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Summary:

We introduce an extension of R-vine copula models to allow for spatial dependencies and model based prediction

at unobserved locations. The proposed spatial R-vine model combines the flexibility of vine copulas with the classical

geostatistical idea of modeling spatial dependencies using the distances between the variable locations. In particular

the model is able to capture non-Gaussian spatial dependencies. To develop and illustrate our approach we consider

daily mean temperature data observed at 54 monitoring stations in Germany. We identify relationships between

the vine copula parameters and the station distances and exploit these in order to reduce the huge number of

parameters needed to parametrize a 54-dimensional R-vine model fitted to the data. The new distance based

model parametrization results in a distinct reduction in the number of parameters and makes parameter estimation

and prediction at unobserved locations feasible. The prediction capabilities are validated using adequate scoring

techniques, showing a better performance of the spatial R-vine copula model compared to a Gaussian spatial model.
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1. Introduction

Understanding the earth’s climate system is of vital interest to every aspect of human

life. Recently the class of vine copulas has captured attention as a flexible class to model

high dimensional dependencies (see Czado, 2010; Czado, Brechmann, and Gruber, 2013;

Kurowicka and Cooke, 2006; Kurowicka and Joe, 2011, and reference therein). We present a

new vine copula based approach for the spatial modeling of climatic time series. Utilization

of available spatial information will lead to a distinct reduction in the number of parameters

needed to parametrize the high dimensional (spatial) regular vine (R-vine) copula model.

Model selection, estimation and a prediction method at arbitrary locations will be developed.

Many different approaches to spatio-temporal (dependency) modeling can be found in

the literature. We refer the reader to the comprehensive monograph of Cressie and Wikle

(2011) and references therein. Multivariate Gaussian distributions are customary used for

dependency modeling. However, they are not appropriate to model all data, since they require

symmetry and do not allow for extreme dependency. Therefore, we apply vine copula models,

which are designed to overcome these limitations. Copulas are d-dimensional distribution

functions on [0, 1]d with uniform margins. They can be understood as a tie between a mul-

tivariate distribution function F and its marginals (F1, . . . , Fd) and capture all dependency

information (see Sklar, 1959). In particular, we have F (y) = C
(
F1(y

1), . . . , Fd(y
d)
)
, where

y = (y1, . . . , yd)′ is the realization of a random vector Y ∈ Rd. Vine copulas are constructions

of d-dimensional copulas built on bivariate copulas only. They are well understood and easy

to compute (see Aas et al., 2009; Brechmann and Schepsmeier, 2013; Dißmann et al., 2013).

A short introduction to R-vines will be given in Section 2.

We develop our approach for daily mean temperature time series collected over the period

01/01/2010-12/31/2012 by the German Meteorological Service (Deutscher Wetterdienst)

(Section 3). The common modeling of all marginal distributions is discussed in Section 3. It
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captures seasonality effects and temporal dependencies of the time series. Spatially varying

parameters allow to approximate these effects and dependencies at unobserved locations.

The main contribution is the development of a new vine copula based spatial dependency

model introduced in Section 4. It relies on a reparametrization of an R-vine copula model,

which exploits the relationship between the model parameters and the available spatial

information. Different model specifications based on distances and elevation differences were

considered in Erhardt (2013), the most promising one is highlighted here. Parameter estima-

tion methods are followed by model based prediction at unobserved locations. A geostatistical

model is developed in Section 5 and used for comparison. The resulting model evaluation is

conducted in Section 6. A validation data set of 19 additional locations allows to calculate

adequate scores, based on which the quality of the predictions can be compared. The paper

closes with a discussion section.

2. Regular vine copula models

Vine copulas provide an easy and flexible way to model multivariate distributions having

different marginal distributions and allow for complex (non-Gaussian) dependencies. The R

package VineCopula (see Schepsmeier et al., 2014) eases their application in practice.

Vine copulas in general were introduced by Bedford and Cooke (2001, 2002) and trace

back to ideas of Joe (1996). They are build using a cascade of d(d− 1)/2 bivariate copulas,

called pair copulas. This cascade is identified by a set of nested trees called a regular vine

tree sequence or short regular vine (R-vine). The R-vine tree sequence V = (T1, . . . , Td−1)

satisfies the following conditions (see Bedford and Cooke, 2001):

(1) T1 = (V1, E1) is a tree with vertices V1 = {1, . . . , d} and edge set E1 ⊂ V1 × V1.

(2) Tl = (Vl, El) is a tree with Vl = El−1 and El ⊂ Vl × Vl, for all l = 2, . . . , d− 1.
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(3) For all vertex pairs in Vl connected by an edge e ∈ El, l = 2, . . . , d−1, the corresponding

edges in El−1 have to share a common vertex (proximity condition).

Aas et al. (2009) were the first to develop statistical inference for non-Gaussian pair copulas.

The notation for vine edges will follow Czado (2010). An edge e ∈ El, l = 1, . . . , d− 1, will

be denoted by i(e), j(e);De, where i(e) < j(e) make up the conditioned set Ce = {i(e), j(e)}

and De is called conditioning set. An example in five dimensions is given in Web Figure 1.

It depicts the four nested trees of an R-vine tree sequence V = (T1, . . . , T4).

Next we introduce the link of an R-vine tree sequence V to the multivariate copula

distribution of some random vector U = (U1, . . . , Ud) ∈ [0, 1]d with U1, . . . , Ud ∼ U (0, 1).

