© 2015 IEEE.
Personal use of this material is permitted. Permission from IEEE must be obtained for all

other uses, in any current or future media, including reprinting /republishing this material
for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted compone nt of this work in
other works.

DOI: 10.1109/INFOCOM.2015.7218661

http://dx.doi.org/10.1109/INFOCOM.2015.7218661

Adaptive Online Power-Management for Bluetooth
Low Energy

Philipp Kindt, Daniel Yunge, Mathias Gopp, Samarjit Chakraborty
Institute for Real-Time Computer Systems (RCS), Technische Universitit Miinchen (TUM)
Email: kindt/yunge/gopp/chakraborty (at) rcs.ei.tum.de

Abstract—Bluetooth Low Energy is a time-slotted wireless
protocol aimed towards low power communication for battery-
driven devices. As a power-management capability, whenever
there is less data to send, the slave is allowed to remain in a
low power mode during a given number of time-slots in a row.
However, since the master does not know the exact sleep behavior
of the slave, it has to wake-up at every time-slot and repeat
its packets until the slave is awake. As a result, applications
with variable throughput lead to many energy-consuming idle-
slots at the master. In such applications, usually the connection
parameters are chosen considering the worst case at design time
and remain constant during operation. In this paper, we propose
a novel power-management framework for BLE. Rather than
skipping slots at the slave side, the proposed system updates the
interval between two consecutive time-slots during runtime by
applying online algorithms. To avoid data-loss or high delays, the
framework guarantees that constraints on latency are met and
buffers never overflow. Energy measurements of three different
test-cases show that up to 42 percent of the energy consumption
of a BLE master can be saved with our power management
system.

I. INTRODUCTION

Energy consumption is one of the central problems in the
design of wireless devices ranging from small sensors and
wearable user interfaces to nodes participating in the emerging
Internet-of-Things. Currently, most of these are configured
for static data rates. For example, heart rate sensors and
fitness trackers send their information usually in fixed time
intervals. However, there are many devices that communicate
using variable data rates. An example for such devices are
BLE modules that implement serial port profiles such as the
terminal 1/O profile [1] or the SPP-over-BLE profile [2]. These
profiles are designed to transmit any possible data of any
application to a remote node. It is not known at the design
time which applications will use it, and since no assumptions
on the characteristics of the traffic can be made, the devices
have to consider applications that generate variable data rates.
Other devices intrinsically produce variable data rates, such
as wireless mice that send the relative coordinates of a mouse
movement. The data rate depends on the amount of movement
the user causes to the device. Moreover, with recent efforts
to utilize BLE as a gateway technology for the internet-of-
things [3], the problem of variable throughput rates is likely
to appear frequently in many applications. By exploiting the
fact that these devices communicate using variable data rates,
a new opportunity for energy savings may be used. However,
as described below, there are a number of obstacles towards
this.

Bluetooth Low Energy is a newly introduced wireless pro-
tocol, which is not compatible with the original Bluetooth, re-

ferred to as Bluetooth BR/EDR. BLE is aiming towards ultra-
low power applications with throughputs between a few bits
per second up to 236.7kBits/s [4]. It is expected to become
extremely widespread. A study expects that 2.5 billion BLE
chips will be sold within 2014 [5]. BLE allows applications
using it to adjust different parameters that affect throughput,
range, latency and energy-consumption to its needs. One of
the most important parameters is the connection interval T,
that determines the amount of time between two adjacent time-
slots data is exchanged at. Its value greatly affects the energy
consumption, communication latency and throughput of the
wireless link. Usually, this parameter is chosen at design time
of a wireless device. Therefore, this connection parameter
is determined offline by taking into account the worst case
without changing it adaptively. For example, in the SPP-over-
BLE profile [2], the connection interval is set to 20ms by
default and is not updated during runtime automatically. To
account for variable throughput, the BLE-protocol [6] specifies
a capability for power management on slave nodes. The slave
may skip some time-slots without waking up if there is nothing
to send. However, only the slave saves considerable amounts
of energy, since the master does not know the exact sleep
behavior of the slave and hence has to be awake during all
time-slots. Especially in networks where the master has a
limited energy supply (e.g, a battery-driven wall display that
visualizes the temperature measured by a wireless sensor),
energy-savings on both sides would be desirable.

To achieve energy-savings also for the master, an online-
algorithm could analyze the data rate generated by the appli-
cation. Based on this, it could decrease 7, whenever a higher
BLE throughput is required by the application and increase
it in idle-phases. However, constraints imposed by the BLE
protocol make the design of such algorithms challenging. In
particular, the following challenges need to be addressed:

1) An update of T, consumes a considerable amount of
energy and should therefore not be performed too often. The
overhead expressed in the amount of time after which a
connection interval decrease pays off is given by Equation
8. For example, a reduction of the connection interval from
25ms to its next larger value 26.25ms would redeem if the
new connection remains constant for at least 13 intervals on
a BLE112 [7] module.

2) If an update is scheduled, it takes at least 6 connection
intervals until the new parameter value takes effect. Hence, all
reactions on the decisions of the power-management algorithm
are delayed by an amount of time which depends on the current
value of 1.

3) As a consequence, constraints on latency and buffer-

overruns must be considered by the power management system
when it schedules the interval updates. In particular, the buffer
that contains unsent data might overflow if the application
suddenly increases its data rate and the appropriate connection
interval update is delayed (e.g, because a previous update has
not been completed yet).
For some special applications, dedicated solutions on how
to adjust 7, online have been presented. For example, the
BLE find me profile [8] specifies a fast connection interval
which is used whenever encryption parameters need to be
exchanged. At all other points in time, the master uses a
connection interval which is defined by the slave. To the best
of our knowledge, a generic approach that separates the task of
online adaptation of the connection interval for power savings
from the application design has not been presented, yet. In
other domains, like in dynamic voltage and frequency scal-
ing (DVFS) on CPUs, a power-management system chooses
relevant parameters online and applications do not need to
care about managing the underlying hardware. Developers
of computer programs or smartphone applications can save
the effort to develop power-aware systems and benefit from
platform-independent solutions. However, existing solutions
from other domains are not well suited, since for an online-
adjustment of the connection interval, the constraints described
above exist.

