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ABSTRACT

Abstract

This thesis combines structural optimization with the field of adaptive
structures. While structural optimization is well established in classical
engineering in the meantime, only few optimization is done concerning
adaptive or smart structures. Smart structures are used in order to enable
more efficient and powerful structural designs. This increase in efficiency
usually is achieved by applying control and actuation systems, which
influence the structure selectively by additional loading or by modifying
the structure’s boundary conditions. Goal of this thesis is to combine these
two topics, in order to obtain best controllability of structures.
For this purpose, mechanisms allowing a most efficient deformation of
thin shell structures are discussed. These mechanisms are generated using
parameter free optimization, whereat the influence of different optimiza-
tion setups is discussed. Furthermore, an enlarged design control concept
is presented, meeting the concerns and additional challenges of optimizing
an adapted structure. As an example of use, an experimental intelligent
airfoil is considered.
In the last part, the capabilities of structural optimization in order to gen-
erate bistable structures are investigated. In the field of bistable structures,
mainly shell structures with constant curvature and uniform material dis-
tribution and orientation are considered so far. In this thesis, methods of
free shape and material optimization are applied in order to generate novel
bistable shell structures.
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ZUSAMMENFASSUNG

Zusammenfassung

Diese Arbeit befasst sich mit dem Zusammenführen der Disziplin der
Strukturoptimierung mit dem Themenfeld adaptiver Strukturen. Während
die Strukturoptimierung in den klassischen Bereichen des Ingenieurswe-
sens mittlerweile etabliert ist, wird im Themengebiet der adaptiven oder
intelligenten Strukturen dagegen wenig Optimierung betrieben. Intelli-
gente Strukturen werden eingesetzt, um noch effizientere und leistungs-
fähigere Strukturentwürfe zu ermöglichen. Diese Effizienzsteigerung
wird in der Regel durch den Einsatz von Regelungs- und Aktua-
torsystemen erreicht, welche die Struktur gezielt durch das Einbringen
zusätzlicher Belastungen oder Veränderung der Randbedingungen beein-
flussen. Ziel dieser Arbeit ist die Kombination dieser beiden Themen-
felder, um eine bestmögliche Regelbarkeit von Strukturen zu erreichen.
Zu diesem Zweck werden Mechanismen diskutiert, die eine möglichst
effiziente Deformation dünner Schalenstrukturen gewährleisten. Diese
werden durch den Einsatz der parameterfreien Formoptimierung erzeugt,
wobei der Einfluss unterschiedlicher Optimierungskonfigurationen disku-
tiert wird. Außerdem wird ein erweitertes Konzept zur Design-Kontrolle
vorgestellt, welches den zusätzlichen Herausforderungen der Optimierung
einer aktuierten Struktur Rechnung trägt. Als Anwendungsbeispiel dient
ein experimenteller intelligenter Tragflügel.
Im letzten Abschnitt werden die Einsatzmöglichkeiten der Strukturopti-
mierung zur Generierung bistabiler Strukturen betrachtet. Bisher wer-
den im Bereich bistabiler Strukturen hauptsächlich Schalenstrukturen mit
konstanter Krümmung sowie gleichmäßiger Materialisierung betrachtet.
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ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit werden die Methoden der Freiform- und Mate-
rialoptimierung eingesetzt, um neuartige bistabile Schalenstrukturen zu
generieren.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

Introduction

1.1 Structural optimization in product development

Computer based analysis of structures plays an important role in nowa-
days process of product development. As product development cycles
become shorter, the classical prototype construction is more and more
replaced by numerical simulation. For the designing engineer, it is of
advantage to have access to optimization software already in an early
phase of product design, in order to get ideas about possible design
improvements. In this context, usual applications focus on an optimal
usage of material, where structures are usually optimized with respect to
an optimal weight-to-strength ratio, or structural mass is reduced while
keeping conditions with respect to maximum deflections or mechanical
stresses.

1.2 Smart structures

1.2.1 Definition

Smart or adaptive structures are actively reacting mechanical systems,
being able to respond to changes within their environmental conditions.
By this mean, even more efficient and powerful structural designs are
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CHAPTER 1. INTRODUCTION

enabled. Typically, smart structures are equipped with sensors, monitor-
ing the state of the structure, and with actuators, that provide mechanical
input and enable the structure to "react" to the actual environmental con-
ditions [42]. The actuator reaction usually is linked to the sensor input
data via a controller, which regulates the structure such that its overall
behaviour, generated by external loading and the actuator influence, is
optimal with respect to a pre-defined criteria [60].
Figure 1.1 shows the basic components of a smart structure. Senors, actu-
ators and controller can be identified as central blocks, connected via
data streams. These data streams transmit information gathered by the
senors to the controller, and a corresponding actuator instruction is gener-
ated. Actuator input and sensor information are linked via the mechanical
behaviour of the structure.

Controller

Sensor Actuator

da
ta

tra
ns

miss
ion

data instruction

Structure

Figure 1.1: Basis components of a smart structure (according to [2])

1.2.2 State of the art

Smart structures are a current topic of intense research. The University
of Stuttgart for example did a large-scale test of an adaptive light weight
shell structure, originated from the field of civil engineering. The structure
is a positively curved shell spanning over 10 meters, made of timber with
a thickness of only 4 centimeters. The investigated structure is able to
resist external loads, such as snow load, only due to specific actuating
deformations at the supports [127].

2



CHAPTER 1. INTRODUCTION

Figure 1.2: The adaptive "Smart Shell" structure in Stuttgart (source of
picture: [127])

Another example of smart materials and structures applied in civil engi-
neering is the Savannah River Site monitoring project [51], where high-
way bridges are monitored using piezoelectric or fiber optic sensors. In
a second stage, the bridges are meant to be upgraded by using fiber rein-
forced plastic overlays.
Theoretical research regarding compliant shell mechanisms based on
origami folding was done by Mark Schenk [109] and K. Seffen [113].
They considered multi-scale shell structures, consisting of repetitive meso
cells such as corrugated bellows or "egg-box" segments, folded into sheet
material. These meso cells undergo an almost strain free deformation,
allowing easy deformability of the global structure.
Most applications of smart structures can be grouped into the field of
aerospace applications. In these applications, mainly adaptive wings [23]
or rotor blades [99] are considered. These airfoils are able to modify their
shape such that they are optimally suited for the actual flight situation
and flow condition of the surrounding air. One quite famous example for
such an application in serial production is the flutter problem of the Boe-
ing 747-8 aircraft. The new wide-bodied aircraft suffered from wing tip
fluttering in certain unusual flight states, which endanger the aircraft’s cer-
tification by the aviation regulator agency. The problem could be solved

3



CHAPTER 1. INTRODUCTION

by a modification in the fly-by-wire system of the airplane, which detects
the start of the flutter by acceleration sensors, and performs a slight move-
ment of the ailerons in order to counter the vibrations of the flutter [62]
[128]. Figure 1.3 illustrates the slender design of the wing and gives an
impression about its sensitivity to vibrations.

Figure 1.3: Highly flexible wing of the Boeing 747-8, prone to flutter
(source of picture: [131])

Nowadays publications regarding optimization with respect to smart
structures mainly focus on actuator placement for a given host structure
using stochastic methods [130] or topology optimization [115]. As most
applications of smart structures belong to the aerospace industry, a lot of
publications regarding optimization do so as well. Farhan Gandhi and oth-
ers are doing a lot of research work concerning morphing airfoils, where
for example sizing optimization is applied to compliant mechanisms using
honeycomb structures [61]. Bilgen and Friswell [22] [23] are working
on a variable-camber wing for an unmanned light weight aircraft, where
stochastic optimization algorithms are used on a parametrized model, but
the focus of their work is on experiments.

4



CHAPTER 1. INTRODUCTION

1.3 Goal and outline of this thesis

This thesis aims on applying structural optimization to smart structures.
The focus is on generating structures which provide an optimal response
to the actuator input. Thereby, in contrast to other works mentioned in
section 1.2.2, the entire structure is subject of optimization, and espe-
cially shape optimization of thin structures is a central aspect. For this
reason, kinematic mechanisms of shell structures are discussed in more
detail. In this context, several types of shells differing with respect to cur-
vature are compared. Whereas Schenk [109] and Seffen [113] focused on
a periodical meso-structure providing high flexibility, this thesis aims on
generating localized compliant mechanisms in large scale structures.
The issue of actuator placement is included into the optimization process.
Resulting effects onto the mathematical properties of the minimization
problem are investigated, and a modified design control framework is pre-
sented.
In context of this work, the focus is put on the structure itself, not on the
design of the controller which triggers the actuator input. Actuators are
assumed to act in a statical manner, so that no time dependent controlling
is considered. Information about optimal control and controller design
can be found in Adamy [1] or Sontag [120], for example.
Another topic considered in the context of smart structures is the issue
of bistability. A bistable structure is a structure which can assume dif-
ferent shapes of self equilibrium without any external load acting onto
the structure. This property can be very interesting for smart structures,
being able to switch between different configurations for different intends
of use. Within this thesis, bistable structures are meant to be generated by
using the parameter free optimization technique.

The further content of this thesis is divided into eight chapters:

5
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Chapter 2 gives a very brief introduction into the fundamentals of the
Finite Element Method. Thereby the focus is on introducing the element
formulations used in this thesis.
Chapter 3 compares different mathematical methods used for optimiza-
tion purpose. Pros and contras of different approaches are discussed, and
an appropriate strategy for the intended purpose is chosen.
Chapter 4 is a mathematical chapter, giving a brief overview over solu-
tion techniques for constrained and unconstrained optimization problems
using gradient based methods.
Chapter 5 introduces the parameter free optimization method, which is
used in this thesis. The issue of shape and design control is addressed
in detail, and the topic of an efficient and accurate sensitivity analysis is
discussed. The chapter ends with a description of the data streams inside
a modular object oriented analysis and optimization code framework.
Chapter 6 discusses optimal kinematic mechanisms for different types of
structures, focusing on shells. For this purpose, different types of shells
and different stress states are considered.
Chapter 7 addresses the issue of optimal actuation of structures. An
extended design control framework is presented, allowing simultaneous
shape optimization and actuator placement. The benefits of the parameter
free approach are highlighted by generating complex bead designs, pro-
viding high flexibility in large deformation applications. The chapter ends
with the consideration of a real world example.
Chapter 8 considers the topic of bistability. For this purpose, special char-
acteristics of bistable structures and problems arising from the highly non-
linear load carrying behaviour are discussed. An appropriate response
function is presented and derived, thereupon its fitness for the intended
use is demonstrated for two curved shell structures.
Chapter 9 draws the final conclusions and gives a short outlook about
possible future works.

6



CHAPTER 1. INTRODUCTION

1.4 Introduction to Carat++

All optimization and analysis results presented in this thesis are obtained
by the institute’s in-house finite element software Carat++ (Computer
Aided Research and Analysis Tool). It is an object oriented research code
written in C++, containing standard finite element analysis tools, beyond
it includes modules for form finding and cutting patterning of membranes
as well as a powerful optimization module. The origins of Carat go back to
the late 1980s [84] [30], and a complete re-design in C++ was performed
in 2008. Further information about Carat++ can be found in Masching et
al [91] or Fischer et al [55].

7



CHAPTER 1. INTRODUCTION

8



CHAPTER 2. FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS

CHAPTER 2
Finite Element Method in

structural analysis

2.1 Structural analysis in the context of this work

In this work, analysis and evaluation of structural behaviour is an essen-
tial point. Any structural optimization approach would be useless without
being able to evaluate the structure mechanical properties of the consid-
ered component. For this purpose, reliable and efficient numerical meth-
ods have to be applied, in order to obtain realistic simulation results of the
mechanical behaviour of the investigated structure.
In the last decades, starting from the 1950s, a multiplicity of text books
focusing on solving structure mechanical problems using numerical meth-
ods have been published. Primarily the Finite Element Method (FEM)
was in focus of the authors. Giving a detailed insight about the funda-
mentals of these methods would go beyond the scope of this thesis and
is also not necessary in this context. For these purposes, this chapter is
meant to give a very brief introduction to state of the art numerical meth-
ods of structural analysis, but it is not claimed to be exhaustive. Detailed
information about the Finite Element Method can be found, among others,

9



CHAPTER 2. FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS

in the textbooks by Zienkiewicz, Taylor [137] [138], Bathe [14], Argyris
[6] [5] or Hughes [73].

2.2 Analytical equilibrium

The governing equation of structural analysis is the equilibrium condition.
This equation is directly based on Newton’s second law, which formulates
the conservation of linear momentum. The equilibrium condition can be
formulated as

div(σ (u))+ρ ·b = ρ · dv
dt

(2.1)

where σ (u) is the stress state at the considered point of the structure,
depending on its displacement u. ρ defines the material density and b
describes the body force vector. On the right hand side of the equation,
v denotes the actual velocity of the point under consideration, so ρ · dv

dt is
the expression of the inertia forces.
Considering statical problems only, we can neglect the inertia term on the
right hand side, and formulate the static equilibrium condition.

div(σ (u))+ρ ·b = 0 (2.2)

Equation 2.2 formulates the general equilibrium condition of a point
inside an arbitrary continuum. This equation is called the strong form of

equilibrium. In order to define the problem of structural static equilibrium
properly, additional boundary conditions prescribing the deformation u
(Dirichlet boundary conditions) or a derivative of the displacement field
(Neumann boundary condition) at certain points have to be applied. These
boundary conditions correspond to supports or local loads influencing the
structure.
Unfortunately, equation 2.2 cannot be solved in the general case for arbi-
trary boundary conditions in order to determine the displacement u as an
analytical function. In order to obtain an approximated solution for this
problem nevertheless, numerical methods are applied.

10
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2.3 The principle of Finite Element formulations

2.3.1 Weak form of equilibrium

A very successful approach to solve the equilibrium condition introduced
in equation 2.2 is Galerkin’s Approach [44] [49]. It is a numerical method
solving operator equations, such as differential equations, approximately
by applying a method of weighted residuals.
As Galerkin’s Approach is an approximation method, equation 2.2 will
not evaluate to zero at every point for the obtained approximated dis-
placement field uh. The method weakens the requirements formulated
in equation 2.2, such that it only demands equation 2.2 to be fulfilled in
the integral mean over the complete domain Ω. An additional weighting
of the residual is performed, using the so-called test function η.

∫
Ω

[div(σ (uh))+ρ ·b] ·η dΩ = 0 (2.3)

Using the variation of displacements δu as test function, the well known
weak form of equilibrium is obtained:

∫
Ω

[div(σ (uh))+ρ ·b] ·δu dΩ = 0 (2.4)

2.3.2 Discretization of geometry and displacement

In section 2.3.1, the equilibrium condition from equation 2.2 was trans-
ferred to the weak form, using an approximate solution uh of the unknown
displacement field u. In order to be able to compute this approximate solu-
tion, it is necessary to reduce the continuous field u to a finite number of
evaluation points, for which the approximate solution uh is evaluated. As
the weak form of equilibrium is formulated as an integral over Ω, a dis-
cretized description of the domain Ω is needed, too, in order to evaluate
the integral equilibrium equation.

11
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For the discretization of 2D-structures, for example an approximation of
the surface using triangles or quadrilaterals is used, where the vertices of
these facets are used as evaluation points for the displacement approxi-
mation as well as sampling points for the geometry description. These
triangular or quadrangular facets are referred to as finite elements and
the vertices are usually called finite element nodes. Figure 2.1 shows a
discretization of a surface example using a coarse and a fine level of dis-
cretization. In this figure, also a template of a four-noded finite element
is presented, showing the node numbering and a local coordinate system
ξ1,ξ2 ∈ [−1,1], which allows to address any point inside the element by
its local coordinates.

Meshing, coarse mesh

Meshing, fine mesh

1 2

4 3

ξ1

ξ2

ξ1,2 ∈ [−1,1]

Figure 2.1: Discretization: analytical surface description, coarse and fine
discretization using finite elements

Having this discretization information, geometry X or displacement u can
be computed within an element by interpolating nodal information using
interpolation functions, so-called shape functions,

12



CHAPTER 2. FINITE ELEMENT METHOD IN STRUCTURAL ANALYSIS

uh (ξ1,ξ2) =
nNodes

∑
i=1

Ni (ξ1,ξ2) · ûi (2.5)

Xh (ξ1,ξ2) =
nNodes

∑
i=1

Ni (ξ1,ξ2) · X̂i (2.6)

where the index h emphasizes that an approximation is considered. Ni, X̂i

and ûi denote the shape function, the coordinates and the displacements
belonging to node i, respectively.

2.4 Finite Element formulations used in this contribu-
tion

In this thesis, different kinds of structures are treated. Thin and light
weight structures are considered as well as solid structures. For this rea-
son, different types of finite element formulations are used.

2.4.1 Multi-layer Reissner-Mindlin shell element

For analysis and optimization of thin and wide span structures, a Reissner-
Mindlin shell formulation is used, based on the thesis of Manfred Bischoff
[24]. The element is a multi-layer degenerated solid shell, based on
nonlinear, three-dimensional continuum theory. Thus, it is possible to
use arbitrary three-dimensional constitutive laws without reduction or
manipulation in nonlinear analysis of moderately thin structures includ-
ing large deformations. In context of this thesis, linear elastic isotropic or
orthotropic material laws using two or nine independent material param-
eters [79] are used.

The element uses a 7-parameter concept in order to be able to consider
thickness changes as well as non-constant normal stress in thickness direc-
tion. Element nodes possess six degrees of freedom, namely three transla-
tions evaluated on the mid-plane of the shell structure, and three additional
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translatoric degrees of freedom describing the movement of the shell sur-
face related to the mid-plane, thus the change of the shell director (see
figure 2.2). The 7th degree of freedom describes linear normal strain dis-
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deformed shell
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umid
x

umid
y

umid
z

udir
x

udir
y

udir
z


shell director

mid plane

shell surface

shell surface

deformed shell director

x
z

y

Figure 2.2: Definition of nodal degrees of freedom for Reissner-Mindlin
shell element

tributions in thickness direction. This degree of freedom is condensed
out on element level and does not appear in the element stiffness matrix
explicitly. Linear ansatz spaces are used, where a triangular as well as a
quadrilateral element configuration is available, and the the element for-
mulation is equipped with ANS (assumed natural strains) [16] [15] and
EAS (enhanced assumed strains) [116] improvements in order to get rid
of locking phenomena and to increase result quality.
Used as a composite element, the element acts as a single director multi-
layer shell, performing a layer-wise pre-integration of the material and
stress tensors [32]. By this mean, the number of degrees of freedom is
independent of the number of material layers used over the thickness of
the element. As the integration is performed layer-wise, but the moment
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of inertia has to be captured correctly for each ply, different types of coor-
dinate systems are used in shell thickness direction. The overall thickness
coordinate θ 3 ∈ [−1,1] captures the complete shell thickness h, while for
each ply i an additional coordinate θ 3

i ∈ [−1,1] is defined, which spans
the thickness hi of the related ply. An example of a multi layer shell stack
including the different coordinate systems is shown in figure 2.3.

i = 1
i = 2 i = 3 i = 4

i = 5

mid plane

θ 3
1 ∈ [−1,1]

θ 3 ∈ [−1,1]

Figure 2.3: Multiple layer setup for composite element with layer and
element coordinate systems (parts of figure taken from [21])

The integrated material tensor can be written in the form

Di jkl
k =

nlayers

∑
i=1

1∫
θ 3

i =−1

[
θ

3 (
θ

3
i
)]k ·Ci jkl ·µ · hi

h
dθ

3
i (2.7a)

θ
3 (

θ
3
i
)
=
−hi ·

(
1−θ 3

i
)
+2 ·∑i

j=1 h j

h
−1.0; (2.7b)

µ ≈ h
2

(2.7c)

where equation 2.7b defines the mapping between the ply coordinate and
the overall thickness coordinate. Equation 2.7c shows the shell shifter,
which maps the dimension less coordinate θ 3 to the physical thickness of
the shell.
Due to the single director description and the Reissner-Mindlin assump-
tion (first-order shear deformation theory), the element cannot represent a
warping of the cross section due to shear. These warping effects may arise
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especially for thick layered shell structures with distinct orthotropic mate-
rial properties. In order to represent the shear deformation of the cross
section more precisely, multi-layer shell models could be applied [102].
These models approximate the deformation of the cross section linearly in
each ply, leading to a zick-zack shaped deformation over the entire thick-
ness. Alternatively, higher order shear deformation theories can be used,
describing the deformation in shell thickness direction using higher order
polynomials [88] [108].

2.4.2 Three dimensional continuum element

Continuum elements are usually used in order to analyze structures which
cannot be reduced to one or two dimensions, as their geometrical size is
similar in all three directions in space. In this contribution, a hexahedral
element formulation is used, including geometrical nonlinear kinematics.
For the hexahedral element type, eight-noded elements are used applying
trilinear shape functions. As these elements are known to suffer from geo-
metrical locking effects due to parasitic strain [133] [125], the formulation
is improved by the EAS (enhanced assumed strain) method as presented
by Simo, Rifai [116] or Andelfinger, Ramm [3]. By this mean, the element
is able to represent a trilinear stress states although the displacement inter-
polation itself is just linear. Therefore high computational accuracy can be
achieved without increasing the number of element degrees of freedom.
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CHAPTER 3
Mathematical optimization

methods

3.1 Introduction to optimization

Optimization is a branch of mathematics which deals with the problem of
finding the minimum or maximum value of a function f (x) , f : D→ R
and the related x ∈Ω. Here, x is the vector of design variables, D denotes
the design space of the optimization problem, and Ω is the set of feasible
designs [11], thus a sub set of the design space. In literature about applied
optimization, the function f is often referred to as objective function [67].
In context of this thesis, design variables are assumed to be real numbers,
so the design space D is a higher dimension of R.

D = Rn (3.1)

Accordingly, the feasible set is a sub set of Rn

Ω⊆ Rn (3.2)

The set Ω can be defined either explicitly, or in an implicit way by adding
additional equations or inequalities, so-called constraints, to the optimiza-
tion problem, which a feasible design x ∈ Ω has to fulfill. This will be

17



CHAPTER 3. MATHEMATICAL OPTIMIZATION METHODS

discussed in more detail in section 4.3.

Most optimization procedures are designed such that they focus on min-
imization problems. Hence the standard optimization task can be formu-
lated as the following minimization problem:

f (x) , f : Rn→ R

min f (x)

with x ∈Ω, Ω⊂ Rn

(3.3)

In case the problem to solve is a maximization problem, it can easily be
transformed into a minimization problem by applying a standard mini-
mization algorithm to the negative function.

max f (x)⇔ min − f (x) (3.4)

As the transformation from maximization to minimization problems (and
inverse) can be done in such an easy way, the following part of this chapter
will only focus on the standard case of minimization problems.

3.2 Optimization methods

There are multiple ways to solve an optimization problem as it is defined
in equation 3.3. The related methods are usually grouped according to the
highest order of derivative which is used in the algorithm.

3.2.1 Zero order methods

Zero order methods are methods only evaluating the 0th derivative of the
objective function, which is the function value itself. The algorithms eval-
uate a multiplicity of candidate solutions and judge for each candidate
solution if it is (a) feasible and (b) a minimum solution. A sub-grouping
of zero order algorithms can be done according to the determination of
the candidate solutions.

18



CHAPTER 3. MATHEMATICAL OPTIMIZATION METHODS

3.2.1.1 Direct search methods

Direct search methods just evaluate a specific set of given candidate solu-
tions in order to determine the minimum feasible solution. The set of can-
didate solutions can either be generated by random (Monte-Carlo-Search)
or by using a defined multi-dimensional grid of evaluation points (grid-
search). Drawbacks of this very simple approach are the high number
of response function evaluations and the restriction to discrete evaluation
points, especially in a continuous design space.

3.2.1.2 Evolutionary Algorithms

The origin of genetic algorithms goes back to the 1950s, when researchers
in biology started to simulate genetic processes using computers [59].
Soon the optimizing character of these processes became obvious. The
basic principle of Evolutionary Algorithm can be compared to Darwin’s
evolutionary theory, which assumes a natural selection, leading to the sur-
vival and reproduction of these individuals which are best adapted to the
ruling environmental conditions ("survival of the fittest").
An Evolutionary Algorithm starts from an arbitrary or randomly cho-
sen initial population, which is a set of candidate solutions in the design
space. For these candidate solutions, a fitness assignment according to the
related objective function value is performed, and based on this assign-
ment the fittest individuals are chosen for reproduction. Reproduction is
based on two operations, crossover and mutation. Crossover is a pure re-
combination procedure and produces a descendant based on the attributes
of two parent individuals, while the mutation operator adds some statisti-
cal noise to the attributes of the descendant [95] [9]. After reproduction,
all descendants are added to the population, and this is how the algorithm
approaches the optimal solution over the generations of descendants.
By combining pure re-combination and mutation, the algorithm produces
the best compromise of the initial population’s attributes, but also the rest
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of the design space is investigated by the stochastic component of the
mutation operator.

3.2.1.3 Particle Swarm Optimization

Particle swarm optimization is a relatively new method of optimization,
which was presented in 1995 by Kennedy, Eberhart and Shi [82]. It is a
method trying to mimic the behaviour of birds or fishes inside a swarm in
order to detect the global optimum of an optimization problem [83].
Similar to genetic algorithms, particle swarm optimization is also based
on a population, which is usually called "the swarm" in this context. Each
candidate solution or particle of the swarm is moving through the design
space following a velocity vector vi, which is computed as a linear com-
bination of
(a) the connection vector from the actual particle position to the "best"
position with respect to the objective function which the particle ever has
reached and
(b) the connection vector from the actual particle position to the "best"
position all particles of the swarm have discovered.
Summarizing, the idea of the algorithm is that each particle does not only
act based on its local knowledge about the design space, but it also profits
from information gained by other members of the swarm.

