityset=UniqueAtom, idx=q.ua1, idx=q.ua2]

...

\end{operation}

The typevar and typefield attributes represent the variable and eventually the
field in the custom type which define the type of an entity, or of each of the entities
in the current entityset. This will be the grouping parameter for the histogram view
in Vampir. If there is more than one field needed to identify the type, one can add
several typevar/typefield attributes.

The linkedentityset attribute together with the idx attribute instruct the DK-
enhanced framework, that the current operation is running computations for the two
entities identified by the indices q.ua1 and q.ua2 in the entityset UniqueAtom.

The tracing library should record this information with respect to the current op-
eration, as well as the value of the typevar/typefield for the currently used entities.
All this information should be sufficient for a visualisation tool, for example Vam-
pir with some small extensions, to produce afterwards the histogram with the total
execution time per unique atom.

9.5.3 Execution time per operations group

We have seen already that for ParaGauss, the time for processing one quadrupel does
not include only the effective computation time, but it also includes the control and
data communication before and after the computation. For a correct load balancing
analysis one usually has to consider several operations which are executed for the
same workpackage.

Common profilers are able to identify several calls of the same routine and display,
for example, the total execution time. But they are not able to group single calls of
different routines which work on the same dataset.

The annotations presented above with the identification possibility for DK Entities
and the connection of DK Operations to those specific DK Entities, introduces the
possibility for profiling tools to group routines, or, better, DK Operations, on the
basis of the datasets they use.

As an example, the Process Summary view of Vampir, figure 32, displays the accu-
mulated execution time per routine and per process. It is hard to identify the actual
time spent for computing a given dataset, since the routines are ordered based on the
total execution time. Moreover, there is no information as whether all calls of a given
routine are within the same callpath. Some general routines might be called from
very different context. Given our DK enhancement, correct execution times would be
reported for the computation of single workpackages. In our load balancing use case,
correct execution times will include the computation operation of a quadrupel, but
also the quadrupels distribution and the results scattering steps.

9.6 conclusions

Load imbalance problems are difficult to handle with common performance analysis
approaches. The factors which come into play in such contexts are tightly connected

9.6 conclusions 139

Figure 32: Process Summary view in Vampir for the default Score-P tracefiles.

to the scientific domain of the application. This is why, the low-level performance
information needs to be enhanced with DK specific higher-level information.

Using different types of DK Operations, one can better guide the performance
measurement and analysis process. The resulting DK specific information can be
used on top of the common profiling methods, improving their usability.

DK based visualisation enhancements can be used for both tracing and profiling
views. Timelines and histograms can be adapted to include the DK specific informa-
tion, providing better support for performance analysis.

10
FURTHER USE CASES

In this chapter we present three further use cases for DK-enhanced performance anal-
ysis. We showcase some features of LaDoK which were not covered in the previous
use cases, but also highlight the importance of already presented ones for some clas-
sic application types. We start with an example of how linked operations and entities
can help in profiling applications based on multigrid solvers. We then highlight the
practicality of the DK Phases within the context of performance dynamics. Finally, we
look at the example used in the related work of SEAA [73] and show how indexed en-
titiysets and custom attributes can yield the same results as in the cited work. Further
deployment examples can also be found in [7].

10.1 multigrid-based simulations

Multigrid methods are prevalent in applications using PDEs (Partial Differential
Equations), as they are suited for solving Ax = b sparse linear systems [86]. Such
systems are typically generated in the discretization of PDEs. Multigrid methods are
able to solve such systems in O(N) time and storage space, where N is the number
of the unknowns.

Multigrid methods use a sequence of successively refined grids. The goal is to solve
the system discretized on the finest grid. In order to do so, one approximates the
error of an initial guess for this solution. The approximations are done recursively
in a fixed number of steps, from the finest to the coarsest grid. Using the Fourier
transformation concepts, we say that the smooth part of the error is approximated on
the coarser grid, while the non-smooth part is solved with a basic iterative method
on the fine grid [86]. A typical pseudocode for the main recursive function is given
in listing 21.

Using DK for a multigrid implementation in a specific application domain is tempt-
ing from many points of view. Nevertheless, for the current study we would like to
drop our attention only on a single aspect, namely the recursive call pattern of the
main function.

One particular challenge for performance analysis in this context is to clearly iden-
tify the current grid level. One could use, of course, either a callpath view or a process
timeline view as provided by Vampir in order to count the number of recursive calls
and thus identify the current refinement. This might become a tedious job, since there
are multigrid implementations which go beyond the simple "V" cycle, producing, for
example, "W", "M" or "F" cycle types.

What is actually needed, is a means to characterise the iteration process. We de-
fined in section 4.4, along with the other DK metrics, also the Iterometers. Since most
scientific implementations involve some kind of a loop or iteration, it is clearly nec-
essary to also have a means to characterize such processes.

For multigrid, there is no explicit loop, but one could consider the cycles through
the grids as successive iterations towards the solution.