In this paper, we propose a novel power-management frame-
work for BLE that can be implemented within BLE-modules
or -stacks. The proposed system analyzes the throughput
demands of the application and adjusts the connection interval
adaptively. In addition to the application throughput, the buffer
fill level is monitored to make online decisions. The system
guarantees that latency constraints are met and buffers never
overrun. Different power management strategies can be used
as a part of the proposed system. These strategies must be
light-weight in terms of memory and computational demand
in order to be implemented on a BLE module. By applying
them, significant amounts of energy can be saved.

The rest of this paper is organized as follows: In Section II,
we briefly describe the BLE protocol including energy con-
siderations when updating the connection interval. Related
work is presented in Section IV. In Section V, our proposed
power management framework is presented along with the
theoretical machinery that is needed to comply with constraints
on latency and throughput. Based on that framework, three
power management strategies are described in Section VI
Next, using two representative traffic patterns and the signal
of an electrocardiograph (ECG) with lossless compression as
an example, we evaluate the power savings achieved with
our proposed strategies in Section VII. Finally, our results
are discussed along with an outline for future research in
Section VIIIL.

II. THE BLE PROTOCOL

In this section, we briefly describe the parts of the BLE
protocol that are essential to understand our proposed power

—
(s}

Slave Master
G
\
=

Connection
Event

Connection
Event

time

Fig. 1. Packet exchange between a master and a slave in the connected mode.

management framework. We consider two devices exchanging
some data via the BLE protocol. Our descriptions are based
on the official Bluetooth Specification 4.0 [6].

A. Data Transmission

In this paper, we consider two devices that exchange data in
the connected mode of BLE, which is the mode that is usually
used for the transmission of payload data. One device acts as
the communication master and defines the timing of the other
device, which acts as the slave. As depicted in Figure 1, data
transmission is organized in so-called connection events.

These connection events are repeated periodically with
the connection interval T,. In such a connection event, the
following steps take place:

1) Both the master and the slave wake up at the beginning
of the event. The master begins its wireless transmission on
a RF channel. The slave starts listening at the same point in
time, thus receiving a packet from the master.

2) After the master has finished its transmission, the slave
sends a packet to the master.

3) If there is more data to be sent by the master or by the
slave, more pairs of packets are exchanged within the same
connection event. The maximum packet size in BLE is limited
to 47 bytes in order to keep packet transmission times short.
Short packets allow for cheaper BLE radios, as temperature-
driven frequency drifts remain low within short time intervals
[9]. In Figure 1, one pair of packets is shown as an example.

4) If there is no more data to be sent or the maximum
number of packets per event has been reached, the connection
event ends. The maximum number of packets per event is a
device-specific parameter. The next connection event will take
place after 7. time units.

Up to a number of Ny events in a row may be skipped
by the slave without waking up. N; is a connection-specific
parameter that can have a value between 0 and 500 events. N
is referred to as slave latency. Using the scheme described
above, BLE defines a send-and-confirm procedure, which is
considered in this paper. This procedure works as follows. For
exchanging payload, the master sends a data packet to the slave
in one connection event. Within the same event, the slave sends
an empty response packet since the packet from the master
has not been processed, yet. After one connection interval,
the master sends an empty polling packet to the slave, who
answers with a confirmation that the payload was received. In
the next event, the master may send its next payload packet.
If larger volumes of data need to be sent in a given amount
of time, shorter connection intervals are required. In addition,
larger values of 7 lead to higher latencies. Whenever there is
no connection event taking place, both devices can go into a
low power mode. Figure 2 shows the mean power consumption
of a BLE master and a slave for different connection intervals

£ |

c \

£0.02 Master + Slave

g Master

20.01

o

o | LT -

g 0 0.02 0.04 0.06 0.08 0.1 012 014 0.6 0.18 0.2
o Connection Interval [s]

Fig. 2. Power consumption for a BLE master and slave for different

connection intervals. Both devices consume similar amounts of power.

varying from 7.5ms to 0.2s. As can be seen, the master and
the slave consume nearly the same power. The joint curve for
both devices is nearly the double of each single curve. The
figure is valid for the following assumptions. The master sends
the maximum number of 20 payload bytes per packet using
the confirmed transmission procedure described above, while
the slave has no payload to send. The power consumption has
been computed using a BLE energy model proposed in the
literature(e.g., see [10] or [11]), assuming the device sends
on its maximum transmission power level. For the slave, we
assume that it wakes up during every connection interval. As
can be seen from Figure 2, by reducing the connection interval
from its minimum value T ,,;,, = 7.5ms to, e.g., 50ms, the
joint power consumption of both devices can be reduced by
approximately 85%. Hence, when the data volume is varying,
substantial energy savings can be achieved by adjusting the
connection interval in an online fashion. However, the connec-
tion interval must be chosen such that there is no data loss.
In addition, the adjustment incurs an overhead and cannot be
enabled instantaneously. The connection interval is negotiated
in the connection establishment phase and can be updated by
a parameter update procedure, which is described below.

B. Connection Parameter Updates

The connection interval 7T, is set by the master during the
connection establishment phase. During an existing connec-
tion, it can be changed using an update procedure. In this
procedure, not only a packet that contains the new connection
interval must be sent from the master to the slave, but also
the clocks of both devices have to be re-synchronized to a
new anchor point for future connection events. The energy
E,, that needs to be spent to update the connection interval
is higher for the slave than for the master. For both devices,
one has to take into account a connection-update packet, which
induces an energy cost denoted as £,. In the send-and-confirm
procedure under consideration, an empty polling packet of the
master which has a length of 10 Bytes is replaced by a 22-
Byte update packet. Hence, I, is the difference of the energy
consumed by the two packets.

