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Every construction site is unique. Even if identical buildings or bridges are built, the boundary 

conditions vary from site to site. Therefore, every single construction site needs an individual 

schedule designed only for that specific project based on its individual conditions. Nowadays in the 

construction industry schedules are created manually in a time consuming and laborious way. To 

speed up this demanding process computer-aided approaches such as simulation-based techniques 

have been adapted from the manufacturing industry. However, these techniques are hardly known in 

the construction industry. Therefore, the aim of the author was to enhance, accelerate and, where 

possible, to automate this computer-based scheduling process so gaining more acceptance for it in 

the construction industry. The scheduling problem in the construction industry can be accurately 

described by the resource-constrained project scheduling problem (RCPSP) that is an optimization 

problem to find the one schedule with the shortest makespan under consideration of precedence and 

resource constraints. This is considered as an NP-hard problem and therefore to find the optimal 

solution for it is not possible in polynomial computational time. 

To simulate construction sites and to generate schedules for the RCPSP the constraint-based 

discrete event simulation was used. This simulation is capable to determine single solutions for the 

RCPSP that are however not necessarily optimal, but feasible considering precedence and resource 

constraints. Though, to prepare the necessary input data for the simulation such as tasks, their 

durations, precedence and resource constraints is a time consuming process. 

To enhance this preparation process a software-tool called Preparator was introduced by the 

author that applies the levels-of-detail approach, process patterns and activity packages to organize 

the large number of project tasks and their necessary attributes. With the Preparator the user can 

connect predefined process patterns and activity packages with 3D objects of the building to provide 

a clear overview of the already assigned construction tasks. The use of a 3D model also facilitates the 

creation of precedence constraints between construction tasks that belong to different building 

components.  
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Beside the enhancement of the input data preparation of process simulation, a newly developed 

simulation-based technique that is able to determine float time in one determination step for every 

individual task in the project also taking precedence and resource constraints into account was 

introduced. This was achieved by a methodology that is similar to the forward and backward pass of 

the conventionally used network scheduling techniques. The concept of the newly developed 

backward simulation is basically the same as that of the backward pass – the simulation actually runs 

forward in time but with reversed execution conditions. In order to achieve schedule compatibility 

and so identical schedule sequence in the backward simulation and the forward simulation, every task 

has to start at the same time or later in time than in the forward simulation. To this end, the task 

selection algorithm was set to a priority-based approach to determine the next executable task. The 

priorities of the tasks are assigned according to the completion date of the task in the forward 

simulation. By the introduction of the sequence enforcement constraints further developments were 

made to keep an identical schedule sequence for the backward simulation and the forward simulation. 

By comparing the results of the backward simulation with the schedule of the forward simulation, 

the time difference between the earliest and latest start time of a task represents its total float time 

without exceeding the resource limits at any time during the project. The tasks without float time 

comprise the critical chain of tasks for the respective configuration of resources. A comprehensive 

case study was introduced to illustrate the application of this new approach. 

In order to determine not only one feasible but also near optimal solutions for the RCPSP three 

new heuristic optimization strategies were introduced. The idea behind these approaches is to use an 

algorithm that swaps the position of certain task pairs within the schedule and so it is capable of 

traversing through the search space of the RCPSP. Furthermore, it was important that applying a swap 

of tasks within the program results in a new schedule. The first phase of the research was to identify 

the task pairs that when swapped result in a change in the schedule. These are called reasonable 

swaps. The next phase of the research was to define an algorithm that is capable of using these 

reasonable swaps and steering the simulation to generate schedules that work toward the optimum. 

An enumeration tree was used to represent the search space and the results of the optimization. A 

neighbor solution is generated by applying one reasonable swap to the schedule. To traverse 

effectively in this enumeration tree three heuristic approaches were introduced. The first steering 

technique is a Greedy-like algorithm that uses a constant, relatively low tolerance factor that neglects 

solutions that are beyond the “tolerated” worse results. The second steering technique is a simulated 

annealing-based technique which starts with a higher tolerance factor then the greedy-like algorithm. 

