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Abstract— In this paper we propose to track online computed
force trajectories to control the energy of various types of
pendulum-like objects. The considered pendulum-like objects
can be controlled by multiple agents and swing in different
oscillation degrees of freedom. Our goal is to excite one
specific oscillation, the intended oscillation, while damping all
other disturbance oscillations. By approximating the intended
oscillation as a simple pendulum oscillation, we can specify a
desired force trajectory. Tracking of this force trajectory results
in a controlled swing-up of the intended oscillation accompanied
by a simultaneous damping of the disturbance oscillations.
Simulation experiments with a two-agent trapezoidal pendulum
show convincing control performance. A human-robot virtual
reality experiment shows the transferability of the control
approach to a human interaction partner. The limitations of the
approach are discussed based on simulation results obtained for
a single-agent double pendulum.

I. INTRODUCTION

This paper investigates energy control of pendulum-like
objects under the influence of gravity. The most simple exam-
ple for such a pendulum-like object is the simple pendulum.
The theoretical background of simple pendulums, especially
its nonlinear frequency characteristic, is well investigated,
exemplary in [1]. Simple pendulums have been successfully
used to describe various complex mechanisms like robotic
walking [2], [3], dance partners [4] or fluid in containers [5].
A further example is a two link robot brachiating with
pendulum-like dynamics [6].

In many applications, the goal is to damp oscillations,
e.g. for cranes transporting goods [7] or for quadrotors with
suspended load [8]. In [9], a suspended load is carried by two
agents with the goal to damp residual oscillations resulting
from high speed transport.

The controlled swing-up of pendulum-like objects has
found a lot of attention in terms of swinging up simple,
double or even higher order pendulums with the final goal of
stabilizing them in their unstable equilibrium point e.g. [10]–
[14]. The swing-up of a cable driven mechanism to a specific
energy level by two coupled actuators is described in [15].
To the best of the authors’ knowledge the swing-up of multi-
agent pendulums has hardly been discussed. Controlling the
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trajectories of slung-loads carried by multiple helicopters
[16] is related to this subject.

In our previous works [17], [18], human-robot object
swinging is motivated by the extension of the manipulation
capabilities with respect to bulky, flexible objects. Our ex-
emplary task is cooperative swinging of a sports mat in order
to lift it onto a trolley. As a first step towards human-robot
dynamic object manipulation, the swing-up of pendulum-
like objects, in [17] a v-shaped pendulum and in [18] a
trapezoidal pendulum, is investigated.

In this paper, we present an energy control approach for
complex pendulum-like objects based on force trajectory
tracking. Similar to [18], the intended oscillation, the os-
cillation degree of freedom to be swung-up, is approximated
by an abstract simple pendulum. In contrast to [18], the force
based approach allows to simultaneously damp disturbance
oscillations, without the need of an additional damping
controller. The generalizability of the force based approach is
discussed with respect to the simple pendulum approximation
and by applying it not only to the two-agent trapezoidal
pendulum of [18], but also to a single-agent double pendulum
in simulation. Furthermore, a human-robot virtual reality
experiment shows the transferability of the control approach
to a human interaction partner, similar to our previous work
[18].

In Section II we formally state our problem. The following
Section III introduces the essential assumption to extract the
intended oscillation by a projection and an approximation
step. The progression from the general idea to the inter-
mediate desired oscillation and finally to the control law is
described. This is followed by a theoretical discussion of the
proposed controller in Section IV. In Section V we apply the
control approach to two exemplary pendulum-like objects in
simulation and virtual reality and discuss the results. Finally,
we draw our conclusions in Section VI.

II. PROBLEM FORMULATION

This paper investigates the problem of controlling the
energy contained in oscillations of a general pendulum-like
object. We consider pendulum-like objects which can be
controlled by several agents and which can have more than
only the intended oscillation degree of freedom (DoF). We
denote a pendulum with various dominant oscillation DoFs a
complex pendulum and we differentiate between single- and
multi-agent pendulums.

The intended oscillation DoF is described by the deflection
angle θ. The goal is to control the intended oscillation to



a desired amplitude θ d
V , which represents a desired energy

V d
θ . Complex pendulums have additional n disturbance

oscillations with deflection angles ψi, i ∈ {1...n}, which
have to be damped. Figure 1 shows two exemplary repre-
sentatives of complex pendulums, the trapezoidal and the
double pendulum. The trapezoidal pendulum is a two-agent
pendulum, the double pendulum is a single-agent pendulum,
both with one disturbance oscillation ψ.