3.2.2 Methods of first order

In contrast to the methods mentioned in section 3.2.1, methods of 1st order
do not only evaluate the objective function itself, but also the information
provided by the first derivative of the objective or constraint functions.
Compared to zero order function evaluations, which is a pure local infor-
mation about the response function, information of 1st order also gives
information about the actual change of the response function when the
design is varied.
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Using first order information, directions of steepest ascend or steepest
descend of the response function can be determined, as well as directions
where the response function can be assumed not to change at all, as long
as the investigated region is sufficiently close to the point of evaluation.
Making use of this kind of information allows to tremendously reduce the
number of objective function evaluations compared to zero order methods.
The requirements for applying 1st order methods is that the design vari-
ables of the optimization problem behave continuously within the design
space, and that the objective function is C1−continuous. When these con-
ditions are fulfilled, the information of 1st order can be computed for any
design x in the design space.

3.2.3 Methods of higher order

In the previous section, methods of 1st order were introduced, motivated
by a gain of information, which was obtained by taking the first derivative
of the objective function into account. A straight-forward extension of
this approach leads to the development of methods of higher order, which
do not only evaluate first derivatives information of the objective function,
but also higher derivatives of order n.
Very famous methods of higher order are 2nd order methods like Newton
Methods, which also take into account the second order information of
the response function. The second derivatives of the objective function f

are usually collected in the so-called Hesse Matrix:

H(x) =


∂ 2 f (x)
∂x1∂x1

∂ 2 f (x)
∂x1∂x2

... ∂ 2 f (x)
∂x1∂xn

∂ 2 f (x)
∂x2∂x1

∂ 2 f (x)
∂x2∂x2

... ∂ 2 f (x)
∂x2∂xn

...
∂ 2 f (x)
∂xn∂x1

∂ 2 f (x)
∂xn∂x2

... ∂ 2 f (x)
∂xn∂xn

 (3.5)

Newton Methods will be addressed in more detail in chapter 4.
The requirements for applying higher order methods are similar to the
requirements presented for the methods of 1st order. Thus the design vari-
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ables have to be continuous, and the objective function has to be suffi-
ciently smooth. It has to satisfy at least Cn−continuity, in order to provide
the required data over the complete design space.

3.3 Pros and contras of the different methods

Subsequently, pros and contras of the different approaches are compared.
The benefits of methods of zero order are that they are very robust and
may be combined with arbitrary black box software, as the required input
information is reduced to the value of the objective function. This makes
these methods also applicable to a non-continuous design space, where
methods of first or higher order cannot be applied due to the requirements
with respect to continuity mentioned in sections 3.2.2 and 3.2.3. Another
benefit of zero order methods is that usually a population or a set of candi-
date solutions is used, which automatically leads to a broad exploration of
the design space. This increases the likelihood of the method to converge
to the global optimum of the problem.
On the other hand, methods of zero order require a high number of
response function evaluations, especially when a large number of opti-
mization variables is used. At this point, gradient based methods are in
advantage towards zero order methods, as usage of information of first
or higher order reduced the number of necessary objective function eval-
uations tremendously. At the same time, gradient based methods suffer
from the previously mentioned drawbacks, that the objective function has
to be smooth enough to provide the desired information, and, in addition,
the computation of the gradient information requires detailed knowledge
about the response function and access to the computational framework,
which standard black box computer programs do not provide by default.
An efficient computation of the required derivatives is a key feature to
first or higher order methods. In sections 5.4 and 5.5, important aspects
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considering numerical efficiency of the computation of response function
derivatives are discussed.

3.4 Conclusion and selection of optimization strategy

In the context of this thesis, an optimization approach based on a finite
element analysis will be used, that supersedes the necessity of a separate
model in order to define design parameters (detailed information will be
given in chapter 5). While providing a maximum of freedom in design,
this approach leads to a large number of optimization variables. Thereby
the number of design parameters is equal to the number of finite elements
or finite element nodes, so 10,000 to 100,000 design parameters are eas-
ily reached for usual applications. Following the considerations in section
3.3, a zero order optimization strategy would not be suitable for these
kinds of problems, due to the large number of required objective func-
tion evaluations. The problems of consideration are sufficiently smooth,
such that methods of first or second order can be applied. As compu-
tations are performed in a self-developed software framework providing
full source-code access, derivatives of objective functions can be com-
puted efficiently and with high accuracy. However, computation of higher
order information based on a finite element model would be time consum-
ing and numerically disputable, as already first order information requires
special treatment, which will be discussed in proceeding chapters.
For these reasons, this work will focus on the usage of first order opti-
mization strategies.
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CHAPTER 4

Gradient based optimization

4.1 Classification

In context of this thesis, gradient based optimization is used as a collective
term for all kind of optimization algorithms where the first or second order
derivatives are taken into account.

4.2 Unconstrained optimization

4.2.1 Optimality criteria

Unconstrained optimization is the most simple case of an optimization
problem. In this case, there are no restrictions defined which shrink the
feasible set. Consequently the feasible set is equal to the design space.

Ω = D (4.1)

Furthermore, we now assume that f is C1-continuous in D. Based on this
assumption, the necessary condition for f being minimal in x0 is that all
first partial derivatives at this point arise to be zero.

∂ f
∂xi

= 0 ∀ i ∈ {1, ...,n} (4.2)
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Usually the first partial derivatives of a function are collected in the gra-
dient vector. Usage of the gradient vector allows to reformulated the opti-
mality condition as

∇ f (x) =
[

∂ f
∂x1

∂ f
∂x2

...
∂ f
∂xn

]T

= 0 (4.3)

A sufficient condition can be formulated for C2-continuous functions, by
adding the additional requirement for the Hesse Matrix to be positive def-
inite.

4.2.2 Solution methods

4.2.2.1 Newton Methods

"The Newton Method is a cornerstone of numerics and it can be used for
solving nonlinear systems of equations as well as for minimizing nonlin-
ear functions." (from Ulbrich [126], translated by the author) In order to
determine the unconstrained optimum, the nonlinear system of equations
presented in equation 4.3 has to be solved. The Newton Method is a classi-
cal and very successful method to solve this kind of problem. It performs
an approximation of the original problem using a linear Taylor series.
Solving this linear problem provides an improved approximate solution
of the initial problem. By solving these of linearized problems iteratively,
the Newton Method approaches the solution of the initial problem [48].
Applied to equation 4.3, the corresponding iteration scheme reads

∇ f
(
xi)+∇

(
∇ f
(
xi))︸ ︷︷ ︸

H(xi)

·∆x = 0 (4.4a)

xi+1 = xi +∆x (4.4b)

where i denotes the current iteration, and xi is the approximated solution
vector in the ith iteration. The approximate solution for the evaluations for
the next iteration step is computed according to equation 4.4b.
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Linearization of equation 4.3 leads to second derivatives of the objective
function f , collected in the Hesse Matrix H, hence Newton Methods belng
to optimization strategies of second order.
The necessity to compute the second order information is a drawback of
the Newton Method. In cases where, for example, the function f is not
known in an analytical form but only can be evaluated numerically, the
computation of second order derivatives may become very time consum-
ing or even impossible. In order to overcome this drawback, so-called
Quasi-Newton-Methods have been developed, which perform an approx-
imation of the Hessian matrix or even the inverse Hessian matrix, as in
fact the inverse matrix is needed in order to compute the incremental vec-
tor ∆x. One very popular Quasi-Newton-Method is the so-called BFGS-
Method, which was developed in 1970 by the mathematicians Broyden
[33], Fletcher [57], Goldfarb [64] and Shanno [114] independently from
each other.

4.2.2.2 Descent methods

Another method to overcome the problems of the classical Newton
Method is to completely neglect the second order information and apply
pure descent methods or algorithms of first order, which only use gradi-
ent information only in order to determine the function minimum. For
this purpose, we do not focus on the multi-dimensional optimality criteria
from equation 4.3 directly, but the optimization procedure is considered
a sequence of one-dimensional optimization problems with respect to a
chosen search direction. Metaphorically speaking, the algorithm starts at
a given point x in D and "moves" through the design space along a cho-
sen search direction vector s as long as the function value decreases in
direction s. This one-dimensional optimization problem (also called line

search) determines a step-length parameter α such that the total derivative
of f at point x+α · s in direction of s vanishes:
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[∇ f (x+α · s)]T · s = 0 (4.5)

Assuming s to be a descent direction such that
[
si]T ·∇ f

(
xi) < 0 [126],

the step length determined in the line search has to be strictly positive.

α > 0 (4.6)

The optimal point found for the current search direction si is used as start-
ing point for the next optimization iteration i+1,

xi+1 = xi +α · si (4.7)

and the procedure is repeated until the optimum point is reached. Figure
4.1 shows a corresponding pseudo code.

choose a starting point x0;
i = 0;
converged = false;
while not converged do

choose descent direction s at point xi;
1D minimization along s:

[
∇ f
(
xi +α · s

)]T · s = 0 (solve for
α > 0) ;
Update x for next iteration: xi+1 = xi +α · s;
if ∇ f

(
xi+1

)
= 0 then

converged = true;
end
i = i+1;

end

Figure 4.1: Optimization algorithm for a general descend method

It is obvious that a good choice of the search direction is the key issue
of this procedure. An arbitrary chosen descent direction already leads to
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a decrease of the objective function, but of course a more sophisticated
choice of the search direction has to be made. In order to obtain the most
rapid decrease of f along the search direction, it is appropriate to choose
a search direction which is parallel to the gradient vector. This is done in
the steepest descent method, where the search direction is chosen as the
negative gradient [100].

si =−∇ f
(
xi) (4.8)

A characteristic property of steepest descent is that search directions of
following iteration steps are orthogonal to each other,(

si+1)T · si = 0 (4.9)

as equation 4.5 holds and the new search direction will be chosen as
si+1 = −∇ f

(
xi +α i · si

)
. As a consequence, steepest descent shows a

very good convergence behaviour as long as the eigen values of the Hes-
sian are identical. Thus, "optimality" which was reached with respect to
one search direction is not destroyed by any further optimization step [8].
Otherwise interaction of search directions slows down the convergence
rate of the steepest descent algorithm. This can be seen by looking at the
orthogonality of search directions with respect to the Hessian matrix of f ,(

si)T ·H · s j 6= 0, i 6= j (4.10)

which is not fulfilled in general for steepest descent search directions.
In order to maintain a high rate of convergence also for objective func-
tions with badly conditioned Hesse Matrices, Fletcher and Reeves [58]
published a method of conjugated gradients (CG), which takes previous
search directions into account in order to compute a new one. By this
mean, search directions are not orthogonal to each other anymore, but sat-
isfy equation 4.10. Hence it can be proven that the CG method converges
to the minimum in n steps for quadratic objective functions f : Rn → R.
[8]
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Equation 4.11 shows the computation of the ith search direction depending
on the previous one according to Fletcher and Reeves [58].

si =−∇ f
(
xi)+β · si−1

β =
∇ f
(
xi
)T ·∇ f

(
xi
)

∇ f (xi−1)T ·∇ f (xi−1)

(4.11)

In figure 4.2, the convergence behaviour of different descent methods is
compared for the function f (x,y) = x2 + 4 · y2. The left picture shows
that even a method using a randomly chosen search direction satisfying[
si]T ·∇ f

(
xi)< 0 converges to the optimum, as the 1D optimization pro-

cedure reduces the objective value in every single step, but the speed of
convergence is very slow and the convergence behaviour appears arbitrary.
The steepest descent method shows the "zick-zacking" which typically
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Figure 4.2: Comparison of descent methods. Left: Randomly chosen
search directions, Center: Steepest Descent, Right: Conjugate Gradient

appears for problems with a badly conditioned Hesse Matrix, and it can
be seen that search directions are orthogonal to each other. In contrast, for
the CG method the search directions are not orthogonal, but H-orthogonal
according to equation 4.10. As a consequence, the procedure converges
as expected in the second step as a two-dimensional quadratic problem is
considered.
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4.3 Constrained optimization

4.3.1 Definition of constraints

The concept of constraint optimization was already briefly discussed in
section 3.1, when the idea of the feasible set was introduced. The feasible
set was defined in a very abstract way, as a sub set of the design space,
Ω⊆D. In applied optimization, the definition of the feasible set is usually
done by adding additional equations or inequalities to the optimization
problem, so-called equality or inequality constraint functions, which a
x ∈Ω has to fulfill. Using the vectors of constraint functions g and h, the
abstract formulation of the constrained optimization problem (equation
3.3) can be written in the following form:

min f (x)

st

g(x)≤ 0

h(x) = 0

(4.12)

4.3.2 Lagrange function

The idea of the Lagrange function is to transfer a constrained optimiza-
tion into a unconstrained problem and to determine a gradient based opti-
mality criteria for the general constrained optimization problem, similar
to equation 4.3. In order to explain the idea of the Lagrangian formu-
lation, we consider the following two-dimensional optimization problem
of a quadratic function under consideration of a linear equality constraint
(illustrated in figure 4.3):

min f ; f :
(
R2→ R

)
st

h : a · x+b− y = 0

(4.13)
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Figure 4.3: Example of constrained optimization

In order to solve this problem, a one dimensional optimization along the
zero contour line of the constraint function (which is given by the vector
s in figure 4.3) is performed, as it was described in section 4.2. For this
problem, the one dimensional optimization will lead directly to the con-
strained optimum, as the feasible set is given by the linear contour line
h = 0. Thus the following condition can be formulated for the optimum
of this constrained problem,[

sT ·∇ f

h

]
= 0 (4.14)

whereat the first line specifies the optimality of the point under investiga-
tion, and the second line guarantees its feasibility.
As the contour line direction s is normal to the gradient of the constraint
∇h, the orthogonality condition in equation 4.14 can be replaced by the
condition that ∇h and ∇ f have to be collinear at the constrained optimum,
where µ is the collinearity factor: µ · ∂h

∂x +
∂ f
∂x

µ · ∂h
∂y +

∂ f
∂y

h

= 0 (4.15)
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A generalized derivation of this optimality condition, based on the idea
of using tangential cones in order to describe the feasible domain, can be
found in Ulbrich [126].
Computing the potential of equation 4.15 leads to the so-called Lagrange
function L(x,y,µ) = f + µ · h, and the optimality criteria from equation
4.15 can be formulated via the gradient of L with respect to x, y and µ: µ · ∂h

∂x +
∂ f
∂x

µ · ∂h
∂y +

∂ f
∂y

h

= ∇x,µ L = 0 (4.16)

Applying this approach to a general constrained optimization prob-
lem with arbitrary numbers of equality and inequality constraints, the
Lagrange function can be formulated in the following form [101]:

L(x,µ,λ,τ ) = f (x)+µ ·h(x)+∑
i

λi ·
(
gi (x)+ τ

2
i
)

(4.17)

τ2
i represents the so-called slack variables, which allow to treat inequality

constraints similar to equality constraints.
The values µ and λ represent the so-called Lagrange multipliers, which
represent the ratio between the gradients of constraints and the objective
function at the optimum point, as it can be seen in equation 4.15 for the
simple example. Alternatively, the design variables x are also called pri-

mal variables, whereas the multipliers µ and λ are referred to as dual

variables.
Computing the second derivatives of the Lagrange function, we observe
that ∂ 2L

∂µ2 = 0 and ∂ 2L
∂λ2 = 0. Accordingly the Hessian matrix of the

Lagrange function will be indefinite, which means that the Lagrangian
forms a saddle surface in the space of primal and dual variables.
The general first order necessary optimality criteria (FONC) [11] of the
constrained optimization problem now can be formulated, according to
equation 4.16, by the requirement of all first partial derivatives of the
Lagrange function to evaluate to zero (equation 4.18).
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∇x,µ,λ,τL =



∂L
∂x1
...

∂L
∂xn
∂L

∂ µ1
...

∂L
∂ µk
∂L
∂λ1
...

∂L
∂λl
∂L
∂τ1
...

∂L
∂τl



=



∂ f
∂x1

+∑
k
j=1

∂h j
∂x1
·µ j +∑

l
j=1

∂g j
∂x1
·λ j

...
∂ f
∂xn

+∑
k
j=1

∂h j
∂xn
·µ j +∑

l
j=1

∂g j
∂xn
·λ j

h1
...

hk

g1 + τ2
1

...
gl + τ2

l

2 ·λ1 · τ1
...

2 ·λl · τl



= 0

(4.18)

4.3.3 Interpretation of Lagrange multipliers

At the beginning of section 4.3.2, we considered an optimization problem
which was constrained by one equality constraint. In that case, the con-
strained optimum was defined by the gradient of the objective ∇ f being
collinear to the gradient of the constraint ∇h, and the Lagrange multiplier
µ turned out to be the collinearity factor of these two vectors. Now, the
interaction of several constraints and the special role of inequality con-
straints will be addressed.
Equation 4.18 consists of two parts. The first part, which contains the
derivatives with respect to the primal variables, enforces a point to be
optimal, while the derivatives with respect to the dual variables in the sec-
ond part enforce the constraints to be active. Assuming that all constraints
are active and just considering the first part of equation 4.18, the negative
gradient of the response function can be displayed as a linear combination
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of the gradients of the active constraints, where the Lagrange multipliers
form the linear combination factors. This can be interpreted as a basis
change, where −∇ f is transferred to the basis defined by the gradients of
active constraints {∇g1,∇g2, ...,∇gn}, and the Lagrange multipliers form
the new components of −∇ f .

−∇ f =
n

∑
j=1

∇g j ·λ j (4.19)

Figure 4.4 illustrates this situation, using a linear objective function and
two linear inequality constraints in a two dimensional design space. A
graphical examination shows that both Lagrange multipliers turn out to
be positive when expressing −∇ f with respect to the basis {∇g1,∇g2}

g1=0 g2=0

∇g2 ·λ2

λ1,λ2 > 0

∇g1 ·λ1

−∇ f

−∇ f

feasible domain

Figure 4.4: Positive Lagrange
multipliers: Constrained opti-
mum defined

g2=0
−∇ f

∇g2

λ1 > 0;λ2 < 0
−∇ f

∇g1

∇g2 ·λ2

∇g1 ·λ1

g1=0

feasible domain

n

Figure 4.5: One Lagrange multi-
plier negative: No optimum

and the displayed situation represents a constrained optimum. In contrast,
figure 4.5 shows a similar situation where equation 4.19 leads to a positive
and a negative Lagrange multiplier, λ1 > 0,λ2 < 0. As a consequence, the
vector n = λ2 ·∇g1 +(−λ1) ·∇g2, which is normal to ∇ f , 1 only consists
of negative coefficients with respect to the basis {∇g1,∇g2}. Accordingly
any movement in direction of n decreases both equality constraints, and
both constraints become in-active, while the value of f remains constant.
This makes the investigated point a non-optimal point.

1assuming {∇g1,∇g2} form an orthonormal basis
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In summary, these examples show that Lagrange multipliers associated
to inequality constraints always have to be non-negative at the optimum
point [96]. For equality constraints, of course, this condition does not
hold, because the constraint equation can be arbitrarily scaled without
influencing the feasible set or the optimum solution.

4.3.4 Karush-Kuhn-Tucker conditions

The awareness gained in the last section is combined with the optimality
criteria shown in equation 4.18 now. This equation does not yet con-
sider any additional conditions regarding inequality constraints, meaning
all constraints are assumed to be active at the optimum. As an equality
constraint can be inactive at the optimum and so it does not effect the
solution, equation 4.18 has to be modified in order to get a general gradi-
ent based optimality criteria. For this purpose, inequality constraints are
separated into two groups:

• inactive inequality constraint: gi < 0,λi = 0

• active inequality constraint: gi = 0,λi > 0

As a consequence, it is ensured that the product of inequality constraint
value times Lagrange multiplier is always equal to zero, no matter if the
constraint is active or not. Using this property, equation 4.18 can be re-
formulated to the following form:

∂L
∂x

= 0

h j = 0

gi ·λi = 0 with λi ≥ 0, gi ≤ 0

(4.20)

This equation is called Karush-Kuhn-Tucker-condition (KKT), named
after the mathematicians Harold Kuhn and Albert Tucker, who published
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the idea of the necessary condition in 1951 [85]. Later it turned out that
William Karush already worked in this field in 1939 [80].
The difference to the previous version in equation 4.18 is, that now inac-
tive inequality constraints can be considered in the formulation, too, and
that the non-negativity of Lagrange multipliers associated to inequality
constraints is part of the formulation.

4.3.5 Solution methods

There are several approaches to solve the constrained optimization prob-
lem. A selection of commonly used approaches is briefly presented in this
section.

4.3.5.1 Newton-Lagrange Methods and Sequential Quadratic Program-
ming (SQP)

The Newton-Lagrange Method is a quite obvious approach to solve the
constrained optimization problem. Similar to the Newton Method applied
to unconstrained problems (see section 4.2.2.1), it solves the nonlinear
equation representing the optimality condition by applying the Newton
Method. As the straight forward application of the Newton Method
requires knowledge about the set of active constraints at the optimum, the
Newton-Lagrange Method in its basic form usually is applied to equality
constrained problems [126]. The corresponding linearization reads

[
∂L(xi,µi,λi)

∂x
h
(
xi
) ]

+

 ∂ 2L(xi,µi,λi)
∂x2

∂h(xi)
∂x[

∂h(xi)
∂x

]T

0

 ·[ ∆x
∆µ

]
= 0 (4.21)

where i again is the iteration counter, and design as well as the Lagrange
multipliers are updated similar to the Newton Method by xi+1 = xi +∆x
or µ i+1 = µ i +∆µ .
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In case inequality constraints are involved and it is not known which con-
straints will become active, usually an auxiliary sequence of quadratic
optimization problems is generated (Sequential Quadratic Programming).
For this purpose, response and constraint functions are evaluated at a spe-
cific point, and a quadratic approximation of the response function and lin-
ear approximations of the active constraints ("active set") are performed.
This auxiliary quadratic problem

min
d f

(
xi)+dT ·

∂ f
(
xi
)

∂x
+

1
2
·dT ·

∂L
(
xi,µi,λi

)
∂x

·d

st h
(
xi)+dT ·

∂h
(
xi
)

∂x
= 0; g

(
xi)+dT ·

∂g
(
xi
)

∂x
≤ 0

(4.22)

is minimized iteratively, and a new active set is chosen for the next
quadratic approximation [31].

4.3.5.2 Penalty methods

Penalty methods solve the constrained optimization problem without con-
sideration of a Lagrange function or Karush-Kuhn-Tucker conditions.
Instead, it penalizes violations of constraints. By this mean, an auxiliary
objective function fpen is generated, which can be solved as an uncon-
strained problem. A frequently used penalization method is the so-called
quadratic exterior penalization [10], which adds quadratic penalization
terms for violated constraints to the objective function

fpen = f +ρ ·∑
i

h2
i +ρ ·∑

i
max

{
0
gi

}2

(4.23)

Here, ρ is a penalty factor, weighting the added penalization terms. A
benefit of this method is that it is very robust, but the drawback is that the
constrained optimum only can be found theoretically by using an infinite
large penalty factor. Consequently, the approximated solution will always
be located outside the feasible domain for numerically reasonable penalty
factors. Furthermore, the unconstrained minimization problem min fpen

tends to be ill-conditioned for large penalty factors [11].

38



CHAPTER 4. GRADIENT BASED OPTIMIZATION

4.3.5.3 Dual methods

As it was already described in section 4.3.2, the Lagrange function
describes a saddle surface in the space of primal and dual variables, where
the solution of the constrained problem according to equation 4.18 is given
by the saddle point of this surface. Due to this property, the constrained
optimum cannot be found by applying a simple descent method like steep-
est descent or CG to the Lagrange function, as the solution is defined by
a stationary point ∇L = 0, which is not a local minimum.
The idea of dual methods is to determine the saddle point using a stag-
gered optimization scheme which

• minimizes the Lagrange function with respect to the primal vari-
ables x (inner problem) and

• maximizes the Lagrange function with respect to the dual variables
µ and λ (outer problem) [11]

and approaches the saddle point iteratively.
The benefit of the dual approach is that, in contrast to the penalty
approach, the optimum solution can be determined exactly, as it deter-
mines the Karush-Kuhn-Tucker point. The drawback is that convergence
of the staggered optimization approach cannot be guaranteed in general.

4.3.5.4 Augmented Lagrangian Method (ALM)

The Augmented Lagrangian Method combines the idea of the dual method
with a penalty approach in order to overcome the drawbacks of both meth-
ods, and so to formulate an optimization method which is guaranteed to
converge and able to find the exact optimum for a finite penalty factor
[96]. The ALM was discussed the first time in 1969 by Hestenes [71] and
Powell [106].
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The Augmented Lagrangian objective function LALM can be formulated in
the following way

LALM = f +∑
i

[
hi ·µi +

1
2
·ρ ·h2

i

]
+

+∑
i

{
gi ·λi +

1
2 ·ρ ·g

2
i , gi +

λi
ρ
≥ 0

− 1
2·ρ ·λ

2
i , gi +

λi
ρ
< 0

} (4.24)

where the terms related to the dual variable λ and µ are inherited from the
dual approach, and the terms multiplied with the penalty factor ρ show the
components coming from the penalty approach.
Optimization again is done in a staggered way, as it was described for the
dual method. In each iteration step k a minimization with respect to x is
performed

min
x LALM

(
x,µk,λk

)
(4.25)

and afterwards the dual variables are updated

µ
k+1
i = µ

k
i +ρ ·hi (x)

λ
k+1
i = λ

k
i +ρ ·max

{
0

gi (x)

}
(4.26)

representing the outer maximization problem with respect to the dual vari-
ables.