141

142 further use cases

function MultiGrid(..., size)

smooth()

residual()

restrict()

if (coarsest grid){

/* solve error equation */

} else {

MultiGrid(.., size_next)

}

interpolate()

correction()

smooth()

end function

Listing 21: Typical pseudocode for the main function of a multigrid method.

The LaDoK annotation to be added to the pseudocode above is rather simple:

\begin{operation}{MultigridOneLevel}[iterometervar=size]

function MultiGrid(..., size)

...

end function

\end{operation}

We defined the entire function as one operation and we added the iterometervar

attribute to signal the variable which identifies or characterizes the current execution
of the operation.

Extending a DK-enhanced framework to support this feature is straightforward.
For the visualisation one could use either a timeline based display, adding to the
operation also the information regarding the iterometer, or a profiling view style,
with aggregated measurements per grid level.

10.2 applications with dynamic performance

Performance dynamics refers to the variations over time of the performance of ap-
plications. Reasons for such variations come from multiple factors and the variations
themselves can be reflected on multiple dimensions of performance.

On the one side, the reasons might be related to the actual hardware on which
the application is running, from the network limitations to the cache memory ar-
chitecture, or even some integrated energy saving approaches. On the other side,
the application itself might include different execution phases, like the classic input-
compute-output, or some adaptive algorithms, like mesh refinement or multigrids.

The variations could be observed on any of the measured performance metrics. For
example, the CPU Time for single interation steps, the execution time of particular
MPI calls, or the number of FLOPS per memory access.

10.2 applications with dynamic performance 143

(a) Time step adaptation strategy 1. (b) Time step adaptation strategy 2.

Figure 33: Performance of INDEED, measured as CPU time per iteration.

Figure 34: Performance properties reported by the automatic analysis method of the time
step adaptation strategy 1 [50].

In the HPC context, where the number of processes executing the application
tends to be very large, and also the total execution time of applications tends to
be very long, analysing performance dynamics easily becomes a tedious task for hu-
man users. Oleynik [50] proposes an automatic approach for detecting and analysing
performance dynamics, providing results for some real-world use cases. We shortly
refer here to one of these use cases and highlight the benefits which DK could bring.

INDEED [28] is a simulation application, based on highly accurate finite elements
implementations for the computation of sheet metal forming, developed by GNS
mbH. It is common for simulations in the mechanical computation field to use adap-
tive methods for more accurate computations, based on the evolution of the sim-
ulated dataset. INDEED uses different adaptation strategies for the time step size
used in solving some stiffness systems. Large time steps imply less iterations, but
each iteration is computation expensive. Small time steps result in more iterations,
but with less CPU time per iteration. The goal of the adaptation strategies is to find
the sequence of time step widths which generate the shortest overall execution time.

The performance of the code, expressed as CPU time per iteration, exposes some
clear dynamics, as can be seen in the two histograms in figure 33.

The automatic analysis of the performance dynamics detects three convergence
phases, as well [50]. Figure 34 shows the three different properties detected for the
first adaptation strategy.

While this is already valuable information, one could reach even more insight into
the problem, if some higher-level, domain specific information were provided as well.
We know, for example, that the performance is influenced by the chosen time step

144 further use cases

Figure 35: Hypothetical case highlighting DK Phases for strategy 1 in figure 33a.

and that the time steps are chosen based on the current state of the sheet of metal
which is being simulated. The automatic analysis already discusses about convergence
phases. It is indeed, a straightforward question which comes into mind: In which phase
of the simulation is the current iteration taking place?

Domain Knowledge brings this one detail into the picture with only minimal effort.
Using the DK Phase concept and the corresponding LaDoK annotation, one could
mark in the source code the starting point of a new phase of the simulation. In case
of INDEED, this should be found in the logic of the adaptation strategy itself. There
the current status is checked and a decision on the width of the next time step is
taken. The LaDoK annotation is very simple, like this:

\phase{Deformation-N}

...

but the benefits would make a difference.
On the one hand, the histograms for the manual analysis could be enriched with

the visualisation of the phase as well. When the complexity of the simulated data
increases and the number of steps gets larger, such high-level information could
prove very handy for easier analysis. Figure 35 presents a hypothetical case.

Of course, one could get further and add some DK Operation definitions together
with some well chosen attributes, like the param/checkop combination we described
in section 9.3.3. We limit ourselves to the DK Phases now, in order to stress their
importance as well.

Some tools, like the Score-P backend measurement system also offer the possibility
to track user-defined markers within the execution and Vampir offers a nice support
for handling and visualising such markers. This is a nice feature when it comes
to identifying the place where some particular event occurred. The DK Phases are
similar in this sense with the markers, but they also go beyond simply marking some
events. For example, a DK Phase sets the forthcoming execution of the application
under this particular modus until another phase is met.