For the device acting as a master, the energy needed for
a connection update from the interval 7., to 1, can be
estimated well by E,, py = Ep . In this estimation, the
sleep mode energy which is small compared to the energy
consumed in the active mode is neglected. For the slave, the
clock resynchronization induces an additional idle-listening
period. A precise model for this cost as well as for F, has
been adopted from the literature (e.g., [10] and [11]). Based

on this model, a coarse worst-case approximation is given by
Bups = Eps+(2:®107 (T, ,+Te,)+10ms)- I, Vee (1)

In the equation above, ® is the slave clock accuracy of the
device in parts per million (PPM), I,, is the current needed
for reception (including idle-listening) and V. is the supply
voltage of the device. The equation takes into account the
energy consumed due to idle listening and potential clock jitter
as well as the energy for the packets that are exchanged.

Once a connection parameter update has taken place, the
new connection interval cannot be changed again for at least
Nim T¢ pn time units. N; ,, has a minimum value of 6 intervals
defined by the BLE specification [6]. N; ,, has a value of 8
intervals for the device we used (BLE112).

III. PROBLEM FORMULATION

With the descriptions above, the problem considered in this
paper can be expressed in abstract terms as follows. A BLE
module transmits application data which is generated using a
variable data rate R,p,(t) with a connection interval T.. At
any point in time, it may update 7, to a new value or leave
it constant. An update incurs a cost E,,(T.) and might pay
off if R,,, remains constant for a sufficiently large amount of
time. The effect of an update is delayed by an amount of time
tq(T.), which depends on the connection interval before the
update. In addition, sometimes the system is forced to change
T. to avoid data loss caused by overflowing buffers. A power-
management system needs to control 7, such that the energy
consumption is minimized while buffers do not overrun and
latencies do not exceed a given threshold. In the next section,
we describe how this problem is related to problems known
from the literature.

IV. RELATED WORK

Online algorithms have been widely used for energy opti-
mizations in different applications. A problem which is related
to the one described in this paper is the well-studied k-page-
migration problem [12]. In a network, a set of servers hold
copies of a page. A client requests this page from a server
that contains the page. The system can choose whether to
serve the request from the next server that holds the page, or
it can migrate the page to a server that is closer and can serve
the request with lower cost. A migration procedure has an
update cost and incurs a time delay. While this problem shares
many similarities with the connection interval update, existing
algorithms cannot be applied easily to BLE due to additional
constraints. For the BLE connection interval, updates might
be enforced because otherwise constraints would be violated
as described in Section V (i.e., buffers might overflow).

Another related problem has been widely studied in the
context of Bluetooth BR/EDR, which we describe below.
Since the Bluetooth specification [6] does not suggest how
a master should poll its slaves, several algorithms to schedule
the polling intervals for individual slaves have been proposed.
In [13], this interval is adjusted online based on the ratio of
successful polls (i.e., polls that result in a data transmission)

and the total number of polls. Another approach adjusts the
sleep period based on the expected arrival time of a packet
flow [14]. The latter solution use the so-called hold-mode of
Bluetooth. A solution using Bluetooth’s sniff mode is presented
in [15]. Updates in the sniff mode take effect after a single
sniff interval, whereas updates in BLE take effect after at least
6 connection intervals. Unlike for BLE, updating the sleep
interval in the Bluetooth hold mode incurs no significant cost.
Hence, the existing solutions are not expected to perform well
for BLE. In further literature (i.e., [16]), it was claimed that
scheduling strategies for Bluetooth BR/EDR which minimize
the number of idle packets without using sleep modes achieve
energy savings up to 20%. Related problems also occur in
other domains, e.g., dynamic voltage and frequency scaling
(DVES) of CPUs. The on-demand governor [17] of the Linux-
kernel adjusts the frequency and voltage of CPU-cores adap-
tively to the load. However, there are different requirements
and constraints in BLE. For example, DVFS algorithms do not
need to satisfy constraints on buffer-overflows and latency.

Our contribution:

Whereas algorithms for scheduling the polling of slaves for
Bluetooth BR/EDR are still an active topic of research, to
the best of our knowledge, no power-management scheme for
Bluetooth Low Energy that dynamically adjusts the connection
interval has been presented, yet. In this paper, we for the first
time propose a generic power-management scheme for BLE,
and make the following contributions:

1) We propose a novel framework for updating the con-
nection interval online, that can ensure given bounds on the
maximum communication latency while buffers are always
guaranteed not to overrun. As a part of this framework,
different online algorithms for different applications can be
used, analogous to governors for DVFS.

2) We propose three online algorithms for adjusting the
connection interval. These algorithms are based on the current
application throughput and the buffer backlogs. Each of them
has different advantages and drawbacks, which we evaluate
using comparative measurements.

3) Using two representative application traffic patterns and
a wireless ECG as an example, we evaluate our proposed
scheme with comprehensive power measurements and show
that significant amounts of energy can be saved using the
proposed algorithms.