4.4 Applied algorithms

The numerical examples presented in this thesis are solved using either
a conjugated gradient or an augmented lagrangian algorithm, depending
on if a unconstrained or constrained optimization problem is considered.
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CHAPTER 5
Concept of parameter free Shape

Optimization

5.1 Branches of Structural Optimization

Structural Optimization is a very broad field with a multiplicity of pos-
sible applications. Sub-disciplines inside Structural Optimization can be
defined and identified by distinguishing between different types of design
parameters (see figure 5.1). In order to be able to delimit these disciplines

Degree of abstractness

low medium high

Necessary knowledge about structure

high medium low

Figure 5.1: Different branches of Structural Optimization
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against each other, two terms have to be defined which are used in order
to describe a structure:
The topology of a structure is defined the type and connectivity of the
structural members the structure consists of, such as trusses, beams, or
plate components. For discrete or discretized structures, these members
are connected at nodes.
The shape of a discrete or discretized structure is defined by the position
of its nodes and the underlying topology.
Using these terms, the optimization disciplines illustrated in figure 5.1
easily can be delimited:

In Sizing Optimization, the shape of a structure and also the underlying
topology is determined and remains unchanged. Only non-shape deter-
mining parameters are in focus of optimization. These parameters are
usually cross section parameters like wall or plate thicknesses, pipe diam-
eter or beam heights.
In contrast, Topology Optimization does not implicate any restricting
boundary conditions with respect to shape or topology of the structure.
The optimization problem is defined by a design space and boundary con-
ditions, and the optimizer is completely free in finding a topology and a
shape being optimal with respect to the chosen objective function for the
given boundary conditions.
Shape Optimization works on a topologically fixed structure, whose shape
is modified by moving the intersecting nodes of the structural members.
Shape optimization includes sizing optimization.

This thesis focuses on shape optimization and its challenges of controlling
shape and sizing parameters in a finite element attributed parametrization
scheme.
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5.2 Shape modification and design parametrization1

For the numerical treatment of problems in shape optimization, adequate
parametrization of the design space is necessary. A meanwhile classical
way of parameterizing design is to apply an extra CAD-model as a design
model [97] [86]. This is a self-evident parametrization approach, as the
CAD-model used for standard product engineering can be used in order
to derive the parametrized optimization CAD-model [68] [112]. The idea
of using NURBS or Bezier functions based shape descriptions in order to
parametrize an optimization model is state of the art [28] [136]. Another
classical parametrization approach is the usage of morphing boxes. Mor-
phing is a technology which is originated in image manipulation. Thereby
pixel clusters representing an images are warped using smooth thin plate
splines (TPS) of minimum bending [117], whereat the deformation is con-
trolled via a set of selected control points [37]. In the optimization context,
this spline-based warping is used in order to control the shape of a finite
element model instead of an image. So, design modifications can be reg-
ulated via the movement of the chosen control points [68].
In contrast, this thesis uses a node based parametrization approach. This
approach defines optimization parameters directly on the finite element
mesh which is used for structural analysis. A separate model for design
parametrization is not necessary. Therefore, the name "parameter free" in
the sense of "free of additional design parameters" became conventional.
Now, the parameters for shape design are the coordinates of each finite
element node or vertex in the context of this thesis [56] [72].
This finite element attributed parametrization concept is not reduced to
shape determining parameters only. In principle, all parameters which
can be identified in a finite element model can be used as design parame-
ters directly, whereby this parametrization approach is also used for sizing
optimization in this thesis. In the following explanations of this chapter,

1Parts of this section have been pre-published in Masching, Bletzinger [90]
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the theory behind the parameter free optimization concept will be dis-
cussed focusing on shape determining parameters, as they bring up the
major challenges with respect to design control.

θ2,1
θ1,1

θ3,1

θ1,3

θ3,3

θ2,3

θ2,2

θ1,2

θ3,2 1©

3©

2©

Figure 5.2: Example of finite ele-
ment based definition of shape
determining design variables

regularization movement (in-plane)
for maintaining mesh quality

design change (out-of-plane)

Figure 5.3: Design modification
and regularization movement

Figure 5.2 shows an example of a finite element mesh for a curved sur-
face, where at three nodes design parameters for shape optimization are
visualized. For this purpose, at each node i an attendant coordinate sys-
tem with the base vectors θ1,i,θ2,i,θ3,i is defined, with θ1,i and θ2,i being
tangential vectors and θ3,i being the normal vector to the surface. The
coordinates t3,i in normal directions θ3,i are considered design parameters
for shape modification. At a regular node in the interior of the surface,
a tangential movement of the node affects the mesh quality, but not the
shape. Therefore, tangential coordinates t1,i and t2,i are adapted by sec-
ondary arguments to guarantee good mesh quality. Regularization tech-
niques for shape equality control in shape optimization were developed
by eg. Firl, Wüchner, Bletzinger [54], Bletzinger et al [29], Stavropoulou,
Hojjat, Bletzinger [121], Hojjat, Stavropoulou, Bletzinger [72] or Scherer,
Denzer, Steinmann [110] among others. Figure 5.3 shows a one-node
out-of-plane design change and the related in-plane regularization move-
ments.
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Knowledge about surface normal directions allows to compute the sensi-
tivity pi of a response function f with respect to the shape modification at
the considered node i by computing the total differential of the response
in direction θ3,i:

pi = (∇ f )T ·θ3,i (5.1)

Here, ∇ f is to be understood as the derivative of f with respect to the
global Cartesian coordinates x of node i. The term pi is identified as the
discrete equivalent at node i of the continuous shape derivative. Math-
ematical literature about computation of shape gradients and shape cal-
culus can be found in Delfour, Zolésio [47], Haslinger, Mäkinen [69] or
Sokolowski, Zolésio [118].

5.3 Shape and design control

5.3.1 Theory of shape control in node based vertex morphing2

Goal of this section is to present the underlying theory of the node based
vertex morphing method using discrete nodal parameters. On this way,
we start from a continuous formulation and will discretize later on.
We consider a surface Ω in space and related surface coordinates ξ ∈
R2 which eventually are called material coordinates as well. The surface
geometry is given by the spatial coordinates x = x(ξ ) in R3. The field
t3 ∈R is the field of coordinates in normal direction at every surface point
ξ . The normal defines the direction of shape evolution at surface point ξ .
Additionally, we consider a control field s(ξ )∈R. The normal coordinate
t3 at a surface point ξi is linked to s through the kernel filter function
F (ξ ,ξi) and the convolution integral over the surface Ω:

2Parts of this section have been pre-published in Masching, Bletzinger [90]
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t3 (ξi) =
∫
Ω

F (ξ ,ξi) · s(ξ )dξ

∫
Ω

F (ξ ,ξi)dξ = 1
(5.2)

The shape optimization is driven by the manipulation of the control field
s. To that end we define the shape optimization problem as:

min f (s,u)

u = u(s) from S (s,u) = 0
(5.3)

where f is the objective as a function of the control field s and u which
are the fields of state variables, e.g. the displacement fields in R3, and S

is the state equation. Eventually, the optimization problem is enhanced
by further constraints. Regarding the actual goal of explaining the shape
control techniques and for the sake of simplicity they do not have to be
considered.
The derivative of the objective f with respect to the design control field s

is determined by following chain rule of differentiation:

d f
ds

=
∫
Ω

d f
dt3
· dt3

ds
dξ =

∫
Ω

p · dt3
ds

dξ (5.4)

where the shape derivative p is the derivative of the objective with respect
to the normal coordinates considering shape variations in the surface nor-
mal direction. Furthermore, evaluation of d f

ds at position ξi yields

d f
ds

(ξi) =
∫
Ω

p(ξ ) ·F (ξi,ξ )dξ (5.5)

We observe that derivatives are treated with the transpose filter operation
as compared to the filtering of the normal coordinates t3. Of course, in the
case of symmetric filter functions it holds

F (ξi,ξ ) = F (ξ ,ξi) (5.6)
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Typically, a piecewise linear hat-function of C0-continuity is used as a
filter kernel function F (ξ ,ξi). This function can be written in the form

F (ξ ,ξ0,R) =
1

R2 ·



0 ξ < ξ0−R

ξ +(R−ξ0) ξ0−R≤ ξ < ξ0

−ξ +(R+ξ0) ξ0 ≤ ξ < ξ0 +R

0 ξ ≥ ξ0 +R


(5.7)

where R is a parameter set by the user, defining the filter radius, and ξ0 is
the center position of the filter. Figure 5.4 shows the filter function F for
chosen parameters R = 0.5 and ξ0 = 0.3.

ξ

ξ0 = 0.3

R=0.5

F (ξ ,0.3,0.5)

Figure 5.4: Example for filter function F in 1D

In context of finite element analysis, geometry x and design control field s

will be discretized. Let us assume that both are discretized using the same
mesh and shape functions N j (ξ ). Consequently, within the finite element
it holds:

s(ξ ) =
n

∑
j=1

N j (ξ ) · s j (5.8)

where n is the number of nodes of an element and s j denotes the discrete
control value at node j.
Applying equation 5.8 to equation 5.2 gives

t3 (ξi) =
n

∑
j=1

∫
Ω

F (ξ ,ξi) ·N j (ξ )dξ

s j (5.9)
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from which we can derive the discrete filter operator matrix B which
relates the discrete nodal control numbers s j and the normal coordinates
t3,i at every node:

t3 (ξi) = t3,i =
n

∑
j=1

Bi j · s j

Bi j =
∫
Ω

F (ξ ,ξi) ·N j (ξ )dξ

(5.10)

For the derivatives it holds:

d f
dsi

=
d f

dt3, j
·B ji = BT

i j ·
d f

dt3, j
= BT

i j · p j (5.11)

Collecting all nodal control parameters and normal coordinates in vectors
s and t3, respectively, we get

t3 = B · s
d f
ds

= BT ·p
(5.12)

As there are as many discrete parameters for p as well as t3, the matrix
B is quadratic. For typical filter functions, e.g. the simple hat function,
B is positive definite and, additionally, for regular element meshes B is
symmetric. Hence matrix B describes a pure parameter transformation,
which does not reduce the dimension of the design space. Thus, the orig-
inal properties of the optimization problem are maintained, such that an
optimum determined using the transformation is also an optimum of the
original minimization problem.
For the most practical cases with fine meshes and moderately varying
mesh density B can be approximated to be symmetric.
Considering gradient or quasi Newton methods, it appears that the control
parameters s may be substituted. The quadratic approximation of f is
given by f̃ , where Hα are the matrices of second derivatives with respect
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to α , which is either the control parameters s or the normal coordinates
t3:

f̃ = f +
d f
ds

T
·∆s+

1
2
·∆sT ·Hs ·∆s =

= f +pT ·B ·∆s+
1
2
·∆sT ·B ·Ht3 ·B

T ·∆s
(5.13)

From equation 5.13 together with equation 5.12 the update ∆t3 of nodal
coordinates can be derived as

∆s =−
(
BT ·Ht3 ·B

)−1 ·BT ·p

∆t3 =−B ·
(
BT ·Ht3 ·B

)−1 ·BT ·p
(5.14)

From a practical point of view it appears that the control parameters must
not be considered when the method is coded. As equation 5.12 holds,
considerations can be reduced to the design update ∆t3 and the operator B
for implementation purpose.
Furthermore, on the line of quasi Newton methods, equation 5.14 may be
modified as

∆t3 =−α ·B ·BT ·p

or ∆t3 =−α ·B ·p =−α · p̃
(5.15)

where α is a line search factor. Indeed, the normal coordinates t3 may be
updated by means of applying the filter once or twice to the shape deriva-
tive p. Since B is positive definite it is guaranteed that descend directions
are generated. Numerical experience shows that both alternatives of equa-
tion 5.15 can be used very efficiently for very large problems together with
steepest descent or conjugate gradient methods for unconstrained and con-
strained problems [25] [72]. The second variant of equation 5.15 meets the
well-known sensitivity filtering techniques. The method is most efficient
together with adjoint methods of sensitivity analysis.
The matrix B allows for deeper insight into the method. However, it must
never be evaluated or stored. Instead, regarding the second variant of
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equation 5.15 the sensitivity filtering is performed node wise by apply-
ing an alternative numerical integration scheme considering derivatives of
adjacent nodes within the filter radius R:

p̃i =
∑ j F (ξ j,ξi) · p j

∑ j F (ξ j,ξi)
(5.16)

Indeed, the sensitivity filtering (equation 5.16) is equivalent to techniques
which are applied in topology optimization by the SIMP method [20].
Typically, symmetric hat filters are used.
The procedure can be interpreted in different ways. From the mathemat-
ical point of view, it is a smoothing operation typically introduced for
regularization [103] [77]. In the context of structural shape optimization,
this procedure is commonly interpreted and used as a design tool. It gives
control over the optimization procedure to the user by choice of the filter
radius R as an extra problem parameter. Although the filter cancels out
in the course of optimization - which can be seen from equation 5.14 - it
improves the numerical properties of the optimization problem by provid-
ing smooth geometry updates. On the other hand for non-convex prob-
lems, the choice of the filter radius will decide which local minimum will
be reached at convergence. This is the intended effect of the filter, which
supports the user by exploring the design space, just by simply choosing
different filter radii [25] [72].

5.3.2 Examples

5.3.2.1 Convex optimization problem: Generation of catenary curves

The following example applies the presented filtering scheme to a con-
vex problem of shape optimization. The system under consideration is a
frame structure, subjected to dead load. Objective of the optimization is
minimization of strain energy inside the entire structure, which is a global
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measure for the flexibility and deformability of the structure (formula-
tions of the response function and the sensitivities can be found in A.1.2).
The initial configuration of the system is shown in figure 5.5 with round
"corners" joining the vertical and the horizontal members.

l = 1ux = uy = uz = 0

ux = uy = uz = 0

direction of

gravity h
=

1
Figure 5.5: System of frame under dead weight

For this optimization problem, the well-known catenary curve represents
the optimal shape. In order to ensure a convex optimization problem pos-
sessing a unique solution, an equality constraint with respect to the sys-
tem’s mass is added to the optimization problem. Hence the entire opti-
mization problem can be formulated in the form

min Elin =
1
2
·uT · fext

st

m−m0 = 0

(5.17)

which is solved using the Augmented Lagrangian Method (see section
4.3.5.4).
Optimization is performed using two different filter radii, R = 0.3 and
R = 0.6. The corresponding cross sections of the structure after 10 and 25
optimization steps are compared in figures 5.6 and 5.7. The figures show
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Figure 5.6: Optimization of
frame: comparison of designs
after 10 steps
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Figure 5.7: Optimization of
frame: comparison of designs
after 25 steps

that the designs obtained by the different filter radii severely differ from
each other, especially at the corners of the frame structure. Figure 5.7
clearly shows that the bigger filter radius accelerates the resolving process
of the frame’s corners, while the initial local shape of the corners are
still present in this design stage for the small filter. However, comparing
the converged design for both filter sizes in figure 5.8 reveals that both
optimizations result in the same design, which is the expected shape of a
catenary curve.
This example confirms that the presented sensitivity filtering technique
does not effect the result obtained for convex optimization problems. Nev-
ertheless, the increased smoothness of design updates provided by a larger
filter radius led to an increased speed of shape adaptation in the early opti-
mization phase.

5.3.2.2 Non-convex optimization problem: Optimization of a tunnel shell

In the previous example, the filtering technique was applied to a con-
vex problem of shape optimization in order to prove that the chosen filter

52



CHAPTER 5. CONCEPT OF PARAMETER FREE SHAPE OPTIMIZATION

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

big filter
small filter

Figure 5.8: Optimization of frame: comparison of designs in converged
state (200 optimization steps)

radius does not influence the final design for such problems. Furthermore,
equation 5.14 shows that the filter radius cancels out at all for Newton
Methods, such that an optimum determined using a filter is an optimum
of the initial problem as well, even for non-convex optimization problems.
In order to prove this property of the applied filtering scheme, this exam-
ple considers shape optimization of a snow loaded cylinder shell (figure
5.9) with respect to strain energy. A large Poisson ration of ν = 0.45 is

R = 1.0

L = 2.0
ux = uy = uz = 0

ux = uy = uz = 0

E = 2.1 ·1011

ν = 0.45
Snow load p = 10

Figure 5.9: System of snow loaded tunnel shell

applied, in order to increase the non-convexity of the optimization prob-
lem. Due to Poisson’s effect, the free curved edges of the shell undergo
a deformation which is larger than deformations observed in the center
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region. For this reason, gradient based optimization will start modifying
the shape of the free edges, while the central and more homogeneous part
of the shell is expected to be treated in second rank.
Shape optimization is performed for this problem using filter radii of
R = 0.125, R = 0.25 and R = 0.5. The optimized designs are shown
in figures 5.10, 5.11 and 5.12. Results reveal the expected behaviour,

R = 0.125

Figure 5.10: Optimized design of
tunnel shell, R = 0.125

R = 0.25

Figure 5.11: Optimized design of
tunnel shell, R = 0.25

R = 0.5

Figure 5.12: Optimized design of tunnel shell, R = 0.5

with shape modifications being dominant at the free edges. This prop-
erty is distinct especially for the smallest filter radius, where the edge is
striving for a catenary shape. An increase of the filter radius emphasizes
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shape changes in the center of the structure, leading to severely different
designs, especially for the large filter radius R = 0.5.
Despite their differences with respect to shape, all three designs are
claimed to be optima. In order to check for optimality, the optimality
criteria for the unconstrained optimization problem ∇ f = 0 is evaluated.
Figure 5.13 shows the development of the norm of the objective gradi-
ent over optimization history. It has to be mentioned that in this figure
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Figure 5.13: Tunnel shell: Development of gradient norms

the "pure" gradient information with respect to the design parameters t3

without any filtering is considered. The presented data shows that all
three optimizations, regardless which filter size is used, are converging
to ‖∇ f‖2 = 0⇔ ∇ f = 0, and all three designs can be considered optimal
solutions with respect to the initial optimization problem not including
any filtering.
Although the norms of the gradients do not converge to machine preci-
sion, the remaining gradients in orders of magnitude of ‖∇ f‖2 ≈ 10−2

respectively ‖∇ f‖in f ≈ 10−3 can be considered to define a local optimum
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in context of a finite element based sensitivity analysis. The topic of finite
element based sensitivity analysis will be discussed in the upcoming sec-
tion 5.4.
In summary, the presented designs can be considered optimal solutions of
the pure optimization problem, whereat the filter only was used in order
to guide the optimization algorithm into the radius of convergence of the
corresponding optimum.

5.4 Finite element based sensitivity analysis

The field of sensitivity analysis addresses the issue of computing the effect
of the variation of an input parameter onto an output parameter. In gra-
dient based optimization, sensitivity analysis is used in order to compute
gradients of response functions with respect to the variations of design
parameters. Sensitivity analysis has been an intense field of research for
mathematicians and engineers over the last decades. While this thesis
represents an engineer’s point of view onto the topic, more mathematical
literature can be found under Choi, Kim [39] [40] or Haug, Choi, Komkov
[70], for example.

5.4.1 Different methods of sensitivity analysis

Different types of sensitivity analysis can be distinguished. The most
simple form of sensitivity analysis is the global finite difference method,
which approximates the gradient information of the response by a relative
difference of two evaluations of the response function

∂ f
∂ si
≈ ∆ f

∆si

( f wd)
=

f (∆s+ s,u)− f (s,u)
ε

(5.18a)

∂ f
∂ si
≈ ∆ f

∆si

(cent)
=

f (∆s+ s,u)− f (−∆s+ s,u)
2 · ε

(5.18b)

∆s =

{
∆s j = 0 j 6= i

∆s j = ε j = i

}
(5.18c)

56



CHAPTER 5. CONCEPT OF PARAMETER FREE SHAPE OPTIMIZATION

where ∆s is a vector which applies a finite disturbance ε to the design
parameter for which the gradient value is evaluated. The equation above
shows two different types of finite differences. In equation 5.18a, a so-
called forward finite difference is used, which uses the evaluation of f at
the point of consideration s, and just one disturbance in forward direction
is used. In contrast, in equation 5.18b a central finite difference scheme is
applied, which uses two disturbed evaluations of f , one in forward and one
in backward direction. The different methods will be further discussed in
section 5.4.2.
The advantage of the global finite difference is that it does not contain any
analytical derivative information, which makes it very easy to implement
and quite insusceptible to implementation errors. The drawback is that a
huge number of response function evaluations is necessary, which makes
it impracticable for serious applications, but global finite differencing can
be used as a reference solution.
For more efficient methods of sensitivity analysis, the derivatives of the
response functions are determined analytically and implemented as indi-
vidual functions of s and u. Depending on how far the analytic approach is
followed up, one can further distinguish between analytic sensitivity anal-

ysis and semi-analytic sensitivity analysis. In analytic sensitivity anal-
ysis, the entire sensitivity analysis is performed analytically, whereat in
the semi-analytic approach the analytic procedure is performed until to a
certain extent, and remaining parts of the sensitivity equation are approx-
imated by a finite difference scheme. In this thesis, semi-analytic sensi-
tivity analysis is used, which will be further explained and discussed in
section 5.4.2.
Another classification of sensitivity analysis methods can be done by
grouping them in variational sensitivity analysis and discrete sensitivity

analysis. The difference between these groups is the order of the proceed-
ing steps. While in discrete sensitivity analysis, the response function is
discretized in the first step and then the derivatives with respect to discrete
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parameters are evaluated, the variational method proceeds the other way
round. In this case, the derivatives are computed in a continuous form
and afterwards a discretization method such as finite elements is applied
to the continuous derivates. Within this thesis, discrete formulations are
considered only. Further information about variational sensitivity analysis
can be found in Barthold, Stein [13], Ibrahim, Tiwari [76] or Daoud [46].

5.4.2 Semi-analytic sensitivity analysis

5.4.2.1 Computing semi-analytic sensitivities

As already mentioned in the previous section, a semi-analytic approach is
used in order to compute sensitivities within this thesis. In this approach,
response functions are differentiated analytically until element level. But
instead of now deriving element entities, such as stiffness or internal
forces, analytically, a finite difference scheme is used in order to approxi-
mate these derivatives.
This approach will be explained considering the sensitivity of the determi-
nant of a system stiffness matrix K with respect to the design parameters s.
According to Jacobi’s formula [18], the sensitivity with respect to design
variable si can be written as

∂det (K(s))
∂ si

= det (K(s)) · trace
(

K(s)−1 · ∂K(s)
∂ si

)
(5.19)

assuming our system to be sufficiently supported such that K−1 exists.
The system stiffness matrix K is a global variable, which is generated by
assembling over all element matrices ke in the computational domain

K = A
all

ke (5.20)

with A being the assembly operator. At this point, the derived stiffness
matrix ∂K

∂ s behaves differently. As the modification of a design parameter,
such as a nodal position, influences only a small number of neighboring
finite elements, just the stiffness of these elements will be changed, while
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ds

∂ke

∂ s = 0

∂ke

∂ s 6= 0, influenced elements

Figure 5.14: Elements influenced by a design modification ds, using the
example of an in-plane design modification

the main part of the finite element domain remains unaffected. Figure
5.14 illustrates the located effect of such a design modification on a plate
in plane stress/strain, so ds is an in-plane design modifcation. Accord-
ingly, it is sufficient to assemble over a quite small number of influenced
finite elements when computing the derived stiffness matrix, as for the
unaffected elements the derived element stiffness ∂ke

∂ s turns out to be zero.
Hence the assembling procedure for the derived stiffness matrix can be
reduced to the small quantity of influenced elements infl:

∂K
∂ s

= A
infl

∂ke

∂ s
(5.21)

So far, all computations have been performed analytically, and equations
5.19, 5.20 and 5.21 do not contain any approximations. The idea of the
semi-analytic sensitivity is, that at this point the evaluation of analytical
derivatives of element specific quantities like ∂ke

∂ s is avoided by replacing
them using a finite differencing scheme according to equations 5.18a or
5.18b

∂K
∂ s
≈ A

infl

∆ke

∆s

( f wd)
≈ A

infl

∆ke

∆s

(cent)
(5.22)

In contrast to the global finite difference approach, it is not necessary to re-
evaluate the entire objective function in the disturbed state ∆s+s, but only
the stiffness matrices of the elements influenced by the design variable.
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Using equations 5.19, 5.21 and 5.22, the final formulations of the analytic
(equation 5.23) and the semi-analytic sensitivities (equation 5.24) can be
formulated, whereby (x) denotes the chosen finite differencing scheme.

∂det (K(s))
∂ s

= det (K(s)) · trace
(

K(s)−1 · A
infl

∂ke

∂ s

)
(5.23)

∂det (K(s))
∂ s

≈ det (K(s)) · trace

(
K(s)−1 · A

infl

∆ke

∆s

(x)
)

(5.24)

The usage of the semi-analytic method has several advantages towards the
pure analytical approach:

• The implementation of analytic derivatives of element based data
can be omitted. These derivatives may become very tedious, espe-
cially when complex element formulations like shell elements with
hybrid stress formulation are used.

• Finite differencing schemes according to equation 5.22 can be used
for any element formulation, whereby any element which is avail-
able for simulation directly can be used for optimization purpose
without additional coding.

• Any entity of the finite element formulation, such as shape, thick-
ness or material orientation, immediately can be used as a design
parameter without specific implementations on element level.

• For most element formulations, the semi-analytic approach turns
out to be faster than the complete analytical sensitivity formulation.
This is because evaluating the element stiffness twice and applying
a finite differencing scheme is less costly, from the numerical point
of view, than following the product and chain rules of differentiation
in order to determine the analytic sensitivity.
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5.4.2.2 Numerical efficiency

In order to judge about the efficiency of the semi-analytic approach, we
consider a very simple four-noded plain stress element with linear kine-
matics. The stiffness matrix of this element can be writen in the well-
known form

ke =
∫
V

BT ·D ·B ·det (J) dV (5.25)

Taking the analytical derivative of the stiffness matrix with respect to a
design variable s, equation 5.25 extends to a three summand expression
due to the product rule of differentiation:

∂ke

∂ s
=
∫
V

∂B
∂ s

T

·D ·B ·det (J)+

BT ·D · ∂B
∂ s
·det (J)+BT ·D ·B · ∂det (J)

∂ s
dV

(5.26)

Due to this extension, the computation of the derived stiffness is approx-
imately three times as costly as computing the stiffness itself. As the
forward and the central finite differencing scheme only require two evalu-
ations of the stiffness matrix, we expect the semi-analytic sensitivity com-
putation to save about 33% of the computational time compared to the
analytic approach. In order to get a unaltered comparison of the real cpu-
times, a separate C++ implementation of the stiffness matrix, its deriva-
tive and the finite differencing schemes is used. The needed cpu-times
in order to compute 100,000 derivatives of element stiffness matrices are
presented in figure 5.15 3. As we can see, the semi-analytic approach is
faster by 25% compared to the analytic approach. This saving of compu-
tational time is smaller than the initial expectation of 33%, but this expec-
tation neglected the time consumed by evaluating the finite difference as
well as the memory allocation overhead caused by the higher number of
function calls in the semi-analytic procedure.

