
Simplifying the Analysis of Building Information Models Using
tQL4BIM and vQL4BIM

Simon Daum, simon.daum@tum.de
Chair of Computational Modeling and Simulation, Technische Universität München, Germany

André Borrmann, andre.borrmann@tum.de
Chair of Computational Modeling and Simulation, Technische Universität München, Germany

Abstract
This paper presents a new approach to analyse Building Information Models. Firstly, a domain-
specific language in its textual notation is introduced. It is tailored to domain experts with little
programming experience. Based on an uncomplicated pattern, the language offers a formal and
general method of BIM-analysis. Additionally, its imperative nature and its sequential layout makes
a stepwise execution and inspection of intermediate results possible. Thus, complex queries may
consist of comprehensible and verifiable statements. As an alternative to textual definitions, we
introduce a visual notation for BIM queries. Both the textual and the visual notation are based on the
identical abstract syntax and offer the same range of functionalities.

Keywords: BIM, IFC, CityGML, Query Language, VPL

1 Introduction
The paradigms of Building Information
Modeling (BIM) promote the use of
comprehensive digital building representations.
Instead of previously adopted approaches, which
focus on geometric data, a BIM comprises not
only the 3D shapes of elements and enclosed
spaces, but also type information and the
relationships between elements (Eastman et al.,
2011). Therefore, a BIM has the potential to serve
as an interface and data pool for exchanging
information across the disciplines involved in
the design, construction and operation of a
building. The research presented in this paper is
based on the data model Industry Foundation
Classes (IFC), an open, evolved and universal
schema for representing building models
(Liebich, 2013).
 However, various issues can arise when BIM
processes are introduced in construction
projects. In the context of data handling and the
transfer of interdisciplinary information, the
following issues are of central importance for
domain experts such as architects and engineers:

 Building models have to be analysable and
their quality must be verifiable.

 The extraction of submodels from an overall
model must be supported.

 The effort involved in performing these
analyses and transactions must be reduced.

The currently used BIM tools do not support a
formal analysis of building models. Instead,
manual work has to be dedicated to extracting
the necessary information. Due to the diverging
characteristics of analyses, these tasks have to
be continuously repeated using changed
parameters. This manual work is time-
consuming and error-prone, especially in data
intensive models. The same holds true for the
extraction of submodels and post-processing.
 Due to these weak points in a BIM-based
workflow, new methods have to be invented.
They should be developed with domain experts
rather than programmers in mind and their
application should be intuitive without
requiring an extensive learning effort. At the
same time, a general approach capable of
supporting different types of projects with
different boundary conditions should be
adopted. Finally, the structure of data and its
scope must be taken into account if new
strategies for analysis, quality checking and
data processing are to be introduced to BIM.

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

This paper is based on the hypothesis that a
formal, domain-specific query language can
solve the aforementioned deficits. Accordingly,
the novel BIM query language QL4BIM and its
runtime, the QL4BIM System, are presented. The
language offers advanced operators and data
structures for a comprehensive analysis of
building information models. It comprises
semantic operators for type/attribute
extractions and relational operators for
analysing the links between entities.
Additionally, temporal operators for examining
the installation times of building elements are
introduced (Daum and Borrmann, 2013). Spatial
operators for evaluating topological, directional
and metric predicates are also included in the
language (Daum and Borrmann, 2014).

The focus of previous research in the
QL4BIM project was on spatial operators and a
query interface which is based on Microsoft
LINQ and .NET languages such as C# and Visual
Basic. The comprehensiveness of this approach
increases complexity in query definition,
making the interface primarily suitable for users
with a background in programming.

To realize a simplified approach to BIM
analysis and processing, two new interfaces for
the query system are introduced. The first one is
the textual query notation tQL4BIM. In addition,
with vQL4BIM, a visual query notation is
integrated in the system, primarily dedicated to
users who want to steer analysis using a
graphical user interface rather than code. Both
notations are based on a single abstract
language syntax provided by the QL4BIM
language. Despite the simplicity of the
language, it allows comprehensive BIM queries.