V. POWER MANAGEMENT SYSTEM
A. System Overview

Figure 3 depicts the setup on which our proposed system
works. We consider two devices A and B. Without loss of
generality, we assume that device A acts as the BLE master
which sends data to device B. On each of them, an application
generates traffic that is passed to the BLE radio for wireless
transmission via a FIFO-buffer. Each time the device adds
data to the buffer, it is assumed to do so in small bursts
with variable length. We denote these bursts as write-requests.
Since there could also be single-byte write requests (e.g., as
parts of a stream), this assumption does not constrain the

- (D / BLE -
Application ([Radio Application
{[[III (Slave) ~<{ITII--
T |Ra . | : . Teo| Ny . Raw| o
] o] t-(Watch- ! {(— Watch-]« - 3
o}) Dog Ji|Terfil Dog & 0
= = H / © ~
= ‘5 LR T ci o
: = ~(" Power)i Power |- 2 0
v g Mgmnt- | i Mgmnt- 2
3 ia Strategy |! i| Strategy E | @
o L 4 4 i a
Fig. 3. Power management system for a link between two devices A and B.

possible applications. The maximum number of bytes the
application writes in one request is denoted as Ny ,. The
number of bytes per write-request together with the points
in time these requests take place are monitored by a power-
manager, which also has access to the fill level N, of the buffer
between the application and the BLE module. As a main part
of the power-manager, an online-algorithm monitors the traffic
rate RRqpp, of the application along with V. We denote these
algorithms as power-management strategies (PMS). Based on
the informations available, it decides when to update the
connection interval and its future value. The second part of the
power-manager is a BLE-specific watchdog. It may override
the connection interval decided by the PMS to ensure that the
buffer never overflows. The watchdog is described in detail in
Section V-D.

Our system provides a simple API to the application, which
can be used for setting parameter values. Before the power-
manager can start operating, the application must make some
parameters known to the system. In particular, these are:

e The maximum traffic rate R, ., of the application.

e The maximum allowed latency %4, defined as the
maximum time between an application writing a byte and
the BLE module sending it over-the-air.

o The maximum number of bytes per write-request NV ,,.
In order to meet constrains on the maximum latency, the
power-manager uses these values to compute the size of the
buffer IV, ,,, it should allocate and the maximum connection
interval T ,,, that can be used safely. For their computation, a
relation between 7, and the throughput of the link is described
in the next section. Afterwards, the computation of Tt ,,, and
Ny is explained in detail.

B. Connection Interval and Throughput

As described in Section II, in each connection interval,
Nseq pairs of packets can be sent from the master to the
slave and vice-versa. To compute the over-the-air throughput
of BLE, one must also take into account that not all attempts
on transmitting a packet are successful. We account for that
by introducing a factor 1 which reduces the throughput. This
parameter is device- and link dependent. If there is interference
with other wireless devices or a high attenuation, the data rate
decreases. Without loss of generality, in this paper, we assume
having an error-free link, which is normally true for small
distances without other devices interfering. If interference is
present, our approach can be used by decreasing 7 either
adaptively based on the measured loss rate or statically taking

into account a safety margin. A flow control mechanism that
can be used by any BLE device also influences the value
of n. If the BLE stack on a remote device is not ready to
receive a packet, it may request a retransmission. The device
investigated in this paper (Bluegiga BLE112) requests the
opposite device to resend its packet frequently. While other
devices and other firmware stacks might have different values
for 7, its value is independent from the application. By
analyzing more than 710,000 packets, we found that on an
average, the throughput is degenerated by 1—7, = 0.3% due to
flow control. However, when shorter intervals are considered,
retransmissions can happen more frequently. This has to be
accounted for in worst-case computations. We define a worst
case analysis window of d,,. = 0.5s. For all intervals longer
than d,., our experiments revealed that the throughput is
reduced by no more than 1 — 7, = 26.3%. In every interval
smaller than d,,., we assume that the traffic rate might drop
to 0 bytes/s. The actual length of the worst case window is
unimportant as 7,,. changes accordingly.

Under these assumptions, the throughput of the BLE link
can be computed as in Equation 2 by taking into account that
one data packet can carry up to 20 bytes of payload.
_ 20bytes - Ngeq
= TC . 17
As already mentioned, a send-and-confirm-procedure is ap-
plied in BLE. As a result, one data packet is sent within two
connection intervals and therefore Ng.. has a value of 0.5.
In Equation 2, n might be set to 7, when considering the
overall throughput, or to 7,,. when considering the worst case
throughput. In the worst case, when the application writes with
its maximum rate and the link is stalled for d,,. amounts of
time, the number of bytes that can be written maximally within
one window of length d,,. is:

Nb,wc = Rapp,mdwc (3)

Rpre(Te) 2

C. Buffer dimensioning

Our proposed system is capable of providing guarantees
that the maximum latency ;44 ., is never exceeded. This can
be accomplished by choosing small buffer sizes Ny, or by
choosing small maximum connection intervals 7, ,, - or a
combination of both. We assume that there is a given amount
of memory available on the device, which is partially used
for buffering. Within this amount of memory, the buffer size
can be chosen freely. Since we also guarantee that the output
buffer never overflows, both Ny ,,, and T ,, are determined
by a set of linear equations which are described and solved
below.

As already mentioned, when a connection interval update
from an old interval T, , to I, is scheduled at any point in
time, the actual connection interval update takes place after
Nim - T, time units. A buffer overflow might occur if the
application writes with a higher data-rate than the current
throughput of the BLE link, and an interval update cannot
take place before the buffer is entirely filled. As depicted
in Figure 4, there might be situations in which a connection

interval update takes effect after 2 - N; ., - T, , time units.
Consider an interval update from T, , to T, ,, with T , = T, ,,.
From the time the update is scheduled, it takes IV, ,, intervals
until the new interval becomes valid. Another update to T ¢,
in the meantime can only be scheduled after N; ,, - Tt , time
units in the worst case, and it takes another N; , - T¢. , time
units until the connection interval of the link becomes T ¢y,

In the worst case, the application might increase its through-
put to Ry m right after the first interval update. The update
that is required to adjust the throughput Rprg to the new
value of Ry, m, is delayed by 2-V; ,,, connection intervals and
in the meantime, the buffer must accept the additional bytes
without overflowing. Hence, the minimum required buffer size
can be computed as follows.

