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A B S T R A C T

Recurrent Neural Networks (RNNs) are rich models for sequential
data. Their capability of approximating any measurable sequence-to-
sequence mapping with arbitrary accuracy and their Turing complete-
ness make them appealing candidates for the processing of all kinds
of sequential data.

This work contributes to learning representations of data with Neural
Networks (NNs), and RNNs in particular, in three ways.

First, we will show how NNs can be augmented with additional calcu-
lations to allow the propagation of not only points, but random vari-
ables summarised by their expectation and variance through an NN.
This generalises Fast Dropout (FD), which we show to be an outstand-
ing regularisation method for RNNs. It further allows us to obtain
approximations of the marginal likelihood and the predictive distri-
bution of NNs, which we will use to implement Variational Bayes (VB)
and related methods for the estimation of parameters.

Second, we will introduce the framework of sequence reduction. It con-
sists of using RNNs in conjunction with pooling operators to reduce
sequences of arbitrary length to fixed-length points, enabling further
analysis.

Third, we will leverage advances in Variational Inference (VI) to
learn latent state representations of sequences. These are obtained
by stochastic Recurrent Networks (STORNs), where a standard RNN

is augmented with stochastic units, making it able to represent
arbitrarily complex distributions. The model is trained by means of
Stochastic Gradient Variational Bayes (SGVB), making it probabilistic
and paving the way for applications such as denoising, missing value
imputation, synthesis and more.

We evaluate the proposed methods on a wide range of experiments,
showing their effectiveness. In several cases, we obtain results which
advance the state of the art.

Z U S A M M E N FA S S U N G

Rekurrente neuronale Netze sind mächtige Modelle für sequenzielle
Daten. Da jede messbare Sequenz zu Sequenz Abbildung mit be-
liebiger Genauigkeit repräsentiert werden kann und rekurrente Netze
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Turing-vollständig sind, sind sie beliebte Kandidaten für viele Arten
von statistischer Sequenzverarbeitung.

Der Beitrag dieser Arbeit sind drei Methoden, neue Repräsentatio-
nen von Daten mittels neuronaler Netze, insbesondere rekurrenter
neuronaler Netze, zu lernen.

Zuerst zeigen wir, wie neuronale Netze erweitert werden können
damit nicht nur Punkte, sondern Zufallsvariablen (dargestellt
durch ihren Erwartungswert und ihre Varianz) durch sie hindurch-
propagiert werden können. Dies erweitert die „Fast Dropout”-
Methode, die–wie wir zeigen werden–rekurrent Netze sehr gut
regularisiert. Es ermöglicht es uns auch, die Randverteilungen und
Vorhersagedichten von neuronalen Netzen anzunähern. Wir werden
dies benutzen um die Gewichte von neuronalen Netzen mittels
„variational Bayes” zu schätzen.

Danach stellen wir Sequenz-Reduktion vor, ein Rahmenwerk um Se-
quenzen beliebiger Länge auf Punkte mit fester Länge abzubilden.
Dazu werden rekurrente Netze und „Pooling”-Operatoren eingesetzt.

Zuletzt nutzen wir Entdeckungen aus dem Gebiet der „variational
inference” aus um latente Sequenzen zu lernen. Dies wird durch
stochastische rekurrente Netze erreicht, welche gewöhnliche
rekurrente Netze sind die mit stochastischen Einheiten erweitert
werden. Dieses Modell wird mittels „Stochastic Gradient Variational
Bayes” trainiert und ist von daher voll probabilistisch. Dies er-
möglicht fortgeschrittene Anwendungen wie Entrauschen, Inferenz
unbeobachteter Größen und Synthese.

Wir werten die vorgeschlagenen Methoden in einer Reihe von Exper-
imenten aus um ihre Effektivität zu untersuchen. In mehreren Fällen
bringen wir den „Stand der Technik” damit vorran.
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Einer immer begabter als du
Du liest
Er lernt

Du lernst
Er forscht

Du forschst
Er findet:

Einer immer noch begabter.

— Robert Gernhardt, „Immer”, 2. Strophe.
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P R E FA C E

The research that I conducted in the recent years is hardly what
I imagined it to be like in the beginning of this journey. The
quickly moving field of machine learning has seen several “micro-
breakthroughs” since I started working at the lab of Biomimetic
robotics and machine learning1. This often made me pursue directions
which were inconceivable only a few months before. Subsequently,
this work is to a certain degree eclectic: its chapters are mostly
connected by the underlying method of Neural Networks (NNs).

In chapter 1, I will introduce machine learning and neural networks Throughout the
thesis, the parts
which have been
adopted from
previous
publications have
been marked with a
note on the margin
like this one.

in general. This serves to line out the basics to understand the work
as well as to introduce notation and the terms used.

In chapter 2, I will present a framework to treat uncertainty in the ac-
tivations of neural networks. This chapter also incorporates previous
work from

• Justin Bayer, Christian Osendorfer, Sebastian Urban, et al. Train-
ing neural networks with implicit variance. In Proceedings of
the 20th International Conference on Neural Information Processing ,
ICONIP-2013, 2013,

• Justin Bayer, Christian Osendorfer, Daniela Korhammer, Nutan
Chen, Sebastian Urban, and Patrick van der Smagt. On fast
dropout and its applicability to recurrent networks. In Pro-
ceedings of the International Conference on Learning Representations,
2014,

• Justin Bayer, Maximilian Karl, Daniela Korhammer, and Patrick
van der Smagt. Fast adaptive weight noise. arXiv preprint
arXiv:1507.05331, 2015.

In chapter 3, I will show how RNNs can be used to reduce sequences
to points. This chapter incorporates previous work from

• J. Bayer, C. Osendorfer, and P. van der Smagt. Learning se-
quence neighbourhood metrics. In ICANN 2012 - 22nd Inter-
national Conference on Artificial Neural Networks, pages 531–538.
Springer, 2012.

In chapter 4, I will apply VI to find latent states of sequential data.
This chapter incorporates work from

• Justin Bayer and Christian Osendorfer. Learning stochastic re-
current networks. arXiv preprint arXiv:1411.7610, 2014.

1 http:\brml.org
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During my work, I have co-authored several further publications
which have not been incorporated into this thesis.

• Jörn Vogel, Justin Bayer, and Patrick van der Smagt. Continuous
robot control using surface electromyography of atrophic mus-
cles. In International Conference on Intelligent Robots and Systems,
2013

• Sebastian Urban, Justin Bayer, Christian Osendorfer, Goran
Westling, Benoni B Edin, and Patrick van der Smagt. Com-
puting grip force and torque from finger nail images using
gaussian processes. In Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pages 4034–4039.
IEEE, 2013

• Christian Osendorfer, Justin Bayer, Sebastian Urban, and Patrick
van der Smagt. Convolutional neural networks learn compact
local image descriptors. In Neural Information Processing, pages
624–630. Springer, 2013a

• Christian Osendorfer, Justin Bayer, Sebastian Urban, and Patrick
van der Smagt. Unsupervised feature learning for low-level lo-
cal image descriptors. arXiv preprint arXiv:1301.2840, 2013b

• Saahil Ognawala and Justin Bayer. Regularizing recurrent
networks-on injected noise and norm-based methods. arXiv
preprint arXiv:1410.5684, 2014

• Nutan Chen, Sebastian Urban, Christian Osendorfer, Justin
Bayer, and Patrick van der Smagt. Estimating finger grip
force from an image of the hand using convolutional neural
networks and gaussian processes. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 3137–3142.
IEEE, 2014

• Dominic Lakatos, Daniel Rüschen, Justin Bayer, Jörn Vogel, and
Patrick van der Smagt. Identification of human limb stiffness
in 5 dof and estimation via emg. In Experimental Robotics, pages
89–99. Springer, 2013
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1
N E U R A L N E T W O R K S

One of the first instructions for the creation of an artificial human-like
being date back to the sixteenth century, when Paracelsus (1537) gave
the recipe for the creation of a homunculus. In the twentieth century,
man greatly lowered his ambitions. McCulloch and Pitts (1943) pro-
posed a mechanism to model the smallest computational unit of the
human, a neuron. In the meantime, Hebb (1952) proposed a hypothe-
sis on how learning in the human brain might work. One of the first
practical “learning machines”1was then built by Rosenblatt (1958), be-
ing able to assign labels to observations–at least if this assignment is
easy. That it is impossible to work for hard problems was then shown
by Minsky and Papert (1969), leading to a period of reduced interest
in neural networks in the western world, while it went on in the USSR
(Ivakhnenko and Lapa, 1965).

Interest increased in the 80’s, partially due to an article in Nature
magazine (Rumelhart et al., 1986), but declined shortly after due to
the apparent superiority of convex models such as support vector
machines from the mid-90’s to the mid-2000’s. Ironically, putting the
word “neural” in the title of a paper submitted to the “Neural infor-
mation processing systems” conference decreased the odds of accep-
tance.

The neural network community has overcome these so-called “win-
ters” of research, where the field had not been able to fulfil the ex-
pectations. Today, they are the methods of choice for a wide range of
tasks.

This thesis aims to contribute to the field of neural networks. In this
introduction, we will recap the most important ideas, notations and
algorithms. We will do so to introduce a common notation, but also
to express the author’s own views on certain concepts which were
developed over the years that it took to create this work.

The text assumes that the reader is familiar with basic probability and
information theory, analysis, linear algebra, computer science and ma-
chine learning concepts. A good introductory text book that will help
to rule out any mis- and non-understandings has been written by
Murphy (2012).

1 At least the first not involving computation performed by humans. Otherwise, see
the works of Legendre (1805); Gauss (1809, 1821).
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2 neural networks

1.1 introduction

In this work, the biological motivation of neural networks will be
mostly ignored. Instead, we want to highlight the perspective on neu-
ral networks as that of differentiable function approximators. It is a
well known and important result that neural networks are universal
in the sense that any function can be approximated to arbitrary accu-
racy, as shown by Kolmogorov (1963); Hecht-Nielsen (1989); Hornik
et al. (1989).

The exact function a neural network implements is determined by
its architecture and a set of adaptable parameters θ ∈ Θ. It is then
applied to some input x to produce some output y. More formally,

f : Θ×X→ Y (1)

where the domain consists of the parameter space Θ, the input space
X and the co-domain of the output space Y.

The architecture (or functional form) is typically designed by an ex-
pert, while the parameters θ are algorithmically found. A discussion
of the former is deferred until Sections 1.2 and 1.3. For performing the
latter, the field of numerical optimisation (Wright and Nocedal (1999)
provides a good textbook) offers a fitting formal framework. Given
we can formulate the desired behaviour of a function as a scalar func-
tion (possibly with the help of additional targets z ∈ Z)

l : Y×Z 7→ R

we can use the composition of f and l to arrive at a complete loss
function L = l ◦ f with

L : Θ×X×Z→ R.

If both f and l are differentiable, gradient-based optimisation can be
used to find good parameters θ after an application of the chain rule:

∂L

∂θ
=
∂L

∂f

∂f

∂θ
.

This makes neural networks a versatile tool, since we can define the
desired characteristics of a function in terms of a computable qual-
ity criterion. In Section 1.4 we will discuss a few methods to obtain
probabilistically inspired loss functions.

In machine learning we are mostly interested in approximating a pro-
cess from which we have sampled a data set.

Two typical tasks are that of supervised learning and unsupervised learn-
ing. In supervised learning we are given a data set of the form

Dtrain = {(ix, iz)}Ni=1
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where ix ∈ X and iz ∈ Z. The goal is then to obtain a “machine” that
is able to find those z ∈ Z to which a given x ∈ X relates. Often, this
relation will be a function of the form f : X → Z. Notable exceptions
are formed by inverses of surjective functions; a popular example is
that of inverse kinematics of redundant robots (cf. (Bishop et al., 2006,
p. 272 ff.)).

In unsupervised learning, the data set in question is of the form

D = {ix}Ni=1

where ix ∈ X. The tasks belonging to this category are more versatile:
clustering, density estimation or feature extraction. Typical applica-
tions include pre-processing for supervised tasks, data analysis, de-
noising, imputation of missing values and more. In the remainder of
the section, we will consider the training samples to be of the form x,
even though the discussion holds for the supervised case of (x, z).

Example: Linear model and sum of squares

A widely used loss measure for regression is that of the sum of
squares or Mean Squared Error (MSE). In the case of two dimen-
sional inputs and one dimensional outputs we have X = R2,Y =

Z = R. Given we are using a linear model

y = xTw + b,

the set of parameters will consist of a single vector and scalar

θ = {w,b}.

The MSE can be written as

l(x, z) = ||z − y||22,

where || · ||2 denotes the Frobenius norm of a vector. Given a data
set D = {(ix, iz)}Ni=1 the loss for the whole data set is then

L̂linear =

N∑
i=1

||ixTw + b− iz||22.

All that is left is to find the derivatives of the loss with respect to
the parameters, ∂L∂w and ∂L

∂b , and subsequently use an off-the-shelf
optimisation algorithm. Note that this example has a pure illus-
tratory purpose. More efficient algorithms for the least squares
problem exist (Björck, 1996). We will cover the motivation of the
MSE in Section 1.4.1.



4 neural networks

1.1.1 Generalisation: Learning is not just Optimisation

A common simplification among the mathematically trainedIn machine learning,
we are interested in

the loss on future
data; the loss on the

training set serves
as a proxy for that.

approaching machine learning for the first time is to reduce machine
learning to optimisation. This is only true to some extent. In machine
learning we are given a finite sample from the set of all possible data
points. From this restricted set, hence called the “training set”, we
need to generalise: We not only need to have good performance on
the training set but also on future, unseen data.

More formally, let the training samples be distributed according to
the unknown data generating distribution, x ∼ pD. While optimisation is
concerned with the minimisation of the training loss

L̂ =

N∑
i=1

L(θ, ix),

learning constitutes to the minimisation of the generalisation loss

L̃ = E [L(θ, x)]x∼pD
.

This shows that excellent performance (resulting from a good optimi-
sation procedure) on the training set is not necessarily an indicator of
good generalisation loss. In practice, one often runs into the problem
of overfitting. This happens when the model becomes sensitive to phe-
nomena only within the training set: it mistakes noise as a regularity.

A related (and not necessarily mutually exclusive) problem is that of
underfitting, where the model is not able to capture the correlations of
the data.

It is not clear when exactly during optimisation overfitting and un-
derfitting occur, since both can only be tested by evaluation of the
loss on a set of held-out samples in comparison to the training loss
L̂. This test will, however, merely reflect the overall effect of over-
/underfitting. It is quite possible that both occur to different degrees
in input and/or parameter space. Yet, underfitting is generally dealt
with by choosing a more ”powerful“ model f or add additional input
coordinates, so called “features”.

Overfitting can be limited to some extent by regularisation. The idea is
that we can use a loss J instead of L̂ which is believed to be a better
“proxy” for L̃. Learning is then done by the optimisation of J = L̂+R.
A common example is that of weight decay, where the Frobenius norm
of the parameters is penalised. We will pay more attention to that in
Section 1.4.
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Example: Ridge Regression

In ridge regression, a linear model is used where the parame-
ters are penalised according to their squares. This is often called
“weight decay” in the context of neural networks. Continuing
with the previous example, the resulting regulariser is as follows:

Rwd(θ) = λ||w||22.

where λ ∈ R constitutes a trade off between regularisation and
training loss. Thus, the overall regularised loss is

Jridge = L̂linear +Rwd

=

N∑
i=1

||ixTw + b− iz||22 + λ||w||22.

This regularisation method will be justified in Section 1.4.1.

In the following, we will review feed-forward and recurrent neural
networks as two of the most common neural computation architec-
tures, and thus choices for f.

1.2 feed forward neural networks

In this work we will stick to the most common architecture of feed
forward neural networks at the time of writing. We are especially
concerned with that of a chain of K layers, each implementing a part
of the computation.

1.2.1 Forward propagation: Producing the Output of a Neural Network

Each of these layer functions is implemented as an affine transforma- We consider the case
of feed-forward
neural networks that
are a stack of affine
transformations
followed by a
non-linear transfer
function applied
element-wise.

tion of its input and a nonlinear transfer function, which is applied
element-wise:

a(k) = y(k−1)W(k) + b(k)

y(k) = σ(k)(a(k)),

where we set y(0) = x. Furthermore, W ∈ Rκ
(k)×ω(k)

, b ∈ Rω
(k)

and
consequently x ∈ Rκ

(k)
. The transfer function follows σ(k) : Rω

(k) →
Rω

(k)
, but often it will just be a scalar function σ(k) : R→ R. In that

case, by writing σ(k)(a) we mean [σ(k)(a0),σ(k)(a1), . . . ,σ(k)(aω(k))].
We call a the pre-synpatic and y the post-synaptic activations. The
process is show in Figure 1.
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y(0)

a(1)

y(1)

a(2)

y(2)

a(3)

y(3)

y(0)W(1) + b(1)

σ(1)(a(1))

y(1)W(2) + b(2)

σ(2)(a(2))

y(2)W(3) + b(3)

σ(3)(a(3))

Figure 1: Illustration of a feed forward network with the notation intro-
duced in this section. The four layers of nodes are called the input
layer (black), hidden layers (gray) and output layer (white). The
hidden layer and output layer nodes are divided horizontally into
pre-synaptic activations a and post-synaptic activations y. Between
each of the layers, the affine transformation defined by W and b is
applied.

We will also collect the parameters of a single layer into a common
set: θ(k) = {W(k), b(k)}. Note that θ = θ(K) ∪ θ(K−1) ∪ . . .∪ θ(1). Often
we will omit the layer indices to relax the notation.

Producing an output from a given neural network f is then done
by performing a loop over all layers in the architecture, passing the
results of the incoming layer into the outgoing one.

1.2.2 Back-propagation: Calculating the Gradients

The work of Rumelhart et al. (1986) is arguably the most cited articleThe true origins of
Back-propagation go

back further than
most research papers

recognise.

when it comes to perform gradient-based learning of the weights of
neural networks. This lets numerous efforts by other researchers come
short however, as techniques similar to back-propagation had been
explored theoretically and practically before that. E.g. Bryson and
Denham (1962); Dreyfus (1973); Kelley (1960); Dreyfus (1962) exploit
steepest descent techniques in the context of the calculus of variations
(Euler, 1774) with applications to trajectory optimisation. Apparently,
Werbos (1981) was the first to explicitly employ back-propagation-
like calculations for NNs, extending the work of his thesis (Werbos,
1974). He was apparently not aware of the previous work of Linnain-
maa (1970), which included FORTRAN code. We refer the interested
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reader to the survey article by Schmidhuber (2015) for a rigorous in-
vestigation.

Since we are interested in the minimisation of the loss function L, we Back-propagation
can be seen as the
combination of the
chain rule and
dynamic
programming.

need to find its derivatives.

