TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiir Informatik XIX

Empowering End-Users to Collaboratively Structure

Knowledge-Intensive Processes

Matheus Hauder

Vollstdandiger Abdruck der von der Fakultdt fiir Informatik der Technischen Universitit

Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Krcmar

Priifer der Dissertation:
1. Univ.-Prof. Dr. Florian Matthes

2. Univ.-Prof. Dr. Manfred Reichert
Universitiat Ulm

Die Dissertation wurde am 17.09.2015 bei der Technischen Universitidt Miinchen

eingereicht und durch die Fakultdt fiir Informatik am 08.02.2016 angenommen.

II

Zusammenfassung

Wissensarbeit entwickelt sich zur vorherrschenden Arbeitsform und spielt in den stra-
tegisch wichtigsten Prozessen in Organisationen eine zentrale Rolle. Zu den bedeu-
tendsten Treibern dieser Entwicklung z&hlt die Automatisierung von Routinearbeit durch
die stetig zunehmende Nutzung von Informationstechnik und steigender Anpassungs-
druck durch technische Innovationen mit denen bestehende Produkte durch digitale
Dienstleistungen ersetzt werden. Trotz dieser zunehmenden Bedeutung von wissens-
intensiven Prozessen (KiPs) bieten betriebliche Informationssysteme keine ausreichende
Unterstiitzung, da existierende Workflow-Management-Systeme unstrukturierte und nicht
vollstindig vordefinierte Prozesse nur unzureichend unterstiitzen.

Aufgrund der unvorhersehbaren und emergenten Eigenschaften von Wissensarbeit ist
es unverzichtbar fiir zukiinftige betriebliche Informationssysteme, KiPs zur Laufzeit zu
definieren. Als Antwort auf dieses Problem ist es das Ziel dieser Arbeit, die kollaborative
Strukturierung von KiPs durch Endanwender zu erméglichen. Zu diesem Zweck miissen
Endanwender ohne Spezialkenntnisse dazu befdhigt werden, Arbeitsplidne zu pflegen. Mit
diesen Arbeitspldnen wird die Grundlage fiir die Generalisierung von wiederverwendbaren
Arbeitsvorlagen geschaffen, mit denen implizites Wissen dokumentiert werden kann.

Im ersten Schritt wurden generische Anforderungen fiir die Unterstiitzung von KiPs aus
der Literatur und praktischen Anwendungsszenarien gesammelt. Auf Basis dieser Anfor-
derungen entstand ein Framework fiir die Unterstiitzung von KiPs, welches aus drei Kom-
ponenten besteht: einem Lebenszyklus der die Evolution von KiPs unterstiitzt, einer Menge
von leichtgewichtigen Strukturierungskonzepten und generischen Funktionalitdten die auf
Prinzipien erfolgreicher Online Communities basieren. Das Framework wurde prototypisch
umgesetzt und mit Hilfe von kontrollierten Experimenten evaluiert.

Im Rahmen der Vorstudie mit 7 Teilnehmern und der Hauptstudie mit 145 Teilnehmern
wurde die Losung in zwei unterschiedlichen Anwendungsszenarien produktiv eingesetzt.
In der Vorstudie haben die Teilnehmer einen Arbeitsplan fiir einen vollkommen unstruk-
turierten KiP gemeinsam definiert. In der Hauptstudie wurde eine vordefinierte Arbeits-
vorlage eingesetzt, um einen vorhandenen KiP zu unterstiitzen. In beiden Studien wurde
die Einsatzfahigkeit der Losung zur Unterstiitzung von KiPs durch Fragebogen bestétigt.

Die Ergebnisse dieser Arbeit haben zwei Implikationen fiir betriebliche Informations-
systeme. FErstens kénnen vorhandene Fallbearbeitungssysteme einen héheren Grad an
Flexibilitat ermoglichen ohne dabei die Struktur zu benachteiligen. Dadurch werden zahl-
reiche neue Einsatzmoglichkeiten denkbar, z. B. integrierte Versorgung, Produktentwick-
lung, oder hochgradig kreative und kollaborative Wissensarbeit im Allgemeinen. Zweitens
konnen spezialisierte Softwarelésungen mit den gewonnenen Erkenntnissen erweitert wer-
den, um prozedurales Wissen in Arbeitsvorlagen zu dokumentieren.

I1I

v

Abstract

Knowledge work is becoming the leading type of work and is involved in the most impor-
tant processes in organizations. Main drivers for this development are the ever-increasing
use of information technology that leads to an automation of routine work and growing
strain of technical innovations that extrude existing products through digital services. De-
spite this growing relevance business information systems still lack appropriate support
for knowledge-intensive processes (KiPs), since existing workflow management solutions
provide no means to deal with unpredictable situations.

Due to the unpredictable and emergent characteristic of knowledge work, it is indispensable
for future business information systems to define KiPs on the fly. In response to this issue
the objective of this thesis is to facilitate the collaborative structuring of KiPs through
end-users. For this purpose end-users without computer science background have to be
empowered to maintain work plans. These work plans provide the foundation for the
generalization of reusable work templates that capture implicit knowledge of end-users.

In the first step generic requirements for the support of KiPs are gathered from literature
and practical application scenarios. Based on these requirements a framework for the
software support of KiPs is developed that consists of three elements: a lifecycle supporting
the evolution of KiPs, a lightweight set of structuring concepts, and generic features that
are based on design principles from successful online communities. This framework is
implemented in a software solution and evaluated through controlled experiments.

Within the preliminary study with 7 participants and the main study with 145 partici-
pants the solution has been used productively in two different application scenarios at our
university. In the preliminary study the participants collaboratively defined a work plan
for an entirely unstructured KiP. In the main study a predefined work template has been
successfully used to support an existing KiP. In both studies an online questionnaire with
the participants confirmed the ability of the solution to support KiPs.

The results of this thesis have two implications for business information systems. First,
existing case management (CM) systems can leverage more flexibility without deteriorating
the structure. This provides manifold new application possibilities for CM in scenarios that
are much more unpredictable, e.g., integrated care, product development, highly creative
and collaborative knowledge work in general. Second, special-purpose applications can be
extended with our approach to capture procedural knowledge in work templates.

VI

Acknowledgment

This research originated from my work as research assistant at the chair for Software Engineer-
ing for Business Information Systems (sebis) at the Technical University Munich. During this
time advisors, colleagues, family and friends encouraged me on the long way to this success.
Throughout this thesis the pronoun we is used to express my gratitude to everybody, who
supported me during the past four years.

First and foremost, I would like to thank my advisor Prof. Dr. Florian Matthes for the oppor-
tunity to work on this extremely interesting research topic under the best possible conditions.
His confidence in my work has been an incredible source of motivation to make this reality. 1
appreciate his intellectual guidance, helpful suggestions, and constant support throughout the
last four years. I further want to express my sincere gratitude to Prof. Dr. Manfred Reichert
for being my second advisor and for the valuable discussions in Ulm.

The sebis chair provided an excellent environment for the realization of my research through
fruitful discussions with colleagues. I would like to thank Dr. Sascha Roth for the frequent
and productive discussions on research ideas. Felix Michel has been a constant companion
of my research as student assistant, master’s degree candidate, as well as colleague and con-
tributed with valuable ideas to my research. My thanks go to Pouya Aleatrati Khosroshahi,
Adrian Hernandez-Mendez, Jorg Landthaler, Manoj Mahabaleshwar, Dr. Ivan Monahov, Dr.
Christian Neubert, Thomas Reschenhofer, Alexander Schneider, Klym Shumaiev, Dr. Christo-
pher Schulz, Dr. Alexander Steinhoff, Bernhard Waltl, and Marin Zec for the constructive
cooperation in teaching and researching.

I would like to thank the students that wrote their thesis under my guidance or supported my
research as student assistant. Thanks to Natascha Abrek, Michael Bigontina, Stefan Bleib-
inhaus, Jenny Cheng, Max Fiedler, Manuel Gerstner, Mario Guma, Annemarie Heuschild,
Nikolaus Katinszky, Maurice Laboureur, Stefan Laner, Dominik Miinch, Stephan Miinter,
Duc Nguyen, Simon Pigat, Daniel Richter, Daniel Sel, and Alexej Utz. It was a pleasure to
work with you on exciting student projects.

A special thank goes to Yolanda Gil who supervised my master’s thesis in Los Angeles and
inspired me to pursue a PhD. It was a pleasure to continue the collaboration within this thesis.
Several case studies were conducted in organizations and many industry partners provided
valuable feedback during interviews. [want to thank all industry partners for spending their
time and providing valuable practical insights for my research.

Most importantly, I want to express my gratitude to my partner Laura Kraszewski for her
unconditional love and support. Thanks to my parents Janina and Christian Hauder, and my
sister Dr. Johanna Munzert for supporting me during my whole life. Without this support
and encouragement from my family this work would not have been possible.

Garching b. Miinchen, June 7, 2016

. o

Matheus Hauder

VII

VIII

Contents

1 Motivation

1.1 Problem Description . . .
1.2 Research Design
1.3 Contributions
1.4 Structure of the Thesis . .

2 Introduction and Related Work
2.1 Introduction

2.1.1
2.1.2

Knowledge-Intensive
Data and Processes

Processeso L

2.1.3 Successful Online Communities
2.2 Towards Process Support for Knowledge Work
Generic Requirements for Knowledge-Intensive Processes
2.2.2 Scenario A: Innovation Management
2.2.3 Scenario B: Enterprise Architecture Management
2.2.4 Scenario C: Requirements Engineering
2.3 Related Work

221

2.3.1
2.3.2
2.3.3
2.34
2.3.5
2.3.6
2.3.7
2.3.8

Case Handling . .

Adaptive Case Management L.

PHILharmonicFlows
Hybrid Wiki . . .
Service-Oriented I'T-

Systems for Highly Flexible Business Processes . . .

Process-Aware Support for Collaborative Knowledge Workers
Case Management Model and Notation.

Organic Data Scienc

e Wiki

3 Structuring Knowledge-Intensive Processes
3.1 Emergent Structuring of KiPs 0 0L

3.1.1

Participating Roles

13
13
14
19
21
23
24
30
32
34
37
39
41
44
46
48
50
02
56

61
61
62

IX

Contents

3.1.2 Evolution of Knowledge-Intensive Processes 63

3.2 Lightweight Structuring Concepts 66
3.2.1 Expertises 67
3.2.2 USers 68
3.23 Tasks 69
3.24 Task Definitionso 72
325 Stages . ..o 74
326 Rules . . . 75

3.3 Features Based on Social Design Principles and Patterns 76
3.3.1 Task Representation, 80
3.3.2 Task Metadata 81
3.3.3 Task Management 82
334 Task State. 83
3.3.5 Timeline Navigation o 85
3.3.6 Subtask Navigation oo 86
3.3.7 Task Alert L 87
3.3.8 User Ratingand Skills 88
3.3.9 Personal Worklist Lo 89

3.4 Design of the User Interface o o 90
3.4.1 Social Feed 90
3.4.2 Representation of Work Plans 92
3.4.3 Mobile User Interface Lo 94

4 Implementation 95
4.1 Software Support for Knowledge-Intensive Processes 95
4.1.1 Architecture 96
4.1.2 Introduction to the Play Framework 98
4.1.3 Application Programming Interface 99
414 DataModel 100
4.1.5 Assignment of Attributes to Tasks 111
4.1.6 Progress Computation L L o0 113
4.1.7 Generation of the Uger Profile 115
4.1.8 Loading of History Entries in the Social Feed 117

4.2 Case Management Model and Notation Workbench 119
4.2.1 Introduction to JointJSo 119
4.2.2 Measurement of the Method Complexity 120
4.2.3 Interaction with Elements 122
4.2.4 Suggestion of Task Definitions 00 127

4.3 TImplementation for Mobile Devices 129
4.3.1 Introduction to Angular Material 129
4.3.2 Navigation 130
4.3.3 Infinite Scrollingo o L 131

5 Case Studies 133
5.1 Idea Generationo e 133
5.2 Development of a Planned State 137
5.3 Elicitation of Requirements o o 139

Contents

6 Evaluation 141
6.1 Evaluation Framework L 142
6.2 Preliminary Study 143

6.2.1 Objectives of the Preliminary Study 143
6.2.2 Design of the Preliminary Study 144
6.2.3 Participants oL 144
6.2.4 Results and Findings oo 145
6.3 Main Study 147
6.3.1 Objectives of the Main Study 147
6.3.2 Design of the Main Study 148
6.3.3 Participants oL 149
6.3.4 Usage of Other Tools, 149
6.3.5 Results and Findings for Flexibility 150
6.3.6 Results and Findings for Structure 157
6.4 Usability of the Mobile Solution 165
6.4.1 Foundations of Usability Testing 165
6.4.2 Execution of the Test o L. 166
6.4.3 Results and Findings o oo 167

7 Ciritical Reflection and Future Research 169
7.1 Conclusion e 169
7.2 Limitations 171
7.3 Future Research 173

7.3.1 Application in Practice 173
7.3.2 Recommendations o 173
7.3.3 Mining of Work Templates. 174
7.3.4 Standardized Experiments and Evaluation Processes 174

Bibliography 175

A API Methods 187
A1l Login to the system o 187
A2 Logout of the System 188
A3 Get All Pagesand Wikiso oL Lo 188
A4 Creation of a New Wiki 189
Ab Find Wikiby Id o 0 o0 189
A6 Delete Wiki oo oL oo e 190
A7 Update Text of a Wiki 190
A.8 Create New Wiki Page 191
A9 GetaWiki Page 191
A.10 Update Text of the Wiki Page 192
A.11 Add an Attribute to the Wiki Page 192
A12Delete Page L. 193
A.13 Delete an Attribute of the Wiki Page 193
A.14 Add Value for an Attributeo o oo 194
A.15 Create New Task on a Wiki Page 194
A.16 Assign Attribute to Task on a Wiki Page 195

XI

Contents

XII

A.17 Remove Attribute from Task on a Wiki Page 195
A.18 Skip Task on Wiki Page oL oo 196
A.19 Update Dates of a Task 196
A.20 Delegate Task on Wiki Page o oL 197
A.21 Update Progressof a Task 197
A.22 Update Expertises of a Task o 198
A.23 Get Type Definition 198
A.24 Add Attribute Definition to Type Definition 199
A.25 Add Task Definition to Type Definition 199
A.26 Dynamic Loading of History Entries for the Social Feed 200
A.27 Get the Profile of User L o 200

List of Figures

1.1 Knowledge workers participate in KiPs in various different contexts [Mul2] . . 2
1.2 Applied design science research methodology to solve the research ques-

tions [Pe07] oL 6
1.3 Outline of the thesis linked to the contributions, cf. Table 1.2 and Figure 1.2 . . 12
2.1 Knowledge creation spiral for organizations introduced by Nonaka [No94|. . . . 15
2.2 Process management spectrum [DCMRI3] oL 18
2.3 Comparison between activity- and data-centric approaches [KR11| 19
2.4 Evolution of scientific work over hundred years according to Michel [Milba| . . 21
2.5 Design challenges for successful communities according to Kraut et al. [Kr12a] . 22
2.6 Knowledge workers participate in KiPs in various different contexts [Mul2] . . 23
2.7 Characterization of the literature review according to Fettke et al. [Fe06] 37
2.8 Related work relevant for this thesis by publication year until today 38
2.9 Overview of the initial schema level metamodel for case handling [AWGO05] . . . 40
2.10 Overview about data and process structure in object-aware processes [Kil3] . . 44
2.11 Review state determined by attribute values of mandatory activities [Kiil3] . . 45

2.12 Screenshot of a Hybrid Wiki page showing the structured attributes [MNS11]| . 46
2.13 Design for an ACM system that supports KiPs according to Kurz et al. [Kul5| 48
2.14 Screenshot of the ACM prototype implemented in Microsoft Sharepoint [KH12| 49
2.15 Commonalities of uses cases for collaborative knowledge work [MKR13]. 50
2.16 Collaborative knowledge work lifecycle according to Mundbrod et al. [MKR13| 51
2.17 Write document process in the Case Management Model and Notation [Obl4] . 52

2.18 Applicability of decorators with visual CMMN model elements [Ob14] 53
2.19 Major realms of task-driven collaboration in Organic Data Science [Gil5b] . . . 56
2.20 Screenshot of the Organic Data Science representing a task as wiki page [Mil5b| 58
2.21 Evolution of the GPF community [Gilbb], 59
3.1 Evolution of KiPs based on an extension of the Hybrid Wiki approach [Nel2] . 63
3.2 Extended degree of structure from the Hybrid Wiki [Nel2] 65
3.3 Overview of the main concepts for structuring KiPs within a wiki 66

XIII

List of Figures

3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2

5.3
5.4

XIV

Relationships of expertises and tasks with the role model
Integration of tasks with the information model
Main concepts for the description of the schema in work templates
Process model concepts in the work template with their link to wiki pages . . .
Simplified association between rules and process elements
Steps from the development of concepts to the design of the user interface . . .
Worklist with sample tasks Lo
Possible task states depending on their metadata [Gilbc|
Most likely state transition sequences of tasks [Gilbc|
Timeline visualizing the progress of open tasks
Alert feature visualizing open tasks that have passed the specified end date

User profile of the author after completion of a task with sample expertises

Personal worklist showing all sample tasks that are created for the user
Social feed with activities that are performed in the work plans
Screenshot of a sample work plan that is represented on a wiki page for authors
Screenshot of the sample work plan with an enabled side window for tasks . . .
Screenshots of the social feed, wiki page and profile in the mobile user interface

Architecture of the implemented software solution
Routing of external requests to controllers in the play framework server
Implemented data model with the packages that are mapped to sections
Implementation of the classes for the attribute concept
Implementation of the concepts in the wiki package
Implementation of the persistence package
Implementation of the classes for user management
Implementation of the history package that is used for the social feed
Data model of the implemented classes in the page package
Sequence diagram for the assignment of attributes to tasks on a wiki page . .
Sequence diagram for the update of the progress of a wiki page
Sequence diagram for the generation of the profile and expertises for a user
Sequence diagram with required steps to load history entries for the feed . . .
Visualization with the cumulative complexity for our approach [Geld]
Excerpt of the CMMN workbench that contains the previously used samples .
Task interaction L
Screenshot of the properties for one task in the CMMN workbench
Example rule for two tasks oL
Available operations after hovering over a stage
Example rule associating producer task with consumer stage
Suggestion of a task based on usage statistics for the work template Page
Browsing to wiki pages on the lower level using the mobile navigation menu .
Sequence diagram for the infinite scrolling of the feed in the mobile interface .

Creation of a new idea in the case study with three initial tasks
Reviewer creates an assessment of the idea in the mandatory attribute of the
task .o
Commissioner enters the decision based on the previously created review(s)
Architecture vision phase in TOGAF for the development of a planned state .

94

. 100

102
104
105
106
108
110

. 112

114

.. 116
. 118

121

. 122

123
123
124
125
126

127
. 130
. 131

134

135

. 136
. 137

List of Figures

5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20

Tasks of the phases are enabled after their preceding phase is completed 138
Screenshot of the executable work plan for the context specification 139
Excerpt of the available BISA work templates 140
Consecutive steps of the evaluation mapped to the sections of this chapter . . . 141
Evaluation framework for the artifact developed in this thesis [CGH09| 142
Comparison of the structure for both solutions [HKM15] 145
Comparison of the flexibility for both solutions [HKM15] 146
Other tools that were used during the controlled experiments by all students . . 149
Handling of exceptions during the project 150
Information structure for the deliverables of the project 151
Incorporating creative ideas in the project 152
Submission of incremental improvements for the deliverables 153
Self-organization of the team during the project 154
Making decisions autonomously within the project 155
Comparison of responses related to flexibility 156
Collaboration support during the project 157
Visualization of the progress of the project 158
Allocation of work for the team members of the project 159
Guidance of the process with the required steps in the project 160
Efficiency for the submission of the deliverables 161
Effectivity of the steps for the submission of the deliverables 162
Reproducibility of process knowledge during the project 163
Comparison of responses related to structure 164

XV

XVI

List of Tables

1.1 Distinct type of artifacts resulting from a design-oriented research approach . . 7
1.2 Overview of the main contributions of this thesis 10

2.1 Name, description and source of data requirements for software support of KiPs 25

2.2 Name, description and source of knowledge action requirements for KiPs 26
2.3 Name, description and source of rules and constraint requirements for KiPs . . 26
2.4 Name, description and source of goal requirements for KiPs 27
2.5 Name, description and source of process requirements for KiPs 28
2.6 Name, description and source of knowledge workers’ requirements for KiPs . . . 29
2.7 Name, description and source of environment requirements for KiPs. 29
2.8 Relevance of the generic KiP requirements for the three application scenarios . 36

2.9 Case management approaches compared with characteristics of KiPs [MHM15] 41
2.10 Assignment of requirements to modeling and execution environment [MHM15] . 55

4.1 Comparison of the complexity for different modeling languages [Gel4| 121

6.1 Description and due dates of the four exercises in the lecture for the main study 148
6.2 Test tasks that are performed by the participants in the mobile solution 166

XVII

XVIII

CHAPTER 1

Motivation

Fierce market competition and digital transformation of manufacturing industries to ser-
vice providers leads to an automation and replacement of less educated workers in organi-
zations [BM11]|. At the same time the ability to constantly adapt to changing market require-
ments and the generation of innovations are crucial for the sustainable success. This develop-
ment leads to work environments that require highly trained experts that can perform many
tasks autonomously. These experts are known as knowledge workers and their processes have
a tremendous impact on the success. Despite this importance existing information systems
lack appropriate support for knowledge-intensive processes (KiPs), since workflow manage-
ment solutions do not allow for a comprehensive support of unstructured or semi-structured
processes like KiPs!. Davenport describes this evolution of work as follows: "I’'ve come to the
conclusion that the most important processes for organizations today involve knowledge work.
In the past, these haven’t really been the focus of most organizations - improving administrative
and operational processes has been easier - but they must be in future” |[Da05].

These administrative and operational processes are based on the assumption that they are
characterized by routine work that consists of repeated tasks. This kind of structured work
is specified by modeling experts with a prescribed execution flow of the entire process. The
current maturity of these approaches has led to the application of process management in new
unstructured knowledge-intensive scenarios, such as software engineering, healthcare, science
and financial services. These processes are becoming increasingly important and knowledge
workers represent almost half of the overall workforce of an organization [Wh09]. Due to the
lower level of predictability compared to routine processes, software support for KiPs needs to
balance between structured elements for repetitive elements of a process and unstructured ele-
ments to allow for creativity which is indispensable for the unpredictable nature of knowledge
work.

'Note that there exist adaptive process management systems like ADEPT [DRO09| or AristaFlow BPM
Suite [Kr14] which allow for dynamic workflow changes at runtime to cope with unforeseen situations

1. Motivation

Context A Context B
i e
Process Owner “ Process Owner “
“ “ Work Plan B
~-.__| Work Plan A Soee
kool
Ea <
~ T T T T Cd
T T T rd October November sember 15
) D D O oD tme “ .
‘Common Tasks ,,,,,,,,,,,,7‘39}77: ‘Common Tasks
‘Work Template A Work Template B
Context C Context D
100% Interaction Interactio
Process Owner Knowledge Process Owner
“ Worker
-~ | WorkPlanC # Work Plan D
c 100%
fask 2 of C 100%
Task 3 0f C 100%
S T T T T >
T T T ot Augy October 1 \ovember comber 15+
e e

Common Tasks

Common Tasks

Work Template C Work Template D

Figure 1.1.: Knowledge workers participate in KiPs in various different contexts [Mul2]

Further major differences of KiPs compared to routine processes identified in literature are the
high degree of collaboration and self-organization in knowledge work [DCMR13]. KiPs emerge
bottom-up through individual contributions of end-users during the process enactment, which
makes the active involvement of end-users determining for the overall success of an approach
supporting knowledge workers. For this purpose research on successful online communities
provides valuable design principles to encourage contributions through motivation, encourage
commitment, start communities and deal with newcomers [Kr12a]. Developing a sustainable
online community around KiPs that constantly contributes to the definition of the process
provides an interesting opportunity to realize the potential of collective intelligence.

Requirements for KiPs as well as their characteristics were recently described on a very generic
level in [DCMRI13, Hal4a, MKR13|. In their works the authors identified a tight integration
between data elements and actions that influence each other. This requires a data-centric
process perspective that needs to capture the structure, interaction and behavior of data
elements. Dependencies between data elements and actions need to be described by rules and
constraints to define execution semantics. Figure 1.1 illustrates these elements in the various
contexts of the knowledge workers. All these elements dynamically change in relation to the
actual context and environment. For all those reasons further research is needed to solve

the problem of developing a software solution to support these challenging requirements for
KiPs.

1. Motivation

1.1. Problem Description

Existing solutions for workflow management are not suitable to support KiPs, since they are
too rigid and provide no solutions to deal with unpredictable circumstances |[ASWO03|. The
unpredictable nature of KiPs induces a large amount of exceptions and traditional workflow
management models would become too complex to manage and maintain [SM95]. In 2001, case
management has been initially promoted as a new paradigm to support the required flexibility
for knowledge workers during the process [ABO1]. In contrast to workflow management which
is focused on what should be done, case management is focused on what can be done to
achieve a certain goal [RRA03]. Despite these initial efforts software support for processes in
knowledge work is far from being mastered [DCMRI13]. A detailed analysis on existing case
management efforts will be described in Section 2.3.

In 2009, the Object Management Group (OMG) issued a request for proposal (RFP) to create
a standard modeling notation for case management?. Main purpose of this request was the
development of a counterpart for the Business Process Model and Notation (BPMN) that sup-
ports a data-centric approach which is based on business artifacts [MHV13]. The result for this
request was published in 2014 as the Case Management Model and Notation (CMMN) [Ob14].
Main difference compared to BPMN is that CMMN builds on a declarative instead of an im-
perative process model [MHV13|. Declarative process models specify what should be done
without specifying how it should be done to facilitate the required flexibility [PCRO6].

Recent literature emphasized the challenge of knowledge worker empowerment, which is indis-
pensable since KiPs cannot be entirely predefined by modeling experts but require on the fly
adaption by end-users during the process execution [DCMR13, HPM14, MKR13|. According
to the literature review on research challenges conducted by Hauder et al. in [HPM14], the
empowerment of knowledge workers is the most frequently addressed challenge in this research
area. End-users with limited computer science background are usually not familiar with pro-
cess modeling languages like CMMN. Another reason is that all modeling constructs of the
complete CMMN specification might not be necessary in practice [MLVDP14|. Similarly, Zur
Muehlen et al. [ZMRO8] proposed several subsets of the BPMN language after its initial release
that only contain constructs that are frequently used in practical settings.

In organizations wiki are increasingly used as shared knowledge repositories that can be used
for the collaborative gathering of information. In this research, the author views these wikis as
promising tools for the collaborative and self-organizing structuring of KiPs by end-users. Al-
though wikis can be dynamically adapted to new information structures, there are limitations
of existing solutions and general research challenges for this problem that are described in the
following. Lightweight declarative process constructs for the definition of logical dependencies
between tasks with their association to data are not supported in current wiki implementa-
tions [HPM14]. Regarding the data model it has to be possible that end-users can adapt the
metamodel during the process enactment [DCMR13|. Support for the KiP lifecycle that is de-
scribed by Mundbrod et al. [MKR13] is important to enable the collaborative documentation,
adaptation and instantiation of templates for KiPs.

*http://www.omg.org/cgi-bin/doc?bmi/09-09-23, last accessed on: 2015-03-03

http://www.omg.org/cgi-bin/doc?bmi/09-09-23

1. Motivation

1.2. Research Design

Based on the previously described problem description, we deduce a set of research questions
that guide the solution development for the science goal of software support for the collabo-
rative structuring of processes in knowledge work. Subsequently, the applied research method
is described to investigate the main research hypothesis of this thesis:

Research hypothesis: Fnd-users without knowledge about an existing process
modeling notation can be empowered to collaboratively structure processes for
knowledge work through a software solution.

In line with Gléser et al. [GL10] our research questions add new knowledge to the existing body
of knowledge. The results of the research questions mainly contribute to the fields business
process management (BPM), information systems (IS), intelligent user interface design (IUI),
as well as computer supported cooperative work (CSCW). The research questions to investigate
the main research hypotheses are described in the following:

Research question 1: What are requirements for the software support of
knowledge-intensive processes?

To answer this question, existing literature on knowledge-intensive processes and case man-
agement is analyzed. In addition, real world case studies are conducted in organizations to
retrieve a thorough set of requirements for software support of KiPs. In this first step the
requirements are described on a generic level without taking into account specific requirements
that might only be relevant for a subset of application scenarios. A precise understanding of
requirements serves as basis for the development of the theoretical framework and the software
solution.

Research question 2: What are dimensions in which knowledge-intensive pro-
cesses vary from each other and how do they influence the requirements?

Based on the previously derived generic requirements for KiPs from literature, dimensions
that distinguish application scenarios from each other are investigated based on three practical
scenarios that are presented in this thesis. These scenarios can be considered as KiPs that
exist in many organizations. In the first step the relevance of the generic requirements for the
application scenarios is analyzed, i.e., to identify which requirements are more or less relevant
for the given scenario.

Research question 3: What are design principles from successful online commu-
nities and how can they be incorporated in the user interface?

The structure of KiPs emerges bottom-up through contributions of individual knowledge work-
ers during the process. To ensure as many contributions as possible knowledge workers have
to be engaged through intrinsic motivation as well as incentives in the structuring of the pro-
cesses. Design principles from successful online communities provide the theoretical basis for
the design of the user interface to achieve this engagement [Kr12a|. We applied design princi-
ples that are in particular relevant for the early stages of an online community, i.e., starting
communities, encouraging contributions through motivation, encouraging commitment and
dealing with newcomers.

1. Motivation

Research question 4: What is a subset of the Case Management Model and
Notation with sufficient expressiveness that can be used for the structuring of
knowledge-intensive processes?

Existing process modeling notations (e.g., CMMN) might overwhelm non-expert users that
have no background in computer science and are not familiar with the language. Marin et
al. described in [MLVDP14| that subsets of the CMMN language that are less complex for
end-users are necessary, who do not need to understand and use all constructs of the complete
specification in practice. For this purpose we describe a subset of lightweight structuring
elements as metaphors for the CMMN language. Fnd-users with no experience in business
process modeling can use this subset to collaboratively structure KiPs. According to the
literature review conducted by Hauder et al. in [HPM14]|, the empowerment of knowledge
workers is one of the key research challenges to enable software support for KiPs.

Research question 5: How can the lifecycle for knowledge-intensive processes
be supported through a software solution?

Similar to the lifecycle of traditional business processes in BPM, processes in knowledge work
also have a lifecycle that needs to be supported. This lifecycle for KiP consists of four phases
for the orientation, template design, collaboration at runtime and records evaluation [MKR13].
In the framework design of thesis these four phases are integrated in the approach to enable a
holistic support of KiPs. We will describe how every phase of the lifecycle is covered through
the presented software solution in this thesis.

Research question 6: How can the upcoming Case Management Model and
Notation be integrated to support knowledge-intensive processes?

To answer this question, we investigate to which extend the CMMN language can be used to
leverage KiPs. Before this specification is introduced, its foundation which is based on busi-
ness artifacts is described briefly [MHV13]. We compare the previously identified requirements
for KiPs with the capabilities of this emerging standard. Since this specification is in a very
early stage implementations and experiences in practice are missing currently. Furthermore,
this specification only covers the graphical modeling notation and neglects the runtime envi-
ronment that needs to be provided for a holistic software support of KiPs. We will present an
implementation of this specification based on the required subset for the structuring of KiPs
and demonstrate its usage within three case studies.

Research question 7: How can the structuring of knowledge-intensive processes
be supported on mobile devices?

The increasing usage of mobile devices in organizations is likely to be relevant for the support
of KiPs as well. Based on this research question a novel interface that is tailored to the specific
requirements of mobile devices is developed. The small screen size requires adaptations of the
user interface that go beyond a simple responsive design. Some features are less relevant on
mobile devices and this has to be considered appropriately. Otherwise end-users might be
overwhelmed with features that are unnecessary and this could impair the usability. Another
challenge related to this research question is the technical architecture that is required. The
mobile client needs to be integrated with the server of the software solution that is developed
in this thesis through standardized interfaces.

1. Motivation

Several methods to perform research have been introduced and applied in the domain of infor-
mation systems (IS). In this thesis we carefully follow the design science research methodology
presented by Peffers et al. in [Pe07]. Figure 1.2 illustrates the consecutive steps that are
pursued to solve the aforementioned research questions. We cover the entire design science
research cycle in this PhD thesis. Every step of the research methodology is described in one
section, except for the design & development step that is described in two sections since it
covers all of the contributions made.

Process lteration

{ {

Identify Define Design & Demon- Evaluation
problem & objectives of Development stration
motivate a solution
(2]
[}
- g
[. . =
2 | Whatwould a 2 % Find suitable 2 | Oberserve how
Define problem g better artifact @ Artifact 2 | context(s) and £ efficient and
= accomplish? = S | solve problems |« effective
—= ——
o Z
T <
Section 1 | | Section 2 | | Section 3 | | Section 5 | | Section 6 |

Figure 1.2.: Applied design science research methodology to solve the research questions [Pe07]

In the step identify problem & motivate the problem is motivated with the increasing impor-
tance of KiPs in organizations. Despite this importance software support for KiPs in existing
information systems is far from being mastered. The scope of the thesis is narrowed down
during the step define objectives of a solution by describing related work on support for highly
flexible processes. While other approaches presented foundations on execution semantics for
these process models, the problem of knowledge worker empowerment is still prevailing. The
subsequent step in the research methodology is concerned with the design & development of
the solution artifact. Due to its importance, this step is described in two sections in which
design and development are described separately. The design includes lightweight structur-
ing concepts for KiPs and social design principles for successful online communities that are
incorporated in the design of generic user interface features.

During development the generic user interface features are implemented in a software solution
that is based on the principles of a wiki. Although the research focus is on the collaborative
structuring of KiPs through end-users, the implementation covers all phases of the lifecycle
for KiPs. The resulting IS design artifact is applied in three application scenarios during the
demonstration step. Main purpose of this step is to gather qualitative feedback about missing
functionalities in the artifact. The feedback triggers process iterations that lead to incremental
improvements of the designed artifact. The final step of the research methodology performs
an evaluation with 145 students using the artifact to support a KiP. The main hypothesis of
this thesis is evaluated through questionnaires with the participating students.

1. Motivation

The design & development step results in the main IS design artifact of this thesis with a
software solution for the collaborative structuring of KiPs through end-users. In the following
we will refer to this IS design artifact with Darwin. To understand, execute and evaluate our
research questions in a scientific way, we adhere to the seven guidelines for IS design science
proposed by Hevner et al. [He04]. According to Hevner et al. [He04], this process adheres
to the principle that knowledge and understanding of a design problem and its solutions are
acquired in the building and practical usage of an artifact. In general, the design-oriented
research approach distinguishes between the following four artifact types:

Artifact type Description

Provide a common language to describe problems and solutions

Constructs
that are related.

Models Describe important aspects of the reality and enable abstrac-
tion.

Methods Define processes and best practices that guide the solution of a
problem.

.. Demonstrate that the constructs, models and methods can be

Instantiations . . .

implemented in a working system.

Table 1.1.: Distinct type of artifacts resulting from a design-oriented research approach

The results and findings of this thesis can be categorized based on the artifact types presented
in Table 1.1. Regarding constructs our artifact provides a sound definition of the applied
terminology. This terminology is reflected in the generic orthogonal structuring concepts that
are used to define KiPs, e.g., data and process elements. We developed a model that describes
the dependencies between the structuring concepts as well as their execution semantics. This
model is designed to be domain independent and applicable in a wide range of scenarios. Our
method describes the lifecycle that is required to collaboratively structure KiPs. Finally, the
implemented software solution and its usage in three different use cases is an instantiation of
the constructs, models and methods. We adhere to the guidelines for design science research
that are presented in [He04|, as described in the following.

Problem relevance Knowledge work is becoming increasingly important in organizations and
software support for processes in knowledge work is still far from being mastered. In an
initial step we analyze the significance of the problem and studied existing literature.
The results of this initial study were presented together with a high-level solution archi-
tecture at the doctoral symposium at the RCIS conference in 2013 [Hal3a]. At a later
stage our literature study on research challenges confirmed this problem relevance in
the scientific community [HPM14|. Almost half of all papers on the emerging adaptive
case management paradigm that aims at supporting KiPs were published in 2012 or
later, which indicates the increasing interest by researchers in this area. In May 2014
the OMG released CMMN as a standard graphical modeling notation for processes in
knowledge work |Obl4|. Researchers, tool vendors and organizations will increasingly
adopt this standard in the future. Due to these developments as well as the increasing
importance of knowledge work for organizations, that have to sustain their competitive
advantage against competitors, the problem relevance is hereby approved.

1. Motivation

Design as an artifact The constructs, models and methods developed in this thesis are imple-
mented in a viable software solution that allows the collaborative structuring of KiPs.
KiPs can also be instantiated, executed and adapted in the software solution for a wide
range of application scenarios. The introduced structuring concepts for KiPs are also
applicable in other collaboration platforms. Thereby, this thesis can be considered as
general means for the collaborative structuring of KiPs in software solutions.

Research rigor Starting point for the research in this thesis is an extensive literature sur-
vey [HPM14| as well as use cases with research and industry partners in different do-
mains, e.g., innovation management, requirements engineering, enterprise architecture
management. Based on these findings we use metamodeling techniques, apply software
engineering patterns and conduct iterative evaluation cycles to preserve rigor.

Design as a search process The main artifact, as well as its sub artifacts developed in this
thesis, have gone through four iterative evaluation cycles. After conducting three use
cases in an early stage of the development in the first iteration, the system is used
productively for a software development project with three students during one semester
in the second iteration. In a third iteration the system is used to guide four students
with their master’s thesis. In the final iteration the software solution is applied in a
controlled experiment with 145 students for the final evaluation.

Communication of research Main findings of this research are published at international con-
ferences and workshops after passing (double) blinded peer-review processes. Results are
also presented at leading scientific communities on business process management (BPM),
intelligent user interfaces (IUI) and information systems (IS). The resulting conceptual
framework to support KiPs and the software solution with the required metamodel are
described in detail in this thesis.

Design evaluation The software solution for the collaborative structuring of KiPs is evaluated
with a controlled software experiment [Wol2|. The experiment is conducted within a
lecture on web application development at the Technical University Munich with 145
participating students. During this lecture students work in teams of four students to
design and implement a web application project. This project includes the development
of a business model, the user interface design of the web site and the implementation
of the application. Within four exercises the students have to submit deliverables and
prepare presentations that will be assessed by the advisors for the final grade of the
lecture. The participating 44 teams are divided into to two groups whereas of the one
group serves as control group. The first group uses the software solution developed in
this thesis to structure the project development process, while the second group submits
the deliverables for the exercises via e-mail. Both groups are interviewed with semi-
structured questionnaires after the project to assess the performance of our solution.
The comparison of both groups allows the approval of our main research hypothesis
that end-users without previous experience in process modeling are able to structure
KiPs. The design of the mobile interface for the software solution is evaluated with a
usability test within this experiment.

Research contribution Table 1.2 that is described in the following section summarizes the
contributions of this thesis.

1. Motivation

1.3. Contributions

The main contribution of this thesis is a framework and software implementation thereof for the
collaborative structuring of processes in knowledge work through end-users. These processes are
referred to as work plans that can be executed and adapted by knowledge workers while they
are being executed. Work plans are instantiations of work templates that capture reusable
knowledge and best practices in an organization. Adaptations made by knowledge workers in
the work plans can be incorporated back in the template to enable an emergent evolution of
KiPs. During the research process seven contributions were made that are necessary to fulfill
this overall research goal. These contributions as well as researchers providing valuable input
and evaluation partners are presented in Table 1.2.

1D Brief description

Name

Current literature describes the need for an emergent struc-
turing of KiPs as one of the fundamental research challenges.
This is necessary due to the unpredictable characteristic of
knowledge work that requires adaptations at runtime by end-
users. This thesis provides a solution for this issue that em-
powers end-users to collaboratively structure KiPs (cf. Sec-
tion 3.1). In the course of this research, we extend the Hy-
brid Wiki approach developed by Christian Neubert in his
PhD thesis that already allows the emergent structuring of
information [Nel2].

End-users with limited computer science background might
not be able to understand complex process modeling nota-
tions like CMMN. This thesis provides lightweight structur-
ing concepts for KiPs as metaphors that are easy to un-
derstand for end-users and thereby allow the structuring of
KiPs (cf. Section 3.2). These structuring concepts extend
the previously presented concepts by Christian Neubert in
the Hybrid Wiki [Nel2|. The structuring concepts are or-
thogonal and can be incorporated in arbitrary information
systems that support knowledge-intensive tasks.

Similar to the encyclopedia Wikipedia that gathers its con-
tent through crowdsourcing, processes in knowledge work
also rely on contributions of individual experts. We retrieved
social design principles for successful online communities and
investigated existing communities for best practices (cf. Sec-

Emergent structur-

cl ing of KiPs

Lightweight
turing concepts for
C?2 | KiPs that are easier
to understand for
end-users

struc-

c3

Social design princi-
ples for successful on-
line communities

tion 3.3). In the course of this research, we collaborated
with Felix Michel and Yolanda Gil from the Information Sci-
ences Institute of the University of Southern California to
retrieve these principles. In the course of this collabora-
tion the Organic Data Science Wiki is developed to support
task-centered online collaborations in science [Milbal. In
Section 2.3.8, differences between the Organic Data Science
Wiki and the solution presented in this thesis are described.

1. Motivation

ID

Name

Brief description

C4

User interface design
based on social de-
sign principles

The social design principles for successful online communi-
ties are used as theoretical foundation for the user interface
design of the software solution. We provide a set of user in-
terface features that improve the engagement of knowledge
workers in the processes (cf. Section 3.4). In the course of
this research, we collaborated with Felix Michel and Yolanda
Gil from the Information Sciences Institute of the University
of Southern California to develop features for the social de-
sign principles [Milba).

0]

Implementation for
software support of
KiPs

We present the required implementation that leverages the
structuring concepts for KiPs as well as the lifecycle to man-
age the evolution of work templates. This model provides
sufficient expressiveness to model hierarchical information
and process structures for a wide range of application sce-
narios with powerful access rights concepts (cf. Section 4.1).
The base for this model is the Hybrid Wiki, which was devel-
oped in the PhD thesis of Christian Neubert. In this thesis
we extend Hybrid Wikis with access rights, hierarchical in-
formation structures and a declarative process model.

Cc6

Interactive work-
bench for a subset of
CMMN

Modeling experts can use the collaboratively structured
KiP elements in an interactive process workbench to de-
fine declarative constraints. Dependencies between tasks and
stages of a wiki page can be defined to restrict possible exe-
cution paths. The interactive workbench is based on a sub-
set of CMMN that was recently published by the OMG as
a standard for case management. This thesis provides the
first implementation of this new case management standard
which is based on a subset of the specification. Further-
more, our approach contributes to the existing knowledge
base through its integration of end-users in the modeling of
cases (cf. Section 4.2).

c7

Software support of
KiPs for mobile de-
vices

Mobile devices are becoming increasingly important in orga-
nizations. This thesis also provides a solution that is tailored
to the specific needs of a mobile device (cf. Section 3.4.3).
The design of the solution for the mobile device differs from
the desktop version since the possible set of interactions is
much different and the use cases have other goals, i.e., cer-
tain documents that require special purpose software are not
changed. The solution implemented in this thesis is designed
to support multiple different devices with the same server im-
plementation. Important parts of the design and implemen-
tation of the user interface for mobile devices are developed
within the master’s thesis of Natascha Abrek [Ab15].

10

Table 1.2.: Overview of the main contributions of this thesis

1. Motivation

With respect to existing literature, this thesis also describes four sub-artifacts that are con-
sidered as innovative contributions. In the following, these innovative contributions are ex-
plained:

1. Due to the low maturity of this research area heterogeneous terms are used by different
author groups, e.g., adaptive case management, production case management, dynamic
case management and case handling. A solid understanding of the core terms as well
as their differences and commonalities is important for a mature discipline. Based on
an analysis of existing definitions on case management this thesis presents a complete
terminology to describe the field of software support for KiPs. Furthermore, character-
istics of KiPs are definite against traditional highly structured workflow management
solutions.

2. This thesis provides a list of research challenges that are missing in literature. Based on
a structured literature review on book chapters and conference proceedings, we identified
13 challenges that are addressed in current publications on this topic. These challenges
are grouped into five high-level research categories for data integration, knowledge worker
empowerment, authorization and role management, theoretical foundation, as well as
knowledge storage and extraction. Main focus of this thesis are research challenges
related to the category knowledge worker empowerment. This category has the largest
number of research challenges identified in literature and is crucial for the success of this
discipline.

3. In the demonstration phase of the applied research process of this thesis, we conducted
three case studies to demonstrate the usage of the developed artifact under realistic
conditions. These case studies are concerned with enterprise architecture management,
innovation management and requirements engineering. While the first two case studies
are based on KiPs in real world enterprises, the latter case study is based on the artifact-
oriented requirements engineering approach. Every case study consists of an thorough
analysis of requirements for software support as well as an evaluation on the applicability
of the proposed software solution. Although the primary concern of the case studies is
to perform an initial evaluation of the software solution, the application is an innovative
contribution since software support of processes is missing within these three domains.

4. The framework presented in this thesis is implemented in a productive web based soft-
ware solution that builds on the basic concepts of the Hybrid Wiki. The software solution
allows the collaborative structuring and execution of KiPs in a wiki. In addition, the
software solution provides collaboration features that are valuable for the support of
KiPs, e.g., a social feed showing activities in the system and personalized profile pages
with the skills of the users. This sub-artifact of the thesis is considered as an innovative
contribution since there are no implementations available which solve the problem of
collaborative structuring of KiPs that also consider the emerging CMMN standard for
the definition of processes.

11

1. Motivation

1.4. Structure of the Thesis

The structure of the thesis is organized apposite to the applied design science process (cf.
Figure 1.3). Every step in the design science process is described in at least one chapter. In
addition, the work is organized into a framework design part and an implementation part.

I. Framework Design Il. Implementation
Identify Problem & Motivate Design & Development
I 1 Motivation I 4 Implementation
| Problem Description | | Software Support for KiPs | C5 |
v
| Research Method | | CMMN Workbench | Cé |
v 2
| Contributions | | Implementation for Mobile Devices | c7 |
v

Structure of the Thesis

v

Demonstration

l

I) Case Studies
Define Objectives of a Solution
l 2 Introduction and Related Work | Innovation Management |
| Introduction | | Enterprise Architecture Management |
v
| Towards Process Support for KiPs | | Requirements Engineering |
v
| Related Work | 3
Evaluation
l I 6 Evaluation

Design & Development
| Evaluation Framework |
I 8 Structuring KiPs v

| Results of the Controlled Experiments |

| Emergent Structuring | C1 |
v v

| Lightweight Concepts | c2 | I 7 Critical Reflection and Future Research

’ Features based on Social Principles l C3 ‘ | Conclusion |
v v

| Design of the User Interface | Cc4 | | Limitations and Future Research |

Figure 1.3.: Outline of the thesis linked to the contributions, cf. Table 1.2 and Figure 1.2

The framework part continues with an introduction and related work, which also contains
a summary on requirements for software support of KiPs. Based on these requirements the
conceptual solution for the structuring of KiPs through end-users is described. The design of
the framework consists of the emergent structuring, lightweight structuring concepts, features
based on social principles and the user interface design. In the second part the implementation
of the framework is presented with the detailed description of the software solution. This
implementation is demonstrated in three use cases for innovation management, enterprise
architecture management and requirements engineering. Within the implementation a CMMN
workbench and an implementation for mobile devices is presented. Finally, the evaluation is
presented based on a controlled software experiment with 145 participants before the thesis
concludes with a critical reflection and future research outlook.

12

CHAPTER 2

Introduction and Related Work

This chapter provides theoretical foundations on three disciplines and related literature for
this thesis. These three disciplines are integrated in the framework that is developed for
the software support of KiPs. The first discipline is process support in knowledge work that
is introduced in Section 2.1.1 with some fundamental definitions on knowledge, knowledge
work and knowledge-intensive processes. In the second discipline the integration of data and
processes, which is an important aspect of KiPs, is presented in Section 2.1.2. In Section 2.1.3,
the third discipline on successful online communities that provides valuable concepts that are
integrated in this research is presented. Based on these three disciplines generic requirements
for software support of KiPs are derived in Section 2.2.1. These requirements are the basis for
the conceptual framework and the software solution developed in this thesis. In Section 2.3,
the literature analysis approach and the identified results related to the solution described in
this thesis are presented.

2.1. Introduction

Before KiPs are defined some fundamental definitions on the terms knowledge and knowledge
work are described briefly based on the literature study conducted in [MKR13|. Building on
a common understanding of the term knowledge, we introduce the dynamic theory of orga-
nizational knowledge creation. This theory is important for this thesis since it describes how
organizations can articulate and amplify knowledge created by individuals in an organization.
The definition of KiPs is presented along with the four key characteristics of these processes.
Many approaches for highly structured processes have been presented in current literature,
whereas these solutions are not suitable for the characteristics of KiPs. KiPs are compared
against other more structured processes based on the process management spectrum.

13

2. Introduction and Related Work

2.1.1. Knowledge-Intensive Processes

At the beginning, the notion of knowledge needs to be delineated from the terms data and
information, which are often used synonymously in the computer science discipline. Data
represent a set of symbols on a syntactic level without meaning. Information extends data
with interpretation and therefore describes data with meaning and semantics [AN95]. Based
on these definitions, knowledge can be described as information in the context of an agent’s
reasoning resources. For this thesis it is particularly important to notice that knowledge can
also be concerned with processes and routines describing what has to be done to achieve some
organizational goals. Davenport et al. [DP98] define knowledge work as follows:

Definition: Knowledge

Knowledge is a fluid mix of framed experiences, values, contextual information and
expert insights that provides a framework for evaluating and incorporating new ex-
periences and information. It originates and is applied in the minds of knowers. In
organizations, it often becomes embedded, not only in documents or repositories,
but also in organizational routines, processes, practices and norms.

Embodied in this definition of knowledge work is the distinction between tacit and implicit
knowledge made by epistemological scientist Polanyi [Po66]. Tacit knowledge can be hold
by humans although they are not able to explicitly communicate this knowledge. Explicit
knowledge can be communicated through a formal language or information with respect to
the previous explanation of information. Based on this distinction of explicit and implicit
knowledge Nonaka presented the theory of organizational knowledge creation [No94]. Under-
standing how organizations create knowledge is crucially important in the new economy of
the 215 century. In this economy knowledge is more than just another resource alongside the
traditional production factors labor, capital and land. Knowledge is becoming the only consid-
erable resource that determines how successful organizations are in our society [Dr93]. Main
reason for this is that knowledge creation is the foundation for continuous innovation in orga-
nizations, which in turn leads competitive advantage against competitors [NT95|. Figure 2.1
illustrates how knowledge is created in an organization according to Nonaka’s theory.

Organizational knowledge creation can be described with the continuous transformation be-
tween tacit and explicit knowledge. This conversion takes place in four subsequent sequences
that are passed through in the knowledge creation spiral. During the ezternalization implicit
knowledge that is available in the organization is gathered and documented. In this thesis we
are interested in knowledge that is concerned with processes and routines in an organization.
In the subsequent combination sequence this external knowledge is combined with already ex-
isting explicit knowledge. New explicit knowledge is made implicit in an organization during
the internalization sequence. This is usually done by providing documentations or training
employees in an organization. In our context internalization provides employees with new
processes or routines. Finally, the internal knowledge is applied in the organization during
the socialization. During this socialization the knowledge is spread in the organization and
leads to new knowledge gains than can be externalized. With every cycle organizations create
new explicit and implicit knowledge, which is the foundation for innovation and competitive
advantage. This new knowledge originates from individuals and is transformed during the
knowledge creation process to groups and the entire organization.

14

2. Introduction and Related Work

Epistemological

dimension
- Externalization
Explicit

knowledge ’\ .

3 1

Combination g |

A) :

: 1

|

|

I

I

|

|

|

I

gy Sy —— o JON e o on anl e o on fn on on ol on o on fon on on on Y an on o, o o o on on o = baw-

|

|

|

I

I

|

|

— |

i I

H 1

5 |

N - |

Sozialization LN

~ ~~

Tacit Internalization

knowledge Ontological
Individual Group Organization Inter-organization ~ dimension

Knowledge level

Figure 2.1.: Knowledge creation spiral for organizations introduced by Nonaka [No94|

Initial studies that are related with knowledge work studied changing working environments
that have a much higher degree of mental activities. Among these studies are publications
concerned with the transformation of the industrial society described by Bell [Be73| and
Machlup [Ma62]. In his PhD thesis Hube analyzed existing fundamental definitions on knowl-
edge work that are briefly summarized in this thesis [Hu05]. Drucker defined a knowledge
worker as "An employee whose major contribution depends on his employing his knowledge
rather than his muscle power and coordination, frequently contrasted with production work-
ers who employ muscle power and coordination to operate machines” |Dr77]. In subsequent
publications Drucker emphasized the importance of innovation for successful knowledge work.
Although his work provided important foundations for the definition of knowledge work, the
descriptions remain on a rather abstract level without detailing differences of work types.
Beruvides et al. differentiate work into the three types blue collar work, white collar work
and knowledge work [BS87|. The blue collar worker can be described as traditional factory
workers, while the white collar workers are working in the service industry. The third type
knowledge work is characterized by four criterions. First, the input of knowledge work is
difficult to determine and it often has no directly measurable impact on the output. Second,
the work can be conducted mentally or manually. Third, the output of knowledge work is
mainly intangible. Fourth, in contrast to blue collar workers that have no authority to dispose,
knowledge workers are able to make own decisions.

15

2. Introduction and Related Work

While early definitions of knowledge work are closely defined with professional groups, subse-
quent publications tried put a stronger emphasize on the work character. Scarbrough describes
knowledge work as comparatively unstructured and organizationally induced [Sc99]. In con-
trast to previous publications that describe knowledge work based on defined methods for
jobs, these characteristics capture the changing demand of companies. He identified sev-
eral developments alongside this increasing demand for knowledge workers that include the
collapse of traditional working model. The importance of knowledge work is increasing in
many professional groups and the establishment of new sectors in the economy that create
knowledge. Furthermore, information technology is an important factor for the codification
and transportation of knowledge. Davenport distinguishes between several types of knowl-
edge work that can be classified along the two dimensions complexity of work and level of
interdependence [Da05]. Knowledge work having low level complexity that is conducted by
individuals is called transaction in this classification. Individuals that perform complex work
based on judgment conduct expert knowledge work. Knowledge work with a high level of
interdependence can be either integration or collaboration depending on the complexity of
work. This classification is rather broad and generic making it difficult to retrieve an exact
definition for knowledge work.

An assessment of existing definitions for knowledge is described by Hube in his PhD the-
sis [Hu05]. The assessment is performed with four criteria that are based on the applicability
for labor science, description of the knowledge work process, individuality and selectivity
against routine work. All of the definitions found in literature lack selectivity against routine
work and description of the knowledge work process. Many of the definitions are too generic
and the missing description of the knowledge work process makes them not suitable for the
scope of this thesis. Hube introduces a more specific definition for knowledge work that in-
corporates these criteria. Throughout this thesis, we will rely on this definition of knowledge
work that has been translated to English in [MKR13|:

Definition: Knowledge Work

Knowledge work is comprised of objectifying intellectual activities, addressing novel
and complex processes and (work) results, which require external means of control
and a dual field of action.