We define the set B :=
{
Ci(e),j(e);De : e ∈ El, l = 1, . . . , d− 1

}
of bivariate copulas Ci(e),j(e);De

corresponding to the R-vine edges e ∈ El, l = 1, . . . , d − 1. The copula families of these

(parametric) pair-copulas are denoted by bi(e),j(e);De . For an overview of frequently used

bivariate copula families we refer to Brechmann and Schepsmeier (2013). Further we define

uI :=
{
uk : k ∈ I

}
for arbitrary index sets I ⊆ {1, . . . , d}. This allows to express the vine

copula density of U associated with the R-vine tree sequence V as

c1,...,d(u) =
d−1∏
l=1

∏
e∈El

ci(e),j(e);De

{
Ci(e)|De(u

i(e) |uDe), Cj(e)|De(u
j(e) |uDe)

}
, (1)

where ci(e),j(e);De {·, ·} are the densities corresponding to the bivariate copulas Ci(e),j(e);De ∈ B.

For a derivation of (1) see Bedford and Cooke (2001). To evaluate such a density we need to

calculate the so called transformed variables Ci(e)|De(u
i(e) |uDe) and Cj(e)|De(u

j(e) |uDe). Here

Ci(e)|De and Cj(e)|De are conditional distributions obtained from Ci(e),j(e);De . The calculation

is performed recursively according to Joe (1996) using the formula

Ck|J (uk |uJ ) =
∂ Ckl;J−l

{
Ck|J−l

(uk |uJ−l), Cl|J−l
(ul |uJ−l)

}
∂Cl|J−l

(ul |uJ−l)
, (2)

where k, l ∈ {1, . . . , d}, k 6= l, {l} ⊂ J ⊂ {1, . . . , d}\{k} and J−l := J \{l}. We implicitly

made the simplifying assumption, that the copulas in B do not depend on the conditioning
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value uDe other than through its arguments given in (1). Moreover, in Section 4 we will use

truncated R-vines (Brechmann, Czado, and Aas, 2012). Truncation after level k < d − 1

means that independence copulas are selected for all edges e ∈ El, k < l < d.

In a spatio-temporal setting the data yst , s = 1, . . . , d, t = 1, . . . , N , is not restricted

to the unit hypercube [0, 1]d and does not necessarily have uniformly distributed margins.

Therefore the data has to be transformed to so called copula data ust ∼ U (0, 1), s = 1, . . . , d,

t = 1, . . . , N , before vine copula models can be applied. We consider a regression model

Y s
t = g(t,xs;β) + εst , ε

s
t ∼ F s, with spatial covariates xs, to adjust for spatial as well as

seasonality effects and temporal dependencies. The resulting residuals ε̂st := yst − g(t,xs; β̂),

t = 1, . . . , N , are approximately independent for each location s = 1, . . . , d. We transform

these residuals by their respective parametric marginal distribution functions F s, i.e. we

calculate ust := F s(ε̂st). This transformation is called a probability integral transform. We

prefer to use parametric probability integral transformations (see Joe and Xu, 1996) over

empirical rank transformations (proposed for example by Genest, Ghoudi, and Rivest, 1995),

since we are interested in predictions on the original scale using the proposed marginal

models. Referring to Kim, Silvapulle, and Silvapulle (2007) we emphasize, that the choice

of a suitable marginal model is important, as a gross misspecification of the distributional

shape of the marginal distribution can distort the joint modeling using copulas. To ensure

that the chosen model is adequate we advise to check if the transformed data is uniform.

3. A Marginal Model for Daily Mean Temperatures

The data set consists of daily mean temperatures in ◦C collected over the period 2010 to 2012

by the German Meteorological Service (Deutscher Wetterdienst) for 73 selected observation

stations across Germany. We split the data into a training (s = 1, . . . , 54) and a validation

data set (s = 55, . . . , 73). Hence we build our models on d = 54 times N = 1096 observations

yst of mean temperatures, which are considered as realizations of random variables Y s
t (t =
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1, . . . , N , s = 1, . . . , d). Lists with details about the location s (longitude (xslo), latitude (xsla)

and elevation (xsel)) and the names of all 73 stations are given in Web Table 1. Their locations

in Germany are illustrated in Figure 1.

[Figure 1 about here.]

For vine copula based models we need to transform our data to copula data. For this, we

use the marginal model of Erhardt (2013, Chapter 3), which is a tailor-made model for the

marginal mean temperatures at arbitrary locations in Germany. To ensure homoscedasticity,

i.e. Var(εst) = σ2 > 0, t = 1, . . . , N , s = 1, . . . , d, the model considers appropriately weighted

observations Ỹ s
t := Y s

t /
√
ŵt. Raw weights w̃t, t = 1, . . . , N , obtained as the sample variances

w̃t := 1
d−1
∑d

s=1 (yst − yt)
2, where yt := 1

d

∑d
s=1 y

s
t , t = 1, . . . , N , are smoothed using least-

squares. This results in the smoothed weights ŵt := exp {q(t; α̂)}. Here q is chosen to be a

polynomial in t of degree nine with estimated parameter vector α̂ ∈ R10.

3.1 Model Components

For details on the following model components we refer to Erhardt (2013, Chapter 3).

Annual seasonality. Yearly temperature fluctuations can be captured by sine curves of

the form λ sin(ωt + δ), parametrized by λ (amplitude), ω (angular frequency) and δ (phase

shift). A substitution of these parameters, inspired by Simmons (1990), leads to the linear

model component βs sin(ωt)+βc cos(ωt), with ω set to 2π/365.25, due to the annual context.

Autoregression. Temporal dependence is eliminated using an autoregression component∑q
j=1 γjYt−j in the marginal model. Investigations show that the choice of q = 3 lagged

responses as additional covariates is appropriate.

Skew-t distributed errors. Detailed investigations showed that skew-t distributed errors

ε1, . . . , εN
i.i.d.∼ skew-t (ξ, ω, α, ν) appropriately capture the observed skewness and heavy tails.