3Serial computation on an Intel i3 processor
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Method cpu-time [ms] rel. time

Analytic 1,688 100%
Semi-analytic 1,275 75%

Figure 5.15: Comparison of cpu-times for computing 100,000 derivatives
of stiffness matrices

The overall cpu-times shown in figure 5.15 are relatively small, which
is due to the simplicity of the considered element. Nevertheless, the
observed saving of 25% is significant and will even increase with an
increasing element complexity, as well as the overall cpu-time will. From
this point of view, the semi-analytic approach is an essential contribution
to efficient sensitivity analysis of large structures using high-end elements,
as e.g. those with additional internal variables to treat the various locking
effects.

5.4.2.3 Accuracy and optimal disturbance

The main point of criticism concerning semi-analytic sensitivity analysis
is its non-exactness [98]. As element data derivatives are approximated
using a finite difference, the approximation implies either an approxima-
tion or a round-off error, depending on the size of the perturbation param-
eter ε .
In this context, different sources of error have to be distinguished. The
most severe error is caused by a numerical slipping off of the refer-
ence element coordinate system due to the finite difference. Due to the
perturbation of the design, the finite difference approximation subtracts
two stiffness matrices which have been computed with respect to dif-
ferent reference configurations of the element, resulting in an approxi-
mated derived stiffness matrix ∆K

∆s that violates the rigid rotation condi-
tions ΦT · ∆K

∆s ·Φ = 0, where Φ is an eigen vector of the stiffness matrix
K, describing a rigid body rotation of the considered element [12]. Blet-
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zinger et al [26] showed that this effect mainly occurs for elements with
complex kinematics like Kirchhoff formulations, and presented a method
of exact semi-analytic sensitivities correcting this deficit. For this pur-
pose, a modified approximated derived stiffness matrix ∆K∗

∆s is computed
by adding correction terms curing the violation of rigid body conditions.
Equation 5.27 shows the correction, where Φr is a rigid body rotation
vector and nr is the total number of possible rigid body rotations.

[
Φk

r

]T
·

(
∆K
∆s

+
nr

∑
i=1

nr

∑
j=1

ai, j ·Φi
r ·
[
Φ j

r
]T)

︸ ︷︷ ︸
∆K∗
∆s

·Φl
r = 0

∀ k, l ∈ {1, ...,nr}

with

ai, j =−
[
Φi

r
]T · ∆K

∆s ·Φ
j
r(

[Φi
r]

T ·Φi
r

)
·
([

Φ j
r

]T
·Φ j

r

)
(5.27)

Applying this corrections, the remaining error in the semi-analytic sen-
sitivity reduces to the approximation error contributed by the finite dif-
ferencing scheme. This error is directly related to the finite disturbance
ε .
The following convergence study investigates the error in the approxi-
mated sensitivity for a plain stress element formulation, comparing the
forward and the central finite difference scheme with and without the rigid
body correction according to equation 5.27. The results are displayed in
figure 5.16, where the error is measured by the Frobenius norm of the
difference between the analytical derivative of ke and the finite difference
approximation. Figure 5.16 presents that for ε > 10−5 both finite differ-
ence schemes show a constant decrease of error with the expected orders
of accuracy. The forward finite difference shows an order of accuracy of
1 while the central finite difference method possesses an order of accu-

63



CHAPTER 5. CONCEPT OF PARAMETER FREE SHAPE OPTIMIZATION

1e-007

1e-006

1e-005

1e-004

1e-003

1e-002

1e-001

1e+000

1e+001

1e+002

1e+003

1e-012 1e-010 1e-008 1e-006 1e-004 1e-002 1e+000

disturbance ε

∥ ∥ ∥∂
k e ∂
s
−

∆
k e ∆
s
(x
)∥ ∥ ∥ F

√
εmach

3
√

εmach

fwd fd w/o rigid body corr.
fwd fd w rigid body corr.

cent fd w/o rigid body corr.
cent fd w rigid body corr.

1

2

1

1

Figure 5.16: Convergence of error in semi analytic sensitivity analysis

racy of 2 [4]. For both methods, a critical value of ε exists. If this value is
undercut, a decrease of ε leads to an increasing error. In this range, round-
off errors dominate the result, as the differences computed in the finite
difference scheme go to zero, which reduces the accuracy of the resulting
floating point number [45]. Depending on the chosen finite differencing
scheme and the machine precision εmach, optimal values for ε can be deter-
mined providing the best trade-off between approximation and round-off
error. Assuming 64-bit floating point numbers with a machine precision of
εmach = 10−16, optimal disturbance values arise according to figure 5.17.

Finite difference scheme εopt

Forward ε
( f wd)
opt =

√
εmach = 10−8

Central ε
(cent)
opt = 3

√
εmach ≈ 4.6 ·10−6

Figure 5.17: Optimal disturbance values for finite differencing schemes
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Figure 5.16 also demonstrates that the rigid body correction leads to
slightly improved results for both finite difference schemes. For ε > εopt ,
the influence of the rigid body correction is constant and comparatively
small to the approximation error of the finite difference method for this
type of element.

5.5 Direct and adjoint sensitivity formulation

This chapter focuses on formulating the sensitivities of response func-
tions typically arising from applications in structural optimization. These
response functions I usually depend on the design s and on the state vari-
ables u.

I (u,s) (5.28)

Taking the derivative of I with respect to a design variable si ∈ s under
consideration of the chain rule of differentiation leads to

dI
dsi

=
∂ I
∂ si

+

[
∂ I
∂u

]T

· ∂u
∂ si

(5.29)

where the derivative of the state variables is not known so far.
The state variables u are implicitly defined via the state equation S,
demanding the structure to be in equilibrium:

S(u) = 0 (5.30)

As the state equation has to be fulfilled for any design s, the derivative
of S with respect to all si ∈ s has to be zero. This allows to solve for the
unknown derivatives of the state variables:

dS
dsi

=
∂S
∂ si

+
∂S
∂u
· ∂u

∂ si
= 0⇒ ∂u

∂ si
=

[
∂S
∂u

]−1

·
[
− ∂S

∂ si

]
(5.31)

Inserting equation 5.31 into equation 5.29 leads to

dI
dsi

=
∂ I
∂ si

+

[
∂ I
∂u

]T

·
[

∂S
∂u

]−1

·
[
− ∂S

∂ si

]
︸ ︷︷ ︸

∂u
∂ si

(5.32)
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which is called the direct sensitivity formulation of response function I

[39] [40]. It has to be mentioned that the inverse of ∂S
∂u usually is not

determined explicitly in large-scale applications. Instead, a factorization
scheme like Gauss or Cholesky is applied in order to transform the matrix
to a triangular shape, and the inverse matrix-vector multiplication can be
performed doing a so-called forward-backward substitution [94].
In the direct formulation, forward-backward substitution representing the
derivatives of the state variable with respect to the design variable si has
to be solved for each design variable, as the right-hand sides of the linear
systems − ∂S

∂ si
depend on si. The intension of adjoint sensitivity formu-

lations is to re-formulate equation 5.32 such that the solution of a linear
system of equations for each design variables becomes needless. For this
purpose, the rear summand of the equation is transformed switching the
order of execution in the vector-matrix-vector-product exploiting the fol-
lowing relation:

vT ·M ·w = wT ·MT ·v (5.33)

The transformed version of equation 5.32 reads

dI
dsi

=
∂ I
∂ si

+

[
− ∂S

∂ si

]T

·
[

∂S
∂u

]−T

· ∂ I
∂u

(5.34)

where the Jacobi matrix of the state equation ∂S
∂u is identical with the stiff-

ness matrix K in structural mechanics. As the stiffness matrix is symmet-
ric for conservative problems [19], the inverse of it is symmetric as well
[123]. Therefore the same operator can be used in the adjoint formulation
as in the direct formulation,

dI
dsi

=
∂ I
∂ si

+

[
− ∂S

∂ si

]T

·
[

∂S
∂u

]−1

· ∂ I
∂u︸ ︷︷ ︸

Λ

(5.35)

where the variable Λ =
[

∂S
∂u

]−1
· ∂ I

∂u is called the adjoint variable. As
the operator matrix for computing the adjoint variable is the same as for
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determing the derivatives of the state variables ∂u
∂ si

in structural mechanics,
these problems are called self-adjoint.
In contrast to the direct approach, where the derivative of state variables
has to be computed for each single design variable involving the solution
of a linear system of equations, the adjoint approach allows to determine
the derivatives of I with respect to all design variables by only solving
one linear system in order to compute the adjoint variables. From this
point of few, the adjoint approach is preferable when optimization prob-
lems defined by a large number of design variables, but only involving a
small number of response functions, are solved. As soon as the number of
response functions approaches the number of design variables, the advan-
tage of the adjoint approach vanishes, as the number of linear solutions
being necessary to determine the derived state variables is independent of
the number of responses, but the effort to compute the adjoint variables
increases linearly with the number of response functions.
In parameter free optimization, as it is performed in this thesis, the number
of design variables usually is larger than the number of response functions
by several orders of magnitude for large examples. For this reason, an
adjoint formulation of the response functions is a key issue to numerical
efficiency in the performed optimizations.
More information about adjoint sensitivity formulations can be found in
Giles, Pierce [63] or Cao, Li, Petzold [36].

Adjoint sensitivity formulations of frequently used response functions can
be found in appendix A.

5.6 Line search procedures

After the sensitivity information has been computed and filtered for all
response functions, the final search direction for the actual optimization
step is determined. Thereby the search direction might be a conjugated
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direction in case of a CG-algorithm or gradient information of a Lagrange
function in case of a constrained optimization problem, for example. In
the next step, a line search is performed along the search direction, as
it was briefly introduced in section 4.2.2.2. In contrast to an exact line
search, where the optimal step size α is defined by the gradient of f to
vanish [∇ f (x+α · s)] = 0 (see equation 4.5), usually inexact line search
methods are applied in numerical optimization, as the objective function
is not known analytically. The most simple type of inexact line search is
a fixed step method, which prescribes a fixed value for α . The disadvan-
tage of this method is that the chosen step length is not optimal, which
increases the number of necessary optimization iterations or might lead to
an "overleaping" of the local minimum. Consequently more sophisticated
inexact line search procedures should fulfill the requirement that "the step
size should not be too large or too small, and there should be a suffi-
cient decrease in the cost function" [8]. Line search methods which try
to meet these criteria using one evaluation of the response function only
are Armijo’s rule [7] or the Wolfe Condition [134]. These methods use a
linear extrapolation of the response function in search direction based on
the actual design, and demand a minimum decrease of the response func-
tion within each optimization step. Another method of inexact line search
is the polynomial interpolation method [111]. Thereby the response func-
tion is approximated within an interval of acceptable step sizes using a
polynomial function, which now can be used as an auxiliary mean for
an exact line search. This method requires a larger number of response
function evaluations compared to Armijo’s rule or the Wolfe condition, as
sampling points of the polynomial function need to be determined. Never-
theless, as evaluation points are distributed over the interval of acceptable
step sizes, the gained information usually is more precise and reliable than
the information obtained by methods using only one evaluation point. So
the line search reflects the real behaviour of the response function more
precisely.
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5.7 Work flow and data management in a object ori-
ented code environment

This section is intended to illustrate the work flow and the data manage-
ment of a parameter free optimization, as it is implemented in Carat++
(see section 1.4). Figure 5.18 visualizes the connections and the data
streams.
The first thing which is conspicuous, is a modular structure of the imple-
mentation. The overall optimization framework includes a structural anal-
ysis module, which contains the usual finite element tools like classes for
nodes, elements, finite element domains or analysis classes managing dif-
ferent types of structural analysis. Figure 5.18 shows these standard finite
element components on the right hand side, separated from the optimiza-
tion module by a dot and dash line. The optimization module can be
regarded to be a add-on onto the analysis module, which is connected by
pointer access in an object oriented manner. The points of connection
are quite limited. The finite element analysis object is controlled by a
response function object via a pointer connection, as well as the design
variables have pointer access to the underlying finite element object. This
could be either a node or an element.
Despite this limited number of intersection points, the optimization mod-
ule has got the necessary control over the finite element analysis model.
Optimization variables are able to modify the design of the finite element
model as well as they can query element data, which is essential for the
semi-analytic sensitivity analysis, via the pointer access to a finite ele-
ment or a node. State variables and adjoint variables for a given pseudo
load vector are provided by the analysis object directly to the response
function object, and so all data necessary for sensitivity analysis can be
gathered inside the response function routines. Once sensitivity informa-
tion is computed, there is only a very small amount of further communica-
tion necessary between analysis and optimization module in the following
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steps. Pure sensitivity information of the response function, or of several
response functions in case of a constrained or multi-objective problem,
is passed to the filtering object, which performs the filtering operation
described in section 5.3 on the discrete pure sensitivity data. The result-
ing filtered gradient data is pushed forward to the mathematical core rou-
tine of the optimization algorithm, which determines the search direction
for the actual optimization step, based on the actual gradient information
of all response functions plus some variables coming from optimization
history, like Lagrange multipliers or previous search directions. Once the
search direction is determined, the line search can be applied. Thereby
inexact line search methods as presented in section 5.6 are used. Hav-
ing computed a step length factor α , the final design update is applied
to the design variables, which, for their part, update the finite element
model. The quantity of legal design updates may be restricted by variable
bounds, which prevent design variables from assuming arbitrary values.
By this mean, unphysical or inpracticable designs can be avoided. The
line search methods take care of these bounds and correct illegal design
updates correspondingly.
The thicker dashed line in figure 5.18 shows the optimization loop. Here
the steps

• Gradient computation

• Gradient filtering

• Determination of search direction

• Line search

are repeated until convergence of the optimization is achieved. Therefore,
usually convergence criteria based on

• a minimum decrease of the objective function or

• a minimum step length obtained in the line search
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obtained in the last optimization iteration are applied, instead of focusing
on a gradient based criterion like equation 4.3 or 4.20.

5.8 Summary

In this chapter, the parameter free optimization approach has been pre-
sented as a efficient parametrization method for treatment of structural
optimization problems. In combination with semi-analytic and adjoint
sensitivity computation, it is excellently applicable for fine discretized
models of industrial relevance. In the upcoming chapter, these methods
and algorithms will be applied in order to generate optimal shapes for effi-
ciently deformable shell structures, being a key issue to actuated systems.
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CHAPTER 6
Hingelike mechanisms of shell

structures

6.1 Classification of kinematic mechanisms

In order to discuss structures which perform a maximum of movement for
a limited actuator input, it is important to investigate kinematic mecha-
nisms of structures, allowing these structures to undergo large deforma-
tions while representing a minimum of mechanical resistance. Figure 6.1
presents typical kinematic mechanisms for different types of structures.
For beam structures, nodal hinges allowing the connected parts to undergo
independent rotations can be used, which enables the structure to move by
producing a minimum of strain energy or no strain energy at all, when
a kinematic system is considered. Considering plates, an entire plate
can be divided into sub-plates using line hinge mechanisms, which allow
each sub-plate to perform a rigid body movement. These line hinges are
directly related to ultimate load analysis of plates using yield line theory
[78]. Yield line theory assumes a constant yield moment acting along all
yield lines in the ultimate load state, and that elastic deformations can
be neglected. The ultimate load state is characterized by a patch of sub-
plates, each deforming in a rigid body state, whereat the entire internal
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Beam structures Nodal hinge

Plate strctures Line hinge, fracture line

Shell strctures

Line hinge on singly curved surface

Corrugated bellow
doubly curved

singly curved

Figure 6.1: Hingelike mechanisms for different types of structures

work inside the system is generated by the yield moments along the yield
lines. Due to this rigid body assumption, adjacent sub-plates intersect in
straight lines. Therefore the resulting yield line along the intersection is
also straight, as long as distributed loads and angled plates are considered
[66]. Considering shells, the situation becomes more complicated. The
idea of a straight yield line or line hinge offering maximum movability
cannot be applied to arbitrarily curved shells. Straight line hinges allow-
ing an almost zero-stress movement of connected shell parts only can be
found for singly curved shell parts, where the straight generator line acts
as a line hinge. The existence of such straight hinge lines and the cor-
responding mono-axial curvature leads to highly flexible shell structures.
This high flexibility can be observed for example in the phenomenon of
ovalizing cylinders, where a singly curved shell performs almost inexten-
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sional deformations, and load is carried by a pure state of bending [107]
[35]. Figure 6.2 shows the ovalizing of a pinched cylinder.

Figure 6.2: Ovalizing of a pinched cylindrical shell

Another shell design offering high flexibility is the corrugated bellow
design. It is quite frequently used in industrial applications for shell
structures which are mainly effected by normal forces and require high
flexibility. The working principle is based on a change of load carrying
behaviour, switching from a membrane stress state to a bending domi-
nated state inside the corrugations. Figures 6.3 and 6.4 show some typical
applications of corrugated bellows. Although they are mainly used as
a secondary structure preventing the main structure from suffering dam-

Figure 6.3: Corrugated bellow in
an articulated bus (source of pic-
ture: [89])

Figure 6.4: Corrugated bellow as
compensator in a hydraulic line
(source of picture: [119])
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ages, the principle also can be used for primal structures carrying signifi-
cant load.
This chapter discusses the challenging task of finding ideal shapes of shell
structures providing optimal kinematic properties using the parameter free
shape optimization approach. Hereby, a shell formulation based on linear
shear deformable Reissner-Mindlin theory is used. In this context, dif-
ferent types of shell structures are considered, leading to line hinges or
corrugated bellow designs.

6.2 Generation of kinematic mechanisms using opti-
mization

6.2.1 Hinge line pattern of a square plate

In section 6.1, line hinges were introduced as an optimal kinematic mech-
anism for plates and for certain types of shells. This example compares
hinge line patterns motivated by yield line theory [78] to hinge lines gen-
erated by optimization. For this purpose, a square plate which is hinge
supported at three edges and loaded by a uniform snow load is consid-
ered. Optimization is performed with respect to a maximization of strain
energy, whereat the plate thickness is variable. Figure 6.5 shows the sys-
tem and the resulting thickness distribution. In order to obtain a localized
hinge line pattern, an equality mass constraint was added to the optimiza-
tion problem as well as upper and lower bounds for allowable plate thick-
nesses. Figure 6.5 shows Y-shaped hinge lines, dividing the plate into
three sub-slabs. Computations based on yield line theory deliver an iden-
tical shape of yield lines, where the intersection of the three yield lines is
located 0.65 ·L from the top edge of the plate [132]. This value is repre-
sented by the optimization result very well.
Figure 6.5 also shows the deformation pattern of the optimized design.
Here the rigid body deformations of the sub-slabs can be observed quite
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supported

supported supported

free
0.63 ·L

0.175

0.01
Plate thickness

0.0925

L

Figure 6.5: Line hinge pattern obtained by optimization (left) and defor-
mation of optimized design (right)

nicely, leading to a maximized strain energy and correspondingly to a
maximized deflection of the entire structure.
This example shows that hinge lines providing maximum deflection of
plates are identical with results derived from yield line theory. In proceed-
ing steps, these considerations will be transferred to curved structures, and
the focus will be put on modifying the shapes of shell structures in order
to obtain optimal kinematic properties.

6.2.2 Cylinder roof segment

This example considers a singly curved roof structure, which spans in
direction of the generator line. The structure is fixed supported at both
curved edges, while the straight edges are unsupported. A line load is
acting along the center line of the roof (see figure 6.6). The roof is shape
optimized, whereat the objective is to maximize the vertical deflection
ucent at the center of the roof.
Due to the loading and the support conditions, the investigated structure
is exposed to high bending moments. In contrast to the ovalizing cylinder
problem shown in figure 6.2, here the bending moment is acting perpen-
dicular to the shell’s generator line. Thus the bending stiffness opposed
by the shell is quite high due to its curvature. Thus, the a priori assumed
optimal design is expected to show areas where the curvature of the shell
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R = 4

α = 60◦

L = 10 fixed

fixed

free

free

ucent

Figure 6.6: System of cylinder roof segment

is reduced or completely removed. These areas will act as line hinges,
localizing the bending effects and allowing the main part of the shell to
undergo an almost stress free deformation, as it could be investigated for
the plate structure in section 6.2.1. In order to allow a stress free defor-
mation, the structure has to be equipped with three line hinges in order to
act similar to a kinematic three-hinged frame.
Optimization progress is presented in figure 6.7. The first intermediate
result (Stage A) shows main changes at the supports. Here the curvature
is severely reduced, generating horizontal support lines. As the support
conditions are formulated as fixed but not clamped supports, a straight
arrangement of the supported nodes acts as a real hinge, where the shell
can perform a free rotation. For this reason, design modifications are more
significant at the supports than in the central area of the roof in the early
phase of optimization. In the central area, the stiffness of the structure
is not only determined by its shape, but also by the bending stiffness due
to the shell thickness, so here the shape gradients of the response func-
tion are small compared to the support region, resulting in reduced design
updates. When optimization proceeds (Stage B), the distribution of shape
gradients over the structure changes, and a line hinge develops in the area
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Stage A

Stage B

Stage C

Figure 6.7: Optimization progress of cylinder roof segment

of load application, while the shape modifications at the supports slow
down. In the converged configuration (Stage C), the central line hinge
starts to spread in span direction to a plane plateau, while the line hinges
at the supports stay localized. This again can be explained by the bending
effect inside the structure. As there is no bending moment at the supports,
a spread of the flat region would not lead to a significant softening of the
structure. In contrast, the flat plateau in the central area reduced the stiff-
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ness of the structure in a region where it is affected by bending, which
increases flexibility.

In a different optimization setup, the structure is optimized applying vari-
able linking. For this purpose, design variables are linked in hoop direc-
tion such that the related nodes undergo identical design modifications. As
a consequence, the initial curvature of the cylinder is conserved in hoop
direction, and an increased flexibility of the structure only can be achieved
by the insertion of corrugations. Optimization is performed using a mass
constraint, limiting the increase of the system mass to 5%. In figure 6.8,
three optimized roofs obtained by using different filter radii are compared.
The designs show that for this problem the chosen filter radius has a minor
influence onto the final shape of the structure. For all three cases, corru-

R = 0.2 R = 0.4

R = 0.8

Figure 6.8: Optimization results with variable linking for different filter
radii

gations have been generated at the supports and in the center of the roof
each, whereat the shape and especially the amplitude of the corrugations
are governed by the mass constraint. For this bending dominated problem,
optimization of shape and location of the corrugations seems to be a con-
vex problem, where different filter radii lead to the same optimal design,
as it was discussed in section 5.3.

80



CHAPTER 6. HINGELIKE MECHANISMS OF SHELL STRUCTURES

Finally, the fitness of the designs obtained with and without variable link-
ing are compared. Fitness is measured in terms of strain energy, such
that the fittest design offers the largest value with respect to the objective
function (figure 6.9). This comparison shows that the design which was

design strain energy

initial design 4.45 ·10−5

optimized w variable linking (R = 0.4) 1.10 ·10−4

optimized w/o variable linking 4.40 ·10−4

Figure 6.9: Comparison of strain energy

optimized using variable linking stores significantly less strain energy and
so offers less flexibility than the design that was obtained without variable
linking. Hence it can be noted, that for this example the configuration
exhibiting hinge lines is more flexible than the corrugated bellow design,
which still manifests the initial curvature of the cylinder.

6.2.3 Spherical cupola

In the previous section, the generation of line hinges and localized corru-
gations was demonstrated for a cylindrical shell segment. In this example,
a positively doubly curved shell is considered. The investigated structure
is a cupola, fitting a rectangular footprint. The footprint is set to 10×10,
and the shape of the cupola is defined by the height of the arches con-
necting adjacent corners of the footprint (ha = 3) and by the height of the
cupola at the midspan (ha = 5). The geometry of the cupola is shown in
figures 6.10 and 6.11.
The structure is supported and loaded using pre-defined displacements.
Thus, each low point of the cupola is assigned a displacement û in the
outward diagonal direction of the structure’s footprint. A displacement
of 0.4 is defined in x-direction and y-direction each, so that each low
point undergoes a total deformation of 0.5657. The signs of the x- and
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Figure 6.10: Perspective view of
spherical cupola shell
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Figure 6.11: Side view of spheri-
cal cupola shell

y-components are chosen such that the deformation is oriented in outward
direction with respect to the footprint. Displacements in z-direction are
defined to be zero in û.
For this cupola, shape optimization is performed in order to maximize
the vertical deflection ucent of the shell’s highest point. Considering yield
line theory of plates, the optimal kinematic mechanism for a square plate
supported at the edges would be a cross-shaped hinge line pattern, divid-
ing the plate into four square sub-slabs. Transforming this expectation to
the cupola, an optimized design showing an x-shaped pattern of regions
possessing mono-axial curvature is expected. These mono-axially curved
shell parts would act as line hinges, facilitating the rotations of the doubly
curved shell parts.
Figure 6.12 shows the optimized shell design. The design is in good accor-
dance with the expectations, exhibiting four mono-axially curved line
hinges arranged in x-shape in the center of the shell. In Figure 6.13, the
initial and the optimized design are compared for the shell’s mid-section
A. The section shows that the curvature is removed almost completely
along the section line, starting from the center towards the free edges.
The deformations of the initial and the optimized designs are compared
in figure 6.14. For the initial design, the maximum deformations occur at
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A

A

Figure 6.12: Optimized design of
spherical cupola shell
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Optimized configuration
Initial configuration

Figure 6.13: Spherical cupola
shell: section A

0.690

0

Total
Displacement

0.345

0.566

0

Total
Displacement

0.283

Figure 6.14: Comparison of displacements. Top: Initial design, Bottom:
Optimized design

the supports where the displacement of 0.5657 is prescribed. The traced
displacement ucent is 0.478 for this design. In contrast, the optimized
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design deforms the most in the center point, where the target displacement
is increased to 0.6899.