In the first part of the definition knowledge work is delimited against intellectual work. Knowl-
edge work excludes routine mental work and only addresses novel and complex processes as
well as work results. In the second part of the definition knowledge work processes are divided
into two fields of action, i.e., the referential field of action and the actual field of action [Re88].
During the referential field of action activities of knowledge workers are mainly concerned
with theoretical considerations. In this field of action different approaches can be evaluated
and planned without causing any direct impact on the problem to solve. The management
of complex processes takes places during the actual field of action with the required resources
and activities that are necessary to produce the desired outcome. This common understand-
ing of the term knowledge work is the foundation for the definition of KiPs that is presented
in the following. From a theoretical perspective KiPs are within the intersection between
knowledge management (KM) and BPM. While current BPM approaches manage processes
and process-related knowledge separately, KiPs requires a tighter integration between both
elements to facilitate organizational knowledge creation.

16

2. Introduction and Related Work

Before the definition of KiPs is presented one needs to detail intellectual activities that take
place in knowledge work. Intellectual activities are performed by humans, who create, share,
transfer and apply knowledge in the context of their processes. Purpose of these processes
is the achievement of organizational goals and the creation of value [MF1la|. This means
that intellectual activities are concerned with the creation of completely new knowledge and
the application of already existing knowledge. Taking these considerations into account, we
rely on the following definition for KiPs provided by Vaculin et al. in [Vall] throughout the
thesis:

Definition: Knowledge-intensive Processes

Knowledge-intensive processes (KiPs) are processes whose conduct and execu-
tion are heavily dependent on knowledge workers performing various intercon-
nected knowledge-intensive decision making tasks. KiPs are genuinely knowledge-,
information- and data-centric and require substantial flexibility at design- and run-
time.

In [MKR13|, four key characteristics for collaborative knowledge work are described with (i)
uncertainty, (ii) goal orientation, (iii) emergence and (iv) growing knowledge base. Knowledge
workers are making autonomous decisions and collaborate on tasks depending on knowledge
artifacts. These tasks are hard to predict and it is not possible to predefine them into a
classical control-flow because of their uncertainty. Goals are used by knowledge workers to
align their activities and resources. During the course of actions processes gradually emerge
through alternating planing and operative working phases. In the operating phases knowledge
artifacts are created with intermediate results that contribute to a growing knowledge base.

Processes can be classified along the degree of structure and predictability, which directly
influence the possible level of modeling, control and automation. Figure 2.2 illustrates this
process management spectrum according to Di Ciccio et al. in [DCMRI13]. KiPs are mainly
located at the two layers at the bottom with unstructured and loosely structured processes.
KiPs require a high degree of flexibility and are unpredictable by nature. At the top of
the spectrum shown in Figure 2.2 structured processes describe routine work that is highly
predictable in advance. The required flexibility is rather low and logic in the processes can
be predefined before instantiation through dedicated process designers. End-users are usually
not able to influence the course of action through their decisions at runtime. Process logic
contains activities, their dependencies and resources that perform activities in the processes.
As a result all options and decisions can be captured in a process model a priori. The process
model can be repeatedly instantiated with little variations during the execution of processes.
Examples for structured processes are production and administrative processes.

Similarly, structured processes with ad-hoc exceptions have related characteristics with activ-
ities that follow a predefined plan. Main difference to structured processes is that external
events and exceptions can change the structure of the process at runtime. Process adaptation
strategies might be required to change the predefined work practice. Anticipated adaptations
might be predictable and defined in advance in the process model. In unstructured processes
with pre-defined segments the overall process logic is not explicitly defined and work prac-
tices are mainly ad-hoc. Nevertheless, some fragments of the process can be predefined and
structured based on regulations. The selection and composition of process fragments usually
depends on the specific case and might change with every instantiation.

17

2. Introduction and Related Work

Highly predictable

and repeatable Low flexibility

Structured

5 €

2s

==

D S

85

=5
T
2
< Structured with ad
© hoc exceptions
5
c
8 -

Unstructured with
pre-defined
segements

Loosely structured

(Sd1) sassad0id anisuaiul-abpapmou]

E] Unstructured

Unpredictable and
non repeatable

High flexibility

Figure 2.2.: Process management spectrum [DCMR13]

Loosely structured processes cover a wide range of work practices in which process logic is
not defined prescriptively through procedures. Possible execution paths are narrowed down
through business rules in a declarative manner. In these loosely structured processes the set
of required actions might be foreseeable, but the exact execution order cannot be determined
due to many possible alternatives. Business rules are specified with constraints that implic-
itly describe these alternatives by prohibiting undesired execution behavior. Recently, many
approaches for these declarative process models have been proposed to enable this flexibil-
ity [Vall]. Decisions about which actions to take next are made autonomously by experts
participating in these processes.

At the bottom of the process spectrum unstructured processes are unpredictable and require
the highest degree of flexibility. In contrast to loosely structured processes, the set of actions
and their execution order cannot be determined in advance. Process participants make all
decisions autonomously and the structure of the process thus typically evolves dynamically
during enactment. As a result only very little automation can be provided for these processes
that directly represent knowledge work. The structure of the processes also varies for every
case and process participants have to handle unexpected exceptions. Only the goal of the
unstructured process is usually known in advance. Due to this uncertainty, many decisions
have to be made by knowledge workers during the process execution. This requires simple
structuring concepts that do not overwhelm end-users without previous knowledge in process
modeling.

18

2. Introduction and Related Work

2.1.2. Data and Processes

Process support for knowledge work requires means to deal with unpredictable situations at
runtime and an integration of data in the processes. Traditional process modeling is divided
into a data and behavior modeling part to reduce complexity. These activity-centric approaches
are focused on highly structured and predictable processes. In activity-centric approaches
atomic activities are explicitly defined with their relationships in an imperative and procedural
way. As a result activity-centric processes always follow a pre-specified order of their tasks
allowing only little deviations at runtime. Another limitation of activity-centric approaches
regarding their applicability for knowledge work, is that data on business objects and their
attributes is mostly unknown to the process engine. This data is typically managed separately
to the process engine by database applications and enterprise systems.

KiPs cannot be represented with a set of activities with predefined precedence relations. In
KiPs the availability and status of data objects are the main driver for the execution of
the process. Various data-centric approaches have been proposed to model processes with a
tight integration of processes and data |[KR12b, KWRI11|. Figure 2.3 illustrates a comparison
between activity- and data-centric approaches. In an activity-centric approach users only have
a view on their worklist that contains tasks for a given point in time, while the link to data
being manipulated in the processes is missing. Services that are used in the processes are
typically hard-coded in activity-centric approaches. Users in data-centric approaches require
an integrated view on data, services and processes with services that are generic. Users
should be able to switch between these different views to complete knowledge-intensive tasks
in a natural way. Main advantage of this approach is that a flexible execution of unstructured
and knowledge-intensive processes becomes feasible.

Activity-Centric Approach Data-Centric Approach

. . integrated view on data, services, and processes
only view on worklist

(Processes 1

generic
services

q hard-coded .
[Services J services [Senvices J

missing link
[Data J to data [Data J { Processes]

Integration of data and processes

Figure 2.3.: Comparison between activity- and data-centric approaches [KR11]

19

2. Introduction and Related Work

The simplest solution for the specification data-centric processes are finite state ma-
chines [Ku03, Re09, KWRI11]. In this approach the behavior of information objects is defined
with a state machine and transitions between these states specify possible actions. Accord-
ing to Marin et al. [MHV13|, an important ingredient in enabling flexibility in data-centric
approaches is the shift from procedural to declarative lifecycle models. In the late 1990s the
data-centric process framework Vortex has been introduced |Hu99|. It uses condition-based
guards to control when certain modules are launched. Due to limitations in the core con-
cepts the use for general-purpose BPM is limited. The artifact-centric approach based on the
declarative Guard-Stage-Milestone (GSM) model originates from that work to support more
flexible data-centric processes [Hulla, Hulle, DHV13|. In this approach the process logic
and the data layer are conceptually integrated in one concept that is called artifact. In the
artifact-centric approach processes are represented with collections of artifacts that encapsu-
late data and a lifecycle. Although the artifact-centric approach was developed for traditional
BPM domains, it has emerged as suitable for case management [MHV13]. According to Hull
et al. [Hulla| artifacts are defined as follows:

Definition: Artifacts

Key conceptual entities that are central to the operation of a business and that
change as they move through the business’s operations. An artifact includes both an
information model to capture all business relevant data and a lifecycle model that
specifies the possible ways it might progress through the business.

Among the key conceptual entities are stages that are used to cluster tasks that are performed
within an artifact. In contrast to approaches based on state-machines stages can run parallel.
Milestones are used to represent intermediate business goals that an artifact may fulfill. These
milestones are tightly linked to stages in the GSM model. Guards describe when a stage is
opened and can be entered. Once a stage is opened and all associated milestones are true,
the stage automatically closes since the purpose of the stage is achieved. Decisions whether
guards and milestones are activated are described by sentries. Sentries can be specified based
on the event condition action (ECA) structure. It basically states that actions are triggered
after an event occurs and the condition is fulfilled. Either the event or condition part might
also be empty and the action can still be triggered. The action in this context is the activation
of the attached guard or milestone. Once an incoming event is registered in the system, all
ECA rules that are applicable to this event are fired.

This GSM model and previous works related to data-centric business processes provide the
foundation for CMMN that is introduced in Section 2.3.7. The notation consists of tasks,
stages, milestones and events similar to the GSM model. Main purpose of CMMN is to provide
a modeling notation standard for case management. It avoids describing an implementation
but provides a notation, metamodel, interoperability between tools and minimum execution
semantics. CMMN and the GSM model only differ in two major design decisions. First,
milestones are not tightly coupled to stages in CMMN since they can be defined separately
from stages. Second, CMMN allows to make adaptations on the runtime model which is
not considered in publications related to the GSM model. The notation might be useful for
requirements of KiPs that are related to modeling. Aspects concerned with the user interface,
facilities for end-users, collaboration and emergence have to be provided by an appropriate
execution environment.

20

2. Introduction and Related Work

2.1.3. Successful Online Communities

Processes can be divided based on the process management spectrum that is shown in Fig-
ure 2.2. Processes at the top of the process management spectrum are highly predictable
and repeatable. They include processes that are structured and structured with ad-hoc ex-
ceptions. Due to their high degree of structure these processes can be defined in a top-down
manner by few modeling experts that are familiar with the process or collaborate closely with
domain experts. KiPs cannot be completely predefined in a top-down manner by modeling
experts due to their unpredictable characteristic. Instead, these processes emerge bottom-up
through contributions of individual knowledge workers. Every participating knowledge worker
needs to bring in his expertise and experience to accomplish the overall goal of the KiP. Many
knowledge-intensive problems are so complex and elaborate that they require a large amount
of highly-specialized participating experts that contribute with their knowledge. For all those
reasons it is critically important that knowledge workers are not only empowered to partici-
pate in the structuring of their processes, but it is equally important that they are also willing
to do so. Figure 2.4 illustrates the evolution of scientific work over the last hundred years.
Although this example is based on scientific work, similar developments can be observed for
many other application domains, e.g., open source software development.

O -
) 7 :2 :
°
o) \
(@)
Vi

@ e 7
Individual intellectual Pairwise research Collaborative research Collaborative research

people networks

Figure 2.4.: Evolution of scientific work over hundred years according to Michel [Mil5a]

In the beginning individual intellectual people published pioneering publications, e.g., Al-
bert Einstein, Isaac Newton and Charles Darwin. In the second phase scientific work has
been conducted through pairwise research, e.g., James D. Watson and Francis Crick unscram-
bling the DNA’s structure. Collaborative research emerged in the subsequent stage with
many researchers working together, e.g., the human genome sequencing consortium. Today
large scientific projects are networks of several collaborative research groups, e.g., the AT-
LAS project at the large hadron collider in CERN or the ENCODE project. Over the past
hundreds years science has become much more collaborative and the next step of this devel-
opinent is the establishment of online communities. With these communities external workers
that are not part of the participating research groups or organizations are engaged. These
external workers can bring in valuable knowledge or resources related to the research goal. In
many domains numerous examples of online communities have proven how successful virtual
teams can collaborate through technology platforms, e.g., forums, blogs, wikis and networking
sites. Similar to offline communities, their digital counterparts support their members with
information sharing, social support and companionship.

21

2. Introduction and Related Work

Although several examples demonstrated the potential benefits of online communities, many
approaches struggle to become successful because they are not able to attract enough active
members. Only after a critical mass of members that contribute content is reached, sufficient
content is produced that attracts new members to the community. Figure 2.5 illustrates
critical design challenges that have to be solved for online communities to become successful.
Based on the findings of Kraut and Resnick that are presented in |[Krl2a|, five critical design
challenges for successful online communities are presented in the following.

Starting a new Attracting New Encouraging Encouraging Regulating
community Members Commitment Contribution Behavior

Figure 2.5.: Design challenges for successful communities according to Kraut et al. [Krl2a]

Communities become successful because they have a large amount of content that is valu-
able for other people, e.g., videos, software source code, articles, or questions and answers.
Starting a new community is the first critical challenge since this content is not available from
the beginning and needs to be created first. Main reason for this challenge is the critical
mass problem, which means that the community doesn’t have enough content to attract new
members and therefore insufficient new content is created. Once the community has been
established, it is important to attract and socialize new members for the community to grow
or to replace members who leave. Many communities need to identify and encourage members
that have certain skills as well as motivation to contribute. New members of a community
have to be socialized and need to learn appropriate behavior in the community.

Encouraging commitment among members of a community improves their willingness to stay
in the community and contribute to it. People in offline and online communities that are more
committed to an organization are more satisfied, productive and less likely to leave [MZ90].
Especially online communities have to deal with the challenge of commitment since changing
to another community is much easier than in the offline world. In the offline world changing
or leaving a community is often related with loss of salary, job status, or geographic proximity.
The existence of a community depends on its content and therefore members of a community
have to encouraged to contribute with their knowledge. Types of contributions could be code in
software projects, videos, tutorial, or solutions to problems. Communities in which members
contribute with their knowledge are much more likely to become successful.

Once a community is established and has a large number of members, it is important to avoid
arising conflicts or provocation from other members that might have conflicting interests.
These situations require mechanisms to regulate behavior of members in a community. Many
of these challenges only arise in online communities and not in real world organizations. Main
reagons for inappropriate behavior in online communities are the anonymity of members,
ease of entry and exit and textual communication. The anonymity of online solutions lowers
the threat of social accountability. Due to the ease of entry and exit in online communities
members are less tied to the community and this limits the effect of sanctions. Finally, textual
communication is prone to misinterpretation because of missing nonverbal gestures.

22

2. Introduction and Related Work

2.2. Towards Process Support for Knowledge Work

This section presents fundamentals towards process support for knowledge work with generic
requirements and three sample application scenarios. The requirements are grouped into
seven distinct categories related to (i) data, (ii) knowledge actions, (iii) rules, (iv) goals, (v)
processes, (vi) knowledge workers and (vii) environment [DCMR13|. General characteristics
that are common for all KiPs are illustrated with the conceptual diagram in Figure 2.6.
Depending on the specific application scenario of the KiP, additional requirements might have
to be addressed, e.g., interfaces to medical devices in the healthcare domain. Due to the
plethora of possible application scenarios this section only covers generic requirements.

Knowledge workers are usually involved in several work plans at the same time that are
used to structure their processes (v). For every work plan knowledge workers require an
overview about the current progress of tasks (i) and information elements (i). Tasks in the
work plan might impose logical and temporal dependencies defined through rules (iii). Work
templates describe best practices for one particular context that can be reused and adapted if
necessary by the knowledge workers (vi) to accomplish certain goals (iv). Work plans need to
be integrated with their environment (vii) since knowledge workers often use dedicated special
purpose applications, e.g. integrated development environment or computer-aided design.

Discussions

l Context A l Context B l

Process Owner “ Process Owner “
“ Work Plan A “ | WorkPlanB
ToDAY Task 10f B 100% ‘
o TR
S
T
Tkaots
. Ea «
S T T T T —>
T T T T L Aug Ot pmbser nber
PR o “
Common Tasks ”7"3‘:7””””*33”1 Common Tasks
‘Work Template A ‘Work Template B
Context C Context D
100% Interacti Interacti
Process Owner Knowledge Process Owner
“ Worker
“ ‘ Work Plan C ‘ N ‘ Work Plan D ‘

Figure 2.6.: Knowledge workers participate in KiPs in various different contexts [Mul2]

23

2. Introduction and Related Work

2.2.1. Generic Requirements for Knowledge-Intensive Processes

In this section, current research on requirements for KiPs is presented as foundation for the
framework and software solution presented in this thesis. Requirements for KiPs found in
literature are mainly gathered from real-world application scenarios from different domains,
e.g., healthcare, product development, criminal investigations and court case management.
At this stage generic requirements for KiPs are gathered from current literature and their
relevance for the three application scenarios is investigated. In the following subsection these
three application scenarios for KiPs are described to improve the understanding of the generic
requirements. The requirements are presented along with the structure introduced by Di
Ciccio et al. [DCMR13] in seven groups. All requirements are summarized and consolidated
from recent publications by Hauder et al. [Hal4a|, Mundbrod et al. [MR14] and Di Ciccio et
al. [DCMR13|. We decided to select these references since they are from three distinct research
groups that studied requirements for KiPs independent from each other.

In addition to these generic requirements some application scenarios might have domain spe-
cific requirements that cannot be covered in this section due to the large number of potential
scenarios. Characteristics of KiPs appear in a variety of different application scenarios in or-
ganizations. Due to this wide range of KiPs the relevance of these generic requirements might
be diverging from scenario to scenario. Table 2.8 illustrates the relevance of the requirements
for the application scenarios investigated in this thesis. For every requirement we distinguish
between three different levels for every scenario. Highly relevant requirements are explicitly
mentioned for the scenario, i.e., without this requirement the scenario cannot be adequately
supported. Requirements with medium relevance are not explicitly stated in the scenario, but
they can be derived from actual use cases that were observed. Requirements with a basic
relevance could not be explicitly or implicitly derived within the particular use case.

Integration with data is an important requirement for software support of KiPs. In activity-
centric approaches the link to data is missing, i.e., data is only manipulated through forms that
are available during the activities. Within KiPs knowledge workers need to be able to collab-
oratively access and manipulate data at any time in the processes. This is only possible with
a suitable information model that structures the data appropriately. An appropriate infor-
mation model combines structured and unstructured information, i.e., files, strings, integers,
dates, enumerations and complex types like ideas. Due to the unpredictable characteristic of
KiPs it is important that these information structures can be adapted by end-users. Table 2.1
summarizes requirements for KiPs that are related to data.

Name Description Source
All data that is manipulated by the process has
to be stored in an information model. This infor-
mation model needs to support different levels of
abstraction and arbitrary data types.

R1 Data modeling [DCMRI13]

New knowledge that arises at runtime of the pro-
cess may involve the creation and modification
R2 Late data modeling | of data. Knowledge workers have to be able add | [DCMR13|
new data to the information model as well as
alter or remove the existing ones.

24

2. Introduction and Related Work

Name Description Source
All data in the information model has to be ac-
cessible to the knowledge workers at any time
R3 Access to appropri- | and not only while certain data for an ac-

. . . DCMR1
ate data tion needs to be manipulated. This access to [DCMR13]
data needs to consider appropriate authorization
rights.
Many different knowledge workers might ma-
R4 Synchronized access | nipulate the same tasks and data concurrently. [DCMR13]

to shared data Consistency during concurrent execution needs
to be ensured.

Every knowledge worker should be able to make
adaptations on the data model. This requires
a limited number of entities in the data model | [MR14]
without loosing the right balance between ex-
pressiveness and comprehensibility.

R5 Data model compre-
hensibility

Table 2.1.: Name, description and source of data requirements for software support of KiPs

In an organization work needs to be coordinated and allocated among many knowledge work-
ers that perform knowledge actions autonomously. These knowledge actions have to be repre-
sented through data-driven tasks in a software solution. Compared to workflow management
solutions that aim at automating as many steps as possible in a process, tasks in KiPs usually
consist of intellectual activities that are performed manually. The structuring of KiPs allows
to capture best practice knowledge about procedures and guide workers in an organization.
Furthermore, additional roles compared to workflow management are required that enable
more flexibility, e.g., to repeat tasks during an approval procedure or to skip tasks that are
not necessary. Knowledge action requirements are described in the following table:

Name Description Source
Actions in KiPs depend on the evolution of the
information model to support data-driven pro-
gression of the process. Constraints defined on | [DCMR13|
data in the KiPs guide the execution of knowl-
edge actions.

R6 Represent data-
driven actions

Due to the emergent characteristic of KiPs, ac-
tions have to be added and manipulated by
knowledge workers during process enactment. | [DCMR13|
This requirement can be combined with late data
modeling to associate actions with required data.

R7 Late actions model-
ing

In addition to execution roles that are known
from workflow management and used to assign
R8 Assignment of | responsible persons for knowledge actions, new
knowledge action roles | roles for skip, delegate and redo are necessary.
These additional roles specify which knowledge
workers are allowed to perform these actions.

[Hal4al

25

2. Introduction and Related Work

Name Description Source
The assignment of knowledge action roles might
have to be adapted or new knowledge workers
have to be added or removed to roles during pro- | [Hal4a)
cess enactment. This requirement can be com-
bined with late actions modeling.

R9 Late assignment of
knowledge action roles

Table 2.2.: Name, description and source of knowledge action requirements for KiPs

Unstructured and loosely structured processes require a declarative process model that narrows
down permitted tasks during the execution of a KiP. Instead of specifying one predefined and
standardized path, declarative process models only exclude certain sequences that are not
allowed [Pe08]. Main difference between both paradigms is that knowledge workers have more
freedom and can make own decisions on the most suitable path in the KiPs. The degree of
freedom varies with the number of constraints that are added to the KiP, i.e., the flexibility
is limited with an increasing number of constraints. Furthermore, making adaptations in a
declarative process model can be considered as easier since new constraints can be added
without an understanding of the entire network of tasks. In highly structured processes new
tasks have to be integrated in an existing network, which might be very complicated and
difficult to understand for end-users. For this purpose the requirements for the definition of
rules and constraints in KiPs are described in Table 2.3.

Name Description Source
The execution of KiPs needs to be constrained
by policies and rules, e.g., producer and con-
R10 Formalize rules and | sumer pattern in which tasks are enabled after

constraints certain other tasks are completed. Knowledge [DCMR13]
workers have to be able to explicitly define con-
straints on tasks and data.
Similar to late knowledge actions and data mod-

R11 Late constraints | eling that were described earlier, knowledge [DCMR13]

formalization workers must be able to formalize new con-
straints during the process enactment.

Table 2.3.: Name, description and source of rules and constraint requirements for KiPs

According to the definition of KiPs, goal orientation is another main characteristic that de-
lineates them from highly structured and predictable processes. Goals are typically created
in an early stage of a KiP and constantly refined during process execution. In many applica-
tion scenarios goals are refined through milestones and quality gates that are defined early in
the process. In these situations they are used to ensure high quality and standards, e.g., in
engineering processes [MR14]. In other scenarios static milestones are not used and dynamic
sub-goals are created, e.g., through physicians in healthcare processes [MR14|. The fulfill-
ment of goals depends on the completion of tasks or the status of data elements. Compared to
knowledge actions that change during process enactment, goals that are located on the highest
level in a KiP remain rather stable during the lifetime of the process. In many situations goals

26

2. Introduction and Related Work

are the only input that is available in the beginning and knowledge workers fulfill them in a
self-organized and autonomous working mode. An approach that aims to support KiPs needs
to fulfill the following requirements related to goals:

Name

Description

Source

R12 Goals modeling

Mechanisms for representing one or more pro-
cess goals defined on data are required. Con-
crete goals can be defined and their fulfillment
may be associated to the result of data elements.
Similar to knowledge actions, goals have to be
organized in hierarchies and they might be de-
composed during process enactment.

[DCMR13]

R13 Late goal modeling

New goals might arise as a result of decisions
made by knowledge workers or due to the evolu-
tion of data elements. Knowledge workers must
be able to associate new goals during process
enactment or change existing goals. New goals
are typically created as milestones or sub-goals
depending on the concrete application scenario.

[DCMR13]

Table 2.4.: Name, description and source of goal requirements for KiPs

Data, knowledge actions, constraints and goals are fundamental building blocks that can be
found across all KiPs. The combination of these building blocks in processes results in new
requirements that have to be supported by an approach for KiPs. While some of these ele-
mentary building blocks might be supported by existing solutions, the following requirements
result from an integration of the building blocks:

Name

Description

Source

R14 Support for differ-
ent modeling styles

KiPs are a combination of different knowledge
entities, e.g., data and tasks. The modeling of
these entities should not be divided and there-
fore various modeling alternatives have to be
provided.

[DCMR13]

R15 Visibility of the
process knowledge

An aggregated view on data, tasks, constraints
and goals for a running process needs to be pro-
vided. This is necessary so that knowledge work-
ers can monitor the progress.

[DCMR13]

R16 Flexible process ex-
ecution

New goals might arise as a result of decisions
made by knowledge workers or due to the evolu-
tion of data elements. Knowledge workers must
be able to associate new goals during process en-
actment or change existing goals.

[DCMR13]

R17 Deal with unantici-
pated exceptions

The unpredictable nature of KiPs requires man-
ual or automatic procedures that deal with
unanticipated exceptions. These procedures
mainly depend on the specific case.

[DCMR13]

27

. Introduction and Related Work

Name Description Source
As a result of unanticipated exceptions data and
R18 Migration of pro- | tasks in KiPs often evolve over time. Running IDCMRI13]
cess instances instances of KiPs have to be updated with these
changes at runtime through migrations.
Event logs that capture traces of previously ex-
R19 Learning from | ecuted processes have to be used to learn KiPs.
. . . . [DCMR13]
event logs This mechanism can be used for discovering and
improving the structure of a KiP.
In addition to event logs that capture traces of
process executions, data sources can be used to
R20 Learning from data | discover and improve the structure of a KiP.
: [DCMR13]
sources These data sources might cover a broad range
of data from unstructured, semi-structured, to
structured texts and files.
During the process enactment knowledge work-
R21 Recommendations | ers have to be supported with the adaptation
during process enact- | of work plans through recommendations. Rec- | [MR14]
ment ommendations can be related to tasks and data
elements that were used in similar situations.

Table 2.5.: Name, description and source of process requirements for KiPs

Process support for knowledge work goes beyond simple automation of repeated activities.
KiPs coordinate work among knowledge workers that have dynamically changing roles and
responsibilities. Requirements that are related to knowledge workers in the processes are
described in the following table:

Name

Description

Source

R22 Knowledge work-
ers’ modeling

KiPs require a resource model consisting of par-
ticipants with roles and capabilities. Roles group
knowledge workers with similar duties in the
KiP. Capabilities are used to describe whether
a knowledge workers has the right expertise to
solve a specific task.

[DCMR13]

R23 Formalize interac-
tion between knowledge
workers

During the lifetime of a KiP knowledge workers
might participate in several roles and interact
with each other. This requires mechanisms that
allow structured and unstructured protocols for
the knowledge workers’ communication and col-
laboration.

[DCMR13]

R24 Define knowledge

workers’ privileges

Privileges are an important requirement to pro-
tect data and knowledge elements from unautho-
rized access. Knowledge workers’ privileges have
to be defined explicitly to specify permissions for
creating and modifying data elements.

[DCMR13]

28

2. Introduction and Related Work

Name Description Source
Due to the emergent characteristic of KiPs, roles
R25 TLate knowledge | and capabilities of knowledge workers have to be
workers’ modeling added or modified at runtime since they might
acquire new skills.

[DCMR13]

Privileges associated to data and knowledge ele-
ments might have to be added or modified for
knowledge workers during process enactment. | [DCMR13|
Privileges have to be defined for knowledge en-
tities that arise during the KiP.

Decisions made by knowledge workers at run-
time with their impact on the progression of the
process have to be captured. Decisions can be | [DCMR13|
related the selection between alternative execu-
tion paths or the manipulation of relevant data.

R26 Late privileges
modeling

R27 Capture knowledge
workers’ decisions

Knowledge workers have to be encouraged to
maintain work plans and regularly update the
status of their tasks. This is important since the | [MR14]
work templates emerge through the individual
adaptations of knowledge workers.

R28 Encouragement of
knowledge workers

Table 2.6.: Name, description and source of knowledge workers’ requirements for KiPs

KiPs depend on external events from the environment that influence the execution of the pro-
cesses, e.g., the completion of a task or the modification of data from an external information
system. In many scenarios knowledge workers use specialized tools for their work. These
tools can be integrated with events to trigger the completion of tasks or the exchange of data.
Another possibility is the integration with other case and workflow management tools. The
following table contains the requirements that are related to the environment:

Name Description Source
External events are triggered that influence the
running processes by modifying values of the
information model. Software support for KiPs | [DCMR13]
needs to allow explicit events with their associ-
ations on the information model.

R29 Capture and model
external events

New external events have to be formalized by
knowledge workers during the process enactment | [DCMR13]
to associate new events.

R30 External events
late modeling

Table 2.7.: Name, description and source of environment requirements for KiPs

29

2. Introduction and Related Work

2.2.2. Scenario A: Innovation Management

The ability to constantly develop innovations is important for an organization to generate
growth and ensure sustainable success. Innovations describe qualitatively new products or
processes that differ from what existed before in organizations [HS11]. Innovations need
to be distinguished from ideas through their ability to be commercialized [Poll]. Existing
literature provides various processes for innovation, whereas many of them are rooted in the
stage-gate model that was introduced in 1990. The stage-gate model provides a conceptual and
operational model to guide the launch of products from ideas [C090]. The history of this model
evolved over three generations up to today. The first generation has its roots in the phase
project planing of the NASA. In this generation the development process only proceeds to the
next phase after all tasks of the previous phase are completed. In the second generation the
innovation process is divided into a predetermined set of stages with a gate at the beginning.
Gates are used as quality control checkpoints before entering a stage with quantitative and
qualitative measures. Decisions in these gates are usually made by multidisciplinary teams
of senior managers that allocate required resources for the project. In the third generation
the flexibility and speed of the innovation process is improved [Co94|. Activities in the latest
version are not restricted to specific stages and the process is more adaptable. Stages in the
third generation are overlapping and this allows to start with activities before or after the
subsequent stage is entered. Decisions that are made in the gates might also be postponed if
not enough information to make the decision is available, i.e., projects might continue in the
other stages although the decision in one gate is not made. Gates and stages might also be
skipped in case this is necessary for the project to complete.

Although every new generation of the stage-gate model improved the flexibility of the inno-
vation process, early stages of the process including the idea generation are still an area of
improvement for future work. According to the originator of the stage-gate model the seeds of
success or failure are sown in the first steps of the process [Co90|. Considering the definition
of collaborative knowledge work processes applied in this thesis, the early stages require a
high degree of flexibility and creativity at runtime to solve complex problems. Agile methods
are increasingly applied to allow for more adaptability in the early stages of the innovation
process [Lil4]. With this approach activities in the early stages can be repeated by itera-
tions to manage the uncertainty. Although existing tools for innovation processes are able to
support the general structure of the stage-gate model, they provide no means to support the
early and creative stages of the innovation process. On the over hand there are approaches for
open innovation that increase the number of participating stakeholders contributing or rating
innovations. Improved process support for innovation management could enable creative solu-
tions through open innovation with the structure of a third generation stage-gate model. We
conducted a case study in one of the largest German software companies to investigate the
idea generation process. This case study is described in detail in the master’s thesis in [Ut14].
In this company two software solutions are already in place to support the idea generation.
In the first solution (portal A) a highly structured process is used to assess ideas provided
by employees in the organization. In the second solution (portal B) the process is entirely
unstructured and allows the collaborative development of innovations. In portal A employees
suggest incremental ideas that have to be well elaborated, while portal B can be used for
disruptive innovations that have an impact on the business model. In the following, the case
study based on these two portals is summarized.

30

2. Introduction and Related Work

Case Study 1: Idea generation

The software company uses two innovation management portals for the development
of innovations through the internal workforce. One solution (portal A) is used for
the submission and assessment of incremental ideals through reviewers. Most of
the ideas in portal A are related to improvements of existing operational processes,
e.g., making room reservations and catering for meetings and events. Incremental
ideas are mainly concerned with the improvement of existing products or processes.
Usually incremental ideas are proposed by individual employees who might receive
a bonus in case their proposals are accepted by the reviewers, e.g., 10% of the cost
savings caused by the proposal. The process for the development and assessment
of incremental ideas is highly structured and predictable in portal A. The second
innovation management portal (portal B) is much more unstructured and involves
many employees in the development of disruptive innovations that might result in
new products or processes. While innovations in portal A are usually well elaborated,
innovations in portal B are in most cases in an early stage and other users can rate
them. Portal B provides no process support for the collaborative development of ideas
at the current stage. In the future the company needs to integrate both innovation
management portals in one process because they want to combine the advantages of
both approaches. This is necessary because the usage of two portals creates several
problems in the company, e.g., ideas might be taken from portal A and placed in
portal B.

The relevance of the requirements for KiPs in this application scenario is shown in Table 2.7.
Regarding the data requirements this scenario requires access to shared data since employees
can collaboratively refine ideas. All ideas are stored in the system even if they are not im-
plemented or accepted. Thereby, employees can search for similar ideas that were submitted
previously. The data model needs to be comprehensible because the system is rarely used by
employees in the company. Highly relevant knowledge action requirements are related to the
late actions modeling since the idea generation process requires much flexibility in the early
stages. Late knowledge action roles are necessary due to the dynamic assignment of reviewers.
Both requirements related to rules and constraints are highly relevant. They are necessary
for the structured process that is used for the reviewing and assessment of ideas. Except for
the recommendation requirement, all other process requirements have a medium relevance in
this application scenario. Nevertheless, recommendations might become more relevant in the
future if the support for early stages of the idea generation is improved.

All requirements related to knowledge workers are highly relevant for the idea generation. The
modeling of knowledge worker skills is necessary to identify appropriate reviewers for ideas.
Privileges for knowledge workers are highly relevant since some of the information provided
for reviewers should not be visible for everyone. These privileges might have to be changed at
runtime in case additional reviews are requested for an idea. Capturing decisions of knowledge
workers is an important requirement in this scenario. Depending on the maturity of the idea
that is submitted, decisions of knowledge workers might affect the flow of actions within the
idea generation. For incremental ideas that are already well elaborated it is not necessary
to perform tasks for the collaborative voting and refinement of ideas. Knowledge worker
empowerment is highly relevant, because as many employees as possible have to contribute to
these ideas.

31

2. Introduction and Related Work

2.2.3. Scenario B: Enterprise Architecture Management

Organizations face challenges related to growing importance of information technology (IT)
and the increasing complexity of their IT-landscapes. To cope with these challenges, enterprise
architecture (EA) covers business and IT aspects with their relationships in a model to provide
a holistic view of an organization. EA models typically consist of infrastructure elements,
business applications, business processes and relationships among them. Different viewpoints
on this model are used to support decision makers with relevant information. EA management
(EAM) is promoted as an approach to improve the alignment between business and IT, realize
cost savings and increase failure tolerance [LW04, RWR06, Ro03]. Depending on the concerns
of the decision makers EAM provides several instruments to manage the evolution of an EA,
e.g., visualizations, architecture principles and processes. While documentation and analysis
of EA models is supported in existing tools for EAM, support of processes for the management
of the EA is missing to a large extent. This issue has been identified in a literature review
on critical challenges in EAM by Lucke et al. in [LKL10|. According to the authors "no
formal steps exist for defining, maintaining and implementing FA and EA frameworks are
not rigid enough in describing these steps” [LKL10|. The process of managing an EA can
be considered as unstructured or loosely structured with respect to the classification in the
process management spectrum shown in Figure 2.2. Another challenging issue is that these
processes have to be adapted to the organizational context and goals for every organization.
In practice the structure of the processes often emerges based on the contributions of involved
stakeholders. Due to these characteristics existing workflow management solution are not
suitable to support processes in this context.

An EAM function usually comprises several different processes that would benefit from an
improved software support. Examples for these processes are the development of a planned
state, documentation of the EA, definition of transformation road maps, or standardization
of technologies in the application landscape [Mo09, Bu08|. Depending on the maturity of the
function in the organization, additional processes might have to be supported. One prominent
example of an KEAM process that can be found in literature is the Architecture Development
Method (ADM) from TOGAF [Th09]. On the highest level this process consists of eight phases
that can be structured in four iterations for the architecture context, architecture delivery,
transition planing and architecture governance. For every phase the framework describes
several tasks with the documents that have to be produced. This information provides valuable
best practice knowledge for a work template that could be used as starting point to configure
an organization-specific method. Nevertheless, this method cannot be directly used in an
organization since usually not all tasks proposed by the framework have to be executed.
The practitioner survey presented by Hauder et al. in [Hal4b| revealed that the majority of
enterprise architects apply agile principles in their work to tackle this challenge. This requires
a high degree of flexibility during the execution to perform the necessary adaptations. For
this application scenario we conducted a case study in a German insurance organization. In
the case study the development of a planned state of the EA based on the TOGAF ADM is
evaluated. For this purpose the process is adapted to the context of the insurance organization.
A detailed description of the case study including expert interviews with five stakeholders can
be found in [Hal4al|. In the current stage this process is only roughly described on presentation
slides and there is no software solution in place that can be used for this purpose.

32

2. Introduction and Related Work

Case Study 2: Development of a planned state

The development of a planned state of the EA consists of the three subsequent
phases business architecture, information systems architecture and technology ar-
chitecture according to the ADM of TOGAF. The subsequent phases of the ADM
are not considered in this case study, because they are related to the implementa-
tion of the planned state. The framework provides tasks for every phase that have
to be executed, whereas tasks might have logical dependencies among each other.
For example the task refine and update versions of the architecture vision phase of
the information systems architecture phase needs to elaborate the business drivers,
goals, principles and the statement of architecture work documents. This task can
only be started when certain previous tasks in the phase business architecture are
completed. Although the framework provides many tasks, it is not possible to foresee
all tasks with their required documents during the definition of the work template
for the development of a planned state in practice. During the process new con-
cerns of stakeholders might arise that have to be incorporated in the development
of the planned state. Many stakeholders are usually involved in the development
of a planned EA state, e.g., business architects, I'T architects and members of the
management board. In case responsible stakeholders are not available it is necessary
to delegate or skip tasks.

The relevance of the requirements for this application scenario is illustrated in Table 2.8. All
requirements related to data are highly relevant for this scenario since every task is related to
the creation of documents or models. The system needs to provide data modeling capabilities
to describe the EA model. This model might change during the development of the planned
state, e.g., if it has to be extend with new concepts. For the creation of reports stakeholders
require access to this data that is created during the process. The comprehensibility of the
data model is important for users that are not familiar with EA. Requirements related to
knowledge actions are highly relevant since the TOGAF ADM explicitly describes actions
that are related to data. Late knowledge action roles could only be derived implicitly from
the ADM. Rules and constraints are highly relevant due to the dependencies that are described
for tasks between subsequent phases. Goals are explicitly modeled as part of the data model
within the architecture vision phase. The most important process requirements are the support
for different modeling styles and the flexible execution of processes that allows the handling
of exceptions. Support for different modeling styles is necessary since the EA model can be
described structured or unstructured [FHS13|. The learning from data is considered as highly
relevant to allow the integration of existing information sources [Bul2, Rol3|.

The most important knowledge worker requirements are the modeling of resources and the
encouragement of stakeholders. The resources are necessary to model providers of relevant
EA data, e.g., productive systems that contain EA data or stakeholders that have the knowl-
edge. The maintenance of an EA is a collaborative effort that spans many departments in
an organization. Encouraging knowledge workers to contribute with their knowledge is highly
important for a successful initiative in this context. Finally, both environment requirements
are highly relevant for the development of a planned state. External information sources can
provide events that have an influence on the process, e.g., trigger about projects that started or
new applications in the landscape. Results of an empirical evaluation of relevant information
sources for EA that we conducted can be found in [Fal3].

33

2. Introduction and Related Work

2.2.4. Scenario C: Requirements Engineering

Requirements describe the functionality of a system in a way that is measurable and
testable [IE05]|. A precise understanding of requirements is crucially important to avoid expen-
sive subsequent errors during the system design and implementation. Requirements engineer-
ing is concerned with discovering, developing, tracing, analyzing, qualifying, communicating
and managing requirements that define a system [HJD10|. Existing methods for require-
ments engineering can be separated into activity-oriented and artefact-oriented approaches.
In activity-oriented approaches the requirements engineering process can be divided into four
main phases for elicitation, modeling, validation and verification [HLO1|. During the elicitation
phase needs of stakeholders and other resources are gathered. The modeling phase formally
and informally structures the obtained requirements in a specification. In the final phase this
specification is verified and validated on its correctness. Main problems of activity-oriented re-
quirements engineering approaches are that they are difficult to customize and the syntactical
quality of the resulting documents is not considered. Artefact-oriented approaches are focused
on the resulting documents and models of the requirements engineering process to circumvent
this issue [FelO]. According to the definition applied in this thesis artefact-orientation can
be considered as a collaborative knowledge work process since tasks are used to coordinate
the creation of artifacts, data is integrated in the execution of the process and high flexibility
at runtime is required. The approach suggests several reference models that are tailored for
specific domains, e.g., business information systems. In addition, reference models can also be
tailored during their execution by adding or removing artefacts from the model. We consider
work templates as means to implement reference models for artefact-oriented requirements
engineering in our solution.

At the current state the model for artefact-orientation is mainly used to structure and organize
the outcomes of the requirements engineering activity, i.e., major concepts concerned with
artefact-orientation. Software support for artefact-oriented requirements engineering is not
available at the current stage to the best of our knowledge. The artefact model is divided into
two parts for artefact structure and artefact content. In the artefact structure the composition
of artefacts and content items is described. Artefacts are created by a sequence of tasks and
they serve as a container for a certain number of content items. Content items are at the
lowest level of the artefact hierarchy and represent the output of a single task [Fel0]. Content
items can be described in different ways, e.g., a use case can be described textually or with
an activity diagram and at different levels of abstraction through views. This artefact model
is associated to the generic process model that is necessary to coordinate the creation of the
artefacts. The generic process model consists of phases that are divided into activities at
the highest level. Activities are performed by certain roles and divided into several tasks.
Every task is concerned with the completion of artefacts or content items with input and
output relationships. Sequences of tasks are described with use relationships and might be
restricted through dependencies that are described on a lower level in the artefact model.
Within a master’s thesis the requirements for the software support of the artefact model is
investigated in detail [Bil4]. In this thesis a case study for the elicitation of requirements
based on a software for cash dispensers is conducted. In contrast to the previous case studies
the elicitation of requirements is based on a fictive example without the involvement of an
actual enterprise.

34

2. Introduction and Related Work

Case Study 3: Elicitation of requirements

The replacement of old cash dispensers through new machines in a bank requires the
development of new software for the machines. Main motivation for the development
of the new cash dispenser software is usability, maintainability and an improved
overall quality. In this case study an artefact-oriented approach for the elicitation
of the requirements is chosen. The approach is based on the reference model for
business information systems analysis (BISA). During the requirements engineering
for the new software a stakeholder model needs to be developed to describe who
is working with the cash dispenser software. The stakeholder model is one part of
the content items that are located in the context specification artefact. Within the
context specification one of the tasks is related to the creation of the stakeholder
model. The responsible requirements engineer that is working on this content item
is responsible for the description of the involved stakeholders that are using the
new cash dispenser software. This task is finished after the content item contains
a detailed description for every stakeholder. Technically speaking the stakeholder
model is described with a Unified Modeling Language (UML) diagram that is stored
as file.

Table 2.8 illustrates the relevance of the requirements for the elicitation of requirements. The
most relevant requirements for this application scenario are located in the category for data
requirements. The artefact-oriented requirements engineering approach requires data mod-
eling capabilities for the artefacts. Artefacts can be hierarchically organized with arbitrary
content items on the lowest level. The approach explicitly mentions the requirement for late
data modeling. Requirements engineers have to be able to access this data directly, i.e., to
search for the stakeholder model. Data model comprehensibility is highly relevant because it
describes the mandatory results that have to be produced. Among the requirements for know!-
edge actions two requirements are highly relevant. Data-driven actions are explicitly defined
in the metamodel for artefact-orientation [Fel0], i.e., tasks are associated with artefacts. Due
to the tailoring of reference models late actions modeling is highly relevant as well. Rules and
constraints are explicitly mentioned with dependencies between artefacts. Goals are captured
within an own artefact in the context specification.

Only three requirements related to processes are explicitly mentioned in the artefact model.
Different modeling styles are important due to the variety of diverse models that are used
during the elicitation of requirements, e.g., activity diagrams, word documents and use case
diagrams. The flexible execution is mentioned as one of the key requirements that delineates
artefact-oriented from activity-oriented approaches. Artefacts can be created with specific
requirements engineering tools, i.e., learning from data within these tools is another highly
relevant requirement. Only one explicit requirement related to knowledge workers could be
identified in the case study. Decisions of requirements engineers have to be captured for the
tailoring of the reference model, e.g., whether some artefacts are removed or tasks are skipped.
All other requirements in this category are rated with a medium relevance even though they
are not explicitly mentioned, because they are important for the software support in our
opinion. Similar to the case study for the development of a planned EA state, the elicitation
of requirements needs to integrate events from the environment. These events are used to
integrate specialized requirements engineering tools, e.g., to capture the state of artefacts
created in other systems.

35

2. Introduction and Related Work

. Relevance
Requirement Scenario A | Scenario B | Scenario C
Data
R1 Data modeling © [L J
R2 Late data modeling © [] L J
R3 Access to data © [L J
R4 Access to shared data] [(
R5 Date model comprehensibility ® ([]
Knowledge Actions
R6 Data-driven actions [D) { [
R7 Late actions modeling ® { [
R8 Knowledge action roles ® (] [D)
R9 Late knowledge action roles © 0 ©
Rules and Constraints
R10 Rules and constraints [) () []
R11 Late constraints [) { []
Goals
R12 Goal modeling] [[J
R13 Late goal modeling [D) { [D)
Processes
R14 Different modeling styles © [L J
R15 Visibility of knowledge [D) () D)
R16 Flexible execution [D) o []
R17 Unanticipated exceptions [D) (D)
R18 Migration of instances © © 0
R19 Learning from event logs © 0 ©
R20 Learning from data © [] [J
R21 Recommendations O 0 [D)
Knowledge Workers
R22 Resource/skill modeling [o L2
R23 Workers’ interaction [() D)
R24 Workers’ privileges [) () D)
R25 Late resource modeling [) () D)
R26 Late privileges modeling [) () D)
R27 Workers’ decisions [O []
R28 Knowledge worker encouragement J [©
Environment
R29 Model external events O { [
R30 Late modeling of events O [] ©

Description for icons:
® High relevance
© Medium relevance
O Basic relevance

Table 2.8.: Relevance of the generic KiP requirements for the three application scenarios

36

2. Introduction and Related Work

2.3. Related Work

In this section related approaches for process support of knowledge work are described based
on the results of an extensive literature review. Figure 2.7 characterizes the applied literature
review in this thesis based on the framework presented in [Fe06]. The type of literature review
is natural language and we are focused on theories as well as experiences with process support
for knowledge work. Theories are mainly related to process management approaches that
are suitable to support enough flexibility at runtime for KiPs according to current business
process management (BPM) literature. Next to the current state of theoretical approaches in
BPM literature, the related work section covers experiences on case management use cases.
We cover the entire content that is available and explicitly refers to the topic of the thesis.
The perspective of the literature review is neutral since all approaches are treated equally.
Our goal is to comprehend the entire historical development of the field from the perspec-
tive of practitioners as well as researchers. Due to the high practical relevance of the field,
literature from practitioners provides valuable case studies from various different domains,
e.g. healthcare, insurance, court case management and public sector. In the literature review
we explicitly look for future research directions to identify common issues regarding process
support for knowledge work.

Characteristic Category
Type natural language mathematical-statistical
Focus research results research method theory experience
Formulation not explicit explicit
Target
Content integration criticism central topics
Perspective neutral position
Selection not explicit explicit
Literature
Extensiveness foundations representative selective complete
Structure historical thematically methodical
Target Group common public practicioners common specialized researcher
researcher
Future Research not explicit explicit

Figure 2.7.: Characterization of the literature review according to Fettke et al. [Fe06]

37

2. Introduction and Related Work

Relevant articles are searched from leading journals, conferences, workshops as well as book
chapters with IEEExplore, CiteSeerX, Google, Google Scholar and the library of our research
institution. Due to the low maturity of the research area only few publications are avail-
able as journal publications at the current stage. The scope is narrowed to publications in
the information systems (IS), business process management (BPM) and computer-supported
cooperative work (CSCW) fields since these are most relevant for the research area. We fol-
lowed the approach presented by Webster et al. in [WW02| and used a variety of different
keywords, e.g., knowledge-intensive process, case management, case handling, dynamic case
management, adaptive case management, to detect relevant literature. Figure 2.8 illustrates
the result of the literature review with a chronological overview of the most relevant related
works with respect to this thesis until today.

Case Management Model

Adaptive Case Management and Notation (CMMN)
Swenson et al. OMG
g @
Case Handling PHILharmonicFlows ~ ForFlex Organic Data Science
Van derAalst al. Kinzle et al. Kurz et al. Gil et al.
* ® 0O ® |
Hybrid Wiki proCollab 9y Ddarwm |
Neubert et al. Mundbrod et al. auder et al.

IEDEDEPESED LY

Figure 2.8.: Related work relevant for this thesis by publication year until today

In 2001, case handling has been initially proposed as an approach that goes beyond workflow
management to support highly flexible processes. Initial publications related to case handling
covered processes that are completely predefined at design-time and provided no solutions
for adaptations at runtime. Based on case handling the notion of adaptive case management
(ACM) has been presented in 2010. 41 publications were available on ACM by the end of
June 2014, whereas the majority was published in 2012 or later [HPM14]. Main goal of ACM
is to make the adaptations of cases possible at runtime through end-users. Hybrid Wikis were
developed in 2011 as an approach to collaboratively structure information at the sebis chair.
This project can be considered as a predecessor of this thesis since our work builds on the
experiences with Hybrid Wikis. In 2012 the forFlex project provided an early prototype that is
based on ACM design principles. At the same time the project proCollab presented a lifecycle
for collaborative knowledge work. In 2014, the Object Management Group (OMG) released
the final version of the Case Management Model and Notation (CMMN) as a standard for the
specification of declarative process models. In the same year as this thesis is published the
Organic Data Science approach has been presented to support open scientific processes. In
the following section we will describe how this thesis extends related work in detail.

38

2. Introduction and Related Work

2.3.1. Case Handling

Case handling has been presented as a new paradigm to support flexible and knowledge-
intensive processes. It was first introduced in 2001 by van der Aalst et al. [ABO1]. In this
approach processes are represented with cases as the central concept. In contrast to workflow
management these cases are not solely driven by the control flow, but data is integrated in
the execution of the processes. Activities in cases are also less rigid and knowledge workers do
have more control. An important ability of case handling is the role concept for activities with
execute, redo and skip compared to workflow management that only allows for an execution
role. According to van der Aalst [AWGO05] the four main features of case handling are:

1. Context tunneling is avoided since knowledge workers can access the entire data of a
case. In workflow management solutions users usually only have access to data that is
relevant for the particular task. Searching for data objects at any time is not possible
in workflow management solutions.

2. Case handling integrates data in the execution of the processes. Activities in the case
are enabled based on the availability of information objects. In workflow management
solutions the course of activities is driven by the control flow. Basically the case handling
system should not focus what should be done, but rather on what can be done in the
case.

3. In case handling the distribution of work is separated from authorization. Activities can
be delegated to other knowledge workers during the case if necessary. Only workers with
the proper roles are allowed to distribute work with the delegate function. In a workflow
management approach the delegation of activities is not possible and only authorized
workers can complete activities.

4. Knowledge workers can access the information objects in a case independent from the
activities given that they have proper access rights. They are allowed to search, view,
add and modify information objects without an activity attached at any time. This
provides the knowledge workers with much more freedom since they can comprehend
the current status of relevant information objects.

Reijers et al. [RRAO03| describe case handling with three main characteristics: (1) the system
is focused on the case as central element, (2) the process is data-driven and (3) some parts
of the process model are defined implicitly. The case covers all relevant concepts to structure
the process with information objects, activities, forms and actors that might be assigned
to several groups. Cases can also be organized in hierarchies to break down complex cases
into subcomponents. Workflow management systems specify permitted steps with the control
flow of a process explicitly. In case handling the definition of the process is less rigid and
describes possible execution steps in a declarative way, i.e., forbidden traces are excluded
while leaving maximum flexibility for remaining traces. As a result possible flows in the
case are defined implicitly. After these initial publications on case handling several related
definitions have been introduced, e.g., dynamic case management, emergent case management,
production case management and adaptive case management (ACM). Section 2.3.2 summarizes
existing definitions related to case handling and distinguishes them from ACM based on the
characteristics of KiPs. A discussion on how flexible processes can be supported with both
case handling and adaptive process management is provided by [GRAO0S].

39

2. Introduction and Related Work

F1 F2 F3
'\ \, T
/ \~ — \/ ’ /free ——————— -
i \. =N cememT
. \ e
R1 ! N\ il - N
| \.,/’/7\\\\ free N T
| =TT\, ! S~ N T S~
L--" N RSN
Al A2 A3
Skip ‘““ T w4 Jovas

R2

\ / -
mandatory el - | restricted
\

Figure 2.9.: Overview of the initial schema level metamodel for case handling [AWG05]

An example illustrating the case management metamodel is shown in Figure 2.9 that is taken
from [AWGO05]. The example shows a case with its data objects, forms, activities and roles.
C'1 is a case definition that consists of activity definitions A1, A2 and AS3. Forms are used
to provide different views on data objects in a case. Dotted lines in the figure represent
the association between activity definitions and data object definitions. Forms are linked to
activities to represented the most relevant data objects. Free data objects are linked directly
to the case and can be changed at any time. Mandatory and restricted data objects are always
linked to activities. As shown in the figure D1 is a mandatory data object for A1, A2 and
A3, i.e., this data object has to be entered to complete the activities. The form F1 holds
an entry for D1 since it is mandatory for this activity. The knowledge worker could already
provide the data object D2 in form F1 in case this information is already available. This
would automatically finish the activity A2 as soon as Al is completed as well.

This is not possible for D& since this data object is restricted to A3, i.e., it has to be completed
in the associated activity and cannot be preferred. D0 and D/ are free data objects assigned
to the case definition, i.e., knowledge worker may use the information to work on the case.
Two roles are defined in the case that specify who is allowed to execute and skip activities.
Knowledge workers assigned to R are allowed to execute Al and knowledge workers assigned
to R2 are able to skip Al. The additional roles provide a powerful mechanism to model a
wide range of exceptions in case management. The redo role can be used to represent a loop
if already completed tasks have to be repeated again. Skip allows the handling of exceptions
that would otherwise have to be explicitly modeled in the case. In addition to these roles van
der Aalst recommended additional roles that could be used in case management [AWGO05] ,
e.g., responsible role for activities or case manager role for one case.