The parametrization of Azzalini and Capitanio (2003) is utilized. In particular the probability
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density function of the errors is given by

fskew-t (x; ξ, ω, α, ν) =
2

ω
tν(x̃)Tν+1

{
αx̃

(
ν + 1

ν + x̃2

) 1
2

}
, (3)

where x̃ := (x − ξ)/ω. Here tν is the density and Tν+1 the cumulative distribution function

of a univariate Student-t distribution with ν and ν + 1 degrees of freedom, respectively. The

parameters ξ, ω and α can be interpreted as location, scale and shape parameter, respectively.

Aggregated parameters. The parameters of the previously described model components

are replaced by polynomial structures to account for spatial variation in the temperatures

depending on longitude (xslo), latitude (xsla) and elevation (xsel). We call them aggregated or

spatially varying parameters.

3.2 The Marginal Model

The marginal model for the daily mean temperatures is given as

Ỹ s
t = µst + εst , εst ∼ skew-t (ξs, ωs, αs, νs) , t = 1, . . . , N, s = 1, . . . , d, (4)

with mean function µst := g
(
t, Ỹ s

t−1, Ỹ
s
t−2, Ỹ

s
t−3, x

s
el, x

s
lo, x

s
la;β

)
:= βs0 + βss sin (2πt/365.25) +

βsc cos (2πt/365.25) + γs1Ỹ
s
t−1 + γs2Ỹ

s
t−2 + γs3Ỹ

s
t−3. The spatially varying parameters are divided

into the aggregated intercept and seasonality parameters

βs0 := β00 + β011x
s
el + β031x

s
la,

βss := βs0 +
4∑
j=1

βs1j (xsel)
j + βs21x

s
lo +

6∑
l=1

βs3l (x
s
la)

l,

βsc := βc0 +
6∑
j=1

βc1j (xsel)
j +

2∑
k=1

βc2k (xslo)
k + βc31x

s
la,

the aggregated autoregression parameters

γs1 := γ10 + γ111x
s
el +

2∑
k=1

γ12k (xslo)
k +

6∑
l=1

γ13l (x
s
la)

l,

γs2 := γ20 + γ211x
s
el +

2∑
k=1

γ22k (xslo)
k +

6∑
l=1

γ23l (x
s
la)

l,
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γs3 := γ30 +
4∑

k=1

γ32k (xslo)
k +

7∑
l=1

γ33l (x
s
la)

l,

and the aggregated skew-t parameters

ξs := ξ0 + ξ11x
s
el +

2∑
k=1

ξ2k (xslo)
k + ξ31x

s
la,

ωs := exp

{
ω0 +

3∑
j=1

ω1j (xsel)
j + ω21x

s
lo +

6∑
l=1

ω3l (x
s
la)

l

}
,

αs := α0 +
4∑
j=1

α1j (xsel)
j +

2∑
k=1

α2k (xslo)
k + α31x

s
la,

νs := exp

{
ν0 +

2∑
j=1

ν1j (xsel)
j +

2∑
k=1

ν2k (xslo)
k +

4∑
l=1

ν3l (x
s
la)

l

}
,

parametrized by β := (β′0,β
′
s,β

′
c,γ

′
1,γ

′
2,γ

′
3)
′ ∈ R57 and η := (ξ′,ω′,α′,ν ′)

′ ∈ R33.

3.3 Marginal Model Parameter Estimation

Parameter estimation follows a two step approach. First, the parameters β are estimated

using least-squares and the raw residuals ε̂st := ỹst − µ̂st , t = 4, . . . , N , s = 1, . . . , d, are

calculated. They cannot be computed for t = 1, 2, 3, due to the autoregression of ỹst on the

three previous points in time. Maximization of the pseudo-likelihood Lskew-t

(
η | ε̂1, . . . , ε̂d

)
=∏d

s=1

∏N
t=4 fskew-t (ε̂st ; ξ

s, ωs, αs, νs) in a second step leads to estimates of the skew-t parame-

ters η. This results in the vector θ̂ :=
(
β̂
′
, η̂′
)′

of parameter estimates for Model (4).

3.4 Transformation to Copula Data

Finally we use the fitted Model (4) to transform our data to copula data, i.e. we trans-

form our original time series ys1, . . . , y
s
N , to us4, . . . , u

s
N

i.i.d.∼ U (0, 1) for all s = 1, . . . , d.

Since for all s = 1, . . . , d we modeled the errors εs1, . . . , ε
s
N as i.i.d. skew-t distributed

with spatially varying parameters ξs, ωs, αs and νs, the desired copula data is obtained

as ust := Fskew-t

(
ε̂st | ξ̂s, ω̂s, α̂s, ν̂s

)
, t = 4, . . . , N, s = 1, . . . , d, where Fskew-t (· | ξ, ω, α, ν) is

the cumulative distribution function corresponding to (3).
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4. A Spatial R-vine Model for Daily Mean Temperatures

As climatic data such as temperature is measured at a large number of spatial locations, we

face a high dimensional problem. With rising dimensionality ordinary R-vine copula models

become computationally infeasible since the number of parameters increases quadratically.

Exploitation of spatial information in our new approach of a spatial R-vine copula model

(SV) allows to reduce the number of parameters significantly.

4.1 Preliminary Analyses

To develop a spatial R-vine model we consider the copula data u1, . . . ,ud where us =

(us1, . . . , u
s
N)′ and us1, . . . , u

s
N

i.i.d.∼ U (0, 1) for all s = 1, . . . , d, i.e. we have copula data series

of length N for d different observation stations. From the quantities elevation, longitude and

latitude we calculate the distance Di,j and the elevation difference Ei,j between each pair of

observation stations (i, j) with 1 6 i < j 6 d.