The agents exchange information only mechanically
through the pendulum itself. Each agent can manipulate the
pendulum through acceleration of his individual handle. In
the following, we focus on the view of one agent. For reasons
of simplicity and as a minimum requirement we restrict the
handle to one-dimensional horizontal movements (x-axis in
Fig. 1). The one-dimensional position of the handle is r. This
results in the decentralized control variable u = r̈.

The agent only gets information about the state of the
pendulum through a force sensor which measures the forces
applied at the end effector F . The agent has to estimate
the state of the pendulum from the force F to control the
energy of the disturbance oscillations Vψi to zero and the
energy of the desired oscillation Vθ to the desired value
V d
θ . Consequently, we are looking for a control law of the

following form [18]

u = r̈(F ) (1)
with

∣∣V d
θ − Vθ(t− t0 > Ts)

∣∣ ≤ εθ (2)
and

∣∣0− Vψ(t− t0 > Ts)
∣∣ ≤ εψ for 0 < Ts <∞(3)

with the settling time Ts and t0 being the time at which the
controller is engaged. We define a small energy band around
the desired energy which has a width of 2εθ/ψ , where we
aim the energy to stay within.

III. FORCE-TRAJECTORY TRACKING ENERGY
CONTROL

The first Subsection III-A describes how to model the θ-
oscillation of the complex pendulum as a simple pendulum
through a projection and an approximation step. The general
idea, to control the different oscillation DoFs by controlling
the measured force to a desired force trajectory, is described
in Subsection III-B. Subsection III-C describes how to obtain
the desired force trajectory. The last Subsection III-D depicts
the entire control law.

A. Approximation as and projection onto simple pendulum

In this subsection we describe how to extract the de-
sired θ-oscillation of single-/multi-agent complex pendulums
through the use of an abstract simple pendulum. We ap-
ply two modeling steps: approximation and projection. We
proceed in describing the fundamental equations of such an
abstract simple pendulum.

We define a world-fixed coordinate system with the z-axis
pointing in the direction of the initial axis of the desired θ-
oscillation. The y-axis points upwards and the x-axis leads to
a right hand coordinate system (see Fig. 1). The first step of
gaining the abstract simple pendulum oscillation describing
the θ-oscillation is the projection of the multi-pendulum to
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Fig. 1. Setup of double pendulum on the left side, and trapezoidal pendulum
on the right side: The deflection angle θ, the disturbance deflection angle ψ
and the orthogonal projection resulting in θ∗; blue dotted lines are parallel
to coordinate axis.

a plane orthogonal to the oscillation axis of the θ-oscillation
through the handle. We project the scenery to the xy-plane
and we obtain the projected deflection angle θ∗ from the
measured force F as

θ∗ = arctan
−Fpx

Fpy
(4)

with F p = F −mhr̈ being the force compensated for the ac-
celeration of the handle mass mh and r̈ =

(
r̈ 0 0

)T
. The

projected oscillation θ∗ includes the complete θ-oscillation
because of the orthogonal projection, but is superimposed
by potentially highly nonlinear projections of the undesired
ψi-oscillations.

The second step of gaining the abstract simple pendulum
oscillation is the approximation of the desired θ-oscillation
as the oscillation of an abstract simple pendulum with
deflection angle ϑ. The abstract simple pendulum leads to
the possibility to approximately describe the dynamics of
the θ-oscillation while being independent of the structure
of the complex pendulum and considering only one agent.
We virtually mount an abstract simple pendulum with length
l∗ and mass mp to the handle mass mh. We assume that
the influence of the handle motion r̈ on the abstract simple
pendulum is limited by the reciprocal number of agents na.
The equation of motion of the abstract simple pendulum
results in

ϑ̈ = − g
l∗

sin(ϑ)− 1

l∗
cos(ϑ)

r̈

na
. (5)

The potential and kinetic energy of the abstract simple
pendulum, disregarding the handle motion ṙ, result in the
entire energy of the simple pendulum

Vϑ =
1

2
mpl

∗2ϑ̇2 +mpgl
∗(1− cos(ϑ)), (6)

which relates to the amplitude of the oscillation ϑV by

Vϑ = mpgl
∗(1− cos(ϑV )). (7)

The time-derivative of (6) with (5) leads to the energy flow

V̇ϑ = −mpl
∗ cosϑϑ̇

r̈

na
, (8)



which can be expressed as the change in amplitude (ϑV )̇
through the time-derivative of (7) set equal to (8)

(ϑV )̇ = − ϑ̇ cosϑr̈

nag sinϑV
. (9)

Through the abstract simple pendulum we can interpret (8)
and (9) as the energy input of our agent.