On the other hand, the automatic dynamics analysis could also benefit from such
simple DK enhancement. One could use, for example, targeted performance mea-

10.3 particle simulator 145

surements. Especially when it comes to long running simulations, the amount of
gathered data increases a lot. Restricting measurements collection only for relevant
application phases would reduce the overall amount of data. Besides the amount of
collected data, also the quality of the automatic analysis might improve. Given that
the target is set on the dynamics of the performance, narrower measurement intervals
would result in more precise results.

10.3 particle simulator

Let us consider now the hypothetical particles simulation code in listing 5, which we
presented in detail when discussing about the SEAA approach in section 3.6.1. The
challenge formulated by the author with respect to this code snippet was to provide
performance metrics per faces of the cube, instead of single particles.

This is a typical case of DK: the computation taking part in the ProcessParticle()

function is connected semantically with the face variable from the GenerateParticles()
function. In the same time, there is no syntactical expression of this dependency at
computing time, no means to correctly assign the measured performance metrics by
common profiling techniques.

The relevant Domain Knowledge in this case is the very fact that the particles are
grouped by the faces of the cube. The necessary LaDoK annotations are given in
listing 22:

1. annotation of the array of particles as a dynamic entityset;

2. annotation of the particles generation action with an operation of initialization
type and with a link to the entityset above, as well as with a type variable;

3. annotation of the actual processing action with a computation operation.

As one can see, LaDoK already provides the appropriate syntax to support all
needed annotations. From the semantic point of view, the entity and entityset im-
plementations should be extended to support the dynamic initialization of their at-
tributes. This can be easily achieved by adding in the instrumentation logic the cor-
responding processing of operations of type initialization.

An important detail is given in this context by the typevar attribute. We already
discussed about its potentials for performance profiling in section 10. The current
study case is very similar to the one presented there. The time per entity type is
replaced here with time per face. In essence though, it is exactly the same situation, as
in our annotations we are defining face as the variable giving the type of the entities.

While the first two annotations in the list above are mainly about the LaDoK
framework capabilities, the last annotation is the responsibility of the DK-enhanced
profiling framework. This is also a straightforward extension for the current imple-
mentation and instrumentation logic. Since the ProcessFace is an operation of type
computation, the execution time should be registered as computation time for all
involved entities. Please note, that the dynamic information approach implemented
through the ldk_flags in the LaDoK framework, already provides the necessary in-
formation at runtime for correctly identifying the corresponding DK Entity for the
local argument p.

146 further use cases

\begin{entityset}{Particles}[type=dynamic]

Particle* P[MAX]; /* Array of particles */

\end{entityset}

int GenerateParticles() {

/* distribute particles over all surfaces of the cube */

for (int face=0, last=0; face < 6; face++){

int particles_on_this_face = ... face ; /* particles on this face */

for (int i=last; i < particles_on_this_face; i++) {

\begin{operation}{GenerateParticles}[type=initialization,

linkedentityset=Particles, idx=i, typevar=face]

P[i] = ... f(face); /* properties of each particle are some function f

of face */

\end{operation}

}

last+= particles_on_this_face; /* increment the position of the last

particle */

}

}

\begin{operation}{ProcessFace}[type=computation]

int ProcessParticle(Particle *p){

/* perform some computation on p */

}

\end{operation}

int main() {

GenerateParticles(); /* create a list of particles */

for (int i = 0; i < N; i++)

ProcessParticle(P[i]); /* iterates over the list */

} ✆
Listing 22: A hypothetical particles simulation [73] with corresponding LaDoK annotations.

Finally, the visualisation and analysis of the measurements depends on the Vampir
capabilities, or any other tool used in this step. One example would be to use a
histogram to display the total execution time per face. This is similar to the total
execution time per entity type, as we described already in section 9.5.2.

As compared to the SEAA aproach, DK has first of all the advantage of providing
LaDoK as a standard, yet flexible means to annotate the code. Furthermore, due to
splitting the language from the actual performance framework, the measurement and
analysis potential is increased considerably. One is not limited to time measurements
anymore, but can also run other performance metrics measurements if needed.

11
SUMMARY AND OUTLOOK

Most computational sciences share the same historical root. Computational scientists
from today are the savants and philosophers from centuries ago, trying to discover
and understand the rules of nature. Computing centres, and, particularly, HPC cen-
tres are today’s experimental labs. Natural and computational scientists need an ad-
equate set of tools and methods in order to be able to perform their experiments in
this new laboratory.

In this thesis we investigated the formulation and applicability of Domain Knowl-
edge (DK), a new approach which targets the narrowing of the gap between the nat-
ural scientists and the computer scientists. Especially in the HPC environment, such
gaps build easily due to the complexity of both implemented applications, as well as
underlying hardware and systems. The main focus of this work was set particularly
on the gap between the scientific applications on the one side and the performance
and measurements tools on the other side.

The formulation of the DK approach is based on the fact that scientific applications
are computer-based implementations of mathematical formulations of the natural
laws.

There are three main steps within DK: the identification of the relevant knowledge,
the explicit formulations of knowledge and, finally, their application and usage. Each
of these steps deals with the three DK concepts: DK Entities, DK Operations and DK
Phases.