This paper is structured as follows: Firstly,
general and domain-specific query languages are
discussed in brief. Then, the novel, textual query
notation tQL4BIM is presented and the
incorporated type system used by the runtime is
addressed. Section 5 then describes the
possibility of operator overloading in the system.
Subsequently, an overview of the runtime
components is provided. Section 7 shows the
deduction of the visual notation vQL4BIM. The

paper finishes with a conclusion on the research
presented.

2 Related Work
The analysis of extensive data sets is covered by
databases and their query languages. The
Structured Query Language (SQL) is the de-facto
standard in this domain (ISO, 2011). The sound
theoretical foundation for this language is
provided by Relational Algebra (Codd, 1990).
However, the IFC data models are defined by the
EXPRESS modelling language and there is no
standardized mapping of this kind of schema to
a relational structure (Schenck and Wilson,
1994). The propagation of XML-based modelling
has led to the development of the XQuery
language (Robie et al., 2013). ifcXML represents
an XML-based variant of IFC which can be
analysed without pre-processing by an XQuery
implementation (Liebich, 2001).

In order to examine the application of
general query language such as SQL and XQuery
to the analysis of building models, a test bed has
been implemented. In short, the experiments
have shown that an analysis of a building model
based on general query languages can result in
tedious coding. For example, a query stated in
XQuery that extracts walls and their material
from an ifcXML file comprises 18 lines. A direct
mapping of EXPRESS to SQL also produces a
complicated structure of tables, which hampers
this approach to data analysis (Borrmann and
Rank, 2009).
 A domain-specific language for BIM can
provide more direct access to the required data,
as it is tailored to the domain model and hides
the details of the internal data representation.
The Building Information Model Query
Language (BIMQL) achieves such a domain-
specific approach (Mazairac and Beetz, 2013).
The language is inspired, inter alia, by SPARQL
which is a query language for semantic web
content (Prud’Hommeaux et al., 2008). In Listing
1 a BIMQL query is presented that extracts the
floor area of two spaces. This type of query is
easily understood by individuals with
knowledge of SQL and SPARQL but may confuse

Listing 1 BIMQL query returning the floor area of spaces

1
2
3
4
5

Select ?mySpace
Where ?mySpace.Attribute.GlobalID = 3Dn6BYWjfErxE1JocogMGQ Or

?mySpaceAttribute.GlobalID = 0tLttARJ1F1esyGJSeaTmd
Select ?netFloorArea
Where ?netFloorArea := ?mySpace.property.NetFloorArea

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

domain experts. Additionally, the connection
between each space and its floor area is lost as
no relational results are produced. For a review
of additional query languages please refer to
(Daum and Borrmann, 2014).

3 tQL4BIM: The Textual Query Notation
of the QL4BIM System

In previous research, a query interface based on
LINQ was provided (Daum and Borrmann,
2013). It enables the end user do define queries
in Microsoft .NET languages. While this is
appropriate for programmers, domain experts
such as architects and civil engineers are unable
to use the query system intuitively. To resolve
this restriction, a new streamlined language has
been developed in accordance with the
following paradigms:

 The language introduces a general and formal
approach to BIM analysis.

 At the same time, only a few formal patterns
are used in the language.

 An imperative query definition is intended,
defining the ordering of statements and
driving a sequential, comprehensible eval-
uation of subqueries.

 Type handling and low-level control flows
are hidden from the end user.

Taking these requirements into account, an
appropriate grammar for the textual notation
tQL4BIM is developed. Parts of it are shown in
Figure 1.

A complex query can be composed of one or
more statements. Each statement is built up by
an assignment which binds a variable to the
result of an operation. In addition, an operation
can be subdivided into its operand and its
parameters. Constants such as strings, numbers

and floats as well as assigned variables can be
used as concrete parameters. Furthermore,
predicates evaluating attributes of entities are
used to steer operators.
 Listing 2 illustrates an example stated in
tQL4BIM. In the query, an IFC instance file is
loaded and all walls are selected (Line 2). The
result is then restricted by applying a predicate
to each entity. Only walls with an attribute
entitled Name with the value “Wall-002” are
retained in the process. To access an attribute of
an entity, the point operator is facilitated in the
predicate definition (Line 3). After receiving all
windows with a second TypeFilter (Line 4), the
sets of walls and windows are topologically
analysed by the Touch operator. The result is
saved in a relational variable which comprises
pairs of a wall and its touching window.