Centripetal and gravitational forces add up to the simple
pendulum force

Fϑx = (mpl
∗ϑ̇2 +mpg cos(ϑ)) sin(ϑ) (10)

which acts between the rope and the handle for ṙ = 0.
The frequency of the simple pendulum ωϑ is a function

of the amplitude ϑV . Only approximate solutions exist for
this function [1]. The small-angle approximation leads to

ω0,ϑ =

√
g

l∗
. (11)

The exact value of the frequency can be computed by the
arithmetic-geometric mean M

{
1, cos ϑV2

}
. A sufficiently

good approximation is the arithmetic mean [1], which results
in

ωϑ = ω0,ϑM

{
1, cos

ϑV
2

}
≈ ω0,ϑ

1 + cos ϑV2
2

. (12)

For a harmonic oscillation, the trace of ϑ and ϑ̇ in the state
space is elliptic. Norming the angular velocity ϑ̇ with the
frequency of the oscillation ωϑ reshapes the ellipse to a circle
with constant circulation velocity. This constant circulation
velocity ωϑ results in the phase angle ϕ [10]

ϕ := arctan2

(
− ϑ̇

ωϑ
, ϑ

)
, (13)

as illustrated in Fig. 2. The oscillation of the simple pendu-
lum is not harmonic for amplitudes ϑV > 0, but the phase
angle ϕ from (13) is still a good approximation for the phase
of the oscillation [10] resulting in

ϕ(t) =

∫ t

0

ϕ̇(τ)dτ + ϕ0 ≈ ωϑt+ ϕ0 (14)

with ϕ̇ ≈ ωϑ and the initial phase ϕ(t = 0) = ϕ0.

B. General idea of the force trajectory tracking controller

The general idea of the control approach presented in this
paper is to control the energies Vθ,ψi of each oscillations θ
and ψi through one simple control law, independent of the
structure of the pendulum. We assume a unique mapping f
from the energy content of each oscillation DoF Vθ,ψi and the
phase of each DoF ϕθ,ψi to the interaction force trajectory

f : Vθ,ψi
ϕθ,ψi (t)7−→ Fp,x(t) = f(Vθ,ψi , ϕθ,ψi(t)). (15)

From this unique mapping we deduce to control the energy
of each oscillation DoF Vθ,ψi by controlling the force trajec-
tory Fp,x(t). By reaching the desired force trajectory F di

p,x(t)

the pendulum is reaching the desired energy V di
θ,ψi

of each
DoF. This means that controlling the energy by controlling

ϑ

ϑ̇
ωϑ

−ϑdi

V ϑdi

V

ϕ(t)

Fig. 2. Phase portrait of a simple pendulum during swing-up resulting
in the phase angle ϕ. The dashed circle illustrates the intermediate desired
oscillation amplitude ϑdi

V , to which the actual amplitude ϑV converges.
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Fig. 3. Control structure for exciting the θ-oscillation: the highlighted area
refers to the ’approximation as simple pendulum’ gaining the intermediate
desired oscillation θdi . The block ’Eq.4’ refers to the ’projection onto simple
pendulum’. The structure for follower agents F is not illustrated - the blocks
’Eq.6,7’ and ’Eq.24,25’ change for the follower.

the force trajectory leads to an automatic allocation of the
entire energy flow V̇ to the different DoFs θ and ψi.

We choose the following control law

ṙ = k(F di
p,x − Fp,x), (16)

with the proportional gain k as a design parameter.
Controlling the force by the handle velocity ṙ leads to the

energy flow V̇app applied by the agent to the pendulum

V̇app =
∑
j=θ,ψi

V̇j = ṙFp,x. (17)

The proportional force control law (16) combined with the
unique mapping (15) and the applied energy flow (17) leads
to the energy dynamics

V̇app = k
[
f(V di

θ,ψi
, ϕθ,ψi)− f(Vθ,ψi , ϕθ,ψi)

]
f(Vθ,ψi , ϕθ,ψi),

(18)
which consists of the difference between two quadratic force
terms f(V di

θ,ψi
, ϕθ,ψi)f(Vθ,ψi , ϕθ,ψi) and f(Vθ,ψi , ϕθ,ψi)

2. In
the following subsection we describe how to obtain the
intermediate desired oscillation force trajectory F di

p,x.