The identification step is a rather subjective process, depending not only on the
actual application or scientific domain, but more on the scientist itself. A suited train-
ing of the scientists should enable them to perform this first step. Throughout this
thesis we provide many examples of identifications of relevant domain knowledge
for different use cases.

For the explicit formulations of the knowledge, we propose the Language for Do-
main Knowledge (LaDoK). LaDoK is an annotation language meant for the enhance-
ment of source codes with explicit DK elements. LaDoK has a familiar syntax similar
to LATEX and is flexible enough to support any particular scientific domain. Moreover,
the concise syntax reduces the learning slope and stimulates personalized usage. In
performance analysis terms, LaDoK annotations resemble the manual instrumenta-
tions necessary for later performance measurements.

The semantics of LaDoK is strongly connected to the three DK concepts above. It
supports the declaration of such concepts directly in the source code, including a
series of attributes which can be specified for each of them. An important feature
is the ability to set links between DK Objects. In particular, DK Operations can be
linked to corresponding DK Entities.

An outcome of this work is also a LaDoK framework, able to process Fortran source
codes with LaDoK annotations and build a corresponding database of DK Objects.
The latter can be used afterwards in any DK-enhanced advanced programming tool.
Of special importance is the implemented support for dynamic runtime information,

147

148 summary and outlook

which can be combined with the static information provided by users through an-
notations. By means of this feature, DK Entites can be identified anywhere in the
execution of an application.

For the third step in the approach, namely the application and usage of the formu-
lated knowledge, we focused on the particular context of performance measurements
and analysis in HPC. DK emerges in this area by means of the DK metrics and coun-
ters. In this thesis we defined Memory per Entity (MPE), Computed Entities Count
(CEC) and Iterometers.

In order to prove the usability of DK in this context, we developed a DK-enhanced
performance analysis framework, based on technologies and tools like Periscope,
OTF2 and Vampir. The framework supports the entire performance analysis cycle,
from manual and automatic instrumentation, to measurements, visualisation and
analysis.

In the last part of this thesis we looked at several different use cases, showing how
the DK approach can be deployed and which results can be achieved with the two
frameworks which we developed.

The main usability studies are based on a quantum chemistry application, Para-
Gauss, which is used to simulate and analyse properties of different electronic sys-
tems. There are two main results with respect to the deployment of DK in analysing
the performance of this code. First of all, the MPE metric is successfully traced by
our DK-enhanced framework and it offers an enriched visualisation and perception
of the memory usage within code runs. The only needed user-input is the declaration
of the DK Entities within the source code.

Secondly, the load balancing strategy used in ParaGauss can be better traced with
the help of the DK techniques. In particular, the dynamic information tracing feature
of LaDoK and the linked DK Operations and DK Entities supply great performance
analysis potential.

Additional features of the DK deployment in performance analysis cycle were anal-
ysed for other application classes as well. For example, one could enhance the anal-
ysis of the performance dynamics, or extend the support for the multigrid methods
analysis with runtime high-level information.

Overall, the seamless integration of DK with other technologies promises key en-
hancements which improve the end results.

11.1 future work

If the interaction with the common gadgets evolved from signal buttons to natural
swipe gestures, why not letting the supercomputers follow the same path and make
it possible for the natural scientists to interact with them using their everyday domain
specific terms?

As any other research, this thesis opens doors for a series of further possible devel-
opments and investigation tracks.

First of all, there are several future work directions related to the performance
measurements and analysis field. One important aspect is the integration of the
data-centric profiling with the DK approach. For example, variable accesses could
be traced for DK Operations which have linked DK Entities. This would bring a plus

11.1 future work 149

of insight regarding the behaviour of those DK Objects and possible optimizations
could be unveiled.

Another direction to follow is the extension and adjustment of the visualisation
possibilities for DK information. We already presented some suggestions with respect
to profiling diagrams within Vampir. Other ideas are directed towards handling DK
Objects through summary views and activating direct access from these elements to
corresponding hot-spots in the performance measurements.

Besides graphical visualisation, command-line tools, like those already provided
for OTF2 formatted files are also of interest. Computational scientists are usually
accustomed with analysing text-based results, usually tables and lists of statistics.
Some DK Metrics like MPE or Iterometers qualify for this type of visualisation.

Besides the performance analysis field, there are also other areas for which further
developments can be foreseen. First of all, in the closely related performance tuning
field, LaDoK annotations of the code could be used as hints by the autotuning tools.
One could start, for example, with filtering tuning regions by the declared DK Phases.

Another practical future work would be in the Software Engineering (SE) area.
Especially the development of the scientific implementations could benefit from a
DK-enhanced SE cycle. One big challenges for these codes is the very long lifetime of
their development process. More precisely, implementations are continuously being
extended with new scientific methods and results and the source codes tend to have
unclear SE designs or structures. Using LaDoK annotations and developing a corre-
sponding tool for generating DK-views of the code structure could ease the overall
SE experience.