40

2. Introduction and Related Work

2.3.2. Adaptive Case Management

Various approaches related to case handling have been proposed after the initial publication
in 2001. Within an extensive literature study we compared existing case handling definitions
and investigated the rise of the term case management in [MHM15]. Three different types of
definitions for approaches related to case management are extracted. First, the definitions are
explicitly described in the publications. Second, the paragraph describing case management is
used in case no formal definition is available. Third, individual sentences from the paper are
extracted if the first two types are not applicable. In this study the definitions are compared
with characteristics of KiPs presented by Di Ciccio et al. [DCMRI13]. The detailed description
of the comparison is publicly available! and omitted in this thesis for the sake of brevity.

Table 2.9 summarizes the results with the initial publication source. First references to the
term case management were introduced in 1994 by Davenport and Nohria [DN94]. In this
work case management is considered as valuable to empower workers that are involved in
processes that deal with customers. In 2006 Kaan et al. [KRMO06| tried to introduce case
management as an alternative to case handling, whereas this attempt is odd compared to
existing definitions. In subsequent definitions the term case management evolved with a
stronger emphasis on its collaborative nature and the flexible interaction between humans,
content and processes [MHM15]. The term ACM has been popularized as case management
approach that allows end-users to create case definitions at runtime [Sw10a].

. Characteristics of KiPs
Definition Date e T3 [03 [01] C5 [C6 [C7] C8
Case management role [DN94] 1994 | O | O
Case handling [AWGO05] 2000 | @ O | @ | @

Case management |[KRMO6| 2006 - | - - -
Case management work [Ke08] 2006 O | @] O| @ O
Dynamic case management [CMV09] 2000 | O | @ ® O
Case management [Wh09] 2000 | @ | @ O | O | @ | @ O
Case management [Mc10)| 2010 e | ®© | © © © | © O
Case management [dPv10] 2010)

Case management [Sw10a| 2010

Adaptive case management [Sw10b] 2010 O

Adaptive case management [Pal0] 2010 | O

Emerging case management [B611| 2011 | O | @ | O

Production case management [MNS13| | 2013 | @ ®@ O[O

Adaptive case management [MNS13| 2013 | @ e o O O

Description for icons:

@® Explicit in the definition
O Implicit in the definition

— Precluded by the definition

Table 2.9.: Case management approaches compared with characteristics of KiPs [MHM15]

"http://arxiv.org/abs/1507.04004, last accessed on: 2015-07-20

41

http://arxiv.org/abs/1507.04004

2. Introduction and Related Work

Main difference of ACM to the previous case management approaches is the focus on end-
users that define cases during the execution of processes without the involvement of software
developers [MNS13|. As previously described for case handling, data is also a central aspect
in ACM and has to be considered equally important. In [Swl0a|, processes are classified
with their degree of system interaction during the structuring of the processes ranging from
designed to emergent. Structured processes are designed in a top-down approach by software
developers or modeling experts. The focus of these processes is the reduction of costs and
efficiency improvements through industrialization. At the other end of the work spectrum
processes emerge bottom-up through adaptations of knowledge workers. ACM is classified
as emergent and slightly more structured than ad-hoc social collaboration. These processes
are focused on high quality of the resulting artifacts. ACM is considered as foundation for
learning organizations that constantly have to adapt their processes [Sw13]. Table 2.9 indicates
that there is little consensus about a common definition on case management, since none of
the definitions covers all characteristics of KiPs. As a consequence we decided to propose a
definition based on the characteristics of KiPs: "Case management is a practice for knowledge-
intensive processes with a case folder as central repository, whereas the course of action for
the fulfillment of goals is highly uncertain and the execution gradually emerges according to
the available knowledge base and expertise of knowledge workers.” [MHM15].

ACM is gaining interest by researchers and practitioners over the past five years since half
of the publications related to this topic are published in this timeframe |[HPM14]. Despite
this increasing interest there are currently no solutions for ACM available that address the
requirements presented in Section 2.2.1. The vast majority of literature available in this area
is problem-oriented only describing important aspects an ACM system needs to fulfill or dif-
ferences to workflow management solutions. Additionally, many case studies with applications
in different application scenario are published in this community. In 2014, we conducted a
database-driven literature review to identify research challenges in ACM [HPM14]. In this
study we identified 77 codes referring to research challenges in ACM. Every code is one in-
stance of a challenge that could be found in a scientific publication or book chapter. These
codes we grouped to 13 research challenges and categorized in five distinct areas for data
integration, knowledge worker empowerment, theoretical foundation, authorization and role
management, as well as knowledge storage and extraction. As of June 2014, we were able to
collect 32 publications and book chapters with ACM research challenges. 16 of these publica-
tions were published in 2012 or later. The five research categories for ACM are presented in
the following with examples taken from [HPM14]|:

1. Data integration: The integration of data in the execution of the processes leads to
three challenges that could be identified in literature. The data storage is challenging
due to the large volume of data that need to be managed. While workflow management
systems only manage data related the process structure, case management systems need
to store everything related to the case similar to a content management system (CMS).
Data related to the case requires version management to restore previous states. Shared
memory is necessary to provide enough context information for the completion of tasks,
which is related to the problem of context tunneling in case handling. During the
concurrent editing of data in the cases conflicts might arise when a file is changed by
more than one person. Conflicts and inconsistent states of information objects have to
be avoided through data locking mechanisms.

42

2. Introduction and Related Work

2. Knowledge worker empowerment: Empowering knowledge workers to define cases
at runtime is an important issue in ACM and two research challenges could be identified
in literature. Advanced collaboration deals with the allocation of work based on skills,
competencies and availability of knowledge workers in the system. This requires a repre-
sentation of the available resources in the system. In many situations case templates also
have to be developed collaboratively to solve complex problems. The research challenge
on guidance techniques contain codes related to the creation of templates for cases and
intelligent user assistance through recommendations.

3. Authorization and role management: Authorization is concerned with access con-
trol challenges that avoid unauthorized access and manipulation of data. Important
issues in the future could be digital signatures and dynamic access control to introduce
new knowledge workers to the case. Role management refers to the more sophisticated
role concepts that are necessary in case management, e.g., skip, redo and delegate roles.
The assignment of roles might also have to be changed at runtime with new workers that
join the case. Similar to the flexibility requirements for tasks and information objects,
the roles for these concepts have to be dynamically created.

4. Theoretical foundation: Many research papers mention challenges that are related
to the theoretical foundation of case management. A common theory or model for ACM
is still missing in literature. One challenging issue is the adaptation of case templates
that are performed at runtime since they might originate inconsistencies on already
instantiated cases of this template. Routine aspects have to be integrated in ACM with
a link to more structured process models like BPMN. Logical dependencies between
tasks in the case and the link from information objects to tasks require the definition of
rules and constraints.

5. Knowledge storage and extraction: The storage of knowledge is challenging due to
the wide range of possible information object types that require advanced content man-
agement capabilities, e.g., searching, versioning and retention management. Compared
to a workflow management solution, experiments revealed that the effort to define a
case is much larger because many exceptions need to be considered. Eztracting knowl-
edge from the case definitions is necessary to ensure efficient use of the solution through
knowledge workers. Currently, the usability of existing case management solutions is an
issue and requires much more efforts in the future.

Due to the low maturity of the research area there are only few solutions for ACM available.
One approach that builds on the presented ACM design principles is developed within the
ForFlex project that is explained in Section 2.3.5. To the best of our knowledge there are no
solutions that address the challenge of knowledge worker empowerment in current literature.
Main goal of this thesis is to empower end-users to structure KiPs on wiki pages, i.e., wiki
pages are extended with lightweight structuring concepts so that they represent cases. The
foundation of our approach to support the collaborative structuring of KiPs is based on Hybrid
Wikis that are explained in Section 2.3.4. On the one hand our solution can be considered as
an ACM system since it allows end-users to define cases at runtime, but on the other hand
modeling experts are also able to maintain templates for cases. Due to the strong emphasis
on end-users current literature on ACM is not considering the role of modeling experts that
are responsible for the maintenance of templates.

43

2. Introduction and Related Work

2.3.3. PHILharmonicFlows

In existing business applications the process-oriented view is separated from the data-oriented
view. Main goal of this research project is the integration of data as driver for process specifi-
cation and enactment, i.e., the progress of processes needs to be aligned with available object
instances and their attribute values at runtime [KWRI11|. These attribute values are sum-
marized on form-based activities that can be invoked by authorized users. The authors of
this project introduce the term object-awareness to define processes that address this issue.
Figure 2.10 illustrates the data and process structure in object-aware processes. Data objects
are comprised of an object type as well as a set of attributes, e.g., the object type job has
two attributes for name and valid. Object types are associated to other object types through
relations with cardinalities, e.g., jobs are associated with 0 to n applications. At runtime
objects are instantiated with values for attributes and relations to other object instances. The
process structure describes the behavior of an object and the interactions to other objects.

data structure process structure

job -~ object behavior

object type -y % ;e
) O0..n object

rolation --sc=c=czcececss > interactions

application attribute

cardinality -, / . —7—X
1.5 0.4 /

review interview [date | review interigiew

job] job RGOS
) A [o D’Q’Q
o object instances < ------------ relations e |
E [' / (j
= application%_ __________ attlribute V' |appli€ation
5 o N aspious

review U interview 01107 } review inter(giew D
] O@Cﬁé

Figure 2.10.: Overview about data and process structure in object-aware processes [Kiil3]

The state of an object instance is determined at runtime by the values of the attributes in the
data structure. Attributes are grouped on activity-based forms for users and can be separated
into optional and mandatory activities. The latter activities have to be completed to continue
with the subsequent state in the object behavior. Figure 2.11 shows optional and mandatory
activities for the review object of an application. The attribute values for urgency and return
date have to be entered within a mandatory activity by the personnel officer. After the form

44

2. Introduction and Related Work

for this activity is saved, the review continues from the state initiate to fill in. In the initiate
state an employee might already provide information about the application in an optional
activity. At the latest this activity has to be completed during the fill in state. Some values
in the forms are greyed out since they cannot be edited by the assigned role. The framework
also considers the modeling of access rights necessary to specify who is allowed to see and edit

forms for the object instances.

optional activity

mandatory activity

optional activity

Edit Review #1 Edit Review #1 Edit Review #1
urgency: urgency: urgency:
return date: return date: return date:
remark: remark: remark:
g proposal: v proposal: * invite v proposal:
appraisal: appraisal:* appraisal:
employee
reason: reason: reason:
comment: comment: comment:
mandatory activity
Edit Review #1
urgency:
return date:
remark: please check
. X . proposal:
mandatory activity optional activity
appraisal:
personnell gyt peview #1 Edit Review #1 o
officer
LXK - . reason:
urgency: high v urgency:
comment:
return date: ¥ 12|10 2013 return date: 3
remark: please check remark: please check I
initiate M fill in M inspect ‘
~ /v\\ ’\\
~ ~ - - AN 7 4 N .
RN urgency = NULL e AN (proposal = ,invite’ ’ g considered
A e N isal I ’ ULL
and _| and appraisal != NULL) | ,7
return date != NULL R or

(proposal = reject’
and reason != NULL)

Figure 2.11.: Review state determined by attribute values of mandatory activities [Kiil3]

Regarding its expressiveness the framework seems to be a promising approach to integrate
data and processes in one approach, which is an important requirement for the software sup-
port of KiPs. Nevertheless, it is not evaluated to which extent knowledge workers can be
empowered to model these object-aware process. Specifying the object and process structure
requires advanced expertise in various modeling techniques, i.e., the barrier for knowledge
workers might be even higher than in activity-centric approaches. In this thesis, we aim at
empowering knowledge workers without expertise in all these modeling techniques to struc-
ture KiPs. Thereby, we provide lightweight structuring concepts as metaphors for knowledge
workers to collaboratively structure the data and process aspects of KiPs.

45

2. Introduction and Related Work

2.3.4. Hybrid Wiki

Hybrid Wikis were developed in the PhD thesis of Neubert [MNS11] and used as productive
system at sebis since 2009. Primary goal of Hybrid Wikis is to lower the barriers for non-
expert users that need to structure information. For this purpose neither special wiki syntax
or knowledge about modeling concepts should is necessary. Hybrid Wikis achieve this by using
lightweight structuring concepts and metaphors that end-users are familiar with. The system
can exploit the structure provided by end-users to query and organize the content, e.g., to
query wiki pages that describe research projects. Hybrid Wikis have been successfully applied
in various different contexts, e.g., Wiki4EAM |[MN11|, SmartNets [Hal3b| and as productive
system at the sebis chair?. The term "hybrid" stems from the fact that only a subset of
the features from semantic wikis are integrated in a classical wiki system. The structural
concepts introduced in this subset are orthogonal and not limited to one application domain.
Figure 2.12 shows a screenshot of a Hybrid Wiki page that describes this particular project.

€D = Wikis » sebis Public Website » Research = Hybrid Wikis Last editor § Alexander Steinhoff - Feb 11 ’ﬁ
Hybrid Wikis

Tags: Types: research project edittags

edit tags

. Contact | [§] Christian Neubert
Objective

Team members | (&) Christian Neubert

Hybrid Wikis provides a lightweight semantic extension to the collaboration platform Tricia which
8 Thomas Biichner

comprises a traditional wiki as a core component In contrast to more heavyweight approaches as
semantic wikis, the Hybrid Wiki approach does not focus on annotating wiki content with semantic E Christian M. Schweda
information corresponding to a fixed ontology, which could be regarded as a top-down (i.e., ontology first) rx Sabine Buckl
approach. In contrast, it allows a kind of ontology or datamodel to emerge from the content by enabling
users to easily add structured contentto any wiki page in the form of arbitrary named attributes or tags.
Guidance is provided by suggesting terms that are frequently used by other users and the ability to derive
new pages from existing ones. This bottom-up approach is complemented with the ability to establish ‘

xander Steinhoff
5] Sascha Roth

certain constraints such as mandatory atiributes or inheritance relationships between types. By applying Project start | 2008

these to stable parts ofthe schema that emerged over time further processing of the structured content - for
example the generation of visualizations - becomes possible.

Research area So0S0

Screencast

Watch this video to see Hybrid Wikis in action:

References

abn "Project” of | [5] Bachelorthesis Martin Stange

Figure 2.12.: Screenshot of a Hybrid Wiki page showing the structured attributes [MNS11]

Every wiki page can be organized with sub pages and consists of unstructured content (rich
text) and structured content (types and attributes). The example shows a wiki page of type
research project with several predefined attributes for contact, team members, project start
and research area. Additionally the system proposes several optional attributes that are used
in related wiki pages. Pages can be bi-directly associated through references, e.g., the Hybrid

*https://wwwmatthes.in.tum.de/, last accessed on: 2015-05-15

46

https://wwwmatthes.in.tum.de/

2. Introduction and Related Work

Wiki page is the project of the bachelor thesis. The referenced pages in the attributes also
have a defined type, e.g., team member and student project. New attributes can be directly
added on the page by clicking on the dashed boxes. Hybrid Wiki types and attributes are
described in the following:

o Attributes: Basically attributes are key-value pairs that are attached to wiki pages.
It is possible to assign multiple values to one attribute. Every attribute value needs to
have a data type assigned, e.g., date, string, or integer. In addition, simple constraints
can be specified for attributes to ensure that the value is not empty or fulfills some
syntactical requirements. In order to encourage end-users to structure the wiki page,
recommendations for attributes are displayed at the bottom of the attribute box. A new
attribute is created as soon as the end-user enters a value for one of the recommended
attribute. Furthermore, suggestions for attribute names and values are shown when the
users starts typing. This improves the consistent usage of terms in the Hybrid Wiki.

e Types: Types are used to make a statement about the wiki page. In the initial version
of the Hybrid Wiki, end-users were allowed to provide an arbitrary number of types for
a wiki page. Subsequent releases limited the number of types to exactly one since this
proved to produce more reliable results. Main purpose of the types is to determine the
set of attributes that are shown on the page. Types are used to generate lists of pages
of the same type. By clicking on a specific type in the user interface, all wiki pages that
have this type assigned are shown in a list.

This approach provides valuable and proven solutions with respect to some of the require-
ments for software support of KiPs presented in Section 2.2.1. In particular four of the five
data requirements are already decently fulfilled by Hybrid Wikis. They allow the (late) data
modeling through end-users that can add optional attributes to wiki pages at runtime, which
is an important requirement for KiPs. Furthermore, the approach has proven to advance the
data model comprehensibility for end-users through its lightweight structuring concepts and
metaphors. They accept limited modeling capabilities of end-users and suppose no previous
experience with specific markup languages. Hybrid Wikis already provide means for the learn-
ing from event logs for attributes, which is another requirement mentioned in Section 2.2.1.
These capabilities of the Hybrid Wiki are also directly related to the data integration challenge
that has been revealed through the literature review on ACM in [HPM14|.

Although Hybrid Wikis are promising for the collaborative structuring of content in a variety
of different application scenarios, they are not suitable to support processes of knowledge
workers at the current stage. One of the limitations of the Hybrid Wiki is missing access
rights for attributes since users can only be authorized for entire pages. Attributes in KiPs
require fine-grained authorization concepts to specify who is allowed to edit and read data on
a wiki page. Another limitation regarding process support for knowledge work is the missing
notion of tasks in the Hybrid Wiki. It is not possible to describe any behavioral elements of
types except for simple status attributes. The solution presented in this thesis builds on the
experiences made with Hybrid Wikis and extends them with new structuring concepts that
are inevitable to support KiPs. Although wikis are increasingly used in organizations there is
no solution available that is able to support KiPs in a wiki to the best of our knowledge.

47

2. Introduction and Related Work

2.3.5. Service-Oriented IT-Systems for Highly Flexible Business Processes

Within the forFlex project the authors present a solution that is based on ACM to support
loosely structured KiPs [KH12]. This approach is based on initial publications on ACM by
Swenson et al. [Swl0a] and the authors present a process model with a prototypical imple-
mentation of their approach. Their process model consists of three subsequent phases that
are repeated in iterations with ezxecution, control and overarching case adaptations. During
the execution a template for the given case is instantiated. Before and during the execution
of the cases the template is adapted to the specific needs. According to the authors this
case specific adaptation can be compared to agile software development approaches. Smaller
adaptations can be directly incorporated in the case, while more complex innovations require
the approval of a case manager. As soon as the goals are achieved, the case can be closed and
the subsequent control phase starts. During the control phase the completed case is assessed
based on its efficiency and goal attainment. After the assessment is completed the final phase
starts with the overarching case adaptation. During this phase valuable improvements that
might be beneficial for other cases are selected and generalized in the case templates. The
authors present eleven different roles that are assigned to these phases with responsibilities.
Figure 2.13 illustrates the design of the ACM approach in the forFlex project.

Objectivesw,, Case Workspace

Workflows

Process

[-l'_*
’—‘ D% Information O.
SN

Template Library

Case

Instantiate Tasks Information Obj. Workflows
= Adapt Object Library

Figure 2.13.: Design for an ACM system that supports KiPs according to Kurz et al. [Kul5]

The template library consists of generalized best practices that are maintained during the
overarching case adaptation phase. Instantiations of these templates are called cases in this
approach. Every case consists of objectives that describe the goal(s) that should be achieved
after the completion of the case. Cases consist of tasks, workflows and information object
elements. During the case specific adaptation new elements can be instantiated in the case

48

2. Introduction and Related Work

from an object library. Figure 2.14 illustrates a screenshot of the prototype that implements
this approach based on Microsoft Sharepoint®. Tasks can be structured in a hierarchical tree
with a name, metadata for start and end date as well as attached documents.

ACM2-DEVEL\ch_adm -

< 5

CM Electric Phaeton » O @
‘\ Ilikelt Tags &
Notes

Home ‘ Process ‘ Information Workflows Search this site... Fad 7]

Site Actions - g IEUYTE Page

Libraries
Process Structure Gantt View

Documents

@ Case Process Title: Define approaches
Lists B Banalyze Description:
Announcements [CJanalyze problem
Contacts CADefine project goals Predecessors
B EJConcept Priority: (2) Normal
§ X Status: In Progress
Discussions & CAcarry out feasibility studies
X % Complete:
Discussion Board B 3o available Batteries have enough power
Assigned To: ACM2-DEVEL\ch_usr
¥ Define approaches
o Start Date: 2/2/2011 [CHANGED]
= Evaluate approaches
& Recycle Bin PP Due Date: 2/15/2011
[2y All Site Content [summarize results
CAchoose alternative) co-45.docx
Eawork out concept @ LongLife 1400.docx
B BaDesign Related Information:) 1-12-%.docx
Cawork out technical concept 1 5-120.docx
& Catmplement] 3n-121.doex
C3implement components
Related Workflows: @ Collect Feedback
CJintegrate compaonents
Caperform tests Tags:
Version No.: 4.0
Last modified on: 2/2/2011 7:02 PM
Last modified by: ACM2Z-DEVEL\ch_usr
Approval Status: Pending

Approval Comment:

[¥) Approve/Reject Ey]View versions [C3Edititem ()7 Discuss element (-)

Figure 2.14.: Screenshot of the ACM prototype implemented in Microsoft Sharepoint [KH12|

Although the approach is a sound implementation of the ACM approach, several requirements
for software support for KiPs are not considered in this approach (cf. requirements for KiPs
described in Section 2.2.1). It is not possible to describe logical dependencies between tasks
since they can only be hierarchically organized in the solution. The authors already identified
CMMN as one possibility to specify dependencies in the processes [Kul5]. Nevertheless,
CMMN is currently not integrated in the latest version of the prototype. Another limitation
is the simplified representation of information objects since only documents can be considered
and it is not possible to specify information types. The authors also mentioned that the missing
information structure makes it very challenging to find already existing entities [Kul5]. This
might be an obstacle for the continuous refinement of templates, because workers might not
be able to reuse already existing templates. Roles and authorization mechanisms are missing
as well in the prototype, e.g., it is not feasible to delegate or execute tasks. The documents are
not integrated in the execution of the process, i.e., the progress is not automatically computed
based on the documents associated to a task. In the same publication, the authors also
mentioned that incentives in the prototype could be used to motivate workers. The allocation
of work also needs to be improved to make sure that workers have the right skills.

*https://products.office.com/en-US/sharepoint, last accessed on: 2015-08-24

49

https://products.office.com/en-US/sharepoint

2. Introduction and Related Work

2.3.6. Process-Aware Support for Collaborative Knowledge Workers

Mundbrod et al. [MKR13] introduced characteristics and dimensions of KiPs based on three
collaborative knowledge work uses cases. In the first use case the development of an embedded
system in the automotive sector is described. Engineers of various different disciplines col-
laborate to develop complex mechatronic systems. The results are organized based on a best
practice approach like the V-model that provides them with an overview about the progress.
In the second use case criminal investigations are studied that gather factual information to an-
swer questions or solve problems. Investigators have to determine which standard procedures
can be applied, e.g., securing of evidence. The third use case is concerned with complex finan-
cial service requests to handle combinations of products from customers. Related use cases
are insurance claim handling, intensive patient care and customer onboarding. The authors
conclude that all three use cases have in common that they require human assessment and
decisions from experts, continuously growing information and handling of unpredictable situ-
ations. Figure 2.15 illustrates commonalities in different use cases for collaborative knowledge
work.

_(Common Goal) 4
? Inf. Factor
4 ° « :y—‘

\ .
"
HE =S
P8
P8
Common Growing Knowledge Base

[%2]
wv
()
S
intraar] §
é) o
S
[a W
©
=
t t t t >
Individual Individual o
Knowledge Base Knowledge Base eoe =
Key O &’) R
@ Knowledge Worker o A Knowledge Worker’s individual Knowledge Base
Influencing Factor Possible states Knowledge Workers can achieve
— Action performed by a Knowledge Worker A State achieved by one Knowledge Worker
iy Possible actions a Knowledge Worker can .
choose in a current state 4y State achieved by two Knowledge Workers

Figure 2.15.: Commonalities of uses cases for collaborative knowledge work [MKR13]

Based on these use cases the authors present four characteristics (C1 - C4) for collaborative
knowledge work. C1 is concerned with uncertainty that results from unpredictable influence
factors that are intertwined with dynamic correlations. This requires a continuous assessment

20

2. Introduction and Related Work

of planned and finally conducted actions with feedback loops. The course of action needs to be
determined dynamically by the involved knowledge workers, i.e., they have to be empowered
to structure the KiPs. C2 refers to the goal orientation in collaborative knowledge work that is
an integrative factor for knowledge workers. Due to characteristic C1, goals are incrementally
divided into sub-goals that can be achieved in a shorter period of time. While goals remain
stable on the highest level, sub-goals (also known as milestones) can be modified. With
C3 the authors mentioned emergence as an implication of C1 and C2. Knowledge workers
need to continuously adapt to new sub-goals that are incrementally broken down. This agile
planning of subsequent next actions to take leads to collaborative knowledge work processes
that gradually emerge. Finally, C4 describes the growing knowledge base that is based on
the interrelation between the progress of KiPs with the advancement of the tacit and explicit
knowledge base. Examples for the growing knowledge base are schedules, responsibilities,

office documents and e-mails.
Collaboration

Records

)])])] Records Evaluation T
@] Cl cl -
- n-0 n-1 oo n-n|
00O~ 00O~ 00O~ r
MY collaboration MY collaboration MY collaboration -
Instance Instance Instance Analytics
Collaboration Orientation +
Knowledge Retrieval RunTime (:_]J
al,, | a,, . | a,, —
0 QO 0 Q" 0 Q" Template Desi Interviews Literature
@'D Collaboration @'D Collaboration @ﬁo Collaboration emplate Design

Instance Instance Instance

CTO l Collaboration

Templates

Figure 2.16.: Collaborative knowledge work lifecycle according to Mundbrod et al. [MKR13]

The authors present a collaborative knowledge work lifecycle that needs to be supported by
information systems (cf. Figure 2.16). In the orientation phase relevant information necessary
to achieve the common goal are gathered through interviews and literature. This information
is used to create collaboration templates during the template design phase. During the col-
laboration at runtime n different knowledge workers work with n different instances of these
templates. During this phase they perform adaptations of the initially created template. Fi-
nally, the records evaluation phase archives completed instances as collaboration records and
evaluates the adaptations of knowledge workers. Potential template improvements are incor-
porated in the subsequent iteration or already running instances. The proCollab? project
is still in an early stage and mainly analyzes characteristics of processes for collaborative
knowledge work. An initial solution that provides integrated task lifecycle support is pre-
sented in [MBR15]. Although proCollab acknowledges the collaborative nature of knowledge
work, it provides no incentives that motivate knowledge workers to maintain the collaboration
templates and neglects (late) data modeling for KiPs.

*http://wuw.uni-ulm.de/?id=43398, last accessed on: 2015-08-24

ol

http://www.uni-ulm.de/?id=43398

2. Introduction and Related Work

2.3.7. Case Management Model and Notation

In 2009, the Object Management Group (OMG) issued a request for proposal (RFP) to create
a standard modeling notation for case management®. Main purpose of this language is to
develop a complement of the existing Business Process Model and Notation (BPMN) for
data-centric processes that is based on business artifacts [Hulla, Vall, Bh07|. The final
version of the result for this RFP was published in May 2014 as the Case Management Model
and Notation (CMMN). While BPMN builds on an imperative process model, CMMN is
designed to support declarative process models. Declarative process model are more suitable
for dynamic and knowledge-intensive processes that require high flexibility at runtime [Pe0§].
Figure 2.17 illustrates an example CMMN model with the visual elements of the notation that
specify a fictive write document example case. In this example the creation of a document is
modeled with the necessary steps for writing text, creating and integrating figures, generating
references and incorporating reviewers feedback.

Write Document
o
= Deadline
Prepare Draft
Write .& M
Text i Generate |
L it
Research | . A organize @
Topic H References ; Integrate Completed
; H Graphics Document
i Generate List |
of Figures
Create P e
1 Graphics
i 1=

Draft
Completed
" Review Draft E} ’ Document
. Completed

Seek : A pEmmmm————— . @ Verify :
i Comments i Q & : Grammar and .
H H : i AcceptiReject ! Spelling v
S, B H Comments .
SO |
| |

Figure 2.17.: Write document process in the Case Management Model and Notation [Obl4]

*http://www.omg.org/cgi-bin/doc?bmi/09-09-23, last accessed on: 2015-05-14

92

http://www.omg.org/cgi-bin/doc?bmi/09-09-23

2. Introduction and Related Work

Visual model elements with the decorators that can be applied in CMMN are summarized
in Figure 2.18. The CasePlanModel is a container for other elements in the case, e.g., write
document. Stages describe "episodes" that a case can pass through according to the specifi-
cation [Obl4|. The write document example contains two stages for prepare draft and review
draft. CaseFileltems represent information objects that directly influence the behavior of the
case, e.g., completed document. Tusks can be placed in stages and associated to other elements
through sentries, e.g., after the research topic task is completed references can be organized.
Other elements that can be associated are FuventListeners and Milestones. Main purpose of
CMMN is to provide a visual language to model KiPs and a standardized metamodel that
allows the exchange of models between different case management tools. This makes CMMN
a potential solution regarding the rules and constraints requirements for KiPs described in
Section 2.2.1. Nevertheless, a suitable execution environment that fulfills the remaining re-
quirements for KiPs is necessary for CMMN. First and foremost the structuring of KiPs with
CMMN would overwhelm no-expert users who are not familiar with this language or process
modeling in general.

Planning Table | Entry Critrion | Exit Criterion | AntoComplete Automatic Required | Repetition

Decorator Activation
Applicability E O ’ . b ! I
CasePlanModel

| | ol

" ¥ | ¥ ¥ | ¥ | ¥ O

Task
D Hu:n;l;ﬁaak E z E E E

MileStone

- = = | @

EventListener

O

CaseFileItem

]

PlanFragment

Figure 2.18.: Applicability of decorators with visual CMMN model elements [Ob14]

23

2. Introduction and Related Work

We conducted a detailed comparison of requirements of KiPs with CMMN in [MHM15]. Ta-
ble 2.10 summarizes the results of this comparison based on a fictive example. In the first step
the requirements for KiPs are split into two categories. The first category summarizes require-
ments that are necessary for the modeling environment (M) of a case management solution.
The second category is concerned with requirements for a generic execution environment (E).
Only 8 of the total amount of 30 requirements for KiPs are assigned to the modeling environ-
ment, i.e., the majority of requirements is out of scope for the modeling environment and needs
to be fulfilled by an appropriate execution environment. Depending on the specific application
scenario the assignment of requirements to the modeling and execution environment might
deviate. In the column for the execution environment a diamond symbol is used to indicate
whether the CMMN modeling environment can add additional support. These requirements
are primarily implemented in the execution environment, but the usage of the CMMN mod-
eling environment can add support. In our research we are primarily interested to engage
knowledge workers in the collaborative structuring of KiPs in the execution environment.
Although the implementation of the modeling environment uses CMMN to demonstrate the
feasibility, the approach presented in this thesis could use other process modeling notations
for the modeling environment.

Data modeling is a requirement that needs to be implemented in the modeling environment,
whereas CMMN only provides some support through it’s flexible information model. It allows
the definition of folders with arbitrary data. Late data modeling is related to the execution
environment, but CMMN might add support for this requirement through its ability to de-
fine basic data structures during execution. The remaining data requirements need to be
implemented by the execution environment. Main strength of using CMMN in the modeling
environment is the coverage of the knowledge action requirements. Data-driven actions are
fully supported and it is also possible to help with the late actions modeling through discre-
tionary items that can be added at execution time. CMMN only provides basic support for
rules and constraints through entry and exit criterion’s, but it is not specified how they have
to be defined. Although CMMN is missing an explicit concept to model goals in the cases, it
still provides some support for this requirement because of the milestone concept. Milestones
can be considered as sub goals that have to be achieved. Similar to the previous requirement
categories, late modeling needs to be provided by the execution environment.

Only one requirement of the process category needs to be primarily implemented by the mod-
eling environment. This requirement is concerned with different modeling styles for different
degrees of structuredness. It is not possible to model unstructured knowledge entities with
CMMN. As a workaround this requirement needs to be implemented by the execution envi-
ronment. Only the resource and skill modeling requirement in the knowledge worker category
is assigned to the modeling environment. For this requirement CMMN can only provide basic
support with the role concept. The modeling of events is supported in CMMN through the
ability to define event listeners for the two predefined human and timer events. As a result of
this analysis 5 out of 8 requirements for the modeling environment are supported by CMMN.
In combination with an execution environment that fulfills the remaining 22 requirements,
CMMN seems to be suitable notation to support KiPs. We expect that future versions of
this recently published standard will improve some of the current limitations. To the best of
our knowledge there are currently no solutions available that provide appropriate execution
environments for CMMN.

o4

2. Introduction and Related Work

Requirement

g
=

Modeling Execution
Environment | Environment

Data

R1 Data modeling

R2 Late data modeling

R3 Access to data

O
©
O

R4 Access to shared data

L 4R 4B 4

R5 Date model comprehensibility

eslleslleollcal i

Knowledge Actions

R6 Data-driven actions

R7 Late actions modeling

R8 Knowledge action roles

R9 Late knowledge action roles

== ==

e e 0

Rules and Constraints

R10 Rules and constraints

O

R11 Late constraints

] =

Goals

R12 Goal modeling

R13 Late goal modeling

]

Processes

R14 Different modeling styles

R15 Visibility of knowledge

R16 Flexible execution

R17 Unanticipated exceptions

R18 Migration of instances

R19 Learning from event logs

R20 Learning from data

R21 Recommendations

wllcsllieslle e Nl Nl =

L 4B 2B 2B 2R 2R 2R 2R JEENE 2

Knowledge Workers

R22 Resource/skill modeling

R23 Workers’ interaction

R24 Workers’ privileges

R25 Late resource modeling

R26 Late privileges modeling

R27 Workers’ decisions

L 28 2B 2B 2f 2

R28 Knowledge worker encouragement

il

Environment

R29 Model external events

R30 Late modeling of events

=

Description for icons:
® CMMN provides full support

— CMMN provides no support

© CMMN provides some support 4 CMMN can add support

O CMMN provides basic support

Table 2.10.: Assignment of requirements to modeling and execution environment [MHMI15]

25

2. Introduction and Related Work

2.3.8. Organic Data Science Wiki

Collaboration is a major aspect of science and occurs at many different levels. In [Gil5b], we
present a task-centered framework for computationally-grounded science collaborations that
support scientists across all levels. Figure 2.19 illustrates the layers of collaboration in this
approach. Starting from the bottom of the figure issue tracking work workflows support the
development of software. Coding sharing sites like GitHub®, Jira” or OntoSoft® can support
these activities very well. These collaborative activities lead to a task forest that consist of
separate issues. On the next higher level computational workflows, scientists collaboratively
develop computational workflows that implemented a data analysis method. In this approach
the scientific workflow system WINGS? is used. In [HGL11], we present how this system
can be used to support efficient and effective data analysis workflows. On the highest level
meta-workflows support the activities related to agreeing on joint research questions, devel-
oping solutions to these questions and investigating how to get data for the validation of the
solution. The activities in these workflows are organized as hierarchical task network, whereas
each task is incrementally decomposed into subtasks. These three layers of collaboration are
implemented in separate systems but integrated through interfaces with each other.

Select problems, strategies, g;f:""

data, models, metheds, etc. Science

Meta-Workflows
(Hierarchical Task Networks)

ﬁ Implement computational @ o

= data analysis . ngs

= u eter Qutput
s £ e
3 = Modeling Analyze Provenance

- O

T

=]

L5

E— 1)

8 =

=]

ac

E

=}

()

Select/develop
software @]oft

Major Realms of Task-Driven Collaboration

Input

Parameter Output

=== EEE object ===
[MI.cep, 103] AAAT:AAACinT)
MI.CPp, 125] B6B:

[N
MI.CPP, 268) EEE::ECE!

. 110] woid AfA
130] wvoid Ess

Issue Tracking Workflows
(Task Forests)
\
\

[MI.CPp, 274] wvoid EEE::show_val

Figure 2.19.: Major realms of task-driven collaboration in Organic Data Science [Gil5b]

Shttp://wuw.github. com, last accessed on: 2015-06-23
"http://de.atlassian.com/software/jira, last accessed on: 2015-06-23
8http://wuw.ontosoft.org/, last accessed on: 2015-09-07
“http://wuw.wings-workflows.org, last accessed on: 2015-06-23

56

http://www.github.com
http://de.atlassian.com/software/jira
http://www.ontosoft.org/
http://www.wings-workflows.org

2. Introduction and Related Work

Science has become an increasingly collaborative endeavor with many researches contributing
to answer complex scientific questions. Scientific collaborations often revolve around shar-
ing instruments, shared databases and around a shared scientific question. In [Mil5b], we
proposed the Organic Data Science!? approach as virtual crowdsourcing community for open
collaboration in science processes. Crowdsourcing is defined as the transformation of tasks
that were performed by internal employees of an organization to the crowd through an open
call [Gell]. In science, crowdsourcing parts of the research process could provide valuable
knowledge and resources outside an research organization or university to solve complex sci-
entific questions. The Organic Data Science framework achieves this goal through three key
features [Mil5b]:

e Self-organization: Tasks are used for the coordination of work in a scientific endeavor
and users can create joint tasks, decompose them into smaller tasks and track their
progress. Tasks are considered as tool for shared social cognition that considers knowl-
edge not only in individual minds, but also in tools and objects that they share. In
science, decomposition of tasks is an important aspect since many procedures exhibit
goal-oriented hierarchical structures. Scientists can perform all these steps on their own
in a self-organized approach.

e Sustainable online communities: Science goals often require active communities
that are engaged over a long period of time. Studies from social sciences provide useful
design principles for the Organic Data Science framework [Krl2a]. We incorporated
social design principles that have proven to be successful with respect to the challenges
for building successful online communities introduced in Section 2.1.3. These social
design principles are used to design user interface features in the solution.

e Open science processes: Science processes are made explicit, so that everyone can
comprehend the progress of the collaboration. Open tasks with the required expertise
that are necessary to complete the tasks can be queried without any restrictions. New
scientists can join the process and participate in tasks that match best to their skills.
In order to make the participation for new members of the community as easy as pos-
sible, the framework provides a separate training that needs to be undertaking before
contributing in the Organic Data Science.

Figure 2.20 shows a screenshot of the Organic Data Science Wiki that implements the ap-
proach. It is developed as an extension of the Semantic MediaWiki platform, which provides
an intuitive user interface that hides any formal notation from the user [Br12|. The platform
is extended with tasks that are shown on the left-hand side of the wiki. Little pie charts
indicate the progress of every task, whereas this progress is automatically computed based on
the lower level subtasks. If the progress cannot be automatically derived, then a metadata
attribute has to be entered manually. Other metadata attributes are start date, end date,
owner, participants and expertise. The expertise summarizes required skills to complete the
task. Scientists can collect expertise in their personal profile by completing many tasks. Based
on the start and end date a timeline on top of the wiki page is automatically generated. Tasks
can have different states depending on their metadata properties, that are described in detail
in [Gilbc|. Tasks that are not finished yet although their end date has expired are shown in

Ohttp://www.organicdatascience.org/, last accessed on: 2015-05-14

o7

http://www.organicdatascience.org/

2. Introduction and Related Work

top of the wiki as overdue tasks. Results of tasks are documented on the wiki page as text or
attachments in the structured properties of the Semantic MediaWiki.

@ & John Talk Preferences Watchlist Contributions Log out

57 O Se Your Overdue Tasks
% Page ' Discussion [Q
% ; 1 Write about the evaluation
: S
v y ¥
_\:‘V’ho,.\a*“\::) Write paper sbout the initisl framework design
| N— .
- & Draft paper about the initial framework design
Develop paper outline _
All Tasks | My Tasks €) ‘=% Draft initial versions .,
t n v of key sections I:l 26%
?un1pu erscient Assemble first full -
4 draft of the paper 0%
i Collect final evaluation
Framework Design data 0%
4.) Disseminate results from the Organi Finalize vriting
1 the paper
. \; Write paper about the initial frai) Virts paper sbout the intal ramework design
i T »
! -2 Draft paper about the
. . . TypeM medium . Develop paper outiine
== esign user evaluation of
< ! E Draft initial versions of key sections
Assemble first full draft of the paper
p StartdateM 22nd Aug 2014 s ’
- ' Draft paper about the initiz Collect final evaluation data
Target dateM 13th Oct 2014 Rev t full draft of the paper
Cut i
{b Owner™ John Smith Finalize writing the paper
_ % Participants
@ Rename [4 P James Williams, Steven Johnson
S Delete Expertise computer science collaboration
% ToToplevel

The plan is to write a paper with some initial results of our work. If you want to be a co-author, add yourself as a participant in
a task and make sure you contribute to it with text or feedback on what other people write

Properties

[x] Submittedto UI-2015

Figure 2.20.: Screenshot of the Organic Data Science representing a task as wiki page [Mil5b]

Science can be classified as KiP since it fulfills all the characteristics introduced in Section 2.2.
In particular the user interface design based on social design principles for successful online
communities is an interesting approach to motivate knowledge workers. We expect that the
motivation of knowledge workers has a positive impact on the structure of KiPs. Nevertheless,
the approach has some limitations that we seek to improve in this thesis. In the Organic
Data Science Wiki the process always emerges ad-hoc, i.e., it is not possible to define and
incrementally improve templates for recurring KiPs. It is not possible to explicitly assign
tasks to execution roles so that they are not visible to everybody, which is an important
requirement in many organizations. Dependencies between tasks cannot be defined resulting
in large task trees, which makes it difficult for knowledge workers to foresee suitable next steps
in the process.

Although structured properties of the Semantic MediaWiki can be used to structure informa-
tion in the Organic Data Science Wiki, it is not possible to automatically update the progress
of tasks when mandatory properties are entered. This might lead to increased effort for the
maintenance of metadata properties for tasks. Similar to the aforementioned projects, the
Organic Data Science is still in an early stage of development and it is continuously improved
with feedback of scientists that use they system in pilot projects. In future work there will
be an integration of the Organic Data Science Wiki with a scientific workflow system that
can be used to conduct and document computational experiments with provenance informa-
tion [HGL11|. Scientific data in the structured properties of the tasks could be submitted to

28

2. Introduction and Related Work

the scientific workflow system for computation. Figure 2.21 shows the evolution of a commu-
nity with geoscientists working together on a journal composed of geoscience papers of the
future (GPF) that is described more detailed in [Gil5b].

)
10 ¢

S — N
e RIS)
S&LNNG v,V

SO
u-.]'—:“\" 4 "’\ \
N

(d)

Figure 2.21.: Evolution of the GPF community [Gil5b]

29

60

CHAPTER 3

Structuring Knowledge-Intensive Processes

This section describes the approach developed in this thesis for the collaborative structuring of
KiPs. Based on this approach, the Chapter 4 presents an implemented software solution that
will be used for the evaluation of the main hypothesis. Section 3.1 illustrates the emergent
structuring of KiPs with the participating roles as well as the evolution from unstructured
work plans to reusable work templates. Section 3.2 presents lightweight structuring concepts
that are used as metaphors for knowledge workers not being familiar with process modeling
notations. It is important to motivate and encourage knowledge workers to structure KiPs
with their expertise to ensure high quality work templates. Section 3.3 introduces features that
are based on social design principles for successful online communities to engage knowledge
workers in the structuring of KiPs. Based on these features and the lightweight structuring
concepts for KiPs, Section 3.4 presents the design of generic user interface components for
end-users.

3.1. Emergent Structuring of KiPs

One of the characteristics of KiPs introduced in Section 2.1.1 is concerned with emergence,
i.e., the structure of these processes accrues through contributions of many involved knowledge
workers that contribute with their expertise. Initially, the processes are either completely
unstructured or some basic structure might already be provided from previous executions.
During the execution of an already mature KiP, changes on the structure might become
necessary in case it is not suitable anymore. In Section 3.1.1, the roles participating in the
emergent structuring of KiPs are introduced with their responsibilities. Section 3.1.2 describes
how KiPs evolve in our approach by extending previous work Neubert made with Hybrid
Wikis in his PhD thesis [Nel2|. While Hybrid Wikis were only concerned with the data layer,
our work provides a solution applicable to the larger scope of KiPs. In addition to Hybrid
Wikis we consider the problem of motivating knowledge workers to contribute to the emergent

61

3. Structuring Knowledge-Intensive Processes

structuring for KiPs. Based on the experiences with Hybrid Wikis that we gained from several
industry and research projects [MN11, Hal3b|, we found that the active involvement of end-
users is crucial for the success of this approach.

3.1.1. Participating Roles

Since we extend the Hybrid Wiki solution with additional structuring concepts for KiPs, our
approach increases the responsibilities of roles participating in the emergent structuring of
processes. Similar to the Hybrid Wiki three different roles for visitors, authors and tailors are
distinguished in our approach. The original definition of these roles is inspired by [DIZ06]. It
is important to note that users in our approach can have multiple roles assigned for different
KiPs, e.g., a user might be author for the KiP « and tailor for another KiP b at the same
time. Next to participating roles for the structuring of KiPs, it is possible to define functional
groups that specify access rights for content as well as roles for tasks.

Visitors are able to browse structured and unstructured content of wiki pages. For this
purpose they can use different techniques to view, navigate, search and explore the content.
Main purpose of tasks is to coordinate the modification of content within a KiP. Since visitors
are not allowed to modify content, they are also not able to see and interact with tasks.
Depending on the application scenario the number of visitors might range from none to an
unlimited number in extreme cases. KiPs that are concerned with highly confidential content
might have only a very limited number of visitors. On the other end, results of an KiP that
have been approved for publication can be visible to an unlimited or large number of visitors,
e.g., after completion of a research project the final publications related to the project can
be accessible for everyone. Furthermore, visibility of content for visitors might be further
restricted through fine-grained access rights for content.

Authors are privileged users that are able to modify, link, comment and discuss content that is
represented on wiki pages. In our approach authors require no specific modeling or computer
science capabilities. Modifications of the content are coordinated through tasks that can be
assigned to authors. All modifications are only related to wiki pages. Similar to visitors, the
number of authors might vary to a large extent depending on the application scenario. Some
KiPs that are concerned with complex problems might require a large number of authors,
e.g., open science processes described in [Gilbal. For this purpose crowdsourcing of KiPs
that were originally performed by internal employees in an organization to the crowd through
an open call provides manifold new possibilities. Depending on the crowdsourcing paradigm
the preselection of authors might be qualification-based, context-specific, both or none [Gell].
With none everybody is able to contribute to the structuring of a KiP without any restrictions,
i.e., there are no visitors. The remaining options require an authorization step depending on
qualifications or context to upgrade visitors to authors.

Tailors require modeling capabilities to maintain the schema elements that are used on wiki
pages. Although tailors don’t have to apply programming languages for the maintenance
of schema elements, they have to understand general data and process modeling techniques.
While many authors might be involved in KiPs, only a few tailors are usually responsible
to maintain the schema for KiPs that are assigned to them. In many application scenarios
tailors might also be authors at the same time, i.e., a subset of the author team is responsible

62

3. Structuring Knowledge-Intensive Processes

for maintenance of the work template. The main purpose of tailors is to uniform, constrain
and clean up work templates. Tailors can be supported through process and data mining
algorithms that are used to analyze the contributions of authors.

3.1.2. Evolution of Knowledge-Intensive Processes

Highly structured and repetitive processes that are located at the top of the process manage-
ment spectrum presented in Section 2.1.1 are specified top-down and only few process designers
are usually involved. In contrast, the course of action in KiPs is highly uncertain and the struc-
ture gradually emerges according to the available knowledge base. Many knowledge workers
have to be involved in the structuring of KiPs, which basically upends the prevalent role model
participating in the process of process modeling. While Neubert presented an approach for the
evolution of data structures [Nel2|, we extend this approach with an evolutionary approach
for process structures to adequately fulfill the requirements of KiPs. In line with Hybrid Wikis
our goal is to provide a limited set of lightweight structuring concepts for process models that
do not overwhelm end-users without computer science background. Figure 3.1 illustrates our
extension of Hybrid Wikis considering the emergent structuring of KiPs.

Work templates emerge
from data, tasks and “

relationshi ps Data Structure Process Structure

Attribute A

Attribute B Tailors
Attribute C

Attribute D
Attribute E

Attribute F

Work Template

si) Test Page s
TeskA [| o e

TaskB

it

Authors

TaskC 15%

Task F %

Task G [| 5%

TaskH

Work plans can be
instantiated from templates
and adapted with new elements

Figure 3.1.: Evolution of KiPs based on an extension of the Hybrid Wiki approach [Nel2|

63

3. Structuring Knowledge-Intensive Processes

Authors work with lightweight structuring concepts that define instances of KiPs with data,
tasks and relationships. These structuring concepts are visually presented in a way that is easy
to understand even without knowledge about process management notations. For this purpose
we introduce the notion of work plans, which are the central repository to describe the course
of action for the fulfillment of goals. Work plans are represented on hierarchically structured
wiki pages that can be associated through references. Usually many authors are involved in
the structuring of work plans, i.e., similar to the online encyclopedia Wikipedia! we envision
that work plans are collaboratively defined and maintained through the community. Authors
might start using work plans that are completely unstructured, i.e., there are no process and
data structures predefined. Unstructured work plans are still valuable for authors as central
folder for documents, since they can be used for searching, version control and collaborative
editing. Authors can incrementally provide more structure to work plans with lightweight
concepts that are introduced in the subsequent section. In case there is already some best
practice knowledge available, authors can start working with a predefined work template.

Main purpose of work templates is to generalize reusable patterns by making implicit knowl-
edge of (many) experts explicit. These templates are instantiated and gradually improved
with every new execution of work plan instances. While work plans provide a lightweight
set of structuring concepts that have to be easy to understand for end-users, work templates
can be much more sophisticated and take advantage of dedicated process modeling notations,
e.g., CMMN. In our approach tailors are responsible for maintaining of work templates and
therefore they need to be experienced with process modeling. Nevertheless, tailors need not
have programming skills since they should only have to use process modeling languages that
abstract from implementation details. Tailors might also be authors at the same time since
these roles are not exclusive. Every work template consists of data and process structures
that are integrated, i.e., the availability of data elements drives the progress of the process.
Tailors analyze adaptations made by authors to identify recurring process and data structure
patterns that might be valuable for future iterations of the KiPs. Although we provide a
generic user interface for authors that is based on a wiki, we envision tailored interfaces for
specific domains in the future. Interfaces for tailors can be much more standardized since they
are based on standards like CMMN.

Our evolutionary approach provides various advantages for the support of KiPs. First, knowl-
edge workers are involved in the structuring of KiPs as authors through lightweight concepts.
This is an important requirement for future support of KiPs since it is impossible for tailors to
predefine their structure entirely. Second, implicit knowledge of experts is made explicit and
reused for the organizational knowledge creation. This makes it easier for less experienced
knowledge workers in an organization to gather procedural knowledge. One could imagine
that proven best practice knowledge that is currently captured in generic frameworks becomes
much more actionable. Third, our approach could become an enabler for new process and
data mining techniques since existing approaches are only based on implicit patterns in event
logs. The power of big data analysis can be exploited much better based on explicit patterns
that are structured by end-users. Fourth, knowledge workers are not restricted by rigid and
strict processes which limit their freedom to generate new innovative solutions for complex
problems. Advantages of agile methodologies for unpredictable situations are combined with
the benefits of process management, e.g., traceability and reproducibility [Wel2].

"https://wuw.wikipedia.org/, last accessed on: 2015-09-02

64

https://www.wikipedia.org/

3. Structuring Knowledge-Intensive Processes

Authors Tailors
work plan work template
heavily SEyek
structured
Stage \V; strict & rigid
rules &
Stage M constraints
definitions
Stage I
types
lightly Stage |
structured
tasks &
attributes
unstructured t

Figure 3.2.: Extended degree of structure from the Hybrid Wiki [Nel2]

Based on our evolutionary approach the degree of structure for work plans and templates
is illustrated in Figure 3.2. Although our goal is to enable an emerging structure, it is not
necessary for KiPs to pass through every stage, i.e., some work plans might never be gener-
alized with templates or they might remain on one stage. Too much structure could restrict
knowledge workers in their freedom and therefore the highest stage is not always the optimal
solution. The lowest level only consists of unstructured content and is called stage 0 (not
shown in Figure 3.2). Stage I describes the first level of structure that extends content with
attributes and tasks that are added by authors. In this stage attributes can already be assigned
to tasks as mandatory deliverables. The next level of evolution is Stage Il with an additional
type that is attached to work plans. The first two stages are structured by authors in an own
user interface, while the subsequent stages are maintained by tailors. Stage IIl introduces
definitions for the lightweight structuring of elements. In the simplest case, work templates
only consist of definitions that group tasks and attributes for a type together. Stage IV in-
troduces counstraints on attributes to ensure proper attribute values, e.g., visual warnings in
the user interface for authors to advert to multiplicity constraints, missing or wrong values.
Constraints on tasks are introduced to specify logical relationships between tasks, i.e., some
tasks are only enabled after completing certain other tasks. In this stage authors are still able
to skip tasks or delete attributes in case they are not necessary. Stage V introduces strict
and rigid attributes, i.e., these attributes and associated tasks cannot be deleted in the work
plans to enforce mandatory steps in KiPs. Depending on the application scenario this might
not always be desirable, so that the structuring might be finished on a lower level.

65

3. Structuring Knowledge-Intensive Processes

3.2. Lightweight Structuring Concepts

In this section, we introduce the main concepts for collaborative structuring of KiPs. For
this purpose we extend the data structure concepts of Hybrid Wikis presented in [Nel2| with
lightweight concepts for the process structure. Figure 3.3 illustrates these structuring concepts
with color codes to distinguish data structuring concepts of the Hybrid Wiki from process
structure concepts introduced in this thesis. Concepts in gray color are used to describe the
data structure layer that is extended with orange concepts for the process structure layer. Wiki
pages are located in wikis and they contain unstructured content that is described in a markup
language. Every wiki page has a unique Uniform Resource Locator (URL) and name that is
unique within the wiki. Attributes can be assigned to wiki pages to add structured content.
Wiki pages that describe semantically the same content can be tagged with a common type.
This flexible information structuring mechanism is extended to adequately support KiPs.

User

name:String *
open:Set(Task)
completed:Set(Task)
skills:Set(Expertise)

Expertise Stage
key:String key:String

Type ——
TypeDefinition
key:String | — yp <
; 0.1 key:String
0..1 type T
Task TaskDefinition
Wiki Page * task name:String name:String
asks | start:Date start:Date
end:Date :””’7”6’l”end:Date
progress:int v progress:Int
pa skills:Set(Expertise) skills:Set(Expertise)
ge
0..1
* {ordered} *
Attribute AttributeDefinition
key:String | ______ _ _ key:String
reader:Principal * 0..1 [|reader:Principal * {ordered}
editor:Principal editor:Principal
1% *
Value Constraint

validationMessage:String

Concept provided by Hybrid Wikis supporting data structure

Concept provided in this thesis supporting process structure

Concept provided or extended in this thesis for the schema

OO0

Figure 3.3.: Overview of the main concepts for structuring KiPs within a wiki

66

3. Structuring Knowledge-Intensive Processes

Orange and gray structuring concepts are visible in the user interface for authors to describe
work plans. Section 3.3 introduces the user interface features for these concepts that are
developed in this thesis. Work templates are based on green structuring concepts that are
used by tailors to describe the schema. Due to the integration of the data and process structure
several extensions are necessary on the schema level. Structuring concepts for work plans and
templates are maintained independent from each other to facilitate the emergent structuring
of KiPs presented in Section 3.1.