This demonstrates the main pattern of
tQL4BIM: Repeated variable assignment
combined with the calling of an operation. In this
way, subsequent operations process variables
assigned by previous calls. Despite its simplicity,
this pattern enables a flexible and detailed
analysis of building models by chaining
manageable operations. The complexity of
information retrieval is hidden in the interior
processing of each operator. As a result, the
domain expert can concentrate on the semantics
of each operator instead of on low-level data
handling.

4 Typing in the QL4BIM System
The type system of this novel QL4BIM version
comprises four native types. These are Constant,
Entity, Set and Relation. Denotation as native
types highlights the presence of other types in
the system. These additional types are
introduced by the data model under
examination. Currently, the QL4BIM System

Figure 1 A section of the tQL4BIM grammar

Listing 2 A query example in tQL4BIM

1
2
3
4
5

model = GetModel("C:\Institute.ifc")
allWalls = TypeFilter(model , "IfcWall")
someWalls = AttributeFilter(allWalls.Name = "Wall-002")
allWindows = TypeFilter(model, "IfcWindow")
rel[wall, window] = Touch(someWalls, allWindows)

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

supports IFC files as data pool but the developed
methods are not closely coupled to this data
model. To enable an analysis of buildings using
additional data on their surroundings, an
extension to the CityGML model is in progress.

 As mentioned above, a variable introduced
in a tQL4BIM query can be typed as Entity, Set or
Relation. All of them act as wrappers for
externally defined types stored in the current
data pool. The following three examples
demonstrate the interaction of the native and
external types. (1) A variable can represent one
entity, e.g. a wall. This is realized by a QL4BIM
Entity which itself references an IfcWall. (2) A
variable can refer to a set of entities. In this case
a QL4BIM Set is used. This kind of variable acts
as a container for (semantically-related) entities,
e.g. windows which are located in the second
storey. Internally, the set variable references
Entity-instances each incorporating an
IfcWindow. (3) A QL4BIM Relation is used to
combine Entity instances and to express
relationships between them. In contrast to a set
variable, the relationship occurs between Entity-
instances combined in a single tuple whereas
many tuples are stored in one relation. A tuple
refers to an ordered list of entities. A single
Entity in the tuple can be accessed by a user-
defined literal. To concretize the relational
concept in use, Listing 2 is considered once
again. In Line 5, the variable rel[wall,window] is
introduced, storing pairs of an IfcWall and its
touching IfcWindow. The notation of literals for
index access corresponds to the lower branch of
the syntax diagram shown in Figure 2.

Figure 2 Syntax diagram of variables in QL4BIM

In the further processing, e.g. during predicate
definition and parameter transfer, the window in
each tuple can be accessed by rel[window].

A QL4BIM Constant is the base type for
immutable and simple data structures. Like
variables, constants are used as input for query
operators. They are not fetched from the data
pool but directly stated by the end user during
query definition. Therefore, the values of these
structures are independent from the data pool.
Constant acts as a base type for cstring, cnumber,
cfloat and cid. The first stands for strings and
enumeration values. A cnumber represents an
integer and cfloat a floating-point number. The
last constant type cid is used to express a
symbolic identifier. For the IFC model, a cid is an
integer prefixed with a # token.
 The query shown in Listing 3 demonstrates
the use of constants in tQL4BIM. The query
identifies all rooms attributed as partial which
have a gross floor area greater than 40 m2. In Line
3, the use of a cstring as an enumeration value is
depicted. The attribute filter in Line 5 evaluates a
cnumber in its predicate parameter.
 One paradigm of QL4BIM is hiding its type
handling. Therefore, the language is designed to
cope without the need to explicitly type
keywords and variables are simply introduced by
initial use of a literal. The appropriate type of
variable is inferred by the operator called in the
assignment. So the distinction between Entity
and Set variables is completely implicit. This is
evidenced in Listing 4 on the next page which
presents a fragment from Listing 2 together with
a modification. In the original version (a), two
sets are passed to the Touch operator. In
modification (b), one Set and one Entity are
handed over. In both examples, the textual
syntax stays identical. Instead, the user can
concentrate on the different semantics of the
overloaded Touch operator. Section 5 depicts the
concept of overloading operators in detail.
Whereas there is no syntactical difference
between entities and sets, the necessary
definition of index literals for relational results
and parameter handovers makes the use of
relations more explicit. The presented approach