B IBL IOGRAPHY

[1] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View from
Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University of Cal-
ifornia, Berkeley, Dec. 2006. url: http : / / www . eecs . berkeley . edu / Pubs /
TechRpts/2006/EECS-2006-183.html.

[2] Peter W. Atkins and Julio de Paula. Kurzlehrbuch Physikalische Chemie. 4., voll-
ständig überarbeitete Auflage. John Wiley & Sons Ltd., 2008.

[3] Er A Auer et al. “Automatic code generation for many-body electronic structure
methods: The Tensor Contraction Engine.” In: Molecular Physics (2006).

[4] R J Bartlett et al. SIAL Programmer Guide. Tech. rep. 2011, pp. 1–103. url: http:
//www.qtp.ufl.edu/ACES/downloads/SIALProgrammerGuide.pdf(accessedon8Dec.

2013).

[5] Gerald Baumgartner et al. “A high-level approach to synthesis of high-performance
codes for quantum chemistry.” In: Supercomputing Conference. 2002, pp. 1–10.
doi: 10.1145/762761.762818.

[6] Th. Belling et al. “ParaGauss: A Density Functional Approach to Quantum
Chemistry on Parallel Computers.” English. In: Scientific Computing in Chemical
Engineering II. Ed. by Frerich Keil et al. Springer Berlin Heidelberg, 1999, pp. 66–
73. isbn: 978-3-642-64295-1. doi: 10.1007/978-3-642-60185-9_6. url: http:
//dx.doi.org/10.1007/978-3-642-60185-9_6.

[7] Anca Berariu. “Fostering Domain Knowledge for Improved Performance Anal-
ysis.” In: Concurrency and Computation: Practice and Experience (Submitted).

[8] H Beyer and H B K Holtzblatt. Contextual Design: Defining Customer-Centered
Systems. Morgan Kaufmann Series in Interactive Technologies. Morgan Kauf-
mann, 1998. isbn: 9781558604117. url: http://books.google.de/books?id=
sVKuMvaFzjQC.

[9] Doug Brown, John Levine, and Tony Mason. lex & yacc. 2nd Edition. O’Reilly
Media, 1992. isbn: 978-1-56592-000-2.

[10] Marc Casas et al. “Automatic phase detection of MPI applications.” In: Pro-
ceedings of the 14th Conference on Parallel Computing (ParCo 2007). Aachen and
Juelich, 2007.

[11] George Crabtree et al. Computational Materials Science and Chemistry: Accelerating
Discovery and Innovation through Simulation-Based Engineering and Science. Tech-
nical Report. Accessed on 03.08.2012. U.S. DOE, Office of Science, July 2010.
url: http://science.energy.gov/\sim/media/bes/pdf/reports/files/
cmsc_rpt.pdf.

[12] Christopher J. Cramer. Essentials of computational chemistry: theories and models.
2nd edition. John Wiley & Sons Ltd., 2004.

151

152 Bibliography

[13] Juan Carlos Cuevas. Introduction to Density Functional Theory, Institut für Theo-
retische Festkorperphysik, Universität Karlsruhe. url: www-tfp.physik.uni-karlsruhe.
de/cuevas.

[14] Erik Deumens et al. “Software design of ACES III with the super instruction
architecture.” In: Wiley Interdisciplinary Reviews: Computational Molecular Science
1.6 (2011), pp. 895–901. issn: 1759-0884. doi: 10.1002/wcms.77. url: http:
//dx.doi.org/10.1002/wcms.77.

[15] Arie van Deursen, Paul Klint, and Joost Visser. “Domain-specific languages: an
annotated bibliography.” In: SIGPLAN Not. 35.6 (June 2000), pp. 26–36. issn:
0362-1340. doi: 10.1145/352029.352035. url: http://doi.acm.org/10.1145/
352029.352035.

[16] Dyninst API. Accessed on 20.09.2015. url: http://www.dyninst.org/dyninst.

[17] Bernd Mohr Felix Wolf. Specifying Performance Properties Using Compound Run-
time Events. Technical Report. Forschungszentrum Jülich GmbH, 2000.

[18] Michael Gerndt, Karl Fürlinger, and Edmond Kereku. “Periscope: Advanced
techniques for performance analysis.” In: PARCO (2005), pp. 15–26.

[19] M. Gerndt and M. Ott. “Automatic Performance Analysis with Periscope.” In:
Concurr. Comput. : Pract. Exper. 22.6 (Apr. 2010), pp. 736–748. issn: 1532-0626.
doi: 10.1002/cpe.v22:6. url: http://dx.doi.org/10.1002/cpe.v22:6.

[20] GNU Emacs. Accessed on 14.08.2015. url: https://www.gnu.org/software/
emacs/.

[21] Samuel Zev Guyer. “Incorporating Domain-Specific Information into the Com-
pilation Process.” PhD thesis. 2003.