We allow for one- and two-parametric pair-copula families, whose first and second copula

parameters are called θi,j;De and νi,j;De . The corresponding Kendall’s τ ’s are denoted by τi,j

respectively τi,j;De , depending on whether they are calculated directly from the data or based

on transformed variables in the trees T2, T3, . . . , Td−1 of the R-vine.

Returning to the mean temperature data set (d = 54) we further investigate the spatial

dependencies of the given variables. We are interested in identifying a relationship between

the dependence strength on the one hand and distance and elevation difference of station

pairs on the other hand. For all d(d−1)/2 = 1431 possible station pairs (i, j), 1 6 i < j 6 54,

the empirical Kendall’s τ values τ̂i,j are estimated, to quantify the dependence of these pairs.

Since they are restricted to (−1, 1) we apply the Fisher z-transform

gz(r) =
1

2
ln

(
1 + r

1− r

)
, r ∈ (−1, 1), (5)

first introduced by Fisher (1915), to transform to (−∞,∞). The left panel of Figure 2
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illustrates the Fisher z-transformed estimated Kendall’s τ ’s against the logarithmized dis-

tances ln (Di,j). A distinct linear relationship can be observed. The right panel gives the

corresponding plot against the logarithmized elevation differences ln (Ei,j). The observed

linear relationship is not as strong as for the distances.

[Figure 2 about here.]

The tree-wise analysis of an R-vine model fitted to the mean temperature data gives

deeper insight into the relationship of the R-vine copula parameters and the available spatial

information. We allow for bivariate Gaussian (Φ), Student-t (t), Clayton (C), Gumbel (G)

and Frank (F) copulas as pair-copulas. Additionally rotated versions of the Clayton and

Gumbel copula are utilized to capture possible negative and asymmetric dependencies. The

copula families are selected separately for each bivariate building block according to the

Akaike information criterion. For more details on these copula families, copula rotation and

copula selection we refer to Brechmann and Schepsmeier (2013). The R-vine tree structure

is selected by tree-wise selection of maximum spanning trees, where Kendall’s τ ’s are used as

edge weights (see Dißmann et al., 2013). Application of a bivariate asymptotic independence

test (Genest and Favre, 2007) in the copula family selection procedure yields a share of

independence copulas of more than 50% in all trees Tl with l > 10. Thus, a truncation after

tree T10 results in a significant reduction in the number of model parameters.

Subsequently we add a superscript l 6 10 to emphasize the corresponding tree number.

Table 1 summarizes the structure of the R-vine which we will investigate in more detail.

The copula family which occurs most often is the bivariate Student-t copula. It is the only

two-parametric copula family under consideration. The number of other copula families

increases with the tree number. In tree T10 the Gumbel family dominates. Further we observe

from Table 1, that the strong dependencies are already captured in tree T1 and that the

associations in higher trees vary mostly between −0.2 and 0.3, i.e. negative dependencies
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occur as well. Figure 3 shows the logarithmized estimated degrees of freedom parameters

ln
{
ν̂li(e),j(e);De

}
of the Student-t copulas plotted against the respective tree number l. We

discover a quadratic trend (dashed gray line) with regard to the tree number. This finding will

be used to model the second copula parameters νli(e),j(e);De
jointly for all trees Tl, l = 1, . . . , 10.

[Table 1 about here.]

[Figure 3 about here.]

It remains to study the relationships between the first copula parameters θli(e),j(e);De
and

the corresponding distances Di(e),j(e) and elevation differences Ei(e),j(e), distinguishing which

tree Tl, l 6 10, the edge e belongs to. Depending on the copula family bi(e),j(e);De there exists

a known relationship

τ li(e),j(e);De
= gτ

{
θli(e),j(e);De

; bi(e),j(e);De

}
, (6)

between the copula parameter θli(e),j(e);De
and the Kendall’s τ τ li(e),j(e);De

. Hence, we study

separately for each tree relationships between the Fisher z-transformed Kendall’s τ ’s and

the distances and elevation differences. A similar modeling approach was already followed

by Gräler and Pebesma (2011). For the purpose of the tree-wise analysis we define the

average distances and elevations Di(e),De
:= 1

l−1
∑

k∈De
Di(e),k, Dj(e),De

:= 1
l−1
∑

k∈De
Dj(e),k,

Ei(e),De
:= 1

l−1
∑

k∈De
Ei(e),k and Ej(e),De

:= 1
l−1
∑

k∈De
Ej(e),k, for all edges e ∈ El of trees

Tl with l > 1, where the conditioning set De is non-empty, and consider them as potential

predictors in our models. For details on the tree-wise analysis we refer the reader to Chapter

5 of Erhardt (2013). It shows that in general the distance based predictors capture more

dependence information than the elevation based ones and that the direct unconditioned

distances Di(e),j(e) are suited best to model the corresponding Kendall’s τ .
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4.2 Model Formulation and Selection

Our preliminary analyses suggest first copula parameter model specifications of the form

θli(e),j(e);De
:= g−1τ

[
g−1z {hl(e|βl)} ; bi(e),j(e);De

]
, e ∈ El, l = 1, . . . , 10. (7)

The inclusion of different combinations of the available spatial predictors Di(e),j(e), Ei(e),j(e),

Di(e),De , Ei(e),De , Dj(e),De and Ej(e),De into the model is controlled by the model function

hl (e|βl), e ∈ El, l = 1, . . . , 10, which is linear in the logarithmized predictors. A tree-wise

comparison of different model specifications in Tables 5.4-5.7 and Figure 5.3.1 in Erhardt

(2013) led to the selection of a model, which includes all available distance based predictors.