6.2.4 Normal force actuated beam

The previously discussed examples both focused on bending dominated
structures. In this section, a primarily normal force effected beam is con-
sidered, which is meant to undergo a maximum vertical deflection caused
by horizontal loading. The system of consideration is a beam with a length
of 10, width of 1 and a varying thickness, modeled using shell elements.
Support conditions are statically determined, whereat a horizontal force
Fx is acting at the roller supported end of the structure. Objective of
optimization is the maximization of the vertical deflection uz,cent in the
center of the beam. Two different approaches are compared in order to
initiate the vertical deflection of the initially flat beam structure. In the
first approach, a tiny vertical load Fz = 10−6 ·Fx is applied at the central
section. In the second one, a geometrical imperfection is included into
the model. For this purpose, the finite element nodes along the center
line x = 5.0 of the system are distorted in z-direction by ∆z = 0.0005.
The configuration of the system is shown in figure 6.15, including both
approaches for the initiation of the vertical deformation.

x
z

y

uy = uz = 0

ux = uy = uz = 0

Fx = 1.0
Fz = 1.0 ·10−6

l = 10

w = 1
uz,cent

∆z = 0.0005
or

Figure 6.15: Statical system of normal force actuated beam structure

As the system’s behaviour is dominated by normal force, the expected
design is a kind of corrugated bellow structure, which leads to high local-
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ized bending effects. The interesting questions arising now are which
shape the corrugated bellow will assume concerning its wave length and
its number of waves, and which influence the chosen filter radius has onto
the final design of the corrugated bellow. In order to answer these ques-
tions, optimization is performed multiple times using different shell thick-
nesses and filter radii. For this purpose, shell thicknesses of t = 0.05,
t = 0.075 and t = 0.1 were used. The investigated filter radii started at
R = 0.3, which is three times an element edge and can be considered as
a minimum filter size in order to obtain results free from numerical noise
(Firl [52] proposed a radius-to-edge ratio of 4 or more in order to obtain
results free from discretization effects). Starting from this value, filter size
is increase up to a final filter size of R = 0.6.
In figure 6.16, optimized designs obtained by the variant including Fz are
summarized. The results show that the smallest shell thickness combined
with the minimum filter radius leads to the maximum number of wrin-
kles. For this combination of shell thickness and filter radius, the wrin-
kles spread out over half of the beam length, and the remaining parts of
the beam remain comparatively flat. With an increase of the shell thick-
ness, it can be observed that the length of the complete corrugated bellow
is reduced, while at the same time the un-corrugated parts of the beam
get inclined. By this mean, a kind of a three-hinged frame structure is
generated, with the short corrugated bellow acting as a localized central
hinge. This enables a kind of rigid body deformation of the inclined un-
corrugated parts of the beam. In contrast, a more global design change is
preferred for thinner structures, dominated by elastic structure behaviour.
Therefore it can be determined that the optimal design of the corru-
gated bellow is influenced by the structural boundary conditions, like
the bending-stiffness-to-tensile-stiffness ratio of the structure. In order
to determine the influence of different designs onto the performance of
the structure, three shapes are chosen (Design A, Design B and Design
C in figure 6.16) and analyzed for all three shell thicknesses. Within this
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R = 0.3

R = 0.45

R = 0.6

R = 0.3

R = 0.45

R = 0.6

R = 0.3

R = 0.45

R = 0.6

t = 0.05

t = 0.075

t = 0.1

Design A

Design B

Design C

Figure 6.16: Summary of optimized corrugated bellow designs
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study, also different load levels are investigated, thus the load level which
was assumed for optimization (λ = 1.0) and an increased load level of
λ = 2.0. The resulting displacement values uz,cent are summarized in fig-
ure 6.17. The presented data shows that each design performs best with
respect to the deformation uz,cent for the shell thickness it was optimized
for. Although the compared designs are quite different with respect to
their shape, the differences in performance are astonishing small. Designs

t = 0.05 t = 0.075 t = 0.1

Design A, λ = 1.0 1.296 0.137 0.049
Design A, λ = 2.0 3.954 0.384 0.111

Design B, λ = 1.0 1.295 0.153 0.056
Design B, λ = 2.0 3.903 0.420 0.121

Design C, λ = 1.0 1.064 0.150 0.056
Design C, λ = 2.0 3.718 0.391 0.122

Figure 6.17: Comparison of deformations uz,cent of different designs for
different shell thicknesses

A and B provide comparable performance for a shell thickness of t = 0.05,
for example, as well as Designs B and C do for t = 0.1. This insight con-
forms to results presented in Firl [52] or Firl, Wüchner, Bletzinger [54],
showing that non-convex shape optimization problems may possess sev-
eral local optima which lead to comparable fitness with respect to objec-
tive function values.
The next open question concerns the influence of the filter radius. Fig-
ure 6.16 shows that the filter radius influences the wave length and the
shape of the corrugated bellow, as expected. Thus an increasing filter size
increases the wave length of the corrugations as well, but a direct relation,
like the wave length of the corrugations depending linearly on the filter
radius, cannot be observed.

87



CHAPTER 6. HINGELIKE MECHANISMS OF SHELL STRUCTURES

Finally, the modeling techniques for initializing the vertical deformation
are compared. For this purpose, we consider both designs obtained for a
shell thickness of 0.05 and a filter radius of 0.3 (Design A). The designs
are compared in figures 6.18 and 6.19. According to a shallow compari-

B

B

Figure 6.18: Optimized design
using vertical force

B

B

Figure 6.19: Optimized design
using imperfection

son, the designs seem to be identical. In order to obtain a more detailed
insight, the sections B of both results are superimposed in figure 6.20. The
superposition reveals that the wave lengths of both corrugated bellows are
identical, the only small differences which can be observed are related to
the amplitudes of the eccentric corrugations.
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Figure 6.20: Comparison of designs using Fz and imperfection along sec-
tion B

This comparison shows that the shape of the corrugated bellow is not a
pure side effect of the chosen vertical disturbance. As almost identical
designs are obtained for the purely normal force effected imperfect struc-

88



CHAPTER 6. HINGELIKE MECHANISMS OF SHELL STRUCTURES

ture, the designs obtained and presented in this section can be considered
to be driven by pressure force Fx.
Figure 6.21 illustrates the deformation under consideration of geometri-
cally nonlinear effects of the corrugated structure (Design A) up to a load
factor of λ = 2.0. The deformation process shows that the tensile stiffness

3.954

0

vert. deformation
uz

1.978

λ = 2.0λ = 1.5

λ = 1.0λ = 0.5

Figure 6.21: Deformation process of corrugated bellow

of the thin structure still is sufficient to avoid a major horizontal contrac-
tion caused by the normal horizontal load, instead the structure performs a
movement in z-direction, which leads to the intended large vertical deflec-
tion.

6.3 Conclusions

In this chapter, hingelike kinematic mechanisms for curved thin structures
have been investigated. Possible mechanisms were discussed theoreti-
cally, and shape optimization techniques have been applied successfully
in order to enable these mechanisms for different types of shell structures.
Thereby line hinges turned out to be the preferable design for bending
dominated shells. Reducing the design space in order to enforce a cor-
rugated design led to a convex optimization problem. This resulted in a
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unique corrugation pattern for different filter radii, whereat the previous
line hinges were removed by single corrugations.
The last example applied optimization to a normal force dominated struc-
ture. Here multiply corrugated structures could be observed. A central
conclusion which can be drawn from this example is that shape optimiza-
tion of a multiply corrugated structure or a corrugated bellow is a highly
non-convex problem. Hence the solution obtained by a gradient based
optimization scheme corresponds to a local optimum, and the correspond-
ing design depends on the chosen set of start parameters with respect to
structure as well as to the optimization algorithm. Nevertheless, optimiza-
tion results show that quite different designs may possess comparable fit-
ness with respect to the objective function in such a highly non-convex
design space. This kind of behaviour also was observed by Bletzinger,
Firl, Fischer [27] for other applications using the parameter free optimiza-
tion approach.
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CHAPTER 7

Optimal Actuation1

7.1 Introduction

In chapter 6, kinematic mechanisms of shell structures have been dis-
cussed. Now these considerations are applied to actuated smart structures
and the issue of how to perform actuation in an optimal manner. The basic
idea of Optimal Actuation is to generate structures which provide a max-
imum response to an actuator input by a minimum actuation effort. For
this purpose, the optimization problem introduced in equation 5.3 (section
5.3.1) is enlarged by an additional field of design variables, which is the
field of actuators - therefore design variables are now defined by the shape
control field s and the actuator control field a. In this context, an actuator
is any tunable device able to influence the structure mechanically, such as
pneumatic cylinders or piezoelectric elements. As the field of actuators
was introduced, the idea of Optimal Actuation also can be used for opti-
mal actuator placing and tuning. The final goal of Optimal Actuation is
to enable a highly efficient controlling of the system, characterized by a
maximized actuation response B obtained by a minimum of energy input.
B can be measured in terms of strain energy or nodal displacements, for
example. If we furthermore assume that the energy consumption of the

1Parts of this chapter have been pre-published in Masching, Bletzinger [90]
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actuation process is proportional to the integral p-norm of the actuator
field over the entire design space, the problem of Optimal Actuation can
be described as a multi-objective optimization problem of the form

min C (a) =
∫
Ω

|a(ξ )|p dξ (7.1a)

max B(a,s) (7.1b)

where the function C (a) indicates the actuation costs and B(a,s) can be
interpreted as the actuation benefit. Considering the cost-to-benefit ratio
as a measure of the efficiency of the actuation, equations 7.1a and 7.1b
can be summarized to the minimization of the inverse efficiency function
E (a,s):

min E (a,s) =
C (a)

B(a,s)
(7.2)

7.2 An extended sensitivity filtering scheme

As Optimal Actuation introduces a new field of variables into the opti-
mization problem, this also has an impact on the procedure of optimiza-
tion. While equations 5.3 and 5.2 assumed only one field of design vari-
ables controlling the shape and eventually the sizing parameters, we now
have to consider the enlarged problem of optimizing with respect to two
different fields of design variables, s and a. Considering the state equation
S and the field of state variables u, the final optimization problem reads

min E (s,a,u)

st.

S (s,a,u) = 0

(7.3)

According to equation 5.14, the new field of design parameters a is also
controlled by a gradient field pa. As the response function f probably
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shows completely different behaviours with respect to design modifica-
tions in s and a, it is reasonable to link the related design updates to the
gradient field via independent filter kernel functions Fs and Fa

p̃s,i =
∑ j Fs (ξ j,ξi) · ps, j

∑ j Fs (ξ j,ξi)

˜pa,i =
∑ j Fa (ξ j,ξi) · pa, j

∑ j Fa (ξ j,ξi)

(7.4)

with ps and pa being the gradients of the response function with respect
to the design fields for shape and actuators.
An additional argument for introducing separate filter kernels for the Opti-
mal Actuation optimization problem is that the second field of design vari-
ables has an extreme impact on the mathematical properties of the prob-
lem. In the section 5.3, we discussed that the filter kernel cancels out for
convex problem and acts as a kind of steering tool to guide the gradient
based optimization algorithm towards the desired solution in case of non-
convex problems. From this point of view, the filtering procedure becomes
essential in applications of highly parametrized optimization problems, as
the resulting design space usually is non-convex. Introducing an addi-
tional field of design variables in form of the actuator field increases this
effect, especially as the field of actuators a might be non-continuous in
case of a point-wise actuation. The requirement of treating both design
fields adequately makes the usage of two different filter kernels essential.
The following example will emphasize this necessity. We consider a stati-
cally determined tensile rod of length L with a varying tensile stiffness EA

and a variable loading q. The related system is shown in figure 7.1. The
distribution of the tensile stiffness and the load over the length coordinate
x of the rod can be written as

EA(x,s) = EA0 +∆EA · sin
(

2 ·π
L
· x+ s

)
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q(x,a) =

{
1 x≤ a

0 x > a

}
with x ∈ [0,L]

EA0

s

∆
E

A

L

EA(x)

q(x)
a

x x

x

utip

Figure 7.1: System, load and tensile stiffness distribution of tensile rod

Now we consider this rod to be optimized with respect to Optimal Actua-
tion, where the tip displacement utip under the load q represents the actu-
ation benefit function B and the cost function C is computed as the square
of the load design variable a. The design can be modified by changing
the phase change parameter s inside the tensile stiffness function, and the
actuator can be effected by modifying the parameter a. The structural
model and the functions EA(x,s) and q(x,a) were chosen such that the
resulting two-parameter optimization problem can be solved analytically,
but possesses the non-convex characteristics of a real-world shape opti-
mization problem. Therefore, we come up with the following analytical
formulation for the efficiency of the actuation process:

B(s,a) = utip =

L∫
x=0

ε (x)dx =
L∫

x=0

N (x)
EA(x,s)

dx =
L∫

x=0

−
∫ x

ξ=L q(ξ ,a)dξ

EA(x,s)
dx

C(s,a) = a2
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min E(s,a) =
C(s,a)
B(s,a)

Figure 7.2 shows a contour plot of the actuation efficiency function E in
the two dimensional design space of the shape design parameter s and
the actuator design parameter a. This graph clearly shows that the func-
tion behaves very differently with respect to the different types of design
variables. In direction of variable s the behaviour is very smooth and rep-
resents the characteristic sinusoidal shape which was used to define the
tensile stiffness EA(x). In contrast, the behaviour in direction a is highly
oscillating which leads to local minima of the efficiency function (figure
7.3).

s

a

Figure 7.2: Contour plot of effi-
ciency function in design space

a

slocal minima

Figure 7.3: Close up of effi-
ciency function contours

This simple example already shows that merging of different types of
design variables may increase non-convexity of optimization problems
significantly. In order to achieve a reasonable treatment of these kinds
of optimization problems, the application of an extended filtering scheme
using multiple filter kernel functions is a key feature.
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7.3 Numerical examples

7.3.1 Optimization of an adaptive beam

The first example focuses on a shape adaptive beam, for which a combined
shape and actuator optimization is performed. The beam has a length of
10 and an initial circular curvature with a rise of 0.5. The left edge of the
system is fixed supported and the right hand side is roller supported while
a pressure load is acting onto the structure according to figure 7.4. A finite
element shell model is used for structural analysis and optimization. In
order to keep the mechanical problem as simple as possible, geometrically
linear behaviour is assumed.

fixed supports roller supports10

0.5

uelement load ai

Beam width 0.5
Beam thickness 0.2
Pressure load 1.0
Elastic modulus 20,000
Poisson ratio 0.0

Figure 7.4: Statical system of the adaptive beam

In order to modify the shape of the structure within optimization, all finite
element nodes can be moved despite the supports, and the previously men-
tioned methods for in-plane regularization are used in order to avoid mesh
distortion. Actuator optimization is performed by an element wise scal-
ing of the acting pressure load. For this purpose, a design variable ai is
defined for each element, scaling the pressure acting on the specific ele-
ment. The actuation benefit is measured by the horizontal displacement u

of the roller support and the actuation cost is computed by summing up
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the acting pressures load over all finite elements, or the load controlling
design variables ai equivalently. In order to avoid arbitrarily large shape
updates, an additional constraint is added to the optimization problem,
which reduces the maximum allowable increase of the structure’s weight
to 50%. The optimization problem can be formulated in the form

min
∑i |ai|

u
st

m−1.5 ·m0 ≤ 0

(7.5)

with m and m0 being the actual and the initial mass of the structure.
Two different structural optimization runs are performed for the system,
one with a uniform filter kernel function for all design variables and one
with individual filters for shape and actuator design variables. Filter ker-
nel functions are used according to equation 5.7. From engineering expe-
rience, the suggested “optimal” solution would be a frame like structure
with a single horizontal force acting at the roller support. Having this idea
in mind, the filter kernel radii for individual filtering are chosen. In order
to guide the optimizer towards the expected solution, a filter with a large
filter kernel radius Rs is chosen for the shape update, while a small filter
radius Ra is used in order to treat the actuator update

(
Rs
Ra

= 12
)

, because
of which a smooth shape update is enforced while a local actuator place-
ment is enabled. Ra is set to 0.5, which is identical to the initial rise of the
curved beam. For uniform filtering, an intermediate filter size R = 3.0 is
used.
Figures 7.5 and 7.6 show intermediate designs during the optimization
process, right at the points when the mass constraints become active.
The optimization run using individual filter kernels (figure 7.5) is striving
for a solution which coincides very well with the expected frame struc-
ture. The shape already has a frame-like appearance, and the pressure
load at the roller support already changed its direction, now pointing in
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Figure 7.5: Intermediate design
using individual filter kernels

Figure 7.6: Intermediate design
using uniform filter kernel

direction of the investigated displacement u. At the same time, the uni-
form filter approach shows a completely different design with a peak in
the middle of the structure. By this mean, a large lever arm is generated,
leading to large bending deformations, also increasing the efficiency of
the actuation process. The pressure load distribution looks similar to the
individual filtering case, as the change of sign close to the roller support
is also visible here. These features are kept upright until the converged
solution of the optimization is reached (figures 7.7 and 7.8). In case of

Figure 7.7: Optimization result
using individual filter kernels
(250 iterations)

Figure 7.8: Optimization result
using uniform filter kernel (170
iterations)

the individual filtering, a frame structure with a vertical and a diagonal
element has developed. The actuating pressure load is concentrated at the
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roller support, as it was expected, while the pressure acting onto the rest
of the structure has been optimized to zero. The vertical member of the
structure is designed in a corrugated form, which leads to a combined load
carrying behaviour by bending and normal force, which again increases
the flexibility of this member. As the wave length of the corrugations is
much smaller than the filter radius applied to shape design variables, it
can be concluded that the shape of the corrugations is governed by the
geometry and stiffness of the structure, and is not a direct consequence of
the filtering procedure.
In contrast, the uniform filter approach still shows the characteristic peak,
and the load is not concentrated, but distributed over the peak and the sup-
port region. Although this design is very different from what was expected
beforehand, it is also a quite efficient way of actuation because of the large
lever arm generated by the peak. Due to the uniform filter size for both
fields of design parameters, the optimizer is not able to generate a highly
localized actuation as we can see it in the case of the individual filtering
(figure 7.7).
A comparison of objective function values reveals that both designs (fig-
ures 7.7 and 7.8) show a quite comparable performance with respect to the
objective function. So the design obtained by individual filtering leads to
a final objective value of 1.9% times the initial objective value f0, where
the uniform filtering ends up with an objective of 2.5% · f0.
In order to complete the comparison, a last optimization is performed,
using individual filter kernels with an inverted size ratio

(
Rs
Ra

= 0.2
)

. Fig-
ure 7.9 presents the final design, and the similarity between this design
and the one obtained by a uniform filter kernel (figure 7.8) is obvious.
This confirms the statement made in section concerning shape control,
where it is claimed that the filter cancels out. So different filters might
lead to identical or very similar designs, if optimization is directed into
the radius of convergence of the same optimum in the early optimization
phase.
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Figure 7.9: Optimization result using individual filter kernels with
inverted size ratio

(
Rs
Ra

= 0.2
)

7.3.2 Generation of complex bead designs

This second example is meant to show the capability of the method to gen-
erate complex flexible structures which can act as elastic hinges providing
high movability of the structure. These hinges usually are implemented as
corrugated bellows, and as the direction of load application as well as the
applied support conditions are usually not known beforehand, rotational
symmetric bellows are used most frequently, in order to be applicable to a
multitude of applications. The following example will focus on the gen-
eration of custom tailored elastic hinge structures for specific geometrical
and structural boundary conditions by applying methods of parameter free
shape optimization.
From a methodical point of view, this example is also very interesting, as
it presents a geometry which cannot be optimized by pure intuition any-
more. Additionally it emphasizes the benefit of the node based optimiza-
tion approach towards CAD based optimization, as very complex geome-
tries can be realized. Setting up a CAD based optimization model being
able to reflect a complex and short waved bead pattern on the surface of
the cylinder would be time consuming, especially when orientation, width
and length of the beads are unknown. The chosen CAD parametrization
would have significant influence on the final optimal design anyway. The
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parameter free optimization approach supersedes this modeling step, as
well as re-meshing or mapping operations between design and computa-
tional model.
The system to be considered is a cylinder of length l = 30,000 and of
diameter d = 10,000. One end of the cylinder is beveled in 45 degrees,
and all translatoric degrees of freedom are fixed at this edge (see figure
7.10).

ux = uy = uz = 0

45◦

uedgex
z

y

Figure 7.10: Support conditions of beveled cylinder

Initially, the structure is loaded by a vertical load which is uniformly dis-
tributed over the entire body of the cylinder and node-wise controlled via
the actuator variables a. In the context of an optimization with respect
to Optimal Actuation, the sum of all acting external forces is considered
as the cost function, while the vertical deflection of the un-beveled edge
uedge of the cylinder is used to measure the benefit of the actuation. Anal-
ogously to the previous example, this structure is to be optimized with
respect to Optimal Actuation by modifying the shape of the cylinder as
well as the placing of the acting external forces. Therefore, the cost-
benefit optimization can be formulated as

min
∑i |ai|
uedge

(7.6)

The results of this combined optimization are shown in figure 7.11. Again
an individual filtering for shape optimization and actuator placement has
been used. Gradients with respect to shape are treated using a filter radius
Rs = 1,000 in order to ensure sufficiently large wave length and curvature
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Optimization step 5

Optimization step 45

Optimization step 100

1.0

0.0

Actuator force

0.5

2.25

0.00

Design Update

1.13

24.00

0.00

Design Update

12.00

137.50

0.00

Design Update

68.75

1.0

0.0

Actuator force

0.5

1.0

0.0

Actuator force

0.5

Figure 7.11: Combined shape optimization and actuator placing
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of design features, while actuator placement is modified using a smaller
filter radius of Ra = 200. The results clearly show that actuator placement
is dominant in this case, while shape modifications are tiny. Optimization
is striving for a solution only actuating the free edge of the cylinder, as
this loading provides the largest lever arm and correspondingly the highest
actuation benefit.
Based on these results and in order to accelerate computations, an actuat-
ing force pz only acting on the un-beveled edge of the cylinder is assumed
for the ongoing optimizations, which deal with pure shape optimization
of the cylinder. Within this optimization, two different load cases will be
considered. For this purpose, the vertical load acting at the edge of the
cylinder can be applied in upward or downward direction, as indicated in
figure 7.12.

x
z y

downward load case upward load case

pz−pz

Figure 7.12: Different load cases of beveled cylinder for pure shape opti-
mization

As actuator placement was already performed and therefore the cost func-
tion remains constant, the objective of the optimization becomes the max-
imization of the vertical deflection at the loaded edge uedge induced by the
ring load. Three different optimization runs will be performed reflecting
the possible combinations of load cases. During the first two optimization
runs, only one loading direction is considered and the related displace-
ment is maximized. In the last optimization run, both tasks are combined
in a multi-objective optimization, where each load case is considered sep-
arately and the related displacement responses are optimized as an equally
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weighted sum. In order to obtain a bead pattern instead of a free shape
optimization, the design space is limited. Each node is allowed to move
±250 in out-of-plane direction.
Optimizations are performed under consideration of large deflections.
Therefore, fully geometrically nonlinear analyses are performed, and sen-
sitivities are computed based on the nonlinear equilibrium condition. For
this purpose, sensitivity formulations according to A.2 are used.
Optimization results shown in figures 7.13 and 7.14 reveal that no clas-
sical corrugated bellows can be identified, due to the prescribed loading
directions and the inclined supported edge. All three designs have in

Design A

Design B

Design C

ux = uy = uz = 0

ux = uy = uz = 0

ux = uy = uz = 0

Figure 7.13: Iso parametric views of optimal designs (A: Load case
upwards, B: Load case downwards, C: Both load cases)
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Design A

Design B

Design C

Figure 7.14: Side views of optimal designs (Top: Load case upwards,
Center: Load case downwards, Bottom: Both load cases), dashed lines
indicate main beads on the lateral surface of the cylinder

common the corrugated bellows at the edges of the cylinder, located in
the tension and compression zones. Strong differences can be seen on
the lateral surface of the cylinders. Designs A and B of figure 7.14 are
dominated by diagonal main beads on the lateral surface, whereat the ori-
entation results from the loading direction. These beads are acting as a
kind of tension member, transporting the load over the length of the lat-
eral surface, whereas the rest of the cylinder body performs an almost
stress free deformation.
The multi objective optimization, which was formulated as an equally
weighted sum of the response functions of the two other optimization
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runs, tries to find a compromise out of the two designs described above,
as expected. As a consequence, no distinct diagonal bead exists anymore.
A slight Y-shaped deepening can be observed only in the left part of the
cylinder. The corrugated bellows at the loaded edge are almost symmet-
ric, which is not surprising due to the altering load directions and the long
distance to the inclined supported edge.

In order to judge the influence of the filter size on the final result of the
optimization, a parameter study is performed for the upward load case.
For this purpose, the filter radius is reduced step-by-step from the ini-
tial size of R = 1,500 to a final size of R = 375. Figure 7.15 compares
the obtained optimization results, where the contour plot highlights the
directed design update, red color indicating an outward design update
while the blue color indicates an inward design update. It can be observed
that the chosen filter size has an influence on the final design, which is
an expected behaviour for a complex shape optimization problem, being
definitely non-convex. Despite these differences in the final shape, basic
features can be identified, which are characteristic for all four compared
shapes. In all cases, outward oriented beads can be observed in the central
part of the lateral surface of the cylinder, oriented diagonally from top-
left to bottom-right. V-shaped beads of changing orientation developed
close to the supported edge, being orientated top-right to bottom-left on
the top, and top-left to bottom-right on the bottom part of the cylinder.
These beads start do widen with an increasing filter size, as expected, and
tend to unite. Therefore, the beaded areas on the cylinder’s lateral surface
become larger when the radius of the filter is increased.
In summary, it can be noted that the filter influences the design in the
expected way, such that a larger filter emphasizes an optimal solution
showing overall shape changes, while a smaller filter leads to localized
design modifications. Nevertheless, all designs are clearly governed by
the pure gradient information of the response function, leading to basic
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R = 1,500

R = 750

R = 375

R = 1,000

+250

−250
Directed Design

Update

0

Diagonal beads on
lateral surface

V-shaped beads close to
the supported edge

Figure 7.15: Upward load case, optimized using different filter sizes
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characteristic elements in the design. These elements are preserved and
remain present, even for severely differing filter sizes.