C. Online computed intermediate desired oscillation

As described in the last subsection we control the system
energy by controlling the force to an intermediate desired



force F di
p,x. The term ’intermediate’ is indicated by the

superscript di and refers to a desired oscillation which pulls
the actual oscillation to the final desired oscillation in (2), to
be the final goal, indicated by the superscript d. The desired
force F di

p,x is obtained through (10) with a desired oscillation
deflection angle θ di . As discussed in Sec. III-A the desired
oscillation is approximated by a simple pendulum oscillation
with equal parameters as in (5). The desired oscillation
can be described by its phase ϕ di and its amplitude θ di

V .
Figure 3 illustrates how to obtain the phase of the desired
oscillation ϕ di in the upper path and the amplitude θ di

V in the
lower path in the highlighted area. We obtain the deflection
angle and its derivative of the desired oscillation through

θ di = cosϕ diθ di
V , θ̇ di = − sinϕ diθ di

V ωθ (19)

with the approximation ϕ̇ di = ωθ = const and θ di
V = const

(see Fig. 2). The desired oscillation synchronizes to the
θ-oscillation through ϕ di ≈ ϕθ. The desired amplitude
θ di
V pulls the amplitude of the θ-oscillation to the desired

amplitude θ d
V , which is the final goal.

We extract the phase of the θ-oscillation ϕθ and as-
sign it to the phase of the desired oscillation ϕ di . The
projected oscillation θ∗ is the θ-oscillation superimposed
with nonlinear projections of disturbance oscillations ψi.
As we assume the θ-oscillation to be similar to a simple-
pendulum oscillation we compute the projected phase ϕ∗

through (13) from the projected deflection angle θ∗ and the
frequency ωθ. This frequency ωθ is obtained through (12)
with the amplitude θV . The phase ϕ∗ consists of the phase
of the θ-oscillation but superimposed with highly nonlinear
phases of the disturbance oscillations ψi. A nonlinear filter
based on the Kuramoto-equation [19]

ϕ̇ di = ωθ + κ sin(ϕ∗ − ϕ di) (20)

leads to the desired phase which is approximately equal to
the phase of the θ-oscillation ϕ di ≈ ϕθ [18].

We obtain the amplitude of the desired oscillation θ di
V

from the amplitude of the θ-oscillation θV modified by an
additive term ∆θ̄V resulting in

θ di
V = θV + ∆θ̄V . (21)

We differentiate between leader agents L who know the final
desired amplitude θ d

V and follower agents F who imitate the
behavior of the other agents.

Leader agents L know the final desired amplitude θ d
V ,

hence we choose ∆θ̄V of (21) in a way that the amplitude
of the intermediate desired oscillation θ di

V approaches the
final desired amplitude θ d

V . We restrict the control variable
u by saturating the amplitude control error ∆θV = θ d

V − θV
to the parameter ∆L as

L : ∆θ̄V =

{
∆Lsgn(∆θV ) if|∆θV | ≥ ∆L
∆θV else

. (22)

Follower agents F do not know the final desired ampli-
tude θ d

V , but they support the external energy flow, caused
by the other agents. The time-derivative of (7) V̇ϑ =

mpgl
∗ sinϑV (ϑV )̇ shows a linear relation between energy

flow V̇ϑ and change in amplitude (ϑV )̇. From this linearity
we deduce additivity of the entire change in amplitude

(θV )̇ = (θV )̇F + (θV )̇ext, (23)

with the follower’s change in amplitude (θV )̇F and the
external change in amplitude (θV )̇ext caused predominantly
by the other agents. From this we introduce a saturated
proportional law such that the additive term of the desired
oscillation amplitude in (21) is

F : ∆θ̄V =

{
∆F sgn((θV )̇ext) if k∆|(θV )̇ext| ≥ ∆F
k∆(θV )̇ext else

(24)
with the proportional gain k∆ and the saturation at ∆F .

The external change in amplitude (θV )̇ext is obtained
through (23) with the entire change in amplitude (θV )̇ and the
follower’s change in amplitude (θV )̇F . We obtain the entire
change in amplitude (θV )̇ by differentiating the amplitude
θV with the following filter

(θV )̇ =
s

T 2
F s

2 + 2TF s+ 1
θV (s), (25)

which differentiates up to the frequency 1
TF

and damps
higher frequencies. Considering the simple-pendulum ap-
proximation we use (9) and the filter of (25) with the
numerator equal to 1, to compute the follower’s change
in amplitude (θV )̇F depending on the amplitude of the θ-
oscillation θV .