[22] S Z Guyer and C Lin. “Broadway: A Compiler for Exploiting the Domain-
Specific Semantics of Software Libraries.” In: Proceedings of the IEEE 93.2 (2005),
pp. 342–357. issn: 0018-9219. doi: 10.1109/JPROC.2004.840489.

[23] Richard Hamming. Numerical Methods for Scientists and Engineers. Second edi-
tion. McGraw-Hill, Inc., New York, 1973.

[24] M T Heath and J A Etheridge. “Visualizing the performance of parallel pro-
grams.” In: Software, IEEE 8.5 (), pp. 29–39. issn: 0740-7459.

[25] Dimitri van Heesch. Doxygen Homepage. Date accessed: 11.12.2012. url: http:
//www.stack.nl/~dimitri/doxygen/.

[26] T. Helgaker, P. JÃžrgensen, and J. Olsen. Molecular Electronic-Structure Theory.
John Wiley & Sons Ltd., 2000.

[27] Michael A. Heroux, Padma Raghavan, and Horst D. Simon. Parallel Processing
for Scientific Computing. Society for Industrial and Applied Mathematics, 2007.

[28] Highly accurate finite element simulation for sheet metal forming. Accessed on 23.08.2015.
url: http://gns-mbh.com/indeed.html.

[29] A Hinchliffe. Chemical Modelling: Applications and Theory. Specialist Periodical
Reports v. 4. Royal Society of Chemistry, 2006. isbn: 9780854042432. url: http:
//books.google.de/books?id=Hhxm8nSWI98C.

[30] P. Hohenberg and W. Kohn. “Inhomogeneous Electron Gas.” In: Physical Review
136 (Nov. 1964), pp. 864–871. doi: 10.1103/PhysRev.136.B864.

Bibliography 153

[31] HPCToolkit. Accessed on 20.09.2015. url: http://hpctoolkit.org/.

[32] Intel Trace Analyzer and Collector. Accessed on 20.09.2015. url: https://software.
intel.com/en-us/intel-trace-analyzer.

[33] R . Bruce Irvin. “Performance Measurement Tools for High-Level Parallel Pro-
gramming Languages.” PhD thesis. 1995.

[34] R Bruce Irvin and Barton P Miller. “Mapping Performance Data for High-Level
and Data Views of Parallel Program Performance.” In: International Conference
on Supercomputing. 1996.

[35] Wibe A. de Jong et al. “Utilizing high performance computing for chemistry:
parallel computational chemistry.” In: Phys. Chem. Chem. Phys. 12 (26 2010),
pp. 6896–6920. doi: 10.1039/C002859B. url: http://dx.doi.org/10.1039/
C002859B.

[36] Ken Kennedy et al. “Telescoping Languages : A Strategy for Automatic Gen-
eration of Scientific Problem-Solving Systems from Annotated Libraries.” In:
Journal of Parallel and Distributed Computing 61 (2001), pp. 1803–1826.

[37] Donald E Knuth. “Literate Programming.” In: The Computer Journal 27.2 (1984).
Ed. by A Ralston, E D Reilly, and DEditors Hemmendinger, pp. 97–111. url:
http://comjnl.oupjournals.org/cgi/doi/10.1093/comjnl/27.2.97.

[38] W. Kohn and L. J. Sham. “Self-Consistent Equations Including Exchange and
Correlation Effects.” In: Physical Review 140 (Nov. 1965), pp. 1133–1138. doi:
10.1103/PhysRev.140.A1133.

[39] Collaborators Karol Kowalski et al. A Quantum Chemistry Domain-Specific Lan-
guage for Heterogeneous Clusters. Tech. rep. 2012, pp. 1–22.

[40] Rubin Landau, Manuel José Paéz, and Cristian Bordeianu. A Survey of Compu-
tational Physics. Introductory Computational Science. Princeton University Press,
2012.

[41] V Lotrich et al. “Parallel implementation of electronic structure energy, gradi-
ent, and Hessian calculations.” In: The Journal of chemical physics 128.19 (May
2008), p. 194104. issn: 0021-9606. doi: 10.1063/1.2920482. url: http://www.
ncbi.nlm.nih.gov/pubmed/18500853.

[42] A D Malony, S S Shende, and A Morris. “Phase-based parallel performance
profiling.” In: Proceedings of the PARCO 2005 conference. 2005.

[43] J. H. Meinke, S. Mohanty, and O. Zimmermann. “Protein Folding and Structure
Prediction at the Simulation Laboratory Biology.” In: NIC Symposium 2010. IAS
Series. Forschungszentrums Jülich, 2010, pp. 87–94.

[44] Marjan Mernik, Jan Heering, and Anthony M Sloane. “When and how to
develop domain-specific languages.” In: ACM Computing Surveys 37.4 (2005),
pp. 316–344. url: http://portal.acm.org/citation.cfm?doid=1118890.
1118892.

[45] Anna Morajko et al. “MATE: Toward Scalable Automated and Dynamic Perfor-
mance Tuning Environment.” English. In: Applied Parallel and Scientific Comput-
ing. Vol. 7134. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2012, pp. 430–440. isbn: 978-3-642-28144-0. doi: 10.1007/978-3-642-28145-
7_42. url: http://dx.doi.org/10.1007/978-3-642-28145-7_42.