In figures 7.16 and 7.17, the structures which were optimized using one
loading direction are shown in different states of deformation. In both
cases, a maximum deformation of 10,000 is applied, which is identical to
the cylinder’s diameter. It can be determined that the bead structures act
in the expected way. The structure shows a crinkle-like behaviour along
the lateral faces of the cylinder, which is well known from membrane
structures effected by compressive strains. As this kind of local crinkling
is a nonlinear process and the observed displacements are significant,

u =−2,500
u =−5,000

u =−7,500 u =−10,000

Figure 7.16: Deformation progress of Design A under loading in upward
direction
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u = 2,500 u = 5,000

u = 7,500
u = 10,000

Figure 7.17: Deformation progress of Design B under loading in down-
ward direction

the consideration of geometric nonlinear effects and large deformations
within the structural analysis as well as within the optimization is essen-
tial.
In figure 7.18, the load-displacement curves for the different cylinder
designs A,B and C are compared. As recommended by Choong, Ramm
[41], dynamic effects have been taken into account in the analysis in order
to ensure numerical stability of the computations. In pure static analysis,
the initial design and Design C fail for moderate deformations due to local
instabilities. In order to overcome these instabilities, a dynamic analysis
using a Newmark-Beta integration scheme was performed, using a density
of ρ = 7.5 · 10−7 and stiffness proportional Rayleigh damping. Density
has been chosen as small as possible, such that computations are stable but
the structure does not show observable dynamic effects. It can be deter-
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Figure 7.18: Load-displacement curves of different cylinder designs

mined that the individually optimized designs A and B show the softest
behaviour and so the best adaptivity, as expected.
Design C shows a surprisingly high flexibility, being quite comparable to
the designs A and B, especially for deformations ranging from −5,000
to +5,000. However, in large displacement regimes, static computations
collapsed for both loading directions, which indicates sudden instability
failure and a non-robust behaviour of the structure for large deflections.
In summary, the compromise design C shows a good flexibility for both
loading directions, but it does not behave as resistantly as the designs tai-
lored for a specific loading direction.

As a conclusion of this example, it can be noted that the optimization
approach based on pure engineering experience fails for quite simple
geometries already. Methods of structural optimization have to be taken
into account, especially for those optimization problems facing tasks of
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large deflections. Beyond that, this example points out the advantages of
the finite element based structural optimization approach, not being based
on an a-priori choice of geometry variables. This choice naturally has
an influence on the final optimization result. In contrast, the finite ele-
ment based optimization approach allows optimization with a minimum
of modeling effort also for changing boundary conditions, such as multi-
ple or varying loads.

7.3.3 Shape adaptive wing

In this section, the presented methods are applied to a real structure. As an
example, an adaptive wing is used, which currently is object of research
under the lead of Onur Bilgen [22] [23] at the Old Dominion Univer-
sity and at the Swansea University. The investigated wing belongs to an
unmanned light-weight aircraft, which is equipped with piezoelectric ele-
ments instead of classical flaps, adapting the wing by selective form mod-
ifications to the current flight and air-flow situation. Figure 7.19 shows a
schematic drawing of the wing, including the three piezoelectric actuators
in red colour. The underlying airfoil corresponds to a NACA 0012 profile.

Figure 7.19: Schematic drawing of the adaptive wing [23]

The works in Swansea and Norfolk mainly focused on the experimen-
tal determination of optimal airfoil geometries in order to obtain max-
imum lift-to-drag ratios. Structural analysis was performed using 2D-
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models, actuator placement and choice of substrate thickness was done
using genetic algorithms. In line with this thesis, the wing is to be opti-
mized with respect to shape adaptivity using gradient based optimization
applying the ideas of Optimal Actuation. For this purpose, both actua-
tion load case and fluid load case are considered. Numerical fluid load
computation is based on the open source airfoil analysis tool XFOIL [50],
which also was used in Swansea. Objective of optimization is to reach a
pre-defined shape by actuating the wing with a minimum actuation effort,
at the same time deformation limits may not be violated in the un-actuated
configuration with only the fluid load acting.
The most extreme operational state of the wing presented by Bilgen
(see figure 7.20) is chosen as target geometry for the actuation process.

0.5mm

7.5mm 3mm
30mm

1

2
3

4
178mm

Figure 7.20: Traget deformation for actuation (based on [23])

Throughout the optimization, this shape is described and and evaluated
via the four illustrated nodal displacements. For analysis and optimiza-
tion purpose, an extruded version of the 2D-model used in Swansea with
a constant chord length is used (figure 7.21). Temperature loads are used
to mimic the effects of the piezo elements. Due to the extrusion, a three
dimensional model of the wing is generated, which is meshed using eight-
noded hexahedral elements.
A first optimization is performed in order to obtain reference values for
the temperatures in the actuators which are necessary in order to actuate
the initial wing design. In this optimization, the shape of the wing remains
untouched, while the temperature loads a acting in the actuators are opti-
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actuator 1

actuator 2

actuator 3

uy = 0

ux = uy = uz = 0

x
y

z

Figure 7.21: Finite element model of adaptive wing with actuators and
support conditions

mized. A least-squares sum of the traced nodal displacements marked in
figure 7.20 is used as response function (see equation 7.7).

min f (a) =
4

∑
i=1

(
ui (a)−ure f

i

)2
ure f

1 = 0.5mm, ure f
2 = 7.5mm

ure f
3 = 3mm, ure f

4 = 30mm

(7.7)
Obtained load values and the corresponding characteristic displacement
values are listen in figures 7.22 and 7.23. As four displacements have
to be fitted, but only three design variables are available, the target val-
ues cannot be satisfied exactly. Figure 7.24 shows the wing in actuated
configuration according to the Carat-simulation.

normalized
Actuator temperature

1 a1 = 23
2 a2 = 100
3 a3 =−84

Figure 7.22: Actuator forces a
for initial geometry

Node Displacement

1 0.49mm
2 7.9mm
3 3.1mm
4 32.4mm

Figure 7.23: Characteristic dis-
placements of actuated initial
geometry
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Figure 7.24: Wing in actuated shape

These load values are now used as initial values for shape and actuator
optimization. In order to maintain the flow conditions around the wing,
only the inner face of the wing is used as design space. Shape controlling
design variables are collected in vector s. Objective of the optimization
now is to minimize the actuation effort, which is measured via the l1-norm
of the vector a. Simultaneously, constraint functions are defined, forcing
the wing into the desired shape under actuation load (g1), and limiting the
deformation under fluid load (g2), whereat the investigated displacement
is evaluated at the trailing edge of the wing. The considered fluid load
corresponds to flow conditions under an angle of attack (AOA) of 7◦ and
a flow rate of 30 m

s . Figure 7.25 shows the corresponding distribution of
cp-values according to an XFOIL computation and the resulting consistent
nodal forces acting on the finite element model.

AOA = 7◦

Figure 7.25: Fluid load: cp-value distribution and corresponding nodal
forces
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The entire optimization problem is formulated in equation 7.8. Thereby u
indicates the displacement in the actuated state and v names the displace-
ment due to the fluid load, while indices related to displacement vectors
again refer to the node numbering introduced in figure 7.20.

min f (a) =
3

∑
i=1
|ai|

st.

g1 (a,s) =
4

∑
i=1

(
ui−ure f

i

)2
< TOL

g2 (a,s) = v4 < 1.27mm

(7.8)

The maximum allowable deformation of the trailing edge by 1.27mm

under fluid load is the same deformation which the initial design showed
for the given flow conditions.
In this application, a filter radius of R = 15mm was used for the treatment
of shape determining design variables s. As the actuators are discontin-
uously distributed over the wing, a filtering of the gradients related to
variables a is abdicated.
Design changes performed on the wing during optimization are illustrated
in figure 7.26. In order to emphasize the areas of increasing and decreas-
ing substrate thicknesses, the vector plot is scaled by a factor of 20. The
most shape modifications are performed at the bottom part of the wing,
where the substrate thickness was increased in the regions topping the
actuators, while the material connecting the actuators 2 and 3 was thinned
out. As the fluid pressure load acting in this region are very small, the
resulting decrease of stiffness is not problematic.
Figure 7.27 allows a more detailed evaluation of the shape modifications.
The passive material connecting actuator 2 and 3 is thinned to a lower
allowable limit of 0.025mm, in order to facilitate the change of curvature
which is characteristic for the actuated wing configuration. At the same
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actuator 2 actuator 3

actuator 1

support
support

Figure 7.26: Design changes of wing’s inner face (scaled by a factor of
20)

0.51

0.00

Design change

0.25

[mm]

actuator 2

actuator 3

actuator 1

actuator 2

actuator 3

Figure 7.27: Design changes of wing’s inner face. Bottom: Standard view,
Top: Inverted view

time, the material layer covering actuator 3 is getting thicker, whereby
the jump in material thickness between the passive material and actuator
3 is removed by a homogeneous transition. As the top part of the wing
has to curve less than the lower part during the actuation process, shape
modifications are smaller in this area. Here the material thickness of the
substrate topping the actuator is also increased, while material is taken
away at the pure passive structure.
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Now the resulting actuation effort is considered. In figure 7.28, the actua-
tion temperatures for the initial and the optimized design are compared. It

temperature load temperature load
Actuator initial design optimized design saving

1 a1 = 23 a1 = 9 60%
2 a2 = 100 a2 = 34 66%
3 a3 =−84 a3 =−76 10%

Figure 7.28: Actuator loads for optimized geometry in comparison with
initial design

can be seen that especially the actuators 1 and 2 offered a lot of potential
for optimization, and up to 66% of actuation energy have been saved. For
actuator 3, only a saving of 10% was achieved. As the contraction of this
actuator is the main driving force in order to obtain the S-bent shape in
the actuated state, a relatively high actuation force within this actuator is
necessary.

7.4 Conclusion

In this chapter, the necessity of a modified or extended shape control
algorithm for optimization including actuator placement was presented.
A numerical example showed that an aspired localized actuation and a
smooth optimized shape cannot be achieved by a uniform filter kernel
function.
Furthermore the influence of the filter size on the shape of complex bead
patterns was discussed. Here different filter radii led to different opti-
mal designs, proofing the optimization problem to be non-convex. The
filter effected the final design in the expected way, such that a larger fil-
ter emphasized an overall optimized design, while a smaller filter led to
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localized design modifications, whereat the characteristic design elements
have been preserved.
The example considering the adaptive wing combined a continuous shape
design field with discretely distributed design variables. Here also a sec-
ond load case was considered, subjecting the structure in the un-actuated
state and so defining a minimum stiffness of the structure. This com-
plex optimization problem was solved successfully, leading to a signifi-
cant decrease of required actuation force.
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CHAPTER 8

Bi- and multistable structures

8.1 Motivation

In the chapters 6 and 7, "classical" smart structures have been considered.
These structures can be actuated by a permanent actuator input. As soon
as the actuator is shut down, the structure returns to its initial configu-
ration. This necessity of permanent actuator input brings up the idea of
applying bistable structures in the field of smart structures, which will be
discussed in this chapter.
A bi- or multistable structure is a structure which can assume two or even
more different shapes of self equilibrium without any load acting onto the
structure. A very simple example of a bistable structure is the two-bar-
truss structure, which is discussed quite frequently in introductive lec-
tures to nonlinear finite elements, as it shows a distinct nonlinear load
carrying behaviour despite its simplicity. Figure 8.1 shows the states of
self equilibrium of the two bar truss. The structure even possesses three
configurations of self equilibrium, whereof two are stable states and the
third one is a instable state, which means that any disturbance applied to
the position of the center node will cause the structure to a sudden snap
through towards one of the stable states.
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stable state
of self equilibrium

stable state
of self equilibrium

instable state
of self equilibrium

Figure 8.1: Two bar truss as example for bistability

Bistable structures show sudden changes in deformation when a critical
load is exceeded. In fact, this is a buckling phenomenon, which usually
is an undesired behaviour in structural design. For bistable structures on
the other hand, buckling loads are excessed by intend, in order to switch
between self stable configurations.

8.2 Bistable structures in morphing applications

Bistability is a very interesting effect for applications in the context of
smart structures or morphing applications, and the idea of exploiting
bistable properties for compliant mechanisms goes back to the 1980 [75].
For a bistable smart structure, actuation is only necessary in order to
switch between configurations, while the desired shape is preserved as
a state of self equilibrium. Thus, energy consumption is reduced to a min-
imum, as keeping the configuration upright does not require any actuator
input. This property makes bistable structures also very attractive with
respect to the aspect of reliability and safeguarding against failure. A
"classically" actuated structure, needing permanent power supply, would
immediately lose its controlled character if the energy supply was inter-
rupted. This might lead to a sudden and complete collapse of the entire
structure. On the other hand, a bistable structure only loses its ability
to switch between configurations, but the load bearing capacity and the
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stability of the structure would not be affected immediately by a power
breakdown.

8.3 State of research

In section 8.1, the effect of bistability was discussed regarding a truss
structure. Generating bistability for curved shell structures is way more
challenging. For this purpose, analytical formulas are used in order to
achieve bistable behaviour for shells with constant curvature radii. Cylin-
drical shells are known to be monostable if they are made from isotropic
material without any prestress [65], thus actual research mainly focuses
on the generation of bistable cylindrical shells using orthotropic compos-
ite material in combination with prestress [81].
In this context, necessary prestress is very often generated by using the
direction dependent thermal expansion of composites materials in the
autoclave method in order to obtain prestressed cylindrical shells made
from staggered composite material [93] [104] [105]. Another approach is
to generate prestress by bonding mechanically prestressed rubber mate-
rial as top and bottom layers onto elastic core material. By this mean, a
bistable structure can be generated which switches between a cylindrical
and a saddle shape [38].
The investigation of bistability for non-prestressed structures is quite a
new field of research. In Coburn et al [43], a tristable positively doubly
curved shell is presented for which the multistable properties are tailored
by choosing adequate radii of curvature.
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8.4 Finite Element based optimization with respect to
bistability

8.4.1 Formulating analysis and optimization problem

Summarizing section 8.3, it can be noted that the actual design process
focusing on bistability addresses structures possessing globally constant
properties concerning curvature and prestress. This allows to judge about
the existence of multiple stable configurations by using analytical models.
Goal of this chapter is to apply finite element based structural optimization
to the field of bi- and multistable structures, in order to generate free-form
structures possessing several self stable configurations. For this purpose,
shape optimization as well as composite fiber angle and layer thickness
optimization techniques will be used.
The subsequent question is, how to set up an optimization problem aiming
on the generation of a bi- or multistable structure. Structural analysis of
the underlying structure is formulated as a geometrically nonlinear static
problem, as the structure of consideration is supposed to show significant
buckling behaviour. Accordingly, requirements with respect to bistabil-
ity have to be formulated in context of the nonlinear analysis. In order
to be able to specify a characteristic deformation of the system which
is intended to be a self stable configuration in the optimized state, struc-
tural analysis is performed using a displacement controlled path following
technique. This enables the user to specify a characteristic degree of free-
dom of the system together with a target displacement values, defining
the aspired stable configuration. Figure 8.2 shows an exemplary load-
displacement diagram, where the initial design does not posses bi- or mul-
tistable characteristics. The degree of freedom uc, which is controlled by
the path following method, is plotted on the horizontal axis, while the
vertical axis refers to the load factor λ . Two reference values ū1 and ū2

are specified for the controlled displacement, specifying the desired self
stable configurations. The load-displacement path changes as optimiza-
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Figure 8.2: Exemplary load displacement diagrams for optimization with
respect to bistability

tion proceeds, and approaches towards the final solution, where uc = ū1

and uc = ū2 define self stable configurations, such that the newly gener-
ated structure now possesses three self stable configurations, including the
origin of the coordinate system uc = 0,λ = 0.

8.4.2 Prediction in context of optimization using nonlinear analysis

In nonlinear static analysis, a Newton-Raphson method (see section
4.2.2.1) is used in order to determine the load factor λ and the displace-
ment field u which satisfy the nonlinear equilibrium condition [17]. In
order to speed up convergence of this iterative method, usually a predic-
tor is used in displacement controlled analysis, providing an initial guess
of the incremental displacement field uinc and the incremental load fac-
tor λinc which are expected for the upcoming load step. This approach of
applying a predictor to a Newton-Raphson method is usually referred to
as a predictor-corrector approach [135].
In order to compute the predictor, the load-displacement history of the
previous load step is used. For this purpose, the incremental displace-
ment of the last load step is linearly extrapolated. Applying this idea to

123



CHAPTER 8. BI- AND MULTISTABLE STRUCTURES

the controlled degree of freedom uc, the linear extrapolation factor s can
be computed based on the current displacement value ūi, the displace-
ment increment computed in the last load step ui

c,inc and the upcoming
prescribed displacement value ūi+1 in the following form:

ūi +ui+1
c,inc = ūi+1

ūi +

ui+1
c,inc︷ ︸︸ ︷

s ·
(
ūi− ūi−1)︸ ︷︷ ︸

ui
c,inc

= ūi+1

s =
ūi+1− ūi

ūi− ūi−1

(8.1)

The scalar factor s, which is obtained by investigating the single degree of
freedom uc, now is applied to the complete displacement field and to the
load factor. Accordingly the estimated incremental displacements and the
estimated load factor increment are computed by

ui+1
inc = s ·

(
ui−ui−1)

λ
i+1
inc = s ·

(
λ

i−λ
i−1) (8.2)

Figure 8.3 shows the prediction of point i+ 1 based on the previously
computed equilibrium points i and i−1.
In the context of an displacement controlled optimization as illustrated in
figure 8.2, the predictor procedure has to be modified. During optimiza-
tion, the controlled displacement uc is constant, but the design is changed
which necessitates re-solving of the mechanical problem. As there is no
displacement increment uc,inc in between optimization steps, the compu-
tation of the scalar factor s according to equation 8.1 is not applicable.
In order to be able to generate a predictor for solving the structural prob-
lem in each optimization step or pseudo load step i+ 1 nevertheless, a
modified predictor method has to be used. In equation 8.1, the driving
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Figure 8.3: Predictor scheme for displacement controlled analysis

force determining the value of s is the ratio of the prescribed displace-
ment increments in two subsequent load steps. Accordingly, a predictor
used in context of optimization should be driven by the ration of design
modifications for two subsequent optimization iterations. Design modifi-
cations can be measured by step length factors α used in the line search
(see section 5.6), thus an appropriate predictor can be formulated as

ui+1
inc =

α i+1

α i ·
(
ui−ui−1)

λ
i+1
inc =

α i+1

α i ·
(
λ

i−λ
i−1) (8.3)

In case of a fixed step line search, it holds that α i+1

α i = 1. In this case,
the predicted changes in displacement and load factor are identical to the
changes observed in the last optimization step.

8.5 Considering of multiple load-path problems and
avoiding of over-critical points

As already mentioned in section 8.1, bistable structures show a signif-
icant buckling behaviour. Buckling is a very complex mechanical pro-
cess, especially when buckling of shell structures is considered, whereat
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the load path may be non-unique within the buckling occurrence. This
phenomenon of non-unique load paths even can be observed for the sim-
ple two-bar-truss structure, when a steep truss structure is considered.
Figure 8.4 shows such a steep two-bar truss with a height-to-span ratio

1

2

F
v

Figure 8.4: Statical system of steep two-bar truss

of 2, where a single load is applied to the top node pointing in verti-
cal displacement direction v. Structural analysis of this system leads to
the following load displacement diagram (figure 8.5). The primary load
path shows the typical snap-through characteristics with two limit points
and an instable state of self equilibrium in between. Furthermore, a sec-
ondary load path exists, which separates suddenly from the primary path
and shows a constant negative slope without the characteristic limit points.
The point where the secondary load path separates from the primary load
path is called bifurcation point. The structure’s displacement u and the
corresponding load factor are not uniquely related anymore for a given
controlled displacement uc beyond this point.
Figure 8.6 compares the deformations of the two-bar truss for both load
paths. The primary load path shows the expected pure vertical deflection,
ending up in the snap-through of the truss structure. The secondary load
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Figure 8.5: Load displacement curves and eigen values of two-bar truss
problem

path, on the other hand, is related to horizontal buckling of the entire struc-
ture. This ambivalence is characteristic for stability problems. An "ideal"
structure without any imperfection would stick to the primary load path
in an instable state of equilibrium even for over critical loads, whereat a
"real" structure including imperfections (for simulation purpose, imper-
fection was applied as a horizontal load component of 0.01 · F) would
follow the secondary path instead.
Considering bistable structures, bifurcation and over critical load states
are very important issues. Newly generated self stable states usually are
not intended to be located in over critical regions, as ambivalent states of
displacement at the specified self stable configuration would question the
accessibility and robustness of this solution. For this purpose, it is impor-
tant to be able to determine critical points and over critical regions within
the load-displacement relation. Critical points, beneath limit and bifurca-
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primary path
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Figure 8.6: Comparison of displacements on different load paths for two-
bar truss problem

tion points, are characterized by a singular tangential stiffness matrix KT,
so at least one eigen value of KT has to be zero for a state of displacement
describing a critical point [19]. Over critical states are characterized by
the tangential stiffness matrix being indefinite [135]. The corresponding
negative eigen values and related eigen vectors indicate an instable state
of equilibrium, where the system would release stored strain energy if
the deformation mode indicated by the eigen mode was stimulated. This
behaviour is also reflected by figure 8.5, where both phenomena, the snap
through as well as the bifurcation effect, are related to a specific eigen
pair of the stiffness matrix. The numerically smaller eigen value is zero
for both bifurcation points and negative for the instable states in between,
whereat the second eigen value shows the same behaviour with respect to
the snap through of the structure on the primary load path.
Coming back to bistable structures, it can be noted that a stable state of
self equilibrium has to satisfy the condition of the tangential stiffness
matrix being positive definite, where all eigen values have to be strictly
positive. This condition ensures that the obtained self stable point is nei-
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ther an instable configuration, nor it is located in a region of ambiguous
load paths.

8.6 Response function and sensitivity analysis

As mentioned in sections 8.1 and 8.4, a bistable structure is character-
ized by multiple shapes the structure may assume without being subject
to any loading. This property is utilized in order to formulate a response
function which can be used for optimizing a structure with respect to
bistable nature. The response function is based on a displacement con-
trolled nonlinear static analysis. As the structure is meant to become self
stable for specific values of controlled displacement, the absolute amount
or the square of the load factor is minimized, such that the optimization
problem can be written as

min f (s, ū) = ‖λ (s, ū)‖ ∨ [λ (s, ū)]2

st
(8.4a)

S(s,λ ,u) = fint (u)−λ · fext = 0 (8.4b)

C (s, ū,u) = uc− ū = 0 (8.4c)

where equation S is the residual formulation of the equilibrium condition
and C describes the control equation for the displacement controlled path
following algorithm, where uc is the actual displacement at the controlled
degree of freedom, and ū is the assigned target value.
The sensitivity formulation of the objective function d f

dsi
is quite easy in

this case, as the objective only depends on the design s and on the constant
target displacement ū, but not on the state field u. Thus the total derivative
is identical with the partial derivative with respect to si in this case:

d f
dsi

=
∂ f
∂ si

+
∂ f
∂ ū
· ∂ ū

∂ si︸︷︷︸
0

⇒ d f
dsi

=
∂ ‖λ‖

∂ si
∨ ∂λ 2

∂ si
(8.5)
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In order to determine the partial derivative of the load factor, equations S
and C have to be considered, too.
In a first step, equation S is derived with respect to si, in order to determine
the derivative of the displacement field with respect to the design variable
∂u
∂ si

, similar to section 5.5.

dS
dsi

=
∂ fint
∂ si
− ∂ [λ · fext]

∂ si︸ ︷︷ ︸
∂S
∂ si

+
∂ fint
∂u︸ ︷︷ ︸
∂S
∂u

· ∂u
∂ si︸︷︷︸
∂u
∂ si

= 0

∂ fint
∂ si
−λ · ∂ fext

∂ si
− ∂λ

∂ si
· fext +KT · ∂u

∂ si
= 0

∂u
∂ si

=
[
KT]−1 ·

(
λ · ∂ fext

∂ si
+

∂λ

∂ si
· fext−

∂ fint
∂ si

)
(8.6)

A similar derivation can be found in Firl [52] for example. In this work a
load controlled path following scheme was used, where the external load
was considered to be constant, so that λ and all of its derivatives vanished
accordingly.
In a second step, control equation C is considered. An operator vector v is
defined at first, picking the controlled displacement uc from the complete
displacement vector u by scalar multiplication.