Listing 3 A tQL4BIM query which selects partial rooms with gross floor areas greater than 40 m²

1
2
3
4
5
6

model = GetModel("C:\Institute.ifc")
spaces = TypeFilter(model, "IfcSpace")
pSpaces = AttributeFilter(spaces.CompositionType = "partial")
rel1[space, prop] = PropertyResolver(pSpaces, model, "SpaceCommon")
rel2[space, prop] = AttributeFilter(rel1[prop].GrossPlannedArea > 40)
largeSpaces = Projection(rel2[space])

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

relieves the user in that the user is not required
to handle native types in the language.

This should also hold true if external types,
e.g. from the IFC data model, are processed.
Externally typed attributes are examined if
predicates are passed to operators. Here the
runtime has to convert external types to native
types. To facilitate the definition of predicates,
these conversions are performed automatically.
This is done by recursively traversing the IFC
schema until simple types of the EXPRESS
language are reached. Listing 5 containing
fragments from the IFC4 schema, clarifies the
used recursive processing. As shown here, the
definition of IfcNonNegativeLengthMeasure is
based on IfcLengthMeasure and finally ends up
at the simple REAL type. As the query runtime
incorporates a mapping for simple EXPRESS
types to native QL4BIM types, the user is not
restricted to explicitly instantiating an
IfcNonNegativeLengthMeasure. If an entity
attribute of this type is used in a predicate, a
cfloat that maps to an EXPRESS REAL can be used
during comparisons.

5 Operator Overloading in tQL4BIM
As mentioned in the language paradigms, the
user should be able to state queries at a high level
of abstraction. No patterns for repeated
execution of subqueries such as for-statements
therefore exists in the language. Different query

semantics can be realized by the types used in
operator calls.

This is demonstrated by four applications of
the Touch operator in Listing 6. In this case two
sets (walls, windows) are extracted from the
overall model. Additionally, the entity wall2456
is fetched by the GetInstance operator. In the
Lines 5-8, different overloads of the Touch
operator are called. In the first variant the set of
walls is used as a parameter. This results in a
processing which finds all pairs of touching
walls by evaluating the Cartesian product of set
elements. In the second call of Touch, the
instance wall2456 is tested against each element
of the window set. If n is the number of elements
in the passed set, n Touch tests are performed. In
Line 7, the operator is called with two sets. In this
case only touching constellations between
entities contained in different sets are examined.
If n walls and m windows are passed, n*m test
are evaluated. Finally, a one-to-one test should
also be supported by the system. In this case a
relation containing pairs of entities is passed to
Touch (Line 8). In the following topological

processing, each tuple will be examined
individually. In this way element1 is tested for
touching element2. If n is the number of tuples in
the relation, n tests are executed.

This example shows that different processing
can be realized by simply changing the types of
parameters passed to an operator. Thus,

Listing 4 The implicity between entities and sets in the QL4BIM System

1a
2a

1b
2b

allWindows = TypeFilter(model, "IfcWindow")
rel[wall, window] = Touch(someWalls, allWindows)

theWindow = GetInstance(model, #2456)
rel[wall, window] = Touch(someWalls, theWindow)

Listing 6 Overloads of the Touch operator

1
2
3
4
5
6
7
8

model = GetModel("C:\Institute.ifc")
walls = TypeFilter(model, "IfcWall")
wall2456 = GetInstance(model, #2456)
windows = TypeFilter (model, "IfcWindow")
rel1[wall1, wall2] = Touch(walls)
rel2[wall, window] = Touch(wall2456, windows) //creation of
rel3[wall, window] = Touch(walls, windows) //rel0 is ommited
rel4[element1, element2] = Touch(rel0[element1, element2])

Listing 5 Fragments of the IFC4 EXPRESS schema used for type conversions

1
2
TYPE IfcNonNegativeLengthMeasure = IfcLengthMeasure
TYPE IfcLengthMeasure = REAL

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

overloaded variants are available to the majority
of QL4BIM operators. For example, the
AttributeFilter is present in three versions and
can execute on a single entity, a set or a
relational variable. The amount of semantical
difference between the overloads varies for each
operator. A detailed description of all available
operators including information on each
overloaded version will be provided in the
QL4BIM Manual which is currently being
drafted.