We compute the amplitude of the θ-oscillation θV based
on the abstract simple pendulum approximation by setting
(6) equal to (7). The deflection angle θ is obtained through

a nonlinear observer [18] with state vector θ̂ =
[
θ̂

˙̂
θ

]T
≈[

θ θ̇
]T

which yields approximately to the θ-oscillation. The
dynamical equation of the observer is

˙̂θ =

[
˙̂
θ

− g
l∗ sin(θ̂)

]
+L(θ∗ − y) y =

[
1 0

]
θ̂, (26)

which consists of the abstract simple pendulum dynamics (5)
and the term L(θ∗ − y), which couples the observer to the
real pendulum. The state of the observer approximates the
abstract simple pendulum deflection angle ϑ ≈ θ̂ which
allows to compute the frequency ωθ through (12) and ampli-
tude θ di

V of the desired oscillation θ di through (21). These
computations use the oscillation amplitude θV which gets
computed through (6) and (7) with ϑ ≈ θ̂.

D. Control law

The control law is based on the proportional force control
law (16). Consequently, the handle velocity ṙ equals a
proportional gain k times the difference between the desired
force trajectory F di

p,x and the actual force Fp,x. For a position
controlled robot, we control it to track the handle position r.
The handle position r consists of the control law mentioned



in (16) but integrated to the position level with an additional
band-pass filter. The entire control law results in

r(s) = k
1

1 + Tlps

Thps

1 + Thps

1

s

(
F di

p,x − Fp,x
)

(27)

with the band-pass filter consisting of a first order high-pass
filter with time constant Thp and a first order low-pass filter
with time constant Tlp. The purpose of the low-pass filter is
to filter out high frequencies contained in the force signal
Fp,x and the high-pass filter to avoid drift due to the time
integration from handle velocity ṙ to position r.

IV. DISCUSSION OF THE CONTROL METHOD
The swing-up control approach described in Sec. III is

based on two essential assumptions: first to model the desired
θ-oscillation θ di as a simple pendulum oscillation and second
the unique mapping f(Vθ,ψi , ϕθ,ψi) from the energy content
and phase of each oscillation DoF to the force trajectory (15).

A. Discussion of the simple pendulum approximation

In Sec. III-A we model the desired θ-oscillation as a
simple pendulum oscillation. This leads to several restrictions
for a general pendulum. We require the complex pendulum
to be a gravity pendulum, which behaves similar to a simple
pendulum with respect to the θ-oscillation. If this constraint
is not sufficiently met the abstract simple pendulum approx-
imation becomes invalid. Deviations of the behavior of a
complex pendulum θ-oscillation from a simple pendulum os-
cillation have negative influence on the control performance.
This limitation becomes apparent for the double-pendulum
as investigated in V-B and V-C.

There are two purposes for the simple pendulum projection
and approximation. First, we observe the amplitude of the θ-
oscillation by the nonlinear observer based on the differential
equation of the simple pendulum (26). Second, we gain
the intermediate desired oscillation θ di based on the simple
pendulum approximation. Without this simple pendulum
approximation we cannot observe the actual θ-oscillation and
cannot compute online the desired oscillation θ di .

B. Discussion of the unique mapping

In Sec. III-B we argue that there is a unique mapping from
the energy content and phase of each oscillation DoF to the
force trajectory (15). The validity of this unique mapping
cannot be proved in general.

The unique mapping maps the energies of each DoF Vθ,ψi
with the appropriate phases to the force trajectory Fp,x(t)
by neglecting the influence of handle motion ṙ. The ener-
gies Vθ,ψi and phases ϕθ,ψi span a transformed state space.
This transformed state space is equivalent to the state space
consisting of the deflection angles θ and ψi with its time-
derivatives. The unique mapping is highly related to the
concept of observability. Observability means that we are
able to obtain the entire state of a dynamical system from
the system output in finite time. We are interested in the
energies Vθ,ψi which we obtain from the output of the
complex pendulum system, which is the force Fp,x(t). The
energies Vθ,ψi are a strict subset of the entire state.

In contrast to the undirected quantities energies Vθ,ψi ,
the force Fp,x(t) is a directed quantity as long as it at-
tains positive and negative values. This means that the
unique mapping (15) maps the undirected quantities, the
energies Vθ,ψi , to the directed quantity, the force Fp,x(t).

The applied energy dynamics (18) are obtained by the
unique mapping (15) under negligence of the handle mo-
tion ṙ. This is justified by assuming a bigger influence of
the control variable ṙ on the force than directly on the
mapping f(Vθ,ψi , ϕθ,ψi) and by the indirect restrictions of
the control variable ṙ through (22) and (24). Multiplying
the directed force terms f(Vθ,ψi , ϕθ,ψi) and f(V di

θ,ψi
, ϕ di

θ,ψi
)

with f(Vθ,ψi , ϕθ,ψi) transforms the directed force terms to
undirected quadratic quantities like the energy Vθ,ψi . The
difference between both quadratic terms indicates to increase,
decrease or hold the energy as long as the mapping f
is strictly monotonic. It is essential for canceling out the
directive component in f(V di

θ,ψi
, ϕ di

θ,ψi
)f(Vθ,ψi , ϕθ,ψi) that

the desired phase ϕ di is synchronized to the actual phase ϕθ.
This synchronization means the same directive component of
f(V di

θ,ψi
, ϕ di

θ,ψi
) and f(Vθ,ψi , ϕθ,ψi) for low energies of the

disturbance oscillation Vψi .