154 Bibliography

[46] Technische Universität München. ParaGauss - a program package for high-performance
computations of molecular systems. url: http://www.theochem.tu-muenchen.de/
welcome / index . php ? option = com _ content & task = view & id = 61 (visited on
07/18/2015).

[47] Peter Murray-Rust and Henry S Rzepa. “Chemical Markup, XML, and the
Worldwide Web. 1. Basic Principles.” In: Journal of Chemical Information and Com-
puter Sciences 39.6 (1999), pp. 928–942. doi: 10.1021/ci990052b. url: http:
//pubs.acs.org/doi/abs/10.1021/ci990052b.

[48] Jarek Nieplocha et al. “Advances, Applications and Performance of the Global
Arrays Shared Memory Programming Toolkit.” In: International Journal of High
Performance Computing Applications 20.2 (), pp. 203–231.

[49] Astrid Nikodem et al. “Load balancing by work-stealing in quantum chemistry
calculations: Application to hybrid density functional methods.” In: Interna-
tional Journal of Quantum Chemistry 114.12 (2014), pp. 813–822. issn: 1097-461X.
doi: 10.1002/qua.24677. url: http://dx.doi.org/10.1002/qua.24677.

[50] Yury Oleynik. “Automatic Characterization of Performance Dynamics with
Periscope.” PhD thesis. 2014.

[51] Nuno Oliveira et al. “Domain Specific Languages: A Theoretical Survey.” In:
INForum’09 — Simpósio de Informática. Lisboa, Portugal: Faculdade de Ciências
da Universidade de Lisboa, Sept. 2009, pp. 35–46.

[52] Open Trace Format 2. Accessed on 20.09.2015. url: https : / / silc . zih . tu -
dresden.de/otf2-current/html/.

[53] Oracle. Javadoc Tool Homepage. url: http://www.oracle.com/technetwork/
java/javase/documentation/index-jsp-135444.html.

[54] James Dean Palmer and Eddie Hillenbrand. “Reimagining Literate Program-
ming.” In: Work (2009), pp. 1007–1014. doi: 10.1145/1639950.1640072. url:
http://portal.acm.org/citation.cfm?doid=1639950.1640072.

[55] Cherri M. Pancake. “Applying Human Factors to the Design of Performance
Tools.” In: Euro-Par 99 Parallel Processing. Vol. 1685. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 1999, pp. 44–60. isbn: 978-3-540-66443-7.

[56] Paradyn Tools Project. Accessed on 14.08.2015. url: http://www.paradyn.org/.

[57] David Peleg. Distributed computing: a locality-sensitive approach. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2000. isbn: 0-89871-464-
8.

[58] Weerapong Phadungsukanan et al. “The semantics of Chemical Markup Lan-
guage (CML) for computational chemistry : CompChem.” In: Journal of chem-
informatics 4.1 (Jan. 2012), p. 15. issn: 1758-2946. doi: 10.1186/1758-2946-4-
15. url: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=
3434037\&tool=pmcentrez\&rendertype=abstract.

[59] Vreda Pieterse, Derrick G Kourie, and Andrew Boake. “A case for contempo-
rary literate programming.” In: Computer (2004), pp. 2–9. url: http://portal.
acm.org/citation.cfm?id=1035054.

Bibliography 155

[60] T Plewa, T Linde, and V G Weirs. Adaptive Mesh Refinement - Theory and Applica-
tions. Lecture Notes in Computational Science and Engineering. Springer, 2003.
isbn: 9783540211471. url: http://books.google.de/books?id=R4YFoTP3l6cC.

[61] H. QUINEY and S. WILSON. THEORY AND COMPUTATION IN THE STUDY
OF MOLECULAR STRUCTURE. Progress in Theoretical Chemistry and Physics
Series. Springer Netherlands, 2006. Chap. I, pp. 3–12. isbn: 978-1-4020-4527-1.
doi: 10.1007/1-4020-4528-X_1. url: http://books.google.de/books?id=
MxZhcgIg9x0C.

[62] D. C. Rapaport. The Art of Molecular Dynamics Simulation. 2nd edition. Cam-
bridge University Press., 2004.

[63] Eric S. Raymond. The Art of Unix Programming. Addison-Wesley Professional,
2003.

[64] Martin Roderus et al. “Scheduling Parallel Eigenvalue Computations in a Quan-
tum Chemistry Code.” In: Euro-Par 2010 - Parallel Processing. Vol. 6272. Lecture
Notes in Computer Science. 2010, pp. 113–124.

[65] Jennifer Rowley. “The wisdom hierarchy: representations of the DIKW hierar-
chy.” In: Journal of Information Science 33.2 (2007), pp. 163–180. doi: 10.1177/
0165551506070706. eprint: http://jis.sagepub.com/content/33/2/163.full.
pdf+html. url: http://jis.sagepub.com/content/33/2/163.abstract.