3.2.1. Expertises

Tasks in KiPs are used to coordinate work to suitable users in an organization, i.e., users
that have the right competencies to complete the tasks. Authors can create an expertise as
structured concept to describe a skill that is necessary at least once in a KiP. Expertises can
be considered as a simple text snippet or tag attached to tasks. Figure 3.4 illustrates the
relationships of expertises in our approach more detailed. Every task may have an arbitrary
number of expertises assigned, e.g., expertises a, b and ¢ are necessary to complete this
task. Users that complete tasks automatically receive the expertises that were assigned to
this task. Thereby, users can collect expertises to document their skills in an explicit way.
Main advantage of this concept is that the work allocation between open tasks and available
resources can be improved through the explicit structuring of expertises. Users within a KiP
can search for tasks that match with their skills or suitable candidates for a task could be
automatically retrieved.

Expertise
key:String

* requires

* assigned

Task
name:String
start:Date
end:Date
progress:Int

1..* execute 1..* skip 1..* delegate

{abstract}
Principal

f

None Everybody Group

User

name:String
open:Set(Task)
completed:Set(Task)
skills:Set(Expertise)

Figure 3.4.: Relationships of expertises and tasks with the role model

67

3. Structuring Knowledge-Intensive Processes

3.2.2. Users

Users are central concepts in KiPs since they are responsible for fulfilling goals. These goals
are incrementally broken down by users from a very abstract level to manageable junks of
work. The latter, in turn, are represented as tasks as soon as they can be accomplished in one
coherent step by a certain group of users. Additional concepts are necessary to support tasks
in KiPs. Figure 3.4 introduces these concepts with principals as an abstract concept. Every
task has three roles assigned to at least one principal. The ezecute role can be compared with
the authorization role in workflow management solutions. Principals with this role assigned
are responsible for the completion of the task. Next to this authorization role our approach
supports additional roles for the distribution of tasks. The skip role is used for tasks that can
be omitted by the assigned participants, i.e., the task is immediately completed even if not
all required actions are finished. Finally, the delegate role is assigned to principals that may
forward the task to other participants or redo an already completed task. These roles are not
distinct and principals can be assigned to more than one role in the context of the same task,
i.e., a participant might have the roles to execute and delegate the task.

In our approach four different principals are distinguished that can be assigned to the three task
roles. A principal can be an individual user in the system that has a set of open and completed
tasks assigned. Based on the set of completed tasks it can be automatically determined which
skills the user has. Users might also be assigned to an arbitrary number of groups, i.e.,
tasks with their roles can also be assigned to entire groups. Furthermore, we introduced two
additional principals for tasks. Everybody is used as a technical principal for roles that apply
to any user in the system, e.g., a task a with execution role everybody can be completed by
every author without any restrictions. The opposite to the everybody principal is none which
can also be assigned to all task roles. The none principal is helpful for the roles that are
related to the distribution of tasks. In case it is not desired that users are able to skip a task,
the nobody role can be assigned as placeholder. The same mechanism can be used to avoid
the delegation of tasks.

In addition to the assignment of various roles for tasks, it is possible to allocate principals as
reader and editor of attributes, i.e., for every attribute it is possible to specify who is allowed to
edit and read it. This is an important requirement for KiPs that can also be found in example
scenario A for innovation management processes introduced in Section 2.2.2. In this example,
reviewers in an organization create evaluations for ideas that are submitted by employees.
These evaluations are represented with attribute values that have appropriate access rights.
The result of the evaluations are restricted to commissioners and employees should not be
able to read them. This fine-grained authorization model might lead to problems if an author
creates a new attribute that is already existing on the wiki page but not visible to this author.
In this case the attribute is created redundantly with a warning that is visible to the tailor.
The tailor is responsible to resolve this warning and check whether the existing authorization
model is not appropriate. Redundant attributes might indicate that an author requires reader
or editor permissions for this attribute. In case the authorization model is correct and some
attributes are reasonably redundant, the tailors should have an opportunity to ignore the
warning.

68

3. Structuring Knowledge-Intensive Processes

3.2.3. Tasks

Tasks in our approach are represented with a name and associated to expertises that briefly
describe necessary skills required to complete the task. In addition, every task has a start and
end date that can be specified by the assigned principals. These dates are useful to estimate
the duration of the task. Further, they can be used to generate project plans. The progress of
tasks can be either automatically computed or entered manually depending on the associations
of the task. Every task has to be attached to a wiki page whereby wiki pages might have an
arbitrary number of tasks assigned. Tasks may also have an arbitrary number of associated
attributes, i.e., not every task needs to have an attribute. The assignment of attributes a to
task ¢ means that these attributes a have to be created within the specified start and end
dates by the principals in the execution role of .

0..1 entered

Expertise

key:String

* requires

* assigned

Task

name:String
start:Date
end:Date
progress:Int

* task

Wiki Page

content:Markup
name:String {unique for wiki}
url:URL {unique}

0..1 page

wiki page

1..* {ordered}

Attribute

* mandatory

key:String
reader:Principal
editor:Principal

1..* {ordered}

Value

type:AtomicType

* links

Figure 3.5.: Integration of tasks with the information model

69

3. Structuring Knowledge-Intensive Processes

An important requirement for software support of KiPs is the representation of data-driven
actions, which we describe in Section 2.2.1. We represent these data-driven actions with tasks
that are integrated with the information model in our solution. Figure 3.5 illustrates the
relationship between tasks and attributes, whereas there are two options for the completion
of tasks conceivable. First, tasks that have no attributes assigned can only be completed
by setting the progress manually to 100% or by skipping the task in case the skip role is
not specified with none. Tasks that have no explicit attributes assigned might be related
to activities that are conducted outside the system. Another possibility could be that no
structured data is produced in the involved activities of the task or it is not predictable what
kind of data structure is necessary. For this purpose the results of the tasks can be documented
in the unstructured content of the wiki page or outside the system. Second, all mandatory
attributes assigned to the task fulfill the specified attribute constraints. Completed tasks are
added to the set of completed tasks of the user and associated expertises are added.

Every wiki page might contain an arbitrary number of tasks to coordinate the creation of
structured and unstructured data through users. Based on these tasks it is possible to auto-
matically compute the progress of a wiki page. This progress is used to express how much
of the mandatory data on the wiki page has already been created. In combination with the
start and end dates for tasks, users can easily comprehend where contributions are missing.
We compute the progress of a page p as an average of the progress of all n tasks that are
attached to this page with Equation 3.1. We decided to treat every progress equally in the
computation of the overall page progress. Main purpose of the progress is to provide a rough
estimation for users rather than a computation that is as accurate as possible. Nevertheless,
the expressiveness of our metamodel allows to adapt the computation to specific application
scenarios. One could use the assigned expertises to weight the impact of tasks on the page
progress, i.e., the progress of tasks that require certain expertises have a stronger influence.
Another possibility would be to incorporate the start and end dates of tasks, i.e., tasks with
a higher duration have a stronger influence on the page progress.

n
Z task _progress(p.task;)

page__progress(p) = =1 (3.1)
n

The progress of the page is computed based on the progress of the attached tasks to this
page. In the simplest case the constraints for mandatory attributes are fulfilled as soon as
all empty values are entered by the users. In this case the task is directly related to the
creation of structured data in the system and completed as soon as all empty attribute values
are entered. Attribute values have an AtomicType which is described more detailed in [Nel2].
Types of an attribute value can be simple or complex with a link to another internal or external
object. Examples for simple attribute value types are date, string, enumeration, integer and
boolean. Complex attribute value types link to another structured type that is represented on
a wiki page or to an external object, e.g., wiki page p links to another wiki page r of type t.
Hierarchical task structures can be represented by assigning attribute values with a complex
type to tasks. These complex attribute values are linked to wiki pages that might have tasks
again. Thereby, authors are able to create hierarchically organized tasks with wiki pages to
incrementally break down very generic goals to executable tasks.

70

3. Structuring Knowledge-Intensive Processes

The progress of tasks is automatically computed based on the constraints for the assigned
mandatory attributes. Similar to the page progress every mandatory attribute is treated
equally important for the computation of the task progress. Depending on the application
scenario our metamodel allows to change the impact of certain attributes on the task progress,
i.e., certain attribute types like files might have a stronger influence on the task progress than
other attribute types like string or date. Tasks that have complex attribute values assigned
incorporate the progress of the linked wiki pages into the task progress. The computation of
the progress for a task t is given in Equation 3.2 with the number of mandatory attributes
attry, and the number of completed attribute constraints attr.. The page progress for all n
wiki pages that are linked to the task are computed recursively, i.e., the equation is repeated
for every task in the hierarchy of . The resulting structure of the task hierarchy is a tree with
leaf tasks that have either no attributes or only attributes with a simple type assigned. Due
to this structure the task progress equation always terminates at the leafs of the tree.

n
attre * 100 + Zpage_p’r’ogress(t.pagei)

task _progress(t) = =1 m (3.2)
attry,

The computation of the task progress with Equation 3.2 is always applied for the page process
except for tasks that are skipped. Users can skip tasks in case they or one of their groups
in which they are member are authorized to perform this role. Skipped tasks are marked as
completed although their progress is not automatically set to 100%, i.e., they are removed from
the user’s worklist. Usually skipped tasks will have no progress since they are immediately
skipped in a work plan. Nevertheless, they can be started and skipped at a later stage due to
the unpredictable characteristic of KiPs if this is desired within a work plan. Skipped tasks
are removed from the computation of the overall page process independent of their current
progress value. In case there are pages with tasks assigned this step is repeated for all tasks
below the skipped task in the tree. Without removing skipped tasks the page process could
never be completed and this might be confusing for users.

The delegate role has no influence on the computation of the page progress, i.e., delegated tasks
retain their progress for the new users that are responsible for the delegated task. Delegated
tasks can be associated to task structures on other wiki pages and changing their progress
might not be desired. In addition, it could be useful for users in the new execution role to have
insights about preliminary work related to the delegated task. Finally, the redo role can also
impact the computation of the task progress in case an already completed task needs to be
enabled again. In contrast to delegate and skip operations that have no influence on the page
progress, redo changes the task as well as the page progress. The progress of a task r that is
redone will be set to 0% and r appears in the executing user’s worklist again. In case task r
has associated pages, all tasks linked by r are recursively redone as well and their progress is
set to 0%. The progress of tasks above r needs to be updated based on Equations 3.2 and 3.1.
We distinguish between a real-time mode that executes the computation with every change
of one progress and a batch model that initiates the computation in fixed time intervals. In
order to avoid many computations within large hierarchical task structures our metamodel
stores the current progress of tasks.

71

3. Structuring Knowledge-Intensive Processes

3.2.4. Task Definitions

End-users are empowered to structure work plans with tasks, attributes and types that are
created and linked with each other at runtime. The creation of these structuring concepts is
not restricted in the early stages and they can be added at any time assuming that end-users
have author rights. Work plans can be based on templates that already contain predefined
and more sophisticated structuring concepts based on best practices. Usually these tem-
plates emerge from the structuring concepts provided by end-users. Work templates consist
of definitions that are loosely coupled with the work plan to enable this emergent structuring.
Figure 3.6 illustrates the main concepts for the description of the schema that is captured in
work templates. Wiki pages are structured with atéributes and tasks in addition to unstruc-
tured content that is described on the page. Attributes can be assigned to tasks as mandatory
structured content that has to be created. Every attribute can have one task assigned at most,
whereas the number of attributes is not limited for tasks.

The type of a wiki page is used to condense pages that are concerned with semantically similar
content. Types are represented with a text string that has to be unique within a wiki. Based
on this type tasks and attributes of the wiki page can be dynamically determined, e.g., wiki
pages of type project contain an attribute description as string as well as a task for this
attribute named describe goals of the project. The attribute description is assigned to the
task as mandatory attribute, i.e., to complete this task the attribute value has to be entered.
Depending on the degree of structure this type is provided by authors (in Stage I and II) or
a work template for projects can be instantiated (above Stage ITI) which already contains a
predefined structure.

Wiki Page TypeDefinition
key:String K>
rigid:Boolean
strict:Boolean *
¢ rage ¢
{Task.name equals TaskDefinition.name &
Task.page.type equals TaskDefinition.type}
T
* tasks }
Task | TaskDefinition
! name:Strin
name:String * I 0.1 start:DatreI ?
S) T — — — — — — — — — — — = —— T = —— e ————— = end:Date
end:Date progress:int
progress:int skills:Set(Expertise)
strict:Boolean
0..1
0..1
* mandatory * mandatory
Attribute * 0..1 AttributeDefinition
key:Sting [T T T T T T T T T T T T T T T T T T TTTT key:String
reader:Principal reader:Principal
* {ordered} |editor:Principal editor:Principal * {ordered}
strict:Boolean

Figure 3.6.: Main concepts for the description of the schema in work templates

72

3. Structuring Knowledge-Intensive Processes

In case a work template for projects is already maintained by tailors, attributes and tasks
are automatically created once the type is assigned to wiki pages. For this purpose the
type of the wiki page is compared with existing TypeDefinitions based on the provided key
in the simplest case. More advanced approaches could be applied to compare structured
and unstructured content provided by authors with predefined type definitions, e.g., based
on cosine similarity [Hu08|. For example, wiki pages that often contain the term project
in the text are likely to be related to the TypeDefinition project even though no type is
provided by the authors. TypeDefinitions can be structured hierarchically and they contain
additional attributes to manage the evolution of the instances. TaskDefinitions are assigned
to TypeDefinitions, i.e., all wiki pages with the corresponding type also receive tasks with the
same names like the TaskDefinitions. The same accounts for attributes that are instantiated
on wiki pages based on Attribute Definitions with their association to the same TypeDefinition.
Finally, the association of mandatory AttributeDefinitions for TaskDefinitions is maintained
in the work plan, in which mandatory attributes are assigned to tasks. Main advantage of
this approach is that work plans and templates can be maintained independent of each other,
which gives authors much more flexibility to perform adaptations on work plans that are
important for many KiPs.

Tasks are automatically completed based on Hybrid Wiki constraints that are defined for the
assigned attribute definitions (cf. [Nel2] for an overview of possible constraints). Attributes
may have several constraints assigned, i.e., it is possible to specify that an attribute needs
to fulfill more than one constraint. Hybrid Wikis distinguish between two different kinds
of constraints. Multiplicity constraints are used to specify how many values an attribute
needs to have, e.g., at-least-one, at-most-one and exactly-one. Data type constraints validate
whether the data type of attribute values is equal to a given type. It is possible to apply data
constraints for simple data types, e.g., string, integer, date, boolean, as well as enumerations
and references to other wiki pages. For example a data constraint of type string validates
that only attribute values of type string are entered. Once all constraints of the attributes are
fulfilled, the assigned tasks for these attributes are automatically completed. In our approach
we apply data type constraints as default for attributes that are assigned to tasks in the work
plan, i.e., for the completion of tasks it is only necessary to provide a value of a given type
for the attributes. This type is determined during the creation of a new attribute in the work
plan or template. More sophisticated constraints could be determined by tailors, e.g., based
on values of already terminated work plans from the past.

AttributeDefinitions and TaskDefinitions have an additional attribute that is used to specify
whether they are strict. This means that work plans can only be saved when they contain no
invalid values, i.e., values that are not compliant with the specified constraints for attributes.
With the strict option users are always forced to provide valid structured content for attributes
and tasks. When applied to a task definition the work plan can only be saved when mandatory
attributes that are assigned to the task are not violating constraints. For example using a string
for an integer attribute value would violate the string data type constraint. TypeDefinitions
can be marked as rigid as shown in Figure 3.6. Rigid types consist of strict constraints only
and it is not allowed to modify tasks and attributes, i.e., it is not possible to add or remove
tasks and attributes within a rigid type. Tasks of rigid types do not have to be completed and
empty attribute values are allowed.

73

3. Structuring Knowledge-Intensive Processes

3.2.5. Stages

Main purpose of stages is to describe the lifecycle of types that are attached to wiki pages.
Stages describe episodes wiki pages pass through depending on the completion of tasks [Ob14].
Figure 3.7 illustrates the concepts for the process structure of work templates. Based on the
type of the wiki page the process model is determined using the TypeDefinition. The process
model is defined for work templates having a degree of structure on Stage III or higher since
they require TaskDefinitions. Although stages can be defined without any TaskDefinitions in
the work template, their definition provides no additional value on a lower degree of structure.
TaskDefinitions can be grouped in stages, i.e., all tasks that are related with the goal of one
stage are summarized. For example, a stage initialize project could contain tasks that are
related to the initial setup of the project. Stages are helpful to organize the process model
since they provide the context for tasks. In combination with rules described in Section 3.2.6,
all tasks that are grouped in one stage can be enabled at once.

Stages can only be defined by tailors in the work template to organize the process model. With
stages, rules and constraints tailors have a very powerful set of modeling concepts to specify
data-driven process models for KiPs. It is not possible for authors to define them since much
more sophisticated knowledge about process modeling is required to define stages with rules
and we don’t want to overwhelm non-expert users. Nevertheless, tailors can take advantage of
the lightweight structuring concepts provided by authors for the definition of process models.
Once a set, of tasks is created by authors that are generalized to TaskDefinitions, it becomes
much easier for tailors to define stages and rules. Another advantage of this approach is that
authors can make adaptations in the work plan. The lightweight structuring concepts are
means for authors to handle unpredictable situations which are one of the most challenging
aspects in KiPs.

TypeDefinition
Type * 0..1 e yp <
T pmmmmmm e mm - GRS
ey: 9 | rigid:Boolean
‘ strict:Boolean
0..1 type 1
{Type.key equals TypeDefinition.key} j
Wiki P
[Eeade {abstract}
Process
¢ pace
* tasks
Task TaskDefinition Stage
name:String * 0..1 [name:String * —]
startDate |- ————mmmmm——mmm e start:Date - ST
end:Date end:Date
progress:Int progress:int
skills:Set(Expertise)

Figure 3.7.: Process model concepts in the work template with their link to wiki pages

74

3. Structuring Knowledge-Intensive Processes

3.2.6. Rules

Tasks and stages can be associated with entry and exit rules that are maintained by tailors in
the work template. The creation of rules requires Stage IV since they are linked to stages and
TaskDefinitions. In Section 2.2.1 rules and constraints are introduced as important require-
ments for KiPs. In our approach constraints are defined on AttributeDefinitions to determine
when tasks are completed since data is the main driver for the progress of tasks. In contrast
to constraints that link the progress of tasks with the data structure, rules are only concerned
with tasks and stages within the process structure. Main purpose of rules is the definition
of logical dependencies between atomic tasks and stages that are used to group other tasks.
Rules are important for work plans that have many tasks because users could be overwhelmed
with the selection of the next task in their worklist. Figure 3.8 illustrates simplified view on
the associations of rules with process elements.

{abstract} entry Rule
Process

exit

Figure 3.8.: Simplified association between rules and process elements

The producer and consumer pattern is a typical example for a dependency in KiPs that can
be represented with rules. In this pattern a task (producer) needs to create some output
that is processed by another task (consumer). Our process model allows the creation of basic
producer and consumer patterns for tasks and stages. For example a task tI needs to be
completed before another task {2 can be started. With rules these consumer tasks are hidden
and users are not overwhelmed with tasks that cannot be executed due to logical dependencies.
Variations of this pattern are rules with multiple consumers or producers, e.g., more than one
task needs to be completed before the subsequent consumer is enabled. In case more than one
producer process element is associated two different rules can be applied. Consuming process
elements are enabled either as soon as one or all producers are completed. In addition to
tasks, rules can also be associated with stages as producer and consumer.

The introduction of rules on process elements can be very valuable to capture frequent work
patterns that help to guide users during KiPs. On the downside, too many rules are critical
because they can restrict knowledge workers in their decisions and limit their flexibility. Lim-
iting the flexibility is not always desired due to the unpredictable characteristic of knowledge
work. In our approach tailors need to find the right balance between flexibility and guidance.
It is important to note that our approach just provides the right means to facilitate this bal-
ance, but it is equally important that tailors maintain the right degree of structure in the
work templates. In some application scenario for KiPs there might be external restrictions
that have to be adhered to, e.g., compliance regulations of legal authorities. For example
certain issues need to be appropriately documented before the work plan can continue with
the other tasks. In this case a high degree of flexibility within certain segments of the work
plan for authors is not desired since they might circumvent these restrictions.

75

3. Structuring Knowledge-Intensive Processes

3.3. Features Based on Social Design Principles and Patterns

There many examples for communities that became successful through content that is gen-
erated primarily by users. Most notable the online encyclopedia Wikipedia? consists of a
plethora of articles that were edited by volunteer users. More than 35,000 of these users made
five or more edits during the month of February 2011 [Kr12a|. Another less prominent exam-
ple is NASA’s Clickworker community® that helps scientists to analyze data by clicking Mars
photographs to trace the outline of craters. Communities can also become extremely success-
ful in developing software like the famous Apache OSS project*. These examples demonstrate
how online communities can be used for collective problem solving and the creation of various
different types of content. Such communities are powerful because they break the barriers
of time, space and scale that are limiting offline collaborations through information tech-
nology |Krl2a|. We envision that online communities revolve around work templates in our
approach. Although online communities can become very successful, there are also many ex-
amples of communities that failed because they were not able to attract and sustain enough
members. Therefore, we incorporate findings from social sciences in our solution.

Work templates emerge bottom-up through the lightweight structuring concepts that are in-
troduced in Section 3.2. These structuring concepts are collaboratively maintained by authors
on wiki pages and generalized to reusable templates by tailors. Work templates can only be
generalized in case enough structure is provided on wiki pages by authors. Therefore, it is
crucial that the system attracts as many authors as possible and these authors are also mo-
tivated to maintain the structuring concepts on wiki pages. For this purpose we apply social
design principles and patterns for successful online communities from social sciences in the
design of features for the user interface. The social design principles are based on a subset
of the principles that are presented by Kraut and Resnick in [Kr12a|. The selected subset is
concerned with principles for the early stages of communities since more advanced principles
are less relevant in the current phase of the project. The patterns are based observations
of Polymath [Nil2] and lessons learned of ENCODE [Bil12]|. Although these patterns are re-
trieved from platforms that are related to research questions, we are convinced that they are
equally practicable for other domains.

The application of these principles and patterns for processes is evaluated with the Organic
Data Science framework that we presented in [Milbb|. In the following, features for the
lightweight structuring concepts that are based on these social design principles and patterns
are introduced. While the general structuring concepts are developed based on the require-
ments of KiPs, some additional attributes in our model are necessary to incorporate the design
principles and patterns. In particular, expertises for tasks and user profiles are introduced
to represent the features related to the specific social design principles and patterns. The
structure of the principles is organized with the categories presented by Kraut and Resnick
in [Kr12a]. Since we only incorporate principles concerned with early phases of communities,
future work could propose additional features for retention of members and for regulating
behavior. In the following the six categories are presented with a brief explanation (numbers)
and the list of selected principles and patterns (literals).

*https://www.wikipedia.org/, last accessed on: 2015-05-26
*http://beamartian. jpl.nasa.gov/, last accessed on: 2015-05-26
*http://wuw.apache.org/, last accessed on: 2015-05-26

76

https://www.wikipedia.org/
http://beamartian.jpl.nasa.gov/
http://www.apache.org/

3. Structuring Knowledge-Intensive Processes

1. Starting communities: Starting a new community is critical since it is the initial step in the
process and errors in this phase could affect the subsequent phases negatively. The start
of a new community needs to address three challenges. First, a useful niche needs to be
carved out to attract members who share a certain interest. Second, this niche needs to be
defended against competing communities with alternative ways users can spend their time.
Third, a critical mass of users needs to generate enough content so that it can become
interesting for future members. Our approach becomes more valuable once a high number
of work templates for topics relevant to users are available. Most of the design principles
are related to the representation of tasks that have to be matched with the right users in
the work plans.

a) Carve a niche of interest, scoped in terms of topics, members, activities and purpose
b) Relate to competing sites, integrate content
¢

d

)
) Organize content, people and activities into subspaces once there is enough activity
) Highlight more active tasks

e) Inactive tasks should have expected active times
f) Create mechanisms to match people to activities

2. Encouraging contributions through motivation: In our approach it is very important that
users participate in the structuring of KiPs. Although the resources contributing to KiPs
are often limited in organizations, motivation is still important to avoid idle time of available
authors. Omne of the reasons could be that authors don’t know what should be done or
where contributions are required in KiPs. The principles in this category relate to different
motivators of individual effort, e.g., individual performance, outcome and utility. This can
be achieved by stressing benefits of contribution and giving small rewards that are tied to
individual performance.

a) Make it easy to see and track needed contributions

Ask specific people on tasks of interest to them

Simple tasks with challenging goals are easier to comply with
Specify deadlines for tasks, while leaving people in control

Give frequent feedback specific to the goals

)
)
)
)
f) Requests coming from leaders lead to more contribution
) Stress benefits of contribution

) Give (small, intangible) rewards tied to performance (not just for signing up)
) Publicize that others have complied with requests

)

People are more willing to contribute: 1) when group is small, 2) when committed
to the group, 3) when their contributions are unique

3. Encouraging commitment: Commitment is important in successful communities since mem-
bers that are committed work harder and stick with the community after it becomes es-
tablished. Commitment is also necessary for participants to sustain the group through

77

3. Structuring Knowledge-Intensive Processes

5.

78

problems, e.g., authors need to become familiar with the structuring concepts before they
can contribute to a work template. Some important prerequisites for commitment are
feelings of closeness to other individuals in the group, strong identification, or the risks of
leaving the community. Most of the design principles in this category are rooted in the field
theory introduced by Lewin [Le51|. In general, field theory describes the forces in people’s
environments that attract them to a group.

a) Cluster members to help them identify with the community
b) Give subgroups a name and a tagline

¢) Put subgroups in the context of a larger group

d) Make community goals and purpose explicit

e) Interdependent tasks increase commitment and reduce conflict

Dealing with newcomers: Online communities need to incorporate successive generations of
newcomers and employees that join the organization. Newcomers are also a valuable source
of innovation of new work procedures. For the goal of this thesis it is also important to
effectively introduce newcomers to work templates, e.g., inexperienced knowledge workers
could be guided by templates that capture best practice knowledge in an organization.
Furthermore, newcomers might also cause damage in case they imperil work that has
already been done by other community members on work plans. Another thread might be
that newcomers always create new types because they are afraid to change already existing
work templates.

a) Members recruiting colleagues is most effective

Appoint people responsible for immediate friendly interactions
Introducing newcomers to members increases interactions
Entry barriers for newcomers help screen for commitment
When small, acknowledge each new member

Advertise members particularly community leaders, include pictures
Provide concrete incentives to early members

Design common learning experiences for newcomers

Design clear sequence of stages to newcomers

Newcomers go through experiences to learn community rules
Provide sandboxes for newcomers while they are learning

1) Progressive access controls reduce harm while learning

Best practices from Polymath: Polymath allows mathematicians and volunteers that have
a math background to collaboratively develop proofs for mathematical theorems [Nil2].
Volunteers in Polymath range from high-school teachers to engineers that are interested in
solving mathematics conjectures. In this community they are supported with discussion
threads and public blogs that are linked with wiki pages. These wiki pages are used to

3. Structuring Knowledge-Intensive Processes

write basic definitions, proof steps and the overall final publication in some situations. In
case the results of a proof lead to a scientific publication, everybody who contributed to the
solution of the conjecture automatically becomes a co-author. The community grows with
new project proposals that are decomposed into small enough pieces of work that authors
can solve. In [Mil5b], we described several patterns from the polymath community that
are not covered by the aforementioned social design principles.

a) Permanent URLs for posts and comments, so others can refer to them
) Appoint a volunteer to summarize periodically

) Appoint a volunteer to answer questions from newcomers

d) Low barrier of entry: make it very easy to comment

) Advance notice of tasks that are anticipated

f) Keep few tasks active at any given time, helps focus

6. Lessons learned from ENCODE: Another project which exposed best practices for a large
collaboration is the encyclopedia of DNA elements that is presented in [Bil2]. Main goal
of this research project is to build a comprehensive list of functional elements in the human
genome. In this project, tasks are formally assigned to groups in the collaboration based on
a fixed funding that is allocated to tasks. In [Mil5b], we described the following patterns
and lessons learned.

a

b

Spine of leadership with few leading scientists and 1-2 operational project managers
Written and publicly accessible rules to transfer work between groups
¢

d

Quality inspection with visibility into intermediate steps

)
)
)
) Export of data and results, integration with existing standards

The steps that are undertaken in this thesis for the concept development with the mapping
to the sections are illustrated in Figure 3.9. Structuring concepts for KiPs are developed
in the first step and are presented in Section 3.2. In the second step we identify social
design principles and patterns for successful online communities in Section 3.3. Based on
the structuring concepts and the social design principles, we develop nine features for the
structuring of KiPs in this section. We combine both steps for the design of features to ensure
that knowledge workers find common ground for collaboration. In Section 3.4, the features
are integrated in the user interface design of our prototype that is based on a wiki. In addition
to the features for the structuring of KiPs, this section also provides additional features for
the communication based on events with a social feed and a mobile interface.

Identification of Features Based on 5
Development of K . . . Design of the User
. Social Design Social Design
Structuring Concepts R N Interface
Principles Princples

Section 3.2 Section 3.3 Section 3.3.x Section 3.4

Figure 3.9.: Steps from the development of concepts to the design of the user interface

79

3. Structuring Knowledge-Intensive Processes

3.3.1. Task Representation

The challenge of starting a new community is mitigated based on three social design principles
that the feature task representation addresses. Our representation of tasks organizes content,
people and activities into subspaces (1c¢) based on expertises that can be assigned to every
task. With these expertises subspaces of tasks that are relevant for certain knowledge workers
can be grouped together. For every task it is possible to add content to the subspace through
attributes. Persons can be added to a subspace using the execution roles that can also be
assigned to groups. More active tasks are highlighted (1d) based on the task progress that is
visualized in a small pie chart for every task. Tasks that are more active also have a higher
progress visualized in the pie chart. Figure 3.10 illustrates these pie charts in the worklist of
a user with several sample tasks. After selecting one task additional buttons for delegate and
skip are shown in case the user has the required roles assigned. Mechanisms to match people
to activities (1f) are facilitated through skills that users can collect by completing tasks with
expertises assigned. Based on these skills suitable users for tasks can be determined.

Several social design principles for the task representation are applied to encourage contribu-
tions through motivation. With the pie charts for tasks it is easy to see and track needed
contributions (2a). Tasks that need more contributions have a lower progress, e.g., task G
in Figure 3.10 has the lowest progress of all tasks. This is not only visible for simple tasks
but also for entire wiki pages since it is possible to compute the average progress for all tasks
assigned to a wiki page as described in Section 3.2.3. Complex tasks can be incrementally
broken down to simple tasks (2c¢) so that they are easier to comply with. Another advantage
of fine-grained tasks is that they can be assigned to small groups which are more willing to
contribute. In addition to smalls groups tasks can also be divided for groups that have many
committed members to encourage motivation. Another advantage of the task representation
is that contributions become unique and completed tasks remain in the worklist of a wiki page
(2j), e.g., task E that is completed remains visible at the bottom of the worklist. Completed
tasks are per default hidden to avoid confusion and can be shown using the eye button.

Four social design principles are integrated in the representation of tasks to encourage com-
mitment. Subgroups that work together get an own name for their task, i.e., instead of task
A to H it is possible to specify an arbitrary name (3b). Subgroups are always part of a larger
group context since there are several tasks assigned to a wiki page in the most cases, e.g.,
the subgroup that is responsible for task B is in the context of the remaining tasks that are
assigned to other subgroups (3c). Our task representation allows it to make community goals
and purpose explicit (3d). Every goal can be described as high-level task with an unlimited
number of subtasks. Finally, the task representations are interdependent to increase commit-
ment (3e). The progress of every task on a wiki page is taken into account for the overall
progress of the wiki page, i.e., the progress of the wiki page can only be 100% after all tasks on
this page are completed. The task representation feature incorporates two patterns observed
in Polymath and one pattern from ENCODE. Tasks can be represented with permanent URLs
so that others can easily refer to them (5a). Notice of tasks that are anticipated are advanced
with an empty pie chart in the worklist (5e). Tasks that are anticipated can be created in the
system without any metadata about their start and end date. Completed tasks are visualized
with a green pie chart similar to the quality inspection in ENCODE (6¢).

80

3. Structuring Knowledge-Intensive Processes

3.3.2. Task Metadata

Metadata for the selected task are shown at the bottom of Figure 3.10 in the gray box. More
active tasks can be highlighted (1d) in the task representation with the specified progress in
the metadata. The progress can be changed by users manually to estimate how much of the
task is already completed. Once the progress is changed the corresponding pie chart in the
task representation is automatically updated. Start and end dates in the metadata can also
be used to specify that currently inactive tasks are going to have expected active times in the
future (le), i.e., the start date of the inactive task is not yet reached. The last value in the
task metadata is used to specify expertises that describe what kind of skills are required to
complete the task (1f), e.g., expertises A, B and C. Similar to the highlighting of more active
tasks, needed contributions can be marked using the progress in the metadata (2a). Specific
people can be asked on tasks of interest to them using the expertises that can be assigned to
tasks in the metadata (2b).

Tasks for this page x

New Task
B TaskA
W) TaskB Delegate Skip
Task C
@ TaskD Open Tasks
. Task F
Task G

. Task H

1 completed task @

@ ke Completed Tasks

Metadata for current task

Start date 15.04 2015

End date: 15.07.2015
Task Metadata

m Progress: 80%

Expertise

Expertise Ax Expertise Bx Expertise C x

Close

Figure 3.10.: Worklist with sample tasks

81

3. Structuring Knowledge-Intensive Processes

Deadlines for tasks can be specified using the end date for tasks in the metadata (2d). Users
are at any time in control of the deadlines and main purpose of them is to remind users when
certain tasks are due. Thereby, users are not forced to complete overdue tasks but they remain
in control of the course of action at any time. Tasks that are not completed after the specified
deadline are highlighted with a red pie chart in the worklist, e.g., task D in the sample worklist.
A detailed description of the task state feature is presented in Section 3.3.4. The social design
principle to give frequent feedback to specific goals is also supported with the task metadata
(2e). Users working on a specific task can update the progress to provide feedback every
time they have some advances with the goals of the task. Another possibility to encourage
contribution through motivation is based on the social design principle (2f). According to
this principle requests coming from leaders lead to more contributions of users. This principle
can be supported using the delegate role, i.e., leaders can delegate tasks to other knowledge
workers to encourage motivation.

The challenge encouraging commitment is addressed with three social design principles in the
task metadata feature. Members are clustered to help them identify with the community (3a)
based on skills. Users are gaining skills in their profile every time they finish a task that has
expertises assigned, e.g., the user finishing the task B from Figure 3.10 gains the expertises A,
B and C in his profile. In addition to the name of a task, expertises in the metadata can be
used to give subgroups a tagline (3b). Interdependence of tasks can be supported through the
metadata with start and end dates that come directly after another task (3e), i.e., in order
to start one task another task needs to be finished first. This interdependence increases the
commitment since users notice that other tasks depend on their results. Quality inspection
with visibility into intermediate steps (6¢) is supported with the progress that is only set to
100% when the goals of the task are achieved. Intermediate steps are visible using the subtask
navigation that is described in Section 3.3.6.

3.3.3. Task Management

The task management allows to organize content, people and activities into subspaces once
there is enough activity (1lc). These subspaces are created by adding new tasks to pages
which is illustrated at the top of Figure 3.10. Users only have to specify a name and confirm
with enter to add a new task. The input field and tasks are not visible for visitors in the
worklist since they don’t have edit rights. Content for the task can be assigned using drag &
drop functionality in the user interface, i.e., attributes can be dragged from the wiki page and
dropped on the task. Tasks with attributes are automatically completed once all constraints
on the assigned attributes are fulfilled. In case no attributes are assigned to a task, the
completion depends on the manually updated progress in the metadata. To create subtasks
for a task t attributes that reference other wiki pages with tasks have to be assigned to t.
This feature can be used to create simple tasks that are easier to comply with (2¢). With the
creation of tasks and subtasks the social design principles (2j) can be fulfilled. Subtasks can
reduce the size of the group in case too many users are involved to make sure that people are
more willing to contribute. The task management allows the creation of intermediate steps
(6¢) for quality inspection, e.g., task a is completed based on the intermediate steps al, a2
and ad.

82

3. Structuring Knowledge-Intensive Processes

3.3.4. Task State

The state of tasks is automatically determined based on the task metadata introduced in
Section 3.3.2. Main purpose of the task state is to make it easy to see and track needed
contributions for users (2a). The task’s state is visualized in a small pie chart that is shown
next to every task in the worklist and presented in [Gilbc|]. An overview of possible task
states depending on the metadata of tasks is illustrated in Figure 3.11. States can be either
active or fade out in case they are only used in the context of an active task. Immediately
after creation of a task the state is displayed with the pie chart in the first row. This allows
to advance notice of tasks that are anticipated although exact dates cannot be specified (5e).
The circles are empty to illustrate the incomplete metadata of tasks since it is not possible to
compute the progress. Once the metadata is in progress the circle is filled depending on the
number of completed values. The metadata is complete as soon as start and end dates are
specified, i.e., it is not necessary to enter expertises.

Tasks with complete metadata are visualized with filled pie charts, whereas the computation
of the progress is described in Section 3.2.3 and used to determine the fill levels of pie charts.
Overdue tasks are represented with a red pie chart independent of the current progress. In
case tasks contain one or more overdue subtasks, this is indicated with a small circle at the
bottom of the pie chart. Tasks can also be in an inconsistent state in case the start or end
dates exceed at least one parent task, e.g., parent task ¢ ends on 015 January and subtask s of
t ends on 15" January. Inconsistent tasks are represented with a yellow pie chart or an empty
yellow circle. Tasks that contain inconsistent subtasks are represented with a small yellow
triangle at the bottom of the pie chart. All these task states are used to provide frequent
feedback to users (2e) and make the current state of tasks transparent.

Fade Out Active
Inconsistency Inconsistency
—t— —t

Normal Child Current Normal Child Current

Task created

Incomplete
Metadata

j) Meta-data in progress

Meta-data complete
Task in progress

Overdue subtask

Complete Metadata
o V'Y
o V'Y

Task overdue

il . . Task completed

Figure 3.11.: Possible task states depending on their metadata [Gil5c|

83

3. Structuring Knowledge-Intensive Processes

The most likely state transition sequences between these tasks are illustrated in Figure 3.12.
At the top of the figure the normal state transitions are displayed in two phases. In the first
phase, metadata are incomplete and entered by users with dates and required expertises for
the task that are optional. The progress of entering metadata is visualized by the progress
of the surrounding circle. This phase is finished with completed metadata and the resulting
filled out pie chart is gray since there is no progress related to the goals of the task at this
moment of time. This changes once users start working on a task with the progress increasing
in green color as long as the specified due date for the deadline has not passed. Within the
subtasks several tasks might become overdue and users are reminded with a small red circle, so
that the overdue subtasks tasks that are highlighted with red pie charts are completed. This
sequence finishes with a green pie chart indicating that all subtasks of this task are completed
and nothing needs to be done.

Metadata
—p)—P —p- . X 7\ q ';.

-
£
=8
sh
a2 @
A6
mu
=

Inconsistancy

Figure 3.12.: Most likely state transition sequences of tasks [Gil5c]

At the bottom of Figure 3.12 two additional sequences are illustrated with inconsistent tasks
and subtasks. The first sequence starts with a small yellow triangle in the first phase indicating
at least one inconsistent subtask within the hierarchy. This is a common scenario in case
existing tasks are assigned to the new task that has no dates specified in the beginning.
Similar to the normal transition sequence presented at the top of Figure 3.12, the subsequent
states have a higher progress until the task is completed. While the completion of tasks
is not possible as long as overdue subtasks exist, inconsistent subtasks have no influence
on the overall progress, i.e., tasks containing subtask inconsistencies can be completed. One
possible state transition with an inconsistent task is shown at the bottom of the figure. Similar
to the previous transitions the inconsistent task passes through the typical states. This is
possible despite the fact that the start and end dates are inconsistent for this task. Similar to
attribute constraints that can be violated as long as they are not defined as strict, we allow
inconsistencies for tasks that have wrong start and end dates so that users are not limited in
their flexibility. The state transition sequences of tasks are only illustrated with three likely
examples, but many other combinations of state transitions are conceivable.

84

3. Structuring Knowledge-Intensive Processes

3.3.5. Timeline Navigation

The timeline is automatically generated based on the provided metadata of tasks. Moreover,
it helps to highlight more active tasks (1d). Figure 3.13 shows a screenshot of the timeline
based on the previously introduced sample tasks. The timeline only shows open tasks since
completed tasks are automatically removed. The length of the bars is determined based on
the duration of tasks that is computed from the start and end dates, i.e., tasks with a higher
duration have longer bars. Goal of the timeline is to provide a simple overview about the
process, so that we decided not to involve too many details. The red vertical line shows the
current date which makes it very easy to see and track needed contributions (2a), i.e., task A
is slightly behind the schedule and requires some contributions. The timeline also visualizes
when tasks have scheduled active time (le), e.g., task C will have some active time soon.
Tasks that have incomplete metadata are shown with an empty bar to advance notice of tasks
that are anticipated (5e), i.e., these tasks are visible in the timeline even without specified
metadata to inform users of anticipated tasks in the future.

The colors indicating the state of the tasks is used consistently with the pie charts that are
shown in the worklist. Task C is yellow since it inconsistent with the parent task and task D
is red because it is only at 75% although the deadline was already reached in the past. The
page progress shown as pie chart next to the title represents the average progress of all tasks
attached to this page (6¢), i.e., the test page has an overall progress of 51%. In addition,
two small icons are shown at the bottom of the pie chart to indicate the inconsistent and
overdue tasks. The timeline only shows tasks at the same hierarchy level like the current wiki
page, i.e., subtasks are not visible in the timeline as long as no task is selected. The subtask
navigation feature based on the timeline is described in Section 3.3.6. Main purpose of the
timeline is to make the progress transparent and required contributions visible for the users.
Therefore, it is not possible to edit any data or metadata within the timeline.

Page Title

Page Progress 51; Test Page

TaskA | 40%

Task B | | 80%

Task C

oo [sl
Task F | 50%

Task G 5%

Task H | 40%

Task

Name

Figure 3.13.: Timeline visualizing the progress of open tasks

85

3. Structuring Knowledge-Intensive Processes

3.3.6. Subtask Navigation

The subtask navigation feature is a combination of the task representation in the worklist
(Section 3.3.1) and the timeline navigation (Section 3.3.5). It allows users to quickly get an
overview about the progress of subtasks s that belong to another parent task ¢. By selecting
task ¢ in the worklist all subtasks s are represented in the timeline feature with their progress
and the assigned attributes with references to wiki pages containing these subtasks are filtered.
In case ¢ has no subtasks the timeline is shown as empty without any tasks. This might be
the case when only attributes with a simple type or no attributes at all are assigned to ¢, i.e.,
no navigation to subtasks is required. Main advantage of the subtask navigation is that it is
not necessary for users to change to the lower level wiki page, which avoids time consuming
page reloads in the browser. The subtask navigation can be used to traverse through the
hierarchical task structure to identify needed contributions, e.g., tasks that have a low progress
in the timeline. In case a subtask that requires attention has been identified, a user can select
the attribute assigned to the parent task in order to navigate to the wiki page with this
subtask. This step can be repeated at will to traverse to tasks that are on lower levels in the
hierarchy.

This feature for the subtask navigation encourages contributions through motivation with
three social design principles that are mentioned and briefly explained in the following. First,
it becomes easier to see and track needed contributions (2a) with the subtask navigation. Users
can easily navigate to subtasks of open tasks to identify missing contributions that prevent the
parent task from having a higher overall progress. Second, it also supports frequent feedback
to specific goals (2e) since every contribution on the particular lower level in the hierarchy
becomes immediately visible. In collaborative environments subtasks of a wiki page p might
be assigned to different users and groups, i.e., the subtasks have other users and groups than
the parent tasks that are assigned to p. Third, with the subtask navigation feature it becomes
public that others have complied with requests (2i). In this context, tasks can be considered
as requests to others. Omnce the responsible users of the parent task can see contributions
on related subtasks, they will be encouraged to contribute more on their own tasks as well
according to this social design principle.

With the subtask navigation feature another social design principle is considered that en-
courages commitment in the community. This principle relates to interdependent tasks that
increase commitment and reduce conflict (3e). Users of a task are more comimitted since they
can see subtasks that are related to them. Subtasks are interdependent since they influence the
progress of the parent task. While the task representation feature introduced in Section 3.3.1
supports this principles for tasks on the same hierarchy level, the subtask navigation feature
achieves this for tasks on a lower level in the hierarchy. Conflicts are reduced because inter-
dependent subtasks are made explicit and users are aware of potential conflicts. Finally, the
social design pattern on quality inspection with visibility into intermediate steps is supported
through the subtask navigation feature (6¢). Subtasks can be considered as intermediate steps
of a parent tasks. With the subtask navigation users can evaluate whether important inter-
mediate steps are undertaken and finished to assure quality of the information objects created
by the parent task.

86

3. Structuring Knowledge-Intensive Processes

3.3.7. Task Alert

Knowledge workers usually operate in different context and they have to be aware of many
tasks at the same time [Mul2|. The task alert feature remembers knowledge workers about
overdue tasks. Tasks become overdue in case the specified end date has passed and the
progress is still lower than 100%. Without this feature users would have to use the subtask
and timeline navigation to identify overdue tasks. Figure 3.14 illustrates the alert feature with
the sample overdue task D, which should have been finished 13 days ago and currently only
has a progress of 75%. Overdue tasks in the alert are sorted by their end date, i.e., tasks that
have the furthermost end dates are shown at the top. It is not possible to hide overdue tasks
so that users are always reminded about them. There are two possibilities to remove overdue
tasks from the alert. First, the task is completed by the user on the wiki page. Second, the end
date of the task is changed to a later point in time in the future. The alert feature contains
overdue tasks that are assigned to the user from arbitrary pages and wikis. Users can navigate
to overdue tasks by clicking on the link to the page that is shown below the task name.

The task alert feature is designed based on two social design principles to encourage con-
tributions through motivation. First, needed contributions are visible with the progress of
tasks, i.e., uncompleted tasks with a progress lower than 100%. In a similar way overdue tasks
require contributions that have a higher priority since the end dates are already passed. The
task alert feature makes it easy to see and track these needed contributions (2a). According
the second social design principle deadlines have to be specified for tasks, while leaving people
in control (2d). End dates for tasks in our approach can be considered as deadlines since they
are used to specify when a task needs to be finished. The users in our approach are at any
time in control of the deadlines, i.e., they can change the end date of their tasks at any time.
Although this might sound contradictory at the first glance, it is very important that users
are able change the start and end dates of their tasks. As described in Section 2.2, knowl-
edge workers require a high degree of autonomy and self-organization to fulfill their tasks due
to the unpredictable characteristic of knowledge work. Despite this flexibility for knowledge
workers it is still possible to describe fixed end dates, e.g., deadlines for project deliverables
that cannot be delayed. For this purpose parent tasks can be defined with fixed end dates,
e.g., by project managers. Thereby, knowledge workers are still able to change the end dates
of their tasks, but a warning in the parent task is automatically created (cf. task states in
Section 3.3.4). The responsible users of the parent and subtasks need to resolve the conflicting
tasks collaboratively.

Counter Duration of Task

Overdue Tasks

@ Task D £ 01.03.2015 - 20.05.2015
@ Ended 13 days ago
Link to the Page Overdue Days

Figure 3.14.: Alert feature visualizing open tasks that have passed the specified end date

87

3. Structuring Knowledge-Intensive Processes

3.3.8. User Rating and Skills

One of the requirements for software support of KiPs that is described in Section 2.2 is
concerned with the modeling of knowledge workers’ skills and resources. Figure 3.15 shows a
screenshot of the user rating and skills feature. The skills visualization shows the distribution
of the most important expertises for the user. To illustrate this feature we completed one
sample task with this user account. In this example, the completed task has three expertises
assigned, i.e., the expertises in the skills visualization are equally distributed. By hovering over
an expertise the total number of completed tasks with this expertise and the relative share as
percentage of this expertise are displayed. The visualization only shows the expertises having
at least 5% share and never contains more than ten expertises for readability reasons. The
ranking visualizes the percentile of completed tasks compared to the remaining users in the
system. The computation of the ranking might also be weighted depending on the duration
or difficulty of the task, e.g., some expertises might have a higher multiplier. New tasks could
be assigned to users based on their skills and their rating in the system.

This feature encourages contribution through motivation and commitment since it is based
on several social design principles. Specific users can be asked on tasks of interest to them
(2b), whereas we consider tasks that require expertises that a users has already collected
as interesting. Users also receive frequent feedback about their personal goals (2e), e.g., in
case they want to gather certain expertises the skills visualization is updated every time they
finish a task. The skills and ranking gives users rewards in the profile that are tied to their
performance (2h). According to social design principle (2j) users are more willing to contribute
when the group is small, they are committed to the group and contributions are unique. These
groups and contributions can be organized around certain expertises. Commitment can be
encouraged by clustering members based on their expertises (3a), so that they can identify
with the community, e.g., clustering all users having the expertise A. Finally, users might be
more committed to tasks that are related with expertises that belong to their skills (3e).

Profile of Matheus Hauder Profile Picture

Percentile

You completed more tasks than
100% of the other users.

Experisel LXpertise A v
Expertises 0% 50 % 100 %
Expertise D
Name: Matheus Hauder
Email: matheus. hauder@tum de
Skills Rating

Figure 3.15.: User profile of the author after completion of a task with sample expertises

88

3. Structuring Knowledge-Intensive Processes

3.3.9. Personal Worklist

Every user has an own personal worklist that summarizes all tasks assigned to this user.
Figure 3.16 shows a screenshot of the personal worklist with the previously created sample
tasks that are assigned to a user. The worklist is divided into two sections for open and closed
tasks. Main purpose of the personal worklist is that users see all tasks that are assigned
to them. In our examples, we assigned tasks only to one wiki page for readability reasons.
Usually tasks assigned to a user will be located at many different wiki pages. The personal
worklist is useful for its owner to prioritize open tasks for processing. Tasks are ordered by
the end date in the worklist, i.e., the next due task is always shown at the beginning. Other
users can take a look in the personal worklist to get an overview about what colleagues are
currently working on.

The social design principle to highlight more active tasks (1d) is considered in this feature,
because only open tasks ordered by their due date are shown in the personal worklist. In case
a user has overdue tasks assigned, they are also shown at the top of the personal worklist.
Every user has an overview about his required contributions (2a), i.e., all tasks assigned to
a user are visible in his personal worklist. Users are in control of their deadlines and the
personal worklist helps them to specify these deadlines based on their future workload (2d).
Without an overview about future obligations it is hardly feasible to schedule deadlines for
tasks. Based on their obligations that are shown in the personal worklist, users can manage
deadlines for their upcoming tasks. For example task F is scheduled shortly after task G,
although the progress of task G is just at 5% indicating that much work is still outstanding.

Counter Duration of Task
Open Tasks
a Task D £401.03.2015 - 20.05.2015
Test Page © Ended 13 days ago
' Task B £215.04.2015 - 15.07.2015
! Task G £201.05.2015 - 28.07.2015
Task F £201.04.2015 - 01.08.2015
[} Task H £201.03.2015 - 18.08.2015
2 Test Page
. Task A £215.02.2015 - 15.09.2015
4 oy ana
est Page
‘ Task C £215.06.2015 - 18.11.2015
Closed Tasks
. Task E £2 Finished on: 01.06.2015

Figure 3.16.: Personal worklist showing all sample tasks that are created for the user

89

3. Structuring Knowledge-Intensive Processes

3.4. Design of the User Interface

This section presents he design of the user interface based on the features introduced in
Section 3.3. The features and the design of the user interface are presented in two separate
sections since the features are quite independent of the user interface design. Depending on
the application scenario the proposed design might be adapted without changing the set of
features, i.e., the task representation could be shown more prominently in the user interface.
Other possibilities could be the design of domain-specific user interfaces or the integration of
the features in existing applications. In Section 3.4.1, the user interface of the social feed is
introduced that is shown as landing page in the system. In Section 3.4.2, the representation
of work plans on wiki pages is described, whereas work plans are an extension of Hybrid Wiki
pages introduced in [Nel2|. Finally, Section 3.4.3 introduces the user interface design of the
mobile website. Due to the smaller screen size on mobile devices the features for KiPs and
possible user interactions have to be adapted, i.e., the set of user interactions on the mobile
client is reduced. The design introduced in this example should not be treated as fixed for
all application scenarios of KiPs and it is rather a suggestion for a possible implementation of
our approach.

3.4.1. Social Feed

Although the social feed is not directly related to the structuring of KiPs, it is an important
part of the user interface. It improves communication among knowledge workers in the context
of history events. The history events in the social feed are the same as illustrated in Figure 2.6
within the introduction of the thesis. Three kinds of different history events are distinguished
in the social feed. (1) Discussion history entries are simple text strings that are posted by
users in the system. (2) Task history entries are automatically generated after tasks changed
their progress or were completed. (3) Data history entries are automatically generated after
attributes on work plans are changed. Additional history events are currently not considered
since workers should only receive the most important events that are related to their work.
Figure 3.17 shows an annotated screenshot of the social feed that is initialized with the same
sample data like in the previous examples for the features. The social feed is shown as landing
page in the system for every user, i.e., it is shown always after users successfully logged in to
the system. New history entries are highlighted for every user individually with a red badge
that contains a counter in the navigation bar. This counter is reset after the user has seen the
social feed.

Main advantage of the social feed is the possibility for knowledge workers to communicate
within the context of a history event, e.g., after someone completed a task other workers can
comment this event (cf. comments in Figure 3.17). Commenting is possible for all three kinds
of history events in the social feed and the comments are updated in real-time to facilitate
discussions about history entries. The three buttons shown at the top of the social feed can
be used as filters, i.e., after clicking on one or more buttons the respective history events are
filtered. Every history event is associated with one color that is used consistently throughout
the user interface. Another advantage of the social feed is that workers are aware of all
activities that are performed within the KiPs. In particular for highly collaborative settings
this can be a very valuable feature since it might avoid time consuming meetings between

90

3. Structuring Knowledge-Intensive Processes

workers that are responsible for the same or interrelated tasks.

Existing activity feeds that

can be found in many Enterprise 2.0 applications are quite unstructured, e.g., the activity
feed used for Hybrid Wikis [Nel2|. The social feed presented in this thesis takes advantage of
the structure that is based on the lightweight structuring concepts provided by authors, i.e.,
task C was updated to 100% (cf. Figure 3.17). Without this structure the information about
the progress of tasks would only be available implicitly in unstructured activity feeds. In the
prototype history entries are never deleted from the social feed and users can go back the
entire history. In case a huge number of events are generated, workers might receive events in
their social feed that are not directly relevant for them. In future work intelligent algorithms
could be applied to prioritize history events for every user.