In practice, automatic differentiation with tools such as Theano
(Bergstra et al., 2010) is advisable, as the manual differentiation and
its implementation can be quite error prone.

As L = l ◦ f, we already concluded that ∂L∂θ = ∂L
∂f
∂f
∂θ . Finding the

first factor, ∂L∂f is specific to the loss function and is depending on the
task at hand. We will only consider the second factor, which is the
gradient of our model.

Back-propagation is a combination of dynamic programming (Bell-
man, 1956) and the chain rule (L’Hôpital, 1696; Leibniz, 1676). The
saving of computational overhead becomes apparent when consider-
ing the complete unrolled derivative for a specific parameter set θ(k):

∂f

∂θ(k)
=

∂f

∂y(K)

∂y(K)

∂y(k)

∂y(k)

∂θ(k)

=
∂f

∂y(K)

∂y(K)

∂y(K−1)

∂y(K−1)

∂y(K−2)
. . .
∂y(k+1)

∂y(k)

∂y(k)

∂θ(k)

=
∂f

∂y(K)

K∏
j=k+1

∂y(j)

∂y(j−1)

∂y(k)

∂θ(k)

We can see that to compute the gradients with respect to θ(k), we can
reuse a lot of computation from the gradients of θ(j), j > k. That is
because

∂y(K)

∂y(k)
=

∂y(K)

∂y(k+1)

∂y(k+1)

∂y(k)
,

which lets us incrementally compute the gradients by moving back-
wards through the network–hence the term “back-propagation”.

Another opportunity for saving computations comes from reusing
calculation from the forward pass. Let us inspect the derivative of the
output of some layer y(k) with respect to its weight matrix W(k). We
omit the super indices here.

∂y
∂W

=
∂y
∂a

∂a
∂W

=
∂σ(a)
∂a

∂a
∂W

=
∂σ(xW + b)
∂xW + b

∂xW + b
∂W

= σ ′(xW + b)xT .
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Calculating the derivative of a weight vector just requires the dot
product of a local error signal with the input to the layer. Often, this
local error signal is depicted as

δ(k) :=
∂L

∂y(K)

∂y(K)

∂y(k)

∂y(k)

∂a(k)
.

It follows that ∂L
∂W(k) = δ(k)(x(k))T .

We will omit a discussion for the bias parameter b(k); a straightfor-
ward derivation can be performed by absorbing it into the weight
matrix W and extending the input x with a corresponding column
always set to 1.

1.3 recurrent neural networks

In the context of recurrent networks, we will encounter data setsRNNs give the ability
of universal

computation to
neural networks, in

contrast to that of
universal

approximation for
feed-forward neural

networks.

where the individual samples are not part of a vector space, but in-
stead from the set of non-zero length sequences over that space, de-
noted by (Rκ)+. A single sample then consists of a sequence x1:T of
length T . To denote a single time step t, we write xt. A single compo-
nent at a single time step is denoted as xt,d with d ∈ Rκ.

1.3.1 Forward Propagation

A Recurrent Neural Network (RNN) can be perceived as a temporal
extension of a standard neural network. The hidden layers can then
“forward” information in time, which is typically done by letting the
pre-synaptic activation at time step t for layer k depend on the layer
at the same level at the previous time step, and the previous layer at
the same time step:

a(k)t = f(k)(y(k)
t−1, y(k−1)

t ),

while the calculation of the post-synaptic is similar to that of feed-
forward networks:

y(k)
t = σ(k)(a(k)t ).

The most common form of an RNN is that of a so called simple Recur-
rent Neural Network (sRNN) (Elman, 1990), where

a(k)t = y(k−1)
t W(k)

in + y(k)
t−1W(k)

rec + b(k), (2)

with the last layer not using recurrence:

a(K)t = y(K−1)
t W(K)

in b(K).
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Figure 2: Illustration of an RNN. Compare Figure 1. We have two hidden
layers, which have been unfolded in time from left to right. We
do not show the operators along the arrows to keep the diagram
uncluttered.

The set of parameters for a specific layer is then θ(k) =

{W(k)
rec , W(k)

in , b(k)}.

The calculations are illustrated in Figure 2.

It should be noted that even this very simple form is universal. It
has been shown that a Turing machine can be implemented (Siegel-
mann and Sontag, 1991) and any measurable sequence to sequence
mapping can be approximated to arbitrary accuracy under mild con-
ditions (Hammer, 2000).

1.3.2 Back-propagation through Time

As with feed-forward networks, the training algorithm of choice is
generally gradient-based optimisation in conjunction with Backprop-
agation through Time (BPTT) Werbos (1990), although a wide range of
alternatives is available (cf. (Pearlmutter, 1989; Williams and Zipser,
1989)). Notable and successful exceptions exist, however. The echo
state approach (Jaeger and Haas, 2004) skips learning the recurrent
connections of RNNs altogether, making use of parameter adaption
only for the hidden to output weight matrix Wout; in the case of
a squared error, this can be performed extremely efficient via least-
squares. Schmidhuber et al. (2007) take this one step further: the cal-
culation of gradients is side stepped by using evolution strategies for
optimisation, while relying on least-squares for Wout as well.
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For gradient-based learning, we require the derivatives of the loss
with respect to the individual parameters, i.e.

∂L

∂θ(k)
.

This is distinct from feed-forward neural networks since the same
parameter will play a role at different time steps, since it is “reused”
or “shared”. We will revisit the concept of δ(k) here, but will need to
add the time index:

δ
(k)
t :=

∂L

∂a(k)t
.

In the case of a network with only a single hidden layer sRNN, the
derivatives for the recurrent weight matrix are given by

∂L

∂W(k)
rec

=

T∑
t=1

δ
(k)
t

∂a(k)t
∂W(k)

rec

=

T∑
t=1

δ
(k)
t σ ′(k)(a(k)t )(y(k)

t−1)
T ,

while the derivative for the feed forward connection is equivalent to
that of the feed-forward network:

∂L

∂W(k)
in

=

T∑
t=1

δ
(k)
t

∂a(k)t
∂W(k)

in

,

=

T∑
t=1

δ
(k)
t σ ′(k)(a(k)t )(y(k−1)

t )T .

All that remains is to find an expression for δ(k)t . Similar to feed for-
ward networks, it turns out that this quantity can be calculated effi-
ciently via dynamic programming and the chain rule:

δ
(k)
t :=

∂L

∂a(k)t

=
∂L

∂y(k)
t

∂y(k)
t

∂a(k)t

=

[
∂L

∂y(k+1)
t

∂y(k+1)
t

∂a(k+1)t

∂a(k+1)t

∂y(k)
t

+
∂L

∂y(k)
t+1

∂y(k)
t+1

∂a(k)t+1

∂a(k)t+1
∂y(k)
t

]
∂y(k)
t

∂a(k)t

=

[
δ
(k+1)
t

∂a(k+1)t

∂y(k)
t

+ δ
(k)
t+1

∂a(k)t+1
∂y(k)
t

]
∂y(k)
t

∂a(k)t

where δ(k)T+1 = 0.
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1.3.3 The Vanishing and Exploding Gradient Problems

The vanishing and exploding gradient problems are fundamental to RNNs are hard to
train, but thankfully
the research
community has
identified the
vanishing and
exploding gradient
problems as the
major issues.

the training of deep hierarchies of non-linear layers with numerical
optimisation. It was first identified by Hochreiter (1991) (and later by
Bengio et al. (1994) leading to a joint paper (Hochreiter et al., 2001)).
Its theoretical basis was refined by Pascanu et al. (2012).

The key point is that when an error signal travels through many non-
linear transformations, its gradient will either blow up exponentially
fast or vanish exponentially fast–hence confronting the practitioner
with learning procedures that inhibit unstable behaviour (as updates
of the parameters are calculated from the gradients of the model) or
make no progress at all on the training objective.

Here, we will review both problems in line with Pascanu et al. (2012),
focusing on RNNs.

We have shown in Section 1.3.2 that the error terms δt of an RNN can
be calculated in a recursive manner. Here we will inspect the terms
from a different perspective to illustrate the problems of the vanishing
and exploding gradients. Consider only the flow of error through the
recurrent connections, i.e. assume that there is no error except at the
last time step:

δt = δt+1
∂at+1
∂yt

∂yt
∂at

= δt+1
∂at+1
∂at

= δT
∂aT
∂aT−1

∂aT−1
∂aT−2

. . .
∂at+1
∂at

= δT

T∏
k=t+1

∂ak
∂ak−1

. (3)

At this point we already note that the gradients contain the product
of T − t Jacobians. The exact form of each is as follows:

∂at
∂at−1

= diag(σ ′(at−1))WT
rec.

Putting this back into Equation (3), we arrive at

δt = δT

T∏
k=t+1

diag(σ ′(ak−1))WT
rec.

In the special case of a linear transfer function, it can be seen that this
reduces to the power of the recurrent weight matrix:

δT

T∏
k=t+1

diag(id ′(ak−1))WT
rec = δT

T∏
k=t+1

WT
rec

= δTWT
rec
K
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Pascanu et al. (2012) note that the norm of δt i) might explode, ifConditions when the
training of RNNs

fails have been
established based on

the Eigenvalues of
the recurrent weight

matrix and the
derivatives of the

transfer functions
used.

the spectral radius of the recurrent weight matrix exceeds 1, i.e.
|ρ(Wrec)| > 1; ii) will vanish if it is below 1: |ρ(Wrec)| < 1. Note that
this is a necessary condition in the first and a sufficient condition in
the latter case.

Let σ ′(ξ) < ψ∀ξ. For more general transfer functions, Pascanu et al.
(2012) show that the necessary condition for the gradients to explode
is that |ρ(Wrec)| > 1/ψ and the sufficient condition for the gradients
to vanish is that |ρ(Wrec)| < 1/ψ.

These insights directly lead to a practical algorithm for the initial-Quite a few
heuristics have been
proposed to alleviate

the vanishing and
exploding gradient

problems for sRNNs.

isation of the recurrent weight matrix (Sutskever et al., 2013). If it
is assured that the spectral radius of the recurrent weight matrix is
“reasonably” near 1/ψ, the gradients will neither vanish nor explode
in the beginning of training. Given an already initialised recurrent
weight matrix W̃rec, we can perform an Eigendecomposition to obtain
W̃rec = UΛU

T , where Λ is a diagonal matrix with the Eigenvalues of
W̃rec on the diagonal. Given the spectral radius ρ (which is the ab-
solute value of the largest Eigenvalue) we can recompose our final
recurrent weight matrix as

Wrec = U
T (Λ

1

cψρ
)U.

It is recommended by Sutskever et al. (2013) to use c = 1.1, as it leads
to slightly richer dynamics and better learning performance.

Since this only affects the beginning of learning, Pascanu et al. (2012)
advocate the re-normalisation of the gradient. Whenever the length
of the gradient of the loss ||∂L∂θ ||2 exceeds a certain threshold τ, the
gradient is projected to the length of τ.

Pascanu et al. (2012) also explore the vanishing and exploding gra-The vanishing and
exploding gradient

problems manifest as
“plains” and “cliffs”

in the error
landscape.

dients from a geometric perspective. In a pathological example, it is
possible to construct an error landscape which consists of cliffs of
exploding gradients and plains of vanishing gradient. A simple re-
current model without any input of the following form is used:

xt = σ(wxt−1 + b),

with xt,w,b ∈ R and h0 = 0. The objective is the distance from some
target value at the fiftieth time step:

L = (x50 − 0.7)2.

The error landscape is visualised in Figure 3. It is apparent that even
this simple problem leads to flat and steep regions which make learn-
ing difficult.
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Figure 3: Illustration of vanishing gradient plains and exploding gradient
cliffs in a simple recurrent model. The global minimum is con-
tained in a ridge with a cliff of exploding gradients to one side and
a smooth, concave ascent on the other. At both sides are plains of
vanishing gradients. Note that taking a gradient step with a fixed
step size from “within” the cliff would lead to an extreme jump
in parameter space, catapulting the network into the flat region on
the other side of the minimum. The loss is shown on a logarithmic
scale on the z-axis.

1.3.4 Long Short-Term Memory

The problem of the vanishing gradient rendered learning of recurrent LSTM is a very
effective mean of
dealing with the
learning of RNNs by
making use of a
special network
topology.

networks largely impractical on tasks with long term dependencies.
Before the discovery by Martens and Sutskever (2011) that Hessian-
free optimisation is capable of dealing with these challenges to some
extent as well, LSTM (Hochreiter and Schmidhuber, 1997) was the
method of choice for dealing with time lags spanning hundreds or
thousands of steps, for which it was designed.

LSTM nevertheless is still the method underpinning most successful
applications of recurrent networks on real world problems, despite of
recent successes to train “LSTM-free” RNNs on problems with long
term dependencies (Sutskever et al., 2013; Martens and Sutskever,
2011). It constitutes the state of the art in speech recognition, hand-
writing recognition and statistical machine translation (Graves et al.,
2008, 2013; Sutskever et al., 2014).

LSTM is typically referred to as a special “cell”. We will employ the
notion of treating LSTM as a special transfer function, which maintains
a state over time 2.

2 Strictly speaking, it is not a transfer function anymore then.
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We define φ(χ, v) = vσ(χ) with σ being the sigmoid function (1 +

e−ξ)−1 ranging from 0 to 1 as a gating function. Further, let the states
of the cell be a sequence (s1, s2, . . . , sT ), st ∈ Rγ.

A nice metaphor for these gating function is that of a differentiableLSTM can be
perceived as a
differentiable

hardware register
with “load”, “save”

and “reset”
operations.

if statement, where c is the condition and v is the value. If χ is true
(χ � 0), v will be passed on; if it is false (χ � 0), it will not. This re-
semblance has also been exploited to implement differentiable push-
down automatons (Das et al., 1992), control of memory (Schmidhuber,
1992) and Turing machines more recently (Graves et al., 2014).

Given that the size of the hidden layer is γ, LSTM and the pre-synaptic
activation to the layer is denoted by a ∈ R4γ with its post-synaptic
y ∈ Rγ.

[ξt ιt νt ot] = at

st = φ(ιt, ξt)︸ ︷︷ ︸
input gate

+φ(νt, st−1)︸ ︷︷ ︸
forget gate

yt = σ(φ(ot, st)︸ ︷︷ ︸
output gate

)

The computation is illustrated in Figure 4.

We note that all the operations are differentiable, which is why
gradient-based learning can be employed. A part of the derivatives
is particularly interesting: that of the states st. Within the cell, the
gradient of a state with respect to its immediate predecessor, ∂st

∂st−1
,

is the only part where gradients flow through time. The exact form is

∂st

∂st−1
=
∂φ(νt, st−1)
∂st−1

=
∂σ(νt)st−1
∂st−1

= st−1
∂σ(νt)

∂st−1︸ ︷︷ ︸
=0

+
∂st−1
∂st−1︸ ︷︷ ︸
=1

σ(νt)

= σ(νt),

and thus with t ′ > t

∂st ′

∂st
=

t ′−t∏
k=1

σ(νt+k).

While this quantity can certainly approach zero, there is no intrin-
sic factor in it (i.e. some weight) which will drive the derivative to
zero for very large time lags, i.e. t ′ � t. This part is also safe from
exploding, since it is bounded by 1 as each of the factors is due to
the activation function σ. Nevertheless, the whole gradients of the
network might explode due to the other parts of the total derivative
∂L
∂θ .
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Figure 4: Illustration of the LSTM cell. The computation flows from the bot-
tom to the top. All edges depict connections, with the dashed one
being recurrent, i.e. delayed by one time step. The diamonds in-
dicate multiplicative interactions. Edges labelled with σ indicate
that a transfer function is applied during feeding that connection
forward.

It should be noted that the development of LSTM was incremental. The
first version did only include the input and output gate. The second
version, which is the one we present here, introduced the forget gate
(Gers et al., 2000). Additional “peephole” connections were added by
Gers et al. (2003). Interestingly, additional variations were introduced
many years later by Bahdanau et al. (2014). The insight that many dif-
ferent architectures work well inspired evolving alternative memory
cells (Bayer et al., 2009). However, a recent study (Greff et al., 2015)
shows that the version presented here is not performing significantly
worse than these arguably more complex extensions.

1.3.5 Bidirectional Recurrent Neural Networks

If we consider a supervised task such as transcribing an audio record- RNNs can be
extended to take
future information
into account by
making use of
biRNNs.

ing with a sequence of phonemes, the property of RNNs to only de-
pend on the past might prove problematic: information from the
future might lead to drastic improvements in performance. Schus-
ter (1999) proposed an architectural extensions, the so-called Bidirec-
tional Recurrent Neural Networks (biRNNs). The method has proven
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so effective in the past, that it is part of many successful RNN applica-
tions, such as the work by Graves et al. (2013).

The idea is to use one RNN to scan the input from the beginning
to the end, and use another one to scan it from the end to the
beginning. This is reflected by an additional set of parameters

←θ = {←W(k)
in ,←W(k)

rec ,←b(k)}Ki=1, which is used to compute the
reverse layer activations:

←a(k)t = ẏ(k−1)
t ←W(k)

in +←y(k)
t+1←W(k)

rec +←b(k),

←y(k)
t = σ(k)(←a(k)t ),

which are then combined with the forward layer activations:

ẏt = ←yt + yt.

Hence, the information of the two directions is joined at each layer.
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1.4 loss functions

A data set can be summarised trivially by its empirical distribution: There is a multitude
of training methods
available for neural
networks.pemp(x) ∝

1

N

N∑
i=1

I(x = ix),

where

I(a) = 1 iff a else 0

is the indicator function. It puts all its probability mass exactly at the
locations of the points from the data set. While this distribution is ef-
ficient to calculate simple statistics such as the mean or the variance,
more complicated schemes of inference are hard. E.g. we cannot an-
swer complex queries about the true distribution underlying the data,
such as the probability of a previously unobserved event occurring.

To move from the empirical distribution to a distribution which is
practical, we will often need to chose an inductive bias, which is an
axiomatic way of picking a model or, as presented in this section, an
estimator.

A well known inductive bias is that of Occam’s razor: “Non sunt
multiplicanda entia sine necessitate.”3, which states that the simplest
plausible solution should be preferred. Of course, “simple” and “plau-
sible” have to be well defined and translated into formulas.

In this section, we will summarise a few principled approaches to
infer hidden variables via differentiable loss functions. These can be
either unobserved variables or the parameters of models at hand.

These will stem from the frequentist as well as from the Bayesian ap-
proach. In the case of the former (Section 1.4.1), the randomness is
part of the data and point estimates are found. In the latter case (Sec-
tions 1.4.2 and 1.4.3), the uncertainty is reflected in the variables and
we will arrive at probability distributions over them.