[66] N. Rutar and J.K. Hollingsworth. “Data Centric Techniques for Mapping Per-
formance Measurements.” In: Parallel and Distributed Processing Workshops and
Phd Forum (IPDPSW), 2011 IEEE International Symposium on. May 2011, pp. 1274
–1281. doi: 10.1109/IPDPS.2011.275.

[67] Jean E Sammet. Programming Languages: History and Fundamentals. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 1969. isbn: 0137299885.

[68] Beverly A Sanders et al. “A Block-Oriented Language and Runtime System for
Tensor Algebra with Very Large Arrays.” In: Proceedings of the 2010 ACM/IEEE
International Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 1–11.
isbn: 978-1-4244-7559-9. doi: 10.1109/SC.2010.3. url: http://dx.doi.org/10.
1109/SC.2010.3.

[69] Scalsca. Accessed on 14.08.2015. url: http://www.scalasca.org/.

[70] Eric Schulte et al. “A Multi-Language Computing Environment for Literate
Programming and Reproducible Research.” In: Journal of Statistical Software 46.3
(2012), pp. 1–24. issn: 1548-7660. url: http://www.jstatsoft.org/v46/i03.

[71] Score-P Scalable Performance Measurement Infrastructure for Parallel Codes. Accessed
on 14.08.2015. url: http://www.vi-hps.org/projects/score-p/.

[72] Sameer S. Shende and Allen D. Malony. “The TAU Parallel Performance Sys-
tem.” In: The International Journal of High Performance Computing Applications 20
(2006), pp. 287–311. doi: DOI:10.1177/1094342006064482.

[73] Sameer Suresh Shende. “The role of instrumentation and mapping in perfor-
mance measurement.” PhD thesis. 2001.

156 Bibliography

[74] S Shende et al. “Performance evaluation of adaptive scientific applications us-
ing TAU.” In: International Conference on Parallel Computational Fluid Dynamics.
2005.

[75] Robert Sinkovits. Introduction to Data and Memory Intensive Computing. Presen-
tation at Gordon Summer Institute & Cyberinfrastructure Summer Institute for
Geoscientists. Accessed on 20.08.2012. Aug. 2011. url: http://education.sdsc.
edu/gordon2011/gsi/IntroToDataIntensive_GSI11_Sinkovits.pdf.

[76] Thomas Martin Soini. “Self-Interaction, Delocalization, and Static Correlation
Artifacts in Density Functional Theory: Studies with the Program ParaGauss.”
PhD thesis. 2015.

[77] Giriprasad Sridhara et al. “Towards automatically generating summary com-
ments for Java methods.” In: Proceedings of the IEEE/ACM international confer-
ence on Automated software engineering. ASE ’10. New York, NY, USA: ACM,
2010, pp. 43–52. isbn: 978-1-4503-0116-9. doi: 10.1145/1858996.1859006. url:
http://doi.acm.org/10.1145/1858996.1859006.

[78] The Connection Machine System. CM Fortran Programming Guide. 1991, pp. 1–
156.

[79] Z. Szebenyi, F. Wolf, and B. Wylie. “Performance Analysis of Long-Running
Applications.” In: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (May 2011), pp. 2105–2108.

[80] TAU Performance System. Accessed on 22.09.2015. url: http://www.cs.uoregon.
edu/research/tau/home.php.

[81] Thomas Trappenberg. Fundamentals of Computational Neuroscience. 2nd edition.
Oxford University Press, 2010.

[82] M Valiev et al. “NWChem: A comprehensive and scalable open-source so-
lution for large scale molecular simulations.” In: Computer Physics Communi-
cations 181.9 (2010), pp. 1477–1489. issn: 0010-4655. doi: 10 . 1016 / j . cpc .

2010.04.018. url: http://www.sciencedirect.com/science/article/pii/
S0010465510001438.

[83] Vampir - Performance Optimization. Accessed on 22.09.2015. url: https://www.
vampir.eu/.

[84] VampirTrace. Accessed on 20.09.2015. url: http://tu-dresden.de/die_tu_
dresden/zentrale_einrichtungen/zih/forschung/projekte/vampirtrace.

[85] Dagmar Waltemath et al. “Reproducible computational biology experiments
with SED-ML - The Simulation Experiment Description Markup Language.”
In: BMC Systems Biology 5.1 (2011), p. 198. issn: 1752-0509. doi: 10.1186/1752-
0509-5-198. url: http://www.biomedcentral.com/1752-0509/5/198.

[86] P. Wesseling. Introduction to multigrid methods. Technical Report. NASA ICASE
Report No. 95-11, 1995.

[87] P H Worley. “Phase modeling of a parallel scientific code.” In: Scalable High
Performance Computing Conference, SHPCC-92, Proceedings. 1992, pp. 322–327.

[88] Oleg Zikanov. Essential Computational Fluid Dynamics. Wiley, 2010.