C = uc− ū = 0

C = vT ·u− ū = 0

with

vT = [0 · · · 0 1 0 · · · 0]

(8.7)

As the controlled displacement uc is set as a constant throughout the opti-
mization, the derivative dC

dsi
has to vanish.
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dC
dsi

=
∂C
∂ si

+
∂C
∂u
· ∂u

∂ si
= 0(

∂v
∂ si

)T

︸ ︷︷ ︸
0

·u+vT · ∂u
∂ si

+vT · ∂u
∂ si

= 0

2 ·vT · ∂u
∂ si

= 0

vT · ∂u
∂ si

= 0

(8.8)

Usage of equation 8.6 delivers

dC
dsi

= vT︸︷︷︸
∂C
∂u

·
[
KT]−1︸ ︷︷ ︸
[ ∂S

∂u ]
−1

·
(

λ · ∂ fext

∂ si
+

∂λ

∂ si
· fext−

∂ fint
∂ si

)
︸ ︷︷ ︸

− ∂S
∂ si

= 0 (8.9)

This equation now can be transfered to an adjoint formulation(
λ · ∂ fext

∂ si
+

∂λ

∂ si
· fext−

∂ fint
∂ si

)T

·
[
KT]−1 ·v︸ ︷︷ ︸

Λ

= 0 (8.10)

where Λ is the vector of adjoint variables which is constant for all design
variables:

Λ =
[
KT]−1 ·v (8.11)

Using the adjoint variable vector, formula 8.10 can be solved with respect
to ∂λ

∂ si
:

∂λ

∂ si
=

(
∂ fint
∂ si

)T
·Λ−λ ·

(
∂ fext
∂ si

)T
·Λ

fext
T ·Λ

(8.12)

Having this information, the derivative of the actual response function
according to equation 8.4a can be computed straight-forward.
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8.7 Example 1: Hinged cylindrical roof

The first example considered in this context is the hinged cylindrical
roof. This example is a very popular benchmark for nonlinear finite ele-
ment shell formulations due to its snapping behaviour, and was published
among others in Hughes, Liu [74] or Sze, Liu, Lo [124]. The uniaxially
curved structure is a shallow cylinder segment which is hinge supported at
the straight edges and free at the curved edges (see figure 8.7). The cylin-

R = 2,540

φ = 0.2rad

hinge supported

L = 508

hinge supported

free edge

free edge

F = 1,000

Figure 8.7: Statical system of hinged cylinder roof example

der has a radius of R = 2,540 and a length of L = 508. The considered
segment has an opening angle of φ = 0.2rad = 11.44◦. A single force
is acting in the center point of the segment in radial direction, and two
material setups of the structure will be investigated. For the first material
setup, linear elastic isotropic material behaviour with an elastic modulus
of E = 3,102.75 and a Poisson’s Ratio of ν = 0.3 is assumed. The shell
thickness is set to t = 12.6 according to Sze, Liu, Lo [124]. In the second
setup, a stacked sequence of orthotropic material will be considered with
material properties according to figure 8.8.
For the isotropic material setup, the structure can be expected to behave
monostable [65]. In order to proof this assumption and to determine the
behaviour of the orthotropic shell, static analysis of the initial structure
is performed. The cylinder segment has got a rise of approximately
12.5, and analysis is performed until a maximum vertical deflection of
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E1 E2 E3 G12 G13 G23 ν12 ν13 ν23

3,300 1,100 1,100 660 550 550 0.25 0.25 0.25

Stack sequence 0◦/90◦/0◦

Ply thicknesses 4.2/4.2/4.2
Zero-degree-direction Hoop direction

Figure 8.8: Material specifications of orthotropic material setup

the loaded node of 30.0 is reached, in order to catch the complete snap
through in the analysis. The related load-displacement curves are shown
in figure 8.9, and it can be seen that the structure shows a highly non-linear
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Figure 8.9: Load displacement curves of initial design of cylinder roof
using different material setups

load carrying behaviour with a significant snap through characteristic, but
the cylinder segment behaves mono-stable for both material setups, as the
load factor is strictly positive for all deformed configurations.
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8.7.1 Generation of a bistable configuration using pure shape opti-
mization

In this first optimization, a bistable structure is to be generated using pure
shape optimization. For this purpose, the response function introduced in
section 8.6 is used. The newly generated state of self equilibrium should
be characterized by a vertical displacement of the loaded node by 25. This
is roughly the double rise of the shell segment, so that the structure is
intended to behave self stable in the completely snapped through config-
uration, similar as the two-bar-truss introduced in section 8.1 does.
In the context of this optimization, all finite element nodes except the
supported nodes and the neighboring nodes of the point of load applica-
tion can be moved in surface normal direction. The supports and the area
of load application are not taken into account as design space, in order
to maintain the characteristics of the structure, such as the rise and the
straight supported edges.

no design space

3.86

0.00

Design change

1.93

Figure 8.10: Design change of isotropic cylinder roof

The optimized design is shown in figures 8.10. It can be seen that the
occurring design changes are comparable small, as the maximum design
change is 3.86, which is just 30% of the shell thickness. This design mod-
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ifications mainly happen in the center part of the roof segment, whereby
local biaxial positive curvature is generated. Although the design changes
are quite small, the influence onto the load carrying behaviour of the struc-
ture is tremendous, which is illustrated by the load displacement curve
of the optimized roof segment (figure 8.11). The structure now behaves

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

lo
ad

fa
ct

or

displacement of central point

Figure 8.11: Load displacement curve of isotropic cylinder roof, opti-
mized design

bistable, possessing a new self stable configuration for a displacement of
the traced node of 24.932. At the same time, the maximum load bearing
capacity of structure was increased from 2.16 to 3.3, as the central part of
the roof now acts as a doubly curved structure, and so the stiffness in the
pre-critical state is increased. As a consequence, the loss of stiffness in
the deformation range from 12 to 20 is more severe, which can be seen in
the steep drop of the load-displacement curve.
This example shows that the analysis and optimization procedure shown
in sections 8.4 and 8.6 is able to generate new states of self equilibrium for
a structure with a initial monostable snapping behaviour. As the behaviour
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of the considered system was quite good-natured in this example, no addi-
tional efforts with respect to ensuring regularity of the newly generated
self stable configuration had to be made.

8.7.2 Generation of a bistable structure with predefined limit points

The optimization setup which was considered in section 8.7.1 is enhanced
now. While in section 8.7.1 only a new self stable configuration was
enforced, this example will also prescribe the snap through loads and limit
point displacements which have to be overcome in order to change from
one stable configuration to the other one. As this task makes a higher
demand of the structure with several requirements to be met, a larger
design space is used for optimization. For this reason, the orthotropic
material setup of the cylinder roof is considered, and a combined shape
and composite fiber orientation optimization is performed. Therefore
three additional design variables are assigned to each finite element, con-
trolling the material orientation in each ply. Further information about
composite fiber optimization can be found in Masching et al [92] or
Stegmann, Lund [122], for example. Again a self stable configuration
for a traced displacement of 25 is requested, additionally the two limit
points are specified for traced displacements of 10 and 22.5, with related
limit load factors of 1.25 and −0.2. The limit point characteristics of
these points are enforced by demanding the smallest eigen values of the
tangential stiffness matrices to be equal to zero. In order to formulate
and derive this eigen value constraint, a formulation based on Lindgaard,
Lund [87] is used which approximates the displacement related deriva-
tives of the tangential stiffness ∂KT

∂u matrix. These responses (load factor
for uc = 25, load factor for uc = 10, load factor for uc = 22.5, eigen value
of tangential stiffness for uc = 10 and eigen value of tangential stiffness
for uc = 22.5) are gathered in a least-squares formulation which finally is
used as objective function within the optimization.
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min f =

[λ (uc = 25)]2 +[λ (uc = 10)−1.25]2 +[λ (uc = 22.5)− (−0.2)]2+[
eig
(
KT (uc = 10)

)
)
]2
+
[
eig
(
KT (uc = 22.5)

)
)
]2

(8.13)

The definition of shape optimization design variables is the same as the
one which was used in section 8.7.1. The total number of design vari-
ables is 4086, 1014 nodal based design variables for shape optimization
plus 3072 element based variables controlling fiber orientations. For the
gradient filtering, a filter function with a rather small filter radius of 30 is
used, leading to a filter function with four elements in radius.
The resultant geometry changes generated by the shape controlling design
variables and the optimized fiber orientations for all three plies of the com-
posite stack are shown in figures 8.12 and 8.13. The changes in geometry

1.81

0.00

Design change

0.91

Figure 8.12: Design change of orthotropic cylinder roof

again are quite small, and in contrast to the isotropic optimization case,
where the major changes with respect to geometry could be observed cir-
cularly, now the main shape modifications happen in generator direction
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Figure 8.13: Optimized fiber orientation of orthotropic roof

around the central point of load application. Optimized fiber orientations
(figure 8.13) show that three different regions of load carrying behaviour
can be detected. Around the center of the supported lines, the initial fiber
orientation, with the outer and inner ply being oriented in hoop direction
and the middle ply oriented in un-curved generator direction, is main-
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tained. In contrast, the preferred material orientation in the center area of
the roof is inverted, so the inner and outer ply now are oriented in genera-
tor direction while fibers in the middle ply point in meridian direction. A
third significant region can be observed close to the corner points of the
roof, where the fibers of all three plies are equally oriented in diagonal
direction.
Figure 8.14 shows the load-displacement curve of the optimized cylinder
roof segment. The requested demands with respect to self-stability and
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Figure 8.14: Load displacement curves of orthotropic cylinder roof, opti-
mized designs with respect to different objectives

limit points seem to be well fulfilled, and this impression is also confirmed
by looking at the values of the sub-response functions being collected
in the least-squares optimization (figure 8.15). The deviations from the
requested load factors are ranging in magnitudes of 10−3, and the zero
eigen values of the stiffness matrices are met quite exactly, too.
Figure 8.14 also presents the load displacement curve for an orthotropic
roof segment being only optimized with respect to a self stable configura-
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Structure response Target value Reached value

Load factor for uc = 25.0 0.0 2.66 ·10−4

Load factor for uc = 10.0 1.25 1.2508
Load factor for uc = 22.5 −0.2 −0.1966

1st eigen value KT for uc = 10.0 0.0 4.5 ·10−6

1st eigen value KT for uc = 22.5 0.0 6.2 ·10−6

Figure 8.15: Least-squares optimization sub-responses of orthotropic
cylinder roof

tion at uc = 25.0 without further definitions of limit points, just as it was
done for the isotropic roof in section 8.7.1. It is evident that this optimized
design possesses the required self stable point at uc = 25.0, but this point
turns out to be a limit point at the same time. From the user’s point of view,
considering this structure to be a smart adaptive device in real life appli-
cation, this property might be very unpleasant, as any occurring negative
signed load would lead to an immediate snap-through of the structure,
back towards the initial configuration. This awareness emphasizes that,
for more complex structures, it may not be sufficient only to prescribe the
self stable configurations of a structure. Defining additional limit points
or constraining the allowable eigen values of the stiffness matrix in the
self stable configuration may become essential in order to obtain a struc-
ture serving the intended purposes, as it was done in the first optimization
using the response according to equation 8.13.

8.8 Example 2: Hyperbolic paraboloid

The previous example considered a singly curved cylindrical shell, and for
this example the method of generating self stable states worked out very
well. In this second example, a negatively doubly curved structure will
be investigated. The system of consideration is a hyperbolic paraboloidal
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Figure 8.16: Isometric view of
hyperbolic paraboloid system
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Figure 8.17: Top view of hyper-
bolic paraboloid system

shell which is loaded by two vertical forces at the high points and sup-
ported vertically at the low points (see figures 8.16 and 8.17). Additional
support conditions are added such that the structure is supported stati-
cally determined. The shell forms a quite shallow hyperbolic paraboloidal
structure with a footprint of 4.0 ·4.0 and a height of 1.0. The structure is
modeled using composite material in a 90/0 stagging sequence (bottom-
to-top), where the zero-degree-direction is defined by the diagonal con-
necting the low points (see figure 8.17). Material properties are listed in
figure 8.18, and the load-displacement curve of the shell is shown in figure
8.19, where the traced displacement is the vertical deflection of a loaded
node.
The curve shows that the paraboloidical shell shows snap-through charac-
teristics, but it does not behave bi- or multistable.
In order to optimize the hyperbolic paraboloid with respect to multista-
bility, two additional self stable configurations are demanded, one for a
traced displacement of uc = 1.0 and the second one for a displacement of
uc = 1.5. Based on the information gained from the load-displacement
curve in figure 8.19, the conclusion that the self stable configuration at

141



CHAPTER 8. BI- AND MULTISTABLE STRUCTURES

E1 E2 E3 G12 G13 G23

2.0 ·1010 1.5 ·1010 1.5 ·1010 2.0 ·1010 1.0 ·1010 1.0 ·1010

ν12 ν13 ν23

0.20 0.20 0.20

Stack sequence 90◦/0◦

Ply thicknesses 0.05/0.05
Zero-degree-direction Diagonal

Figure 8.18: Material specifications of orthotropic material setup
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Figure 8.19: Initial load displacement diagram of hyperbolic paraboloidal
shell, tracing the vertical deflection of a high point of the paraboloid

uc = 1.0 will become an instable one is quite obvious. The purpose of
prescribing this self stable configuration is to define the shape of the load-
displacement-curve, although not all prescribed states might be reachable
afterwards by a load controlled path following technique.
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Using a corresponding least-squares objective function of the form

min f = [λ (uc = 1.0)]2 +[λ (uc = 1.5)]2 (8.14)

the shell structure is optimized modifying its shape and its thickness.
Thereby the high points as well as the low points of the paraboloid are
not allowed to change their position, and thickness optimization is per-
formed layer-wise per element. Resulting shape modifications and the
final thickness distributions are shown in figures 8.20 and 8.21. Design

0.023

0.000

Design change

0.012

Figure 8.20: Shape changes of hyperbolic paraboloidal shell

supportsupport
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0.031

Ply thickness

0.038

support support

Figure 8.21: Hyperbolic paraboloid: Optimized ply thicknesses. Left:
lower ply, Right: upper ply
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changes are quite small ranging only up to one quarter of the initial shell
thickness, and major changes occur in the middles of the free edges of the
paraboloid. At the same time, the thickness of both plies is reduced over
the entire structure, mainly along the diagonals of the structure. So the
system’s stiffness is reduced by thinning out the ply thicknesses along the
main force trajectories in order to reduce the load factors related to the
target displacements, while the load carrying behaviour is fine-tuned by
the shape modifications along the edges leading to increased curvature.
Figure 8.22 shows the load displacement curve of the optimized structure.
It can be seen that two additional self stable configurations have been cre-
ated, whereat the targeted instable configuration at uc = 1.0 is met almost
perfect. The requested traced displacement of uc = 1.5 for the second self
stable configuration cannot be reached exactly, but the achieved value of
uc = 1.4789 is quite satisfying. Figure 8.22 also reveal that the optimized
structure possesses multiple load paths. The primary path reflects the
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Figure 8.22: Load displacement diagram of optimized hyperbolic
paraboloidal shell with multiple equilibrium paths
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classical snap-through, while the secondary path bifurcates from the pri-
mary path below the limit load of the snap-through performing a skew and
non-axial symmetric deformation due to an superimposed buckling mode.
Figure 8.23 compares the deformed shapes of the structure structure for a
traced displacement of 1.25. Unfortunately, the self stable configuration

0

−1.25

Vertical
displacement

−0.625

support support

support support

Figure 8.23: Vertical displacment of optimized paraboloid on primary
(left) and secondary path (right)

which was generated at uc = 1.4789 is located in the over-critical regime
of the load-displacement path, as the primary and secondary path reunite
for a traced displacement uc > 1.5. So the optimal solution violates the
conditions which have been discussed in section 8.5.
In order to obtain an optimized design exhibiting a self stable equilibrium
state for uc = 1.5, which has to be a regular point at the same time, the
optimization problem is modified. To this purpose, optimization starts
from the design shown in figures 8.20 and 8.21 with a modified objective.
within this optimization, only the deformation state uc = 1.5 will be con-
cerned, so the response function presented in equation 8.14 reduces to the
second summand. Additionally, the eigen values of the tangential stiff-
ness matrix at this state of deformation are constrained, in order to ensure
the regularity of this state. The constraint is formulated by demanding the
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smallest eigen value to be larger than 1000. So the entire optimization
problem formulation reads

min f = [λ (ū = 1.5)]2

st

eig
(
KT (uc = 1.5)

)
> 1,000

(8.15)

The limit value for the smallest eigen value of KT is chosen based on spe-
cific model properties. As the eigen values of stiffness matrices depend
on several input variable such as material parameters, shell thickness or
dimensions of the investigated structure, it is difficult to determine uni-
form limit values in order to constrain stiffness matrix eigen values. In the
particular example of consideration, the smallest eigen value of the elastic
stiffness matrix is 2,500, so a limit value of 1,000 was used in order to
constrain the eigen values of the tangential stiffness, being located in the
same order of magnitude.
Figures 8.24 and 8.25 show the optimized design for the constrained prob-
lem, where the contours in figure 8.24 illustrate the changes compared to
the un-optimized structure (figure 8.16). Comparing the results to the pre-
vious optimization, it can be seen that now the main changes with respect

0.029

0.000

Design change

0.015

Figure 8.24: Shape changes of hyperbolic paraboloidal shell with eigen-
value constraint
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support support
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0.021

Ply thickness

0.031

Figure 8.25: Hyperbolic paraboloid: Optimized ply thicknesses with
eigenvalue constraint. Left: lower ply, Right: upper ply

to shape do not occur in the central regions of the edges, but close to
the corners of the paraboloid. Comparison of optimized ply thicknesses
reveals differences, too. While the unconstrained optimization showed
a clear tendency to reduce material thicknesses along the diagonals of
the structure(figure 8.21), the constrained optimization problem leads to
constant ply thicknesses in the central region of the paraboloid, whereat
thicknesses are locally decreased towards the corners and increased at the
centers of the edges.
Figure 8.26 and 8.27 present the objective and constraint values as well
as the load displacement curve for the final optimized structure. The ideal
load factor of zero is almost reached, and the constraint with respect to
the stiffness matrix eigen value is fulfilled. The load displacement curve

Load factor for uc = 1.5 −0.035
1st eigen value KT for uc = 1.5 1,003.6

Figure 8.26: Least-squares optimization sub-responses of orthotropic
cylinder roof
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Figure 8.27: Load displacement diagram of optimized hyperbolic
paraboloidal shell with eigenvalue constraint

reveals that the structure now possesses a self stable configuration very
close to the target value of uc = 1.5, which at the same time is a regular
point now, showing a unique load-displacement-mapping.

8.9 Example 3: Three dimensional airfoil

The last example resumes the shape adaptive wing developed by Onur
Bilgen [22] [23]. Here, the three dimensional airfoil with a variable chord
length is considered, where the chord varies from 128mm to 177mm over
a span on 248mm (figure 8.28). A four layer composite material setup
according to figure 8.30 is assumed.
The wing is actuated into a shape providing high lift by two pressure loads
acting along the entire span of the wing (figure 8.29), one at the trailing
edge and one in the middle of the wing’s bottom side. Due to this actua-
tion, the wing assumes an S-bent configuration, similar to the 2D-model
previously presented in section 7.3.3. The actuated configuration is dis-
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128mm

24
8m

m

177mm
ux = uy = uz = 0

zero-degree
material direction

Figure 8.28: Geometry of adap-
tive wing

Figure 8.29: Actuation load of
adaptive wing

E1 E2 E3 G12 G13 G23

290 180 180 145 90 90

ν12 ν13 ν23

0.0 0.0 0.0

Stack sequence 0◦/45◦/−45◦/90◦

Ply thicknesses 0.5mm each

Figure 8.30: Material specifications of orthotropic material setup

played in figure 8.31, and the load displacement curve (figure 8.32) reveals
that this actuation does not lead to a self stable configuration, as the load
factor is strictly larger than zero for the entire actuation process.

For this wing structure, a combined ply thickness and fiber orientation
optimization is performed. Goal of the optimization is to generate a struc-
ture which possesses a high lift configuration, similar to figure 8.31, as a
state of self equilibrium. The underlying nonlinear static analysis is con-
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Figure 8.31: Initial wing design in actuated state, with actuation forces
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Figure 8.32: Load displacement curve of wing actuation. Traced displace-
ment: Vertical deflection in center node of wing’s bottom side

trolled via the vertical deflection of the center node of wing’s bottom side
ū. A value of ū = 10 is chosen in order to define the desired self stable
configuration, and a load value of λ =−0.075 is requested in the negative
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load regime for a traced displacement of ū = 7, in order to ensure a suffi-
cient stiffness of the structure and to avoid an unintended snap through of
the structure. So the entire optimization problem can be formulated as a
least squares problem:

min f = [λ (ū = 10)]2 +[λ (ū = 7)+0.075]2 (8.16)

Eight design variables are defined for each finite element (four ply thick-
ness variables, four fiber angle variables), so the optimization problem
treats 80,000 design variables in total. For each ply, a lower thickness
bound of tmin = 0.1mm has been set.
Optimization results are presented in figures 8.33 to 8.40. Thickness dis-
tributions (figures 8.33 to 8.36) show very similar results for all four plies.

Most thickness changes appear on the bottom side of the wing, which is

1.44

0.1

Ply thickness

0.77

Top Bottom

[mm]

Figure 8.33: Thickness distribution for ply 1

not surprising as here the main part of the wing’s deformation takes place.
The ply thickness is reduced to tmin along the leading and the trailing edge
as well as in the central area of the bottom side of the wing. These regions
act as line hinges, facilitating the S-bending of the wing. Simultaneously,
the ply thickness is increased at the long chord and on the top side of the
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Figure 8.34: Thickness distribution for ply 2
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Figure 8.35: Thickness distribution for ply 3

wing along the trailing edge, in order to generate the desired stiffness of
the structure.
Fiber orientations (figure 8.37 to 8.40) reflect the kinematic mechanisms
already observed for the ply thickness distributions. Only few modifica-
tions happen on the wing’s top side, while the fibers on the bottom side
tend to be oriented in span direction in order to emphasis mechanism of
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Figure 8.36: Thickness distribution for ply 4

BottomTop

Figure 8.37: Fiber orientation for ply 1

the line hinges observed in the thickness distributions. Ply four shows
an interesting material orientation on the top side of the wing. Here, the
main part of the fibers towards the trailing edge is oriented in chord direc-
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BottomTop

Figure 8.38: Fiber orientation for ply 2

BottomTop

Figure 8.39: Fiber orientation for ply 3
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BottomTop

Figure 8.40: Fiber orientation for ply 4

tion, providing high stiffness. This stiff layout is interrupted by two fiber
strings in span direction, again acting as line hinges.
The load displacement curve of the optimized airfoil (figure 8.41) shows
that the optimization targets are met very well by the final design. The
load factor λ (ū = 10) is reduced to −0.001, and the load carrying behav-
ior in the negative load regime is sufficiently high (λ (ū = 7) = −0.076).
For a deformation of ū = 10, the load-displacement relation is well-
defined, so the self-stable configuration can be assumed without the risk
of ending up in an un-intended load path. The newly generated self-stable
configuration is shown in figure 8.42, being very similar to the actuated
shape of the initial wing design (figure 8.31).
In summary, the combined thickness and fiber orientation optimization
succeeded in generating an airfoil possessing a self-stable high lift config-
uration.

155



CHAPTER 8. BI- AND MULTISTABLE STRUCTURES

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14

L
oa

d
fa

ct
or

Displacement

Equilibrium path

Figure 8.41: Load displacement curve of optimized wing design

13.6

0

Displacement

6.8

[mm]

Figure 8.42: Optimized wing design in self-stable actuated state
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8.10 Conclusion

In summary, it can be noted that the presented formulation of an opti-
mization response function based on displacement controlled analysis is
applicable for the generation and development of bistable shell structures.
Avoidance of undesired or ambiguous solutions may require an enhanced
formulation of the optimization problem, as it can be seen section 8.7.2 or
in the last example.
The presented examples showed that small changes in shape may already
have a high influence on the load carrying behaviour of a structure. Thus
sensitivity of bistable structures with respect to imperfections has to be
considered to be high, which also was observed by Coburn et al [43].
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CHAPTER 9

Summary & Outlook

9.1 Summary

This thesis addressed the issue of generating structures with optimal kine-
matic properties, which is a central issue concerning controlled or selec-
tively adapted structures. Thereby the main focus was on shell structures,
where fundamental kinematic mechanisms of shells have been discussed
and successfully generated by means of parameter free shape optimiza-
tion. Depending on the loading, the stress state inside the structure and on
restricting boundary conditions, line hinges or corrugated bellows turned
out to be the design elements providing best flexibility. Results showed
that the shapes of these kinematic elements may not be unique, especially
when stress states dominated by normal forces are considered. Conse-
quently the choice of different optimization setup parameters, such as
shell thicknesses or filter radii, might lead to different optimal designs,
whereby different designs may perform quite comparably with respect to
the chosen objective function.

The gained awarenesses about kinematic mechanisms were transferred to
actuated structures, and the issue of optimal actuation was discussed. This
becomes an important aspect when optimal kinematic mechanisms are
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developed for smart structures, which also includes the problem of actu-
ator placement and tuning. It turned out that optimization with respect
to optimal actuation implies additional difficulties, as the parallel treat-
ment of different types of design variables increases the non-convexity of
the optimization problem tremendously. A modified filtering and shape
control scheme was presented in order to improve orientation of the opti-
mization algorithm in this highly non-convex design space.

Finally, the relatively new research field of bistable structures was
addressed. Bistable structures might be an interesting alternative to "clas-
sical" smart structures, needing permanent actuator input. This thesis
applied numerical optimization methods in order to generate structures
exhibiting bistable character. For this purpose, a response function based
on a displacement controlled nonlinear static analysis including an appro-
priate predictor scheme was developed. The fitness of this response func-
tion has been verified using single and double curved structures. Hereby
one can observe that small changes in shape may lead to significant
changes in the load carrying behaviour of shell structures. This especially
appears when starting from uniaxially curved shells or when modifying
the edge region of a shell.
As the investigated structures are characterized by a significant nonlinear
load carrying behaviour, ensuring regularity of the target configuration is
a crucial point in generating new self-stable configurations. For this pur-
pose, an eigenvalue-based evaluation criteria was used in order to avoid
solutions located on secondary load paths or within a buckling process.

9.2 Outlook

Starting from this thesis, continuative works should be performed in con-
text of adaptive structures. Within this work, actuation was considered in
an abstract way as a load onto the structure without regarding any con-
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straints with respect to applicable actuator mechanisms, such as a limited
adjustment travel or maximum allowable curvatures of a laminar actua-
tor, for example. Enlarging the optimization process by such constraints
would be a big step towards general applicability.