Other inductive biases, such as maximum margin are not covered
here (see e.g. the standard textbook by Vapnik (2000).)

1.4.1 Maximum Likelihood and Maximum a Posteriori

Given a data set Dtrain and a model p parameterised by θ, ML finds ML and MAP are the
most simple and
thus most popular
choices among
practitioners.

the parameters that make the observed data most likely:

argmaxθp(Dtrain|θ).

3 The author’s own translation is: “Verkompliziere Dinge nicht ohne Notwendigkeit.”
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Often, we will look at several independent training samples, which
lets the probability factorise:

p(Dtrain|θ) =

N∏
i=1

p(ix).

It is then convenient to instead minimise the negative log-likelihood
of the data:

Lml(θ) = −

N∑
i=1

logp(ix|θ),

as the product turns into a sum of independent terms. This method
is termed ML.

The exact choice of the likelihood function p is depending on the data
at hand, and usually set by design. In the continuous domain, like-
lihood functions are typically used to represent measurement errors.
Often, the assumption of a Gaussian measurement error is valid, lead-
ing to a Gaussian likelihood function. Fat-tailed distributions such as
the Laplace or Student’s t are typically more robust towards outliers.
If the data is strictly positive, a Gamma distribution is adequate. A
skewed normal can prove sensible if the measurement errors are not
symmetric. For discrete data, the Bernoulli, Categorical and Multi-
noulli as well as combinations thereof are typically chosen. For an
overview we refer the reader to Murphy (2012).

A drawback of ML is that it is very likely to overfit: given a model
of sufficient expressive capabilities, it will converge to the empirical
distribution. In fact, maximum likelihood learning equates to min-
imising the KL-divergence between the model and the empirical dis-
tribution (Barber, 2012).

A partial solution is to resort to maximum a posteriori: a prior belief is
formulated on the parameters in the form of a density function over
the parameter space:

argmaxθp(Dtrain|θ)p(θ)

which, after taking the log, results in an additional regularisation
term:

Lmap(θ) = − logp(θ) −
N∑
i=1

logp(ix|θ)

= Lml +Rmap.

Note that the regularisation term is not part of the sum. Therefore,
in the limit of infinite data N → ∞, maximum a posteriori will con-
verge to the maximum likelihood solution. Nevertheless, it can be



1.4 loss functions 19

shown that the choice of prior and parameterisation are intervened,
rendering the method not invariant to reparameterisation. Further, it
does not supply a measure of uncertainty. Also, the mode of a distri-
bution is not necessarily a representative summary of a distribution.
For further details, see the textbook by Murphy (2012).

1.4.2 Bayesian Learning

A common criticism of the frequentist approach resulting in maxi- Bayesian methods
overcome several
problems of ML and
MAP, at the cost of
intractability and
the resulting need
for approximations.

mum likelihood and maximum a posteriori is that information about
the uncertainty in the estimates of the parameters are not part of the
model. The Bayesian approach thus constitutes in finding a distribu-
tion over the parameters by means of Bayes’ theorem:

p(θ|Dtrain) =
p(Dtrain|θ)p(θ)

p(Dtrain)
. (4)

A related concept is that of the marginal likelihood:

p(x) =
∫
θ

p(x|θ)p(θ)dθ (5)

This quantity is not a probability (as it is not normalised), but comes
close to a loss function in Bayesian learning.

Predictions of some unknown quantity z, are then performed by
marginalising out the posterior belief in the parameters:

p(z|Dtrain, x) =
∫
θ

p(z|x, θ)p(θ|Dtrain)dθ,

which is commonly referred to as the predictive distribution. Note that
this quantity is normalised, as it is a convex combination of distribu-
tions.

Due to the multiplication of two densities in Eq. (4) and the subse-
quent re-normalisation, Bayesian learning can be solved exactly in
closed form only in the most trivial cases. The two most popular ap-
proximation schemes are sampling based approaches on the one hand
and variational Bayes on the other. While the former is asymptotically
correct, it is computationally demanding as it requires sampling from
a Markov chain; it will not be covered here and the interested reader
is referred to the work of Neal (1993). The latter is more efficient but
only provides an “incorrect” solution in form of an upper bound on
the negative log-likelihood. We will pay special attention to it in the
next section.
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1.4.3 Variational Inference or Minimum Description Length

We have seen that in Bayesian learning the posterior distribution overBy means of VI,
Bayesian learning

can be approximated
via optimisation.

the hidden variables given the observations is proportional to the
product of the prior and the likelihood:

p(θ|Dtrain) ∝ p(Dtrain|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

.

To obtain a proper distribution, we need to re-normalise it, which is
done by dividing by the evidence

∫
θ p(Dtrain|θ)p(θ) = p(Dtrain).

If the prior is conjugate to the likelihood, calculation of the posterior is
straightforward (Murphy, 2012). This is restricted to priors and likeli-
hoods from the exponential family however and thus not applicable
in the general case.

Instead, we can introduce an approximation of q(z) ≈ p(z|x). It turns
out that an upper bound on the negative log likelihood can be ob-
tained (which we will show in Section 1.4.3.1):

− logp(x) 6 −E [logp(x|z)]q + KL[q(z)||p(z)] (6)

=: Lmdl

This loss function has several interpretations. In physics, it is typically
referred to as the variational free energy. It is also a central component
of the expectation maximisation algorithm (Dempster et al., 1977).

A perspective related to compression is that of the “bits-back” argu-
ment by Hinton and Van Camp (1993). For that, note that each prob-
ability distribution p induces an optimal code, of which the length of
the data is − logp(x) measured in nats4 (Grünwald, 2007).

Consider a sender and a receiver, where the former aims to send the
data x to the latter. Imagine that the sender has obtained a distri-
bution q(θ) over the parameters of the model to compress the data.
It now sends it to the receiver by making use of p(θ) as a code. If
the receiver draws the model from p, the sender will have to send a
correction to make it a sample from q instead. This is given by the
KL-divergence of p from q measured in nats–the second term on the
RHS of Eq. 6.

After having received the correct model, the receiver will make errors
if he tries to recover x from the model in expectation. These errors are
exactly the first term on the RHS, measured in nats as well. Therefore,
the variational upper bound directly minimises the number of nats
needed to compress the data.

This interpretation is also known as two-part Minimum Description
Length (MDL) (Grünwald, 2007).

4 The equivalent of bits, but with a base of e instead of 2.
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1.4.3.1 Derivation of the Variational Bound

Consider the differential Kullback-Leibler divergence of a distribu-
tion p from a distribution q:

KL[q(z)||p(z)] =

∫
z

q(z) log
q(z)

p(z)
dz, (7)

which measures the amount of excess nats needed to encode samples
from q with the optimal code for p instead of q.

We will now apply Bayes theorem to the RHS of Eq. (7) yielding

KL[q(z)||p(z)] =
∫

z
q(z) log

q(z)
p(z)

dz

=

∫
z
q(z) log

q(z)p(x|z)
p(z|x)p(x)

dz

= KL[q(z)||p(z|x)] +
∫

z
q(z) logp(x|z)dz

− logp(x)

where we have made use of the fact that p(x) is independent of z to
remove the sum. Rearranging yields that the negative marginal log-
likelihood can be decomposed and bounded as

− logp(x) = −E [logp(x|z)]q + KL[q(z)||p(z)]

− KL[q(z)||p(z|x)]

⇒ − logp(x) 6 −E [logp(x|z)]q + KL[q(z)||p(z)] (8)

= Lmdl,

where we have exploited that KL[q||p] > 0 ∀q,p.

The variational lower bound is often substantially easier to optimise
than the marginal likelihood if the prior p(z) and the variational ap-
proximation q(z) are of an adequate form. More specifically, i) the KL
divergence between the two and ii) the expected data likelihood (the
first term of the RHS of Eq. (8)) need to be tractable. In the case of the
latter, this can be approximated via Monte Carlo if we can efficiently
sample from q(z).

1.4.3.2 Stochastic Gradient Variational Bayes

SGVB was introduced independently by Rezende et al. (2014) and The text in this
section has appeared
in parts previously
in Bayer and
Osendorfer (2014).

Kingma and Welling (2013). Along, Deep Latent Gaussian Models
(DLGMs) and Variational Auto Encoders (VAEs) where proposed– es-
sentially deep neural networks with stochastic units trained to repre-
sent a data set in an unsupervised fashion.

The methods belong to a growing body of work where so-called recog-
nition or inference models q(x|z) are used as a variational approxima-
tion of the posterior over the latent variables given the data (see e.g.
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(Hinton et al., 1995; Mnih and Gregor, 2014; Bornschein and Bengio,
2014)):

− logp(x) = − log
∫

z
p(x|z)p(z)dz

= − log
∫

z

q(z|x)
q(z|x)

p(x|z)p(z)dz

6 KL[q(z|x)||p(z)] − Ez∼q(z|x)[logp(x|z)]

=: Lsgvb.

Here, we have made use of Jensen’s inequality to obtain the varia-
tional upper bound.

Interestingly, we are “allowed to look at the data”, as q depends on
x. However, specifying q (by encoding it with the prior) needs to cost
less (as measured by the KL-divergence) than making an error during
the reconstruction (as measured by the expected reconstruction loss).

We call q the recognition model since it allows for fast approximate
inference of the latent variables z given the observed variables x. In
fact, the learning procedure will try to make it close to the posterior
as it is a variational approximation of p(z|x), which is the inverse of
the generating model5 p(z|x) that cannot be found in general.

This can be seen by noting that the variational upper bound can be
written as

Lmdl = − logp(x) + KL[q(z)||p(z|x)].

Since the first term of the RHS is independent of q, the learning algo-
rithm is free to make q closer to the posterior.

Both the recognition and the generating model can be chosen arbitrar-
ily in their computational form with the possibility to represent prob-
ability distributions as outputs and stochastic training being the only
requirements. In order to minimise the upper bound of the negative
log-likelihood Lsgvb with numerical means, it is convenient to chose
parametric models. In that case we write p(x|z, θg) and q(z|x, θr) to
make the dependency on the respective parameter sets explicit. Learn-
ing good parameters can then be done by performing stochastic opti-
misation of L with respect to both θr and θg, where the expectation
term is approximated by single draws from q in each training step.

Designing a model is then done by the following steps: (1) Choice of a
prior p(z) over the latent variables. (2) Choice of a recognition model
q(z|x, θr). The Kullback-Leibler divergence between the prior and the
recognition model has to be tractable and efficient to compute. (3)
Choice of a generating model p(x|z, θg), which is often given by the
type of data under investigation.

5 We use the non-standard term “generating model” for p(x|z) to distinguish it more
clearly from the generative model p(x).
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variational auto encoders are universal An important
question is that of the representation capabilities of such a model. It
turns out that if the distribution p(x|z) is a universal function approx-
imator, so is the overall model.

An argument for the one-dimensional case is as follows. Assume ran- VAEs can represent
any probability
distribution of which
the cumulative
density function and
its inverse can be
represented by a
neural network.

dom variables x and z with respective distribution functions Fx and
Fz. According to the inverse transform technique theorem (Grimmett
and Stirzaker, 1992), u = Fx(x) will be uniformly distributed over
the interval [0, 1] and so will be u ′ = Fz(z). Equating gives Fz(z) =

Fx(x) ⇒ F−1x (Fz(z)) = x. Therefore setting p(x|z) := δ(x = F(z)) with
F = F−1x ◦ Fz makes p(x) =

∫
z p(x|z)p(z)dz.

An extension to the multidimensional case can be done by applying
the above to the individual factors of a cascade decomposition and
requiring x and z to be of the same dimensionality. The burden is
then on the learning algorithm to find a good approximation for F.





2
A P P R O X I M AT E P R O PA G AT I O N O F VA R I A N C E

2.1 introduction

Neural networks are versatile tools to implement all kinds of point to Standard neural
networks cannot
deal with
uncertainties of their
inputs and weights
in an efficient way.

point mappings. In Equation (1) we have presented them as functions
with real valued domains and co-domains. There are many contexts
in which we want to know what a neural network puts out if either
the inputs or its parameters are not fixed, but uncertain: each of its
possible values is associated with a likelihood. More formally, we are
interested in the distribution of the outputs of a neural net given its
distributions over its inputs and parameters:∫

θ

∫
x
f(θ, x)p(θ, x)dxdθ.

One practical application is if we want to investigate the effect of
uncertainties in the inputs on uncertainty of the outputs. Another is
Bayesian learning, where we are frequently interested in the evidence
or marginal likelihood of the data,

p(Dtrain) =

∫
θ

p(Dtrain|θ)p(θ)dθ.

In the supervised case where Dtrain = {(ix, iz)}, the predictive distribu-
tion after obtaining the posterior p(θ|Dtrain) lets us infer the unknown
value z of a given input x:

p(z|x) =
∫
θ

p(z|x, θ)p(θ|Dtrain)dθ. (9)

A straightforward but expensive approach is to resort to sampling:

p(Dtrain) ≈
1

S

S∑
s=1

p(Dtrain|
(s)θ), (s)θ ∼ p(θ)

as long as sampling from p(θ) is efficient. In practice, this approach
has the downside of being computationally very demanding.

Originally used to find a fast approximation of dropout, Wang and
Manning (2013) exploit the structure of neural networks to employ
a Gaussian approximation of the pre-synaptic activations of hidden
units justified by the central limit theorem. This enables approximate
propagation of the first two moments through the network under
dropout noise.

25
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In this chapter, we will generalise this to various other forms ofWe will show to to
propagate the

expectation and
variance of inputs

and weights of a
neural network

forward and
backward. This will

be exploited in
various applications.

stochasticity—we will cover all types that fast dropout out like cal-
culations are able to approximate (Sections 2.3 and 2.4). We will refer
to this more general technique as Variance Propagation (VP). Addi-
tionally, we will show that this form of deterministic noise injection
makes a good regulariser for RNNs, which we will verify experimen-
tally (Section 2.5). We will then use the insight that the propagation
of variance essentially performs a marginalisation of different noise
processes within the network to introduce a novel way to learn pre-
dictive distributions (Section 2.6.1), VB (Section 2.6.2.1) and present
a novel non-Bayesian scheme to directly find predictive distributions
(Section 2.6.2.2) with uncertain weights. We will experimentally ver-
ify the methods proposed in Sections 2.6.3 and 2.6.4. The methods
place themselves favourably among the alternative methods to train
neural networks with predictive distributions.

2.2 related work

The idea to treat weights in a neural network in a stochastic way,
i.e. impose a distribution on them, goes back at least to Buntine and
Weigend (1991). Albeit dated, MacKay (1995) is a survey article on
probabilistically motivated approaches to neural networks, contain-
ing many concepts and ideas from the literature. Employing sam-
pling based techniques, Graves (2011) develops a practical algorithm
based on VI, which has been pushed forward by Kingma et al. (2015);
Blundell et al. (2015). More recently, Hernández-Lobato and Adams
(2015) have developed a method to treat units in neural networks in
terms of their first two moments; they apply an assumed density fil-
tering method to find a Gaussian approximation of the true posterior.
Most relevant to this section are the results from Wang and Manning
(2013)—in fact, their work served as a starting point for this chapter.

The capability of using uncertain inputs for prediction has been
added to Gaussian Processes (GPs) as well by Girard et al. (2003).

2.3 propagation of variance for a linear model

Consider a linear model of the formThe text in this
section has appeared

in parts previously
in Bayer et al.

(2015).

We will first show
how variances can
be propagated for a

simple linear model.

a = w̃T x̃ + b̃, (10)

y = f(a). (11)

Here, a is the pre-synaptic activation, which indicates that we have not
applied the transfer function f yet to yield the post-synaptic activation
y.
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Assume that the different quantities, namely x̃, w̃ and b̃ are given
in terms of their expectation and variance. We will now show that
under further assumptions it is possible to calculate the expectation
and variance of y.

This part is based on the works of Wang and Manning (2013), where
it was shown for the case of x̃ = x� ζ where ζi ∼ B(d) follows a
Bernoulli distribution with rate d and � represents element-wise mul-
tiplication. Here, x̃ is the input to the model corrupted by “dropout”
noise.

2.3.1 Addition and Multiplication of Expectation and Variance

First, we will revisit a few elementary facts of probability (Grimmett
and Stirzaker, 1992).

Given that two random variables A and B are independent, the ex- We establish
addition and
multiplication of
mean/variance pairs
first.

pectation/variance of their sum is the sum of their expectations/vari-
ances, i.e.

E [A+B] = E [A] + E [B] , (12)

V [A+B] = V [A] + V [B] . (13)

This is similar in case of the expectation of a product

E [AB] = E [A]E [B] , (14)

but is more involved for the variance of a product:

V [AB] = E [A]2V [B] + V [A]E [B]2 + V [A]V [B] . (15)

2.3.2 Distribution of the Pre-Synaptic Activation

If w̃, x̃ and b̃ are independent of each other, have sufficiently many Thanks to the
central limit
theorem, the
pre-synaptic
activation of a
neural network with
corrupted quantities
is often Gaussian.

components and finite mean and variance, the central limit theorem
(Grimmett and Stirzaker, 1992) applies. This makes a distributed ap-
proximately according to a Gaussian, i.e. a ∼ N(E [a] , V [a]). More
specifically, consider a distribution q(θ̃) over the parameters of the
model with θ̃ = {w̃, b̃}. Further, consider a distribution c(x̃|x) that
“distorts” the input of the network. Then

p(a|x) =
∫
θ̃

∫
x̃
q(θ̃)p(a|x̃, θ̃)c(x̃|x)dx̃dθ̃

≈ N(E [a] , V [a]).
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If we neglect the noise process on the data, we obtain an approxima-
tion of the predictive distribution (cf. Eq. (9)):

p(a|x) =
∫
θ̃

q(θ̃)p(a|x, θ̃)dθ̃ (16)

≈ N(E [a] , V [a]).

All that is left to determine is then the expectation and variance of
a. Since both are sums and/or products of quantities with known
expectation and variance, the calculations are given by

E [a] = E [w̃]T E [x̃] + E
[
b̃
]

, (17)

V [a] = V
[
b̃
]
+
∑
i

V [w̃ix̃i]

= V
[
b̃
]
+
∑
i

V [w̃i]E [x̃i]
2 + V [x̃i]E [w̃i]

2 + V [x̃i]V [w̃i]

= V
[
b̃
]
+
∑
i

V [w̃i]E [x̃i]
2 +

∑
i

V [x̃i]E [w̃i]
2

+
∑
i

V [x̃i]V [w̃i]

= V
[
b̃
]
+ V [w̃]T E [x̃]2 + V [x̃]T E [w̃]2 + V [x̃]T V [w̃] , (18)

where we have assumed once again that all components of w̃, x̃ and
b̃ are independent.