Figure 3.17.: Social feed with activities that are performed in the work plans

Filter for History Entries

Tasks

What's new?

|

Tuesday, 19.05.2015 Newlscusaon

Matheus Hauder
This is a test comment that demonstrates the use of the discussion features|

Matheus Hauder
finished task Task C in Test Page

Matheus Hauder First comment
015 at 09:35 &

Matheus Hauder Second comment

19.05.2015 at 09:35 @ Comments

& Matheus Hauder Third comment

19.05.2015 at 09:35

Matheus Hauder
updated task Task C to 100% in Test Page

Matheus Hauder
added attribute Attribute A in Test Page

91

3. Structuring Knowledge-Intensive Processes

3.4.2. Representation of Work Plans

Figure 3.18 shows a screenshot of a work plan that is based on the same sample data that is
used in the previous examples. The timeline feature is placed prominently at the top of the
wiki page to lead the attention of the user on the progress of current tasks. Below the timeline
the unstructured text of the wiki page is shown, which can be edited by clicking on the pencil
button. On the right hand side of the wiki page the attributes of the Test Page are shown.
In this example, the three attributes have different data types. Attribute A contains a date
attribute value whereas the date is entered with a date picker. Attribute B contains a boolean
value that is entered with a simple checkbox and Attribute C' is a string value. New attributes
can be added with the New Attribute button that is shown at the bottom of the infobox. On
the left hand side users can navigate to other wikis and wiki pages with the explorer menus.
Work templates are written in green color at the bottom of every wiki, e.g., the work template
Page that is used in the example.

The navigation bar is located at the top of the screenshot and always visible on every page.
The side window for the task representation can be enabled on the left hand side of the
navigation bar. The counter in the red badge indicates how many tasks on the current wiki
page are enabled. The DARWIN logo can be used to navigate back to the social feed. All
overdue tasks for the user are shown with the alert feature that also contains a red badge with
a counter. Next to the alert feature existing groups are shown in the system. The counter for
the social feed shows how many new history entries have been generated since the last visit
of the feed. Next to the full text search a green button is provided to create new wikis and
wiki pages. During the creation of new wiki pages an existing or new type can be assigned.
Finally, the name of the user is shown next to the new button that can be used to enter the
profile page. The arrow next to the profile opens a context menu to logout from the system.

Tasks Alert Social Feed Profile
=7 DARWIN 1 Alet 4 Groups @16 Feed _ o N &demo?2 ~
Af si) Test Page Attributes of this Page
B Test Wik s [Attribute A 31.08.2015
Test Page
Page ” v
TaskC ttribute B
Attribute C
TaskG | 5%
+ New attribute
sk [25%

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod n

tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At Attributes
vero eos et accusam et juste duo dolores et ea rebum. Stet clita kasd gubergren, no

sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet,

censetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et

dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo

dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem

ipsum dolor sit amet.

Text of the Wiki Page

Figure 3.18.: Screenshot of a sample work plan that is represented on a wiki page for authors

92

3. Structuring Knowledge-Intensive Processes

Task Representation

Tasks for this page

Add task to this page

Sl :I Mandatory
Attributes

o TaskB Delegate | Skip

& TaskC

@ TaskD

P TaskF

Y Taskc

B TaskH

1 completed task

. Task E

Metadata for current task:

Startdate: 15.04.2015
End date: 15.07.2015
m Progress: 80%
Expertise: | Add expertise
Expertise Ax Expertise B x

Expertise C x

Close

Figure 3.19.: Screenshot of the sample work plan with an enabled side window for tasks

Figure 3.19 shows a screenshot of the same sample page with an enabled side window for
tasks. The side window can be enabled by clicking on the task icon in the navigation bar or
by dragging an attribute. After the side window is enabled the remaining page is immediately
grayed out and the width of this window is the same like the explorer for the navigation.
With an enabled side window it is still possible to read the entire wiki page. After a task is
enabled all mandatory attributes assigned to the task are filtered (cf. Task B and Attribute C
in Figure 3.19). The side window is closed as soon as the user clicks into the gray area of the
wiki page or uses the close button. After the side window is closed the task remains activated
so that users can enter the mandatory attributes to complete the enabled task. Next to the
filtering of mandatory attributes the timeline of subtasks is shown in case the enabled task
has attributes assigned that reference wiki pages with tasks.

If the selected task has attributes with pages as values assigned, the timeline is shown with
tasks of these subpages so that users can easily browse through subtasks. The filtered manda-
tory attributes can also be used to navigate to subpages. Tasks can be completed by setting
the progress to 100% in case no attributes are assigned. Nevertheless, user are not forced to
enter missing attribute values in this way. Values for attributes can be entered directly on
the wiki page without enabling a task before. In this case the progress of related tasks is
updated by the system in the same way. In our approach we consider tasks as means to guide
knowledge workers with the steps that they might undertake. However, tailors might specify
dependencies between tasks with rules to enforce certain traces if this is necessary. Sometimes
this might be necessary since it is not always desired to give authors absolute freedom.

93

3. Structuring Knowledge-Intensive Processes

3.4.3. Mobile User Interface

The design of the mobile user interface is illustrated in Figure 3.20 with three screenshots. A
detailed description of the mobile user interface is available in the master’s thesis in [Ab15].
Due to the lower screen size some pages have to be separated with tabs, e.g., the profile has
three tabs for closed tasks, open tasks and expertises. The mobile interface has a reduced set
of features for tasks and attributes since some use cases are less relevant. It is not possible
to assign attributes to tasks with the drag and drop feature that is available in the desktop
version. Another limitation is that there is no possibility to upload files for attributes. These
features are very difficult to implement in a satisfying way and less frequently used on a mobile
device. The majority of the other features is executable in the mobile interface, e.g., creating
tasks, wiki pages, attributes and wiki pages.

The social feed is very similar to the desktop version with three filters at the top for discussions,
tasks and data. Users can comment every history entries in the feed. Due to less relevance
the features for editing comments and the overview of users that liked a history entry are dis-
regarded. One extension is the infinite scrolling that automatically reloads feed entries. Wiki
pages are divided into three tabs for tasks, text and attributes. Creating and editing is pos-
sible for tasks and wiki page text. Features that are disregarded are the editing of attributes,
timeline and assignment of attributes to tasks. The selection of tasks with the filtering of
mandatory attributes is available for authors. The editor for the wiki page text is simplified
to avoid the toolbar on the small screen. In the profile page expertises are summarized with
bars, whereas it is not possible to filter tasks by selecting individual expertises.

Social Feed Wiki Page Profile

= Feed Main Page (o}
|
Discussion Tasks
Attributes of this Page
Attribute A 31.08.2015
Matheus Hauder
Matheus Hauder
Attribute B Vs
This is a test comment that
demonstrates the use of the discussion
features! i Expertises
Attribute C

Expertise A

Matheus Hauder [
finished task Task D in Expertise E
Expertise D

Expertise B

Matheus Hauder

Figure 3.20.: Screenshots of the social feed, wiki page and profile in the mobile user interface

CHAPTER 4

Implementation

The concepts for structuring KiPs presented in Section 3 are implemented in a software so-
lution called Darwin. This software solution is used for the case studies and the evaluation
that are presented in the subsequent Chapters 5 and 6. In the following three sections of this
chapter implementation aspects of the prototype are presented in detail. In Section 4.1, we
present the implementation related to the lightweight structuring concepts for end-users. This
includes an overview about the architecture and used frameworks which provide the techno-
logical foundation. The implementation of the conceptual data model and the Application
Programming Interface (API) of the server are described. Finally, some selected implemen-
tation aspects that are relevant for authors are presented. In Section 4.2, the workbench for
CMMN that is used by tailors is introduced. After the underlying technology is explained,
the method complexity based on our specification subset is computed. The workbench imple-
mentation is explained based on the interaction with elements of the process. In Section 4.3,
some implementation aspects that are relevant for the mobile interface are described. Similar
to the previous sections the underlying technology is explained in a first step. Among the se-
lected implementation aspects for the mobile interface is the navigation. This is a challenging
issue due to our extensive metamodel that captures process as well as data structures. This
chapter concludes with the implementation of the infinite scrolling for the social feed that is
implemented in the mobile interface.

4.1. Software Support for Knowledge-Intensive Processes

This section describes the software solution that is developed within this thesis to demonstrate
and evaluate the feasibility of our approach to support the collaborative structuring of KiPs.
The software solution is developed from the scratch although it extends the concept of Hybrid
Wikis [Nel2]. The initial design of the software architecture and a basic implementation
is provided in [BI13]. Main goal of the development is a lean implementation that can be

95

4. Implementation

used to evaluate our research questions introduced in Section 1.2. Therefore, unimportant
features that are not related to the evaluation of these research questions are not covered
in the current version of the implementation. In order to use the solution in an organization
several extensions might be necessary, e.g., versioning of wiki pages, integration with directory
services and an improved management of user accounts with an integration to other systems.
However, the solution is designed to be easily extensible and scalable so that an eventual
extension with these capabilities is possible.

4.1.1. Architecture

The architecture of the implemented software solution is illustrated in Figure 4.1. Starting
from the top with the participating roles in our approach, every role has on own user inter-
face that is designed specifically for their purpose. All user interfaces are developed for web
browsers which makes them platform independent. The generic user interface allows authors
to structure KiPs with the work plans as described in Section 3.4.2. In addition, authors
are also able to use the software from a mobile device with the interface presented in Sec-
tion 3.4.3. Visitors can also use both interfaces but they are only able to read the content.
The generic user interface uses Twitter Bootstrap' that contains HTML and CSS design tem-
plates for forms, buttons, navigation and other interface components. AngularJS? is used to
declare dynamic views by extending HTML vocabulary with new directives. Main advantage
of AngularJS is its data binding that automatically updates the view whenever the underlying
models changes. Another advantage that is very valuable for the development of our software
solution is the reusability of directives in AngularJS that can be executed in different places.
We incorporated AngularStrap? in order to ease the integration between Bootstrap and An-
gularJS. It provides a set of native directives that can be directly reused in the interface, e.g.,
the worklist feature uses the directive for the side window provided by AngularStrap.

The mobile interface is a completely separate front-end implementation compared to the
generic interface. This is necessary since it has a limited set of features compared to the
generic interface that is used for the desktop version. Depending on the device that is making
the request in the browser, the main controller switches to the right implementation. The
mobile interface is implemented using Angular Material*, which is described in detail in Sub-
section 4.3.1. Main reason for this decision is that Angular Material is particularly suitable
for interactions with mobile devices. Finally, tailors work with a subset of the generic user
interface that is only visible for them and it could also be entirely extracted as separate
implementation. In this interface the CMMN workbench that allows the definition of work
templates is implemented. The workbench is described more detailed in Subsection 4.2. This
subset of the user interface requires a library for visual diagrams to support the modeling using
the CMMN standard. At the time when the software solution was developed there were no
existing implementation of the standard available. Therefore, we developed an own CMMN
editor based on the JointJS® diagramming library. It basically allows to create interactive
generic diagramming tools for different purposes and it is written entirely in JavaScript.

'http://getbootstrap.com/, last accessed on: 2015-06-06
*https://angularjs.org/, last accessed on: 2015-06-06
*http://mgcrea.github.io/angular-strap/, last accessed on: 2015-06-06
‘https://material.angularjs.org/, last accessed on: 2015-06-06
*http://uww.jointjs.com/, last accessed on: 2015-06-06

96

http://getbootstrap.com/
https://angularjs.org/
http://mgcrea.github.io/angular-strap/
https://material.angularjs.org/
http://www.jointjs.com/

4. Implementation

A

Generic g Mobile g Tailored ‘J‘

| REST API §
#Scala gScala
I Controllers > Models '
Salat
S R playp .
v
— editing
MongoDB ‘ -- reading

— dependency

Figure 4.1.: Architecture of the implemented software solution

In this thesis we provide the implementation for these basic three user interfaces which are
independent of a specific application domain. Due to our extensible architecture new inter-
faces can be easily build for domain-specific application scenarios, e.g., for healthcare, project
management, or software engineering. In particular the interface for end-users could be de-
veloped entirely new or adapted for different domains. Although we are convinced that the
generic user interface can be used for most of the domain specific application scenarios as well,
it might be necessary to provide another design or taxonomy that is easier to understand for
end-users. In contrast to the generic and mobile interface that might be specific for end-users,
the tailored interface will likely be the same across all application scenarios since it is based
on the CMMN standard. The separation between the frond- and back-end is loosely coupled
to make the development of new interfaces comfortable. Our server exposes various interfaces
that are based on the REST architectural style presented by Fielding in his PhD thesis [Fi00].
All interfaces in the API of our server communicate via JSON® and are described more detailed
in Subsection 4.1.3.

Shttp://wuw.u3schools.com/json/, last accessed on: 2015-06-06

97

http://www.w3schools.com/json/

4. Implementation

Our server is implemented in the play framework” that is described in detail in Section 4.1.2.
Main advantages of this framework are its scalable stateless architecture and the comprehen-
sive ecosystem that provides plenty of modules. It also specifies a basic software architecture
that already divides all classes into controllers and models. We decided to implemented the
system in Scala, which is an object-oriented and functional programming language that is
explained in [Oa04|. The models are only used to define the data structure including required
functions for the basic create, update and delete operations. The entire logic is implemented
strictly in controllers and we were anxious not to mix up both layers we each other. The de-
pendency is one directional from controllers to models, i.e., calls from the model layer upwards
are forbidden. All models are stored in the database using the Salat® library. The database for
the software solution is the document-oriented MongoDB?. Salat is a bidirectional serializer
for case classes that are implemented in the Scala programming language. For this purpose
it builds directly on cashbash'®, which is the internal query language from MongoDB. Using
MongoDB provides several advantages for the software solution developed in this thesis. First
of all it supports dynamic schemas much better than relational structures provided by tradi-
tional databases. Another reason is its ability for horizontal scaling based on sharding that
allows the usage of distributed parallel instances. Files are not stored directly in the database
of the prototypical implementation and always reside in the file system of the operating system
within a static folder.

4.1.2. Introduction to the Play Framework

According to the philosophy of the play framework!'! it follows five design principles. First,
it is build for asynchronous programming so that long-living requests that are based on an
event model are possible. Actors are implemented as core concept in the framework that allow
the simple development of concurrent entities. These entities handle messages asynchronously
that are used with a pattern matching to define the behavior of actors. Second, it is focused
on type safety through its statically typed programming language in the back- and front-end.
Through this design decision, the compiler is able to detect errors in the template language
as well. Third, it supports Java and Scala as built-in programming languages. Scala is in the
core of the framework and not only available as separate module. Fourth, the powerful build
system is easy to use with the three simple commands new, run and start that are sufficient for
the deployment. Creating standalone versions of a play web application can be done with the
dist command. With this command the framework packages all required files and generates an
execution script that can be started without any additional configuration. The build system
allows hot code reloading and displays error messages in the browser to improve efficiency
of developers. In case more sophisticated build and deployment is necessary, the underlying
interactive build tool sbt can be adapted. Finally, the play framework is not restricted to SQL
databases since any store driver can be used within the framework, e.g., the salat driver for
MongoDB that can be used with the Scala programming language.

"https://www.playframework.com/, last accessed on: 2015-06-06
8https://github.com/novus/salat/, last accessed on: 2015-06-06

“https://www.mongodb.org/, last accessed on: 201
https://github.com/mongodb/casbah, last accessed on: 2015-06-06
"https://wuw.playframework.com/documentation/2.4.x/Philosophy, last accessed on: 2015-06-06

98

https://www.playframework.com/
https://github.com/novus/salat/
https://www.mongodb.org/
https://github.com/mongodb/casbah
https://www.playframework.com/documentation/2.4.x/Philosophy

4. Implementation

4.1.3. Application Programming Interface

The API exposes various interfaces that are used by the different front-ends as described in
Figure 4.1. In future work these interfaces could be also used to integrate other external sys-
tems with our software solution, e.g., for the integration of additional data sources. Figure 4.2
illustrates how incoming http requests to the server are mapped to controllers according to
the routes file that is defined in the play framework, i.e., in this routes file every URL is
mapped to exactly one controller. Given that the API exposes all necessary functions and is
well documented, it should not be necessary for developers to understand the internals of the
server implementation to create new frond-ends. Therefore, we provide a complete descrip-
tion of the most important API methods for the software solution developed in this thesis in
Appendix A. For the sake of brevity only core methods are described in this appendix. Most
of the controllers that are introduced provide some additional requests that are not explained
in this thesis and only briefly mentioned.

In general the available controllers can be grouped in four categories. Two categories are
related with controllers for work plans and work templates. The third category is related with
user management and the fourth category with the social feed feature. Every API method is
described with the used http method which can be GET, PUT, POST and DELETE in our
case. We provide the controller that is invoked by the API method and explain the expected
response or impact of the controller method in the server. Responses of controllers are always
transmitted in the JSON format. Controllers implement the behavior and interact with models
that are responsible for the efficient storage of entities in the database. The interaction of
controllers with the data model layer is described more detailed in the subsequent Section 4.1.4.
Finally, the internal implementation of the controller with its behavior is briefly explained.

Controller 1

HTTP Routes . Controller 2
Requests

Controller 3

Figure 4.2.: Routing of external requests to controllers in the play framework server

99

4. Implementation

4.1.4. Data Model

The controllers that are invoked by the API execute their business logic based on the models
in the play framework server. We carefully avoided calls upwards from models to controllers
to improve the maintainability of the server implementation, i.e., to allow the replacement
of controllers or models in the future. In this section, we introduce our data model that is
implemented in these models. For a better understanding we will start explaining the high-
level package structure of the models first. After this introduction these packages are explained
in detail with the attributes and methods of all classes. Figure 4.3 shows an overview of the
implemented data model with the main packages. Due to the complexity of the data model
attributes, methods and some relationships between the packages are hidden. Every package
is annotated with the name and section number in which it is explained in detail.

Attribute Wiki Persistance User

History

Page

Figure 4.3.: Implemented data model with the packages that are mapped to sections

100

4. Implementation

Everything related to the representation of attributes in the data model is located in the pack-
age attribute. This package contains an interface that is associated with an Attribute Type and
an AttributeAccessRight. The implementation of the attribute interface can be an Attribute or
AttributeDefinition, wheres attributes can have a reference to exactly one AttributeDefintion
to describe the relationship to work templates. Although the basic concepts for Attributes and
AttributeDefinitions were already proposed by Hybrid Wikis in [Nel2|, we extend them with
additional classes necessary to represent attribute types, access rights and task attributes.
TaskAttributes are necessary to manage attributes that are assigned to tasks. The implemen-
tation of the Wiki package is very close to the conceptual model introduced in Section 3.2.
It only consists of a Type, Wiki and TypeDefinition that are linked with each other. The
attribute package has a dependency to the wiki package with a reference from AttributeDefi-
nitions to TypeDefinitions. The persistance package contains several base classes that provide
functionality that is required in all other class of the data model, e.g., the serialization to and
from JSON for the controllers. In addition, the persistence package provides a FileService
that is used to store and retrieve files that are added as values for attributes.

The user package contains several classes to represent Users and Groups. In addition, every
user also has roles for the various TypeDefinitions assigned, e.g., visitor, author, or tailor.
These roles are not distinct and a user can be part of several roles at the same time for a
TypeDefinition. The roles are bound to TypeDefinitions because a user might be an author
for one TypeDefinition and tailor or visitor for another TypeDefinition. In the current im-
plementation roles are only bound to users and not to groups, whereas we consider this as a
valuable extension in the future, i.e., all users that belong to a certain group are authors for
a TypeDefinition. All required classes for the social feed feature are summarized in a package
called history. Every page has it own PageHistory that contains its entire history starting with
the creation of the page. The package contains an interface HistoryEntry that is implemented
by a variety of different types of history events. Examples for history events are attributes,
attribute values, wiki pages and tasks. Discussions in the feed are also treated as HistoryEntry
since they have the same functionality. The only difference to the other HistoryEntry classes
is that they are manually created by users. The basic set of history events that is currently
implemented can be easily extended in case new types of events are necessary in the future.
In addition to the history entries this package also provides a class for comments. This class is
bound to the HistoryEniry interface since every entry in the social feed can be commented.

Finally, the page package contains all classes that are related to the representation of wiki
pages. Similar to the packages for the attribute and wiki, this package consists of classes that
are necessary for the schema and instance level in the current stage of the implementation.
In future work all classes that are related to the schema level could be extracted to separate
packages. This new package might contain all classes that are necessary for the schema from
the current packages page, attribute and wiki. The class Page is used to store wiki pages
with a relationship to Files, Tasks and a Type. The class File is used to store files that are
not structured with attributes on the wiki page, e.g., files that are used as attachments or
shown in the text of the wiki page. Every Page has a class called Process assigned that is
determined by its TypeDefinition and contains the entire process structure consisting of Rules,
Stages and TaskDefinitions. The package contains a class TaskMetaData for every Task that
is assigned to a Page. The class TaskDelegation is used to store information on users that
delegate tasks.

101

4. Implementation

4.1.4.1. Attribute

In the following all attributes and methods of the classes in the package Attribute are ex-
plained in detail. Figure 4.4 shows the detailed data model of the Attribute implementation.
The Attribute interface has an attribute for the name and two methods for the equals and
hashCode operation. The equals method compares the name and type of two attributes to
determine whether the attributes are equal. Every Attribute has exactly one Attribute Type
and AttributeAccessRight assigned. A simple string is used to store the attribute type in the
class AttributeType, e.g., date, enum, string, or type. In case another wiki page is referenced
with this attribute the type of this wiki page is stored.

Attribute

Attribute Type

attributeType: String

AttributeAccessRight

readUsers: Set(Userld)
readGroups: Set(Groupld)
editUsers: Set(Userld)
editGroups: Set(Groupld)

mayUserRead(user: User): Boolean

1 type mayUserEdit(user: User): Boolean
1 authorized by
1 attribute
«Inteface»
Attribute
name: String
equals(other: Any): Boolean
hasCode(): Int
&
1
«implements» 1
1
1
T T T T T TS T n
I I
I I
I I
I I
L L
Attribute AttributeDefintion

attributeld: Attributeld

attributeDefinitionld: AttributeDefinitionld
* 0..1 |typeDefinitionld: TypeDefinitionld

N

update(newName: String, newType: AttributeType): Unit

TaskAttribute

«extends»

deletedOn: Set(Pageld)
createdOn: Set(Pageld)

PageAttribute

value: Set(String)

addValue(value: String): Unit
deleteValue(value: String): Unit

Figure 4.4.: Implementation of the classes for the attribute concept

102

4. Implementation

The class AttributeAccessRight consists of four sets that contain the ids of the groups and
users that have access. Users and groups can have read and edit access to an attribute, e.g.,
in case a user is authorized to edit the attribute his userld is stored in the set editUsers.
Every time users request read or write access to an attribute two method from the class
AttributeAccessRight are invoked. The first method mayUserRead has the requesting user
has parameter and returns a boolean as response. This return value determines whether
the user is allowed to access the attribute. Similarly, the method mayUserEdit determines
if the user is allowed to edit the attribute. Both classes Attribute and AttributeDefinition
implement this attribute. An Attribute might be assigned to exactly one AttributeDefinition
to support the late data modeling requirement. In the same way the AttributeDefinition has a
reference to a TypeDefinition with the typeDefinitionld. Users that are authorized to edit the
AttributeDefinition can perform an updafe method to change the name or type. Attributes
are extended to TaskAttributes and PageAttribute. The PageAttribute is stored on wiki pages
with a set of values that are stored as string. This class provides two methods that are used
to add or delete a value from the PageAttribute. The TaskAttribute is created every time a
PageAttribute is assigned as mandatory attribute to a task. This class contains two sets that
store pagelds of wiki pages in which this attribute was created or deleted for a task.

4.1.4.2. Wiki

The package wiki consists of three classes that are illustrated with their implemented data
model in Figure 4.5. The Wiki has a name that is shown in the explorer for the navigation.
The data structure of the wiki stores the date when it was created and the creatorld of the user
that initially created the Wiki. The date of the last edit operation on the Wiki is stored in the
lastEdit attribute. Every Wiki has an attribute text that stores the content of the Wiki. Three
methods are provided by the Wiki class that can be used to access to content of the Wiki. The
method ChildrenPages returns an iterator that can be used to iterate through direct children
pages, i.e., pages that have no parent page. The method descendantPages returns an iterator
with all pages within the wiki and not only the direct children. The method childrenTypes
returns all types that belong to this wiki with an iterator. These types are implemented with
the class Type that have a unique typeld. This typeld is stored by wiki pages that have this
Type assigned. The class Type provides several methods to maintain the attributes that are
assigned to the Type. The method getAttribute provides all PageAttributes that are assigned
on wiki pages with this type. Several different methods allow the adding and deleting of
attributes on wiki pages for this type. For this methods the pageld needs to be provided
since the methods only affect the page with this pageld and not all wiki pages that have this
Type assigned. The different implementations are mainly provided for convenience reasons,
since the only distinction between them is the set of parameters that is required, i.e., the
methods can be executed with the id of the Attribute or the name and type. Similarly, the
class TypeDefinition provides several similar attributes and methods that are used to describe
the schema level. Every Type can reference at most one TypeDefinition within a Wiki that is
identified with its unique typeDefinitionld. In contrast to the Type, the AttributeDefinitions
that are added to the TypeDefinition are shown on all wiki pages that have this TypeDefinition
assigned. The Type and TypeDefinition classes are used to maintain the data structure, while
tasks with their dependencies are maintained in a separate Process class that is described with
the page in Section 4.1.4.6.

103

4. Implementation

Wiki

Wiki
name: String
creatorld: Userld
created: Date 1
lastEdit: Date
text: String

childrenPages(): Iterator
descendantPages(): Iterator
childrenTypes(): Iterator

1

*

TypeDefinition
typeDefinitionld: TypeDefinitionld
name: String
getAttributeDef(): Set(PageAttribute)
addAttributeDef(name: String, type: AttributeType): TypeDefinition
deleteAttributeDef(id: AttributeDefinitionld): TypeDefinition

0..1

*

Type
typeld: Typeld *
name: String
getAttributes(): Set(PageAttribute)
getPages(): Set(Page)

Figure 4.5.: Implementation of the concepts in the wiki package

4.1.4.3. Persistence

All models that are stored in the database extend at least one class from the package Persis-
tance that is shown in Figure 4.6. The abstract class DBEntity is extended by all other models
presented in this section. This class provides some basic methods and logic that is necessary
for the interaction with the MongoDB database, e.g., the attributes dao and collection. The
methods of this class are important to retrieve and store data of the models from the database.
Two methods have to be overwritten by all models to read and write DBEntity classes that
are translated to JSON and vice versa. The method findBylds also needs to be implemented
by all models since it gathers DBEntity by their id, e.g., instances with the specified ids of the
class Type. The method beforeRemove has to be implemented by some models that require
a deletion process that can consists of more than one step, e.g., deleting a wiki page requires
the deletion of subpages, attributes and tasks that are attached before the wiki page can be
removed from the database. Several remove methods are provided to delete models from the
database based on the provided id or directly as member method of the model class.

104

4. Implementation

Persistence

«abstract»
DBEntity

dao: SalatDAO
collection: MongoCollection

findBylds(ids: Iterable(id)): Iterator
beforeRemoveld(ld: ID): Boolean
beforeRemovelds(lds: List(ID)): Boolean
remove(): Boolean

removeld(id: ID): Boolean
removelds(ids: List(ID)): Boolean
reads(json: JsValue): DBEntity
writes(entity: DBEntity): JsValue

«interface»
FileService

saveFile(file: File, pageld: Pageld, filename: String): String
removeFile(pageld: Pageld, filename: String): Boolean
getFile(pageld: Pageld, filename: String): InputStream

N

1
|

! .

| «implements»
|

|

|

1
LocalFileService

localFolder: String
checkFolderExists(folderPath: String): Boolean

Figure 4.6.: Implementation of the persistence package

Attribute values and wiki pages can have files attached that can be used to store arbitrary un-
structured content. In case the degree of structure is very low, wiki pages might have only files
attached without any structured information that is stored in attributes similar to a simple
content management system. On the other hand files are also important to document results
for tasks that are developed with external tool solutions. To support the handling of files the
persistence package provides a basic interface called FileService. This interface provides three
generic methods to save files, remove files and get files. In the current implementation we
only implemented one class based on this interface. The class LocalFileService is used by the
software solution to store files on the local filesystem. The attribute localFolder provides the
path the folder that is used to store the files. With the method checkFoldersExists the path
specified as parameter is validated. In future work additional implementations for the FileSer-
vice could be provided to tie distributed file systems in the software solution. Another possible
extension for the future is the implementation of version management in the FileService.

105

4. Implementation

4.1.4.4. User

The implementation of the classes necessary for the user management is illustrated in Fig-
ure 4.7. Similar to Hybrid Wikis presented by Neubert in [Nel2| our software solution provides
the notion of groups. The class group has an attribute delegatedTasks to store tasks that are
delegated by other users to this group. The concept of Hybrid Wikis is extended with a more
sophisticated class to represent Users. The basic user information stored in this class are the
name, email and password that are necessary to authorize users in the system. Additionally,
users can mark wikis and wiki pages as favorite to highlight them in the user interface. Users
can be added and removed from groups with two methods that are implemented in the User
class. In the current implementation the skills and the assigned tasks are not stored in the data
structure of the user. This information is queried by the user controller with every method
invocation based on the tasks that are assigned to the user. In future work information about
skills could be stored in the User class to avoid unnecessary computations by the server. Every
user can have several roles for the Types in the system assigned, e.g., users can have more than
one role that can be different for the Types. Three different classes for roles are implemented
which are called Visitor, Author and Tailor.

User |

Group

Visitor

groupld: Groupld
name: String ——
delegatedTasks: Set(TaskDelegation)

*

User

userld: Userld

name: String

email: String
password: String
image: String
favWikilds: Set(Wikild)
favPagelds: Set(Pageld) F=-—-
delegatedTasks: Set(TaskDelegation)

finishedTasks(): Set(Task)
addToGroup(groupld: Groupld): User
removeFromGroup(groupld: Groupld): User
updateFavWikilds(wikilds: Set(Wikilds)): User
updateFavPagelds(pagelds: Set(Pagelds)): User

Author

*

*

«interface» Tailor

Role

«implements»

Figure 4.7.: Implementation of the classes for user management

106

4. Implementation

4.1.4.5. History

The data model for the social feed is implemented with the history package and illustrated
with all classes in Figure 4.8. Since wiki pages are the core entities in our software solution,
every page has its own history that is stored in the class PageHistory. Every PageHistory has
its own unique pageHistoryld and pageld that references the wiki page that is assigned to it.
All history entries are stored in an attribute as list and the PageHistory class provides two
methods to add new entries. All history entries have to extend the base class HistoryEntry
that provides various methods and attributes that are common for all entries. Every entry has
a time attribute that stores the current date when the action that triggered the history entry
occurred. All history entries are created manually through a user that performs an action in
the system, e.g., finishing a task or uploading a new document in the system. For this purpose
the userld of the user is stored for every history entry. All history entries can be rated by
other users with the attribute likes. New history entries in the social feed can be highlighted
for users or a small badge with the number of new tasks is shown in the user interface. For this
purpose a set of userlds is stored with the attribute seenUsers since this information needs to
be captured for every user. In case no user has seen this history entry the attribute newEntry
is set to true.

The attribute historyAction stores one value from the enum HistoryAction. It consists of the
name of the basic actions that are possible for users, e.g., adding, delegating, or skipping
tasks. All history entries can be commented by users in the system, whereas the comments
are stored in a separate class called Comment. This class stores the creatorld of the user that
initially added the comment and the text. Every comment has a unique commentld that is
used by the HistoryEntry to reference the comments that are assigned. Two dates are stored
for every comment called created and lastEdit. The creator of a comment is able to invoke the
method update Text to make changes on his comment. Every call of this method updates the
attributes lastEdit. In the current implementation five classes are implemented that extend
the HistoryEntry base class, whereas new child classes can be created in the future in case the
social feed needs to be extended. The child class AttributeHistoryEntry is instantiated every
time a new attribute is added or changed on a page by authors. It contains an additional
attribute attributeName that is shown with the HistoryAction in the feed, e.g., user «name of
the user» removed attribute «name of the attribute».

The class Attribute ValueHistoryEntry is used to document actions that are related to changes
of attribute values, e.g., adding or deleting values from attributes. In case an attribute value is
changed many times consecutively only one history entry is generated. In addition to the name
this history entry stores the value of the attribute. Discussion entries are stored in the class
DiscussionFEntry with an attribute that stores the content as string. The discussion can be used
to make announcements or bring up a question for the community. While the other history
entries are indirectly created by other actions that are performed in the system, the discussion
entry is directly created in the social feed. The class WikiContentHistoryEntry stores changes
that are performed on the content of wikis and wiki pages. The TaskHistoryEntry stores
actions that are related to tasks. A history event is created for tasks that are delegated to
other users. The name of the user is stored in the attribute delegatedTo. Tasks with an
updated progress also generate a history event and in these cases the new progress is stored
in the attribute updatedTo.

107

4. Implementation

History
PageHistory «Enum»
pageHistoryld: PageHistoryld HistoryAction
entries: List(HistoryEntry) ADDED: HistoryAction
pageld: Pageld REMOVED: HistoryAction
add(entry: HistoryEntry): HistoryEntry CIRANEIED, [nisienyA@ilon
addBeforeLast(entry: HistoryEntry): HistoryEntry DELEGATED: HistoryAction
SKIPPED: HistoryAction
1 FINISHED: HistoryAction
RESTARTED: HistoryAction
UPDATED: HistoryAction
*
HistoryEntry
time: Date c
userld: Userld gmment
pageld: Pageld 1 . creatorld: Userld
likes: Set(Userld) text: String
historyEntryld: HistoryEntryld commentld: CommendId
seenUsers: Set(Userld) createq: Date
newEntry: Boolean lastEdit: Date
historyAction: HistoryAction updateText(newText: String): Unit
equals(historyEntry: HistoryEntry): Boolean
isDuplicate(historyEntry: HistoryEntry): Boolean

N

AttributeHistoryEntry
attributeName: String

AttribteValueHistoryEntry

attributeName: String
attributeValue: String

«extends»

DiscussionEntry

content: String
discussionEntryld: DiscussionEntryld

WikiContentHistoryEntry
wikiName: String

TaskHistoryEntry
taskld: Taskld
delegatedTo: String
updatedTo: Integer

Figure 4.8.: Implementation of the history package that is used for the social feed

108

4. Implementation

4.1.4.6. Page

The data model for the implementation of the wiki page is illustrated in Figure 4.9. Every
page has several Files and TuskDelegations associated. Files are stored with the FileService
from the persistence package. The TaskDelegation is created for every task that has been
delegated on this wiki page. Every Page stores history information in several attributes that
can be shown in the user interface, e.g., creatorld, lastEdit and lastFditorld. The content of
the wiki page is stored as string in the attribute tezt. In parentlds a list of pagelds for all
parent pages is stored. In the current implementation the attribute currentTaskld stores only
one task that is enabled, whereas this can easily be extended to store the currentTaskld for
every author of the wiki page. The attribute progress contains the average progress of all tasks
assigned to this wiki page to avoid the computation with every request of the wiki page. All
child pages of a wiki page can be returned with the method children. Updating the content
of the page is possible using the method updateText. Similarly, several methods are provided
for the class Page, e.g., to update the progress or add attribute to the wiki page. For the sake
of brevity not all methods implemented in the Page class are described in this thesis.

Pages can have several Tasks assigned and every task has exactly one class TaskMetaData.
The class TaskMetaData contains the start and end dates, progress and expertises for the
associated Task. The attributes overdueSubtasks and inconsistentSubtasks contain sets with
Tasklds. In case the associated task is already completed, the attributes finishedAt and
finishedByUser are populated. The class Task contains a string for the name of the task and
the unique taskld. Mandatory attributes that are assigned to the task are stored in atirtbutes
with a set of TaskAttributes. The position of the task in the CMMN workbench is stored in the
two attributes posX and posY. The access rights for the task are stored in several attributes
that contain a set of userlds or grouplds, e.g., Skip Users contains the userlds of the users that
are allowed to skip this task. Three methods are implemented in the class to evaluate whether
a users has certain access rights for a task, e.g., the method mayUserEzecute checks if the
user with the userld is stored in the attribute executeUsers or if the user is member of a group
that is stored in executeGroups. The methods isOverdueOnPage and isInconsistentOnPage
evaluate the state of the task based on the associated TaskMetaData.

Tasks can be associated to one TaskDefinition at most, e.g., in case the task is created through
the instantiation of a work template. The class Stage can contain several TaskDefinitions to
structure the work template. Stages and TaskDefinitions extend an abstract class ProcessE-
lement. These ProcesseElements can be linked through rules to define logical dependencies,
e.g., TaskDefinitions within a Stage are enabled after a preceding TaskDefinition is finished.
The ProcessElements with their Rules are associated to the class Process. Every TypeDefi-
nition has exactly one Process associated that describes the entire process structure. In our
approach only tailors are able to make changes on instances of the class Process based on
tasks and attributes that are provided by authors. For this purpose the class Process provides
methods to access tasks created by authors on certain wiki pages, e.g., getAvailable Tasks that
returns all Tasks for the wiki page with the id pageld. The method getFinished Tasks returns
a list of completed Tasks for the wiki page with the provided pageld. The creation of new
TaskDefinitions, Stages and Rules is performed in the interactive CMMN workbench that is
explained Section 4.2. For this workbench several methods are provided by the Process class,
e.g., newStage, newTaskDefinition and newRule.

109

4. Implementation

Page

File

name: String

Page

pageld: Pageld
creatorld: Userld
1 |lastEditorld: Userld

TaskDelegation

taskld: Taskld
delegatedByld: Userld

created: Date

lastEdit: Date

typeld: Typeld

attributes: Set[PageAttribute]
text: String

parentlds: List[Pageld]

1 | currentTaskid: Taskid

TaskMetaData

startDate: Date
endDate: Date
progress: Integer
expertise: Set(String)

isinconsistent: Boolean
finishedAt: Date
finishedByUser: Userld

overdueSubtasks: Set(Taskld)

inconsistentSubtasks: Set(Taskld)

addExpertise(expertise: String): TaskMetaData
deleteExpertise(expertise: String): TaskMetaData

progress: Integer

children(): List(Page)

updateText(text: String): Page
updateParentPage(parentPage: Page): Page
updateProgress(): Boolean
updateProgressOfParents(): Boolean

1

Task

name: String

taskld: Taskld

attributes: Set(TaskAttribute)
posX: Integer

Stage

posY: Integer

skippedOn: Set(Pageld)
executeUsers: Set(Userld)
executeGroups: Set(Groupld)
DelegateUsers: Set(Userld)
DelegateGroups: Set(Groupld)
SkipUsers: Set(Userld)
SkipGroups: Set(Groupld)

setPosition(posX: Integer, posY: Integer): Unit
addAttribute(attribute: TaskAttribute): Task
isOverdueOnPage(pageld: Pageld): Boolean
isinconsistentOnPage(page: Pageld): Boolean
findParentTasks(pageld: Pageld): List(Tasks)

TaskDefinition

mayUserExecute(userld: Userld): Boolean
mayUserDelegate(userld: Userld): Boolean

stageld: Stageld
posX: Integer
posY: Integer
name: String
tasks: Set(Taskld)

> name: String

taskDefinitionld: TaskDefinitionld
taskType: String
parentld: Pageld

mayUserSkip(userld: Userld): Boolean

Process

«extends»
«abstract» .
ProcessElement 1
processElementld: ProcessElementld
2
*
«interface»
Rule

sourceld: ProcessElementld
targetld: ProcessElementid

T

1

| «implements»

1

1

|
| St I
I I
I I
| |

TaskRule StageRule

taskRuleld: TaskRuleld

stageRuleld: StageRuleld

processld: Processld

typeDefinitionld: TypeDefinitionld

tasks: Set(Taskld)

newStage(name: String): Stage

newTaskDefinition(name:String, pageld: Pageld): TaskDefinition
deleteStage(stageld: Stageld): Boolean

newRule(sourceld: ProcessElementld, targetld. ProcessElementlid): Rule
updateProgressOfTask(pageld: Pageld, taskld: Taskld): Unit
getTaskldForAttribute(attributeld: Attributeld): Taskld
checklfTaskIsFinished(pageld Pageld, taskid Taskld): Boolean
getFinishedTasks(pageld Pageld): List(Task)
getAvailableTasks(pageld Pageld): List(Task)

110

Figure 4.9.: Data model of the implemented classes in the page package

4. Implementation

4.1.5. Assignment of Attributes to Tasks

Attributes can be assigned to tasks as mandatory deliverables that have to be created, i.e.,
tasks are automatically completed after all mandatory attributes are entered by the user.
Attributes are assigned to tasks with a drag and drop mechanism that requires no programming
capabilities. Authors can easily drag an attribute from the wiki page and drop it on the task
that has to create the value for this attribute. Figure 4.10 shows a sequence diagram with
the communication between the involved objects. The entire process starts with a user that
clicks on an attribute of the wiki page. This triggers the method openAside in the view
controller that opens the side window with all tasks that are assigned to the current wiki
page and visible for the user. After the user dropped the attribute on the desired task, the
method addTaskAttribute is started in the page controller. Both objects are abbreviated with
viewCtrl and pageCtrl. These viewCtrl and pageCtrl are implemented in the frond-end with
AngularJS. The pageCtrl in the frond-end formulates a http POST request with the name
and type of the attribute as well as the taskld of the task. This request is mapped to the
PageController in the server based on the mapping defined in the routes file.

In the PageController the method addTaskAttribute is invoked with the parameters that are
provided from the pageCtrl in the front-end. This method handles the entire logic that is
necessary for the assignment of the attribute to the task. In the first step the wiki page is
gathered with the findOneByld method. The required pageld for this method is provided
in the URL of the http request. In the second step the task that is selected by the user is
gathered in a similar way. The taskld for the gathering of the task is stored in the body of
the request. After the task is gathered the page controller invokes the addAttribute method
with two parameters. The parameters are the name of the attribute and the type of the
attribute, which are provided in the body of the request. The page controller stores the task
by invoking the save method as soon as the attribute is added. After the assignment of the
attribute is stored in the task, the page controller updates the progress. This is necessary since
the attribute assignment might have an influence on the progress, e.g., in case the assigned
attribute already has a value or the task already has a progress that is larger than 0%. In the
first case the attribute can have another wiki page with tasks assigned. The progress of these
subtasks needs to be incorporated for the new task.

Finally, the page controller updates the page progress by invoking the method updateProgress
of the page instance that was gathered previously. This method computes the page progress
based on the tasks and subtasks that are assigned to the page and stores the result in an
attribute of the page. After the addTaskAttribute method is completed it returns the http
status code ok. The pageCtrl waits for this response with a success method that triggers
the printing of a log message in the console and returns. After the pageCtrl is completed
the viewCtrl invokes the method loadPageData. The loadPageData method reloads the entire
wiki page by requesting the data structure of the page controller from the server. This is
necessary for two reasons: 1.) the progress that is visualized by the pie charts and the
timeline visualization have to be updated and 2.) the task might have been completed so that
the worklist needs to be updated. In the latter case new tasks might have been enabled if
the completed task has rules to other tasks assigned. Concurrent assignment of attributes to
tasks is possible since the mandatory attributes are not cached. Every time a task is enabled
in the worklist the entire page with its attributes is requested from the server.

111

4. Implementation

Add attribute to task

P _addAttribute}: task

addAttribute(name, type)

updateProgressOfTask(taskld)

e 7uqurateProgressOﬂ'ask: true

updateProgressOfPage()

{lgdateProgressOfPage: true

lapi/page/:pageld/task/attribute

l [psecu |
openAside()
Kol

2
5
2
<
2
]
<
=
=}
°
©

ddTaskAttribute: true

loadPageData()
]
I
Il

2viewCtrl
|
.

Figure 4.10.: Sequence diagram for the assignment of attributes to tasks on a wiki page

112

4. Implementation

4.1.6. Progress Computation

The computation of the progress for wiki pages is an important part of the implementation.
Most of the actions that users can perform in the system have an impact on the progress of wiki
pages and tasks, e.g., entering attributes values, assigning attributes to tasks, or creating new
tasks. After these actions the page controller automatically triggers the update for progress of
the page. Figure 4.11 illustrates the sequence diagram with the required steps to update the
progress of a wiki page. The process starts with the invocation of the updateProgressOfPage
method in the page object. The page object starts a loop for all open tasks that are assigned
on this page, i.e., completed tasks are omitted in the computation since their metadata is not
necessary for the computation of the progress. For these tasks the method findMetaData is
invoked to determine the values for the current progress. Based on the number of all tasks
that are assigned to the page and the values for the progress of open tasks, the page object
computes the current progress of the wiki page. After the new progress is computed the page
object is persisted in the database, so that simple get request of wiki pages don’t have to
compute the progress.

The method updateProgressOfPage invokes another method in the page object called wup-
dateProgressOfParents. Due to the hierarchical organization of tasks, changes on a lower level
have to be propagated to the root of the tree structure. The updateProgressOfParents method
consists of another loop that iterates through all parentlds that are stored as list in every page
object. For every parent page the list of relevant tasks is determined first. A relevant task
has a mandatory attribute assigned that references the current page object, i.e., relevant tasks
are influenced by the changing progress of the current page object. We also include already
completed tasks of parent pages as relevant tasks. Thereby, an already completed parent
task might be enabled again in case subtasks are enabled again. Enabling completed tasks is
possible by performing the redo function in the worklist of the wiki page. The progress for
these relevant tasks is updated with the method updateProgressOfTask by the process object
in another loop. This method computes the task progress based on the formula presented in
Section 3.2.3. During this update of the progress the state of the tasks is updated as well, i.e.,
inconsistent and overdue tasks are identified.

The inner loop is closed after the progress for relevant tasks of the parent pages are up-
dated. The method continues with a recursive call of the updateProgressOfPage function.
This method is invoked for all parent pages of the current page object, i.e., the update of the
progress for pages and their tasks incrementally grows to the root page of the tree structure.
After the recursive updateProgresOfParents method terminates, the enclosing updateProgres-
sOfPage method returns true for the page controller. The invocation of the updateProgressOf-
Page method is used sparingly to avoid unnecessary computations. The latest progress for wiki
pages and tasks is stored after every computation in a separate attribute (cf. Section 4.1.4).
Therefore, it is not necessary for read operations that have no impact on the progress of tasks
to invoke the udpateProgressOfPage method. With this approach the progress always reflects
the current state of work that is stored in the system. Another opportunity would be to
propagate the progress computation only at a certain moment in time, e.g., through nightly
updates of the progress.

113

4. Implementation

Update progress of wiki page, J

]]]

updateProgressOfPage()

loop [open tasks] J

findMetaData()

findMetaData: metadata

loop [parentlds] J

loop [relevent tasks] J

updateProgressOfTask(taskld)

T
|
I
I
|
|
|
|
I
updateProgressOfParem‘s()
|
|
I
I
|
|
|
I
1
1
|
|
|
]
I
|
|
|
I

G __ _ UpdateProgressOffask:tve , _____________| ‘

I

|

|

|

T

I

|

|

|

I
updateProgressOfPage()

T

|

|

|

I

|
k updateProgressOfPage: true

Figure 4.11.: Sequence diagram for the update of the progress of a wiki page

114

4. Implementation

4.1.7. Generation of the User Profile

Users are able to the see profiles of other users in the system to get a shared understanding
of their tasks and skills. The required operations to get a users’ profile are illustrated in the
sequence diagram in Figure 4.12. In the front-end the AngularJS controller profile Ctrl creates
a http GET request for the profile of a user with the userld. This request is routed to the
method profile in the UserController. In the first step the UserController requests all tasks
that have been created in the system using the findAll method. This is necessary because
three subsequent methods require this information and requesting only tasks related to the
user is not sufficient to determine the statistics that are shown in the profile. The first method
getClosedTasks gathers all tasks that have been completed by the user. This includes tasks
that are delegated and completed by the user. Every task is returned with the entire data
structure of the Task and MetaData class. Similarly, the second method getOpenTasks returns
all uncompleted tasks that are related to the user. The results for these two methods are used
to show the open and closed tasks for the user in the profile with the information about the
current progress. In Section 3.3.9 the user interface for the personal worklist is introduced as
part of the profile.

The third method that is invoked to get the user profile is called getUserRank. This method
is necessary for the rating feature that is introduced in Section 3.3.8. It counts the number of
completed tasks for the user and divides them with the number of all tasks that are completed
by the other users in the system. The resulting percentage is shown as ranking in the profile of
the user, e.g., the user has completed more tasks than 100% of the other users (cf. Figure 3.15).
In future work this method could take other factors for the computation of the ranking into
account, e.g., some tasks have more weight depending on their expertises. Another sensible
opportunity could be to apply the computation of the ranking only to a certain timeframe,
e.g., only consider the ranking for one month. In case the ranking is computed for the entire
lifespan of the application, new users that join the community might be deterred since a few
experienced users would dominate the ranking. For new users it would be very difficult to
achieve a higher ranking and this could be avoided with smaller timeframes for the ranking.
The method returns to the profileCtrl with the data structure of the user profile.

Another http GET request is created by the profileCtrl with the method ezpertiseChart.
This method creates the visualization of the expertises shown in Figure 3.15. We decided to
split the http request for the profile and the expertises because we plan to use both requests
separately in the future, e.g., to match tasks to users based on their expertises. The request
for the expertises is routed to the UserController that invokes the method getFinishedTasks
of the user. All finished tasks with the associated MetaData objects are returned to the
UserController. For every completed task the expertise in the MetaData are collected in
a loop. We only consider completed tasks in the computation of the expertises. For the
subsequent visualization expertises with a percentage that is below 5% are removed since they
are not readable in the skills chart. The filtered expertises are returned to the profileCtrl
that invokes the Highchart visualization'?. Highcharts is a JavaScript library for interactive
visualizations that provides several visualization types, whereas the expertises are shown in
a pie chart. The expertises can be selected in the pie chart to filter the tasks with these
expertises.

12

http://wuw.highcharts.com/, last accessed on: 2015-06-20

115

http://www.highcharts.com/

4. Implementation

Get profile of user J

I

|

|
i

o

/apiluser/.userld/profile

getClosedTasks()

- ==

<,,J

getOpenTasks()

| apilusert:useridiprofile: profile | |

expertiseChart()

]
I
I
I
|
|
I
I
/apiluser/.userld/expertises _L

loop [tasks] J

Figure 4.12.: Sequence diagram for the generation of the profile and expertises for a user

116

4. Implementation

4.1.8. Loading of History Entries in the Social Feed

The social feed is an important part of the user interface since it is shown as landing page for the
users and it aggregates all activities in the system. Figure 4.13 illustrates the sequence diagram
for the loading of history entries in the social feed. In the front-end the AngularJS controller
feedCtrl invokes the method getNextEntries several times through a callback function. The
method is invoked for every filter that can be applied in the social feed, i.e., data, tasks and
discussions. The method is invoked separately because only history entries for three pages
that are visible in the user interface are gathered from the server to avoid performance issues.
After the user navigates to the third page with the pagination of the social feed that is located
at the bottom, the feedCtrl automatically gathers the subsequent three pages with history
entries. In case three pages for all filters in the social feed are gathered, it might be that
not enough history entries are available. This might appear for instance if the last three
pages of the social feed only consist of task history entries and the user applies the filter for
discussions or data. The getNextEntries method creates a http GET request that is routed to
the UserController.

The UserController uses the method findAll of the PageHistory companion object with the
userld. The userld is provided as parameter to update the set with the userlds that have
seen the entries in the PageHistory. The method updateSeenUsers updates this set for every
instance of the HistoryEntry class, e.g., DiscussionEntry, TaskHistoryEntry, or AttributeHis-
toryEntry. This set is used to update the badge with the number of new history entries that is
shown in the navigation bar, which is computed for every user individually. Therefore, every
visit of the social feed automatically resets the badge in the navigation bar. After the update of
the seen users the PageHistory returns all history entries to the UserController. These history
entries are filtered with the filterinput parameter that is determined by the user in the social
feed, i.e., data, discussions and tasks. Users can select more than one filter with arbitrary
combinations of them. The filtered history entries are sorted by their date and returned to
the feedCtrl. The feedCtrl assigns the new history entries to the model and this triggers the
update of the social feed in the view. Depending on the specified filters the feedCtrl invokes
the getNextEntries method again using the callback function or continues with the remaining
operations.

Every history entry in the social feed can be commented by other users in the system, e.g.,
other users can comment the history event that is created for the completion of a task. New
comments for events are immediately shown in the social feed without a reload of the page in
the browser. With this feature it is possible to directly respond to comments of other users
in realtime. For this purpose the feedCtrl invokes the method listen to create a request that
is routed to the UserController. In the UserController a new event stream is created for the
user. The feedCtrl adds this event stream with the method eddEventListener to the social
feed. In the current implementation it is not possible to restrict history entries to certain
groups or users, i.e., every users has the same history entries in the social feed. Although
the history entries are visible for everyone in the system, access to the attributes remains
restricted. In future work visibility of history entries could be determined by the access rights
for the attributes. Another sensible extension would be to limit the visibility of discussions
entries for certain users or groups.

117

4. Implementation

Load history entries for social feed)

-feedCtrl :UserController geHistory
[l

loop [callback] J

getNextEntries(numberNewltems, numberMinitems, filterinput, callback)

[l
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
/apiluser/feed/:numberNewltems/:numberMinltems/filter/:fromDate _L

findAll(userld)
updateSeenUsers(userld)
findAll: entries
< ,,,,,,,,,,,,
filter(filterinput)
==
|
K- - I
findAll: filtered entries
S s
T
K-- I

“ listen()

/api/historyEntries/commentsFeed

K /api/historyEntries/commentsFeed: event stream DU

addEventListener(event stream)

Figure 4.13.: Sequence diagram with required steps to load history entries for the feed

118

4. Implementation

4.2. Case Management Model and Notation Workbench

In this section the interactive CMMN workbench that has been developed in [Gel4] is explained
in the detail. This CMMN workbench is not visible for authors and can be shown in a separate
user interface for tailors. In contrast to the features for the collaborative structuring of KiPs
introduced in Section 3.3, the workbench requires knowledge about process modeling with
CMMN. Nevertheless, it should be possible for tailors without programming skills to maintain
work templates with this editor. Tailors that work with this workbench can be authors at
the same time in our approach. We envision that selected authors for work plans can become
tailors through some training on the most important concepts of CMMN. For this purpose
we decided to implement a subset of the CMMN language that includes the most relevant
elements that are necessary to specify KiPs. In Section 3.1.2, we introduced two possibilities
for the evolution of KiPs in our approach that can be combined with each other. In the
first possibility the structure of KiPs emerges through contributions of authors and tailors are
mainly responsible for the maintenance of the work templates. In the second possibility tailors
predefine skeletons or blueprints for KiPs that are refined by authors during the execution.
In either possibility tailors can restrict the freedom of authors with rules that impose certain
dependencies in the KiPs, i.e., validation steps always have to be performed by a certain role
in the work plan. This approach supports the different degrees of structure for KiPs that are
necessary for the variety of application scenarios in this area. Both possibilities are supported
in our implementation of the workbench and described in the subsequent sections.