Nb,m == L2 . Ni,mTc,m (Rapp,m - RBLE (Tr,m)) + NKJ (4)

Ng is a constant number of bytes. It contains the number
of bytes Ny, which are written to the buffer within one
write-request and the bytes needed for flow control in the
worst case, Np .. In addition, it includes a number of bytes
Ny ¢, which makes the buffer larger than its minimum size to
allow for control without interventions of the watchdog. It is
a parameter of the power management algorithm used. Ny is
defined as Ng = Np o + Np e + Npc. In Equation 4, T ,,, is
the maximum connection interval that the power management
system is allowed to choose. If the available memory is lower
than NV, ,,,, then the buffer size is reduced to this limit.

To satisfy the latency requirement, the buffer must be
flushed completely within ;¢ ,, even for the lowest possible
BLE throughput. The following equation applies:

Nb,m

tlat7m

= Rprp(Tom) 5)

By solving the linear system defined by the Equations 5, 4
and 2, one has:

o 40Nsequ,mnwc - NK + ﬁ
om 4Ni,mRapp,m

(6)
with
v =Nj — 80Nk NeegNimwe + 1600N2, N2, o
+ 160Rapp, mbiat,m NseqNi,mMwe

The Equations 4 and 6 define a minimum buffer size and
a maximum connection interval based on the parameters
of the application. The power management system allocates
the required memory size for the buffer automatically, and
the watchdog makes sure that 7., is never exceeded. In
addition, we define a quality-of-service parameter T 4,5 Which
is always subtracted from the connection interval chosen
by the power management system. This results in the BLE
throughput being slightly higher than necessary, leading to
reduced buffer backlogs and hence low average latencies. The
maximum connection interval Tt ,,, is reduced by it as well.
With Té’m = T¢m —T1¢,q0s, the buffer size can be dimensioned
by using Equation 4.

D. Watchdog

By choosing T ,, and Ny, as described above, keeping
the latency constraint is guaranteed intrinsically. In contrast,
an online-algorithm controlling the connection interval using
a best-effort approach could cause the buffer to overrun. This
must be prevented by a watchdog that overrides the decisions
of the algorithm whenever there is a potential buffer overrun.
Let Tt ¢, be the maximum connection interval that guarantees
no buffer overrun at a given time instance fy. Whenever the
connection interval is updated from 7T , to 1. ,, by the online-
algorithm, a value for Tt ., needs to be computed by the
watchdog. If necessary, T ,, is set to T ¢y,

Update to Update to T¢em Update to
Ten scheduled becomes necessary Tc.em Scheduled
!

>
>

Tc,em

1.2 3 4.5 6_ 7 .8,12345678

Tc,0

i Ten
Fig. 4. Timing when updating the ccl)nnection interval
Figure 4 illustrates the timing when updating from T , to
T, n. We assume that IV ; bytes are left in the buffer when the
update is scheduled. T, ,, must be chosen such that the buffer
cannot overrun before another connection interval update to
T, em scheduled by the watchdog takes effect. Therefore,
T, < Tt em must be set considering the worst case, which is
defined as described below. The connection interval must be
always low enough that a sudden increase of R,,, does not
lead to a buffer overrun. In case of a sudden increase of Rpp,
similar deliberations as for Equation 4 result in a maximum
delay of N; ,,T¢ o + NimTe,» until an update to compensate
for this increase takes effect. As a result, at any point in time,
a newly scheduled connection interval T , must not exceed
an upper bound that is defined by the current buffer level N,
and the current connection interval T ,. This bound is defined
by Equation 7.

Ni,m . (4ONseq77wc - Tc,oRapp,'m) + NK
Rapp,mNi,m

The watchdog depicted in Figure 3 evaluates the equation
above for every write-request and at every connection update
procedure. If needed, it overwrites the connection interval
scheduled by the power management strategy. The maximum
application data rate for which the watchdog guarantees that
the buffer will never overrun i8 Ny cRBLE(Temin)- Te,min
is the minimum required connection interval. It is defined as

20- N
Te.min = maz(7.5ms, o <4 Nwe)-

T. <

(7

E. Bidirectional traffic

The system described above has been presented for traffic
from the master to the slave only. However, it can be extended
to include traffic in the reverse direction as well, as depicted
in device B of Figure 3. For this purpose, the slave runs
a similar power-management system, and sends appropriate
update requests to the master via the wireless link. The master
then chooses whether it should update to the connection
interval requested by the slave, or override the slave’s decision
to satisfy its own traffic demands.

VI. POWER MANAGEMENT STRATEGIES

In this section, we describe three different online-algorithms
that can be used as power management strategies in the frame-
work depicted in Figure 3. Each of the proposed strategies has
its advantages and disadvantages in terms of power-savings,
average latency and implementation complexity, which we
discuss within the next sections.

All strategies use the application data rate R,;,, as an input
parameter. We define the following terminology: Let R}, (to)
be the application throughput rate defined as the number of
bytes written during a write-request at time ¢y divided by the
time between the current and the previous write-request. In
contrast, R,,,(At,to) is the application data rate defined by
the number of bytes written within a given interval of time
At divided by At. The time-instance ty is defined as the
point in time at which the interval considered ends. If % is
omitted, the symbols refer to the values at the most recent
point in time. Rprp(7T.) is the average throughput rate of the
BLE link depending on the connection interval 7.. We define
T, as the connection interval before a scheduled update and
T, as the interval that is to be scheduled. T, , denotes the
connection interval after an update takes effect. Based on this
terminology, we describe our proposed power-management
algorithms below.

A. Periodic Adjust

We define the periodic adjust strategy as shown in Algo-
rithm 1. The application throughput is monitored periodically
with a period AT),,. Once per period, the connection interval
is adjusted such that Rprr = Rgpp. The BLE throughput
rate is updated periodically with a period of AT),,. The
procedure wait(AT) causes the calling procedure to sleep
for AT amounts of time. Compared to the original interval

Algorithm 1 Periodic Adjust Algorithm
procedure PERIODICADIUST(AT),)
repeat
20Bytes-Ngeq

1:

2

. Tes = 3 At
4: wait(ATy,)
5

6:

: m - Tc,qos

until forever
end procedure

length, AT;/m in Line 3 of Algorithm 1 is a slightly modified
period which is used for measuring the rate. If there are
less than two write-requests within AT),,, we set ATZQG to
AT, Otherwise, we set AT}, to the time difference between
the last write-request within the previous examination period
and the last write-request within the current period. Without
this mechanism, the measured rate R,;,, would be subjected
to oscillations since the frequency of write-requests and the
adjustment period are unsynchronized. The advantages of
this strategy are its extremely simple implementation and
its capability of reacting quickly on sudden changes in the
application data rate.