2.3.3 Distribution of the Post-synaptic activation

If a is normal distributed, the expectation and variance of the post-For several special
cases, we can find
the post-synaptic

mean and variance
efficiently.

synaptic activation y = f(a) can be obtained by solving the following
integrals:

E [y] =

∫
f(x)N(x|E [a] , V [a])dx, (19)

V [y] =

∫
(f(x) − E [y])2N(x|E [a] , V [a])dx. (20)

Note that this does not imply Gaussianity of y. While not in general
tractable, the fact that the integral is one dimensional allows for a
wide range of approximations. The most straightforward is the use
of a table. Monte Carlo integration or the unscented transform (Julier
and Uhlmann, 1997) are further options. For the case of the rectifier
transfer function and the logistic sigmoid, a closed form and a very
good approximation are available. We present them here for the sake
of completeness, but refer the interested reader to the corresponding
paper by Wang and Manning (2013) for a derivation.
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In case of the rectifier f(a) = max(a, 0) = y we have:

r =
E [a]√
V [a]

,

E [y] =Φ(r)E [a] +φ(r)
√

V [a],

V [y] =E [a]
√

V [a]φ(r) + (E [a]2 + V [a])Φ(r) − E [a]2

where Φ(ξ) and φ(ξ) are the cumulative distribution function and
probability density function of the standard normal, respectively.

Let the scaled sigmoid be as follows:

σ(m, v) = σ
( m√

1+ πv/8

)
,

with σ(ξ) = (1+ exp(−ξ))−1. Then we have

E [y] ≈σ(E [a] , V [a]),

V [y] ≈σ(a(E [a] − b),a2V [a]) − E [a]2 ,

with a = 4− 2
√
2,b = − log

√
2− 1.

2.3.4 Noise Processes

We now consider that the quantities w̃, x̃, b̃ are corrupted versions of We introduce noise
processes to abstract
away different kinds
of uncertainty in the
network.

the true underlying quantities w, x,b. We will focus on x̃ first, but the
discussion is equivalent for w̃ and b̃. We define a noise process to
be a probability distribution over possible corruptions given a clean
input, i.e. c(x̃|x). If we can obtain E [x̃] and V [x̃] given E [x] , V [x] and
c, we can integrate c seamlessly into the calculations.

Hence we already gave the respective rules above, two obvious
choices are additive and multiplicative noise. Given a vector of inde-
pendent noise variables ε with known expectation and covariance,
let x̃ = x + ε, then

E [x̃] = E [x] + E [ε] ,

V [x̃] = V [x] + V [ε] .

Analogously if x̃ = x� ζ,

E [x̃] = E [x]� E [ζ] ,

V [x̃] = E [x]2 �V [ζ] + V [x]� E [ζ]2 + V [x]�V [ζ] ,

where � denotes element-wise multiplication.

Depending on the exact natures of ε and ζ, several noise injecting
regularisers can be approximated. Wang and Manning (2013) approx-
imate Dropout (Hinton et al., 2012). We will show later how to ap-
proximate DropConnect Wan et al. (2013) and Gaussian weight noise
(Graves, 2013).
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2.3.4.1 Equivalence of Noise Models under the Approximation

It should be noted that two different noise processes c and c ′ can giveGaussian additive
and multiplicative

noise on inputs,
weights and bias

generalises all
possible noise

processes when
using Variance

Propagation (VP).

rise to the same approximations. This is the case if E [x̃]c = E [x̃]c ′ ∀x
and V [x̃]c = V [x̃]c ′ ∀x, i.e. the noise processes lead to the same expec-
tation and variance.

If we restrict ourselves to additive and multiplicative noise processes
on either the inputs or the weights, one model is as follows:

a = w̃T x̃ + b̃,

where

w̃ = ζw �w + εw,

b̃ = ζb � b+ εb

and

x̃ = ζx � x + εx.

with each ζw, εw, ζx, εx being distributed according to a Gaussian dis-
tribution.

This model is general under the above restrictions. Note that all noise
processes that are either multiplicative or additive form an equiva-
lence class, where two noise processes are equivalent if and only if
they have the same mean and variance. Since a Gaussian can rep-
resent any mean and variance (in contrast to a Bernoulli, of which
the variance is upper bounded by 0.25), Gaussian noise models are
sufficient for variance propagation.

2.3.4.2 Soundness of the Approximation

It was verified experimentally by Wang and Manning (2013) that theEven if we end up
with a bad

approximation, the
resulting model will
still be useful if the

generalisation loss is
low.

central limit theorem holds for deep neural networks in certain cases.
This is however not possible in general and might fail in cases where
inputs are low dimensional or sparse. A completely different ques-
tion is whether this is of any importance. Considering that we are
only interested in a function approximator, the exact interpretations
of different quantities in the network are unimportant. Loosely speak-
ing, we do not care whether our model constitutes a good approxi-
mation of a corresponding real model, as long as the model works
well enough for the task at hand, as indicated by an estimate of the
generalisation error.
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2.4 variance propagation for deep and recurrent net-
works

We have described how to obtain the output expectation and vari- The text in this
section has appeared
in parts previously
in Bayer et al.
(2015).

ance of a linear model with an output activation function given the
expectations and variances of its inputs in Section 2.3. Deep and re-

Deep and recurrent
networks using
variance
propagation can be
implemented via
stacks of affine
transformations and
non-linear transfer
functions.

current networks can be constructed by stacking many of these on
top of each other.

2.4.1 Deep Multilayer Perceptrons

Given a multilayer perceptron of the form

a(k) = y(k−1)W(k) + b(k)

y(k) = σ(k)(a),

with K layers, input x := a(0) and output y := a(K) we can apply
the rules from the previous section to obtain a modified procedure
to propagate activations through the network. We have summarised
this in Alg. 1, where we have generalised Eqs. (10,11 on page 10) to
that of many linear models operating side by side. This boils down to
replacing the weight vector w with a weight matrix W and the scalar
bias b with a bias vector b:

a = xW + b,

y = f(a).

The transfer function f is now applied element-wise. We want to
stress the fact that propagating a through the transfer function by
integrating over each of its components ai separately will introduce
the assumption that all elements of a are statistically independent,
which is certainly not completely justified.

Algorithm 1 Variance Propagation Neural Network Forward Pass

E
[
y(0)

]
← E [x]

V
[
y(0)

]
← V [x]

for k = 1..K do
E
[
a(k)

]
← E

[
ỹ(k−1)

]
E
[
W̃(k)

]
+ E

[
b̃
]

(Eq. (17))
V
[
a(k)

]
←

V
[
b̃
]
+ E

[
ỹ(k−1)

]2 �V
[
W̃(k)

]
+

V
[
ỹ(k−1)

]
� E

[
W̃(k)

]2
+ V

[
ỹ(k−1)

]
�V

[
W̃(k)

]
(Eq. (18))

E
[
y(k)

]
← using implementation of Eq. (19)

V
[
y(k)

]
← using implementation of Eq. (20)

end for
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It should be noted that all operations are differentiable and thus
gradient-based optimisation can be employed. However, the equa-
tions are rather complex and we do not provide them here. Use of an
automatic differentiation tool is advisable (e.g. Bergstra et al. (2010)).

2.4.2 Recurrent Networks

Showing how to apply variance propagation to RNNs makes another
intermediary step necessary. Inspecting Eq. (2), we see that the pre-
synaptic activation is the sum of two terms, one stemming from the
previous time step and one stemming from the incoming layer. Let the
former, which we call the layer-wise contribution, be denoted by â(k)t .
The latter, which we call the recurrent contribution, will be written as
~a(k)t .

We can apply the rules from the Section 2.3 to obtain the expectations
and variances for both â and ~a. If we assume both to be independent,
their expectations will sum up according to Eqs. (12, 13), i.e.

E
[
a(k)t

]
= E

[
â(k)t

]
+ E

[
~a(k)t

]
,

V
[
a(k)t

]
= V

[
â(k)t

]
+ V

[
~a(k)t

]
.

The resulting computations are summarised in Alg. 2.

2.4.2.1 Long Short-Term Memory

We introduced LSTM as a transfer function in Section 1.3.4. We did so
by making use of a gating function φ(χ, v) = σ(χ)v, where σ denotes
the logistic sigmoid function σ(ξ) = (1 + exp(−ξ))−1. Furthermore
we split the pre-synaptic activation a into four equally sized activa-
tions ξ, ι,ν and o. Given that these stem from a linear combination
of the post-synaptic activations of the incoming layer, we can assume
each of these to be Gaussian distributed with expectations and vari-
ances calculated just as for a linear model.

Subsequently, the application of approximations for σ to each of theseImplementation of
LSTM is practical
even though the

pre-synaptic
Gaussian

assumption is not
justified.

quantities is justified. With the rules of obtaining the expectation and
variance of a multiplication given the expectations and variances of
the respective factors (Eq. 14, 15) we can obtain the expectation and
variance after the gating function. Thus, applying variance propaga-
tion to the sequence of states s1:T is possible.

Nevertheless, we will have to leave the safe harbour of validity for
each yt, since there is no reason to assume that φ(ot, st) will be
Gaussian. Consequently, any closed-form approximation of yt will
not be justified. As argued in Section 2.3.4.2, this does not imply that
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Algorithm 2 Variance Propagation Recurrent Network Forward Pass

E
[
y(0)
1:T

]
← E [x1:T ]

V
[
y(0)
1:T

]
← V [x1:T ]

for k = 1..K do
for t = 1..T do

E
[
â(k)t

]
← E

[
ỹ(k−1)
t

]
E
[
W̃(k)

]
+ E

[
b̃
]

(Eq. (17))

V
[
â(k)

]
←

V
[
b̃
]
+ E

[
ỹ(k−1)
t

]2
�V

[
W̃(k)

]
+

V
[
ỹ(k−1)
t

]
� E

[
W̃(k)

]2
+ V

[
ỹ(k−1)
t

]
�V

[
W̃(k)

]
E
[
~a(k)t

]
← E

[
ỹ(k)
t−1

]
E
[
W̃rec

(k)
]
+ E

[
b̃
]

(Eq. (17))

V
[
~a(k)

]
←

V
[
b̃
]
+ E

[
ỹ(k−1)
t

]2
�V

[
W̃rec

(k)
]
+

V
[
ỹ(k−1)
t

]
� E

[
W̃rec

(k)
]2

+ V
[
ỹ(k−1)
t

]
�V

[
W̃rec

(k)
]

E
[
a(k)t

]
← E

[
â(k)t

]
+ E

[
~a(k)t

]
V
[
a(k)t

]
← V

[
â(k)t

]
+ V

[
~a(k)t

]
E
[
y(k)
t

]
← using implementation of Eq. (19)

V
[
y(k)
t

]
← using implementation of Eq. (20)

end for
end for
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applying fast dropout to LSTM will not result in an effective regu-
lariser; conversely, we will show experimentally that it can improve
over LSTM.

2.5 fast dropout

As briefly mentioned before, dropout constitutes replacing the activa-The text in this
section has appeared

in parts previously
in Bayer et al.

(2014).

tions of individual units of a neural network with zeros with a certain
chance, the dropout rate d. Here, we shall review FD as introduced by
Wang and Manning (2013) and subsequently analyse it derivatives.
In the case of a hidden layer we write x̃ = ζ � x, and ζi ∼ B(1− d).
Subsequently for the expectation we get

E [x̃] = E [ζ]� E [x]

= (1− d)E [x] .

For the variance

V [x̃] = V [ζ]� E [x]2 + V [x]� E [ζ]2 + V [x]�V [ζ]

= d(1− d)E [x]2 + V [x] (1− d)2 + V [x] (1− d)d.

Note that we have used several operators sloppily: we applied scalar
operators on vectors. We let this denote the element-wise application.

2.5.1 Derivatives for Fast Dropout

Consider a loss J = L̂+R, where L̂ is the empirical loss of the model
on the training set L̂ = L(Dtrain; θ) under the current parameters.
While it seems difficult to bring the objective function of fast dropout
Jfd(D; θ) into the form of L + R, it is possible with the derivatives
of each layer. For this, we perform back-propagation-like calculations.
We will do so for both the case of pre-synaptic sampling and where
closed form solutions for the post-synaptic moments are available.

2.5.1.1 Closed Form

The derivatives of the fast dropout loss with respect to one of the
weights are

∂J

∂wi
=

∂J

∂E [a]

∂E [a]

∂wi
+

∂J

∂V [a]

∂V [a]

∂wi
.

We know that E [a] = (dx)Tw and thus

∂E [a]

∂wi
= xid.
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This can be recognised as the standard back-propagation term. We
will thus define

∂La

∂wi
:=

∂J

∂E [a]

∂E [a]

∂wi
,

and subsequently refer to it as the local derivative of a. The second
term can be analysed similarly. We apply the chain rule once more
which yields

∂J

∂V [a]

∂V [a]

∂wi
=

∂J

∂V [a]︸ ︷︷ ︸
:=δ̇a

∂V [a]

∂w2i

∂w2i
∂wi

.

for which any further simplification of δ̇a depends on the exact form
of J. The remaining two factors can be written down explicitly, i.e.

∂V [a]

∂w2i
= d(1− d)E [xi]

2 + dV [xi] ,

∂w2i
∂wi

= 2wi.

Setting

ηai := |δ̇a|
∂V [a]

∂w2i

= |δ̇a|d
[
(1− d)E [xi]

2 + V [xi]
]

> 0

we conclude that
∂J

∂V [a]

∂V [a]

∂wi
= 2 sgn(δ̇a)ηawi

=:
∂Raclosed
∂wi

.

This lets us arrive at FD leads to two
separate terms for
the derivative.

∂J

∂wi
=
∂La

∂wi
+
∂Raclosed
∂wi

,

and offers an interpretation of fast dropout as an additive regularisa-
tion term.

We will now discuss three different scenarios for δ̇a, depending on FD lets weights grow
in the face of errors,
decays them when
the network is right
and has no effect
near minima of the
training loss.

the sign.

• δ̇a = 0 Since the error signal is zero the variance of the unit is
optimal for the loss. The fast dropout term vanishes; note that
this happens at overall optima of the training loss.

• δ̇a < 0 The unit should increase its variance. The exact inter-
pretation of this depends on the loss, but in many cases this is
related to the expectation of the unit being quite erroneous and
leads to an increase of scatter of the output. The fast dropout
term encourages a quadratic growth of the weights.
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• δ̇a > 0 The unit should decrease its variance. As before, this
depends on the exact loss function but will mostly be related
to the expectation of the unit being quite right which makes a
reduction of scatter desirable. The fast dropout term encourages
a quadratic shrinkage of the weights.

This behaviour can be illustrated for output units by numerically in-
specting the values and gradients of the pre-synaptic moments given
a loss. For that we consider a single unit y = f(a) and a loss `(y, z)
measuring the divergence of its output to a target value z. The pre-
synaptic variance V [a] can enter the loss not at all or in one of two
ways, respected by either the loss (see (Bayer et al., 2013)) or the trans-
fer function. Three examples for this are as follows.

1. Squared loss on the mean, i.e.

`(y, z) = (E [y] − t)2,

with y = a.

2. Gaussian log-likelihood on the moments, i.e.

`(y, z) ∝ (E [y] − t)2/2V [y] + log
√
2πV [y],

with y = a.

3. Negative Bernoulli cross entropy, i.e.

`(y, z) = z log E [y] + (1− z) log(1− E [y]),

with y = (1+ exp(−a))−1.

We visualise the pre-synaptic mean and variance, their gradients and
their respective loss values in Figure 5. For the latter two cases, erro-
neous units first increase the variance, then move towards the correct
mean and subsequently reduce the variance.

2.5.1.2 Sampling

One other way of solving the integrals in Eqs. (19,20) is via sampling
of the pre-synaptic activation, i.e. â ∼ N(E [a] , V [a])a. It follows that

∂J

∂â

∂â

∂wi
=
∂J

∂â

[
∂â

∂E [a]

∂E [a]

∂wi
+

∂â

∂V [a]

∂V [a]

∂wi

]
.

As before,

∂J

∂â

∂â

∂E [a]

∂E [a]

∂wi
=
∂J

∂â
xid

is the standard back-propagation formula with dropout variables.
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Figure 5: Visualisations of the behaviour of δ̇a for a single unit. The axes
correspond to the pre-synaptic mean E [a] and variance V [a] feed-
ing into a unit y = f(a). A loss measuring the divergence from the
target value 0.2 is then applied and indices the colour on a loga-
rithmic scale. The gradients of the loss are shown as a vector field
plot. Squared error is shown on the left, Gaussian log-likelihood in
the middle and Bernoulli log-likelihood on the right. For the first
two plots, the optimum is in the middle, for the last it is a slightly
to the left.

We rewrite the variance as

∂J

∂â

∂J

∂V [a]

∂V [a]

∂wi
=
∂J

∂â

∂â

∂
√

V [a]

∂
√

V [a]

∂V [a]

∂V [a]

∂w2i

∂w2i
∂wi

which, making use of results from earlier in the section, is equivalent
to

∂J

∂â

∂J

∂V [a]

∂V [a]

∂wi
=
∂J

∂â

√
d(1− d)E [xi]

2 + dV [xi]s. (21)

Since s is Gaussian and all other factors of Eq. (21) are deterministic,
the derivative will be a zero-centred Gaussian random variable. Its
scale does not depend on the current weight value and is determined
by the post-synaptic expectations and variances of the incoming units,
the dropout rate and the error signal.

Therefore, also in this case, we can write

∂J

∂wi
=
∂La

∂wi
+
∂Rasample

∂wi
,

where ∂Rasample/∂wi is defined as in Eq. (21) and essentially an adap-
tive noise term.

2.5.1.3 Fast Dropout at Optima of L̂

In the closed-form as well as in the sampling case the regularisation
term vanishes at optima of the training loss. Consequently, no global
attractor is formed, making the method theoretically interesting for
RNNs: despite of not biasing towards certain solutions, the optimisa-
tion is certainly influenced.
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2.5.1.4 Relationship to Weight Decay

The derivative of weight decay is given as

∂Rwd/∂wi = 2λwi.

We can thus interpret Rclosed as a weight decay term with parameter
wise scaling. This scaling depends on the current activations and can
even be negative; in the latter case, it will be less of a weight decay
and more of a weight growth.

2.5.2 Experiments

We conducted two sets of experiments to assess the performance ofPerformance of FD
was evaluated on the

widely-used piano
rolls benchmarks,
once to compare

sRNN with the
literature and once

to compare sRNN
with LSTM.

FD. Once in the context of sRNNs and once in the context of LSTM.
For both, distinct experimental runs were performed, as we aimed to
achieve close to state-of-the-art performance on these data sets in the
first case. In the latter, we were interested in a comparison between
LSTM and sRNN, which is why we considered a more open search
space.