V. EXPERIMENTAL EVALUATION
Two examples for complex pendulums are the trapezoidal

pendulum as a two-agent pendulum with one predominant
disturbance oscillation [18] and the double pendulum as a
single agent pendulum with a highly nonlinear disturbance
oscillation as illustrated in Fig. 1.

The first two experiments are a robot-robot simulation ex-
periment and a human-robot virtual reality experiment with
the trapezoidal pendulum. Simulation based experiments are
reproducible and we can compare the results of this experi-
ment to the results of our previous control approach [18].
The human-robot experiment shows the transferability of
the control approach to a human interaction partner. The
second experiment is a robotic simulation based experiment
with a double pendulum to investigate the flexibility and
generalizability of this control approach, as well as its
limitations.

We use the same control parameters for all experiments.
The controller is tuned to obtain results comparable to [18].
The control parameters as well as the parameters of the
abstract simple pendulum are listed in Table I.

TABLE I
CONTROL PARAMETERS

∆L[rad] ∆F [rad] k∆[s] kL[s/kg] kF [f] mp[kg]

0.1388 0.16 1.9 0.15 0.18 2.5

L1[1/s] TF κ [rad/s] Tlp[s] Thp[s] ω0,θ[rad/s]

ωθ
1.5
ω0,θ

ω0,θ
1

ω0,θ

2
ω0,θ

4

A. Trapezoidal pendulum experiments

The two-agent trapezoidal pendulum [18] illustrated in
Fig. 1 consists of a cylindrical pendulum object with



mass 2mp. We assume one predominant disturbance oscilla-
tion n = 1 with deflection angle ψ as the angle between the
cylindrical object and the z-axis. The angle between the y-
axis and the connecting line of the center of mass of the two
handles and the center of mass of the cylindrical object is the
deflection angle θ of the desired oscillation. The pendulum
is controlled by two agents na = 2 and the projection to
the xy-plane leads to a simple pendulum for ψ = 0. Further
descriptions and parameters are given in [18].

Referring to the simulation based experiment, we analyze
the performance of the control approach for two different
initial deflection angles: θ0,1 = 10◦, ψ0,1 = 0◦ and
θ0,2 = 5.7◦, ψ0,2 = 19.4◦. The final goal is θ d

V,1 =

θ d
V,2 = 45◦. For the performance analysis we compute the

settling time Ts until the system energy V stays within
2% of its steady-state value. Furthermore we compute the
steady-state error ess. The effort sharing is indicated by the
relative follower contribution RCF as the relation between
the amount of energy applied by the follower and the
applied energy of the leader and follower RCF = VF (t0 +
Ts) (VF (t0 + Ts) + VL(t0 + Ts))

−1 with t0 =3 s as the time
at which the two controllers are engaged.

The steady-state errors are ess,1 = ess,2 =0.7%. The
settling times are Ts,1 =12.45 s and Ts,2 =14.76 s. The
relative follower contributions are RCF,1 =53.88% and
RCF,2 =58.11%. The amplitude of the remaining distur-
bance oscillations are ψV,∞,1 = ψV,∞,2 = 0.053◦. For
brevity, we only illustrate the simulation results for θ0,2 =
5.7◦, ψ0,2 = 19.4◦ in Fig. 4. The first graph illustrates the
energies over time. The entire energy V and the energy Vθ
computed through (6) with the real deflection angle θ show
fast settling with low overshoot. Furthermore, as expected,
the follower reacts slower than the leader. The second graph
illustrates the deflection angles θ and ψ. We observe fast
damping of the disturbance oscillation ψ followed by a
significant increase of the energy of the θ-oscillation Vθ.
The third graph illustrates the energy flow to the complex
pendulum of the leader V̇app,L and the follower’s estima-
tion of it as the external energy input V̇θ,ext. This external
energy input V̇θ,ext is obtained through (7) and its time-
derivative as V̇θ,ext = mpgl

∗ sin(arccos(1− Vθ
mpgl∗

))(θV )̇ext.
The last graph illustrates the handle movements with maxi-
mum amplitude rmax =0.15 m.