4.2.1. Introduction to JointJS

The technical foundation for the CMMN workbench is the JavaScript diagramming library
JointJS'3. The library provides generic functionalities for the visualization and interaction
with diagrams and graphs in the browser. The library is implemented with a simple model-
view-controller (MVC) architecture. The model consists of graphs that contain elements
and links with presentation attributes. In the view all graphical elements are rendered with
Scalable Vector Graphics (SVG). Main reason for the usage of the library in this thesis is its
ability to develop interactive diagramming tools. Several diagram types are already readily
available in the framework, e.g., BPMN, UML and finite state machines. These diagrams
are serialized and deserialized to JavaScript Object Notation (JSON) format, which makes it
suitable for the integration into our API that is based on JSON. Due to the recent publication
of CMMN the library provides no built-in support at the time when this thesis is being written.
Therefore, we implemented a new diagramming type in JointJS that is based on a subset of
the visual notation of CMMN. The developer of the library additionally provides a complete
diagramming toolkit for commercial applications. In this thesis only the open source core of
the library without the commercial diagramming toolkit is used. One of the limitations of the
library is that it provides no built-in support for the automated layouting of graphs. For this
purpose another implementation is available that integrates the layouting based on Dagre'
in JointJS!5. Dagre is a directed graph layout engine that can be used in JavaScript.

3http://www. jointjs.com, last accessed on: 2015-06-26

"https://github. com/cpettitt/dagre, last accessed on: 2015-06-26

5http: //www.daviddurman. com/automatic-graph-layout-with- jointjs-and-dagre.html, last accessed
on: 2015-06-26

119

http://www.jointjs.com
https://github.com/cpettitt/dagre
http://www.daviddurman.com/automatic-graph-layout-with-jointjs-and-dagre.html

4. Implementation

4.2.2. Measurement of the Method Complexity

An important aspect about process modeling languages that we consider in this thesis is the
issue of understandability [Fa09]. With every iteration of new process modeling standards,
these languages tend to become more and more complex, e.g., BPMN 2.0 [Al10]. In practice
not all constructs that are provided by these process modeling languages are useful or even
necessary for business analysts. In order to address this issue some authors proposed the
identification of subsets for BPMN (e.g., Zur Muehlen et al. in [ZMRO0S8|). A challenging
issue for this problem is the comparison of different subsets of process modeling languages
to determine which subset performs better in terms of understandability. One possibility to
measure an indicator for the understandability of process modeling languages is the metamodel
based complexity presented by Rossi and Brinkkemper in [RB96]. Equation 4.1 describes how
the complexity C'(M) of a process modeling language is computed based on its metamodel. In
the equation Oy, captures the objects that are defined in the metamodel of M. Rj; contains
the relationships that are defined in M between the objects. Pjs contains the properties
that are defined in the objects. The value of this equation might be an indicator for the
understandability of a process modeling language, i.e., higher values of C'(M) might imply
that the language is more difficult to understand for modelers. In our approach authors already
work with a very limited set of lightweight structuring concepts, e.g., tasks, attributes, types
and metadata for tasks. For tailors we also think that it is important to reduce the complexity
of the process modeling language to make the maintenance of work templates easier.

C/(M) = \/n(OM)2 + n(RM)Z + n(PM)2 (4.1)

Within a master’s thesis [Gel4| this computation has been applied on the metamodel of the
solution presented in this thesis. The result for the cumulative method complexity of the
proposed modeling language in this thesis is described in Equation 4.2. The values for the
objects, relationships and properties are determined based on the data model introduced in
Section 4.1.4. Only concepts that are relevant for the specification of KiPs are considered in
the computation, i.e., technical concepts that are only necessary for implementation reasons
are omitted. The objects contain the structuring concepts of the work plans and templates
since tailors need to be able to distinguish between them. Furthermore, the different types of
attributes are incorporated as individual objects, e.g., boolean, string, integer, date and page
values. The relationships contain two values for the rules that can be defined between tasks
and stages. The other two values capture the relationships from pages to attributes and the
type. Properties consist of the metadata that can be specified for tasks with the progress,
expertise, start and end dates. The remaining properties are related to names and values
for the objects. The overall cumulative complexity C’(M) for our process model is 34,29. In
Table 4.1 the cumulative complexity of other process modeling languages is summarized based
on findings of Marin et al. [MLVDP14|. BPMN is represented with its entire specification and
subsets that have been proposed by other researchers. Compared with existing approaches
the solution presented in this thesis has the lowest complexity except for event-driven process
chain (EPC) and UML activity diagrams.

C'(M) = /n(O)2 + n(Rar)? + n(Py)? = V222 + 42 4 262 = 34,29 (4.2)

120

4. Implementation

. Cumulative
Method Obj Rel Pro C lexit
omplexity
BPMN 1.2 90 6 143 169.07
BPMN 1.2 DoD 59 4 112 126.65
BPMN 1.2 Case Study | 36 5 81 88.78
BPMN 1.2 Frequent Use | 21 4 29 62.75
CMMN 1.0 39 4 28 48.18
DARWIN 22 4 26 34.29
EPC 15 5 11 19.26
UML Activity Diagrams | 8 5 6 11.18

Table 4.1.: Comparison of the complexity for different modeling languages [Gel4|

The results of the cumulative complexity measurement for the different process modeling
languages is illustrated in Figure 4.14. The height of the vertical lines describes the result of
Equation 4.1 for these methods. The full specification of BPMN 1.2 has the highest complexity
of all methods that are investigated. CMMN has a much lower complexity compared to BPMN
and all of its subsets, which is already one advantage of CMMN for the support of KiPs
according to [MLVDP14]. The process model proposed in this thesis reduces the complexity
of CMMN even more since only a subset of the proposed objects and properties are used. Only
EPC’s and UML activity diagrams have a lower complexity since these languages provide fewer
properties. In future work the process model for work templates might become more complex
in case more functionalities are required in practical application scenarios. For the lightweight
structuring concepts in the work plans we expect much less changes in the future, i.e., the
concepts introduced in Section 3.2 should remain rather stable.

o
o
« BPMN
o
Te]
@ 2
8 8 @
a - BPMN C.S. 60 §
O UWC BPMN DOD] 55 E
3+ CvMMN ¢ 50 CCT':’
DARWIN '
BPMN F.U.
7 T 4.5
© ; ; ; « 4.0
0 50 100 150 200
Properties

Figure 4.14.: Visualization with the cumulative complexity for our approach [Gel4]

121

4. Implementation

4.2.3. Interaction with Elements

In this section the basic interactions with elements in the CMMN workbench are described. In
the current implementation the CMMN workbench can be accessed by clicking on the name
of a work template. In future work the CMMN workbench could be migrated to a separate
user interface, e.g., another web interface that can be accessed with a browser or a client that
is based on eclipse'® or Microsoft Visio!”. In the CMMN workbench tailors can maintain
the process structure for work templates. Figure 4.15 shows a screenshot with an excerpt
of the CMMN workbench. The workbench contains the tasks that were already used in the
previous examples. Above the CMMN diagram the TypeDefinition Page of this work template
is shown. Two buttons are displayed after tailors enter the diagram with their mouse cursor.
These two buttons can be used to create a new stage or task. After clicking on one of these
buttons a new window opens that can be used to enter the required information for the new
stage or task. Below the buttons the diagram contains the tasks A to H that are created
in the sample. In this sample the process contains no stages and there are no dependencies
defined with rules. The tasks contain an icon that is used to denote so called blocking human
tasks in CMMN, i.e., these tasks are waiting until the work is completed. The position of
the elements in the CMMN workbench can be changed and the coordinates are stored in the
database.

Type Definition

/ Page \

+ +
l\?g ’ |‘:|5 New Task/Stage
8 8 8 ‘ 8 8 8 8 ‘
Task & Task B TaskC TaskD TaskE TaskF Task G TaskH
Tasks

Figure 4.15.: Excerpt of the CMMN workbench that contains the previously used samples

https://eclipse.org/, last accessed on: 2015-06-29
"https://products.office.com/de-de/Visio/, last accessed on: 2015-06-29

122

https://eclipse.org/
https://products.office.com/de-de/Visio/

4. Implementation

The interaction with tasks is illustrated in Figure 4.16 with the sample Task C. After hovering
of the task element an additional button appears similar to the creation of a new task or
stage described in the previous example. This button shows an arrow with a plus sign that
can be used to create a new rule for the selected task. After clicking on this button a new
window appears that is used to select which task or stage should be associated with the new
rule. Since Task C has no rules associated in this example, it is shown immediately after the
work plan is created. The name of the task is automatically shortened in case it exceeds the
available space of the shape.

Task

TaskC
New +/
Rule

Figure 4.16.: Task interaction

CMMN only provides visual elements that are directly related to the process structure. Al-
though the standard contains a generic information model, it provides no solution how this
information model can be linked to the process structure in the notation. Therefore, it is
necessary that the runtime environment provides content management services for CMMN,
e.g., based on the Content Management Interoperability Services [MB15]. Figure 4.17 shows
how the properties for the sample Task A can be defined in the workbench. In the first column
of the table the name of the task is shown. Mandatory attributes for the task in the work
template can be defined in the second column. In the work plan authors can perform this
operation with drag and drop for one instance of the template. In the third column the roles
for the task in the work template are defined. New roles can be added by writing the name
of the group or user in the input field. In the example Task A can be executed and skipped
by every user that is registered in the system. Similarly, all tasks in the work template have
their own properties in the workbench that are categorized by the stage of the task.

Stage

Tasks (no Stage)

Task Required attributes Roles
Task A » *‘ Execute Delegate Skip
| — & everybody v v
Altribute A
Aftribute B
Attribute C |
Name Mandatory Attributes Task Roles

Figure 4.17.: Screenshot of the properties for one task in the CMMN workbench

123

4. Implementation

In our approach work plans might have no restrictions at all to support unstructured processes
in which this is not desired, e.g., science processes described in [Gil5b]. Another possibility
could be that rules are unknown due to a low maturity of the work template and they need to
emerge first. We delineate two cases in which the definition of rules is necessary. After several
iterations of the same work plan recurring patterns for dependencies might arise, e.g., some
traces of tasks are always executed in the same order (case 1). In other application scenarios
dependencies might be required to avoid undesired behavior (case 2). Figure 4.18 shows an
example for a simple rule between two tasks in the CMMN workbench. In this thesis we refer
to producer and consumer tasks that are associated with rules. A producer task needs to be
completed before a consumer task can be enabled. In the example in Figure 4.18 Task D is
a consumer of producer Task C. After the work template is instantiated the consumer tasks
are not shown in the task representation and the timeline. During the execution of the work
plan consumer tasks are enabled once their associated producer tasks are completed. In future
work the number or names of consumer tasks that are enabled after another task is finished
could be shown in the work plan.

Main advantage of rules in case 1 is that authors are not overwhelmed with too many enabled
tasks. This might happen if work plans have a large number of tasks and it becomes difficult
for users to select suitable next steps. With rules the number of enabled tasks can be reduced
since consumer tasks that can only be started at a later stage in the work plan are not shown.
In case 2, certain traces of tasks in the work plan have to be ensured with the rules, e.g., if there
are compliance requirements that should be adhered to. In addition to this simple producer
and consumer dependency shown in Figure 4.18, it is possible to define several variations of
this rule. It is possible to define more than one consumer task with rules, i.e., all associated
consumer tasks are enabled at once. Furthermore it is possible to define multiple producer
tasks for one rule. Two variations are possible in case two or more producers are associated
with one consumer. The rule can have either an AND or an OR logic associated. With the
AND logic all producer tasks have to be completed before the consumer is enabled. The
OR logic only requires one of the producers to be completed before the consumer is enabled.
Despite its benefits rules need to be carefully introduced since they limit the freedom of
knowledge workers. In our approach tailors are responsible for the maintenance of rules and
they are able to remove them again from the process structure if necessary.

Producer Consumer
TaskC Task D
e s e <
Rule

Figure 4.18.: Example rule for two tasks

124

4. Implementation

Similar to data-centric business processes that are described with state machines, stages in
CMMN represent the behavior of cases. In the CMMN specification stages are also referred to
as episodes of a case [Obl14]|. Main advantage compared to an approach that is based on state
machines is the higher flexibility at runtime since CMMN uses a declarative model. In our
approach authors are not able to define stages on work plans since this would dramatically
increase the level of complexity for end-users. Only tailors are able to define stages for work
templates using the button on the top of the diagram in the CMMN workbench. In line with
our evolutionary model for work templates there are two possibilities when the stages can be
defined in the beginning. In the first possibility tailors can predefine stages as a blueprint for
the work plans that are executed by authors. In the second possibility tailors create stages
based on the tasks that are defined by authors. After several tasks emerged in the work
template, it might be easier to define the behavior with stages. In either possibility tailors are
able to maintain the emerging process structure once the work plans are used by authors.

Figure 4.19 shows a stage after its initial creation in the CMMN workbench. Tailors can move
already existing tasks that are related into the stage using the drag and drop functionality.
Tasks that are grouped within one stage are usually processed together. After hovering over
the stage available operations that can be performed are shown above and next to the stage.
Tailors can also create new tasks directly within the stage using the new fask button next to
the stage. The only difference to the previously introduced new task operation is that the task
is automatically assigned to the stage. Similar to the task it is possible to associate stages
with rules using the new rule button. Rules can be associated to other stages or tasks. During
the creation of a rule for tasks it is also possible to assign stages. Stages can also be deleted
again using the delete stage operation. Before deleting a stage is possible all tasks within this
stage have to be moved outside again.

Operations
&
X
2w Rule Delste Stage
=
New Task Stage c
Name

Stage

Figure 4.19.: Available operations after hovering over a stage

125

4. Implementation

Figure 4.20 shows an example rule that associates a producer task with a consumer stage. In
this example Stage C' contains the two tasks C1 and C2. These two tasks have a different
icon compared to the other tasks that were presented before. Task C1 and C2 have a folder
icon since they call another work plan. In the work plan this is represented with a mandatory
attribute that references another wiki page. Regarding the rules between tasks it makes
no difference which kind of task is associated. After the producer Tausk A is completed the
consumer Stage C is automatically enabled. In case the stage is enabled both tasks within this
stage are enabled as well. It is also possible to define stages as producers whereas the stage
is finished after all tasks within this stage are completed. Furthermore, rules associated with
stages can have multiple producers or consumers with an AND or OR logic. The behavior
is exactly the same as described previously for the tasks. Rules can also be applied on tasks
within a stage, e.g., Task C1 and C2 could again be associated with a rule. In this case only
Task C1 would be enabled after Stage C is entered. Even though tasks are moved to a stage
it is still possible to directly associate tasks with rules, i.e., Task A could be associated with
Task C1 or C2.

Regarding the case studies conducted in this thesis the CMMN workbench provided sufficient
expressiveness to implement the processes. In future work the expressiveness of the CMMN
workbench could be extended since the implementation of the entire specification exceeds
the scope of this thesis. This includes the adoption of the CMMN exchange format to allow
interoperability with other case management tools. In a next step the CMMN element called
process task could be implemented in the CMMN workbench. With the process task CMMN
allows the invocation of a structured business process, e.g., to integrate processes described
in BPMN with the solution presented in this thesis. In future work it could be valuable to
extend the CMMN workbench with collaboration features. Although the number of tailors
working with the CMMN workbench will be much lower compared to the number of authors
in most cases, an improved synchronous and asynchronous collaboration might improve the
quality of the work templates.

Consumer

Producer Siage C

| & =

| TaskC1 TaskC2
8
Task &

Rule

Figure 4.20.: Example rule associating producer task with consumer stage

126

4. Implementation

4.2.4. Suggestion of Task Definitions

In the previous examples the creation of new elements in the CMMN workbench was intro-
duced. In this case tailors can define the process structure based on their own knowledge or
experience about the KiP that needs to be supported. This can be helpful to create an initial
blueprint of the work template, so that it is not necessary for authors to start from the scratch
with an empty wiki page if this knowledge is available. As described in Section 3.1, work tem-
plates in our approach emerge through the contributions of authors that maintain lightweight
structuring concepts at runtime. The second main purpose of the CMMN workbench is that
tailors can analyze these contributions in order to reveal recurring patterns that can be gen-
eralized in work templates. Figure 4.21 shows an excerpt of the CMMN workbench with Task
I that is created by an author. Task I is not defined in the work template and represented
with dashed lines. After tailors hover with their mouse cursor over Task I, the workbench au-
tomatically displays usage statistics at the top of the diagram. In the Hybrid Wiki a similar
functionality was proposed to analyze the usage of attributes on wiki pages [Nel2|. With this
simple statistics tailors can be supported with the decision whether Task I should be defined
in the work template. Similarly, other usage statistics could be implemented to analyze how
often a task has been skipped by authors on work plans. Tasks that are skipped very often
might be suitable candidates that can be deleted from the work template.

/ Page \

80 % created task ,Task I' Usage Statistics
8 2 2 8 8 8
Task A Task B TaskC TaskD TaskE Tasl

Apply to Work Template

Author
Task

Figure 4.21.: Suggestion of a task based on usage statistics for the work template Page

127

4. Implementation

Above Task I a new button appears after tailors hover with their mouse over the task. With
this button tailors can apply the task to the work template of the Page, i.e., a new TaskDefi-
nition for Task I is created for the TypeDefinition Page. After the TaskDefinition is created
every new instance of the Page work template has this task defined. This mechanism allows
the definition of work templates based on the lightweight structuring concepts provided by
authors. In the current implementation all tasks that are created by authors are shown in the
CMMN workbench with dashed lines. In future work the number of tasks that are suggested
to tailors needs to be reduced if too many tasks are created by authors, e.g., based on the
usage statistics. More sophisticated usage statistics and analysis would be valuable for tailors
as well. A recent example for such more sophisticated analysis in the area of case management
can be found in [Yil5]. Clustering of tasks could be helpful to identify similar tasks that have
different names. The similarity of tasks could be computed based on their assigned attributes
or other tasks that are executed before. This cluster could be proposed to tailors as one co-
herent TaskDefinition. The suggested tasks could also be shown as recommendations on work
plans for authors. This could improve the consistent usage of the names that are used for
tasks and attributes.

Another extension of the workbench would be the suggestion of rules based on the actually
performed execution order of tasks in work plans. In case some tasks are always executed
in the same order, the workbench could suggest rules between these tasks for tailors. An
example that is based on the application of the apriori algorithm for process models defined
with CMMN can be found in [SZJ13]. The workbench could provide an apply mechanism for
suggested rules similar to the example for tasks shown in Figure 4.21. Main advantage of the
CMMN workbench proposed in this thesis is that these analysis mechanisms can be applied
based on the structure provided by authors. Without this structure the analysis could only
be based on simple rather unstructured log files, which makes it much more difficult to reveal
recurring patterns in the processes. The implementation of the CMMN workbench provided
in this thesis is only a proof of concept and future iterations of the workbench need to be
improved with more sophisticated analysis techniques to support tailors. This includes the
application of mining algorithms and the visualization of usage statistics. Every element in
the CMMN workbench could provide usage statistics to tailors, e.g., number of users skipping
a task or average duration of tasks.

In addition to the structure provided by authors on work plans in this system other external
information sources could be integrated with the CMMN workbench. Due to our generic
information model a variety of different events could be stored and analyzed in our system.
Potential information sources that can be analyzed are for example e-mail clients, enterprise
wikis, or integrated development environments for software development. Many of these tools
already provide means for tasks or related concepts to describe process elements that can be
mapped to our model. This data can be imported with the methods exposed by the API that
is introduced in Section 4.1.3. Based on this information the analysis of work plans can be used
to reveal patterns within the incorporated external tools. The suggested work plans can be
executed in Darwin or shown directly in the information sources. Another possibility would be
to extend existing information systems with the lightweight structuring concepts introduced
in this thesis. With this solution tasks with their metadata and their link to attributes can
be directly created in these information systems.

128

4. Implementation

4.3. Implementation for Mobile Devices

In this section important implementation aspects of the mobile solution are described. More
detailed descriptions of the implementation are available in the master’s thesis in [Ab15|. The
implementation for mobile devices consists of a new user interface that is developed entirely
new with Angular Material which is briefly introduced in Section 4.3.1. Just like the desktop
interface the user interface for the mobile solution is based on the API that is described
in Appendix A. Only one adaptation of the server is necessary to switch the templates for
the front-end in case a mobile device is detected as requesting client. Some features that
are available in the desktop client are disregarded for mobile devices, e.g., the assignment
of attributes to tasks and the upload of files for attributes. These feature are either not
relevant in this context or difficult to realize on mobile devices. Primary use cases for the
mobile interface are the quick creation of tasks and the collaboration within the social feed.
Completing tasks through the input of data for attributes is still mainly performed in the
desktop interface. Furthermore, the mobile interface is only designed for authors and visitors.
Features for the maintenance of work templates through authors are not implemented in this
client. Therefore, the mobile solution is not replacing the desktop version but it allows the
maintenance of already existing work plans.

In Section 4.3.2 the navigation for the mobile interface is described. Due to the smaller
screen on mobile devices the navigation has been revised. The mobile navigation allows quick
overview about tasks that are due in the near future and it provides access to the social feed
as well as individual work plans. In contrast to the desktop version there are no information
about work templates shown in the navigation structure. The infinite scrolling for the social
feed in the mobile user interface is described in Section 4.3.3. It automatically reloads history
entries after the user has scrolled to the end of the feed. The usability of the mobile interface
is tested with real world users in an experiment. Some issues that were identified in this
experiment are already considered in the current implementation. These issues and results of
the usability test are summarized in Section 6.4 within the evaluation chapter.

4.3.1. Introduction to Angular Material

The mobile implementation is based on Angular Material'®, which is an early implementation
of Material Design!? in AngularJS. Main goal of material design is to provide a unified solution
for visual, motion and interaction design. It is applicable across different devices and screen
sizes, i.e., the desktop version of Darwin could be implemented in material design as well. It
consists of a set of guidelines for the creation of minimal designs that are based on metaphors.
Minimal design is important due to the high amount of mobile devices. Unnecessary elements
in the user interface have to be omitted to avoid distraction of users and improve performance
since lightweight pages have better loading times. Metaphors provide tactile reality to the
user through visual cues that are grounded in reality, e.g., animations and shadow. The
consistent use of these metaphors in combination with minimalistic design contributes to the
intuitive usage of web based applications. Angular material provides an implementation of
these guidelines including services and directives that can be customized.

"®https://material.angularjs.org, last accessed on: 2015-08-20
9https://wuw.google.com/design/spec/material-design, last accessed on: 2015-08-20

129

https://material.angularjs.org
https://www.google.com/design/spec/material-design

4. Implementation

4.3.2. Navigation

The navigation menu for the mobile interface is illustrated in Figure 4.22. Due to the smaller
screen size and the different usage scenarios of the mobile interface the navigation has been
adapted. This navigation menu can be reached at any time with the hamburger in the naviga-
tion bar. The main navigation is divided into three categories for news, tasks and data. The
news category provides a link to the social feed. The category tasks contains two items for
today and next 7 days. Today lists the tasks assigned to the logged in user that are due today.
Next 7 days lists tasks that are due within the next week for the user. The data category is
similar to the explorer in the desktop version and lists all wikis that are available. The star
indicates whether the wiki is marked as favorite, whereas favorite wikis are always shown at
the top of the list. An arrow next to the wiki indicates that this wiki contains subpages. After
clicking on a wiki, the subpages are displayed in the navigation menu (cf. level 1 in the middle
of Figure 4.22) and the categories of the main navigation are replaced.

At the top of the navigation menu the user can return to the previous level which is the main
menu in this case. On lower levels the navigation always consists of the two categories current
and subpages. The category current contains the selected wiki or wiki page. After clicking on
this item the current wiki or wiki page is opened and the navigation menu disappears. The
second new category called subpage lists all pages on the next lower level. Similarly, users
can navigate to the next lower level in case the pages have further subpages. Subpages are
always indicated with an arrow next to the title. Personalized information for the user are
shown with the menu that can be accessed by clicking on the three dots in the navigation bar.
This menu contains the alert with overdue tasks and the profile of the user which is shown in
Figure 3.20.

Main Navigation Level 1 Level 2

|
e

e
e

Main Page

lext 7 day Main Page Subpage

te Ain te Ain te Ain

te Bin te Bin te Bin

Figure 4.22.: Browsing to wiki pages on the lower level using the mobile navigation menu

130

4. Implementation

4.3.3. Infinite Scrolling

Entries of the social feed in the mobile interface are dynamically reloaded, i.e., the user can
scroll without recognizing the reloading of new entries from the server. Figure 4.23 illustrates
the infinite scrolling with a sequence diagram. The feed Html contains an AngularJS directive
called infiniteScroll that displays the entries. This directive contains a function called scroll
that is triggered when the user scrolls the feed on the mobile device. The scroll function
contains a condition that compares the current position of the feed (scrollTop) with a variable
hetght that contains the vertical height of the scroll bar. The condition evaluates to true
after the current position is higher than the height divided by two, i.e., the user reached the
middle of the scrollable height. In this case the directive invokes the method loadMoreEntries
that is defined in the feedCérl. The remaining operations of this method are not displayed in
this sequence diagram since they are already shown in Figure 4.13. The method returns the
entries from the server and feedHtml displays them in the browser. Therefore, user should
not recognize that the entries are dynamically reloaded. The condition is tested with every
scrolling that users performs in the social feed.

Infinite scrollingJ

.feedHtml :feedCtrl

| scroll()

condition [scrollTop > height/z])

|
!
|
|
|
|
1
1
!
T
!
!
!
!
.

loadMoreEntries() >

k loadMoreEntries: next entries

Figure 4.23.: Sequence diagram for the infinite scrolling of the feed in the mobile interface

131

132

CHAPTER D

Case Studies

In this section three case studies are presented to demonstrate how the prototype is used
in productive application scenarios. Goal of these case studies is to apply the prototype in
existing KiPs to get some qualitative feedback. In the subsequent Section 6, the overall evalu-
ation of the prototype is presented. Two of the scenarios are based on real world case studies
that are conducted in two different organizations, while one of the scenarios uses an academic
example. The description of the context and requirements for these case studies is explained
in Section 2.2. In Section 5.1, the case study for innovation management is shown, which
is based on the innovation process of a leading German software vendor. In this application
scenario employees can submit ideas that are assessed by reviewers. The best ideas are se-
lected and implemented in the organization. The second case study for EAM is explained
in Section 5.2. The case study is based on a KiP within a German insurance organization.
In this process a planned state of the entire EA is developed. The process is based on the
Architecture Development Method (ADM) of TOGAF |Th09|. This ADM describes a pro-
cess for enterprise architecture management that is used in many organizations. Section 5.3
presents the third case study that is based on artefact-oriented requirements engineering. In
this process an artefact model for requirements engineering is provided, whereas the creation
of these artefacts is coordinated with tasks.

5.1. Idea Generation

Within a master’s thesis the innovation management process is investigated in detail [Ut14].
The innovation management process has three roles that are involved in the organization.
The idea applicant has an idea that is submitted in the system and every employee in the
organization is able to contribute his ideas. These ideas can be either incremental so that
they are related to small improvements or disruptive. Disruptive ideas are concerned with
innovations that have an impact on the business model of the enterprise. Reviewers are

133

5. Case Studies

responsible for the assessment of ideas and they should be familiar with the subject of the
idea. Idea commissioners determine suitable reviewers and make the overall decision whether
the idea is accepted based on the reviews. Idea applicants might receive a bonus in case their
idea is selected by the commissioners. Depending on the level of maturity of the idea some
tasks might have to be skipped or added to the process. It is not possible that users are in
more than one role for the same idea to avoid that users can review or choose their own idea.
Figure 5.1 shows a screenshot of an idea after it is created in our software solution. Depending
on the role of the logged in user, different tasks and attributes are visible in the work plan.
The currently logged in user demol is in the role of an idea applicant that wants to propose
the electronic booking of rooms in the organization.

After the work plan is created the idea applicant has three tasks that have to be completed in
the first stage. The task describe idea has a mandatory attribute title that has already been
entered. In addition, the idea applicant can explain his idea more detailed in the text of the
wiki page. Since this user already started with the description, the progress of this task is
set manually to 30%. For this user the three attributes bonus, decision and justification are
not, editable on the work plan. The task assign responsibility has one mandatory attribute
responsibility that has to be defined by the idea applicant. This is another person who is
familiar with the area in which the idea is related to, e.g., a department manager. In the
third task the anonymity settings have to be defined with three mandatory attributes for this
idea. The anonymous submission is an enumeration that can have two predefined values that
are shown in Figure 5.1. Anonymous submissions are necessary if idea applicants are afraid
of consequences related to their submission. With the attribute note in personal records
applicants can choose whether their proposal should be stored. Finally, applicants also have
to define the attribute notification to supervisor according to their preferences.

= Alert 4 Groups @6 Feed _ + New & demo1 ~

Innovation Management
I - . 2 o .
a2 First idea Attributes of this Idea generation
Describe idea 30% Anonymous submission b n
Assign respanibity 0% [ves
Define anonymity Bonus -._M4
settings 0%
Decision
Currently the booking of rooms is very time consuming and there is often a lot of 5 .
Justification

communication overhead involved. Especially larger events that require catering for guests
can only be supported with forms that have to be printed and sent to the caterer. This idea
proposes to develop a web application that supports an electronic baoking of rooms. Main Note in personal records
features of this application are

» Automatic ordering of food and beverages for guests
« Validation of room bookings by supervisors
= Reservation of rooms for the event

Notification for supervisor
Responsibility

Electronic booking of

Title
rooms

Figure 5.1.: Creation of a new idea in the case study with three initial tasks

134

5. Case Studies

In case the idea has a low level of maturity the applicant can look for colleagues to further
elaborate the idea. For this purpose the applicant can create new tasks in the work plan with
the required expertise, e.g., for the creation of a business plan related to the idea. After the idea
is described detailed enough the work plan continues with the reviewing of the idea. Initially
the task create idea assessment is assigned to the idea commissioners that will delegate them
in the most cases to a suitable reviewer. Usually, commissioners select reviewers based on the
defined responsibility and the topic of the idea. Depending on the level of granularity of the
idea, commissioners can estimate the duration of the task. In case more than one review is
required, commissioners can create an arbitrary number of tasks and delegate them to other
reviewers. This might be helpful if it is not possible to make the decision with the existing
reviews or specific parts of the idea need to be evaluated by an expert. Figure 5.2 shows
a screenshot of the work plan after the create idea assessment task is delegated to the user
demod. This user can see some of the attributes and the description of the idea on the wiki
page provided by the applicant. It might be possible that the applicant creates additional
attributes to upload documents, e.g., the business plan or screenshots of an early prototype.

Reviewers can update the progress of their task so that commissioners can monitor the state of
the reviewing process. The assessment task has a mandatory attribute that contains the result
of the review as simple string value, whereas the reviewer could also upload a file or enter
his assessment on another wiki page. The task with the mandatory attribute is not visible
on the work plan for the idea applicant. Nevertheless, applicants can see the progress of the
idea that is shown in the small pie chart next to the title of the wiki page. The attributes
for results of the assessment are not editable for reviewers, but they have read access to see
the overall result after the entire evaluation process is finished. Depending on the idea some
reviews might be more or less elaborated, i.e., some ideas can be rejected very quickly because
they are not viable. Reviewers could create subpages with additional tasks to break down the
required steps if the review is very extensive. In practice reviewers often involve experts in
their teams during the assessment, which can be supported with subtasks.

= Alert 4 Groups ® Feed _ + New & demo3 ~

Innovation Management
g First idea Attributes of this Idea generation
Currently the booking of rooms is very time consuming and there is often a lot of Bonus
communication overhead involved. Especially larger events that require catering for guests
can only be supported with forms that have to be printed and sent to the caterer. This idea Decision
proposes to develop a web application that supports an electrenic booking of reems. Main
features of this application are: Justification

« Automatic ordering of food and beverages for guests
+ Validation of room bookings by supervisors Responsibility Hauder
« Reservation of rooms for the event

Electronic booking of

Title
rooms

Figure 5.2.: Reviewer creates an assessment of the idea in the mandatory attribute of the task

135

5. Case Studies

Figure 5.3 shows the work plan after the reviews are completed, whereas only one review
is created in this example idea. The logged in user demo2 is an idea commissioner that is
responsible for the overall decisions. If the single review is not enough to make the decision,
the commissioner might create new tasks for additional reviews if necessary. The task enter
result and justification is linked with three mandatory attributes. In the attribute decision
the commissioner can choose between accepted and rejected. Accepted ideas can be rewarded
with a bonus if the idea has resulted in saving of expenses. In the organization 10% of the
savings are usually rewarded with a bonus. The third mandatory attribute is the justification
that needs to be provided for the decision.

In Figure 5.3 the progress for the idea generation is at 94%. This progress is visible to all
stakeholders that are involved in the process. After the enter result and justification task
is completed the user demol can see the decision for his proposal. In the case study that
we conduced for the innovation management process in [Ut14], this is the last task and the
implementation phase for accepted ideas is not covered. In future work the prototype could be
used for the implementation of the idea in the subsequent phases of the innovation process as
well. The structure of the work template is already known to a large extent since the process is
captured in two existing tools, whereas one tool is unstructured and the other tool has a rigid
workflow. With this prototype the entire process could be captured within one solution.

= Alert & Groups @ 7 Feed _ + New & demo2 ~

Innovation N

gement -irst idea

0 First idea Attributes of this Idea generation

Currently the booking of rooms is very time consuming and there is often a lot of n This is an interesting

communication overhead involved. Especially larger events that require catering for guests idea that could

can only be supported with forms that have to be printed and sent to the caterer. This idea : t
Improve our even

proposes to develop a web application that supports an electronic booking of rooms. Main Assessment result P

features of this application are planing for

= Automatic ordering of food and beverages for guests conferences
« Validation of room bookings by supervisors

= Reservation of rooms for the event

.

Bonus 100.- €

Decision | v n
Justification Rejected

Note in perscnal records Yes

Notification for supervisor Yes

Responsibility Hauder

Electronic booking of

Title
rooms

+ New attribute

Figure 5.3.: Commissioner enters the decision based on the previously created review(s)

136

5. Case Studies

5.2. Development of a Planned State

A detailed description of the EAM use case with results of the evaluation from a German
insurance organization can be found in |[Hal4a|. The foundation of this process is the ADM
that is described in [Th09]. The ADM consists of eight phases (A to H) that are iteratively
executed. Before the process starts a preliminary phase called framework and principles is
executed. The development of a planned state is mainly covered with the phases A to D. In
phase A the architecture vision is developed or refined to get a common understanding about
the goals of the initiative. In phase B the business architecture is developed with a target
architecture and a roadmap that defines how this target state can be achieved. Phase C is
concerned with the information systems architecture and derives requirements for the applica-
tion architecture. Finally, phase D describes the development of the technology architecture.
The subsequent phases E to H are not part of this case study since they are related to the
implementation of a planned state.

Figure 5.4 shows a screenshot of the work plan for the development of a planned state that is
initialized with some sample data. The work plan shown in this screenshot is currently in the
architecture vision phase of the ADM. In this phase five tasks are enabled whereas every task
has several artefacts attached that have to be created, e.g., the selected task approve statement
of architecture work. This task has to create or refine five artefacts that must be uploaded as
files. Another possibility would be to describe them on separate wiki pages. Since not all of
tasks are necessary in the organization, it is possible to skip them on the work plan.

Tasks for this page

Add task to thi
‘ Define Capability Assessment
W) Define architecture principles

!\ Refine statements of Enterprise
Architecture documents

] Approve Statement of Architecture Work
Delegate Skip

@) Develop Architecture Vision

Metadata for current task:

Startdate: 01.07.2015

Enddate: 15.07.2015
= Progress: 20%

Expertise .P 4d expertise

business architecture X togafx

Close

Figure 5.4.: Architecture vision phase in TOGAF for the development of a planned state

137

5. Case Studies

The tasks for the phases in the ADM are structured with stages in the work template, i.e.,
every phase has its own stage that contains the tasks for this phase. Depending on the usage
of the work plan in the organization, some tasks for a phase might be defined outside of the
stage. This might be possible in case tasks do not have to be completed before the subsequent
phase starts. Figure 5.5 shows an illustration how the tasks of subsequent phases are enabled
while the work plan is executed. After all tasks of the phase architecture vision are finished (or
skipped), the tasks for the subsequent phase business architecture are enabled. In this phase
several tasks have to be performed according to the ADM. The task at the top called refine and
update versions of the architecture vision phase has a dependency that is explicitly described
in TOGAF [Th09]. The remaining tasks of this phase have no dependencies in this sample,
whereas this could be changed if necessary. Similarly, tasks of the phase information systems
architecture are enabled after all tasks in the preceding stage are completed (or skipped). In
the same way tasks for the phase technology architecture are enabled.

On of the main challenges in EAM is that "no formal steps exist for defining, maintaining and
implementing EA and EA frameworks are not rigid enough in describing these steps” [LKL10].
With the solution proposed in this thesis these formal steps for EAM can defined with work
templates. Similar to the development of a planned state other EAM processes could be
supported with Darwin. Due to the flexibility of work plans EAM processes can be easily
adapted to the organizational context. Organizations setting up an EAM initiative can start
with rather simple work templates. With increasing maturity of the EAM function work
templates can become more elaborated. Since existing frameworks are not rigid enough in
describing steps for the management of the EA, the approach presented in this thesis could be
used to define executable EAM work plans. Frameworks like TOGAF can be used as blueprint
for the initial creation of work templates and collaboratively refined to the context and goals
of the organization.

Phase A: Architecture Vision Phase B: Business Architecture Phase C: IS Architecture

) - x
Tasks for this page x Tasks for this page Tasks for this page x

No tasks available for this page! 5 completed tasks No tasks available for this pagel 6 completed tasks

@ -
@ . Refine and update versions of the
. Define Capability Assessment . Refine and update versions of the architecture vision phase
Architecture Vision phase
. A Create draft of architecture definition
Refine statements of Enterprise =
! - P . Develop Target Business Architecture document
Architecture documents
. b b . ‘ Create draft of architecture requirements
we sment of Archite > Wo ocument baseline architecture :
. Approve Statement of Architecture Work - : specification with application architecture
requirements
. Develop Architecture Vision . Define views for stakeholder concerns
Define views for stakeholder concerns
. Define architecture principles . Create draft of Architecture Requirements
Specification
. Develop Business Architecture Roadmap Close

Close

Close

Figure 5.5.: Tasks of the phases are enabled after their preceding phase is completed

138

5. Case Studies

5.3. Elicitation of Requirements

A detailed description of the case study for requirements engineering can be found in the mas-
ter’s thesis in |Bil4]. This case study is based on the artefact-oriented approach for require-
ments engineering presented in [Fel0]. In contrast to activity-centric requirements engineering,
this approach has a stronger emphasize on the resulting artefacts of the requirements elici-
tation. The proposed approach has many similarities with data-centric processes introduced
in Section 2.1.2. It contains tasks that are associated with artefacts to guide the creation of
these artefacts. The authors provide reference models as blueprints for requirements engineer-
ing and guidance for the customization of these reference models to the project context on a
conceptual level. Figure 5.6 illustrates how these reference models can be executed on a work
plan. The reference model for artefact-oriented requirements engineering contains three arte-
facts for the context specification, requirements specification and system specification. Every
artefact consists of a set of content items that have to be delivered during the requirements
elicitatiomn.

The metamodel for artefact orientation is mapped to our model as described in [Bil4]|. The
work plan for the context specification shown in Figure 5.6 consists of three active tasks.
The artefact stakeholder model has already been created during the task create stakeholder
model. This stakeholder model and further example models are available for download!. This
blueprint can be used as starting point for a work plan that is tailored to the specific project.

=3 DARWIN = @ Groups @30 Feed _ +New &demo? ~
Repository Artefact-based Requirements Engineering / Requirements Engineering T
v ‘. Context Specification Attributes of this Context Specification

Develop domain model 15% Constraints and rules

Define Objectives
and goals

Define constaints Domain model
and fules | B

n Objectives and goals

Stakeholder Model

System Specification

package Siakehoder ol 55 Sabeh e Hoce 1 |

el) . Tl
Chit Executie - cank Emplopee

B

«Usé7 Griups \
Customer L

s » holders
Marketing Maintenance Engineer

‘ N Counter Clark
N

«stakenclgers

it g < s g
£ Visually Handicapped Customer

sStakeholers =
abe-bank Customer « i::j::::,,

stakenciders

Hardware Developer S

estafensicers Software Developer
Legisiation Representative

Figure 5.6.: Screenshot of the executable work plan for the context specification

"http://wwwi.in.tum.de/ mendezfe/openspace.shtml, last accessed on: 2015-07-06

139

http://www4.in.tum.de/~mendezfe/openspace.shtml

5. Case Studies

Based on this generic approach for artefact orientation several instances of this model have
been proposed, e.g., the business information systems analysis (BISA) [MF11b]. BISA is
a reference model that proposes instances for artefacts that can be used in the context of
business information systems. Figure 5.7 shows an excerpt of the BISA work templates in the
prototype that are based on the proposed artefacts. The customized approach instantiates
the BISA work templates for a specific project work plan. After the work plan is instantiated
it can be dynamically tailored at runtime. Depending on the required level of detail they are
two possibilities to model artefacts. In the first possibility artefacts are uploaded as entire
file (cf. stakeholder model in Figure 5.6). In the second possibility artefacts are modeled with
their work template that can be more structured (cf. business goal in Figure 5.7). In the latter
case the degree of structure is higher since it is modeled on a separate wiki page and it can
have its own attributes and tasks.

B Artefact-based Requirements Engineering BISA

W8 Business Specification Customized Approach
@ Requirements Specification
Traceability Matrix

Actor

Actor Action

Actors

Application

Architectural Constraints

Business Capabilities

Business Constraint

Business Context

Business Demands Analysis

Business Domain

Business Domains

Business Domains Overview

Business Driver

Business Drivers, Objectives and Mission
Statement

Business Goal BISA Work Templates
Business Goals

Business Goals Overview
Business Goals and Restrictions
Business Information Model
Business Object

Business Objective

Business Objects

Business Process

Business Process Model
Business Process Overview
Business Restriction

Business Restrictions

Figure 5.7.: Excerpt of the available BISA work templates

140

CHAPTER O

Evaluation

This chapter describes the evaluation of the software solution for the collaborative structuring
of KiPs. While the case studies presented in the previous chapter seek to demonstrate the
solution in potential application scenarios, the evaluation aims to measure the improvement
for the support of KiPs with users in productive environments. The evaluation consists of
four consecutive steps that are illustrated in Figure 6.1. In the first step the evaluation
framework is developed and explained in Section 6.1. This framework contains the variables
and values for the evaluation of the design science research artifact developed in this thesis.
In the second step the preliminary study with seven participants is described in Section 6.2.
The participants used the software solution productively over the period of approximately five
months to develop a web application in a practical course at the Technical University Munich
(TUM). The development process of the web application is highly unstructured without any
predefined work template. In the third step the main study with 145 participants is described
in Section 6.3. The duration and research variables of the main study are similar to the
preliminary study, whereas the major difference is the larger scope of the main study. In the
main study the software solution is used to support another practical course at TUM. The
development process in the main study already consists of a predefined work template that
contains mandatory tasks and deliverables. In both studies the participants are organized in
teams and results are graded as part of their study program. In the final step a usability test
of the mobile solution is performed and described in Section 6.4.

Evaluation Lo . Usability Test of the
> Framework >> Preliminary Study >> Main Study >> Mobile Solution >

Section 6.1 Section 6.2.x Section 6.3.x Section 6.4.x

Figure 6.1.: Consecutive steps of the evaluation mapped to the sections of this chapter

141

6. Evaluation

6.1. Evaluation Framework

There are plenty of approaches available for the evaluation of design science research artifacts.
In Figure 6.1, the evaluation framework used in this thesis is illustrated with the values that
are applied in italic font which on [CGH09|. The approach can be considered as quantitative
since the results are assessed through numerical values. The artifact focus is technical because
the software solution developed in this thesis is evaluated. The artifact is instantiated to
test the structuring concepts under real world conditions. The epistemological attitude is
positivism, i.e., individual characteristics of evaluating persons are not considered. With
the controlling function the evaluation examines certain criteria, e.g., flexibility, efficiency,
information structure and work allocation. The method applied is the controlled experiment
which we use to compare the performance of the software solution developed in this thesis
with a control group. The evaluation object is the artifact itself, i.e., the software solution to
structure KiPs. In the evaluation we are interested in a deployment perspective to analyze the
usage of the artifact. The evaluation of the artifact is carried out externally by people that
are not involved in the construction of the solution. Design science artifacts can be evaluated
against three different reference points and in this thesis artifact against real world is chosen,
i.e., to assess the suitability of the artifact in the real world. Finally, the time of the evaluation
is performed ex post after the participants completed the experiment.

Variable Value
Approach qualitative quantitative
Artifact Focus technical organizational strategic
Artifact Type construct model method instantiation theory
Epistemology positivism interpretivism
Function knowledge function cont(ol development Iegltlml;atlon
function function function
action case field formal
research study experiment proofs
Method
controlled experiment prototype survey
Object artifact artifact construction
Perspective economic deployment engineering epistemological
Position externally internally
Reference Point artifact against research gap artifact against real world research gap against real world
Time ex ante ex post

Figure 6.2.: Evaluation framework for the artifact developed in this thesis [CGHO09]

142

6. Evaluation

6.2. Preliminary Study

The preliminary study is based on the previously introduced evaluation framework from Sec-
tion 6.1. We carefully followed the five steps for controlled software experiments as suggested
in [Wol2], i.e., experiment scoping, experiment planning, experiment operation, analysis and
presentation. The preliminary study is the first productive deployment of the software solu-
tion with end-users that were not involved in the construction of the system before. Results of
this preliminary study were published initially in [HKM15]. The preliminary study has much
less users involved than the subsequent main study, i.e., it is easier to comprehend how the
participants are using the system to structure their processes. Another reason for conducting
this preliminary study is the incorporation of feedback from initial users for the main study.
In Section 6.2.1, the main objectives of the preliminary study are introduced. Section 6.2.2
covers the design of the preliminary study. The backgrounds of the participants in the prelim-
inary study are explained in Section 6.2.3. Finally, the results and findings of the preliminary
study are described in Section 6.2.4.

6.2.1. Objectives of the Preliminary Study

To the best of our knowledge there is no standardized procedure for the evaluation of systems
that support KiPs available in literature or practice. A comparison with the requirements for
software support of KiPs is also not expedient since the coverage of all requirements is out of
scope for this thesis. The evaluation is focussed on the core research goal of this thesis, i.e., the
collaborative structuring of KiPs through end-users. Therefore, we derived a set of questions
from our main research hypothesis that are used to evaluate the following two objectives:

1. Structure: Structuring of KiPs is an important objective that we measure with seven
variables in the preliminary study. With this structure work templates are generalized that
allow to reproduce implicit knowledge of workers in an organization. Another important
variable is the degree of information structure that can be defined in the solution. The
structure of the KiP can also be used to visualize the progress of the process. Allocation
of work is necessary to determine who should do which task based on certain criteria,
e.g., skills or availability of users. The system should also provide guidance so that users
are aware of what they have to do within the process. Finally, two variables are used to
measure the efficiency and effectiveness of the solution.

2. Flexibility: Only considering the ability of a software solution to structure KiPs is not
sufficient, since higher degrees of structure might impose worsening of the flexibility. For
the measurement of the flexibility six variables are used in the preliminary study. Ex-
ception handling is necessary for knowledge workers to react on unpredictable situations.
A variable for collaboration is used to measure the capability of the solution to support
team work. Incorporating creative ideas within KiPs has to be possible in the solution. In
agile environments knowledge workers have to be able to make incremental improvements.
Another important requirement in agile environments is self-organization of teams, i.e.,
knowledge workers assign tasks collaboratively to each other without any central authority.
Ease of use is a variable to measure how difficult the structuring of KiPs is perceived by
the users.

143

6. Evaluation

6.2.2. Design of the Preliminary Study

The preliminary study has been conducted at the Technical University Munich (TUM) within
two projects of the master lab course on web applications that takes place in every winter term.
The projects started on 224 October 2014 and were finished at the end of February 2015.
Goal of these projects is the development of a web application using a scrum based process.
Both teams have weekly sprint meetings with their advisor in which tasks are assigned to
the students individually. During the period of the project 13 sprints have to be conducted
by both teams. In addition to the development of the web application, both teams have to
provide a written documentation of the project as well as an initial and final presentation.
At the end of the project all of these deliverables are assessed by the advisors of the course
for the final grading. One of the teams is using the solution Darwin that is developed in this
thesis, while the other team serves as control group which is using a project management
tool that is based on a kanban board. In the kanban board cards are used as tasks that are
moved around the board. The objectives of the preliminary study introduced previously are
evaluated for both projects separately. Thereby, the performance of Darwin as well as the
research hypothesis can be tested through the comparison with the control group.

Both teams started with an entirely empty project respectively wiki at the beginning of the lab
course, i.e., the students have to collaboratively structure this KiP in their teams. During the
course of action the students created new tasks with their metadata and assigned attributes
to these tasks on their own. Due to the low number of participants in the preliminary study,
statistical conclusions are not possible in this study. Therefore, we conducted group interviews
using open- and closed-ended questions with both teams separately after the projects are
finished. Group interviews are selected to leverage the interaction of the project members in
order to stimulate their experiences. Extreme answers are filtered out, because the participants
have to agree on a common answer during the interview. During the project the students are
carefully observed and their feedback is included early in Darwin. In addition, the structure
of the work template for this KiP that emerged in the project within Darwin is retrieved from
the system. The work template allows to assess whether it is possible for end-users without
experience in business process modeling to structure a KiP.

6.2.3. Participants

The kanban as well as the Darwin team consist of four students that are all enrolled at TUM
during the experiment. After about six weeks one of the members of the Darwin team dropped
the course for personal reasons. The students are on the master level in computer science
or information systems. The selection of the students is performed with a simple random
sampling. None of the students has previous experience in business process modeling. The
Darwin team was not involved in the construction of the system before the lab course started.
Additionally, every team has an advisor from the chair of Software Engineering for Business
Information Systems (sebis) at TUM. The advisor acts as product owner for the project and
in the beginning the advisor is also responsible for the scrum master role. In later sprints this
role rotates every week among the students and the advisor is only acting as product owner,
i.e., every student becomes scrum muster at least once.

144

6. Evaluation

6.2.4. Results and Findings

The results for the variables related to the structure of the software solution are illustrated
with the spider diagram in Figure 6.3. The dashed blue line indicates the results for the kanban
board and the solid red line for Darwin. In Darwin the structuring of information is rated
much better than in kanban since dedicated types can be created, e.g., presentations, sprints
and mockups. The kanban team used a separate web storage solution to share files among
team members in the project and copied links to the location of the files. In the kanban board
solution the progress visualization is only supported on a coarse-grained level with columns,
e.g., to do, doing and done. In Darwin the progress and the state of tasks is automatically
updated based on the values of attributes. The allocation of worked is improved in Darwin
through the usage of expertise tags that are assigned to tasks and the progress, whereas the
kanban board only provides simple colors to indicate priorities. Guidance is also rated in
favor of Darwin through the possibility to structure tasks in complex hierarchies with start
and end dates. Efficiency is rated almost equally among both tools since the creation and the
assignment of cards to different columns is very fast in the kanban board. A bigger difference
can be observed for the variable effectiveness that is rated better for Darwin. According to the
participants the reason for the good rating is the usage of mandatory results that are assigned
to tasks. Reproducibility is rated better in Darwin through the reuse of sprints every week.

= =Kanban DARWIN

Information structure

Reproducibility Progress visualization

Effectiveness Work allocation

Efficiency Guidance

Figure 6.3.: Comparison of the structure for both solutions [HKM15]

To sum up, 6 out of 7 variables related to structure are rated much better in Darwin. Within
14 days a work template emerged with entities for, e.g., project, scrum and sprint. Examples
for tasks that were created by students are "Add comment function to feed", "Refactor get-
Expertises" and "Show completed tasks in profile". Attributes created by students are, e.g.,
"Mapping of features to design principles" (as file) and "(Project) acronym" (as string). More
details regarding the emerged work template can be found in [HKM15].

145

6. Evaluation

Figure 6.4 illustrates the results for the six variables that are related to flexibility. The
kanban board is rated slightly better in the handling of exceptions by the students. New cards
can be easily created and moved between the columns to handle exceptions in the kanban
board. Regarding collaboration there are no major differences that could be observed in the
preliminary study. The solution with the kanban board also provides an activity feed with the
latest actions. Creativity is rated in both solutions as equally well supported by the students.
The rating for incremental improvements is slightly better in Darwin through the reuse and
adaptation of sprints every week. Self-organization is rated almost equally for both solutions
since all students created tasks on their own. Ease of use is rated very similar for both
solutions again, whereas Darwin performs slightly better than the kanban board. According
to the kanban team several functions are difficult to find in the solution. All of the 6 variables
related to flexibility of the solution are very close to each other according to the students, i.e.,
Darwin provides a similar degree of flexibility compared to the kanban board.

== =Kanban DARWIN

Exception handling

Ease of use Collaboration

Self-organization Creativity

Incremental improvements

Figure 6.4.: Comparison of the flexibility for both solutions [HKM15|

The preliminary study confirmed our hypothesis that end-users without previous experience
in business process modeling can be empowered to collaboratively structure KiPs. A suitable
work template for this process emerged at the beginning of the project and is described
in [HKM15]. The students rated the structure of Darwin unambiguously better compared to
the kanban board. At the same time the flexibility has not declined according to the students,
i.e., Darwin is better suitable to support this KiP. Due to the limited number of participants
the results of this preliminary study cannot be generalized. In the scenario of the preliminary
study the work template is entirely unstructured in the beginning. In future iterations of
the master lab course the resulting work template of the preliminary study could be used as
starting point for the projects. Within the main study of the evaluation the performance of
Darwin with a predefined work template is tested, e.g., in order to investigate the impact on
the flexibility.

146

6. Evaluation

6.3. Main Study

Similar to the preliminary study, the main study is based on the evaluation framework from
Section 6.1 and we also followed the five steps for controlled software experiments [Wol2|. In
contrast to the limited number of participants in the preliminary study, the main study is per-
formed on a much larger basis in order to validate the promising initial results. Furthermore,
the main study includes additional objectives that are not investigated in the preliminary
study. In Section 6.3.1, the objectives of the main study are described. The design of the
main study is explained in Section 6.3.2, followed by details about the participants in Sec-
tion 6.3.3. The participants are allowed to use additional tools during the study and an
overview about the usage of other tools is presented in Section 6.3.4. The presentation of
results and findings is divided into two sections. Section 6.3.5 contains the results for the
flexibility and Section 6.3.6 contains the results for the structure of the solution.

6.3.1. Objectives of the Main Study

The main study has three objectives that are derived from our main research hypothesis and
the results of the preliminary study. Some aspects of the evaluation that are not covered in
the preliminary study are included in the main study. Another difference to the preliminary
study is the larger size of participants that allows to draw more reliable conclusions. The main
study has the following three objectives:

1. Usage of work templates: In the preliminary study the participants started without
any predefined work template and incrementally structured the process during the project
on their own. With this objective the usage of work templates that are already predefined
is investigated, i.e., are the users also able to use predefined work templates. This objec-
tive is measured by monitoring the usage of the system through Google Analytics® and
documenting problems in the handling of predefined work templates.

2. Structure and flexibility: The objectives for the measurement of the structure and
flexibility are repeated from the preliminary study in order to validate the performance of
the system with a larger amount of participants as well as a different application scenario.
The application scenario is different since the work templates are already predefined, i.e.,
the results for the objectives are probably different from the preliminary study. This is
necessary since KiPs range from entirely unstructured to loosely structured in the process
management spectrum (cf. Figure 2.2). Together with the preliminary study the evaluation
of Darwin covers different degrees of structure for KiPs.