In both cases, we also resort to several “tricks” to improve the
learning. Since the hidden-to-hidden connections and the hidden-
to-output connections in an RNN can make use of hidden units in
quite distinct ways, we found it beneficial to separate the dropout
rates. Specifically, a hidden unit may have a different probability to
be dropped out when feeding into the hidden layer at the next time
step than when feeding into the output layer. Taking this one step
further, we also consider networks in which we completely neglect
fast dropout for the hidden-to-output connections; an ordinary
forward pass is used instead. Note that this is not the same as setting
the dropout rate to zero, since the variance of the incoming units
is completely neglected. Whether this is done is treated as another
hyper-parameter for the experiment.

Further, we initialised the recurrent weight matrices as described in
Section 1.3.3. The input-to-hidden connections W(0) were initialised
with a different standard deviation than the rest of the parameters.
Additionally, we set all but a few parameters to zero (Sutskever et al.,
2013). For optimisation, we used either Adadelta (Zeiler, 2012) or rm-
sprop with Nesterov momentum (Sutskever et al., 2013). The decay
rate, step rate, offset and momentum were part of the hyper param-
eter optimisation. All variables in this process were selected via ran-
dom search to optimise performance on the validation set.
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2.5.2.1 sRNN

To assess the performance of FD for sRNNs, we conducted
experiments on the piano rolls benchmarks popularised by
Boulanger-Lewandowski et al. (2012, 2013); Pascanu et al. (2013).
It consists of four distinct data sets (“JSBChroales”, “Nottingham”,
“Piano-Midi.de” and “Muse”) containing piano notes from different
musical backgrounds. This is done by representing a single piece
in midi format as a sequence of binary, 88-dimensional vectors. A
complete data set is thus written as D = {ix1:T }Ni=1, xt ∈ {0, 1}D with
D = 88.

The task is to find a probabilistic model via the cascade decomposi-
tion (Barber, 2012), i.e. given a single piece x1:T we want to model its
probability via

p(x1:T ) =
T∏
t=1

p(xt|x1:t−1),

where x1:0 := ∅. Here, each p(xt|x1:t−1) is identified with the output
of an RNN at time step t which is parameterised by θ, see e.g. the
work of Graves (2013). This is done by using the logistic sigmoid
σ(ξ) = (1+ exp(−ξ))−1 for the transfer function of the output units
and let it model the sufficient statistic of a Bernoulli variable, i.e. the
rate of success.

Subsequently, maximising the log-likelihood can be done via minimi-
sation of the negative log-likelihood:

L̂(θ) =
∑
t,d

xt,d logp(xt,d|x1:t−1)

+ (1− xt,d)(1− logp(xt,d|x1:t−1)),

where the sum runs over t = 1 . . . T and d = 1 . . .D and a single
training sequence x is considered.

We performed randomised search over the hyper parameters
(Bergstra and Bengio, 2012), showing the possible choices in
Table 1 and the best performing ones in Table 2. The results of the
experiments are shown in Table 3.
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Table 1: Hyper parameters choices for FD-RNNs in the musical data experi-
ments from Section 2.5.2.1.

Hyper parameter Choices

#hidden layers 1

#hidden units 200, 400, 600

Transfer function tanh

p(“dropout input”) 0.0, 0.1, 0.2

p(“dropout hidden to hidden”) 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

p(“dropout hidden to output”) 0.0, 0.2, 0.5

Use fast dropout for final layer yes, no

Step rate 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00001

Momentum 0.0, 0.9, 0.95, 0.99, 0.995

Decay 0.8, 0.9

W N(0,σ2),σ2 ∈ {0.1, 0.01, 0.001, 0.0001}

Win N(0,σ2),σ2 ∈ {0.1, 0.01, 0.001, 0.0001}

bh 0

by −0.8

ρ(Wrec) 1.0, 1.05, 1.1, 1.2

ν 15, 25, 35, 50 or no
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Table 3: Results of fast dropout on the midi data sets. All numbers are aver-
age negative log-likelihoods on the test set, where “FD” represents
our work; “plain” and “RNN-NADE” results are due to Bengio et al.
(2012) while “Deep RNN“ shows the best results by Pascanu et al.
(2013). Note that “RNN-NADE” and “Deep RNN“ employ various
extensions of the model structure of this work, i.e. structured out-
puts and various forms of depths. Our results are the best for RNNs
model with a single hidden layer.

Data set FD plain RNN-NADE Deep RNN

Piano-midi.de 7.39 7.58 7.05 –

Nottingham 3.09 3.43 2.31 2.95

MuseData 6.75 6.99 5.60 6.59

JSBChorales 8.01 8.58 5.19 7.92

discussion Fast dropout improves over unregularised sRNNs in
every case, therefore confirming our hypothesis that fast dropout con-
stitutes a powerful regulariser for RNNs. Most notably, our results
are superior to all other approaches based on sRNN. A downside of
the approach is the number of additional hyper parameters, namely
the layer specific dropout rates–they vary substantially over different
data sets, as can be seen in Table 2.

2.5.2.2 Fast Dropout for LSTM

We conducted further experiments as in Section 2.5.2.1 to evaluate
the application of fast dropout to RNNs using LSTM. We conducted 64

experiments for each simple RNNs, simple RNNs with fast dropout,
LSTM-RNNs and FD-LSTM-RNNs using fast dropout. In contrast to
the experiments in Section 2.5.2.1, where the search space for the hy-
per parameters was tailored to achieve state-of-the-art performance,
we considered a more open search space for these experiments in or-
der to not bias the evaluation too much. Especially, all experiments
shared the same search space with the exception of the number of
hidden units (LSTM based networks used half the units of their sim-
ple RNN counterparts). Also, the spectral radius for LSTM was not
set, as it is only defined for square matrices. We also considered the
smaller two data sets (JSBChorales and Piano-midi.de) only, as the
complete search for hyper parameters is computationally demanding
on the two bigger ones: each experiment takes on the order of two
days on an i7 CPU to train until convergence.

The hyper parameter options and the best hyper parameter choices
are shown in Tables 4 and 5 respectively. The results are shown in
Table 6.
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Table 4: Hyper parameters options for FD-LSTM-RNNs and FD-RNNs in
the musical data experiments from Section 2.5.2.2. A “/” in a cell is
indicating that the argument before the slash is used for FD-RNNs,
while the one after it is used for FD-LSTM-RNNs. l . . . u indicates
that we sample uniformly between l and u.

Hyper parameter Choices

#hidden layers 1

#hidden units 200 . . . 600 / 100 . . . 300

Transfer function tanh/LSTM

p(“dropout input”) 0.01 . . . 0.5

p(“dropout hidden to hidden”) 0.01 . . . 0.5

p(“dropout hidden to output”) 0.01 . . . 0.5

Use fast dropout for final layer yes, no

Step rate 0.0001 . . . 0.1

Momentum 0.0 . . . 0.999

Decay 0.1 . . . 0.99

σ2 for Wrec, Wout 0.0000001 . . . 0.1

σ2 for Win 0.0001 . . . 1.5

bh 0

by −0.8

ρ(Wrec) 0.8 . . . 4 / –

ν 14 . . . 200

discussion In the experiments conducted FD-LSTM improves
over plain LSTM in only one of the two cases. In the other case,
FD-RNN remains better than both LSTM based approaches, which
makes us believe that it is not a case where long-term dependencies
are of crucial importance. Consequently, we believe that FD-LSTM
and FD-RNN are approaches which should be evaluated both for
any learning task.
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Table 6: Results of fast dropout with and without LSTM on the midi data
sets. All numbers are average negative log-likelihoods on the test
set.

Data set sRNN LSTM FDRNN FDLSTM

Piano-midi.de 7.89 7.50 7.44 7.57

JSBChorales 8.81 8.38 8.08 8.04

2.6 variance propagation for regression

If one is interested in predictive distributions instead of point pre- The text in this
section has appeared
in parts previously
in Bayer et al. (2013,
2015).

The techniques from
this chapter can be
used to find
predictive
distributions
stemming from
uncertain quantities
in the network.

dictions for continuous quantities, possibly due to post-processing of
the outputs or integration into a graphical model, neural networks
can be used via identification of their outputs with the statistics of a
desired output distribution. A prominent example is that of mixture
density networks (Bishop, 1994), where the outputs of a neural net-
work are used for the responsibilities, expectations and covariances
of a mixture of Gaussians. In this section, we will demonstrate how
variance propagation can be used naturally to implement Gaussian
likelihood functions, given several sources of uncertainty–be it within
the weights or the input and hidden activations.

First, we will use the noise injected into a neural network by means
of dropout and approximated via fast dropout not only for regulari-
sation. Instead, we will incorporate the resulting variance of the pre-
dictions into the objective function (Section 2.6.1). We call this ap-
proach Implicit Variance Network (IVN). We will then set out to treat
the network’s parameters as stochastic, i.e. distributed according to
a Gaussian distribution. This will lead to i) a fast approximation
of VB for neural nets (called FAWN for Variational Bayes (FAWN-VB),
Section 2.6.2.1) and ii) to the direct optimisation of the predictive
distribution, which we regularise with a heuristic inspired by VB

(called FAWN for Regularised Direct Optimisation of the Predictive Dis-
tribution (FAWN-ROPD), Section 2.6.2.2).

During the development of these methods, we noted that both
FAWN-VB and FAWN-ROPD rarely overfit. Consequently, we used the
training loss for model selection. Additionally, as both do not require
regularisation parameters (in contrast to IVN, where the dropout
rates need to be set), we distinguish between the methods during
our experimental evaluation.

We will compare IVN, FAWN-VB and FAWN-ROPD side by side in Sec-
tion 2.6.3. In Section 2.6.4, we will only pay attention to the latter two,
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as the tuning of IVNs turned out to be too time sensitive due to the
necessity of a validation loop.

2.6.1 Implicit Variance: Modelling Heteroscedastic Variance

Recall that for all the hidden units as well as for the output units, we
do not have a point but a pair consisting of an expectation and a vari-
ance describing the activation. Thus, the output units themselves are
already given as their expectation E [y] and variance V [y]. Plugging
these into the log-likelihood of a Gaussian, we arrive at the implicit
variance loss. Let Σ := diag(V [y]) and r := z − E [y], then:

Liv =
1

2
rTΣ−1r + log(2π)D/2|Σ|1/2.

It should be noted that the integration of the variance now has twoThe uncertainty due
to dropout is used
for uncertainty in

the outputs.

purposes: i) it adds a new type of quantity to the representative capa-
bilities of the model and ii) it is used for regularisation.

During the development of the model, we found it helpful to intro-
duce a parametric scaling of the variance of each unit. This was nec-
essary to allow the model to achieve very low variances in regions
where this is helpful; otherwise the model would “cheat” by copy-
ing units and obtain a reduction in variance due to the (invalid) as-
sumption of independence between those units. The parametric scal-
ing is achieved by introducing a new layer wise parameter β with
βmin < β ∈ R, which scales the variance:

E
[
y ′
]
= E [y] ,

V
[
y ′
]
= βV [y] .

In the following steps of Algs. 1,2, y ′ is used instead of y. 1 The
parameter β is optimised jointly with the other parameters of the
network θ while βmin is optimised as an additional hyper-parameter
during model selection. This is mainly to guard the method against
collapsing of the model into points, a common issue for mixtures of
Gaussians (cf. (Bishop et al., 2006)).

2.6.2 Fast Adaptive Weight Noise

Adaptive weight noise is a practical method to perform VB in neu-Adding noise to the
parameters of a

model is an efficient
mean of

regularisation,
which can be

approximated with
VP as well.

ral networks (Graves, 2011). The method is based on the approach of
Hinton and Van Camp (1993), who utilise the MDL principle (Rissa-
nen, 1985; Grünwald, 2007) as an inductive bias (see Section 1.4.3).

As usual in the Bayesian setting, the parameters of the model under
consideration are not found via point estimates, but represented as a

1 Note that we have omitted the layer and time indices.
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distribution over the weight space. Here, each parameter θi will be
represented by a Gaussian, i.e. q(θi) = N(µi,σ2i ).

If we are given a likelihood function and we consider q as a varia-
tional approximation to the true posterior over the parameters having
seen the data, the training criterion can be derived by means of VI:

Lmdl := −
∑
i

∫
θ

q(θ) logp(iz|ix, θ)dθ+ KL[q(θ)||p(θ)]

= −
∑
i

E
[
logp(iz|ix, θ)

]
θ∼q

+ KL[q(θ)||p(θ)] (22)

≈ −
1

S

∑
i

S∑
s=1

logp(iz|ix, θs) + KL[q(θ)||p(θ)||, ] θs ∼ q(θ)

(23)

=: Lawn,

where the outer sum goes over the training samples. The “trick” that
Hinton and Van Camp (1993) introduce is that the prior p(θ) is not
set or further specified by a hyper-prior but instead learned as any
other parameter in the model and thus essentially set by data. The con-
tribution of Graves (2011) was then to approximate the expectation in
Eq. (22) by Monte Carlo sampling with Eq. (23).

Here we use the previously introduced techniques to find a closed
form approximation to adaptive weight noise. Consider a single layer
with θ = {w}, y = σ(xTw), where we have no dropout variables and
the weights are Gaussian distributed with w ∼ N(µw,σ2w), with covari-
ance diagonal and organised into a vector. Note that we have omitted
the bias b for notational clarity. Again, we assume Gaussian density
for a = xTw. Using the rules from Section 2.3.1, we find that

E [a] = E [x]T µw, (24)

V [a] = V [x]T µ2w + V [x]T σ2w + (E [x]2)Tσ2w. (25)

A perspective that we have not used so far on the process is that this
is a convolution of point predictions, each performed by a slightly
different neural network with weights drawn from their respective
distribution. Consider a neural network f(x, θ) with θ = {θi}, where
each θi is a Gaussian distributed random variable with mean µi and
variance σ2i . Let the network represent a distribution p(z|θ) for the
random variable y, which is the network’s output. The output of the
network with marginalised weights will be approximated as:∫

θ

p(z|x, θ)q(θ)dθ ≈ N(E [y] , V [y]), (26)

where q(θ) depicts the joint over all weights and the moments of the
Gaussian variable on the RHS are obtained as in Eqs. (24, 25).
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2.6.2.1 Fast Variational Inference for Gaussian Likelihoods

We will now use variance propagation to obtain an approximation to
the first term of Lmdl for the special case of a Gaussian likelihood.

Consider the first term of the RHS of Eq. (22) for the case that z isApproximating VI
with VP requires

propagation of the
variance through the

log of the likelihood
function. This is

easy in the case of a
Gaussian, since just
a squaring operation

remains.

assumed to be a uni-variate Gaussian, i.e. we will only consider the
problem for z ∈ R and thus write z for the targets and y for the
output of the network. Further, we leave out the dependency on θ for
brevity. This generalises to the multi-dimensional case by considering
them as independent and summing up the relevant terms. Then,

E [logp(z|y)]

=E
[
logN(z|y,σ2)

]
=E
[
−(z− y)2

2σ2
− log

√
2πσ

]
=
−E
[
(z− y)2

]
2σ2

− log
√
2πσ

=−
V [y]

2σ2
−

(z− E [y])2

2σ2
− log

√
2πσ

= logN(
√

V [y]|0,σ2) + logN(z|E [y] ,σ2) + log
√
2πσ,

where we have made use of the identity V [y] = E
[
y2
]
− E [y]2. The

last line offers a partially probabilistic interpretation of this specific
instance of variational inference. It puts a zero centred prior on the
square root of the output’s variance and on the error, sharing the
same (prior) variance—which is itself encouraged to be big. The last
term can be seen as a measure against the variance collapsing to zero,
which would lead to large likelihoods on the training set.

We will call this method FAWN-VB in the experimental section.

2.6.2.2 Regularised Optimisation of the Predictive Distribution

A problem of the approach of Section 2.6.2.1 is that a derivation of
the expectation and variance of each considered log-likelihood func-
tion is necessary. Since we now have an efficient approximation of the
predictive distribution (cf. Eq. (9)), an obvious next step is to directly
optimise it with respect to the parameter distributions q(θ). This will
essentially lead to a maximum likelihood approach (see Section 1.4.1)
and thus inherit its tendency to overfit the training data. Account-
ing for that is possible by a fully Bayesian treatment, which means
to set q(θ) = p(θ|Dtrain), or an adequate approximation obtained by
Laplace’s method or VI.

Here we shall follow a different route, which is to make use of a
regulariser, namely the KL-divergence between the found q(θ) and a
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reference distribution p(θ). Note that in this case, p(θ) is not a prior
per se, as we do not follow a Bayesian approach here. A simple but

effective regulariser
for learning
predictive
distributions based
on uncertain
weights is the
KL-divergence from
a reference
distribution.

Lfawn := −
∑
i

log
∫
θ

q(θ)p(iz|ix, θ)dθ+ KL[q(θ)||p(θ)],

where the sum runs over the training samples Dtrain = {(ix, iz)}Ni=1.
We want to stress that no regularisation coefficient is required.

We will call this method FAWN-ROPD in the experimental section.

2.6.2.3 Instances of FAWN used

For all experiments using Fast Adaptive Weight Noise (FAWN), we
chose a Gaussian likelihood where we assumed that

zi = yi + εi, εi ∼ N(0, σ̂2i ),

which resembles a Gaussian distributed measurement error with vari-
ance σ̂i for output dimension i. We integrate the σ̂i into the set of
parameters and optimise it jointly with all other parameters.

We used a global uni-variate Gaussian for the prior and a Gaussian
to represent each of the parameters:

p(θ) =
∏
i

N(θi|µ̃, σ̃2),

q(θ) =
∏
i

N(θi|µ̇i, σ̇2i ).

The KL-divergence is then given by2:

KL[q(θ)||p(θ)] =
∑
i

log
σ̃

σ̇i
+
σ̇2i + (µ̇i − µ̃)

2

2σ̃2
−
1

2
.

2.6.3 Experiments with Model Selection

FAWN has very little dependency on hyper parameters. Since it has We conduct
experiments
comparing IVNs,
FAWN-VB and
FAWN-ROPD where
the former is allowed
to try out many
different hyper
parameter
configurations. The
latter methods do
not need this.

very good and general regularisation reducing its tendency to over-
fit, the results are less dependent on the computational power of the
model (as set by the number of layers and hidden units). This is not
the case for Implicit Variance Network (IVN): as it is prone to overfit-
ting, the hyper parameters (i.e. model topology and drop out rates),
have a huge impact on the final performance. This section aims to
show that FAWN can achieve reasonable performance if provided a

2 Obtained with the help of the Q&A community “crossval-
idated” at http://stats.stackexchange.com/questions/7440/

kl-divergence-between-two-univariate-gaussians.

http://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
http://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians
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powerful enough model with a single training run, where we chose
the parameter set with the lowest training error. IVN on the other
hand needs a whole validation loop, but is expected to achieve better
performance if we have a reliable estimator of the generalisation loss
which allows us to tune the hyper parameters very accurately.