The investigations showed, that an inclusion of the elevation based predictors does not lead

to a significant improvement in terms of explanatory power. The model function hl(e|βl) of

the distance model specification is defined tree-wise. For the first tree T1 it is defined as

h1 (e|β1) := β1,0 + β1,1 ln
(
Di(e),j(e)

)
, e ∈ E1, (8)

with β1 = (β1,0, β1,1)
′ ∈ R2. For all trees Tl, l = 2, . . . , 10, the model function is given as

hl (e|βl) := βl,0 + βl,1 ln
(
Di(e),j(e)

)
+ βl,2 ln

(
Di(e),De

)
+ βl,3 ln

(
Dj(e),De

)
, e ∈ El, (9)

with parameters βl := (βl,0, βl,1, βl,2, βl,3)
′ ∈ R4. We summarize the parameters for all trees

as βSV
dist := (β′1, . . . ,β

′
10)
′ ∈ R38. Moreover, Figure 3 suggests a quadratic model specification

νli(e),j(e);De
:= exp

(
βν0 + βν1 l + βν2 l

2
)
, e ∈ El, l = 1, . . . , 10, (10)

for the second copula parameters, where βSV
ν := (βν0 , β

ν
1 , β

ν
2 )′ ∈ R3.

4.3 Model Fit

Maximum-likelihood estimation. For parameter estimation, we now specify the likelihood

corresponding to the selected model. Since the parameters θli(e),j(e);De
may change their sign

during the numerical maximization of the log-likelihood, the corresponding copula family

might have to change with respect to rotation. Using the model specifications (10) for the
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degrees of freedom νli(e),j(e);De
and (7) for θli(e),j(e);De

, the usual R-vine likelihood changes to

LSV

(
βSV

dist,β
SV
ν |u1, . . . ,ud

)
=

N∏
t=1

10∏
l=1

∏
e∈El

ci(e),j(e);De

{
ũ
i(e)
t , ũ

j(e)
t ; θli(e),j(e);De

, νli(e),j(e);De

}
,

where the transformed variables are defined as ũ
i(e)
t := Ci(e)|De

{
u
i(e)
t |uDe

t

}
and ũ

j(e)
t :=

Cj(e)|De

{
u
j(e)
t |uDe

t

}
with uDe

t := {ust : s ∈ De}.

Sequential estimation. Since in higher dimensions full maximum likelihood estimation

becomes computationally demanding, we suggest a sequential estimation approach (cp. Aas

et al., 2009). Tree-wise maximization of
∏

e∈El ci(e),j(e);De

{
ũ
i(e)
t , ũ

j(e)
t ; θli(e),j(e);De

, νli(e),j(e);De

}
by

looping through the trees Tl, l = 1, . . . , 10, yields the sequential (seq) parameter estimates

β̂
SV

seq =
(
β̂

SV

dist, β̂
SV

ν

)′
∈ R41. All results in the following sections are based on sequential

parameter estimates. For the selection of suitable starting values for the optimization we

refer to Subsection 5.3.2 of Erhardt (2013).

Results. We provide an illustration of the dependencies modeled by the spatial R-vine

model. Web Figure 2 shows all 54 observation stations and all edges that occur in the ten

trees of the fitted (spatial) R-vine model. The magnitude of association between station pairs

is indicated through edge width and edge color. The thicker and darker the edges are, the

higher is the corresponding estimated association. The Student-t copula degrees of freedom

resulting from our (sequential) estimation are visualized in Figure 3 (dashed gray line). We

conclude from the plot, that our model shows strong tail dependencies in the first trees,

which get weaker with increasing tree number.

4.4 Prediction

Now we address the model based prediction of mean temperatures at new locations. We

illustrate the introduced methodology using the validation data introduced in Section 3.

Methodology. Predictions based on the spatial R-vine model will be on the copula data

level. Thus a back transformation to the original level of mean temperatures is needed,
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which is based on the marginal models presented in Section 3. For technical details we refer

to Web Appendix A. To predict mean temperatures at a new location s for an arbitrary time

point t with corresponding copula data ust , we need to specify the conditional distribution

Cs|1,...,d(u
s
t |u1t , . . . , udt ) of the variable ust conditioned on u1t , . . . , u

d
t . Here u1t , . . . , u

d
t is the

copula data at time t given by the training data set. The model specifies the joint distribution

of u1t , . . . , u
d
t , as an R-vine distribution. Therefore, access to the conditional distribution

function Cs|1,...,d(u
s
t |u1t , . . . , udt ) can be achieved by extending the underlying spatial R-vine

by one further vertex s.

Since the structure of the modeled R-vine should be preserved, we add the new variable

as a leaf to the first R-vine tree. We estimate the Kendall’s τ ’s τi(e1),j(e1) for all d edges

e1 = {i(e1), j(e1)} = {r, s}, r = 1, . . . , d, which may be added, by τ̂i(e1),j(e1);De1
:= τ̂i(e1),j(e1) =

τ̂r,s = g−1z

{
h1

(
e1 = {r, s}|β̂1

)}
. Here the conditioning set De1 is the empty set, h1 is the

model function defined in (8) and gz is given by (5). The edge e∗1 which yields the biggest

Kendall’s τ estimate is selected to extend the first R-vine tree. A corresponding copula family

bi(e∗1),j(e∗1) has to be selected. We select the family which occurs most often in the original

R-vine, however other selection criteria might be chosen. Then the corresponding first copula

parameter θ̂1i(e∗1),j(e∗1)
= θ̂1i(e∗1),j(e∗1);De∗1

is estimated by

θ̂1i(e∗1),j(e∗1);De∗1
= g−1τ

{
τ̂i(e∗1),j(e∗1);De∗1

; bi(e∗1),j(e∗1)

}
(11)

using (6). If needed the second copula parameter ν̂1i(e∗1),j(e∗1);De∗1
= ν̂1i(e∗1),j(e∗1)

is estimated by

ν̂1i(e∗1),j(e∗1);De∗1
= hν

(
e∗1, 1|β̂

SV

ν

)
, (12)

where the function hν
(
e, l|βSV

ν

)
, which depends on the respective edge e and tree number

l and is parametrized by βSV
ν , represents the model specification for the second copula

parameters (see Equation (10)).

