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Phase noise in fiber-optic communication

Laser phase noise

Lorentzian spectrum - Wiener process
f−n spectrum - Autoregressive moving-average process

Nonlinear Kerr-induced phase noise

Self phase modulation (SPM)
Cross phase modulation (XPM)

This talk mainly considers phase noise generated by
lasers/oscillators.
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Waveform model vs. discrete-time model

Tx

Rx filter

& sampling

TxDetector

Tx TxDetector
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Information-theoretic limits

What can be said about capacity?

C (SNR) = lim
n→∞

sup
E[|Xk|2]≤SNR∆

1

n
I
(
Xn

1 ;Y Ln
1

)
(1)

where L = Tsymb/∆ is the oversampling factor

It can be a challenging problem due to phase noise’s memory

We review capacity results for

Wiener phase noise
White phase noise

L. Barletta — Information-theoretic results for phase noise channels 6/23



Institute for Advanced Study Technische Universität München

Information-theoretic limits

What can be said about capacity?

C (SNR) = lim
n→∞

sup
E[|Xk|2]≤SNR∆

1

n
I
(
Xn

1 ;Y Ln
1

)
(1)

where L = Tsymb/∆ is the oversampling factor

It can be a challenging problem due to phase noise’s memory

We review capacity results for

Wiener phase noise
White phase noise

L. Barletta — Information-theoretic results for phase noise channels 6/23



Institute for Advanced Study Technische Universität München

Information-theoretic limits

What can be said about capacity?

C (SNR) = lim
n→∞

sup
E[|Xk|2]≤SNR∆

1

n
I
(
Xn

1 ;Y Ln
1

)
(1)

where L = Tsymb/∆ is the oversampling factor

It can be a challenging problem due to phase noise’s memory

We review capacity results for

Wiener phase noise
White phase noise

L. Barletta — Information-theoretic results for phase noise channels 6/23



Institute for Advanced Study Technische Universität München

Outline

1 Introduction

2 Wiener phase noise channel
Simplified model
Complete model

3 White phase noise channel

4 Conclusions

L. Barletta — Information-theoretic results for phase noise channels 7/23



Institute for Advanced Study Technische Universität München

Waveform model with integrate & dump receiver

Tx

Integrate

and dump

TxDetector

Yk =

∫ k∆

(k−1)∆
Y (t) dt = Xdk∆/Tsymbe

1

∆

∫ k∆

(k−1)∆
ejΘ(t) dt+Wk (2)

Hypothesis: Tx uses a rectangular pulse shape in time domain
∆: sampling time, Tsymb: symbol time
Wk ∼ CN (0, 1), E [WmW

?
n ] = 1{m=n}.
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1

∆

∫ k∆

(k−1)∆
ejΘ(t) dt+Wk (2)

Phase noise and amplitude fading!
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Wiener phase noise
Define Θk = Θ((k − 1)∆) and Nk ∼ N (0, 1):

Θk = Θk−1 + γ
√

∆Nk (3)

Yk = Xdk∆/Tsymbee
jΘk

1

∆

∫ k∆

(k−1)∆
ej(Θ(t)−Θk) dt+Wk (4)

Contour plot of the unnormalized fading
pdf for ∆ = 6 and γ = 1. (Y. Wang et al.,
TCOM 2006, vol. 54, no. 5)
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Symbol-spaced Wiener phase noise channel

Θk = Θk−1 + γ
√
TsymbNk (5)

Yk = Xke
jΘk +Wk (6)

The phase noise is assumed constant in each symbol time,
and varies symbol by symbol according to (5)

Bounds on information rates are evaluated by using Bayesian
tracking techniques 1

The continuous state space [0, 2π) is discretized into bins, and
a low-complexity trellis-based detector is devised to
lower-bound the mutual information 2