We evaluate IVNs and FAWN side by side on two different data sets, to-
gether with plain neural networks, fast dropout networks and density
networks (a mixture density network with only a single component).

First we revisit a synthetic toy data set introduced by Le et al. (2005)
to assess the quality of Gaussian processes to model heteroscedastic
data. We will then move to a robotic inverse dynamics data set, the
popular SARCOS data.

For IVN, the hyper parameters were optimised using random search
as advocated by Bergstra and Bengio (2012) for IVNs. We optimised for
the number of hidden layers (either 1, 2 or 3), the transfer function
(sigmoid or rectifier), the parameters of rmsprop (step rate, decay
rate, momentum) and the variance of the input as well as the vari-
ance offset βmin. Further hyper parameter ranges are specified in the
respective sections.

In the case of FAWNs, we did without model selection–instead we used
a fixed topology, given in the respective section. For optimisation, we
used Adam (Kingma and Ba, 2014) with a step rate of α = 0.001 and
training was done until the convergence of the training loss.

2.6.3.1 Toy data set

The data set is governed by the equationsThe toy data set
allows comparison of

in a heteroscedastic
regression problem.

µi = 2

(
exp

(
−30(xi −

1

4
)2
)
+ sin(πx2i )

)
,

σ2i = exp(sin(2πxi)),

which specify Gaussian distributions p(zi|xi) = N(µi,σ2i ). To gener-
ate a data set we sample {xi} points uniformly from the input range
[−0.1, 1], and then sample {zi} accordingly. To compare plain neural
networks (NN), density networks (DN), networks trained with fast
dropout (FD) and implicit variance networks (IVN), we constructed a
setting which is far from tailored towards neural networks: very few
data.

The data set contained only 50 points for training, 10 for validation
and 50 additional points to assess the performance as a test set. We
trained the IVNs for 5000 epochs with batch size either 10, 25, 50 and
10, 25, 50 or 100 hidden units. For FAWN, we used 100 hidden units in
a single hidden layer.

The results are summarised in Table 7 on page 52.
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Figure 6: Predictive distributions of IVNs and DNs on the toy benchmark.

discussion Notably, all methods except ours perform as bad as
expected for a neural network model in this setting. While the density
networks are en par with our method in terms of mean squared error,
they overfit extremely with respect to their predictive distribution.
Neural networks neither trained classically nor with fast dropout
achieve good results; the variance of fast dropout seems to be mean-
ingless, which is not surprising as it is not trained. FAWN for Vari-
ational Bayes (FAWN-VB) did not manage to cope with this data set–
instead it consistently found minima where it used the variance of
the likelihood function to explain the data. Therefore, it predicted a
straight line and the empirical variance over the whole data. We hy-
pothesise that the small data setting here is not a setting where VB is
a good fit. FAWN for Regularised Direct Optimisation of the Predic-
tive Distribution (FAWN-ROPD) achieved performance superior to IVN

in terms of likelihood and comparable to it in terms of squared error,
rendering it the best method on this data set.

2.6.3.2 SARCOS

We evaluated the models under consideration on a standard bench- We compare IVNs,
FAWN-VB and
FAWN-ROPD on the
robot inverse
dynamics tasks
SARCOS.

mark for learning robot inverse dynamics, the “Sarcos” data set. We
trained IVNs for 500 epochs and picked the batch size from {64, 128,
256, 512} and the number of hidden units from {50, 100, 200, 300}.

For FAWN, we used 100 hidden units in three hidden layers each.

The results are summarised in Table 7 on page 52.

discussion We want to stress several observations. For one, IVNs
seem to be the best choice if one is interested in good performance of
both MSE and NLL. Secondly, plain neural networks perform sur-
prisingly well in our experiments. While both Gaussian processes
and LWPR models have different advantages compared to neural
networks (model uncertainty and efficient incremental online learn-
ing, respectively) our experiments show that both are outperformed
in terms of predictive quality. FAWN-VB and FAWN-ROPD both feature
model uncertainty and are superior to GPs in these experiments.
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Table 7: Results on the heteroscedastic toy benchmark introduced by Le et al.
(2005) and the Sarcos data set for regression methods introduced in
this chapter. NN refers to a simple neural network, DN to density
network, FD to a neural network trained with fast dropout. Results
for Gaussian processes (GP) and Locally-weighted projection regres-
sion (LWPR) taken from Rasmussen (2006). We report the mean
squared error (MSE) and negative log-likelihood (NLL). Best results
shown in bold.

Toy Sarcos

Method MSE NLL MSE NLL

NN 4.2395 2.2694 0.0047 -1.1893

DN 3.8706 9.7303 0.0096 -1.2532

FD 4.3491 43486.7 0.0065 1.2667

GP – – 0.011 2.25

LWPR – – 0.040 –

IVN 3.8985 1.6187 0.0079 -1.3606

FAWN-VB 4.2893 3.0230 0.0088 -0.9081

FAWN-ROPD 3.9488 1.1538 0.0123 -1.2196

2.6.4 Experiments without Model Selection

The experiments in this section serve a different purpose than thoseWe compare
FAWN-VB and

FAWN-ROPD with
results from the

literature. Due to
the size of the

experiments IVNs,
which require a

validation loop, were
not considered.

in the previous section. Here, the hyper parameters are fixed over a
wide range experiments (with the exception of slightly larger hidden
layers in one case). Further, the data sets are split into folds and the
generalisation error is estimated on a left out fold, in contrast to a
single train/test split.

These tasks are typically not where neural networks excel and practi-
tioners resort to GPs instead, which is why we compare with them.

All experiments were performed using a similar protocol to the one
used by Hernández-Lobato and Adams (2015): we used single layer
networks with 50 hidden units using the rectifier transfer function,
with the exception of the “Year” data set where 100 hidden units
were used and the official train/test split was used. We report the
negative-log likelihood of the data with means and standard devia-
tions coming from ten different random splits into 90% training and
10% testing data. The parameters of neural networks using FAWN

were drawn from a zero centred Gaussian with standard deviation
0.2.

Training was performed using Adam (Kingma and Ba, 2014) with
a step rate of α = 0.001 until convergence of the training loss. No



2.6 variance propagation for regression 53

separate validation set was used. Gradients were estimated using 128

samples in a single mini batch.

The results for GPs were obtained using a the sum of a linear and a
squared exponential kernel using automatic relevance determination.
We do not provide results for data set with more than 1’500 data
points, since training times where magnitudes higher for GPs in those
cases. Three random restarts were performed. We used GPy (The GPy
authors, 2012–2014) for the experiments.

The results are shown in Table 8 on page 54.
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discussion The results show that FAWN obtains competitive per-
formance over a wide range of regression tasks. These tasks include
ones with very little samples (order of a few hundred) as well as many
samples (several thousands). We note that FAWN-VB improves over its
sampling based counterpart VB in all but two cases and FAWN-ROPD

is always better than the other neural network based approaches, and
inferior to Gaussian processes only twice.

2.7 further approximations

A few more regularisation schemes from the literature can be ap-
proximated using the framework of variance propagation. We present
them here for for completeness, but did not verify them experimen-
tally.

2.7.1 Approximated DropConnect

The noise process proposed by Wan et al. (2013) performs dropout of
weights, i.e.

w̃ = w� ζ

with ζ being a mask of Bernoulli distributed binary variables. The
derivation is symmetrical to the one of dropout, which is why we
leave it out for brevity.

2.7.2 Approximated Gaussian Weight Noise

Gaussian weight noise is popular in the context of recurrent networks
(see e.g. (Graves, 2013)), where regularisers such as weight decay do
not work well (Pascanu et al., 2012). Here, the noise process is defined
as w̃ = w + ε, ε ∼ N(0,σ2I) and similarly done for the bias b̃.

The variance σ2 is typically set via during model selection. The over-
all model is then

a = w̃Tx + b̃.

The expectation of a random variable after application of the corrup-
tion operator is then simply the expectation of the input

E [w̃] = E [w] + E [ε]

= E [w] .

The variance on the other hand is increased:

V [w̃] = V [w] + V [ε]

= V [w] + σ2I.



56 approximate propagation of variance

2.8 conclusion

In this chapter, we have contributed a general method of propagating
random variables up to second order through neural networks. Most
importantly, this method does not need sampling operations, which
i) are expensive and ii) lead to highly-variant gradient estimates, po-
tentially slowing down learning.

This has enabled us to approach certain well-known models
and learning methods from novel perspectives. We have shown
theoretically that fast dropout (Wang and Manning, 2013) does not
suffer from issues rendering classical regularisers detrimental to
RNNs. Subsequently, we have experimentally verified its applicability
with sRNNs and RNNs based on LSTM and improved upon the state-
of-the-art in the conducted experiments. Further, we have applied
these techniques to problems with continuous output variables. This
included a deterministic method to perform variational inference for
the learning problem of neural network weights, which distinguishes
it from approaches based on sampling(Graves, 2011). Additionally,
we have proposed to directly optimise the predictive distribution
under an information theoretic constraint on the distribution of the
parameters in a non-Bayesian framework, which yielded results
better than previous NN based approaches and GPs.

2.9 future work

The work in this chapter forms a basis for a wide range of future
research directions. Several other approaches to find approximations
of the Bayesian posterior distributions are tempting, such as finding
the expectations and variances of the parameters via Markov Chain-
Monte Carlo (Neal, 1993) or better approximations of the predictive
distributions yielded by a Laplace approximation (MacKay, 1992). Ob-
viously, the proposed methods from Section 2.6 need to be extended
to use with RNNs.



3
R E D U C I N G S E Q U E N C E S T O P O I N T S

3.1 introduction

Machine learning problems are traditionally formulated as the esti- The text in this
section has appeared
in parts previously
in Bayer et al.
(2012).

mation of a function f : Rm → Rn. In many areas, such as text, audio,
video, robotics, bio informatics, signal processing etc., the input data
is obtained in a sequential form. One reason for this might be a sensor
which is queried with a certain frequency. There are many scenarios
this is not due to any temporal nature of the data, e.g. text or an event
list of credit card transactions (Bayer, 2002).

A manual mean to deal with this issue is that of manual feature ex-
traction. In that case, domain experts devise features of the input data,
that is numerical values which are believed to be informative for the
task at hand. These are then fed into a subsequent off-the-shelf regres-
sor or classifier. While this requires domain knowledge and is rather
time consuming, very good results are usually achieved.

This chapter investigates an alternative, automated route. Recurrent We advocate the use
of RNN-based
architectures to
reduce sequential
data to fixed-length
representations.

sequence reduction, a framework for finding fixed length representa-
tions of sequential data, is introduced. The combination of recurrent
neural networks, pooling operators, finely tuned initialisations and
various objective functions leads to efficient methods of embedding
sequential data into a feature space.

These can be used twofold. Firstly, exploratory data analysis can
be performed, e.g. by visually inspecting the features. Secondly, the
resulting embeddings will live in a vectorial space in which stan-
dard methods are applicable: any discriminative algorithm tailored
towards the static domain can thus be stacked on top. If it happens
to be differentiable, the resulting system can be fine tuned further by
making use of the chain rule and a gradient-based optimiser.

Results on a wide range of data sets task are presented. We also anal-
yse the obtained embeddings visually.

3.2 related work

Only a few principled approaches exist for extracting fixed length The text in this
section has appeared
in parts previously
in Bayer et al.
(2012).

features from sequential data. If a distance measure was given, sim-
ilarity matrix-based techniques (Kruskal, 1964) were straightforward

57
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to use. Dynamic time warping (Berndt and Clifford, 1994) works well
for smooth time series but does not capture any underlying dynam-
ics. Unsupervised feature extraction from time series is widely used
for denoising and dimensionality reduction. Classic approaches, such
as the discrete Fourier transform or matrix decompositions like PCA
(leading to singular spectrum analysis (Vautard et al., 1992)) can only
be applied to finite-length time windows.

Another approach is to identify a model (such as a polynomial or
a linear dynamical system) for each sample in the data set and use
the estimated parameters as features (see the work done by Li and
Prakash (2011)). This essentially ties the feature dimensionality to the
number of parameters of the model making it a non-free parameter.
Also, depending on the complexity of the task and the size of the
data set, estimation of a single model for each sample is not feasible
in reasonable time.

One idea to circumvent the latter is to train a global model for all
samples and to use the sample specific derivatives of the objective
with respect to the parameters as features for that sample. Fisher ker-
nels (Jaakkola and Haussler, 1998) exploit this: the features for a se-
quence are the elements of the gradient of the log-likelihood of this
sequence with respect to the model parameters. This choice can pre-
sumably be very bad: if the distribution represented by the trained
model closely resembles the data distribution the gradients for all se-
quences in the data set will be nearly zero. A recent paper by van der
Maaten (2011b) alleviates this problem by exploiting label informa-
tion and employing ideas from metric learning. Obviously, this only
works if class information is available. Further, the dimensionality of
the embedding space becomes tied to that of the parameter space of
the model as well.

In principle, any sequential clustering technique can be used as a
feature extractor by treating the scores (e.g. the posterior likelihood
in case of a generative model or the distances to a node of a self-
organising map) as features.

Using recurrent architectures for learning distributed representations
of sequences goes back at least to Pollack (1990). A related approach
are recursive auto encoders (Socher et al., 2011). RNNs have
previously been trained with unsupervised criterions in this regard
by Klapper-Rybicka et al. (2001). More recently, Sutskever et al.
(2014) proposed a supervised approach: an input sequence is directly
mapped to an output sequence, where the hidden layer at the last
time step of the input serves as an “information bottleneck”. In a
similar manner, Fabius et al. (2014) compress a sequence to a fixed
length representation using VI as a guiding principle. Consequently,
the resulting model is based on probabilistic principles, allowing a
wide range of operations.
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3.3 framework

Similar to Collobert et al. (2011) we reduce output sequences to a sin- The text in this
section has appeared
in parts previously
in Bayer et al.
(2012).

gle vector with a pooling operation. A pooling operation is a function
ρ : X+ → X that reduces an undefined number of inputs to a single
output of the same set, e.g. taking the sum or picking the maximum.
If our pooling operation is differentiable as well, we can use it as a
gateway to arbitrary objective functions that are defined on real vec-
tors.

Given an RNN f parameterised by θ, a data set D = {xi}, a pooling The output sequence
of an RNN is reduced
to a fixed-length
vector via a pooling
operation. This
architecture can be
trained by
gradient-based
schemes.

operation ρ and an objective function L we proceed as follows.

1. Process input sequences Dtrain = {ix1:T }Ni=1 to produce output
sequences {iy(K)

1:T }.

2. Use a pooling operator ρ to reduce the output sequences to a
point via ie = ρ(iy(K)

1:T ).

3. Calculate the objective function L({ie}).

Since the whole calculation is differentiable, we can evaluate the
derivative of the objective function with respect to the parameters of
the RNN via

∂L

∂ρ

∂ρ

∂f

∂f

∂θ
. (27)

Subsequently, we can use gradient-based optimisation to find a set of
parameters θ which leads to good embeddings {ei}.

Note that this method has two appealing characteristics from a com-
putational perspective: first, finding a descriptor for a new sequence
has a complexity in the order of the length of that sequence. Further-
more, the memory requirements for that descriptor are invariant of
the length of the sequence and can thus be tailored towards memory
requirements. Indeed, millions of such descriptors can easily be held
in main memory to allow fast similarity search.

We chose the criterions in a way that no metric in the sequence space
is assumed, since this is what we essentially want to learn from the
data. Four unsupervised and one supervised criterion are considered:
We will first establish randomly initialised and untrained RNNs as a
baseline. We will then train RNNs to do one-step prediction, max-
imise information with a regularisation penalty and use an objective
that encourages lifetime and population sparsity in the found fea-
tures. For the supervised case, we consider an objective function that
encourages samples of the same class to be close in the embedding
space.



60 reducing sequences to points

y(0)
T−2 y(0)

T−1 y(0)
T

a(1)
T−2

y(1)
T−2

a(1)
T−1

y(1)
T−1

a(1)
T

y(1)
T

a(2)
T−2

y(2)
T−2

a(2)
T−1

y(2)
T−1

a(2)
T

y(2)
T

ρ

e

. . .

. . .

. . .

Figure 7: Illustration of the sequence reduction framework. Compare Fig-
ure 2. The pooling operator is shown as a black diamond. The se-
quence is scanned completely, after which internal representations
(post-synaptic output in this case, but it can vary) are fed into the
pooling operator shown as a black diamond. The pooling operator
does not take the ordering of its inputs into account. The result is
then the embedding e.
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3.4 supervised sequence reduction with nca

Goldberger et al. (2004) note that metrics and features are actually The text in this
section has appeared
in parts previously
in Bayer et al.
(2012).

closely related: by measuring pairwise distances between the data
points, the data can be embedded into a metric space. A Mahalanobis
distance is learned by mapping the high-dimensional input space to
a low-dimensional embedding space in which k-nearest neighbour
classification performance is maximised. Since the hard assignment of
k neighbours is relaxed to a soft probabilistic neighbouring scheme,
the resulting objective function is differentiable with respect to the
embedding.

Similar to Salakhutdinov and Hinton (2007), we use a different model
than a linear map to represent the embedding function, that is RNNs.

3.4.1 Neighbourhood Component Analysis

The central assumption of Neigbourhood Component Analysis (NCA)
(Goldberger et al., 2004; Salakhutdinov and Hinton, 2007) is that items
of the same class lie near each other on a lower-dimensional manifold.
To exploit this, we want to learn a function f : X+ → Y from the se-
quence space X+ to a metric space Y that reflects this. Recall that in
our case, the embedding function is ρ(f(x1:T ; θ)). Given a set of se-
quences with an associated class label {ix1:T , iz} mapped to a set of
embeddings {ie}, we define the probability that a point a selects an-
other point b as its neighbour based on Euclidean pairwise distances
as

pab =
exp(−||ae − be||22)∑
z6=a exp(−||ae − ze||22)

,

while the probability that a point selects itself as a neighbour is set
to zero: paa = 0. The probability that a point i is assigned to class
k depends on the classes of the points in its neighbourhood p(zi =
k) =

∑
j pijI(zj = k), where I is the indicator function. The overall NCA aims to project

points of the same
class close to each
other.

objective function is then the negative expected number of correctly
classified points

Lnca = −
∑
i

∑
j

pijI(ci = cj).