6 The QL4BIM System and its
Components
This section describes the runtime for
interpreting tQL4BIM queries known as QL4BIM
System. Figure 3 shows the internal components
of the runtime and their interrelationships.

Figure 3 UML component diagram of the QL4BIM
System

The system includes three parsers. They are
used for the syntactic analysis of query input, for
importing the underlying pool data and for
examining the schema of the pool data. In
general, a query is initiated by importing an IFC
instance file to the current data pool via the
GetModel operator.

The IFC instance parser is responsible for
interpreting the referenced file and for creating
an in-memory representation of IFC entities. The
runtime uses a late binding approach to
representing these external entities. Instead of
specific classes for IFC types, entities are set up
dynamically using generic parts. Fine-grained
elements such as object identifiers, lists of
symbolic references and values of simple types
are stored in these parts. The late binding used
has the advantage that all IFC versions can be
supported ad-hoc. Additionally, the integration
of further data models such as CityGML is
facilitated.

The IFC schema parser supports query
execution when external IFC types have to be
compared with QL4BIM types (see Listing 3).
Additionally, meta information such as attribute
names of entities can be directly read out from
the schema without the computationally
expensive use of reflection mechanisms.

Once a query has passed syntactic analysis,
the tQL4BIM parser translates it to an abstract
syntax tree (AST) (Parr, 2010). This intermediate
representation of a query is consumed by the
query interpreter. It is a streamlined structure
deduced from the textual query input without
lexical helpers. Instead, a tree structure is set up
that can be processed for query validation and
query execution.

Figure 4 shows a tQL4BIM query and its
representation as AST. The S-nodes correspond
to the four subquery statements. As query
execution is triggered by the user, the interpreter
traverses the AST, collecting results and calling
the appropriate function in the query backend
with referenced variables. The imperative style
of the language combined with the forced saving
of interim results allows a step-wise query
execution. Instead of processing all statements in
the AST, the runtime interprets one statement
after another, continuing by user request. In this

1
2
3
4

model = GetModel ("C:\Institute.ifc")
walls = TypeFilter (model, "IfcWall")
windows = TypeFilter (model, "IfcWindow")
r1[wall, window] = Touch(walls, windows)

Figure 4 A query in tQL4BIM and its abstract syntax tree used by the runtime

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

step-wise execution, the content of the current
intermediate variable can be shown in the
QL4BIM user interface. This is done in a textual
manner and extended by a 3D visualisation if the
variable refers to geometrical information. The
approach is similar to a debugging session in an
IDE and a general programming language. It
supports domain experts in defining complex
queries as the influence of each single statement
is testable.

7 The Visual Notion vQL4BIM
A Visual Programming Language (VPL) uses a
graphical notation to represent the intent of the
user rather than typed code. The concept first
emerged in the 1970s but is currently adopted
increasingly in modern applications (Sutherland,
1966). In the domain of model-based planning,
Dynamo and Grashopper are examples of VPL-
equipped tools (Yazar, 2014). The general
approach of a VPL is to place visuals on a canvas
and to establish a connection between these
items. A network structure is thereby set up. The

semantic of this structure is specific to each VPL.
Nowadays, rich graphic user interfaces are

the primary access points to applications for

non-programmer. In contrast, users may face
obstacles when it comes to textual programming
languages. This holds true for domain experts
such as architects and civil engineers and a
language such as tQL4BIM despite its minimal
amount of patterns. Thus, a VPL which reuses
the methodology of the presented textual query
notation is introduced. It is called vQL4BIM and
the following characteristics and services are
borrowed from its textual sibling:

 the general paradigms used in the design of
tQL4BIM,

 the native type system, the handling of
external types and operator overloading,

 the intermediate representation of a query in
the form of an AST.

For the graphical syntax, visuals are defined,
representing constants, variables and operators
(Figure 5). Constants are defined as rectangles,
variables as rounded rectangles and operators as
hexagons. The assignment of operational results
and parameter handovers are both denoted by
arrows. The connection between a relational

variable and its index literals are defined by lines
with diamonds at their endpoints.