B. Lazy Decrease

A a slightly more sophisticated strategy is the lazy decrease
strategy. It sets the connection interval to its minimum value
whenever the application performs a write-request during
which the application data rate is higher than the current rate of
the BLE link. Whenever the application data rate remains be-
low the BLE throughput for more than one time interval AT},
the BLE throughput rate is gradually decreased by a constant
value R,cquceq- This scheme shares some similarities with the
strategy that is widely used for voltage-frequency scaling in the
Linux ondemand governor [17], and with commonly known
additive increase/multiplicative decrease schemes. However,
it contains BLE-specific adaptations. A complete description
of this strategy is presented in Algorithm 2. The procedure
OnWrite() is called whenever a write-request takes place.
The procedure ResetTimer() resets a timer which executes
the procedure TimerCallBack() AT)q time-units after the last
execution of ResetTimer(). In each step, the BLE throughput
is reduced by R, cquced, Which is a given percentage ~iec
of the whole range of possible values. If the reduction in
any step results in the same connection interval as in the
period before, T, is increased by its minimal subdivision, i.e.,
Te,s = Teo + 1.25ms. In Line 9, a modified interval AT},
similar to the one described above for Algorithm 1 is used.

Algorithm 2 Lazy Decrease Algorithm
1: procedure ONWRITE(RZM))

2 if Rj;pp > RBLE(Tc,o) then
3 Tc,s — Tc,min

4: ResetTimer()

5: end if
6
7
8
9

: end procedure
: procedure TIMERCALLBACK
Rreduced — PYdec(Rapp,m - RBLE(Tc,m))

if R&pp(ATld) < RBLE (Tc,o) - Rreduced then
20bytes-Nge
10: Tc,s < Navg Rore(Teo)— 4

11: ResetTimer()
12: end if
13: end procedure

Rrecduced

With the algorithm described above, oscillations in the mea-
sured application data rate can occur if the measurement in-
terval 174 is smaller than the time between two write-requests.
Implementations must account for this. If AT}, is chosen
appropriately, the algorithm guarantees that not more energy
than when leaving T, constant is spent even in the worst case.
In addition, the mean buffer backlog during runtime is small,
leading to short average latencies. A drawback is that it takes
much time and many energy-consuming interval updates until
the algorithm’s response on a sudden rate decrease stabilizes.

C. Adaptive Buffer Level Adjustment

An even more sophisticated strategy is updating the connec-
tion interval based on the current fill level of the output buffer
depicted in Figure 3. The aim of our strategy is to try to keep

the buffer fill level always between zero and a threshold Np iy,
which is updated during runtime. The buffer level strategy
should suppress changes in the application throughput rate that
last very short and follow longer-lasting changes, only. The
buffer along with multiple defined watermarks is depicted in
Figure 5.

empty full

No,w

Nb,i:wc,O Nb Nb:inc Nb,rlefN'b,m

Fig. 5. Output buffer with relevant fill levels and the current fill-level [Ny

We define the reference level as Ny ref = Npm — Npw.
The reference level is used to calculate a variable threshold
Ny inc. If the buffer level exceeds this threshold, a connection
interval update is initiated and N ;. is set to the buffer level
at the time of the update plus an additional offset AN ipc.
With 3, being a predefined percentage, ANy ;n. is defined
as ANb,inc = IBbNb,reﬂ We initialize Nb,inc as Nb,inc,O =
ANy ine + Np o and adjust it during runtime. The adaptive
buffer level adjustment strategy is shown in Algorithm 3.

Algorithm 3 Buffer Level Monitoring Algorithm

1: procedure ONWRITE(R;W, Ny)

2 R,,=aR, +(1-a)R:,

3: if Ny > Nb7i’l’bc then

4 T.. « 28U o T, o

5: end if o

6: end procedure

7: procedure ONREAD(R(’;W7 Ny, trnows tiastIne)

8: if (Nb < Nb,w) N (tnow — tiastIne > dblock) then
9: Tc,s — M?ﬂ ‘Mo — Tc7qos

100 end if o

—_
—_

: end procedure

: procedure ONDECREASE(T¢ o, Tt), tnow)
13: Nb,inc <~ Nb + ANb,inc

14: OnRead()

15: end procedure

16: procedure ONINCREASE(T o, Tt n, tnow)
17: Nb,inc <~ A]\[b,inc + Nb,w

18: tiastIne < thow

19: OnRead()

20: end procedure

—_
N

The algorithm contains 4 procedures:
o OnWrite() | OnRead() is called whenever the application
performs a write-request / reads from the buffer.
e Onlincrease() | OnDecrease() is called whenever an up-
date with T, ,, > T¢. , / with T, , < T, takes effect.
The variable t,,,,, contains the point in time the corresponding
function is called. ¢;45:7nc contains the point in time when the
last connection interval increase took place. To get a robust
measurement of the current application rate throughput R;pp
that filters out short-time variations, exponential smoothing
[18] with a coefficient « is applied in Line 2 of Algorithm 3.
To avoid to frequent updates caused by small decreasing traffic

gradients, in Line 8 of the algorithm, there is a blocking
time dpjock. FOr dpjocr, time-units after a connection interval
increase, no further update is allowed. Its value can be derived
by comparing the energy saved by an increased connection
interval with the cost of the update to the new interval.
dpiock 18 the amount time after which the update pays off.
An approximate solution is given by the equation below.