We apply the same trapezoidal-pendulum experiment to a
human-robot virtual reality experiment to show the transfer-
ability of this control approach to the cooperation of a human
and a robot. The experimental setup is based on a virtual
reality environment. The human interacts with the virtual
reality through a haptic device. The setup is explained in
detail in [17]. The trapezoidal pendulum is identical to that
of the simulation based experiment of this section. The initial
deflection angles are θ0,3 = 0◦ and ψ0,3 = 0◦. The final goal
is θ d

V,3 = 45◦. The human acts as a leader and the robot as
a follower agent. The desired deflection angle θ d

V,3 as well
as the entire scenery are shown on a screen to give visual
feedback of the swinging process to the human.
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Fig. 4. Results of swing-up experiment of trapezoidal pendulum with initial
conditions θ0,2 = 5.7◦, ψ0,2 = 19.4◦ and goal θ d

V = 45◦: a) energies
V , b) deflection angles θ and ψ, c) energy flow of leader V̇app,L and its
estimation V̇θ,ext, d) handle trajectory r.

The results of the human-robot virtual reality experiment
are illustrated in form of energies over time in Fig. 5.
We observe a similar settling time as in the simulation
based experiment, without overshoot. The contribution of
the follower is approximately 50%. The accuracy of the
human-robot experiment is low, in comparison to the robot-
robot experiment. The second graph illustrates the deflection
angles θ and ψ. The disturbance oscillation ψ stays within
the limits of ±5◦. The intended oscillation θ reaches the
desired amplitude θ d

V,3.

B. Double pendulum experiment

The double pendulum experiment shows the limitations
of the control approach with respect to its generalizability.
The double pendulum illustrated in Fig. 1 is a simple
pendulum with mass m2 and length l2 mounted at the end of
another simple pendulum with mass m1 and length l1. The
upper pendulum is referred to by the index 1. The angle
between both pendulums is the disturbance angle ψ. We
define the desired oscillation of the double pendulum to be
the oscillation with stretched lever, meaning ψ = 0. The
dynamic equation of the double pendulum with fixed lever
(ψ = 0 ∀ t) is

θ̈ = − m1 +m2

l1m1 + (l1 + l2)m2
(g sin θ + r̈ cos θ) . (28)
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Fig. 5. Results of the human-robot virtual reality experiment with initial
conditions θ0,3 ≈ 0◦, ψ0,3 ≈ 0◦ and goal θ d

V = 45◦: a) energies V and
b) deflection angles θ and ψ. The leader agent is the human.

We obtain the same differential equation for the dynamics
of the double pendulum with fixed stretched lever as the
differential equation of the simple pendulum (5) with

m1 +m2

l1m1 + (l1 + l2)m2

!
=

1

l∗
, (29)

na = 1 and the masses of the double pendulum m1 +m2 =
mp. The other system parameters and the control parameters
used in the simulation of the double pendulum are equal to
those of the trapezoidal pendulum.

The simulation of the double pendulum is conducted for
masses m1 = m2 =1.25 kg and lengths of the levers
l1 ≈0.526 m and l2 ≈0.175 m, resulting in l1

l2
= 3

1 . The
initial deflection angles are θ0,3 = 10◦ and ψ0,3 = 110◦.
Consequently, the simulation starts with an excessive deflec-
tion of the disturbance oscillation. The simulation leads to the
resulting deflection angles illustrated in Fig. 6. After settling,
we obtain an alternating amplitude θV , which stays below
∆θV,∞,3 ≤ 10◦. The amplitude of the remaining disturbance
oscillation is ψV,∞,3 ≈ 50◦. Note that both oscillation
DoFs influence each other drastically (see uncontrolled first
seconds t < t0 =3 s).

C. Discussion of experiments

First, we analyze the performance of reaching the task
goal stated in (2) and (3). For the trapezoidal pendulum
we reach both control goals, swinging up θ to the final
desired amplitude θ d

V and damping ψ, with low steady state
errors. The predominant causes for the steady-state errors
of the robot-robot experiments are first the damping of the
system, which is not considered in the control approach,
second the only approximately orthogonal projection com-
bined with the simple pendulum approximation and third
the unwanted excitation of the disturbance oscillation ψ
while compensating for energy losses due to damping. The
temporal lag of the follower agent versus the leader causes an
overshoot, but has no influence on the steady-state, because

0
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Fig. 6. Results of swing-up experiment of double pendulum with initial
conditions θ0,3 = 10◦, ψ0,3 = 110◦ and goal θ d

V = 45◦: the deflection
angles θ to be excited and ψ to be damped.

both agents synchronize with the mechanical pendulum and
this synchronization is not affected by this lag.