The remainder of the R-vine is extended tree-wise starting from tree T2. For each tree Tl we
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have to ensure that the proximity condition is fulfilled after a new edge el has been added. For

all edges el with j(el) = s and Del = De∗l−1
∪ i(e∗l−1) which fulfill the proximity condition, we

estimate the corresponding Kendall’s τ ’s using (9) by τ̂i(el),j(el);Del
= g−1z

{
hl

(
el|β̂l

)}
. Again,

the edge e∗l with the biggest Kendall’s τ estimate is selected and included into the R-vine and

a copula family bi(e∗l ),j(e∗l );De∗
l

has to be selected. The corresponding parameters θli(e∗l ),j(e∗l );De∗
l

and νli(e∗l ),j(e∗l );De∗
l

are estimated in analogy to (11) and (12), respectively. For trees exceeding

the truncation level k < d, arbitrary edges which fulfill the proximity condition can be

chosen. The copulas corresponding to these edges are selected to be independence copulas.

Thus, no parameters have to be specified for these copulas.

The above procedure yields an R-vine copula specification corresponding to the variables

ust , u
1
t , . . . , u

d
t with distribution function C(ust , u

1
t , . . . , u

d
t ). Using the recursion (2), we can

calculate Cs|1,...,d(u
s
t |u1t , . . . , udt ) iteratively. Thus, we are able to simulate from the predictive

distribution Cs|1,...,d(u
s
t |u1t , . . . , udt ) using the probability integral transform. We simulate v ∼

U (0, 1) and use ǔst := C−1s|1,...,d(v|u1t , . . . , udt ) as a simulated copula data point at location s

and time t. After a back transformation of the copula data ǔst to the level of the originally

modeled data y̌st , point predictions ŷst can be calculated as the mean of the simulated y̌st .

Omitting all arguments, the prediction density cs|1,...,d corresponding to Cs|1,...,d can be

obtained by decomposing its numerator cs,1,...,d and denominator c1,...,d according to Equation

(1) into products of pair-copulas. Since the R-vine copula specification corresponding to

cs,1,...,d differs from the one corresponding to c1,...,d only in terms of the additional edges

e∗1, . . . , e
∗
d−1, it holds j(e∗l ) = s by construction and we truncate at level k < d, we obtain

cs|1,...,d =
∏k

l=1 ci(e∗l ),s;De∗
l

{
Ci(e∗l )|De∗

l
, Cs|De∗

l
; θ̂li(e∗l ),s;De∗

l

, ν̂li(e∗l ),s;De∗
l

}
.

For the mean temperature data we perform the above calculations based on the distance

model specification (7) and on the model specification (10) for the second copula parameters.

Due to our previous investigations on the structure of the R-vine underlying the spatial R-
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vine model (see Table 1) we select a Student-t copula for every edge which is added to the

truncated R-vine. The resulting predictions of the 19 mean temperature time series of the

validation data set are based on 1000 simulations of each time series.

Results. We select the stations Grambek (67) and Arkona (56) as representatives for

a detailed analysis. Their predictions are compared in Web Figure 3. For comparison we

plotted the observed values in black and the prediction in gray. Moreover, the corresponding

95% prediction intervals are indicated by the light gray area around the point predictions.

Whereas the predictions for Grambek are very close to the observed values and the prediction

intervals are very narrow, we observe noticeable deviations for Arkona. There seems to be

more uncertainty in the predictions for Arkona, which is reflected in the comparatively

broad prediction intervals. This seems to be due to the special location of Arkona on

an island in the Baltic Sea, where the temperatures might be exposed to several factors

which are not included in our model. Web Figure 4 highlights the prediction errors for

Grambek (67) and Arkona (56). For Arkona we observe systematic deviations from zero,

which points to a misspecification of the seasonality parameters. A possible reason is that

the latitude of Arkona lies outside the latitude range of our training data set. This first

analysis of predictions from our spatial R-vine model illustrates the prediction capabilities

and limitations of our model. We see a good performance, as long as we predict within

the range of the training data. However, our marginal model is not able to capture the

temperature trends of stations which lie outside of this range.

5. A Spatial Gaussian Model for Daily Mean Temperatures

For comparison we introduce a spatial Gaussian model (SG). As before let Ỹ s
t be a real

valued random variable, which represents the (weighted) mean temperature at a location s

and a time point t and define Ỹ t := (Ỹ 1
t , . . . , Ỹ

d
t )′ ∈ Rd for all t = 1, . . . , N . Then we specify
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a spatial Gaussian model by

Ỹ t = µt + εt, εt
i.i.d.∼ Nd

{
0,Σ(θSG)

}
, t = 1, . . . , N,

where µt := (µ1
t , . . . , µ

d
t )
′ ∈ Rd is a vector of means for all t = 1, . . . , N and Σ(θ) ∈ Rd×d is

a positive definite covariance matrix depending on a parameter vector θSG. The components

of the mean vector µt are modeled similarly to Equation (4). The spatial dependencies are

determined by the covariance matrix Σ(θSG) =
{

Σi,j(θ
SG)
}
i,j=1,...,d

which is based on the

Gaussian variogram model (see for example Gelfand et al., 2010, Chapter 3) γ(h; η, ς, ρ) :=

ς
{

1− exp
(
−h2

ρ2

)}
+ η1(0,∞)(h). Then the variance is given as σ2 = limh→∞ γ(h; η, ς, ρ) =

η+ ς and we model Σi,j(θ
SG) := σ2− γ(Di,j; η, ς, ρ), where θSG = (η, ς, ρ)′. Here Di,j are the

distances between the station pairs (i, j), i, j = 1, . . . , d. We implicitly make a stationarity

assumption. Parameter estimation and prediction for the spatial Gaussian model are outlined

in Web Appendix B.