Figure 5 Visuals to express queries in vQL4BIM

Figure 6 A textual and its equivalent visual query resulting in a common AST

1
2
3
4

model = GetModel ("C:\Institute.ifc")
walls = TypeFilter (model, "IfcWall")
windows = TypeFilter (model, "IfcWindow")
r1[wall, window] = Touch(walls, windows)

Daum & Borrmann 2015, Simplifying the Analysis of Building Information Models Using tQL4BIM and vQL4BIM

Proc. of the 22nd EG-ICE workshop 2015, July 13th-16th 2015, Eindhoven, The Netherlands

The visual vQL4BIM and the textual tQL4BIM
share the same intermediate representation in
the form of an AST. The important fact is that a
bijective relationship exists between a tQL4BIM
query and its AST. As a vQL4BIM query and its
resulting AST are also bijective connected, this
tree structure can be used to synchronize both
notations. Thereby an altering of the current
query in both notation is possible at any time. If
the query is changed in one notation, the
obsolete representation is automatically
renewed by traversing the AST and calling a
visual, or respectively a code creation backend.
Figure 6 shows two equivalent queries: The first
one is stated in tQL4BIM with the second
arranged by vQL4BIM visuals. Both queries result
in an identical AST.

8 Conclusion
BIM and its underlying data models, especially
the IFC, have evolved over the past two decades.

Today, they provide a well-grounded foundation
for representing a wide range of buildings and
the processes of their planning, construction and
maintenance. On the other hand, there are gaps
in analysis and data handling, particularly in
relation to the formal exploration of models and
the extraction of submodels.

This paper presents a novel query language
in two notations that is designed to overcome
these issues. The query language is focused on
usage by domain experts and supports a
straightforward, albeit formal and com-
prehensive examination of complex models.
Together with the previously developed spatial
and temporal operators of the system, a novel
level of methodical support for analysing,
verifying and processing of BIM data is achieved.
This increases the efficiency of model-based
processes and promotes a BIM-based
methodology.

References
Borrmann, A. and Rank, E. (2009) ‘Query support for BIMs using semantic and spatial conditions’, Handbook

of Research on Building Information Modeling and Construction Informatics: Concepts and
Technologies: Concepts and Technologies, p. 405.

Codd, E. F. (1990) The relational model for database management: version 2, Addison-Wesley Longman
Publishing Co., Inc.

Daum, S. and Borrmann, A. (2013) ‘Definition and Implementation of Temporal Operators for a 4D Query
Language’, Proc. of the ASCE International Workshop on Computing in Civil Engineering.

Daum, S. and Borrmann, A. (2014) ‘Processing of Topological BIM Queries using Boundary Representation
Based Methods’, Advanced Engineering Informatics, vol. 28, no. 4, pp. 272–286.

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2011) BIM Handbook: A Guide to Building Information
Modeling for Owners, Managers, Designers, Engineers and Contractors.

Liebich, T. (2001) ‘XML schema language binding of EXPRESS for ifcXML’, International Alliance for
Interoperability.

Liebich, T. (2013) IFC4 specification [Online], no. 4. Available at http://www.buildingsmart-tech.org/ifc/IFC2x4/
rc4/html/index.htm.

Mazairac, W. and Beetz, J. (2013) ‘BIMQL – An open query language for building information models’, Advanced
Engineering Informatics, vol. 27, no. 4, pp. 444–456 [Online]. Available at http://www.sciencedirect.com
/science/article/pii/S1474034613000657.

Parr, T. (2010) Language implementation patterns: Create your own domain-specific and general programming
languages, Raleigh, N.C., Pragmatic Bookshelf.

Prud’Hommeaux, E., Seaborne, A. and others (2008) ‘SPARQL query language for RDF’, W3C recommendation,
vol. 15.

Robie, J., Chamberlin, D., Dyck, M. and Snelson, J. (2013) ‘XQuery 3.0: An XML Query Language’, W3C Last
Call Working, July.

Schenck, D. and Wilson, P. R. (1994) Information modeling: the EXPRESS way, Oxford University Press New
York.

Sutherland, W. R. (1966) On-line Graphical Specification of Computer Procedures, DTIC Document.
Yazar, T. (2014) ‘Design of Dataflow’, Nexus Network Journal, pp. 1–15 [Online]. DOI: 10.1007/s00004-014-0222-

8.