3. Usability of the mobile solution: Participants of the main study are primarily working
with the desktop version of Darwin. For the evaluation of the mobile solution the usability
is tested with a standardized procedure at the end of the main study. Results and feedback
gathered through the usability test are used to improve the mobile solution in a second
iteration. Furthermore, this usability test is a valuable opportunity to observe how the
participants interact with the system through the application of the thinking aloud method.

"http://www.google.com/analytics/, last accessed on: 2015-08-07

147

http://www.google.com/analytics/

6. Evaluation

6.3.2. Design of the Main Study

The main study is conducted within a lecture on web application engineering at TUM that
takes place every summer term. This lecture consists of theoretical sessions and a practical
project that covers all phases of a user-centered design process [DLH02|. The overall assess-
ment of the students is only based on the outcome of this practical project, i.e., there is no
written exam. The projects started on 13" April 2015 and were finished with the final pre-
sentation on 08™ July 2015. The projects are structured through four exercise sheets that
describe the required deliverables that have to be submitted. Table 6.1 briefly summarizes
the content of the four exercises with the latest due date. Similar to the preliminary study
all projects are divided into two separate partitions. The first partition is using Darwin for
the submission of the deliverables, whereas the second partition acts as control group in the
experiment and is submitting the deliverables through e-mail. For the Darwin partition a work
template for the project with the four exercises is predefined for every team. Objective 1 and
3 are only evaluated with the participants of the first partition, while objective 2 is evaluated
with both partitions independent from each other. Due to the high number of participants in
the main study, group interviews were not feasible and we used an online questionnaire that
is filled out by all participants of the lecture after the final presentation.

Name Description Due Date
Development of a business idea by describing the value
proposition and the customer segment. The business
idea also contains four use cases that have to be imple-
mented in the project. The results have to be summa-
rized in a presentation and the contributions of each
team member need to be documented.

The business model has to be described based on the
Business Model Canvas (BMC). Four mockups have to
be designed for the uses cases from the first exercise.
A presentation is not required in this exercise, but the
individual contributions of team members have to be
documented.

A conceptual UML class diagram describing the infor-
mation model needs to be created. One screenshot of
Exercise 3 a working use case has to be provided. Individual con- | 8" June 2015
tributions of team members have to be documented
and a presentation of the results created.

The final code of the web application has to be up-
loaded and screenshots of all use cases have to be cre-
ated. A final presentation summarizing the results has
Exercise 4 to be prepared together with a live demo of the run- | 3" July 2015
ning web application. For all team members a docu-
mentation of the individual contributions needs to be
created.

Exercise 1 27t April 2015

Exercise 2 13" May 2015

Table 6.1.: Description and due dates of the four exercises in the lecture for the main study

148

6. Evaluation

6.3.3. Participants

Initially the lecture started with 173 students that were registered and assigned to 44 teams.
All of the students are on their master level and the majority has their field of study in
computer science or information systems. Random sampling of the teams is not possible since
the students are allowed to create own teams, e.g., with other students in the lecture that
they already know. Teams 1 to 20 are assigned to the Darwin partition and the remaining
teams submitted the deliverables by e-mail. Due to some students that dropped the lecture
the main study was completed by 145 students. 75 of these students completed the main
study with Darwin as member of one of the first 20 teams. Objective 1 and 3 are evaluated
with these 75 students since they are familiar with Darwin. For the evaluation of objective 2
only participants that submitted at least 4 deliverables are selected to ensure high quality of
the responses.

6.3.4. Usage of Other Tools

Figure 6.5 illustrates other tools that are used by individual students during the project from
both partitions. The most frequently used other tools are WhatsApp? and Facebook? that
were used for messaging. Followed by these tools are Dropbox* and Google Drive® that provide
data storage services on the web.

Which other tools did you use during the project?

80

70 73
60 65
58
50
50
40 44 44
30 34
27
20
22
20
10
° ? 7 4 3 2

0

Q S+ @ L o © @ \© 2 @ S 2 ol @

Q 9 o S > N N Q N & S o &)

’b@?‘ Qéoo &oéo \Q)Q«\ \6{@ 8)\\0 & %‘P\ <® oéQ QQ,OQ q\eo é\go Q/c}\Q B\Q— e}@éb
. ; &
& <% & N k2 & S & \Q,‘z\ N
O ooQ
)

Figure 6.5.: Other tools that were used during the controlled experiments by all students

*https://web.whatsapp.com/, last accessed on: 2015-08-07
3https://www.facebook.com/, last accessed on: 2015-08-07
“https://www.dropbox.com/, last accessed on: 2015-08-07
*https://www.google.com/intl/de_de/drive/, last accessed on: 2015-08-07

149

https://web.whatsapp.com/
https://www.facebook.com/
https://www.dropbox.com/
https://www.google.com/intl/de_de/drive/

6. Evaluation

6.3.5. Results and Findings for Flexibility

In the following the responses of the students for questions related to the flexibility are de-
scribed. An overview about all results for this variable is illustrated at the end of this section
with a spider diagram. Figure 6.6 illustrates the results for the handling of exceptions during
the project, e.g., changes of the submission date or creation of new attributes for deliverables
for the exercise sheet. On average Darwin achieves a better rating with 3.84 for this variable
compared with 3.13 for e-mail. None of the students rated the exception handing in Darwin
with disagree or strongly disagree. Several students mentioned that they would be able to
perform changes if necessary. Examples for these changes that were performed are the creation
of new deliverables on the exercise sheets or the update of the end date for tasks. In general,
only few exceptions occurred during the exercises so that it was not necessary for the students
to make changes frequently. This might explain the high number of students that responded
to this question with neutral.

Another situation could be observed that indicates that the students are able to perform
changes on the work plans for the exercises. Several students accidentally deleted attributes
from the exercise sheet, because they wanted to remove the value from the attribute in order
to upload a new version. All of the students were able to create the missing attribute again
and assign it to the associated task. This is also an indicator that the deletion of the attribute
is not intuitive enough since the delete button is to close to the attribute value. In future
iterations of the lecture students could be encouraged to make more changes on the exercise
sheets, e.g., to provide additional deliverables that are not explicitly mentioned by the advisors
as necessary. In other application scenarios the handling of exceptions might be much more
important, e.g., the scrum process in the preliminary study.

It was possible to make changes on the exercise
sheet or the wiki pages of the submission system,
e.g. after the advisors changed submission dates

or necessary deliverables

9
8
%)
t 7
3 6
2
n 5
° 4
3 3
§
= 2
1
0
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 1 1 8 5 0
= DARWIN 0 0 7 8 4

Figure 6.6.: Handling of exceptions during the project

150

6. Evaluation

Figure 6.7 summarizes the responses of the students for the information structure. Regarding
the information structure Darwin is rated with 4 and e-mail with 3.3 on average. The majority
of the Darwin users rated this question with agree or strongly agree. The reason for this good
rating is the usage of attributes on wiki pages for the deliverables. All of the attributes
for the students have the type file and the advisors of the course have additional integer
attributes for the achieved points that are not visible to the students. Through the usage of
access rights for attributes the members of a team are only able to see their own deliverables.
Deliverables of other team members are hidden to students without access. The improvement
of the information structure is also very valuable for the advisors of the lecture. The e-mail
submissions are all sent to one mailbox that is prepared for the lecture and finding the right
deliverables for the teams is quite inconvenient. Often teams submit several versions of the
deliverables and this has to be taken into account by the advisors. In Darwin the latest
version of the deliverables are attached to the exercise sheets and this saves a lot of time for
the assessment of the deliverables. It could also be observed that many students uploaded
new versions and deliverables very often downloaded by team members.

One limitation of the information structure in the current implementation that was mentioned
by several students is the missing versioning function, i.e., it is not possible to revert deliv-
erables to an earlier version. Deliverables that are deleted from the exercise sheet cannot
be recovered again. This might be the reason why many teams only used Darwin for the
final versions of the submissions and shared files through one of the other tools summarized
in Section 6.3.4. All of the attributes for the students in the main study are structured as
simple files. In future iterations the expressiveness of the data model provided by Darwin
could be better exploited, e.g., through dedicated attribute types for the BMC or individual
contributions of team members. This could limit the effort for students to generate files since
the data could be directly added on the exercise pages or associated subpages.

It was easy to store and find documents for the
deliverables of the exercises after they were
submitted, e.g. it is convenient to get the
deliverables for the different exercises

10
9
2
= 8
§ 7
o 6
‘S 5
g 4
g 3
> 2
“ m I
0
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 2 6 7 0
= DARWIN 1 0 3 9 6

Figure 6.7.: Information structure for the deliverables of the project

151

6. Evaluation

The responses of the students related to creative ideas are illustrated in Figure 6.8. On average
Darwin has a slightly better rating with 3.37 compared to 3.13 for e-mail. Only one student in
the Darwin partition rated this question with disagree. Another student complaint that the
exercise sheet has too many restrictions regarding the technology and more freedom would
be desirable. The majority of students decided to respond with neutral, which might be an
indicator that it was not necessary to incorporate creative ideas for the steps and deliverables
of the exercises. In the preliminary study the incorporation of creative ideas in the projects
is rated much higher for the scrum based development process. This might be due to the fact
that the work template in the preliminary study was entirely unstructured at the beginning
of the project. In the main study the work template is based on the experience of previous
projects in the lecture that were organized in the same way, i.e., tasks and deliverables for the
exercises are already practice proven and it is not necessary to incorporate any creative ideas
to improve the work template. Therefore, the responses for this question are not unexpected
since the objective of the main study is to investigate the usage of predefined work templates.
All of the participants were able to execute the tasks on their work plans by uploading the
required deliverables for the exercises.

A potential improvement for future iterations of the lecture is to support the early stages
of the idea generation phase, i.e., the development and selection of the business idea that is
implemented in the project. One possibility could be that every student needs to propose an
own idea independent of the other team members. Similar to the case study introduced in
Section 5.1, the proposed ideas could be reviewed with an innovation management process
that is supported in Darwin. The other team members could act as reviewers and assess the
ideas of their colleagues. The advisors of the lecture could act as idea commissioners and select
the best ideas based on the reviews of the other students during the first exercise. After the
selection of the best idea the team continues with this idea for the remaining three exercises.

It was easy to propose creative ideas in the
project, e.g. the exercise sheet or the submission
system did not restrict or prevent new ideas

12
n 10
T
3 8
=]
»
S 6
2
£ 4
=]
=z 2
0] [l
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 1 1 8 5 0
= DARWIN 0 2 10 5 2

Figure 6.8.: Incorporating creative ideas in the project

152

6. Evaluation

Figure 6.9 illustrates the responses regarding incremental improvements of the submitted de-
liverables. Darwin achieves an average rating of 4.21 and e-mail 3.8 according to the students.
The biggest difference among the responses can be observed for strongly agree, in which Dar-
win has more than twice as many ratings. During the exercises it could be observed that
many teams submitted the deliverables more than once in Darwin, i.e., updated versions that
are incrementally improved are submitted. Another reason might that the e-mail submissions
are usually provided as a whole with all deliverables. In Darwin individual deliverables can
be uploaded independently by the different team members of the project, e.g., some teams
submitted the team sheet in the first exercise very early. Different members of the teams also
submitted parts of all required deliverables. For the advisors the submission of new versions
is much more comfortable in Darwin since the work plans always contain the latest versions
of the deliverables. E-mail submissions of the teams always have to be checked for different
versions to make sure that the latest version is assessed by the advisors.

Due to the splitting of the teams into two different partitions for the experiment, it was not
possible provide detailed feedback for the early submissions of the deliverables. Otherwise the
students working with Darwin would have an advantage that would be unfair for the final
grading of all teams. In case all students in the lecture use Darwin for their projects in the
future, the ability for the submission of incremental improvements could be used in conjunction
with the social feed. Advisors of the lecture could provide feedback for the deliverables that
are submitted early very efficiently. Every updated submission of a deliverable appears in the
social feed and advisors can write feedback very quickly using the comment function. The
realtime functionality of the comment function also allows discussions between students and
the advisors in the context of the deliverables. Due to the high amount of students in the
lecture, this would be much more difficult to achieve with communication that is based on
e-mails.

After submitting the deliverables the submission
of a new version was easy, e.g. submitting an
updated version

10
9
2 8
3
.g 7
2 6
‘S 5
@ 4
Q2
1 3
=]
=z 2
‘ . =
0
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 2 3 6 4
= DARWIN 0 2 1 7 9

Figure 6.9.: Submission of incremental improvements for the deliverables

153

6. Evaluation

Results for the self-organization of the team are illustrated in Figure 6.10. With 3.53 Darwin
achieves a slightly better rating than e-mail with 3.4 on average. Two students that are in the
e-mail partition strongly disagree with this question. For these students it was very difficult to
define explicit tasks for the team members. One of the reasons for the little improvement for
this question could be instructions from advisors that are necessary to ensure that everybody
contributes to the project. The advisors asked the participants that every student should
work across all layers of the web application, e.g., it is not allowed that students only work
on the front-end of the application. Omne student explicitly mentioned that this constraint
makes it very difficult to split the exercises into separate tasks. Another reason for the little
improvement could be the small size of the teams, e.g., some teams consist of less than four
members in case a student dropped the lecture. Due to the small team sizes it might have
been more productive to organize the tasks within face-to-face meetings, which would be much
more difficult for teams that have more members.

Tasks on the exercises are assigned to the entire project team, i.e., every member of the
project is in the execution role for the tasks. An improvement for future iterations could be
the assignment of tasks in Darwin to individual team members using the delegate function.
This delegation of tasks could be performed at the beginning of the exercises. Every exercise
consists of one deliverable that describes the contributions of the team members. In case
every student in the lecture uses Darwin in the future for the organization of the project,
this deliverable can be replaced with the assigned tasks that are shown in the profile of the
students. With this approach students would also encouraged to create additional tasks to
coordinate the creation of deliverables. Due to the splitting of the teams into two partitions
it was not possible to use this functionality since this might be unfair for the grading of the
students, e.g., students not contributing to the project would be much easier to identify if
they have no completed tasks in their profile.

It was easy to split the exercises into separate
tasks that are completed by individual team
members, e.g. who should do what

8
P 7
S 6
o
2 5
()
‘S 4
g 3
£ 2
z 1
0
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 2 2 2 6 3
= DARWIN 0 3 6 7 3

Figure 6.10.: Self-organization of the team during the project

154

6. Evaluation

The last variable that is used to measure the flexibility with the autonomy of the participants
is illustrated Figure 6.11. Autonomous decision-making is an important issue for the support
of knowledge workers. Darwin is rated with 3.63 and e-mail with 3 on average of the responses
regarding this issue. 3 of the students in the e-mail partition disagree with the question and
none of them strongly agrees, i.e., autonomous decision making is limited for the submission
of deliverables by e-mail. None of the students working with Darwin responded with disagree
or strongly disagree. 3 participants even strongly agree that they would have been able to
perform own decisions in Darwin. Examples for own decisions are the order of steps in the
exercise sheets or the creation of new tasks. A much higher value for this rating is not
desired in this application scenario since the students have to complete the tasks by providing
mandatory deliverables to pass the lecture, e.g., the skipping of tasks in the exercise is disabled
for all students. Nevertheless, the order of steps is not enforced and students can change
the attributes that are assigned to tasks. In other application scenarios a higher degree of
autonomy can be enabled by allowing the skipping of tasks if this is desired, e.g., all tasks in
the development process of preliminary study could be skipped by the students.

Darwin provides additional capabilities that allow to reduce the level of autonomous decision
making that is desired for users. Less autonomy can be ensured by introducing logical depen-
dencies between tasks through rules, e.g., the task "describe contributions of team members"
has to be completed before the task "prepare final presentation" can be started. Another pos-
sibility is the clustering of tasks in stages that have dependencies, e.g., all tasks of an exercise
have to be completed before the presentation for this exercise can be created. The usage of
rules allows to ensure certain traces in KiPs without limiting the flexibility of the remaining
tasks. The advisors of the lecture are tailors for the work template and they are responsible
for the maintenance of the right degree of autonomy for students.

If necessary you would have been able to perform
own decisions in the submission system or
exercise sheet, e.g. changing the order of steps for
the exercise

12
1] 10
c
3
3 8
7]
‘S 6
3
2 4
: I
=]
0
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 3 9 3 0
= DARWIN 0 0 10 6 3

Figure 6.11.: Making decisions autonomously within the project

155

6. Evaluation

All responses related to the flexibility are summarized with the spider diagram in Figure 6.12.
The red solid line illustrates the results for Darwin and the blue dashed line for e-mail. All
variables that are used to measure the flexibility in the main study could be improved through
the usage of Darwin. In particular the autonomy, exception handling and information struc-
ture have the strongest improvement among all variables. We were able to observe that
participants can use the predefined work templates and make adaptations on their own with
very little training. The overall rating of the flexibility for the e-mail partition is 19.8, while
Darwin achieves an overall rating of 22.6. This corresponds to an improvement for the flex-
ibility of approximately 14.1% in this application scenario. The e-mail partition achieves a
comparatively high rating for the flexibility which can be explained with several reasons.

The size of the teams is small in the main study and this makes the self-organization less
challenging. The assignment of tasks on the exercise sheets to team members can be performed
in face-to-face meetings. We expect that the improvement for this variable can be much higher
for larger teams as soon as the face-to-face meetings are not feasible. Another reason is that
the participants only used the system for the submission of the deliverables, e.g., tasks were
not delegated to individual team members like in the preliminary study. In future iterations of
the lecture every deliverable could be described with a separate wiki page. Team members that
are responsible for the deliverable could create tasks on this separate wiki page to structure
the process for the creation of the deliverable. Another advantage would be the transparency
of the work distribution in the team, i.e., the actually completed tasks of every student are
visible in their profiles.

= == E-Mail DARWIN

Exception handling

Aut Information
utonomy structure
Self-organization Creativity

Incremental
improvements

Figure 6.12.: Comparison of responses related to flexibility

156

6. Evaluation

6.3.6. Results and Findings for Structure

In the following the results for questions related to the structure of the solutions are described.
Figure 6.13 illustrates the responses for the collaboration support during the project. Darwin
is rated on average with 3.05 and e-mail with 3.27. Main reason for the worse rating is the
disagree from several students that complained about too many notifications in the feed. This
is a limitation of the current implementation, since the history events from every user in the
system are shown. The high amount of notifications made it very difficult for students to
follow and communicate changes made by their own teammates. Several students used the
discussion feature of the social feed to raise questions about the exercises for the advisors.
These questions were answered and visible to everybody in the system so that the amount
of e-mail communication could be reduced efficiently. One of the students provided feedback
through the discussion feature that a private discussion would also be very helpful for the
internal team communication.

Based on the feedback of participants and questionnaire results regarding collaboration sup-
port during the project, future versions of Darwin need to include access rights in the gen-
eration and visualization of history events. In a first step data history entries should only
be shown to users having read or edit rights for these entries. The same holds true for tasks
history entries in the social feed, i.e., the user has to be within the execution role of the task.
In addition, it might be helpful to introduce a watch feature so that users are able to explicitly
decide which wiki pages they want to follow. Discussions in the social feed can be improved
by providing the possibility to specify the visibility, e.g., which groups are able to read the
discussion post. This would allow internal discussions with other members of the project team
and public discussions that are relevant for all students. In case the number of history entries
is still overwhelming for users, another possibility could be to determine which history entries
are most relevant or interesting based on recommendation techniques.

It was easy to follow and communicate changes or
updates made by teammates, e.g. someone uploaded a
new version of the deliverables

9
8
[]
t 7
3 6
=
» 5
L
° 4
g
g 3
] 2 . [
)
0 St I
rongly .
Disagree Disagree Neutral Agree Strongly Agree
E-Mail 2 1 s 5)
= DARWIN 2 5 3 s ;

Figure 6.13.: Collaboration support during the project

157

6. Evaluation

Figure 6.14 illustrates the results for the visualization of the progress of the project. Darwin
is rated with an average of 3.74 and e-mail with 3.67. In Darwin every project is described
on a separate work plan with subtasks for the four exercises. In the timeline the start and
end dates for every exercise are visible with the current progress. The current progress for
the exercises and the entire project is visible with the pie charts on the wiki pages. During
the lecture two questions of students occurred that are related to the same problem. After all
tasks of an exercise are completed the progress of 100% is not reached. The reason for this
is that every exercise work plan has an additional task for the advisors of the lecture. The
task is necessary for the assessment of the deliverables and is not visible for students. These
tasks are also considered for the overall progress of the exercise so that 100% progress are only
reached after the advisors entered their assessments. Both students were not sure whether
their exercises are completed after all tasks are finished because of the incomplete progress.

The first possibility to improve the progress visualization would be to compute the progress
only based on tasks that are assigned to the currently logged in user. In our opinion this
solution can only be provided in addition to the current progress visualization that includes
tasks of other users as well, e.g., so that users can switch between personalized and cumulative
progress visualizations. Only providing a personalized progress compassion might raise other
difficulties for the users. In the second possibility remaining tasks of other users could be
visualized in the timeline, e.g., by showing them greyed out in the timeline. Initially tasks of
other users could be hidden and only indicated through an additional button with a counter.
After clicking on this button remaining tasks of other users are visualized in the timeline. The
overview about the project progress could also be improved if students could be encouraged
to maintain the task progress manually since this feature was almost not used at all. For
this purpose the static timeline could be extended with an interactive element that allows the
maintenance of task metadata without the side window.

| had a good overview of the project at all time, e.g.
about the next deliverables and the overall
progress of the steps

12
@8 10
[=
3
3 8
()
S 6
5 .
£
=
= 2
Loom A R
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 3 1 9 2
= DARWIN 1 2 2 10 4

Figure 6.14.: Visualization of the progress of the project

158

6. Evaluation

Figure 6.15 illustrates the results for the allocation of work across team members of the
project. Darwin is rated with an average score of 2.68 and e-mail with 3.07. Although
every task in Darwin has predefined expertises that are required to complete the task, only
one student strongly agrees with this question. Among all questions in the main study the
average score for the allocation of work has the lowest score indicating that this needs to be
improved in Darwin for the future. One student explicitly mentioned that the team worked
on all tasks together so that they rated the question with neutral, i.e., it was not necessary to
determine who should do which task. Another student strongly disagreed with this question
for Darwin because they only used the system for the submission of the deliverables, i.e.,
students uploading the deliverables for a task might be different from students that actually
contributed to the resolution of the task. This indicates that tasks in the work template are
too coarse-grained and refinement with subtasks is necessary. Once more fine-grained tasks for
the creation of deliverables are created in Darwin, the allocation of work during the exercises
might be improved. This approach has already been very successful in the preliminary study
but might require more training of the students.

In future iterations of the lecture deliverables should be created on separate wiki pages.
Thereby, students can create subtasks for every deliverable and allocate tasks for the cre-
ation of the deliverables. With this approach the feedback of the student can be incorporated
and skills of students in the profile would reflect the actual contribution of team members.
In the preliminary study the usage of the scrum process positively influenced the allocation
of work through the explicit planing phase in every sprint. The definition of knowledge work
in Section 2.1.1 highlights the dual field of action, i.e., two separate phases called referential
and actual field of action. While the actual field of action seems to be adequately supported,
the referential field of action could be improved through an explicit planing phase for every
deliverable in the project that is started on a regular basis or after all tasks are completed.

It was easy to determine who should do which
task, e.g. based on the expertises of tasks

8
7
]
= 6
3
= 5
k7
S 4
2 3
£
> 2
1 []
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 2 3 3 6 1
=" DARWIN 3 5 7 3 1

Figure 6.15.: Allocation of work for the team members of the project

159

6. Evaluation

Results for the guidance of the process during the main study are illustrated in Figure 6.16.
Darwin is rated slightly better with 4.16 on average compared to e-mail with 4. The largest
difference in the responses can be observed for strongly agree. Seven students gave the best
rating for Darwin and only two for the submission with e-mail. The remaining choices are
distributed very similar for this question, e.g., ten students agreed for Darwin and 11 for e-
mail. Every step in the exercise sheets is represented as an own task in Darwin. Deliverables
that have to be submitted by the students are assigned to tasks, i.e., after selecting a task in
the exercise sheet the required deliverables are filtered. Tasks on the exercise sheets are only
completed after all deliverables are uploaded on the wiki pages. The initial performance of the
control group is already quite good since this application scenario is much more structured
compared to the preliminary study in which the required steps are not predefined. None of
the students in the Darwin partition submitted the deliverables wrong or incomplete, which
is another indication that the guidance during the exercises seems to be successful.

Regarding the guidance during the projects Darwin provides a solid foundation for future
improvements. In future iterations of the lecture deliverables can be structured more detailed
on separate wiki pages, e.g., instead of a file the business model could be represented on an own
work template that guides students in the creation of the business model. Another possibility
without using separate wiki pages is the initialization with default values for deliverables.
In this approach the attribute already contains a default file to describe the BMC, e.g., as
word or editable pdf document. Students can download the file from the work plan and enter
the empty fields. For the completion of the task this file can be uploaded again to replace
the default file. Similarly, the exercise sheets contain detailed instructions how many slides
are required for which step in the presentations. The structure of the presentation could be
initialized with a default power point file that already contains the required empty slides.
Both improvements could further advance the guidance during the process in the future.

It was easy to see and understand the required
steps for the exercises, e.g. what has to be
submitted for every step

12
» 10
T
3 8
=]
»
‘S 6
2
£ 4
=
=z 2
|| [|
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 0 2 11 2
= DARWIN 1 0 1 10 7

Figure 6.16.: Guidance of the process with the required steps in the project

160

6. Evaluation

Figure 6.17 illustrates the responses related to the efficiency of the solutions. Darwin is rated
with 3.79 on average and e-mail with 4.27. Major difference between both partitions is that
three students strongly disagreed for Darwin. Based on the feedback of the students we
identified two reasons. The first reason is the missing progress bar for file uploads. Many
of the deliverables are quite big, e.g., the code of the web application or screenshots for the
implemented use cases of the solution. In the current implementation Darwin provides no
feedback during the upload of the attribute. In some browsers the progress of the upload is
indicated with a percentage at the bottom of the window, but this might have been overlooked
by the these students. The second reason is that it was difficult for two students to figure
out how the deliverables can be uploaded. Despite these problems the majority of users (15)
agree or strongly agree that it was not much effort to submit the deliverables. The students
in the control mentioned several times that the e-mail submission was fast and easy. Most of
them are used to communication that is based on e-mail.

Although the majority of students confirmed that the submission of deliverables is not much
effort in Darwin, four students were struggling with system. The first improvement that can
be implemented quickly is related with the upload of files. Darwin needs to provide visual
feedback about the progress of the upload. Furthermore, the entering of values for attributes
has to be more intuitive for users that are not familiar with the system. In the current
implementation empty attribute values are displayed with a gray box. Values of attributes
that are associated to tasks could be highlighted on wiki pages, e.g., with red background color
for the value. A more sophisticated solution would be the integration of Darwin with client
applications, e.g., e-mail, word processing, drawing, or modeling tools. This would make the
creation of tasks or upload of a new versions much more comfortable and faster. Disadvantage
of this solution is the high effort for the integration with client applications.

It was not much effort to submit the deliverables
for the exercises, e.g. it was fast and easy

9
8
n 7
g
S 6
=]
® 5
(o
1)
g 4
]
o
€ 3
=]
=z 2
1]
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 0 1 1 6 7
=" DARWIN 3 1 0 8 7

Figure 6.17.: Efficiency for the submission of the deliverables

161

6. Evaluation

Results for the effectivity of both partitions are summarized in Figure 6.18. Darwin is rated
with 3.32 on average and e-mail with 3.33, so that both partitions are almost equally assessed
by the participants. With eight students the majority of responses agreed that Darwin helped
to be more productive for the submission of deliverables. Main goal of this question is to
investigate whether the approach makes the students more productive in their projects. Several
students mentioned that they worked on all tasks together and it was not necessary to split
tasks. Due to several students that canceled the lecture for personal reasons that are not
related to this evaluation, some teams had less than four team members at the end of the
project. We assume that Darwin is better in improving the productivity for larger teams that
consist of more members, because it becomes difficult to coordinate tasks within larger teams.
During the project the advisors also asked the students to work across all layers of the web
application to ensure that everybody participates in the project. To fulfill this requirement
every student needs to work on at least one use case. These requirements limited the flexibility
of the students and might have influenced the results for the productivity negatively.

In future iterations Darwin could help to improve the productivity with recommendations for
tasks. These recommendations can be based on tasks that are created by other students in
similar contexts. Recommended tasks can be shown in the worklist of every exercise sheet
or the project. Users can select recommended tasks to see related metadata and attributes
that are associated with the tasks. Initially, recommended tasks are not active in the work
plan and users have two options for them. The first option is to delete the recommendations
from the worklist in case they are not relevant. In the second option, recommendations that
are useful for the work plan can be instantiated. The instantiation creates the task and
associated mandatory attributes of the task. Based on the required expertises for the tasks,
the system could automatically propose suitable team members that have the right skills.
In addition to the expertises, start and end dates can be used to find team members with
available resources.

The system or the exercise sheet helped you to be
more productive, e.g. tasks were splitted between
team members

9
@ 8
c 7
35
3 6
n 5
5 4
]
2 3
£
S 2
= 1
. [
Strongly . Strongly
Disagree Disagree Neutral Agree Agree
E-Mail 1 2 5 5 2
= DARWIN 0 4 6 8 1

Figure 6.18.: Effectivity of the steps for the submission of the deliverables

162

6. Evaluation

Figure 6.19 illustrates the results related to the reproducibility of process knowledge during
the project. Darwin achieved an average rating of 4.05 and e-mail is slightly better with 4.13.
The majority of users in Darwin agreed or strongly agreed with this question. One of the
students explicitly mentioned that the submitting of deliverables was very intuitive. In the
preliminary study the students reproduced sprints in the system, i.e., an initially created work
template for sprints has been instantiated every week. Although the four exercise sheets have
completely different goals, some aspects could be reused within the work template. Three of
the four exercises required the creation of a presentation that summarizes the main results.
In the second exercise a presentation was not required since there was no project meeting at
the university. For every exercise sheet it was required to create a deliverable that describes
contributions of team members, i.e., a dedicated type for contributions of team members can
be reused in every exercise.

In future iterations of the lecture adaptations and improvements for work templates can be
reused. These improvements can be based on changes that are made on the exercise sheets by
students during the projects. The degree of structure for the work template of the lecture is
currently on Stage IIT (cf. Section 3.1.2 on the evolution of KiPs). Stage IV can be reached by
introducing rules for dependencies between tasks and more detailed constraints for attributes.
Dependencies between tasks can be defined within the exercise, e.g., the presentation is always
created after the other tasks are completed. A higher degree of structure can also contribute
to an improved guidance for the lecture. Stage V introduces rigid types and strict attributes
for work templates. Exercise sheets can be defined as rigid after they have reached a stable
structure, i.e., students are not able to perform any adaptations or changes on the exercise
sheets. For the creation of the deliverables on the exercise sheets Stage IV and V might not
be desirable. These processes are highly unstructured and vary to a large extent for every
project.

The knowledge how the deliverables should be
submitted could be reused from exercise to
exercise, e.g. after submitting one deliverable it
was easy to make the submission for the second
time

Number of students
O=_NWPrPOION®©OWOO

Strongly Strongly
Disagree Agree

E-Mail 0 1 1 8 5
= DARWIN 2 0 2 6 9

Disagree Neutral Agree

Figure 6.19.: Reproducibility of process knowledge during the project

163

6. Evaluation

The results for all questions related to the structure are summarized in the spider diagram
in Figure 6.20. The overall rating for Darwin is 24.8 and for e-mail 25.7. This corresponds
to a small decline of 3.5% for the performance of the structure in the main study. The three
variables collaboration, work allocation and efficiency have the biggest decline and need to
be improved. The students provided valuable feedback for the improvement of these three
variables in the future. All other variables for the structure are either better or equal, whereas
they are considered as equal if the difference is smaller than 0.1. In contrast to the application
scenario of the preliminary study, the structure with the tasks and deliverables for the exercises
is entirely predefined. The exercise sheets contain the same information as the work template
in Darwin. Therefore, we expected the much better performance of the structure for the
control group in this application scenario.

With this result we can conclude that Darwin improved the flexibility without negative im-
plications for the structure in the main study. Furthermore, the usage of predefined work
templates with Darwin could be approved since all project teams were able to complete the
tasks for the exercises. These positive results are a solid foundation for further improvements
in the future. In addition to the submission of the deliverables, Darwin can provide support
for the creation of the deliverables during the exercises in the next step. This can be accom-
plished by describing deliverables with separate work plans that can be structured by students,
e.g., the development of the business model with the BMC. Another improvement is the inte-
gration of Darwin with client applications, e.g., e-mail and word processing tools. With this
integration tasks can be created in the clients and deliverables automatically uploaded.

== == E-Mail DARWIN

Collaboration
4,5
4

3,5
—A\

Reproducibility Progress visualization

Effectivity Work allocation

N ——

Efficiency Guidance

Figure 6.20.: Comparison of responses related to structure

164

6. Evaluation

6.4. Usability of the Mobile Solution

The final step of the evaluation conducted in this thesis is the usability test of the mobile
solution. The development of the mobile solution started during the execution of the main
study, e.g., it was not available for the students during the lecture. In Section 3.4.3, the
user interface for the latest version of the mobile solution is introduced. This version already
incorporates feedback gathered from the usability test, i.e., the test has been performed with
an earlier version. The usability test has three main objectives that are investigated: First,
the navigation structure that is designed for the mobile solution. Second, the creation of tasks
with the maintenance of metadata for tasks. Third, the usage of the commenting function
in the social feed. Before we conclude with the results and findings, Section 6.4.1 briefly
describes foundations of usability testing that are relevant for this thesis. Our execution of
the usability test with the tasks that have to be accomplished by the participants are explained
in Section 6.4.2. Finally, the results and findings are summarized in Section 6.4.3.

6.4.1. Foundations of Usability Testing

Usability is an important characteristic for the quality of software products and according to
the ISO 9126 standard it is "a set of attributes that bear on the effort needed for use and on the
individual assessment of such use, by a stated or implied set of users” [IS01|. In this standard
usability is divided into three attributes for understandability, learnability and operability.
Understandability describes how much effort is necessary for users to comprehend and apply
the logical concepts in the application. Learnability captures the amount of effort required
for users to learn the application. Operability describes the effort of users to operate the
software correctly. Another widely accepted set of attributes for the concept usability can be
found in [Ni94]. In this publication usability consists of five attributes: learnability, efficiency,
memorability, errors and satisfaction. Similar to the ISO 9126 standard efficiency describes
the required learning time for new users. Efficiency measures the productivity gains that are
facilitated by the interface. The extent to which users remember how an interface works is
described with memorability. Errors are measured as unintended actions and satisfaction is
used for the attitude of users regarding the interface.

Main goal of usability testing is the measurement of these characteristics and attributes. In
this thesis the usability of the mobile solution is tested with questionnaires and the thinking
aloud method. In the thinking aloud method users continuously speak about their impressions
with the system, e.g., whether the meaning of colors is easy to understand. This makes it
easier to find errors in the interface since it might be difficult for the participants to remember
all details in a subsequent interview or questionnaire. Furthermore, we decided to use an
online questionnaire since interviews would be too time consuming for this large number of
participants. The questionnaire is based on the System Usability Scale (SUS), which allows
reliable and low-cost assessments [Br96]. The SUS questionnaire consists of ten questions that
are answered with a five point likert scale. Five of the questions are formulated positively
and five negatively. The questions are adapted to the conditions of the specific test. The
result of the questionnaire is a score between 0 and 100, whereas 100 is the best possible
assessment. SUS scores between 60 and 80 can be classified from marginal to good. Scores
above 80 indicate a very good or excellent usability of the software product.

165

6. Evaluation

6.4.2. Execution of the Test

The usability test was conducted on the 7' and 8" July 2015 in a controlled environment
at TUM. 69 of the 75 students working with Darwin during their project completed the
usability test, whereas six responses of the questionnaire are incomplete and removed from
the dataset. The evaluation is divided into 12 slots that are executed on these two days. In
every slot four to eight participants execute the usability test individually under the guidance
of an instructed student. In the first step, participants receive several tasks that have to be
completed in the mobile solution. Table 6.2 briefly describes these tasks with their test goal.
Before the test started we deployed the latest version of Darwin that contains the mobile
interface, i.e., students can log in with the same credentials that they use for their projects.
None of the participants had previous access to the mobile solution or was involved in the
design of the interface. We decided to test the mobile interface on desktop computers that are
available in the controlled environment to avoid problems that might be related with specific
smartphones. For the test we used the mobile device mode of the browser. Participants were
asked to comment the usage of the system verbally for the thinking aloud method.

During the completion of the five tasks the instructed student carefully observed the interaction
of the participants wit the system, e.g., to identify patterns of errors made by several users.
After students completed the test using the mobile solution, they filled the online questionnaire
that is based on the SUS in the second step. Based on the responses of the participants the
SUS score is computed for the mobile interface. This score provides an initial indication of
the usability performance that is a good starting point for more detailed tests in the future.
Feedback that we gathered from the questionnaire and observations of the system usage are
summarized in nine issues. Some of these issues are already addressed in the latest version
that is presented in this thesis. All of the identified issues and their solution are described in
Section 6.4.3.

Task Instructions Test Goal
Please provide some short feedback by
commenting the last discussion post of | Find a specific discussion en-
Matheus Hauder. The comments should | try and write a comment

be related to improvements for the lecture.
Please open the wiki page that is used for
Step 2 the tasks and deliverables of exercise 4 in
your project.

Create a task that called Define test cases
with your name. Start date is today and

Step 1

Navigation to the project and
exercise page

k
Step 3 end date is 15" July 2015, Required ex. | O eALe & €W tas
pertises are Scala and unit testing.
Please use the task overview to check for . .
, .. | Finding the task overview for
Step 4 any tasks that have to be finished until ; o
7 days in the navigation
next week.
Please finish the task called Deﬁne te.st Finishing a task by setting the
Step 5 cases that you have created previously in
step 3 progress to 100%

Table 6.2.: Test tasks that are performed by the participants in the mobile solution

166

6. Evaluation

6.4.3. Results and Findings

In this section results and findings for the usability of the mobile solution are summarized.
The result of the SUS test is a score that provides an indication for the perceived usability of
the system. We computed the overall score based on the responses of the 69 students in the
questionnaire. The results of the test are related to an early version of the mobile interface,
i.e., another iteration of the usability test with the latest version might reveal a better score.
The mobile solution achieved an overall SUS score of 67.57 with a standard deviation of 10.36.
This value is within the marginal and good area of the SUS range, i.e., this is an acceptable
score but it leaves space for further improvements of the usability for the mobile solution.

We collected nine issues by observing the usage of the system during the test and gathered
comments in the online questionnaire. Some of these issue are already resolved for the version
presented in this thesis. The issues are grouped into five contexts in which they occurred and
are described in the following:

1. Login: The sensitivity during the login was criticized since the mobile keyboard switches
to capital letters at the beginning (issue 1). This is an issue since all login names provided
to the students start with lower case letters. In the current implementation this issue is not
resolved because the entire login needs to be much easier in the future, e.g., using existing
accounts provided by other websites.

2. Social feed: Many students didn’t use the filter functionality in the feed for the first task
(issue 2). This was due to the fact that the filter buttons look like tabs and not buttons. In
the current version this issue has already been resolved. The usage of the filter buttons was
not consistent according to the students (issue 3). Sometimes clicking on a button enables
filters and in other situations it disables them. This issue has been resolved by using the
buttons consistently. Finally, the hiding of the like and comment button was not necessary
since it requires an extra click (issue 4). Like and comment buttons are always shown to
resolve this issue.

3. Task overview: In the overview tasks for today and the next seven days are listed.
Initially tasks were not directly editable in the overview and users were redirected to the
wiki page after clicking on a task (issue 5). This required an additional click in the user
interface for the update of metadata. Direct editing of tasks is now possible in the overview
and users are not redirected to the wiki page anymore.

4. Wiki pages: The tabs at the top of the wiki page were not immediately recognized by the
students (issue 6). In the latest version the color of the tabs has been changed to highlight
them on wiki pages. The closed tasks buttons were not highlighted enough on the wiki
pages (issue 7). This issue has been resolved in the current version and completed tasks
are much easier to recognize now.

5. Creating and editing tasks: The students expected that the editing of metadata is
possible after the task is clicked, but clicking on a task only filters the mandatory attributes
(issue 8). Editing the metadata requires an additional click and this could not be improved
in the current version. Many students also struggled with the completion of tasks because
they expected something like a "close task" button (issue 9). Instead of introducing such
a button, we decided to work on the improvement of the progress functionality.

167

168

CHAPTER [

Critical Reflection and Future Research

In this chapter the thesis is concluded with a critical reflection and an outlook on future
research. Section 7.1 provides the conclusion with a summary of all chapters and the final
assessment of the seven research questions presented in the beginning. Possible limitations
and threats to validity are provided in Section 7.2. The limitations are divided into three
subsections for the conceptual part, the implementation and the evaluation of the approach.
In Section 7.3, future research related to the results of this thesis is presented.

7.1. Conclusion

In Section 1, the motivation for this thesis is introduced with a detailed description of the
problem, which is the collaborative structuring of KiPs through end-users. We applied the
design science research methodology [Pe07] and explicitly stated seven research questions.
Foundations for the thesis and related work are presented in Section 2. Fundamental topics
for this thesis are KiPs, the integration of data and process as well as successful online com-
munities. Requirements for the software support of KiPs are gathered from these three topics.
The conceptual part for the structuring of KiPs is presented in Chapter 3. In the first step it
describes the participating roles and the evolutionary approach for KiPs, i.e., the generaliza-
tion of work templates through adaptable work plans. The required lightweight structuring
concepts for this approach are presented in the second step, e.g., tasks, expertises, rules and
stages. Based on social design principles from successful online communities, the features for
the lightweight structuring concepts are described. The chapter continues with the design of
the user interface including the mobile solution. Chapter 4 covers the implementation called
Darwin by describing the most important aspects: the overall architecture, data model and
CMMN workbench. Darwin is demonstrated in Chapter 5 with three case studies: idea gen-
eration, development of a planned state and elicitation of requirements. The evaluation of
Darwin is described in Chapter 6 with the evaluation framework, preliminary and main study

169

7. Critical Reflection and Future Research

as well as the usability of the mobile solution. The participants in the preliminary and main
study are divided into two groups that are compared against each other. In the preliminary
study with 7 participants the structure could be improved considerably. In the main study
with 145 participants the flexibility was improved by 14.1%. In the third step of the evaluation
the mobile solution revealed an average SUS score of 67.57, which is in the marginal and good
area of the test.

Research question 1 is answered with a set of 30 generic requirements for the software support
of KiPs that are mostly derived from existing literature. The requirements provide a good
foundation for the assessment of software solutions for KiPs. Based on three application
scenarios that are investigated in detail, this set of requirements is compared against three
application scenarios to answer research question 2. The relevance for the generic requirements
differs for the application scenarios, i.e., not all requirements are equally relevant in these
scenarios. An implementation of all requirements is not feasible within the timeframe of this
thesis. One of the most challenging aspects for the software support of KiPs is the structuring
at runtime through end-users, which is investigated with the remaining research questions.
Research question 3 is answered with social design principles and patterns for successful online
communities that are extracted from literature. These principles and patterns are used to
design features in the user interface for the structuring of KiPs in order to motivate knowledge
workers to contribute with their expertise and experience to the work plan. For research
question 4, lightweight structuring concepts for KiPs are presented, e.g., tasks, expertises,
attributes and roles. These concepts can be used by end-users to define and adapt work plans
at runtime. Research question 5 is answered with an evolutionary approach for the structuring
of KiPs in which work templates emerge from adaptations made by end-users on work plans.
For this approach the participating roles for visitors, authors and tailors are extended from the
Hybrid Wiki project. For research question 6, we developed an interactive CMMN workbench
that can be used by modeling experts to maintain work templates. Research question 7 is
answered with a mobile interface for Darwin that uses a subset of the available functionality.

In two studies Darwin as solution was applied with real world users in controlled environments
and compared with existing solutions. The preliminary study was conducted with 7 partici-
pants and the main study with 145 participants. The already existing degree of structure is
different in both studies. In the preliminary study the work template was entirely unstruc-
tured so that participants had to create own structuring concepts. The work template for
the main study was already predefined and we investigated whether participants are able to
use and adapt the work templates for their projects. In both studies one of the measurement
variables could be improved without deteriorating the other one, e.g., the flexibility improved
on the same level of structure in the main study. Therefore, our main research hypothesis for
this thesis can be confirmed and we are able to show that end-users without knowledge about
an existing process modeling notation can be empowered to collaboratively structure KiPs
in controlled environments. These promising results can be applied in practice to improve
existing generic case management solutions that require more flexibility at runtime. Tool
vendors implementing the CMMN standard can incorporate the lightweight structuring con-
cepts and the evolutionary approach proposed in this thesis. Another possibility is to apply
the conceptual part of this thesis in vertical use cases, e.g., healthcare, software engineering,
or idea generation. The proposed features for the lightweight structuring concepts can be
incorporated in these systems to improve process support for specific application scenarios.

170

7. Critical Reflection and Future Research

7.2. Limitations

In this section limitations and threats to the validity of the thesis are briefly discussed. The
limitations are divided in three parts mirroring the chapters describing the core contributions
of the thesis. Part 1 describes limitations that are related to the conceptual part. Limitations
related to the implementation of the prototype are summarized in part 2. Finally, part 3 lists
limitations related to the evaluation of this thesis.

1. Structuring of knowledge-intensive processes: The conceptual part of the solution is intro-
duced in Chapter 3. It consists of the emergent structuring of KiPs, lightweight structuring
concepts and features for the concepts that are embedded in the user interface. The emer-
gent structuring of KiPs is based on the approach for Hybrid Wikis [Nel2]. Hybrid Wikis
are used in production at sebis® since 2009 for the structuring of data models. In this thesis
we enhanced this approach with structuring concepts for KiPs. The features incorporate
widely accepted social design principles from successful online communities. The major
limitation of this chapter is related to the formal description of the structuring concepts:

a) The conceptual part lacks a formal specification of the lightweight structuring con-
cepts, although the detailed description of the structuring concepts provides a solid
foundation for the formalization in the future. With this formal specification process
models can be checked for correctness, e.g., to avoid any inconsistent states in the
work templates. Another advantage of the formal specification is the comparability
with other related approaches. The Guard-Stage-Milestone (GSM) approach for the
specification of business entity lifecycles provides a good starting point for the for-
malization. GSM is the foundation for CMMN and the structuring concepts provided
in this thesis are a subset of this approach.

2. Implementation: The implementation of the conceptual approach is described in detail
in Chapter 4. This chapter depicts the software solution with the core functionality, the
workbench for CMMN and the implementation of the mobile user interface. An entire
implementation of all requirements for the software support of KiPs exceeds the scope
of this thesis. The main objective is the implementation of the conceptual part for the
structuring of KiPs. The limitations of the implementation are described in the following:

a) Sophisticated features for the management of work templates are not implemented in
the current version. Although it is possible to define work templates in Darwin, there
is no way to handle different versions or migrate already instantiated work templates.
Depending on the application scenario, the duration of KiPs might be very long. In
Darwin it is not possible to migrate changes of work templates on instances that are
currently executed. This is a limitation that might prohibit the productive usage
of Darwin for application scenarios with long duration. It is also not possible to
manage different versions of work templates, which would be very helpful to analyze
the evolution of templates.

b) The second limitation related to the implementation is the functionality of the
CMMN workbench. The workbench provides no automated layout of the shapes
that are created so that it becomes confusing for modeling experts quickly. For pro-

"https://wwwmatthes.in.tum.de, last accessed on: 2015-08-17

171

https://wwwmatthes.in.tum.de

7. Critical Reflection and Future Research

ductive application of Darwin tailors require more detailed information about the
usage of work plans, e.g., average completion time of tasks. In the current imple-
mentation the workbench is on the lowest conformance level of CMMN (cf. visual
notation conformance in [Obl4]). As a consequence it is not possible to exchange
work plans with cases in other tool solutions.

3. Ewaluation: The results of the evaluation are summarized in Chapter 6. It starts with a
description of the evaluation framework that is applied. In three serial steps the approach
is evaluated with controlled experiments with real world users. A preliminary study is
used to investigate a highly unstructured application scenario for a KiP. After feedback
of the preliminary study is incorporated in the solution, the main study investigates an
application scenario with a predefined work template. In the last step a usability test is
conducted on the mobile interface of the solution. The following limitations related to the
evaluation have to be mentioned.

172

a)

Throughout the evaluation we were not able to pass through all stages for the evolu-
tion of work templates, i.e., from Stage I to Stage V. This requires several iterations
of the same KiP, which was not possible because of time constraints of this thesis.
The preliminary as well as main study were only conducted once without any further
iterations. The resulting work template that emerged during the preliminary study
could be used for future iterations of the lab courses. This would correspond to an
evolution from Stage I to III since an entirely unstructured process emerged to a
work template with definitions. Another iteration of the main study could be used
to show the evolution from Stage III to V. The work template for the exercises can
be defined as rigid with strict attributes for the mandatory deliverables.

Another limitation of the evaluation is the rather small team size in the preliminary
and main study. None of the teams that used Darwin in practice had more than four
team members. In practice many application scenarios of KiPs might have many more
(or even less) knowledge workers that contribute to a common goal, e.g., scientific
communities. A higher number of knowledge workers might hamper the allocation of
work and the structuring of KiPs in case of missing common understanding. Another
side effect of larger team sizes is that the structure of KiPs might become bigger,
e.g., more tasks and attributes are created on deeply nested work plans. We believe
that larger teams and projects can benefit more from the capabilities of Darwin, but
this remains to be proven in practical settings.

To the best of our knowledge there is no widely accepted approach for the evaluation
and assessment of solutions supporting KiPs available. We decided to measure the
performance of Darwin with two variables for the perceived structure and flexibility,
since both are frequently mentioned in contemporary literature. There might be other
relevant variables and measurement criteria that we didn’t consider in our evaluation.
Another limitation originates from the application scenario that we used for both
studies. Although both application scenarios have different degrees of structure, there
might be application scenarios for KiPs that perform differently for our approach. A
common evaluation scenario for solutions supporting KiPs is highly desirable for the
comparison of different approaches.

7. Critical Reflection and Future Research

7.3. Future Research

The results and findings of this thesis provide manifold new opportunities for future work. In
this section we focus on four possibilities for future research related to Darwin that are briefly
described. On top of the four research areas several other topics are imaginable due to the
high relevance of KiPs in practice and the limited amount of available research in this area.

7.3.1. Application in Practice

The first possibility for future research is the application of Darwin in practice. The evalu-
ation in this thesis is performed with students in controlled environments at our university.
An application in practice might reveal interesting findings that are not conceivable within
a controlled environment. Furthermore, KiPs are omnipresent in organizations and many
problems could be tackled with this approach. Starting points are already provided with the
three case studies presented in this thesis in Chapter 5. In EAM existing patterns observed
from practice are a good starting point for the definition of work templates. Darwin could be
used as an execution platform for the EAM pattern catalog (EAMPC) presented in [Bu08§|.
The application of Darwin for the execution of the EAMPC has several advantages: the doc-
umentation of method patterns becomes much easier, since the work templates reflect the in
reality performed processes in the organizations. Patterns can also be adapted to the context
of organizations, which allows the creation of organization-specific methods, e.g., for specific
industry sectors or concerns.

Another application in practice is the usage of Darwin for integrated care services (ICS).
ICS can be supported with generic work templates that are adapted by professional case
managers. The EU project NEXES? recently started an attempt to define the required logic
models with BPMN [Cal5|. According to the authors this approach is not suitable for ICS
due to the limited dynamic adaptation to changes that occur frequently for specific patients
in integrated care. In future developments the authors attempt to follow an approach based
on ACM that could be realized with Darwin. For the productive usage, Darwin needs to be
connected with existing healthcare systems of hospitals to retrieve patient data, e.g., electronic
health records (EHR). Clinical decision support systems (CDSS) have to be integrated in order
to automatically analyze patient data. Results of these CDSS can be used to propose tasks
in the individual treatment plans for patients. Patient data can also be gathered from remote
monitoring devices in case of patients are not in the hospital. The integration with these
external systems and devices can be realized with the API that is presented in Appendix A.

7.3.2. Recommendations

Main objective of Darwin is the structuring of KiPs at the hands of end-users. This structure
can be exploited to provide recommendations for users in future research. Recommendations
are beneficial for the evolution of KiPs since they contribute to the consistent usage of terms.
For this purpose the similarity of users or work plans can be computed in a first step. In a
second step the structure of related work plans can be recommended to suitable users. Rec-

*http://uww.webcitation.org/60412APYq, last accessed on: 2015-08-18

173

http://www.webcitation.org/6O412APYq

7. Critical Reflection and Future Research

ommendations can be used for attributes and tasks on wiki pages, i.e., recommended tasks
are shown with dashed lines in worklists. Users could instantiate recommended tasks and
attributes by simple clicking on them in user interfaces. Metadata for tasks could be recom-
mended with frequently used expertises or estimated durations of previously completed tasks.
Similarly, expertises of tasks can be used to recommend suitable users based on their gkills in
the profiles. Initial work in this area has already been published for collaborative processes
in IT service management [MNB11]. In this paper next best steps and expert recommenda-
tions are used to share knowledge about the resolution of cases. The recommendations are
computed through annotated step flow models that are used to find matching paths. Another
recent publication investigates recommendations in the context of ACM [HFH15]. In this ap-
proach log files are analyzed for the recommendation of individual steps. A major limitation of
these papers is that they are only focused on the recommendation of individual tasks or steps.
Based on the structure collected in Darwin, we envision more sophisticated recommendations
that go beyond tasks.

7.3.3. Mining of Work Templates

Mining of work templates is similar to the already mentioned recommendations. The main
difference is that recommendations are within one work plan, while mining of work templates
takes place after several iterations of the corresponding work plans have been carried out.
Another difference is that the main stakeholders for recommendations are authors in our
approach. The mining of work templates is more relevant for tailors that are responsible
for the maintenance of them. In the current implementation tailors can see all structuring
concepts that are created or adapted by authors. This might overwhelm tailors in case large
numbers of work plans are used productively. Recurring patterns in the work plans can be
revealed through existing process mining algorithms. An initial step in this direction has been
proposed in [SZJ13]. In this paper process mining algorithms are applied on KiPs that are
specified with CMMN;, e.g., in order to identify dependencies between tasks. In the first step
the paper proposes the creation of a CMMN process skeleton. In the second step instances of
this process are analyzed with process mining techniques. Although the lifecycle of the skeleton
is not described in detail, the concept of skeletons is very similar to work templates.

7.3.4. Standardized Experiments and Evaluation Processes

Standards for the evaluation of solutions for KiPs are an open research area, which makes the
assessment and comparison of different approaches difficult. In this thesis we introduced an
evaluation framework that is based on controlled software experiments. In our experiments
the flexibility and structure are assessed with control groups to evaluate our main research
hypothesis. Besides the structuring of KiPs through end-users there are many other require-
ments that have to be considered. Due to the large extent of this research area, we assume
that several evaluation alternatives are conceivable. A first step for future research is the
identification of standardized application scenarios with different degrees of structure, e.g.,
the requisition and procurement of orders presented in [Hullb]. Based on these application
scenarios common criteria for the assessment of solutions are necessary that go beyond the
structuring of KiPs, e.g., integration with external systems, versioning and reporting.