Comparing the spatial R-vine and the spatial Gaussian model we use the same mean

function, however the distribution of the residuals is modeled differently. In the case of the

spatial R-vine model we utilize skew-t marginals and an R-vine copula compared to Gaussian

marginals and a Gauss copula for the spatial Gaussian model.

6. Model Validation and Comparison

For model comparison we determine (negatively oriented) continuous ranked probability

scores (CRPS) (see Gneiting and Raftery, 2007, Section 4.2). Negatively oriented means

that smaller scores indicate a better fit. The scores will allow for an adequate comparative

model validation. In the following we consider averaged continuous ranked probability scores

(Table 2, CRPS), percentaged model outperformance (Table 2, %) and a new concept called

log-score difference plots (Figure 4). We additionally study a spatial R-vine model allowing

only for Gaussian pair-copulas. It will be called Gaussian spatial R-vine model (GSV).
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Averaged scores. To see which model provides better predictions we compare the aver-

aged continuous ranked probability scores (CRPS) in Table 2, where we average over time.

Consideration of the averaged scores yields a preference for the spatial R-vine models.

[Table 2 about here.]

Percentaged outperformance. Furthermore, Table 2 compares the models based on per-

centaged outperformance. For all stations in the validation data set we count for how

many points in time one model yields a lower score than the other. For more than two

thirds of all stations of the validation data set and for a share of more than 60% of all

temperature predictions under consideration we observe an outperformance of the spatial

R-vine models over the spatial Gaussian model (see SV
%
� SG and GSV

%
� SG). We see, that

the separate modeling of marginal distributions and dependency structure contributes to a

distinct improvement in the model fit and prediction capabilities. Moreover, the modeling of

non-Gaussian dependencies (see SV
%
� GSV) yields further improvement.

Log-score difference plots. It is possible that the model outperformance depends on the

time, i.e. there may be time intervals in which one model yields better results than the

other. To be able to detect such time dependencies we consider Figure 4. We call these

plots log-score difference plots, since they plot the difference of the (negatively oriented)

log-scores of two models against the corresponding time points. The figure shows log-score

difference plots of the continuous ranked probability scores averaged over all 19 stations of

the validation data set, comparing the spatial R-vine model (SV) to the spatial Gaussian

model (SG) and to the Gaussian spatial R-vine model (GSV), respectively. For both plots

we observe similar temporal patterns and time intervals towards the end of each year, where

the models assuming a Gaussian dependency structure consistently yield lower scores than

the spatial R-vine model. Overall consideration of the remainder of the year however shows

preference of the spatial R-vine model over the spatial Gaussian model.
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[Figure 4 about here.]

7. Discussion

An extensive analysis of an ordinary (truncated) R-vine copula fitted to the training data

led to a new model for spatial dependencies, the spatial R-vine model. The investigation

of relationships between Kendall’s τ ’s occurring in the R-vine copula and the associated

distances and elevation differences proposed different tree-wise model specifications for the

first pair-copula parameters. We found that the explanatory power of the elevation differences

is comparatively small, whereas the station distances are able to explain the respective

dependencies to a large extent. Therefore, we selected a model accounting for all distances

between the observation stations, which are associated with the corresponding bivariate

copulas of the R-vine copula specification. Moreover, a model specification for the second

copula parameters needed for the large share of Student-t copulas was applied to reduce

the necessary number of parameters further. This resulted in the modeling of strong tail

dependencies in the lower trees, which distinguishes our spatial R-vine model from classical

Gaussian approaches.

All in all the selected model specifications led to a distinct reduction in the number of

parameters. In the case of our example data set, the 733 parameters needed in the original

truncated R-vine copula model could be replaced by 41 parameters in the spatial R-vine

model. This reduction is also mirrored in the computation time for the full maximum

likelihood estimation in both models. Whereas the estimation for the truncated R-vine took

about 3.7 days, this time could be reduced to 14.3 hours for our spatial R-vine model and

only 28 minutes in the case of the sequential estimation. The computations were performed

on a 2.6 GHz AMD Opteron processor. To get an idea about the scale of the computation

time for longer time periods (N) and for more spatial locations (d), we performed sequential

estimation on subsets of the training data (copula data). Web Figure 7 plots the computation
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time (in minutes) for 14, 18, . . . , 50 and 54 spatial locations and (a) 365, (b) 730 and (c) 1093

points in time, respectively. The black line indicating the average over the different temporal

scales shows an approximately linear trend of the computation time. Therefore we conclude

that sequential estimation is also applicable in much higher dimensions.

For comparison we introduced a spatial Gaussian model, which requires only three param-

eters. Our aim was it to show that our new approach yields better predictions, which will

justify a longer computation time. A validation of the prediction results from both models

in terms of continuous ranked probability scores (CRPS) yielded reasonable accuracy of our

predictions, as long as the location from which we aimed to predict lay within the range of

the training data. Overall consideration of the scores showed an outperformance in 63% of all

considered points in time. Transformation of the maximum log-likelihood of the truncated

and the spatial R-vine model to the residual level on which the spatial Gaussian model is

built, allows model comparison. In particular we obtain maximum log-likelihoods (residual

level) of −42515.23, −46282.46 and −49099.16 for the truncated R-vine model, the spatial R-

vine model and the spatial Gaussian model, respectively. These values show a clear preference

of the spatial R-vine model over the spatial Gaussian model.