Another interesting point is verification of the shell designs optimized
with respect to bistability. For this purpose, prototype construction and
testing of selected shell designs could be performed, in order to verify
computational results by experimental data.
Current research concerning bistable structures only addresses academic
examples. Thus a proceeding step might be the application of bistability to
a "real world"-example of a smart structure. As reliability and durability
of this kind of structures is not tested or verified so far, one possible field
of application might be unfolding mechanisms for satellites or other space
structures requiring only a few or even only one transformation cycle in
their entire life time.
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APPENDIX A. RESPONSE FUNCTIONS AND THEIR DERIVATIVES

CHAPTER A
Response functions and their

derivatives

A.1 Geometric linear static computations

A.1.1 Derivation of the state equation

The state equation of static linear problems in structural mechanics can be
formulated in the well-known form

S(u) = K ·u− fext = 0 (A.1)

Taking the derivative of S with respect to a design variable si according to
equation 5.31 requires the application of the chain rule of differentiation:

dS
dsi

= ∂S
∂ si

+ ∂S
∂u · ∂u

∂ si
= 0

dS
dsi

= ∂K
∂ si
·u− ∂ fext

∂ si
+ K · ∂u

∂ si
= 0

(A.2)

Solving this expression for ∂u
∂ si

leads to

∂u
∂ si

=
[

∂S
∂u

]−1
·

[
− ∂S

∂ si

]
∂u
∂ si

= K−1 ·
[

∂ fext

∂ si
− ∂K

∂ si
·u
]

︸ ︷︷ ︸
f̃

(A.3)
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where f̃ =− ∂S
∂ si

= ∂ fext
∂ s −

∂K
∂ s ·u is the so-called pseudo load vector, which

delivers the derivatives of the state variables u by being right-hand multi-
plied to K−1.

A.1.2 Strain energy

The strain energy of a linear problem can be formulated in the same way
as the strain energy of a linear elastic spring:

Elin =
1
2
·uT · fext (A.4)

Taking derivatives according to equation 5.29 and usage of equation A.3
leads to the direct sensitivity, showing all terms expected from the general
formulation (equation 5.29):

dElin
dsi

= ∂Elin
∂ si

+
[

∂Elin
∂u

]T
· ∂u

∂ si

dElin
dsi

=
1
2
·uT · ∂ fext

∂ si︸ ︷︷ ︸
∂Elin

∂ si

+

[
1
2
· fext

]T

︸ ︷︷ ︸
∂Elin

∂u

· K−1︸︷︷︸
[ ∂S

∂u ]
−1

·
[

∂ fext

∂ si
− ∂K

∂ si
·u
]

︸ ︷︷ ︸
− ∂S

∂ si

(A.5)
Following the thoughts about the symmetry of K and K−1 engaged in
section 5.5, we can get to the adjoint formulation by permuting the vectors
in the second summand:

dElin

dsi
=

1
2
·uT · ∂ fext

∂ si︸ ︷︷ ︸
∂Elin

∂ si

+

[
∂ fext

∂ si
− ∂K

∂ si
·u
]T

︸ ︷︷ ︸
− ∂S

∂ si

· K−1︸︷︷︸
[ ∂S

∂u ]
−1

·
[

1
2
· fext

]
︸ ︷︷ ︸

∂Elin
∂u

(A.6)

Introducing the adjoint variables vector Λ, equation A.6 can be split in two
parts, the first being independent of si and representing the computation
of the adjoint variable, and the a second part considering the derivatives
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with respect to the design variable. For this response function, the adjoint
variables vector turns out to be 1

2 ·u.

Λ = K−1︸︷︷︸
[ ∂S

∂u ]
−1

·
[

1
2
· fext

]
︸ ︷︷ ︸

∂Elin
∂u

=
1
2
·u

dElin

dsi
=

1
2
·uT · ∂ fext

∂ si︸ ︷︷ ︸
∂Elin

∂ si

+

[
∂ fext

∂ si
− ∂K

∂ si
·u
]T

·︸ ︷︷ ︸
− ∂S

∂ si

Λ

(A.7)

A.1.3 Nodal displacement

The consideration and optimization of a nodal displacement is a quite fre-
quent task in optimization, especially when dealing with adaptive struc-
tures. In order to be able to formulate a response function Dlin focusing
on a single displacement value, an operator vector v is introduced, which
selects the desired degree of freedom from the state variable vector u by a
scalar multiplication.

Dlin = vT ·u

vT = [0 · · · 0 1 0 · · · 0]
(A.8)

The vector v may also have more than one non-zero-entry if the desired
displacement is evaluated in a direction which is not aligned parallel to a
coordinate axis.
Computing the direct derivatives of Dlin is straight-forward repetition of
the steps applied in section A.1.2, where the partial derivatives ∂Dlin

∂ si
van-

ish as v is a constant vector:
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dDlin
dsi

= ∂Dlin
∂ si

+
[

∂Dlin
∂u

]T
· ∂u

∂ si

dDlin
dsi

= vT︸︷︷︸
∂Dlin

∂u

· K−1︸︷︷︸
[ ∂S

∂u ]
−1

·
[

∂ fext

∂ si
− ∂K

∂ si
·u
]

︸ ︷︷ ︸
− ∂S

∂ si
(A.9)

Again, the step to the adjoint formulation is a simple switch of operators.
In contrast to the response function of strain energy, now the adjoint vari-
able is an independent variable which cannot be computed by scaling the
state variable.

Λ = K−1 ·v

dDlin

dsi
=

[
∂ fext

∂ si
− ∂K

∂ si
·u
]T

·Λ
(A.10)

A.1.4 A remark about responses based on linear analysis

The response functions presented so far were based on linear static anal-
ysis. As long as the state equation is linear, one also could avoid the
application of the chain rule according to equation 5.29 by solving the
state equation explicitly for the state variables u = K−1 · fext, and using
this relation directly in the response function. By this mean, the deriva-
tives with respect to u vanish and the chain rule becomes unneeded. This
is shown exemplarily for the nodal displacement response:

Dlin = vT ·u = vT ·K−1 · fext

dDlin

dsi
= vT ·

[
K−1 · ∂ fext

∂ si
+

∂K−1

∂ si
· fext

] (A.11)
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The derivative of an inverted matrix can be computed via the following
relation [129]:

A−1 ·A = I

A−1 · ∂A
∂ si

+
∂A−1

∂ si
·A = 0

∂A−1

∂ si
=−A−1 · ∂A

∂ si
·A−1

(A.12)

Applying equation A.12 to equation A.11 leads to

dDlin

dsi
= vT ·

K−1 · ∂ fext

∂ si
−K−1 · ∂K

∂ si
·K−1 · fext︸ ︷︷ ︸

u


dDlin

dsi
= vT ·K−1 ·

[
∂ fext

∂ si
− ∂K

∂ si
·u
] (A.13)

which is identical to equation A.9.

A.2 Geometric nonlinear static computations

A.2.1 Notation and state equation for nonlinear equilibrium condi-
tions

In the previous section (A.1), linear problems were discussed, for which
a linear dependency between the load fext and the displacement field u
was existing. Due to this linear dependency, the consideration of different
stages of loading was needless, as all load stages and the related displace-
ment could be computed by scaling the properties of an arbitrary reference
state. In the actual section, we consider a nonlinear residual equation of
the form

S(u,λ ) = fint (u)−λ · fext = 0 (A.14)

which raises the necessity to distinguish different load stages of a refer-
ence external load fext. For this purpose, the load factor λ is introduced,
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which scales the reference load vector.

In the following, it is assumed that λ and u form a pair which satisfies
equation A.14.

A.2.2 Derivation of the state equation

In order to take the derivative of the state equation A.14 with respect to
a design parameter si, again the chain rule of differentiation has to be
applied.

dS
dsi

= ∂S
∂ si

+ ∂S
∂u · ∂u

∂ si
= 0

dS
dsi

= ∂ fint
∂ si
−λ · ∂ fext

∂ si
+ KT · ∂u

∂ si
= 0

(A.15)

exploiting that the derivative of the residual force ∂S
∂u = fint

∂u is equal to the
tangential stiffness matrix KT.
Solving this equation for the derivative of state variables again leads to a
linear problem with the partial derivatives of the residual equation with
respect to the design parameter acting as a pseudo load f̃ = − ∂S

∂ si
= λ ·

∂ fext
∂ si
− ∂ fint

∂ si
:

∂u
∂ si

=
[

∂S
∂u

]−1
·

[
− ∂S

∂ si

]
∂u
∂ si

=
[
KT]−1 ·

[
λ · ∂ fext

∂ si
− ∂ fint

∂ si

]
︸ ︷︷ ︸

f̃

(A.16)

A.2.3 Strain energy

When computing the strain energy Enonlin of a system under consider-
ation of nonlinear behavior, the load stagging and the nonlinear load-
displacement relation have to be taken into account. In order to compute
the strain energy stored in a system configuration which is defined by the
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load factor λ and the displacement field u, energy has to be measured in
an integral manner over the load staging parameter λ

Ẽ =

λ∫
λ=0

fext
T ·u

(
λ

)
dλ (A.17a)

E = λ · fext
T ·u− Ẽ (A.17b)

where equation A.17a determines the complementary strain energy Ẽ, and
equation A.17b computes the effective strain energy E. In these formulas,
λ and u are still assumed to be conjugated via equation A.14, as well as
λ and u

(
λ

)
are.

As the functional relation u
(

λ

)
is not known analytically, the integral is

evaluated using an approximation, where the linear relation

u
(

λ

)
≈ λ

λ
·u (A.18)

is assumed. This kind of linear assumption is quite frequently used in
context of geometrically nonlinear optimization and also can be found in
[53] or [34]. This simplifies equations A.17a and A.17b to

E ≈ Ẽ ≈ 1
2
·λ · fext

T ·u = Enonlin (A.19)

which is similar to equation A.4 in the linear case.
In figure A.1, the real strain energy measure according to equation A.17b
and the approximated strain energy according to equation A.19 are com-
pared using an exemplary load-displacement curve.
Using the approximated formulation according to equation A.19, the
derivative can be computed in a similar way as it was done for the lin-
ear case (equation A.5)
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Figure A.1: Approximation of strain energy in geometrical nonlinear
computations

dEnonlin
dsi

= ∂Enonlin
∂ si

+
[

∂Enonlin
∂u

]T
· ∂u

∂ si

dEnonlin
dsi

=
1
2
·uT ·λ · ∂ fext

∂ si︸ ︷︷ ︸
∂Enonlin

∂ si

+

[
1
2
·λ · fext

]T

︸ ︷︷ ︸
∂Enonlin

∂u

·
[
KT
]−1

︸ ︷︷ ︸[
∂S
∂u

]−1

·
[

λ · ∂ fext
∂ si
− ∂ fint

∂ si

]
︸ ︷︷ ︸

− ∂S
∂ si

(A.20)

Switching to an adjoint formulation, we again end up with a two-step
formulation, the first one giving the adjoint variables and the second one
the derivative itself.
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Λ =
[
KT]−1︸ ︷︷ ︸
[ ∂S

∂u ]
−1

·
[

1
2
·λ · fext

]
︸ ︷︷ ︸

∂Enonlin
∂u

dEnonlin

dsi
=

1
2
·uT ·λ · ∂ fext

∂ si︸ ︷︷ ︸
∂Enonlin

∂ si

+

T[
λ · ∂ fext

∂ si
− ∂ fint

∂ si

]
︸ ︷︷ ︸

− ∂S
∂ si

·Λ

(A.21)

A.2.4 Nodal displacement

The objective function focusing on a nodal displacement or rotation is
formulated in the same way as it is done in the geometrical linear case.
Again the operator vector v is multiplied to the displacement field vector
u in order to define the objective function:

Dnonlin = vT ·u

vT = [0 · · · 0 1 0 · · · 0]
(A.22)

Computing the derivative, the nonlinear formulation behaves differently
to the linear one, as the derivative of the state variables ∂u

∂ si
is based on a

different state equation (equation A.16).

dDnonlin
dsi

= ∂Dnonlin
∂ si

+
[

∂Dnonlin
∂u

]T
· ∂u

∂ si

dDnonlin
dsi

= vT︸︷︷︸
∂Dnonlin

∂u

·
[
KT]−1︸ ︷︷ ︸
[ ∂S

∂u ]
−1

·
[

λ · ∂ fext

∂ si
− ∂ fint

∂ si

]
︸ ︷︷ ︸

− ∂S
∂ si

(A.23)
Switching to the adjoint formulation, another similarity to the geometrical
linear formulated response appears, as in both cases the right hand side in
the adjoint equation system is formed by the operator vector.
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Λ =
[
KT]−1 ·v

dDnonlin

dsi
=

[
λ · ∂ fext

∂ si
− ∂ fint

∂ si

]T

·Λ
(A.24)

172



BIBLIOGRAPHY

Bibliography

[1] J. Adamy. Nichtlineare Regelungen. Berlin and Heidelberg:
Springer, 2009. ISBN: 978-3642007934.

[2] G. Akhras. “Smart materials and smart systems for the future”. In:
Canadian Military Journal 2000.

[3] U. Andelfinger and E. Ramm. “EAS-elements for two-
dimensional, three-dimensional, plate and shell structures and
their equivalence to HR-elements”. In: International Journal for

Numerical Methods in Engineering 36.8 (1993), pp. 1311–1337.
ISSN: 0029-5981. DOI: 10.1002/nme.1620360805.

[4] T. Arens et al. Mathematik. 1. Aufl. Heidelberg: Spektrum
Akademischer Verlag, 2008. ISBN: 3827417589.

[5] J. H. Argyris. Die Methode der finiten Elemente in der ele-

mentaren Strukturmechanik. Braunschweig: Vieweg, 1986. ISBN:
3528089199.

[6] J. H. Argyris and H.-P. Mlejnek. Computerdynamik der Tragw-

erke. [Studienausg.] Vol. Studienbuch für Ingenieure und Natur-
wissenschaftler / John Argyris; Hans-Peter Mlejnek ; Bd. 3.
Die Methode der finiten Elemente. Braunschweig [u.a.]: Vieweg,
1997. ISBN: 3528069163.

[7] L. Armijo. “Minimization of functions having Lipschitz continu-
ous first partial derivatives”. In: Pacific J. Math 16 (1966).

173



BIBLIOGRAPHY

[8] J. S. Arora. Introduction to optimum design. 3rd ed. Boston and
MA: Academic Press, 2011. ISBN: 978-0123813756.

[9] D. Ashlock. Evolutionary computation for modeling and opti-

mization. New York: Springer, 2006. ISBN: 0387221964.

[10] H. Baier, C. Seesselberg, and B. Specht. Optimierung in der

Strukturmechanik. Braunschweig and Wiesbaden: Vieweg, 1994.
ISBN: 3528088990.

[11] R. Baldick. Applied optimization: Formulation and algorithms for

engineering systems. Cambridge, U.K, and New York: Cambridge
University Press, 2006. ISBN: 0521100283.

[12] B. Barthelemy, C. T. Chon, and R. T. Haftka. “Accuracy problems
associted with semi-analytical derivatives of static response”. In:
Finite Elements in Analysis and Design 4.3 (1988), pp. 249–265.
ISSN: 0168874X. DOI: 10.1016/0168-874X(88)90011-
X.

[13] F.-J. Barthold and E. Stein. “A continuum mechanical-based for-
mulation of the variational sensitivity analysis in structural opti-
mization. Part I: analysis”. In: Structural Optimization 11.1-2
(1996), pp. 29–42. ISSN: 0934-4373. DOI: 10.1007/BF012
79652.

[14] K.-J. Bathe. Finite-Elemente-Methoden. 2., vollst. neu bearb. und
erw. Aufl. Berlin [u.a.]: Springer, 2002. ISBN: 978-3540668060.

[15] K.-J. Bathe and E. Dvorkin. “A formulation of general shell
elements—the use of mixed interpolation of tensorial compo-
nents”. In: Int J Numer Methods Eng 22 (1986), pp. 697–722.

[16] K.-J. Bathe and E. Dvorkin. “A four-node plate bending element
based on Mindlin/Reissner plate theory and a mixed interpola-
tion”. In: Int J Numer Methods Eng 21 (1985), pp. 367–383.

174



BIBLIOGRAPHY

[17] J.-L. Batoz and G. Dhatt. “Incremental displacement algorithms
for nonlinear problems”. In: International Journal for Numerical

Methods in Engineering 14.8 (1979), pp. 1262–1267. ISSN: 0029-
5981. DOI: 10.1002/nme.1620140811.

[18] R. Bellman. Introduction to matrix analysis. 2nd ed. Vol. 19.
Classics in applied mathematics. Philadelphia and Pa: Society for
Industrial and Applied Mathematics (SIAM 3600 Market Street
Floor 6 Philadelphia PA 19104), 1997. ISBN: 0898713994. URL:
http://epubs.siam.org/ebooks/siam/classics_

in_applied_mathematics/cl19.

[19] T. Belytschko, W. K. Liu, and B. Moran. Nonlinear finite elements

for continua and structures. Chichester and New York: Wiley,
2000. ISBN: 0471987743.

[20] M. P. Bendsoe and O. Sigmund. Topology optimization: Theory,

methods, and applications. Berlin and New York: Springer, 2003.
ISBN: 3540429921.

[21] J.-M. Berthelot. Composite Materials: Mechanical Behavior and

Structural Analysis. Mechanical Engineering Series. New York
and NY: Springer New York, 1999. ISBN: 978-1-4612-0527-2.

[22] O. Bilgen, E. Flores, and M. I. Friswell. “Optimization of Surface-
Actuated Piezocomposite Variable-Camber Morphing Wings”. In:
ASME 2011 Conference on Smart Materials, Adaptive Structures

and Intelligent Systems (2011), pp. 315–322.

[23] O. Bilgen and M. I. Friswell. “Piezoceramic composite actuators
for a solid-state variable-camber wing”. In: Journal of Intelligent

Material Systems and Structures 25 (2014), pp. 806–817.

[24] M. Bischoff. Theorie und Numerik einer dreidimensionalen

Schalenformulierung. Bericht Nr. 30, Institut für Baustatik, Uni-
versität Stuttgart, 1999.

175



BIBLIOGRAPHY

[25] K.-U. Bletzinger. “A consistent frame for sensitivity filtering and
the vertex assigned morphing of optimal shape”. In: Structural

and Multidisciplinary Optimization (2014). ISSN: 1615-147X.
DOI: 10.1007/s00158-013-1031-5.

[26] K.-U. Bletzinger, M. Firl, and F. Daoud. “Approximation of
derivatives in semi-analytical structural optimization”. In: Com-

puters & Structures 86.13-14 (2008), pp. 1404–1416. ISSN:
00457949. DOI: 10.1016/j.compstruc.2007.04.014.

[27] K.-U. Bletzinger, M. Firl, and M. Fischer. “Parameter free shape
design of thin shells: Efficient and effective, parallel solution tech-
niques for very large design problems”. In: 2nd International

Conference on Engineering Optimization, Lisbon (2010).

[28] K.-U. Bletzinger et al. “Computational methods for form finding
and optimization of shells and membranes”. In: Computer Meth-

ods in Applied Mechanics and Engineering 194.30-33 (2005),
pp. 3438–3452. ISSN: 00457825. DOI: 10.1016/j.cma.2
004.12.026.

[29] K.-U. Bletzinger et al. “Optimal shapes of mechanically moti-
vated surfaces”. In: Computer Methods in Applied Mechanics and

Engineering 199.5-8 (2010), pp. 324–333. ISSN: 00457825. DOI:
10.1016/j.cma.2008.09.009.

[30] K.-U. Bletzinger et al. “Shape Optimization with Program
CARAT”. In: Software systems for structural optimization. Ed. by
Hörnlein, H. R. E. M and K. Schittkowski. Vol. vol. 110. ISNM.
Basel and Boston: Birkhäuser, 1993, pp. 97–124. ISBN: 978-3-
7643-2836-8.

[31] P. T. Boggs and J. W. Tolle. “Sequential quadratic programming”.
In: Acta numerica 4 (1995), pp. 1–51.

176



BIBLIOGRAPHY

[32] M. Braun. Nichtlineare Analyse von geschichteten, elastischen

Flächentragwerken. Bericht Nr. 19, Institut für Baustatik, Univer-
sität Stuttgart, 1995.

[33] C. G. Broyden. “The Convergence of a Class of Double-rank Min-
imization Algorithms 1. General Considerations”. In: IMA Jour-

nal of Applied Mathematics 6.1 (1970), pp. 76–90. ISSN: 0272-
4960.

[34] T. Buhl, C. B. Pedersen, and O. Sigmund. “Stiffness design of
geometrically nonlinear structures using topology optimization”.
In: Structural and Multidisciplinary Optimization 19 (2000),
pp. 93–104.

[35] C. R. Calladine. Theory of shell structures. Cambridge [Cam-
bridgeshire] and New York: Cambridge University Press, 1983.
ISBN: 0521369452.

[36] Y. Cao, S. Li, and L. Petzold. “Adjoint sensitivity analysis for
differential-algebraic equations: algorithms and software”. In:
Journal of Computational and Applied Mathematics 149 (2002),
pp. 171–191.

[37] E. Carmel and D. Cohen-Or. “Warp-guided object-space morph-
ing”. In: The Visual Computer 13.9-10 (1998), pp. 465–478. ISSN:
01782789. DOI: 10.1007/s003710050118.

[38] Z. Chen et al. “Nonlinear Geometric Effects in Mechanical
Bistable Morphing Structures”. In: Physical Review Letters 109
(2012), p. 114302.

[39] K. Choi and N. H. Kim. Structural sensitivity analysis and opti-

mization 1: Linear Systems. Mechanical Engineering Series. New
York: Springer Science+Business Media, 2005. ISBN: 0-387-
23336-9.

177



BIBLIOGRAPHY

[40] K. Choi and N. H. Kim. Structural sensitivity analysis and

optimization 2: Nonlinear Systems and Applications. Mechani-
cal Engineering Series. New York: Springer Science+Business
Media, 2005. ISBN: 978-0-387-27169-9.

[41] K. K. Choong and E. Ramm. “Simulation of buckling pro-
cess of shells by using the finite element method”. In: Thin-

Walled Structures 31.1-3 (1998), pp. 39–72. ISSN: 02638231.
DOI: 10.1016/S0263-8231(98)00002-0.

[42] R. L. Clark, W. R. Saunders, and G. P. Gibbs. Adaptive struc-

tures: Dynamics and control. New York: Wiley, 1998. ISBN:
0471122629.

[43] B. H. Coburn et al. “Tristability of an orthotropic doubly curved
shell”. In: Composite Structures 96 (2013), pp. 446–454. ISSN:
02638223. DOI: 10.1016/j.compstruct.2012.08.026.

[44] B. Cockburn, G. Karniadakis, and C.-W. Shu. Discontinu-

ous Galerkin methods: Theory, computation, and applications.
Vol. 11. Lecture notes in computational science and engineering.
Berlin and New York: Springer, 2000. ISBN: 3540667873.

[45] W. Dahmen and A. Reusken. Numerik für Ingenieure und Natur-

wissenschaftler. 2., korrigierte Aufl. Springer-Lehrbuch. Berlin
and Heidelberg: Springer, 2008. ISBN: 978-3-540-76492-2.

[46] F. Daoud. Formoptimierung von Freiformschalen: Mathematis-

che Algorithmen und Filtertechniken. Dissertation at the Chair of
Structural Analysis at the Technical University of Munich, 2005.

[47] M. C. Delfour and J. P. Zolésio. Shapes and geometries: Analysis,

differential calculus, and optimization. Advances in design and
control. Philadelphia: Society for Industrial and Applied Mathe-
matics, 2001. ISBN: 0898714893.

178



BIBLIOGRAPHY

[48] P. Deuflhard. Newton methods for nonlinear problems: Affine

invariance and adaptive algorithms. Vol. 35. Springer series
in computational mathematics. Berlin and New York: Springer,
2004. ISBN: 3540210997.

[49] D. A. Di Pietro and A. Ern. Mathematical aspects of discontin-

uous galerkin methods. Vol. 69. Mathématiques et Applications.
Berlin and New York: Springer, 2012. ISBN: 978-3-642-22979-4.

[50] M. Drela. “XFOIL: An Analysis and Design System for Low
Reynolds Number Airfoils”. In: Low Reynolds Number Aerody-

namics. Ed. by C. A. Brebbia et al. Vol. 54. Lecture Notes in
Engineering. Berlin and Heidelberg: Springer Berlin Heidelberg,
1989, pp. 1–12. ISBN: 978-3-540-51884-6. DOI: 10.1007/97
8-3-642-84010-4_1.

[51] K. A. Dunn et al. “Application of Smart Materials/Technology at
the Savannah River Site”. In: 1999 Symposium on Smart Struc-

tures and Materials. SPIE Proceedings. SPIE, 1999, pp. 64–75.
DOI: 10.1117/12.348690.

[52] M. Firl. Optimal Shape Design of Shell Structures. Dissertation
at the Chair of Structural Analysis at the Technical University of
Munich, 2010.

[53] M. Firl and K.-U. Bletzinger. “Shape optimization of thin walled
structures governed by geometrically nonlinear mechanics”. In:
Computer Methods in Applied Mechanics and Engineering 237-
240 (2012), pp. 107–117. ISSN: 00457825. DOI: 10.1016/j.c
ma.2012.05.016.

[54] M. Firl, R. Wüchner, and K.-U. Bletzinger. “Regularization of
shape optimization problems using FE-based parametrization”.
In: Structural and Multidisciplinary Optimization 47.4 (2013),
pp. 507–521. ISSN: 1615-147X. DOI: 10.1007/s00158- 0
12-0843-z.

179



BIBLIOGRAPHY

[55] M. Fischer et al. “Design of Lightweight Composite Structures: A
Parameter Free Structural Optimization Approach”. In: Key Engi-

neering Materials 504-506 (2012), pp. 1391–1396. ISSN: 1662-
9795. DOI: 10.4028/www.scientific.net/KEM.504-
506.1391.

[56] M. Fischer et al. “Optimization of Nonlinear Structures based
on Object-Oriented Parallel Programming”. In: The Seventh

International Conference on Engineering Computational Tech-

nology. Civil-Comp Proceedings. Civil-Comp PressStirlingshire,
UK, 2010. DOI: 10.4203/ccp.94.67.

[57] R. Fletcher. “A new approach to variable metric algorithms”. In:
The Computer Journal 13.3 (1970), pp. 317–322. ISSN: 0010-
4620. DOI: 10.1093/comjnl/13.3.317.

[58] R. Fletcher. “Function minimization by conjugate gradients”. In:
The Computer Journal 7.2 (1964), pp. 149–154. ISSN: 0010-4620.
DOI: 10.1093/comjnl/7.2.149.

[59] A. S. Fraser. “Simulation of genetic systems by automatic digi-
tal computers vi. epistasis”. In: Australian Journal of Biological

Sciences 13.2 13.2 (1960), pp. 150–162.
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