Tc,oTc,nEup,m—i-s
Tc,nEc (Tc,o) - Tc,oEc (Tc,n)

In this equation, E, 5 is the update energy for both master
and slave and E.(T.) is the energy spent per connection
interval by both devices for a given value of T.. After each
update, the buffer should be checked for underruns because
in the time between two updates, N, might have changed and
might be below N ., due to a reduced application throughput.
Therefore, onRead() is called after every interval update in the
Lines 14 and 19. The buffer strategy cannot detect idle lines
(i.e., periods without any traffic) and therefore needs a separate
idle line detection.
VII. EVALUATION

®)

dblock =

In this section, our proposed power management strategies
are evaluated by comprehensive energy measurements. First,
we describe the setup of our experiments. After this, we
present and discuss the results of our measurements.

A. Experimental Setup

To measure the power savings of our proposed system,
we implemented the following setup: On a node consisting
of a host-MCU (ARM Cortex-M) and a BLE112-module, a
traffic generator creates test patterns as described below. The
node acts as the BLE master and contains an implementation
of our proposed power-management. The traffic is received
by a BLEDI112-USB dongle at a laptop. To evaluate the
power-consumption, we measured the current draw of the BLE
module which has a constant supply voltage with a sampling-
rate of 50 KHz. Since the computational overhead of our
proposed strategies is negligible, we can measure the energy-
savings of the three strategies described in Section VI using
this setup.

B. Traffic Patterns

The energy savings depend on the application data rate. We
define the three representative traffic patterns that are depicted
in Figure 6 as our test-cases. These patterns contain both sud-
den rate changes as well as gradual rate increases/decreases.
As a real-world example, we use the traffic generated by a
wireless ECG. In particular, the patterns are defined as follows.

e T1): Series of ramps: Starting from 0 Bytes/s, the
traffic is increased every 100ms by 10 Bytes/s until the
maximum application rate Ry, ~ 980 Bytes/s is reached.
Afterwards, the throughput rate is decreased in the same man-
ner. The situation repeats periodically and Ny ,, is 98 Bytes.

o T2): Burst traffic: Every 20 seconds, there is a burst of
980 Bytes/s lasting for 10 seconds. For the rest of the time,
the traffic rate is 100 Bytes/s. Ny, is 98 Bytes.

mmfv\NWXM
T]

0 L L L —
20 40 1oo 120
T3)

il Mw MM L WM 1y M ol

0
0 50 100 150 200

Time [s]

Data Rate [bytes/s]

=

Fig. 6. Traffic patterns as test-cases.

o T3): Wireless ECG: As a real-world traffic pattern, we
generated a signal which has a varying data rate by using
a custom compression method together with an ECG signal.
In our use-case, ECG electrodes are attached to a user’s
wrists while the person is typing on a computer keyboard and
therefore generating movement artifacts in the ECG signal.
These artifacts decreased the efficiency of the compression
method, which is based on differential Huffman coding. As a
result, the whole process generated a signal having a data rate
that varied between 50 Bytes/s and 435 Bytes/s, depending
on the amount of movements. The data rate of this signal
is depicted in the bottom of Figure 6. Using a record- and
playback-infrastructure, a signal having the same data rate as
the ECG signal is used as a third test traffic pattern in our
experiments. NV, ., is 200 Bytes. Since persons wearing ECGs
for mobile health monitoring usually move during operation,
motion artifacts are always present. Therefore, T3) is a realistic
example.

Each measurement was started a bit more than 15 seconds
after the establishment of the connection and lasted for 60
seconds for T1) and T2) or for the duration of the whole ECG
pattern in the case of T3), respectively. We assume a maximum
allowed latency of 155 in the system. As an example, the data
of a wireless mobile ECG sending to a smart phone does not
need to be transmitted in real-time in any case. A maximum
latency of 15s can be tolerated if the evaluation of the results is
not timing-critical. IV . is set to 200 Bytes, T, 405 to 1.25ms
except for the lazy-decrease strategy, for which 7. ;s > 0
makes no sense since it achieves low latencies anyway. For T1)
and T2), the time between any two consecutive write-requests
is 100ms and for T3), it is varying between 455ms and
475ms. For the periodic adjust- and the buffer-level strategy,
the exponential smoothing-factor o was set to 0.9.

C. Energy Measurements

The measured energy savings compared to keeping the
connection interval at T¢ ip = 10ms' for T1) and T2) or
at 22.5ms for T3), respectively, are shown in Table 1. The
results are discussed below.

1) Periodic Adjust: The periodic adjust strategy performed
well in all test-cases. For the burst traffic, the savings were

110 ms is the required connection interval to serve the maximum traffic
of 980 bytes/s in average.

ENERGY SAVINGS OF THE PROPOSED STRATEGIES FOR ALL THREE TRAFFIC PATTERNS

Periodic Adjust Lazy Decrease Buffer Level
ATpe =0.1s | ATpa =055 | ATpg =1s | ATjq=02s | ATi4=05s | ATig=1s | f, =005 | B, =0.1 | 5, =0.2
T1) 27.2% 27.9% 28.6% 18.8% 25.1% 16.5% 34.3% 34.1% 35.0%
T 2) 17.8% 18.4% 19.1% 21.4% 16.7% 11.5% 23.6% 24.3% 24.7%
T 3) 16.0% 29.9% 30.7% - 20.5% 13.9% 42.0% 40.5% 35.2%
TABLE I

reduced compared to the buffer level strategy for two reasons:
1.) At rate increases, the connection interval was sometimes
not reduced quickly enough to prevent the watchdog from
intervening. As a result, high connection intervals were set
repeatedly. 2.) The exponential smoothing caused the strategy
to follow rate increases with an update to an intermediate rate
before the final rate was reached, whereas only one update
was performed with the buffer level strategy. For T3), the
strategy with T}, = 0.1s led to high buffer levels with frequent
watchdog interventions which reduced the savings. Because
of its simple implementation and the minimal computational
cost, the algorithm is suitable to be implemented as a default
strategy in BLE stacks. To obtain stable operations and high
savings, T}, should be chosen to be sufficiently long.