With regard to future work on vine copula based models for spatial dependencies an

application of our modeling approach to other types of data sets is desirable. Especially

data sets where asymmetries of bivariate dependencies are observed should be in the focus

of further research. Moreover, further improvement might be achieved by the inclusion of

further covariates. Covariates of interest may be microclimatic variates like urban/rural area,

closeness to body of water or wind force.

8. Supplementary Materials

Web Appendices A and B, referenced in Section 4.4 and Section 5, Web Table 1 referenced

in Section 3, the Web Figures referenced in Sections 2, 4.3, 4.4 and 7, along with a soft-
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ware package implementing the presented methodology are available with this paper at the

Biometrics website on Wiley Online Library.
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Figure 1. The 73 observation stations across Germany with ID and respective short name:
Training data (s = 1, . . . , 54) and validation data (s = 55, . . . , 73).
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Figure 2. Relationship of Fisher z-transformed estimated Kendall’s τ ’s gz(τ̂i,j) with log-
distance ln (Di,j) and log-elevation ln (Ei,j), respectively. The straight gray lines depict the
regression lines corresponding to the particular linear relationship. The horizontal lines help
to identify the level of Kendall’s τ , whereas the vertical lines indicate the three distances of
50, 100 and 200 kilometers and the three elevation differences of 50, 100 and 200 meters,
respectively.
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Figure 3. Plot of logarithmized estimated degree of freedom parameters ln
{
ν̂li(e),j(e);De

}
,

for edges e ∈ El with Student-t copulas, against the respective tree number l = 1, . . . , 10. The

curve given by the model specification (10) using the parameters β̂
SV

ν estimated in Section
4.3 is indicated as a dashed line.
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Figure 4. Log-score difference plots of the averaged continuous ranked probability scores
comparing the spatial R-vine model (SV) and the Gaussian spatial R-vine model (GSV)
to the corresponding averaged spatial Gaussian model (SG) scores (average over all 19
observation stations of the validation data set). Points in time where the first model has
the lower average scores are marked by a black x. Points in time where the other model has
the lower average scores are marked by a gray plus sign.
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Table 1
Summary of the estimated structure of the truncated R-vine under consideration. Besides the numbers of the

different copula families (Φ=Gaussian, t=Student-t, C=Clayton, G=Gumbel, F=Frank pair-copula) selected for each
tree, the minimum and the maximum estimated Kendall’s τ ’s and the averages over the occurring estimated second

copula parameters (ν̂l := 1
#t

∑
e∈Et

l
ν̂li(e),j(e);De

, Etl := {e ∈ El : bi(e),j(e);De is a Student-t copula}) are provided.

tree (l) # Φ # t # C # G # F min
e∈El

{
τ̂ li(e),j(e);De

}
max
e∈El

{
τ̂ li(e),j(e);De

}
ν̂l

1 0 53 0 0 0 0.59 0.81 7.66
2 1 38 1 7 5 -0.15 0.32 9.91
3 1 35 4 6 5 -0.22 0.36 10.84
4 2 23 5 13 7 -0.18 0.30 11.87
5 1 21 9 9 9 -0.15 0.28 11.84
6 5 20 5 12 6 -0.11 0.29 12.97
7 6 15 10 10 6 -0.19 0.24 13.38
8 5 18 4 7 12 -0.10 0.19 14.89
9 7 15 6 8 9 -0.07 0.28 14.37
10 3 10 8 16 7 -0.13 0.25 14.10

Sum 31 248 52 88 66
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Table 2
Comparison of the averaged CRPS (CRPS) of the spatial R-vine model (SV), the Gaussian spatial R-vine model

(GSV) and the spatial Gaussian model (SG) and percentaged outperformance (%) in terms of CRPS over the period

01/01/2010− 12/31/2012 for the observation stations of the validation data set. Here we define A
%
� B as the share

of the points in time for which Approach A is preferred over Approach B in terms of CRPS.

short CRPS %

s name SV GSV SG SV
%
� GSV SV

%
� SG GSV

%
� SG

55 alfe 3.18 3.04 2.59 0.51 0.22 0.11
56 arko 3.17 3.22 3.42 0.61 0.68 0.69
57 arns 2.19 2.16 2.61 0.56 0.81 0.91
58 augs 2.65 2.59 2.56 0.54 0.51 0.52
59 blan 2.94 2.86 2.64 0.51 0.36 0.29
60 bork 2.26 2.37 3.25 0.66 0.94 0.96
61 bvoe 2.38 2.47 2.57 0.67 0.70 0.63
62 buch 2.50 2.51 2.61 0.58 0.65 0.63
63 cosc 2.60 2.68 2.83 0.65 0.69 0.65
64 ebra 2.33 2.31 2.59 0.59 0.74 0.79
65 ellw 3.15 2.94 2.59 0.45 0.24 0.21
66 falk 2.64 2.57 2.61 0.53 0.55 0.57
67 gram 1.80 1.93 2.55 0.72 0.93 0.93
68 grue 1.92 2.01 2.64 0.66 0.92 0.95
69 luec 2.25 2.31 2.57 0.64 0.77 0.78
70 muel 2.14 2.00 3.04 0.45 0.94 0.99
71 ohrz 3.68 3.53 2.59 0.50 0.06 0.02
72 rahd 2.38 2.49 2.65 0.69 0.74 0.66
73 wies 2.72 2.82 2.57 0.66 0.45 0.26

mean 2.57 2.57 2.71 0.59 0.63 0.61