Although NCA has a computational complexity that is quadratic in
the number of samples in the training set for training, using batches
containing roughly 1000 samples made this negligible. We did not
observe any decrease of test performance.
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3.4.2 Classifying Sequences

We first train an RNN on our data set with the NCA objective func-
tion. Afterwards, all training sequences are propagated through the
network and the pooling operator to obtain embeddings {ie} for each
of them. We then build a nearest neighbour classifier for which we
use all embeddings of the training set. A new sequence x̃1:T is classi-
fied by first forward propagating it through the RNN and obtaining
an embedding ẽ. We then find the k-nearest neighbours and obtain
the class by a majority vote.

3.4.3 Experiments

To show that our algorithm works as a classifier we present results on
several data sets from the UCR Time Series archive (E. et al., 2006). We
refer the reader to the corresponding web page for detailed descrip-
tions of each data set. The data sets from UCR are restricted in the
sense that all are uni-variate and of equal length. Since our method
is well suited to high-dimensional sequences, we proceed to the well
known TIDIGITS benchmark afterwards.

3.4.3.1 UCR Time Series Data

The hyper parameters for each experiment were determined by ran-
dom search. We did 200 experiments for each data set, reporting the
test error for those parameters which performed best on the training
set. The hyper parameters were the number of hidden units, the used
transfer function (sigmoid, tangent hyperbolic rectified linear units or
LSTM cells), the optimisation algorithm (either RPROP or LBFGS), the
pooling operator (either sum, max or mean), whether to centre and
whiten each sequence or the whole data set and the size of the batch
to perform gradient calculations on.

The training and test performances stated are the average probabili-
ties that a point is correctly classified by the stochastic classifier used
in the formulation of NCA. We also report the error for 1-nearest neigh-
bour classification on the test set as 1NN with the training set as a
data base to perform nearest neighbour queries on. 1NN-DWT corre-
sponds to the best DWT classification results on the UCR page. If a
certain data set from the UCR repository is not listed, performance
was not satisfactory. We attribute this to small training set sizes in
comparison with the number of classes with which our method seems
to struggle. This is not at all surprising, as the number of parameters
is sometimes exceeded by the number of training samples.
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Table 9: Results of NCA with RNNs on several data sets from the UCR archive.

Data set Train Test our 1NN DWT 1NN

Wafers 0.984 0.987 0.987 0.995

Two Patterns 0.992 0.996 0.99725 0.9985

Swedish Leaf 0.797 0.772 0.848 0.843

OSU Leaf 0.684 0.457 0.579 0.616

Face (all) 0.938 0.833 0.647 0.808

Synthetic Control 0.999 0.962 0.96 0.983

ECG 0.999 0.846 0.88 0.88

Yoga 0.684 0.73 0.699 0.845

discussion While the NCA in conjunction with RNNs is able to
achieve non-trivial performance, it is outperformed by simple nearest
neighbour techniques. We want to stress however, that nearest neigh-
bour has an unfair advantage here: the sequences are all of equal
length and one-dimensional. Further, plain nearest-neighbour is not
able to generalise to unknown dynamics. We will move to a data
set in the next section which is a better battleground for RNN-based
methods.

3.4.3.2 TIDIGITS Data

TIDIGITS (Leonard and Doddington) is a data set consisting of spo-
ken digits by adult and child speakers. We restricted ourselves to
the adult speakers. The audio was preprocessed with mel-frequency
cepstrum coefficient analysis to yield a 13-dimensional vector at each
time step.

During training we went along with the official split into a set of 2240

training and 2260 testing samples. 240 samples from the training set
were used for validation. We trained the networks until convergence
and report the test error with the parameters achieving the best vali-
dation error. We used 40 LSTM cells to get 30 dimensional embeddings.
For comparison, we also trained LSTM-RNNs of similar size with
the cross entropy error function for comparison. Since both methods
yield discriminative models, we can report the the average probabil-
ity that a point from the testing set is correctly classified, which was
97.9% for NCA and 92.6% for cross entropy.

discussion In direct comparison, NCA in combination with RNNs

has a clear advantage over the classical loss function, binary cross-
entropy. Our method also naturally yields embeddings which can be
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Figure 8: The output of our method after reducing the dimensionality of
the embeddings with t-SNE (van der Maaten and Hinton, 2008) 1.
The data is arranged into mostly distinct clusters. Interestingly, the
NCA objective also makes it possible for points of the same class to
arrange in several clusters. This is not the case for objectives that
try to separate the data with a functional form such as a hyper-
plane.

visually investigated. For a visualisation of the found embeddings
and a small discussion, see Figure 8.

3.5 unsupervised sequence reduction

Most of the data available is not labelled. At the time of writing, it is
unproblematic to acquire huge repositories of sensory data, log files,
user generated content or publicly available texts. Yet, the process of
labelling data, (i.e. the expert-based connection of it with side infor-
mation) requires either direct human intervention or an automated
process based on a model. Consequently, we can expect that most
of the data available will always be unlabelled. To distil this data
into useful information, unsupervised methods are required which

1 t-Distributed Stochastic Neigbourhood embedding (van der Maaten and Hinton,
2008) is a method to embed high-dimensional spaces in 2D or 3D to be easily vi-
sualizable. This is done by assuming distances to be distributed according to a Stu-
dent’s t in the low and a Gaussian distribution in the high-dimensional space. Local
structure is well preserved as long distances in the high-dimensional space are less
precisely modelled than short ones.
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attempt to find reoccurring patterns, cluster data into groups and
find distributed and possibly sparse representations. This is the main
topic of this section.

3.5.1 Objective Functions

We will revisit several objective functions from the literature which
have so far been applied to static data only. Due to the flexibility of
our framework, these are easily integrated.

3.5.1.1 Randomly initialised RNN

All RNNs were initialised randomly by sampling from a Gaussian RNNs are initialised
similar to echo state
networks.

distribution N(0,σ2) and then setting the spectral radius as described
in Section 1.3.3.

For finding a representation, we performed the pooling operation on
the hidden states over time. Similar to Echo-State Networks (Jäger
et al., 2003), we assume that the dynamics in the network will suffice
to form descriptors carrying important information.

3.5.1.2 One-step prediction RNN

Predicting the next time step of a sequence is a way of using an The RNNs are
trained as a
generative model of
the data, predicting
the next time step.

RNN as a generative model, e.g. as done by Graves (2013). Essen-
tially, the distribution p(xt+1|x1:t) is estimated by an RNN the out-
puts of which can be interpreted as the sufficient statistics of p. Given
that the outputs a(K)1:T are once more transformed by a non-linearity,
e.g. a softmax or a sigmoid, multinomial or Bernoulli distributions
can be modelled. In our case, we restrict ourselves to linear outputs
(i.e. f(K)(ξ) = ξ ⇒ a(K)t = y(K)

t ) which represent the expectation of
a Gaussian distributed random variable N(y(K)

t ,σ2) for some fixed
variance. Maximising the likelihood of observed data then results in
minimising the negative log-likelihood which is equivalent to the sum
of squares error. Let the dimensionality of each input at a given time
step be κ. The loss is then

Losp =

N∑
i=1

T−1∑
t=1

κ∑
c=1

(iyt,c − ixt+1,c)
2,

where we let ixt,i and iyt,i denote the c’th component at the t’th time
step of sample i of the input or output respectively.

The reasoning behind this approach is that similar sequences will
also have similar activities in the hidden activations, since these are
ultimately responsible for modelling them. Henceforth, we pool each
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hidden unit along the time axis to find an embedding ie for sequence
ix.

3.5.1.3 Regularised Information Maximisation

Regularized Information Maximization (RIM) was originally intro-The RNNs are
trained to assign the

data to one of a set
of clusters.

duced as a discriminative clustering technique by Gomes et al. (2010):
the multinomial distribution over cluster labels given an input p(z|x)
is modelled with an affine map in its simplest case. The training
objective is to maximise the mutual information between the input
x and the cluster assignment z, MI[z, x]. All parameters but the
constant offset of the output (“bias”) are regularised with strength λ
by a penalty term R:

Lrim = MI[z, x] − λR(θ \ {b(K)}).

It was empirically observed that different values for λ give rise to
different numbers of clusters. Since the unregularised bias can draw
a single component of p(y|x) arbitrarily close to zero, only a subset
of the possible outputs are actually used by the algorithm. Thus, the
number of clusters need not be fixed beforehand (as with most clus-
tering techniques such as K-Means) but is related to the continuous
choice of λ.

Given a model p(z|x, θ), we can calculate the quantities empirically
by aggregating over the training set. First note that

MI[z, x] = H[p̂(z|θ)] −
1

N

∑
i

H[p(z|ix, θ)],

where H[q] denotes the entropy of q. The probability of cluster z be-
ing selected marginalised over the input space can be approximated
via p̂(z|θ) ≈ 1

N

∑
i p(z|xi, θ). For R, we use an L2 term as in the origi-

nal article.

To obtain a model of p(z|x), we apply a softmax activation function
to the found embeddings {ie}. This essentially leads to our represen-
tation being related to a distribution over local representations, the
corresponding cluster labels.

3.5.1.4 Sparse Filtering RNN

Sparse filtering was introduced by Ngiam et al. (2011) as a mean of ex-The RNNs are
trained to find

representations
which are sparse

over the data
samples and the

dimensions of the
embedding.

tracting features from image patches. The idea is to explicitly punish
lifetime and population sparsity. For one, a specific feature should be
turned off (which means that it is zero) for most samples. Conversely,
a specific sample should only have a little amount of turned on fea-
tures. To avoid degenerate solutions (e.g. by turning off all features),
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the features are forced into competition by a joint normalisation fac-
tor: The c’th component of the embedding is first normalised by its
L2-norm across the whole data set:

iẽc =
iec∑
j
je2c

,

and then inserted into the sparse filtering objective:2

Lsf =

N∑
i=1

∥∥∥∥ iẽ

‖iẽ‖2

∥∥∥∥
2

.

The reader is referred to the original paper for a more detailed moti-
vation of the construction of the loss.

In our case we chose to obtain the features by pooling over the out-
puts of the RNN: ie = ρ(iy(K)

1:T ).

3.5.2 Experiments

All experiments were conducted by performing a random search over
the architecture and details of the training procedure, as advocated
by Bergstra and Bengio (2012). One architecture was specified by the
choice of pooling operation and the choice of transfer function in
the hidden layer. The transfer functions were either from the tanh,
softsign, rectifier or softplus. For pooling operations, we used max,
sum, mean and stochastic. The batch sizes were sampled from the
set {N8 , N4 , N2 ,N}, where N is the size of the training set. The standard
deviation for picking the initial weights was selected uniformly from
[0.005, 1], the weight of the sparsity penalty was drawn uniformly
from the interval [10−7, 0.1]. The number of hidden units and the
embedding dimensionality were selected data set wise.

To achieve more efficient training, we prefixed all sequences with ze-
roes until they reached equal length; despite performing more compu-
tation, this allows the reduction of all the dot products involving Win

and Wout over all time steps and samples in a batch to a single one
each; this is particularly useful for implementations in interpreted
languages such as Python and resulted in major speedups.

In all experiments, we used rmsprop with Nesterov momentum for
optimisation. The step rate was set to 0.0001, the momentum to 0.9
and the decay to 0.9. We found these values to be fairly robust in all
cases.

2 We deviate from the original formulation by using the L2 norm instead of the theo-
retically more sound L1 norm, since we found it to yield substantially better results.
The authors of the original paper did so as well, according to their public code
repository.
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We conducted a fixed number of trials for each criterion on each data
set allowing at most 15 passes over the training data. During training,
we monitored the performance of the subsequent classification task
by estimating the generalisation error via performing logistic regres-
sion either on validation data (if available) or stratified splits of the
training data. The parameters which performed best were chosen for
the final evaluation, in which we estimated another logistic regres-
sion model with the same hyper parameters on the whole training
set. To make sure that a model trained on an objective does not really
consist of a very good model found by random initialisation, we only
include those trials where the classification performance improved
during optimisation.3

3.5.2.1 UCR Time Series

The UCR time series archive (Keogh et al., 2006) provides a num-
ber of data sets to evaluate classification and clustering algorithms
on. The data sets are all one dimensional and have a fixed length;
methods such as dynamic time warping excel on these time series,
while RNNs typically achieve less than state of the art results, even
when trained discriminatively. Nevertheless, we chose to include the
results since they give an intuition on how well the different criteri-
ons perform over a wide range of tasks. It is striking that no clear
winner emerges, albeit it appears that the rectifier transfer function
dominates the results. For all experiments, 32 hidden and 16 output
units were used. Results are shown in Table 10.

3.5.2.2 TIDIGITS

We prepared the data in the same way as in Section 3.4.3.2. We chose
to use 64 hidden and 32 output units. The results are summarised in
Table 11.

3.5.2.3 Characters

The online handwritten character data set consists of 2858 time se-
ries of three variates: the x and y directions of the movement of a
pen as well as its pressure against the table. Each sample represents
one of 20 handwritten characters. While the data is not balanced, the
variations are negligible. 64 hidden and 32 output units were used in
all experiments. We selected a random stratified 20% of the data for
testing and the rest for training. Results are summarised in Table 12.

3 Otherwise a good result from random initialisation would have been attributed to
another method.
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Data set Method Error ρ σ

Two Patterns RI 0.352 stochastic rectifier

OSP 0.165 mean rectifier

SF 0.271 stochastic softsign

RIM 0.287 max tanh

Beef RI 0.6 mean tanh

OSP 0.63 mean rectifier

SF 0.13 stochastic tanh

RIM 0.26 stochastic rectifier

CBF RI 0.23 mean rectifier

OSP 0.29 mean rectifier

SF 0.14 mean rectifier

RIM 0.1 max rectifier

Lighting 2 RI 0.38 mean tanh

OSP 0.36 mean rectifier

SF 0.31 stochastic tanh

RIM 0.34 mean rectifier

Lighting 7 RI 0.53 mean rectifier

OSP 0.6 mean rectifier

SF 0.42 stochastic rectifier

RIM 0.45 max rectifier

ECG RI 0.29 mean rectifier

OSP 0.34 stochastic rectifier

SF 0.24 stochastic tanh

RIM 0.23 max rectifier

Table 10: Test errors of our methods on a subset of the UCR data base. The
method with the best test error is shown in bold face.

Method Error ρ σ

SF 0.167 mean rectifier

RI 0.0637 stochastic rectifier

OSP 0.0699 mean softplus

RIM 0.1434 mean softplus

NCA (Section 3.4) 0.021 max LSTM

CE (Section 3.4) 0.079 max LSTM

Table 11: Test errors of our methods on TIDIGITS compared with two super-
vised approaches, RNNs with LSTM units trained on the neigh-
bourhood component analysis and the cross entropy objectives.
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Method Error ρ σ

RI 0.014 max rectifier

OSP 0.017 stochastic rectifier

SF 0.033 mean rectifier

RIM 0.025 sum tanh

Fisher Kernels 0.0446

Discriminative Fisher Kernels 0.0326

Table 12: Test errors of our methods on the Characters data set. We also
mention other results due to van der Maaten (2011a), following a
slightly different protocol: instead of our fixed train/test split with
cross validation performed on the train split only, cross validation
on the whole data set is performed in their case. Yet, our embed-
ding dimensionality is much greater, 16 compared to 5 and 10.

3.5.3 Discussion

Perhaps the most striking result of this work is that the randomly
initialised networks perform unexpectedly good. Put even more dras-
tically, for two data sets TIDIGITS and Characters, all the objectives
we evaluated seem to actually hurt performance. Nevertheless, ran-
dom initialisation fails on certain tasks on the UCR time series where
other methods reach good performance. Consequently, no clear win-
ner emerges from this zoo of methods; this is backed up by visual-
isations of the found embeddings, where different methods lead to
different qualities of separation of the data. We show plots of the em-
beddings found on the TwoPatterns and CBF data sets from the UCR
time series archive in Figure 9. We also show the features found by
random initialisation in the TIDIGITS data set in Figure 10. While the
performance is quite different, the t-SNE visualisations found by the
other methods do not substantially differ.

sequential jacobian The sequential Jacobian is a mean of in-
specting the sensitivity of certain outputs of an RNN with respect
to its inputs (Graves et al., 2008). Given we want to find out what a
specific dimension in our embedding space is responsible for, we can
compute ∂ei

∂xt
for all inputs of interest. In general, this will be a func-

tion of the parameters of the networks as well as the current input
sequence.

We show several representative sequential Jacobians in Figure 11.

nearest neighbours The notion of similarity is best qualita-
tively evaluated by inspecting examples which lie close together in
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(a)

(b)

Figure 9: Plots of the embeddings found after reducing the dimensionality
with t-SNE (van der Maaten and Hinton, 2008): RI-RNN, OSP-
RNN, RIM-RNN and SF-RNN (clockwise) on the (a) TwoPatterns
and (b) CBF data sets from the UCR time series archive. The plots
illustrate that quite some variation is present within the different
embeddings found and a sensitivity to different phenomena in
the data seems apparent which diversifies the embeddings. The
performance of the methods is also quite varying; in the case of
RIM-RNN, practically no useful structure is found for the classifi-
cation of TwoPatterns. With CBF however, it very nicely recovers a
plausible clustering of the data.
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Figure 10: Visualisation of the embeddings found by a randomly initialised
RNN on the TIDIGITS data set after reducing the dimensionality
with t-SNE (van der Maaten and Hinton, 2008).

(a)

(b)

(c)

Figure 11: (a) A sample from the TIDIGITS data set. Sequential Jacobians
of four features on that sample from (b) a randomly initialised
RNN and (c) trained with one-step prediction. The former has
two features with a very short attention span which is caused by
the stochastic pooling function which allows sudden halts. Con-
versely, the latter is focusing its attention to distinct regions of
the input. Thanks to the pooling we can see that both networks
can distribute their attention over the whole input, thus reduc-
ing but not eliminating the problem of hard to learn long-term
dependencies.
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Figure 12: The first dimension of samples from the Characters data set. In
both plots, the first row is a randomly selected sample; the re-
maining rows are its nearest neighbours. We randomly picked
two samples and plotted one of the two spatial dimensions of the
sample itself (top row) and those of its five nearest neighbours
according to the Euclidean distance of the embeddings found by
a Sparse Filtering RNN. Note that the similarity is preserved even
though sequences are not perfectly correlated along time.

feature space. In Figure 12 we show one input dimension of close
samples from the characters data set.

3.6 conclusion

This chapter has cast already existing ideas (Klapper-Rybicka et al.,
2001) how to use objective functions tailored towards static data for
sequences into a wider framework. For that we have adopted several
objective functions and performed extensive empirical evaluations,
covering qualitative and quantitative aspects. We have also explored
the space of pooling operators, which lead to quite distinct learning
performance depending on the task.