The leader achieves a rapid decrease of the initial distur-
bance oscillation ψ within the first 2 s (see Fig. 4 b) and c)).
Because the time constants are too long and the follower
only observes the θ-oscillation, the follower does not detect
the leader’s energy extraction between t =3 s and t =5 s.
The applied energy flow of each agent is not easily relatable
to the oscillation DoFs θ and ψ.

The settling time Ts,2 =14.76 s of the experiment with the
initial disturbance oscillation ψ0,2 = 19.4◦ is about 2 s longer
than the settling time Ts,1 =12.45 s of the experiment without
initial disturbance oscillation. Various simulations showed
that this is predominantly caused by the initial disturbance
oscillation of ψ0,2−ψ0,1 = 19.4◦ and not by the lower initial
θ-oscillation of θ0,2−θ0,1 = 4.3◦. The controller first extracts
the energy contained in the ψ-oscillation and afterwards
injects the energy to the θ-oscillation which stimulates the
ψ-oscillation, such that this has to be damped simultaneously.

The simulation experiment with the tapezoidal pendulum
shows comparable results to the experiment of our previous
work [18]. An essential difference to our previous work
[18] is that this controller is not based on model parameters
except of the parameters of the abstract simple pendulum.
Our previous work is additionally based on a model of the
disturbance oscillation ψ.

The results of the human-robot experiment are highly
dependent on the performance of the human, because the
robotic follower only reinforces the behavior of the human
leader. The lower accuracy of the human-robot experiment
is caused by the lower accuracy of the human as the leading
agent.

The double-pendulum experiment illustrated in Fig. 6
shows poorer results than the trapezoidal pendulum exper-
iment. The amplitude of the remaining disturbance oscil-
lation of the double pendulum experiment is ψV,∞,3 ≈
50◦ compared to the trapezoidal pendulum with ψV,∞,1 =
ψV,∞,2 = 0.053◦. The predominant reason for this is that



both oscillations θ and ψ interchange energy rapidly for the
double pendulum, but not for the trapezoidal pendulum. In
all experiments the controller is activated after t0 =3 s. For
the trapezoidal pendulum in Fig. 4 b) we perceive a low
influence of both oscillations onto each other, in contrast
to the double pendulum in Fig. 6. The two DoFs θ and ψ
of the double pendulum interchange energy instantaneously,
causing simultaneous damping of ψ and excitation of θ. This
leads to a longer duration for the swing-up of the double
pendulum, compared to the trapezoidal pendulum.

A further reason for the poorer results of the double-
pendulum is that the force trajectory of a double pendulum
does not match the one of a simple pendulum, even with
ψ = 0◦ ∀ t due to the distributed mass. The choice that the
relation between both levers of the double-pendulum is l1

l2
=

3
1 justifies the simple-pendulum approximation. This leads
to further restrictions for the generalizability of this control
approach. The general complex pendulum is restricted to
pendulums whose desired oscillation DoF behaves similar
to a simple pendulum with limited influence of disturbance
oscillations on the desired oscillation.

VI. CONCLUSION
This paper investigates the energy control of complex

pendulums by tracking an online computed force trajectory.
The control approach is based on an unique mapping of
the energy content of different oscillation DoFs to the force
trajectory. We extract the intended oscillation DoF by a
simple pendulum approximation.

The presented approach allows to excite the intended oscil-
lation DoF to the desired amplitude, while damping all other
oscillation DoFs. However, the intended DoF is restricted to
be similar to a simple pendulum oscillation, meaning that
the pendulum-like object can swing around a horizontal axis,
like a simple pendulum. The convincing results of the robot-
robot and the human-robot trapezoidal pendulum experi-
ments show the practicability of the underlying assumptions
of our approach, like the unique mapping. The simulation
experiment with the double pendulum with strongly coupled
oscillation DoFs shows the limits of generalizability of the
proposed control approach.

This control approach is applicable to different tasks. Ex-
emplary tasks are described in the introduction, like damping
of residual oscillations during transport of slung-loads or
swing-up tasks like lifting a sports mat onto a trolley. The
human-robot experiment shows the transferability of this
control approach to human-robot cooperative swinging of
pendulum-like objects. In contrast to other swinging control
approaches, this force-trajectory tracking control approach

directly controls the interaction forces, which aims for using
a position controlled robot with force feedback.

In future work we plan to extend the control approach
towards adapting to the pendulum parameters. Finally, we
want to use the results of pendulum-like object swinging to
enable cooperative swinging of bulky, flexible objects.
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