174

Bibliography

[ABO1]

[Ab15]

[AL10]

|AN9S|

[ASW03]

[AWGO05]

[Be73]

[BLO7]

[Bil2]

[Bil4]

[Bl13]

van der Aalst, W. M.; Berens, P.: Beyond workflow management: product-driven
case handling. In Proceedings of the 2001 International ACM SIGGROUP Con-
ference on Supporting Group Work. pages 42-51. ACM. 2001.

Abrek, N.: Design and Implementation of a Mobile Application for the Collabo-
rative Structuring of Knowledge-Intensive Processes. Master’s thesis. Technische
Universitdt Miinchen. Germany. 2015.

Allweyer, T.: BPMN 2.0: introduction to the standard for business process mod-
eling. BoD-Books on Demand. 2010.

Aamodt, A.; Nygard, M.: Different roles and mutual dependencies of data, infor-
mation, and knowledge—an Al perspective on their integration. Data & Knowl-
edge Engineering. 16(3):191-222. 1995.

van der Aalst, W.; Stoffele, M.; Wamelink, J.: Case handling in construction.
Automation in Construction. 12(3):303-320. 2003.

van der Aalst, W. M.; Weske, M.; Griinbauer, D.: Case handling: o new paradigm
for business process support. Data & Knowledge Engineering. 53(2):129-162.
2005.

Bell, D.: The coming of post-industrial society: a venture in social forecasting.
Basic Books. New York. 1973. 0-465-01281-7.

Bhattacharya, K.; Gerede, C.; Hull, R.; Liu, R.; Su, J.: Towards formal analysis
of artifact-centric business process models. In Business Process Management.
pages 288-304. Springer. 2007.

Birney, E.: The making of ENCODE: lessons for big-data projects. Nature.
489(7414):49-51. 2012.

Bigontina, M.: Leveraging Artefact-Oriented Requirements Engineering through a
Software System for Knowledge-Intensive Processes. Master’s thesis. Technische
Universitdt Miinchen. Germany. 2014.

Bleibinhaus, S.: Architectural Design and Implementation of a Web Application
for Adaptive Data Models. Master’s thesis. Technische Universitit Miinchen.

175

Bibliography

[BM11]

[Bs11]

[Brog]

[Bri2]

[BS87]

[Bu0§|

[Bul2]

[Calb]

[CGHOY]

[CMV09]

[Co90]

[Co94]

[Da05]

[DCMR13]

176

Germany. 2013.

Brynjolfsson, E.; McAfee, A.: Race against the machine: How the digital revolu-
tion is accelerating innovation, driving productivity, and irreversibly transforming
employment and the economy. Digital Frontier Press Lexington, MA. 2011.

Béhringer, M.: Emergent case management for ad-hoc processes: A solution based
on microblogging and activity streams. In Business Process Management Work-
shops. pages 384-395. Springer. 2011.

Brooke, J.: SUS-A quick and dirty usability scale. Usability evaluation in industry.
189(194):4-7. 1996.

Bry, F.; Schaffert, S.; Vrandeci¢, D.; Weiand, K.: Semantic wikis: Approaches,
applications, and perspectives. Springer. 2012.

Beruvides, M. G.; Sumanth, D. J.: Knowledge work: A conceptual analysis and
structure. Productivity Management Frontiers-1. pages 127-138. 1987.

Buckl, S.; Ernst, A. M.; Lankes, J.; Matthes, F.: Enterprise Architecture Man-
agement Pattern Catalog (Version 1.0, February 2008). Technical report. Chair
for Informatics 19 (sebis), Technische Universitdt Miinchen. Munich, Germany.
2008.

Buschle, M.; Ekstedt, M.; Grunow, S.; Hauder, M.; Matthes, F.; Roth, S.: Au-
tomating Enterprise Architecture Documentation using an Enterprise Service
Bus. In 18th Americas Conference on Information Systems, AMCIS 2012, Seat-
tle, Washington August 9-11. 2012.

Cano, I.; Alonso, A.; Hernandez, C.; Burgos, F.; Barberan-Garcia, A.; Roldan, J.;
Roca, J.: An adaptive case management system to support integrated care services:
Lessons learned from the NEXES project. Journal of Biomedical Informatics.
55:11-22. 2015.

Cleven, A.; Gubler, P.; Hiiner, K. M.: Design alternatives for the evaluation of de-
sign science research artifacts. In Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology. page 19.

ACM. 2009.

Clair, L. C.; Moore, C.; Vitti, R.: Dynamic Case Management — An Old Idea
Catches New Fire. Technical report. Forrester. Cambridge, MA. 2009.

Cooper, R. G.: Stage-gate systems: a new tool for managing new products. Busi-
ness horizons. 33(3):44-54. 1990.

Cooper, R. G.: Third-generation new product processes. Journal of Product In-
novation Management. 11(1):3-14. 1994.

Davenport, T. H.: Thinking for a living: how to getl better performances and
results from knowledge workers. Harvard Business Press. 2005.

Di Ciccio, C.; Marrella, A.; Russo, A.: Knowledge-Intensive Processes: Charac-
teristics, Requirements and Analysis of Contemporary Approaches. Journal on
Data Semantics. pages 1-29. 2013.

Bibliography

[DHV13]

[DIZ06]

[DLH02|

[DN94]

[DP9S]

[dPv10]

[Dr77]

[Dro3)

[DROY]

[Fa09]

[Fal3]

[Fe06]

[Fel0]

[FHS13]

Damaggio, E.; Hull, R.; Vaculin, R.: On the equivalence of incremental and fiz-
point semantics for business artifacts with Guard-Stage—Milestone lifecycles. In-
formation Systems. 38(4):561-584. 2013.

Di Torio, A.; Zacchiroli, S.: Constrained wiki: an oxymoron? In Proceedings of
the 2006 international symposium on Wikis. pages 89-98. ACM. 2006.

Duyne, D. K. V.; Landay, J.; Hong, J. I.: The design of sites: patterns, principles,
and processes for crafting a customer-centered Web experience. Addison-Wesley
Longman Publishing Co., Inc. 2002.

Davenport, T.; Nohria, N.: Case Management and the Integration of Labor. MIT
Sloan Management Review. 35(2):11-23. 1994.

Davenport, T. H.; Prusak, L.: Working knowledge: How organizations manage
what they know. Harvard Business Press. 1998.

de Man, H.; Prasad, S.; van Donge, T.: Mastering the Unpredictable: How Adap-
tive Case Management Will Revolutionize the Way That Knowledge Workers Get
Things Done. chapter Innovation Management, pages 211-255. Meghan-Kiffer
Press. Tampa, Florida, USA. 1st edition. 2010.

Drucker, P.: Management. Harper’s College Press. New York. 1977. An abridged
and revised version of Management: tasks, responsibilities, practices.

Drucker, P. F.: The New Society: The Anatomy of Industrial Society. Transaction
publishers. 1993.

Dadam, P.; Reichert, M.: The ADEPT project: a decade of research and devel-
opment for robust and flexible process support. Computer Science-Research and
Development. 23(2):81-97. 2009.

Fahland, D.; Liibke, D.; Mendling, J.; Reijers, H.; Weber, B.; Weidlich, M.;
Zugal, S.: Declarative versus imperative process modeling languages: The issue
of understandability. In Enterprise, Business-Process and Information Systems
Modeling. pages 353-366. Springer. 2009.

Farwick, M.; Breu, R.; Hauder, M.; Roth, S.; Matthes, F.: Enterprise architecture
documentation: Empirical analysis of information sources for automation. In
System Sciences (HICSS), 2013 46th Hawaii International Conference on. pages
3868-3877. IEEE. 2013.

Fettke, D.-W.-1. P.: State-of-the-Art des State-of-the-Art. Wirtschaftsinformatik.
48(4):257-266. 2006.

Fernédndez, D. M.; Penzenstadler, B.; Kuhrmann, M.; Broy, M.: A meta model
for artefact-orientation: fundamentals and lessons learned in requirements engi-
neering. In Model Driven Engineering Languages and Systems. pages 183-197.
Springer. 2010.

Fiedler, M.; Hauder, M.; Schneider, A. W.: Foundations for the Integration of
Enterprise Wikis and Specialized Tools for Enterprise Architecture Management.
In 11. Internationale Tagung Wirtschaftsinformatik, Leipzig, Germany, February

177

Bibliography

[Fi00]

[Gell]

[Geld]

[Gil5al

|Gi15b]

[Gil5c]

[GL10]

[GRAOS]

[Hal3al

[Hal3b]

[Hal4a]

[Hal4b]

[He04]

178

27 — March 1, 2015. page 109. 2013.

Fielding, R. T.: Architectural styles and the design of network-based software
architectures. PhD thesis. University of California, Irvine. 2000.

Geiger, D.; Seedorf, S.; Schulze, T.; Nickerson, R. C.; Schader, M.: Managing the
Crowd: Towards a Taxonomy of Crowdsourcing Processes. In AMCIS. 2011.

Gerstner, M.: Empowering End-users to Support Knowledge-intensive Processes
with the Case Management Model and Notation. Master’s thesis. Technische
Universitdt Miinchen. Germany. 2014.

Gil, Y.; Michel, F.; Ratnakar, V.; Hauder, M.: Organic Data Science: A Task-
Centered Interface to On-Line Collaboration in Science. In Proceedings of the
ACM International Conference on Intelligent User Interfaces. Atlanta, GA. 2015.

Gil, Y.; Michel, F.; Ratnakar, V.; Hauder, M.; Duffy, C.; Hanson, P.: A Task-
Centered Framework for Computationally-Grounded Science Collaborations. In
11th International Conference on E-Science (e-Science). IEEE. 2015.

Gil, Y.; Michel, F.; Ratnakar, V.; Read, J.; Hauder, M.; Duffy, C.; Hanson,
P. et al.: Supporting Open Collaboration in Science through Explicit and Linked

Semantic Description of Processes. In Proceedings of the Twelfth European Se-
mantic Web Conference (ESWC). Portoroz, Slovenia. 2015.

Glédser, J.; Laudel, G.: Ezperteninterviews und qualitative Inhaltsanalyse.
Springer-Verlag. 2010.

Guenther, C. W.; Reichert, M.; van der Aalst, W. M.: Supporting Flexible Pro-
cesses with Adaptive Workflow and Case Handling. In Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises. pages 229-234. IEEE.
2008.

Hauder, M.: Bridging the gap between social software and business process man-
agement: A research agenda: Doctoral consortium paper. In Seventh Interna-
tional Conference on Research Challenges in Information Science (RCIS). pages
1-6. IEEE. 2013.

Hauder, M.; Roth, S.; Matthes, F.; Lau, A.; Matheis, H.: Supporting collabora-
tive product development through automated interpretation of artifacts. In 3rd
International Symposium on Business Modeling and Software Design. 2013.

Hauder, M.; Miinch, D.; Michel, F.; Utz, A.; Matthes, F.: Ezamining Adaptive
Case Management to Support Processes for Enterprise Architecture Management.
In Enterprise Distributed Object Computing Conference Workshops (EDOCW).
IEEE. 2014.

Hauder, M.; Roth, S.; Schulz, C.; Matthes, F.: Agile enterprise architecture man-
agement: an analysis on the application of agile principles. In International
Symposium on Business Modeling and Software Design (BMSD). 2014.

Hevner, A. R.; March, S. T.; Park, J.; Ram, S.: Design Science in Information
Systems Research. MIS Quarterly. 28(1):75-105. 2004.

Bibliography

[HFH15]

[HGL11]

[HID10]

[HKM15]

[HLO1]

[HPM14]

[HS11]
[Hu99]

[Hu05]

[HuO8]

[Hullal

[Hullb

[Hullc]

Huber, S.; Fietta, M.; Hof, S.: Next step recommendation and prediction based
on process mining in adaptive case management. In Proceedings of the 7th Inter-

national Conference on Subject-Oriented Business Process Management. page 3.
ACM. 2015.

Hauder, M.; Gil, Y.; Liu, Y.: A framework for efficient data analytics through
automatic configuration and customization of scientific workflows. In E-Science
(e-Science), 2011 IEEE 7th International Conference on. pages 379-386. IEEE.
2011.

Hull, E.; Jackson, K.; Dick, J.: Requirements engineering. Springer Science &
Business Media. 2010.

Hauder, M.; Kazman, R.; Matthes, F.: Empowering End-Users to Collaboratively
Structure Processes for Knowledge Work. In Business Information Systems. pages
207-219. Springer. 2015.

Hofmann, H. F.; Lehner, F.: Requirements engineering as a success factor in
software projects. IEEE software. 18(4):58-66. 2001.

Hauder, M.; Pigat, S.; Matthes, F.: Research challenges in adaptive case manage-
ment: A literature review. In 18th International Enterprise Distributed Object
Computing Conference Workshops and Demonstrations (EDOCW). pages 98-
107. IEEE. 2014.

Hauschildt, J.; Salomo, S.: Innovationsmanagement. Vahlen. 2011.

Hull, R.; Llirbat, F.; Simon, E.; Su, J.; Dong, G.; Kumar, B.; Zhou, G.: Declara-
tive workflows that support easy modification and dynamic browsing. In WACC.
pages 69-78. ACM. 1999.

Hube, G.: Beitrag zur Analyse und Beschreibung der Wissensarbeit. Heimsheim:
Jost-Jetter. 2005.

Huang, A.: Similarity measures for text document clustering. In Proceedings of
the sizth new zealand computer science research student conference, Christchurch,
New Zealand. pages 49-56. 2008.

Hull, R.; Damaggio, E.; De Masellis, R.; Fournier, F.; Gupta, M.; Heath III,
F. T.; Hobson, S. et al.: Business artifacts with gquard-stage-milestone lifecycles:
managing artifact interactions with conditions and events. In Proceedings of the

5th ACM international conference on Distributed event-based system. pages 51—
62. ACM. 2011.

Hull, R.; Damaggio, E.; Fournier, F.; Gupta, M.; Heath, III, F. T.; Hobson, S.;
Linehan, M. et al.: Introducing the Guard-stage-milestone Approach for Specifying
Business Entity Lifecycles. In Proceedings of the 7th International Conference on
Web Services and Formal Methods. WS-FM’10. pages 1-24. Berlin, Heidelberg.
2011. Springer-Verlag.

Hull, R.; Damaggio, E.; Fournier, F.; Gupta, M.; Heath III, F. T.; Hobson, S.;
Linehan, M. et al.: Introducing the guard-stage-milestone approach for specify-
ing business entity lifecycles. In Web services and formal methods. pages 1-24.

179

Bibliography

[TE05]

[1501]

[Ke08]

[KH12|

[KR11]

[Kr12a]

[KR12D)

[Kr14]

[KRMO6]

[Ku03]

[Kii13]

[Kul|

[KWRI11]

180

Springer. 2011.

IEEE: Standard for Application and Management of the Systems Engineering
Process. IEEE Std 1220-2005. pages 1-87. 2005.

ISO/IEC: ISO/IEC 9126. Software engineering — Product quality. ISO/IEC.
2001.

Kerremans, M.: Case Management Is a Challenging BPMS Use Case. Technical
Report December. Gartner. Stamford, CT. 2008. Gartner research number
G00162739.

Kurz, M.; Herrmann, C.: Adaptive Case Management—Anwendung des Business
Process Management 2.0-Konzepts auf schwach strukturierte Geschiftsprozesse.
Schriften aus der Fakultat Wirtschaftsinformatik und Angewandte Informatik der
Otto-Friedrich- Universitit Bamberg. 2012.

Kiinzle, V.; Reichert, M.: PHILharmonicFlows: Research and Design Methodol-
0gy. Technical Report UIB-2011-05. University of Ulm. University of Ulm. May
2011.

Kraut, R. E.; Resnick, P.; Kiesler, S.; Burke, M.; Chen, Y.; Kittur, N.; Konstan,
J. et al.: Building successful online communities: Evidence-based social design.
Mit Press. 2012.

Kiinzle, V.; Reichert, M.: Striving for object-aware process support: How existing
approaches fit together. In Data-Driven Process Discovery and Analysis. pages
169-188. Springer. 2012.

Kreher, U.: Konzepte, Architektur und Implementierung adaptiver Prozessman-
agementsysteme. PhD thesis. University of Ulm. 2014.

Kaan, K.; Reijers, H.; van der Molen, P.: Introducing Case Management: Opening
Workflow Management’s Black Box. In Business Process Management. volume
4102 of Lecture Notes in Computer Science. pages 358-367. Springer Berlin
Heidelberg. 2006.

Kumaran, S.; Nandi, P.; Heath, T.; Bhaskaran, K.; Das, R.: ADoc-Oriented
Programming. In Proceedings of the 2008 Symposium on Applications and the
Internet. SAINT ’03. pages 334-341. Washington, DC, USA. 2003. IEEE
Computer Society.

Kiinzle, V.: Object-aware Process Management. PhD thesis. University of Ulm.
2013.

Kurz, M.; Schmidt, W.; Fleischmann, A.; Lederer, M.: Leveraging CMMN for
ACM: examining the applicability of a new OMG standard for adaptive case man-
agement. In Proceedings of the 7Tth International Conference on Subject-Oriented
Business Process Management. ACM. 2015.

Kiinzle, V.; Weber, B.; Reichert, M.: Object-aware business processes: Funda-
mental requirements and their support in existing approaches. International Jour-

nal of Information System Modeling and Design (IJISMD). 2(2):19-46. 2011.

Bibliography

[Le51]
[Lil4]

[LKL10]

[LW04]

[Ma62]

[MB15]

[MBR15]

[Mc10]

[MF11a]

[MF11b]

[MHM15]

[MHV13]

[Milbal

[Mi15b]

Lewin, K.: Field theory in social science. Harper. New York. 1951.

Link, P.: Agile Methoden im Produkt- Lifecycle- Prozess—Mit agilen Methoden die
Komplezitdt tm Innovationsprozess handhaben. In Komplexitdtsmanagement in
Unternehmen. pages 65-92. Springer. 2014.

Lucke, C.; Krell, S.; Lechner, U.: Critical Issues in Enterprise Architecting -
A Literature Review. In Proceedings of the Sizteenth Americas Conference on
Information Systems (AMCIS 2010). Lima, Peru. 2010.

Langenberg, K.; Wegmann, A.: Enterprise Architecture: What Aspects is Current
Research Targeting? Technical report. EPFL Switzerland. 2004.

Machlup, F.: The production and distribution of knowledge in the United States.
volume 278. Princeton university press. 1962.

Marin, M. A.; Brown, J. A.: Implementing a Case Management Modeling and
Notation (CMMN) System using a Content Management Interoperability Services
(CMIS) compliant repository. arXiv preprint arXiv:1504.06778. 2015.

Mundbrod, N.; Beuter, F.; Reichert, M.: Supporting Knowledge-intensive Pro-
cesses Through Integrated Task Lifecycle Support. In 19th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2015). IEEE Com-
puter Society Press. July 2015.

McCauley, D.: Mastering the Unpredictable: How Adaptive Case Management
Will Revolutionize the Way That Knowledge Workers Get Things Done. chapter
Achieving Agility, pages 257-275. Meghan-Kiffer Press. Tampa, Florida, USA.
1st edition. 2010.

Marjanovic, O.; Freeze, R.: Knowledge intensive business processes: theoretical
foundations and research challenges. In System Sciences (HICSS), 2011 }4th
Hawaii International Conference on. pages 1-10. IEEE. 2011.

Mendez Fernandez, D.; Lochmann, K.; Penzenstadler, B.; Wagner, S.: A case
study on the application of an artefact-based requirements engineering approach.
In Ewvaluation Assessment in Software Engineering (EASE 2011), 15th Annual
Conference on. pages 104-113. April 2011.

Marin, M. A.; Hauder, M.; Matthes, F.: Case Management: An Evaluation of
Existing Approaches for Knowledge-Intensive Processes. In 4th International

Workshop on Adaptive Case Management and other non-workflow Approaches
to BPM. 2015.

Marin, M.; Hull, R.; Vaculin, R.: Data centric bpm and the emerging case man-
agement standard: A short survey. In Business Process Management Workshops.
pages 24-30. Springer. 2013.

Michel, F.: A Structured Task-Centered Framework for Online Collaboration.
Master’s thesis. Technische Universitit Miinchen. Germany. 2015.

Michel, F.; Gil, Y.; Ratnakar, V.; Hauder, M.: A Virtual Crowdsourcing Commu-
nity for Open Collaboration in Science Processes. In 21st Americas Conference

181

Bibliography

[MKR13]

[MLVDP14]

[MN11]

[MNB11]

[MNS11]

[MNS13]

[Mo09]

[MR14]

[Mul2]

[MZ90]

[Nel2]

[Ni94]
[Ni12]

[No94]

182

on Information Systems (AMCIS). AIS. 2015.

Mundbrod, N.; Kolb, J.; Reichert, M.: Towards a system support of collaborative
knowledge work. In Business Process Management Workshops. pages 31-42.
Springer. 2013.

Marin, M. A.; Lotriet, H.; Van Der Poll, J. A.: Measuring Method Complezity of
the Case Management Modeling and Notation (CMMN). In Proceedings of the
Southern African Institute for Computer Scientist and Information Technologists
Annual Conference 2014 on SAICSIT 2014 Empowered by Technology. SAICSIT
"14. pages 209:209-209:216. New York, NY, USA. 2014. ACM.

Matthes, F.; Neubert, C.: Wikijeam: Using hybrid wikis for enterprise architec-
ture management. In Proceedings of the 7th International Symposium on Wikis
and Open Collaboration. pages 226-226. ACM. 2011.

Motahari-Nezhad, H. R.; Bartolini, C.: Next best step and ezpert recommenda-
tion for collaborative processes in it service management. In Business Process
Management. pages 50-61. Springer. 2011.

Matthes, F.; Neubert, C.; Steinhoff, A.: Hybrid Wikis: Empowering Users to
Collaboratively Structure Information. In ICSOFT (1). pages 250-259. 2011.

Motahari-Nezhad, H. R.; Swenson, K. D.: Adaptive Case Management: Qverview
and Research Challenges. In 15th Conference on Business Informatics (CBI).
pages 264-269. IEEE. 2013.

Moser, C.; Junginger, S.; Briickmann, M.; Schone, K.-M.: Some Process Patterns
for Enterprise Architecture Management. In Software Engineering (Workshops).
pages 19-30. Citeseer. 2009.

Mundbrod, N.; Reichert, M.: Process-Aware Task Management Support for
Knowledge-Intensive Business Processes: Findings, Challenges, Requirements.

In Enterprise Distributed Object Computing Conference Workshops and Demon-
strations (EDOCW), 201/ IEEE 18th International. pages 116-125. IEEE. 2014.

Mundbrod, N.: Business Process Support for Collaborative Knowledge Workers.
Master’s thesis. Ulm University. 2012.

Mathieu, J. E.; Zajac, D. M.: A review and meta-analysis of the antecedents, cor-
relates, and consequences of organizational commitment. Psychological bulletin.
108(2):171. 1990.

Neubert, C.: Facilitating Emergent and Adaptive Information Structures in En-
terprise 2.0 Platforms. Dissertation. Technische Universitdt Miinchen. Miinchen.
2012.

Nielsen, J.: Usability engineering. Elsevier. 1994.

Nielsen, M.: Reinventing discovery: the new era of networked science. Princeton
University Press. 2012.

Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization
science. 5(1):14-37. 1994.

Bibliography

[NT95]

[Oa04]

[Ob14]

[Pal0]

[PCRO6]

[Pe07]

[Pe08]

[Po66]
[Poll]

[RBY6|

[Re88|

[Re09]

[Ro03]

[Ro13]

[RRA03]

[RWRO6]

[Sc99]

Nonaka, I.; Takeuchi, H.: The knowledge-creating company: How Japanese com-
panies create the dynamics of innovation. Oxford university press. 1995.

Odersky, M.; al.: An Overview of the Scala Programming Language. Technical
Report 1C/2004/64. EPFL Lausanne, Switzerland. 2004.

Object Management Group (OMG): Case Management Model and Notation
(CMMN), Version 1.0 (formal/2014-05-05). http://www.omg.org/spec/CMMN/.
2014.

Palmer, N.: Mastering the Unpredictable: How Adaptive Case Management Will
Rewvolutionize the Way That Knowledge Workers Get Things Done. chapter In-
troduction, pages 1-4. Meghan-Kiffer Press. Tampa, Florida, USA. 1st edition.
2010.

Peter, R.; Coronel, C.; Rob, P.: Database Systems: Design, Implementation, and
Management. Crisp Learning. 2006.

Peffers, K.; Tuunanen, T.; Rothenberger, M. A.; Chatterjee, S.: A design science
research methodology for information systems research. Journal of management
information systems. 24(3):45-77. 2007.

Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis. Eindhoven University of Technology. 2008.

Polanyi, M.: The Tacit Dimension. Doubleday. New York. 1966.

Porter, M. E.: Competitive advantage of nations: creating and sustaining superior
performance. Simon and Schuster. 2011.

Rossi, M.; Brinkkemper, S.: Complexity metrics for systems development methods
and techniques. Information Systems. 21(2):209-227. 1996.

Resch, M.: Die Handlungsregulation geistiger Arbeit: Bestimmung und Analyse
geistiger Arbeitstitigkeiten in der industriellen Produktion. Huber. 1988.

Redding, G.; Dumas, M.; Ter Hofstede, A. H.; Tordachescu, A.: Modelling flexible
processes with business objects. In Commerce and Enterprise Computing, 2009.
CEC’09. IEEE Conference on. pages 41-48. IEEE. 2009.

Ross, J. W.: Creating a strategic IT architecture competency: Learning in stages.
MIS Quarterly Ezecutive. 2(1):31-43. 2003.

Roth, S.; Hauder, M.; Farwick, M.; Breu, R.; Matthes, F.: Enterprise Architecture
Documentation: Current Practices and Future Directions. In Wirtschaftsinfor-
matik. page 58. 2013.

Reijers, H. A.; Rigter, J.; van der Aalst, W. M.: The case handling case. Inter-
national Journal of Cooperative Information Systems. 12(03):365-391. 2003.

Ross, J. W.; Weill, P.; Robertson, D.: Enterprise architecture as strategy: Creat-
ing o foundation for business execution. Harvard Business Press. 2006.

Scarbrough, H.: Knowledge as work: conflicts in the management of knowledge
workers. Technology analysis & strategic management. 11(1):5-16. 1999.

183

http://www.omg.org/spec/CMMN/

Bibliography

[SM95]

[Sw10a]

[Sw10b|

[Sw13|

SZJ13)

[Tho9]

[Ut14]

[Vall]

[Wel2]

[Who9]

[Wo1l2]

[WW02|

[Yil5]

[ZMROS]

184

Strong, D. M.; Miller, S. M.: Ezceptions and exception handling in computer-
ized information processes. ACM Transactions on Information Systems (TOIS).
13(2):206-233. 1995.

Swenson, K. D.: Mastering the unpredictable: How adaptive case management
will revolutionize the way that knowledge workers get things done. Meghan-Kiffer
Press. 2010.

Swenson, K. D.: Mastering the Unpredictable: How Adaptive Case Management
Will Revolutionize the Way That Knowledge Workers Get Things Done. chapter
The Nature of Knowledge Work, pages 5-28. Meghan-Kiffer Press. Tampa,
Florida, USA. 1st edition. 2010.

Swenson, K. D.: Designing for an innovative learning organization. In Enterprise
Distributed Object Computing Conference (EDOC), 2013 17th IEEE Interna-
tional. pages 209-213. IEEE. 2013.

Schonig, S.; Zeising, M.; Jablonski, S.: Supporting collaborative work by learning
process models and patterns from cases. In Collaborative Computing: Networking,
Applications and Worksharing (Collaboratecom), 2013 9th International Confer-
ence Conference on. pages 60-69. IEEE. 2013.

The Open Group: TOGAF, Version 9.1. http://www.opengroup.org/
subjectareas/enterprise/togaf/. 2009.

Utz, A.: Empowering Users to Collaboratively Structuring Innovation Processes.
Master’s thesis. Technische Universitdt Miinchen. Germany. 2014.

Vaculin, R.; Hull, R.; Heath, T.; Cochran, C.; Nigam, A.; Sukaviriya, P.: Declar-
ative business artifact centric modeling of decision and knowledge intensive busi-
ness processes. In Enterprise Distributed Object Computing Conference (EDOC),
2011 15th IEEE International. pages 151-160. IEEE. 2011.

Weske, M.: Business process management: concepts, languages, architectures.
Springer Science & Business Media. 2012.

White, M.: Case management: Combining Knowledge with Process. BPTrends,
July. 2009.

Wohlin, C.; Runeson, P.; Host, M.; Ohlsson, M. C.; Regnell, B.; Wesslén, A.: Fz-
perimentation in software engineering. Springer Science & Business Media. 2012.

Webster, J.; Watson, R. T.: Analyzing the past to prepare for the future: Writing
a literature review. Management Information Systems Quarterly. 26(2):13-23.
2002.

Yiqin, Y.; Xiang, L.; Haifeng, L.; Jing, M.; Nirmal, M.; Vatche, I.; Guotong, X.
et al.: Case Analytics Workbench: Platform for Hybrid Process Model Creation

and Evolution. In 18th International Conference on Business Process Manage-
ment. 2015.

Zur Muehlen, M.; Recker, J.: How much language is enough? Theoretical and
practical use of the business process modeling notation. In Advanced information

http://www.opengroup.org/subjectareas/enterprise/togaf/
http://www.opengroup.org/subjectareas/enterprise/togaf/

Bibliography

systems engineering. pages 465-479. Springer. 2008.

185

186

APPENDIX A

APl Methods

A.1. Login to the system

URL

/api/login
Method

POST

Controller
controllers.auth. AuthenticationController.login()

Response
status of the login request, e.g., status code 403 when login failed

Users can login with their e-mail and password in the server that responses with a successful
login in case the credential could be verified. Otherwise the server responses with http status
code 403 for forbidden and any access to the server is prevented. After a successful login the
client is automatically redirected to the start page which is the social feed that is introduced in
Section 3.4.1. Thereby, the social feed is the central point for communication in the software
solution. Once users are logged in they immediately see changes that occurred since their
last login in the system. The login uses a module for authorization and authentication® that
is available for the play framework. The module provides several interfaces that need to be
implemented.

"https://github.com/t2v/play2-auth/tree/release0.10.1, last accessed: 2015-06-07

187

https://github.com/t2v/play2-auth/tree/release0.10.1

A. API Methods

A.2. Logout of the System

URL

/api/logout
Method

POST

Controller
controllers.auth. AuthenticationController.logout()

Response
status of the logout request

Users are logged out from the server with this request that is forwarded to the authentication
controller. After the logout users are automatically redirected to the login page. The logout
uses the same module for authorization and authentication that is provided for the play
framework like the login. In the current implementation users that are logged out are not able
to get any access to the system through the API, since this was not necessary for the purpose
of the research conducted in this thesis. In future work, content that is not confidential in
the server could be provided to users that are not logged in. Alternatively, the server could
expose this public data for other systems through its API.

A.3. Get All Pages and Wikis

URL
/api/explorer

Method
GET

Controller
controllers.index.ExplorerController.get()

Response
names and ids of all wikis with their pages and subpages

The data structure for the explorer returns all wikis and pages that are stored in the database
with their label and id. Subsequent requests can use this data structure to navigate through
the entities in the system. The label contains the name and the id which is a unique Objectld
to identify the entity. The kind of entity is determined using an additional attribute called
class, which can be either wiki page, wiki, or a type. Every wiki and wiki page also contains an
attribute to determine whether it is starred and watched by the logged in user. Starred wikis
and wiki pages are shown in the favorites of the user and these values are stored separately
in the data structure for every user. This method is used to create the explorer that is shown
on the left in the user interface.

188

A. API Methods

A.4. Creation of a New Wiki

URL
/api/wiki

Method
PUT

Controller
controllers.wiki.WikiController.create()

Response
id of the new wiki page that is created

Creates a new wiki in the database with the name that has been specified in the request,
whereas only users that are logged in are able to perform this operation. Information about
the user who initiated this request is necessary to create a history entry that captures the
information when the wiki was created by whom. For the wiki no type or attributes are
provided since it is only used as container for wiki pages as described in Section 3.2. The
method returns the unique Objectld of the new wiki as response in case the creation of the
wiki was successful in the database. After this operation the user interface is reloaded by an
AngularJS controller and the previously described request for the explorer is used to gather
all wikis with their pages, so that the new wiki appears in the explorer.

A.5. Find Wiki by Id

URL
/api/wiki/:wikild

Method
GET

Controller
controllers.wiki. WikiController.get(wikild: ObjectId)

Response
data structure of the wiki with the id wikild or 404 when not found

The wiki with the id wikild is searched by the unique id in the database. This request
can be used in combination with the explorer request, i.e., the explorer provides all wikis
and this request is used to get the data structure of one wiki. In case no wiki with this
wikild is available in the database, the controller returns not found with http status code 404.
Otherwise the entire data structure of the wiki consisting of the name, text on the wiki and
history information is returned by the server. The history information can be used by different
frond-ends to show when the wiki was created and edited by whom, e.g., for the social feed
feature. Navigation to wiki pages within this wiki is possible with the data structure that is
provided by the explorer request.

189

A. API Methods

A.6. Delete Wiki

URL
/api/wiki/:wikild

Method
DELETE

Controller
controllers.wiki.WikiController.delete(wikild: Objectld)

Response
status code 200 ok when deleted or 404 when not found

The deletion of an entire wiki is a two step process in case the wiki with the given wikild
exists in the system. If no wiki with this wikild is existing in the database, the method
returns the status code not found. In the first step all pages, types and tasks within this
wiki are recursively deleted. In this step references of this wiki that are used for the favorite
functionality are also removed for the users. These references are stored in the data structure
of the users. In the second step the wiki with the given wikild is deleted from the database.
In the current implementation versioning is not supported, i.e., it is not possible to recover
wikis with their content once they are deleted. Due to the ramifications of this request users
should receive a warning message that requires an additional approval before the controller is
executed.

A.7. Update Text of a Wiki

URL
/api/wiki/:wikild /update/text

Method
POST

Controller
controllers.wiki. WikiController.updateText(wikild: Objectld)

Response
status code 200 ok when updated or 404 when not found

This method updates the text that is shown as content for the wiki with the Objectld wikild.
The server responds with not found in case the wikild is not available in the database or with
ok and status code 200 if the operation was successful. During this operation the last editor
of the wiki text is also updated with the user that triggered the operation. After the text has
been updated the controller automatically generates a history event to describe when the text
was updated by whom.

190

A. API Methods

A.8. Create New Wiki Page

URL

/api/page
Method

PUT

Controller
controllers.page. PageController.create()

Response
pageld of the new wiki page

Creates a new wiki page with the provided name in an existing wiki that already has to be
available in the system. It is possible to specify a parent page to add the new page below an
existing page in the hierarchy. In case no parent page is specified, the new page is located at
the highest level in the wiki. Another optional parameter is the type of the wiki page that can
be specified during the creation. The type can be either new in the system or it might be based
on an existing TypeDefinition, i.e., in the latter case this corresponds to the instantiation of
an existing work template.

A.9. Get a Wiki Page

URL

/api/page/:pageld
Method

GET

Controller
controllers.page. PageController.get(pageld: Objectld)

Response
entire data structure of the page

The data structure of the page with the provided pageld is returned. This method is called
every time the page with the pageld is shown in the browser. It returns all attributes and tasks
assigned to the page, whereas the tasks are divided into completed and available tasks. Part
of this data structure are also the text, type and name of the wiki page. The progress of the
page is also part of the data structure to avoid unnecessary computations if the progress has
not changed. In case the user selected a task on this page, this task is stored in the database
as current task for the page and returned with this method together with the values for the
three roles execute, delegate and skip.

191

A. API Methods

A.10. Update Text of the Wiki Page

URL
/api/page/:pageld /update/text

Method
POST

Controller
controllers.page. PageController.updateText(pageld: ObjectId)

Response
status of the update for the wiki page, e.g., 200 when successful

The page with the pageld is retrieved from the database and in case it is not available not
found is returned as status code. The new text of the wiki page is updated and the page is
stored in the database. After the update of the wiki page text the method creates a history
entry for this operation, which basically contains the information when the text was updated
by whom.

A.11. Add an Attribute to the Wiki Page

URL
/api/page/:pageld/attribute

Method
PUT

Controller
controllers.page.PageController.add Attribute(pageld: ObjectId)

Response
status of the add attribute operation, e.g., 400 for bad request

This method adds a new attribute to the wiki page with the id pageld. The method requires
some input parameters so that the attribute can be created, otherwise the method returns the
http status code for bad request. It requires the name of the attribute, type and access rights.
With this information a new attribute can be created and added to the provided page with
the id pageld. The combination of name and attribute type needs to be unique for one users,
whereas different users could create attributes with the same type and name if the access
rights are different for them. This might be necessary if the same attribute already exists,
but the user has no read access for it. In our approach tailors need to evaluate the reason for
redundant attributes, e.g., it might be necessary to change the access rights. After the page
with this id is stored in the database with the new attribute, the controller generates a page
history event with the information when the attribute was added to the page by whom.

192

A. API Methods

A.12. Delete Page

URL

/api/page/:pageld
Method

DELETE

Controller
controllers.page. PageController.delete(pageld: Objectld)

Response
status of the page deletion, e.g., 200 when successful

This method deletes the wiki page with the unique id pageld from the database. Similar to
the deletion of an entire wiki this methods deletes a wiki page in two steps. In the first step
all children pages of the page with the given pageld are removed if they have no other parent
pages assigned. Children pages that have other parent pages assigned are not deleted from the
database and the pageld is removed from the association to parent pages. In the second step
all associations of the given page are removed. The associated types and tasks are removed
as well, i.e., we perform cascading deletes.

A.13. Delete an Attribute of the Wiki Page

URL
/api/page/:pageld/attribute

Method
DELETE

Controller
controllers.page. PageController.delete Attribute(pageld: Objectld)

Response
status of the delete attribute operation, e.g., 200 when successful

The attribute with the given name and type is deleted from the page with the pageld. The
combination of an attribute name and type is unique for one users so that this is enough
information to determine the attribute to delete. Deleting an attribute from a wiki page
requires several steps since attributes can be associated with tasks. First, the task that is
agsociated to the attribute is determined and the attribute is removed from this task. In case
the attribute is referenced to another page with subtasks, this is considered for the progress
of the associated task, i.e., the progress of the task is updated without the subtasks. After
successful completion of the operation, the controller generates a page history event with the
information when the attribute was deleted by whom. Another method in the API is provided
for the update of an attribute that is not explained.

193

A. API Methods

A.14. Add Value for an Attribute
URL
/api/page/:pageld/attribute/value

Method
PUT

Controller
controllers.page.PageController.add AttributeValue(pageld: Objectld)

Response
status of the delete attribute operation, e.g., 200 when successful

In case the attribute is not existing on the wiki page, it is automatically created by the
controller. If the attribute is assigned to a task on the wiki page, the progress of the task
and the associated page is updated as described in Section 3.2.3. Depending on the value
that is added to the attribute this operation will update the progress of the assigned tasks.
In some cases it might be possible that the assigned task is completed, i.e., only one value is
missing for the task. In any case the controller generates an event in the page history for the
adding of the value. If a task is assigned to the attribute with the new value, another page
history entry is added for the changing progress of the task. Additional controller to update
and delete attribute values are provided that are not explained for the sake of brevity.

A.15. Create New Task on a Wiki Page

URL

/api/page/:pageld/task
Method

PUT

Controller
controllers.page. PageController.newTask(pageld: ObjectId)

Response
status 200 for ok or internal server error with status code 500

This method creates a new task for a wiki page and is triggered by the task representation
described in Section 3.3.1. In the first step the wiki page with the unique pageld is gathered
from the database. The new task with the specified name is created and added to the wiki
page. After this operation the controller generates a history event to describe when the task
was created by whom on the wiki page. The progress of the wiki page is updated since the
page progress needs to be changed, i.e., the overall progress of parent tasks and the wiki page
becomes lower since every new task has a progress of 0%.

194

A. API Methods

A.16. Assign Attribute to Task on a Wiki Page

URL
/api/page/:pageld /task/attribute

Method
POST

Controller
controllers.page. PageController.add Task Attribute(pageld: ObjectId)

Response
status 200 for ok when the attribute could be assigned to the task

A new attribute is added to the task on the wiki page with the unique id pageld as mandatory
work result for this task. For this purpose the request provides the id of the task as well as
the name and type of the attribute. Based on this information the page, attribute and task
are gathered from the database. The controller creates a copy of the attribute and assigns this
copy to the task. After the attribute is added, the controller updates the progress of related
tasks to identify new overdue or inconsistent subtasks that might arise due to subtasks on the
assigned attribute. Finally, the page progress is updated since the progress of the task with
the new attribute might have changed.

A.17. Remove Attribute from Task on a Wiki Page

URL
/api/page/:pageld/task/attribute

Method
DELETE

Controller
controllers.page. PageController.deleteTask Attribute(pageld: ObjectId)

Response
status 200 for ok when the attribute could be deleted

The request provides the id of the task as well as the name and type of the attribute that
should be deleted. Based on this information and the pageld the task, attribute and page
are gathered from the database. The copy of the attribute is deleted from the data structure
of the task. Similar to the assignment of an attribute to a task, the controller updates the
progress of related tasks. This is necessary since existing overdue or inconsistent subtasks
might have been removed and the state of the tasks needs to be changed according to the task
state sequence described in Section 3.3.4. Finally, the page progress is updated since the task
progress might have changed.

195

A. API Methods

A.18. Skip Task on Wiki Page

URL
/api/page/:pageld/task/current /skip

Method
POST

Controller
controllers.page. PageController.skipCurrent Task(pageld: Objectld)

Response
status 200 for ok when the task could be skipped

This method performs the skip operation for the current task. Before this request can be
executed, the task needs to be enabled as current task by clicking on it in the task represen-
tation (cf. Section 3.3.1). This request can only be triggered when the user has the skip role
for this task assigned. The controller generates a history event to describe when this task has
been skipped by whom. After this operation the progress of related tasks is updated since the
overdue or inconsistent task might be affected by the skipping. Finally, the progress of the
page is updated because the task is removed from the computation of the progress.

A.19. Update Dates of a Task

URL
/api/page/:pageld/task/current /metaData/updateDates

Method
POST

Controller
controllers.page.PageController.updateDatesOfCurrent Task(pageld: Objectld)

Response
status 200 for ok when the dates could be changed

The request provides the new dates for the current task on the wiki page with the unique id
pageld. Tt is possible to specify start and end dates or only one of them. Before this request
can be triggered the user has to enable the task in the task representation (cf. Section 3.3.1).
After the metadata for the dates are updated, the controller stores the task in the database. In
the current implementation no history event is generated for this event. This method currently
has no influence on the progress of a task since the progress is computed independently from
the task duration (cf. Section 3.2.3). It could be possible that the update of the start and
end dates changed the state of the task, i.e., an inconsistency might have been created with
start or end dates that exceed the dates of the parent task. It could also be possible that an
existing inconsistency has been fixed. Therefore, the progress information of related tasks are
updated by the controller.

196

A. API Methods

A.20. Delegate Task on Wiki Page

URL
/api/page/:pageld /task/current /delegate

Method
POST

Controller
controllers.page. PageController.delegateCurrent Task(pageld: ObjectId)

Response
status 200 for ok when the task could be delegated

The request to delegate a task on a wiki page needs to provide the user or group that should
receive the task for the new execution role. To delegate a task the user has to enable the
task in the task representation (cf. Section 3.3.1). This method can be executed arbitrarily
often, i.e., users with delegated tasks are able to delegate them again to other users or groups.
After the task is stored in the database the controller generates a history event that captures
when the task was delegated by whom. The overall progress of the task and page remains
unmodified, i.e., delegated tasks retain their progress.

A.21. Update Progress of a Task

URL
/api/page/:pageld/task/current /metaData/updateProgress

Method
POST

Controller
controllers.page. PageController.updateProgressOfCurrent Task(pageld: Objectld)

Response
status 200 for ok when the progress could be changed

Users are able to update the progress of a task manually in the task metadata based on this
request (cf. Section 3.3.2). The request needs to provide the new progress as integer and the
unique pageld of the wiki page with the task. Before the request can be executed the user
needs to enable the task that needs to be updated in the task representation. In case the
progress is set to 100% it is finished in this controller, which basically means that it is shown
as completed task in the task representation and the profile of the responsible user. After the
updated task is stored, the controller generates a history event to capture when the progress
was changed by whom and what the new progress of the task is. Similar to the aforementioned
methods, the progress of the page must be updated with the new progress.

197

A. API Methods

A.22. Update Expertises of a Task

URL
/api/page/:pageld /task/current /metaData/updateExpertises

Method
POST

Controller
controllers.page. PageController.updateExpertises(pageld: Objectld)

Response
status 200 for ok when the expertise could be updated

This method either adds a new expertise to the task or removes an existing one. Therefore,
the request needs to provide the string for the expertise and the unique pageld of the wiki page
with the task. The controller checks whether the expertise is already existing in the metadata
of the task. If it is not existing the controller adds it to the metadata of task, otherwise it
is removed. In both cases the task with the new metadata is stored in the database. This
controller generates no history event since this operation must not be shown in the social feed
of our software solution.

A.23. Get Type Definition

URL
/api/typeDefinition /:typeDefinitionld

Method
GET

Controller
controllers.wiki. TypeController.get(typedDefinitionld: Objectld)

Response
the data structure of the type definition

While the previous methods are concerned with concepts that are related to work plans, this
method provides the type definition of a work plan. The request needs to provide the unique
id typeDefinitionld that is used to gather the type definition from the database. The method
returns the entire data structure that is related to the type definition. This includes the name
and pageld of all wiki pages that have a type that is associated with this type definition in the
wiki. All attribute definitions and attributes created by end-users that are associated are also
part of this data structure. Since every type definition is unique for the wiki, the id and name
of the wiki are provided. Finally, all elements related to the process structure of the type
definition are provided in the data structure. The API also provides the methods required to
create and delete type definitions that are not explained for the sake of brevity.

198

A. API Methods

A.24. Add Attribute Definition to Type Definition

URL
/api/typeDefinition/:typeDefinitionId /attributeDefinition

Method
PUT

Controller
controllers.wiki. TypeController.add AttributeDefinition(typed DefinitionId: Objec-
t1d)

Response
status 200 for ok or bad request with status 400

With this request a new attribute definition is added for the type definition with the unique
id typeDefinitionld. Only tailors for this type definition are able to perform this request. The
request needs to provide name, type and access rights for the attribute definition. The con-
troller stores the attribute definition in the database and associates it with the type definition.
In this controller no history event is generated since this method is not performed by authors.
The APT also provides the methods to delete and update attribute definitions that are not
explained for the sake of brevity.

A.25. Add Task Definition to Type Definition

URL
/api/typeDefinition/:typeDefinitionld /taskDefinition

Method
PUT

Controller
controllers.wiki. TypeController.add TaskDefinition(typedDefinitionId: ObjectId)

Response
status 200 for ok when the task definition could be added

Tailors can use this request to add a task definition for the type definition with the unique
id typeDefinitionld. The request requires the name, attributes that are assigned and the
users and groups that are defined for the roles of this task definition. Similar to the adding
of an attribute definition, the controller generates no history event since this method is not
performed by authors. The API provides several other methods that are not explained in this
thesis. Among them are methods to delete task definitions as well as to create stages and
rules for the process structure. The interactive CMMN workbench that is explained in the
subsequent section also requires some methods to set the position of the shapes in the process
editor.

199

A. API Methods

A.26. Dynamic Loading of History Entries for the Social Feed

URL
/api/user/feed /:numberNewltems/:numberMinltems/filter /:fromDate

Method
GET

Controller
controllers.user. UserController.getNextHistoryEntries(numberNewlItems: Int, num-
berMinltems: Int, fromDate: Long, filter: String)

Response
data structure with the entries for the social feed

Activities of authors in the system constantly generate history entries in the system. Due to
the amount of data this method provides a subset of all entries of the social feed. The entries
in the subset are determined by the parameters provided within the request. In the first step,
the controller gathers all history entries from the database sorted by date. The number of new
items parameter defines how many new items for a user have been generated since the last
request. The second parameter defines how many history entries are at least loaded by the
controller. The filter contains the currently applied filter on the social feed to make sure that
enough history entries are shown for the selected filters. Additional methods are provided by
the API for the social interaction with the history entries, e.g., commenting a history entry.

A.27. Get the Profile of User
URL
/api/user/:userld/profile

Method
GET

Controller
controllers.user.UserController.profile(userld: Objectld)

Response
data structure of the user profile

The profile contains various information about a user and this request provides the required
data for the user rating and skills (cf. Section 3.3.8) as well as the personal worklist (cf.
Section 3.3.9). The controller gathers all tasks from the database that have the user with the
unique id userld assigned to the execution role or that are delegated to this user. These tasks
are divided into open and completed tasks by the controller. The ranking is computed based
on the relation of the number of tasks that the user completed compared to the number of
tasks that the other users completed. The expertises are determined through the tasks that
the user completed in the system.

200

Nomenclature

ACM

ADM

API

BISA

BMC

BPM

BPMN

CDSS

CMMN

CMS

CSCW

EA

EAM

EAMPC

ECA

EOR

EPC

adaptive case management, page 38
architecture development method, page 32
application programming interface, page 95
business information systems analysis, page 35
Business Model Canvas, page 148

business process management, page 4

Business Process Model and Notation, page 3
clinical decision support system, page 173
Case Management Model and Notation, page 3
content management system, page 42
computer supported cooperative work, page 4
enterprise architecture, page 32

enterprise erchitecture management, page 32
enterprise architecture management pattern catalog, page 173
event condition action, page 20

electronic health records, page 173

event-driven process chain, page 120

201

A. API Methods

GSM Guard-Stage-Milestone, page 20

ICS integrated care services, page 173

IS information systems, page 4

IT information technology, page 32

IUI intelligent user interface, page 4

JSON JavaScript Object Notation, page 119
KiP knowledge-intensive process, page 1
KM knowledge management, page 16
MVC model-view-controller, page 119

OMG Object Management Group, page 3
RFP request for proposal, page 3

SUS System Usability Scale, page 165

SVG Scalable Vector Graphics, page 119
TOGAF The Open Group Architecture Framework, page 32
TUM Technical University Munich, page 141
UML Unified Modeling Language, page 35
URL uniform resource locator, page 66

202

	Table of Content
	List of Figures
	List of Tables
	List of Examples
	1 Motivation
	1.1 Problem Description
	1.2 Research Design
	1.3 Contributions
	1.4 Structure of the Thesis

	2 Introduction and Related Work
	2.1 Introduction
	2.1.1 Knowledge-Intensive Processes
	2.1.2 Data and Processes
	2.1.3 Successful Online Communities

	2.2 Towards Process Support for Knowledge Work
	2.2.1 Generic Requirements for Knowledge-Intensive Processes
	2.2.2 Scenario A: Innovation Management
	2.2.3 Scenario B: Enterprise Architecture Management
	2.2.4 Scenario C: Requirements Engineering

	2.3 Related Work
	2.3.1 Case Handling
	2.3.2 Adaptive Case Management
	2.3.3 PHILharmonicFlows
	2.3.4 Hybrid Wiki
	2.3.5 Service-Oriented IT-Systems for Highly Flexible Business Processes
	2.3.6 Process-Aware Support for Collaborative Knowledge Workers
	2.3.7 Case Management Model and Notation
	2.3.8 Organic Data Science Wiki

	3 Structuring Knowledge-Intensive Processes
	3.1 Emergent Structuring of KiPs
	3.1.1 Participating Roles
	3.1.2 Evolution of Knowledge-Intensive Processes

	3.2 Lightweight Structuring Concepts
	3.2.1 Expertises
	3.2.2 Users
	3.2.3 Tasks
	3.2.4 Task Definitions
	3.2.5 Stages
	3.2.6 Rules

	3.3 Features Based on Social Design Principles and Patterns
	3.3.1 Task Representation
	3.3.2 Task Metadata
	3.3.3 Task Management
	3.3.4 Task State
	3.3.5 Timeline Navigation
	3.3.6 Subtask Navigation
	3.3.7 Task Alert
	3.3.8 User Rating and Skills
	3.3.9 Personal Worklist

	3.4 Design of the User Interface
	3.4.1 Social Feed
	3.4.2 Representation of Work Plans
	3.4.3 Mobile User Interface

	4 Implementation
	4.1 Software Support for Knowledge-Intensive Processes
	4.1.1 Architecture
	4.1.2 Introduction to the Play Framework
	4.1.3 Application Programming Interface
	4.1.4 Data Model
	4.1.5 Assignment of Attributes to Tasks
	4.1.6 Progress Computation
	4.1.7 Generation of the User Profile
	4.1.8 Loading of History Entries in the Social Feed

	4.2 Case Management Model and Notation Workbench
	4.2.1 Introduction to JointJS
	4.2.2 Measurement of the Method Complexity
	4.2.3 Interaction with Elements
	4.2.4 Suggestion of Task Definitions

	4.3 Implementation for Mobile Devices
	4.3.1 Introduction to Angular Material
	4.3.2 Navigation
	4.3.3 Infinite Scrolling

	5 Case Studies
	5.1 Idea Generation
	5.2 Development of a Planned State
	5.3 Elicitation of Requirements

	6 Evaluation
	6.1 Evaluation Framework
	6.2 Preliminary Study
	6.2.1 Objectives of the Preliminary Study
	6.2.2 Design of the Preliminary Study
	6.2.3 Participants
	6.2.4 Results and Findings

	6.3 Main Study
	6.3.1 Objectives of the Main Study
	6.3.2 Design of the Main Study
	6.3.3 Participants
	6.3.4 Usage of Other Tools
	6.3.5 Results and Findings for Flexibility
	6.3.6 Results and Findings for Structure

	6.4 Usability of the Mobile Solution
	6.4.1 Foundations of Usability Testing
	6.4.2 Execution of the Test
	6.4.3 Results and Findings

	7 Critical Reflection and Future Research
	7.1 Conclusion
	7.2 Limitations
	7.3 Future Research
	7.3.1 Application in Practice
	7.3.2 Recommendations
	7.3.3 Mining of Work Templates
	7.3.4 Standardized Experiments and Evaluation Processes

	Bibliography
	A API Methods
	A.1 Login to the system
	A.2 Logout of the System
	A.3 Get All Pages and Wikis
	A.4 Creation of a New Wiki
	A.5 Find Wiki by Id
	A.6 Delete Wiki
	A.7 Update Text of a Wiki
	A.8 Create New Wiki Page
	A.9 Get a Wiki Page
	A.10 Update Text of the Wiki Page
	A.11 Add an Attribute to the Wiki Page
	A.12 Delete Page
	A.13 Delete an Attribute of the Wiki Page
	A.14 Add Value for an Attribute
	A.15 Create New Task on a Wiki Page
	A.16 Assign Attribute to Task on a Wiki Page
	A.17 Remove Attribute from Task on a Wiki Page
	A.18 Skip Task on Wiki Page
	A.19 Update Dates of a Task
	A.20 Delegate Task on Wiki Page
	A.21 Update Progress of a Task
	A.22 Update Expertises of a Task
	A.23 Get Type Definition
	A.24 Add Attribute Definition to Type Definition
	A.25 Add Task Definition to Type Definition
	A.26 Dynamic Loading of History Entries for the Social Feed
	A.27 Get the Profile of User

	Nomenclature