In the unsupervised case, we conclude that none of the proposed
methods qualifies as superior for sequence reduction in an unsuper-
vised setting. The experiments in Section 3.5 have shown that the
success of a method can vary quite a bit over the range of data sets.
In the presence of label information, i.e. in the supervised case, we
have shown that reducing sequences to points can lead to much bet-
ter classification performance than plain discriminative training of
RNNs.
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VA R I AT I O N A L I N F E R E N C E O F L AT E N T
S E Q U E N C E S

4.1 introduction

One typical application for RNNs is to model probability distributions The text in this
section has appeared
in parts previously
in Bayer and
Osendorfer (2014).

over sequences, i.e. p(x1:T ). This is done by writing the distribution
in cascade form,

p(x1:T ) =
T−1∏
t=0

p(xt+1|x1:t),

where x1:0 = ∅. Each p(xt+1|x1:t) is then represented by the output
of an RNN at a single time step, identifying each of its components
with the statistics of the distribution. A simple example is that of a
Bernoulli, i.e.

p(xt+1,c = 1|x1:t) = y(K)
t,c (28)

where xt+1,c corresponds to the c’th component of the t+ 1’th time
step of x with c = 1, . . . ,ω and t = 1, . . . , T . Each yt,c(x1:t) is the c’th
output of some RNN at time step t, constrained to lie in the interval
(0, 1), e.g. by letting the output transfer function f(K) be the logistic
sigmoid. Learning such an RNN then boils down to minimising the
negative log-likelihood of the data with respect to the parameters of
the network.

This framework gives practitioners a powerful tool to model rich
probability distributions over sequences. A common simplification is Practitioners

typically assume the
output variables to
be independent; this
is clearly wrong in
many situations.

a naïve Bayes assumption that the individual components factorise:

p(xt+1|x1:t) =
∏
c

p(xt+1,c|x1:t).

While sufficient for many applications, reintroduction of dependency
among the components of xt leaves room for improvement. This is
especially true for sequences over spaces which are high-dimensional
and tightly coupled.

In this chapter, we propose to consider adding latent variables
similar to Tang and Salakhutdinov (2013) to the network. Using
SGVB (see the works of Rezende et al. (2014); Kingma and Welling
(2013) and Section 1.4.3.2) as an estimator, we train RNNs to model
high-dimensional sequences.

75
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4.2 related work

The approach taken by Graves (2013) is to use a mixture distribu-
tion for p(xt|x1:t−1). Arguably powerful enough to model any depen-
dency between the components of xt, a drawback is that the number
of parameters scales at least linearly with the number of chosen mix-
ture components.

Models based on restricted Boltzmann machines and varia-
tions (Boulanger-Lewandowski et al., 2012, 2013; Sutskever et al.,
2008) provide a solution to this as well, yet come with tighter
restrictions on the assumptions that can be made. E.g. RBMs are
restricted to model data using posteriors from the exponential
family (Welling et al., 2004), make use of an intractable objective
function and require costly MCMC steps for learning and sampling.

4.3 methods

We propose to combine SGVB and RNNs by making use of an sRNNThe text in this
section has appeared

in parts previously
in Bayer and

Osendorfer (2014).

for both the recognition model q(zt|x1:t−1) and the generating model
p(xt|z1:t).

4.3.1 The Generating Model

More specifically, the generating model is an sRNN where the latentThe generative
model is an RNN

passing over a
sequence of standard

normal samples.

variables form additional inputs:

a(1)t = xtW
(k)
in + y(1)

t−1W(1)
rec + b(1) + ztW

′g
in , (29)

which replaces Eq. (2) on page 8 for the first layer. We let the last layer
y(K)
t represent the necessary statistics to fully determine p(xt+1|x1:t).

For the remainder of the chapter, we let the hidden layers y(k)
1:T ,k =

1, . . . ,K− 1 be denoted as a single sequence by h1:T .

Note that the model reduces to an sRNN as soon as we remove any
latent variables, e.g. by setting W ′gin = 0. Hence, such a model gener-
alises sRNNs.

The only quantities bearing uncertainty in the calculation of h1:T are
the latent variables z1:T , as x1:T stems from the data set and for all t,
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ht is a deterministic function of x1:t and z1:t. The resulting factorisa-
tion of the data likelihood of a single sequence p(x1:T ) is then

p(x1:T ) =
T−1∏
t=0

p(xt+1|x1:t)

=

∫
z1:T

p(z1:T )
T−1∏
t=0

p(xt+1|x1:t, z1:t,����zt+1:T )dz1:T

=

∫
z1:T

p(z1:T )
T−1∏
t=0

∫
ht

[
p(xt+1|x1:t, z1:t,ht)

p(ht|x1:t, z1:t)
]
dhtdz1:T ,

where we have made use of the fact that xt+1 is independent of zt+1:T .
Since ht is a deterministic function of x1:t and z1:t, we note that
p(ht|x1:t, z1:t) follows a Dirac distribution with its mode given by
y(K)
t .

Thus, the integral over the hidden states is replaced by a single point;
we make the dependency of ht on both z1:t and x1:t explicit.

p(x1:T ) =
∫

z1:T
p(z1:T )

T−1∏
t=0

p(xt+1|ht(x1:t, z1:t))dz1:T . (30)

The corresponding graphical model is shown in Figure 13. Even
though the determinism of ht might seem restrictive at first, we
will argue that it is not. First, note that the sequence of hidden
states h1:T is deterministic given x1:T and z1:T and consequently,
p(h1:T |x1:T , z1:T ) will follow a Dirac distribution. Marginalising out
z1:T will however lead to a universal approximator of probability
distributions over sequences, analogously to the argument given in
Section 1.4.3.2.

An additional consequence is that we can restrict ourselves to prior Priors independent
over time are
universal in the
sense of
representational
power.

distributions over the latent variables that factorise over time steps,
i.e. p(z1:T ) =

∏
t p(zt). This is much easier to handle in practise,

as calculating necessary quantities such as the KL-divergence can be
done independently over all time steps and components of zt.

Despite of this, the distribution over h1:T will be a Markov chain and
can exhibit stochastic behaviour, if necessary for modelling the data
distribution.



78 variational inference of latent sequences

zt zt+1 zt+2

ht ht+1 ht+2. . . . . .

xt xt+1 xt+2

Figure 13: Graphical model corresponding to the factorisation given in
Eq. (30). The hidden states ht are shown as diamonds to stress
that they are no source of stochasticity. Despite of this, marginal-
ising out z1:T makes h1:T stochastic.
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4.3.2 Variational Inference for Latent State Sequences

The derivation of the training criterion is done by obtaining a vari- Applying VI to the
latent variables leads
to a training method
for the model
parameters.

ational upper bound on the negative log-likelihood via Jensen’s in-
equality, where we use a variational approximation q(z1:T |x1:T ) ≈
p(z1:T |x1:T ). Let q = q(z1:T |x1:T ) be a shorthand, then:

− logp(x1:T )

=− log
∫

z1:T

q

q
p(z1:T )

T−1∏
t=0

p(xt+1|ht(x1:t, z1:t))dz1:T

6KL(q|p(z1:T )) − Ez1:T∼q[

T−1∑
t=0

logp(xt|ht−1, z1:t)] (31)

:=LSTORN

In this work, we restrict ourselves to a standard Normal prior of the
form

p(z1:T ) =
∏
t,i

N(zt,i|0, 1),

where zt,i is the value of the i’th latent sequence at time step t.

The recognition model q will parameterise a single mean µt,i and
variance σ2t,i for each time step and latent sequence in this case. Both
will be represented by the output of a recurrent net, which thus has
2ω outputs of which the first ω (representing the mean) will be un-
constrained, while the second ω (representing the variance) need to
be strictly positive. Given the output ry1:T of the recognition RNN rf,
we set

µt,i =
ryt,i,

σ2t,i =
ry2t,i+ω.

Note that the square ensures positiveness.

Going along with the reparameterisation trick of Kingma and Welling
(2013), we will sample from a standard Normal at each time step, i.e.
εt,i ∼ N(0, 1) and use it to sample from q via zt,i = µt,i + σt,iεt,i.
Given the complete sample sequence z1:T we calculate the two terms
of Equation (31). The KL-divergence can be readily computed, while
we need to pass z1:T through the generating model gf which gives
− logp(x1:T |z1:T ). The computational flow is illustrated in Figure 14.

4.3.3 Comparison to RNNs

An important question is whether the proposed model offers any the- STORNs generalise
RNNs.
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xt xt+1 xt+2

rht
rht+1

rht+2

ryt
ryt+1

ryt+2

zt zt+1 zt+2

ght
ght+1

ght+2

gyt
gyt+1

gyt+2

. . . . . .

. . . . . .

Figure 14: Diagram of the computational dependencies of STORNs. Each node
of the graph corresponds to a vectorial quantity. The different
types of nodes shown are data (magenta), the recognition model
(cyan), samples (green) and the generating model (teal). Note that
the outputs of the recognition model ryt depict the statistics of
q(zt|x1:t), from which the sample zt (green) is drawn. The output
of the generating model, gyt is used to represent p(xt+1|x1:t).
The red arrow expresses that this prediction is used to evaluate
the loss, i.e. the negative log-likelihood.

oretical improvements over RNNs with no latent variables. The approx-
imation capabilities (with respect to probability distributions) of RNNs

result from the choice of likelihood function, i.e. the way the density
of the observations at time step t is determined by the outputs of
the network, yt. See Eq. (28). We have argued in Section 4.1 that a
naïve Bayes assumption reduces the approximation capabilities. One
way to circumvent this is to use mixture distributions (Graves, 2013).
The number of parameters of the latter scales poorly, though: linear
in the number of modes, hidden units in the last layer and output
dimensions.

Both approaches also share the drawback that the stochasticity enter-
ing the computation is not represented in the hidden layers: drawing
a sample is determined by a random process invisible to the network.

STORN overcomes both of these issues. Introducing an additional
mode merely requires an additional change of curvature in the
approximation of F (compare Section 1.4.3.2). This can be obtained
by additional hidden units, for which the number of parameters
scales linearly in the number of hidden units in the incoming and
outgoing layer. Further, the stochasticity in the network is stemming
from z of which the hidden layer is a function.
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4.4 experiments

For evaluation we trained the proposed model on a set of midi music, The text in this
section has appeared
in parts previously
in Bayer and
Osendorfer (2014).

which was used previously (Bengio et al., 2012; Pascanu et al., 2013;
Bayer et al., 2014; Boulanger-Lewandowski et al., 2012) to evaluate
RNNs. We also investigated modelling human motion in the form of
motion capture data (Boulanger-Lewandowski et al., 2012; Sutskever
et al., 2008; Taylor et al., 2006). We employ RNNs with fast dropout
(see Section 2.5) for both the recognition and the generating model.
While we determine the dropout rates for the generating model via
model selection on a validation set, we include them into the pa-
rameter set for the recognition model. In a manner similar to Bayer
et al. (2013) (see Section 2.6.1), we exploit fast dropout’s natural inclu-
sion of variance as the variance for the recognition model, i.e. σ2t,k.
We used Adadelta (Zeiler, 2012) enhanced with Nesterov momen-
tum (Sutskever et al., 2013) for optimisation.

4.4.1 Polyphonic Music Generation

All experiments were done by performing a random search (Bergstra
and Bengio, 2012) over the hyper parameters, where 128 runs were
performed for each data set. Both the recognition and the generating
model used 300 hidden units with the logistic sigmoid as the transfer
function. We report the estimated negative log-likelihood (obtained
via the estimator proposed in (Rezende et al., 2014)) on the test set of
the parameters which yielded the best bound on the validation set.

As expected, STORN improves over the models assuming a factorised
output distribution (FD-RNN, sRNN, Deep RNN) in all cases. Still,
RNN-NADE has a competitive edge throughout the experiments. The
reasons for this remain unclear from the results alone, but the stochas-
tic training and resulting noisy gradients are a viable hypothesis,
since RNN-NADE does not suffer from those. Nevertheless, RNN-
NADE requires an explicit factoristion of the output space Z and does
not benefit from graphics processing units as much since this renders
the computations less parallelisable. It is also tailored towards binary
data–STORN works naturally with all conditional output distributions
for which the likelihood function can be evaluated and differentiated
efficiently. Consequently, we will move on to an experiment with con-
tinuous outputs in the next section.

The results are summarised in Table 13.



82 variational inference of latent sequences

Table 13: Results on the midi data sets. All numbers are average negative log-
likelihoods on the test set, where “FD-RNN” represents the work
Section 2.5; “sRNN” and “RNN-NADE” results are due to Bengio
et al. (2012) while “Deep RNN“ shows the best results by Pascanu
et al. (2013). The results of our work are shown as “STORN“ and
have been obtained by means of the importance sampler described
by Rezende et al. (2014).

Data set STORN FD-RNN sRNN RNN-NADE Deep RNN

Piano-midi.de 7.13 7.39 7.58 7.05 –

Nottingham 2.85 3.09 3.43 2.31 2.95

MuseData 6.16 6.75 6.99 5.60 6.59

JSBChorales 6.91 8.01 8.58 5.19 7.92

4.4.2 Motion Capture Data

The motion capture data set (Hsu et al., 2005; Taylor et al., 2006) is a
sequence of kinematic quantities obtained from a human body during
walking. It consists of 3128 time steps of 49 angular quantities each.

For motion capture data, we chose a Gaussian likelihood with a fixed
standard deviation for the generating model. The recognition model
was chosen to be a biRNN. While the standard deviation was fixed to
1 during training, we performed a binary search for a better value
after training; the resulting estimate of the negative log-likelihood on
the validation set was then used for model selection.

discussion The estimated negative log-likelihood of the data was
15.99. Other models trained on this data set, namely the RNN-RBM,STORN achieves

state-of-the-art
results on the

human motion
modelling task, and

is the first to feature
an accurate estimate

of the marginal
likelihood.

RTRBM and cRBM do not offer a tractable way of estimating the
log-likelihood of the data, which is why there is no direct mean of
comparison respecting the probabilistic nature of the models. In the
case of the former two, the mean squared prediction error is reported
instead, which is 20.1 and 16.2 respectively. Our method achieved an
average MSE of 6.58, which is substantially better than previously
reported results.

The results are summarised in Table 14.

For additional means of comparison, we performed approximateThe probabilistic
nature of STORN

missing value
imputation and

sampling.

missing value imputation of motion capture data. We picked random
sequences of length 60 and replaced all of the 49 channels from time
steps 30 to 40 with standard normal noise. We then performed a
maximum a posteriori point selection of the recognition model, i.e.

argmax
ẑ1:T

q(ẑ1:T |x1:T ),
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Table 14: Results for RTRBM, RNN-RBM and STORN on the motion cap-
ture data. We report the Mean Squared Error (MSE) and negative
log-likelihood (NLL). Lower is better.

STORN RNN-RBM RT-RBM

MSE 6.58 20.1 16.2

NLL 15.99 – –

from which we reconstructed the output via

argmax
x̂30:40

logp(x1:T |ẑ1:T ).

We then fed the reconstruction back into the model, repeating this
iterative scheme ten times. The results of the imputations are shown
in Figure 15.

To demonstrate the generative capabilities of the method, we drew
50 samples from the model after initialising it with a stimulus prefix.
The stimulus had a length of 20, after which we ran the model in
“generating mode” for another 80 time steps. This was done by feed-
ing the mean of the model’s output at time step t into the generating
model at time step t+ 1. Additionally, we drew z20:80 from the prior.
The results are visualised in Figure 16.

4.5 conclusion

We have presented a model class of stochastic RNNs that can be The text in this
section has appeared
in parts previously
in Bayer and
Osendorfer (2014).

trained with a recently proposed estimator, SGVB. The resulting
model fulfils the expectation to greatly improve over the perfor-
mance of sRNNs erroneously assuming a factorisation of the observed
variables. An important take away message of this section is that the
performance of RNNs can greatly benefit from more sophisticated
methods that greatly improve the representative capabilities of the
model.

While not shown here, STORNs can be readily extended to feature com-
putationally more powerful architectures such as deep recurrent net-
works, LSTM or deep transition operators (Hochreiter and Schmid-
huber, 1997; Pascanu et al., 2013). This is mostly due to the fact that
STORN generalises RNNs and therefore all its machinery can be trans-
ferred over. This is not the case for competitive methods such as the
recurrent temporal RBM.

Further, STORNs can be applied in a multitude of ways, with compli-
cated likelihood functions featuring discrete and continuous variables
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noisy

imputed

truth

Figure 15: Illustration of missing value imputation on the motion capture
data set. We show the first 48 of the 49 channels of a random
sample, where time steps 30 to 40 were initialised with random
noise. Subsequently, a maximum a posteriori point estimate of the
latent variables was used to reconstruct the missing parts of the
signals. Each of the plots corresponds to a different joint-angle
of the human body during walking. STORN achieves reasonable
reconstructions on most sensors.

stimulus

sample

Figure 16: Samples from the model trained on motion capture data after
providing a stimulus prefix sequence of 20 time steps. The uncer-
tainty of the learned distribution is visible by the diversity of the
samples; nevertheless, the distribution is rather uni-modal. The
results clearly show that STORN can accurately predict the next
few time steps, after which it mostly continues with a periodic
movement and diverges only in a few cases.
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of various distributions. It is therefore a good fit for a general model
for sequences, especially as it inherits its generality from VAEs.

Still, an apparent weakness seems to be the stochasticity in the objec-
tive function, which is necessary for modelling highly complex dis-
tributions. STORN may very well benefit from advances in the area of
unconstrained optimisation of stochastic loss functions.





5
C O N C L U S I O N A N D F U T U R E W O R K

Verteidige die Seele, das lustige Gebilde
Bis dahin: alle Energie auf die Reflektorschilde.

— Kettcar, “Ich danke der Academy”.

This thesis has explored three quite different options of finding rep-
resentations of sequences: i) extending the units of NNs from points
to random variables summarised by their expectation and variance;
ii) using RNNs to reduce sequences to fixed-length points; iii) finding
probabilistic, latent sequences from data.

The first method, presented in chapter 2, has opened up numerous ap-
plications. We have first shown that in its original form, as proposed
by Wang and Manning (2013), FD is a powerful regulariser for RNNs.
We then used it to obtain predictive distributions with NNs, includ-
ing the fast approximation of a Bayesian method. We also proposed
a heuristic based on information theoretic quantities as an alternative
to Bayesian learning. Future work includes finding a proper justifica-
tion of that heuristic and the application of the proposed methods to
RNNs.

The second contribution is the exploration of a wide framework,
which appears promising in the supervised as well as in the
unsupervised case. While the results obtained are not advancing
the state of the art in terms of predictive performance, the general
framework holds opportunities to find better components.

The third contribution has exploited very recent advances in VI. The
results obtained for the prediction of human motion are among the
best published. There is plenty of room for variations, such as the
probabilistic assumptions as well as the architectures used.
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