1Barletta et al., J. Lightw. Technol., 2012, vol. 30, no. 12
2Barletta et al., IEEE Photon. Technol. Lett., 2013, vol. 25, no. 13
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Symbol-spaced Wiener phase noise channel - Results
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Figure 1 : Circularly symmetric Gaussian input distribution.
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Symbol-spaced Wiener phase noise channel - Results
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Figure 2 : Low-complexity trellis-based detector (in red), versus a
two-stage carrier recovery proposed by Magarini et al., IEEE PTL, 2012,
vol. 24, no. 9.
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Oversampled Wiener phase noise channel

Θk = Θk−1 + γ
√

∆Nk (7)

Yk = Xdk∆/Tsymbee
jΘk +Wk (8)

The phase noise is assumed constant in each sample time, and
varies sample by sample according to (7)

An analytical capacity lower bound is found by a mismatched
decoder argument 3

An analytical capacity upper bound is found by a genie-aided
decoder argument 4

3Ghozlan/Kramer, ISIT, 2013 and 2014
4Barletta/Kramer, arXiv:1411.0390
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High SNR analysis

How does the capacity behave at high SNR?

We present analytical results on the so-called capacity prelog:

lim
SNR→∞

C (SNR)

log(SNR)
(9)

Example: for an AWGN channel, C (SNR) = log(1 + SNR),
therefore the prelog is 1

We let the sampling time ∆ scale with the SNR as

∆ =
1

SNRα
, 0 < α < 1 (10)
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Oversampled Wiener phase noise channel - Results

α
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Figure 3 : Prelog upper bound and lower bound versus α = − log(∆)
log(SNR) .

Upper bound: Barletta/Kramer, arXiv:1411.0390

Lower bound: Ghozlan/Kramer, ISIT, 2013 and 2014
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A capacity achieving scheme for 0 ≤ α ≤ 1/2

Choose a uniform pdf for ∠Xk and

p|Xk|2(x) =
∆

SNR∆2 − 1
exp

(
− ∆x− 1

SNR∆2 − 1

)
, x ≥ 1/∆

(11)

Amplitude modulation. Use the statistic
Vk =

∑L
i=1 |Y(k−1)L+i|2 to detect |Xk|

Phase modulation. Use the statistic

∠Ỹk = ∠

(
Y(k−1)L+1

(
Y(k−1)L

Xk−1

)?)
(12)

to detect ∠Xk
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Complete model

Θk = Θk−1 + γ
√

∆Nk (13)

Yk = Xdk∆/Tsymbee
jΘk

1

∆

∫ k∆

(k−1)∆
ej(Θ(t)−Θk) dt+Wk (14)

Discrete-time Wiener phase noise and memoryless fading
impair the transmission

Lower bounds on information rates are evaluated by using
Bayesian tracking techniques 5

The information rate increases compared to the simplified
model

5Ghozlan/Kramer, Globecom, 2013
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Complete model - Results
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Figure 4 : Oversampled model (in blue) versus the simplified
symbol-spaced model (in green).
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Complete model - Results
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Figure 5 : Prelog lower bound versus α = − log(∆)
log(SNR) .

For 1/3 ≤ α < 1: Ghozlan, PhD Thesis, 2014

For 0 < α ≤ 1/3: Barletta, unpublished

}
Amplitude modulation
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White phase noise model

Consider a phase noise process where the samples {ejΘ(t)} are
uncorrelated

Also, consider a stationary average E
[
ejΘ(t)

]
= µΘ

It can be shown6 that the output of the sampled matched
filter {Yk} is a sufficient statistic for data detection:

Yk = µΘXk +Wk (15)

where |µΘ| ≤ 1 represents an SNR loss

6Barletta/Kramer, ISIT, 2014
Barletta/Kramer, CROWNCOM, 2014
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Conclusions

For Wiener phase noise channels, oversampling is needed to
increase information rates

Bayesian tracking techniques are good for designing
quasi-optimal detectors

White phase noise channels are equivalent to AWGN channels
with an SNR penalty
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