2) Lazy Decrease: In our measurements 7yge. was set to
10%. As already mentioned, the strategy does not work if
T4 is smaller than the time between two consecutive write-
requests. Because of this, the measurement of T3) with
Tiq = 0.2s was not carried out. As expected, the lazy decrease
strategy led to the lowest energy savings of all strategies
in most of the measurements. Mainly, this was caused by
unnecessarily high connection intervals whenever the strategy
set T, to Tt min and by frequent interval updates.

3) Buffer Fill Level: The buffer fill level strategy pro-
vided high savings in all measurements. Overall, the savings
achieved with it exceeded the savings of all other strategies.
With the disadvantage of a slightly more complex implemen-
tation, it appears to be the most robust strategy examined.
The buffer fill level strategy has an advantageous property:
In scenarios where frequent alternating throughput changes
of small magnitude occur, the periodic adjust strategy would
frequently toggle between two adjacent connection intervals.
The buffer level strategy would avoid these costly updates.

VIII. CONCLUSION AND ACKNOWLEDGEMENTS

In this paper, we have presented a novel power-management
framework for BLE. For applications with variable throughput
requirements that allow for some latency, we have shown
that substantial energy savings can be achieved by applying
our proposed scheme. Applications with tighter latency con-
straints, such as wireless mice or keyboards, are expected to
achieve lower savings, but can nevertheless benefit from our
proposed system. We suggest that an algorithm such as the
buffer-level based strategy or the periodic adjust strategy is
included into future BLE stacks, as the effort that needs to be
spent is low and the computational cost is negligible. We also
believe that with some more fine-tuning, the strategies could
be further improved in terms of latency and energy savings.
If the number of intervals after which a connection parameter
update takes effect in BLE could be decreased, the proposed
algorithms are expected to achieve higher savings while the

maximum latency can be reduced significantly. Additional
constraints on the possible values of the connection interval are
imposed if one master has to serve multiple slaves. Solutions
on how to extend our concept to such scenarios need to be
addressed in further research.

The authors would like to thank the anonymous reviewers
for their helpful comments. This work was partially supported
by HE2mT - High-Level Development Methods for Energy-
Saving, Mobile Telemonitoring Systems, a project funded by
the federal ministry of education and research of Germany
(BMBF) and the EIT ICT labs in the medical CPS activity, a
project funded by the European Union.

REFERENCES

—

[1] Stollmann Entwicklungs- und Vertriebs-GmbH, “Terminal i/o profile
bluetooth low energy profile,” 2013. [Online]. Available: www.
stollmann.de

[2] “SPP-over-BLE application note,” Bluegiga, 2013. [Online]. Available:
www.bluegiga.com

[3] H. Wang, M. Xi, J. Liu, and C. C., “Transmitting ipv6 packets over
bluetooth low energy based on bluez,” in 15th International Conference
on Advanced Communication Technology (ICACT), 2013.

[4] C. Gomez, I. Demirkol, and J. Paradells, “Modeling the maximum
throughput of bluetooth low energy in an error-prone link,” [EEE
Communications Letters, vol. 15, no. 11, pp. 1187-1189, 2011.

[5] “2.5 billion bluetooth low energy chipsets to ship in 2014, says ABI
research,” ABI Research, 2009. [Online]. Available: www.reuters.com

[6] Bluetooth SIG, “Specification of the bluetooth system 4.0,” June 2010,
volume 0. [Online]. Available: bluetooth.org

[71 BLE!112 data sheet, Bluegiga, 2011, version 1.21, www.bluegiga.com.

[8] “Find me profile specification v10r00,” Bluetooth SIG, 2011. [Online].
Available: www.bluetooth.org

[9] R.Heydon, Bluetooth Low Energy: The Developers Handbook. Prentice

Hall, 2012.

P. Kindt, D. Yunge, R. Diemer, and S. Chakraborty, “Precise energy

modeling for the bluetooth low energy protocol,” arxiv.org, 2013.

[Online]. Available: http://arxiv.org/abs/1403.2919

M. Siekkinen, M. Hiienkari, J. Nurminen, and J. Nieminen, “How

low energy is bluetooth low energy? comparative measurements with

zigbee/802.15.4,” in IEEE Wireless Communications and Networking

Conference Workshops (WCNCW), 2012.

S. Albers, M. Charikar, and M. Mitzenmacher, “Delayed information and

action in on-line algorithms,” in 39th Annual Symposium on Foundations

of Computer Science (FOCS), 1998.

M. Perillo and W. Heinzelman, “ASP: an adaptive energy-efficient

polling algorithm for bluetooth piconets,” in 36th Annual Hawaii In-

ternational Conference on System Sciences (HICSS), 2003, 2003.

H. Z., G. C, G. Kesidis, and C. Das, “An adaptive power-conserving

service discipline for bluetooth,” in IEEE International Conference on

Communications (ICC), 2002.

S. Garg, M. Kalia, and R. Shorey, “MAC scheduling policies for power

optimization in bluetooth: a master driven TDD wireless system,” in

51st IEEE Vehicular Technology Conference (VTC), 2000.

D. Contreras and M. Castro, “Adaptive polling enhances quality and

energy saving for multimedia over bluetooth,” IEEE Communications

Letters, vol. 15, 2011.

V. Pallipadi and A. Starikovskiy, “The ondemand governor: past, present

and future,” in Proceedings of Linux Symposium, vol. 2, 2006.

A. Watts, “On exponential smoothing of discrete time series (corresp.),”

IEEE Transactions on Information Theory, vol. 16, no. 5, pp. 630-630,

1970.

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