The tolerance factor is then reduced at each new level of the enumeration tree (new neighbor 

solutions).  

Both strategies are enhanced with a tabu search algorithm that prohibits the “swap-back” of the 

previously applied last reasonable swap thereby lowering the chance of identifying the same schedule 

multiple times. To reduce the effect of the potential of identifying the same schedule multiple times 

within the enumeration tree, a third approach has been developed. This approach is called the depth 

oriented heuristic search algorithm. This approach uses the simulated annealing approach to 

determine results only few levels deep within the enumeration tree and then restarts the optimization 

with the current best solution as root node. Thus after the predefined number of levels the duplicated 

schedules will be ignored and the optimization continues with only the current best solution. Two 

comprehensive case studies have been investigated to test and compare the applicability of these 

heuristic optimization strategies. 

A detailed outlook and suggestions for further research is conducted at the end of the thesis.  

 

 

 



 

v 

 

  



 

vi 

 

First and foremost I would like to express my sincere gratitude to my first advisor Prof. Dr.-

Ing. André Borrmann for his continuous support of my PhD study and related research during the 

past six years. Your guidance and encouragement helped me in all the time of research and writing 

of this thesis even after I have left the university two years ago. You have always provided insightful 

discussions about research and supported me to visit various conferences around the world, thus 

creating unforgettable memories for me. 

My sincere thanks also goes to Prof. Dr.rer.nat. Ernst Rank for employing me first as a PhD 

student at the Chair for Computational Engineering. Thank you also for your advises at the beginning 

of my research and for your support during my complete PhD studies. 

I am also deeply grateful to Prof. Dr.-Ing. Markus König, my second supervisor, for his guidance 

and hard questions which incented me to widen my research from various perspectives. Thank you 

for the many opportunities to visit you and your chair in Bochum. My gratitude is also extended to 

your former team members especially to Matthias Hamm, Kamil Szczesny and Arnim Marx, who 

have spent long nights without sleeping while leading discussions about different research topics with 

me.  

I would like to thank to the TUM Graduate School for their funding and support. Without them I 

could not have been visited the University of Alberta, spend six beautiful weeks in Canada and reach 

great scientific progress. 

A special thanks goes to Prof. Simaan M. AbouRizk for arranging and facilitating my research 

visit at his chair and giving me insight of their main research topics. I would also like to thank to all 

the team member of his chair for all their support and guidance in Canada. A special thanks goes to 

my dear friend Ronald Ekyalimpa. Thank you for your encouraging words, for introducing me your 

beautiful family and for making my visit in Canada unforgettable. 

I will be forever thankful to my former colleague, Hagen Wille, who introduced me to my former 

first advisor, Prof. Rank, such making me possible to start my PhD in Munich. 

My gratitude goes also to Dr.rer.nat. Angelika Kneidl, my former office neighbor, for guiding me 

academically and emotionally through the rough road to complete this thesis.  

Acknowledgements 



 

vii 

 

I would like to thank to all my former colleagues, but especially my dear friends, Fabian Ritter, 

Alexander Braun, Simon Daum and Maximilian Bügler for their help whenever I approached them 

and their support in completing my PhD. You have always been there for me and I hope you will also 

get your PhD soon. 

A special thanks goes to the companies Max Bögl and Fahrner for providing me the schedules 

and further information about the two real bridge construction sites that has been introduced in this 

thesis. 

I would also like to thank for the support to my current colleagues from the “Ingenieurbüro 

Grassl”, especially to the directors, Dr.-Ing. Hans Grassl und Markus Karpa for granting me the 

necessary time and giving me guidance on how to complete my PhD. 

Many thanks to my friends at the “Gelb-Schwarz Casino München” dancing studio, especially to 

Melanie Ruf and Bastian Kunst, for their support in good and bad times.  

I would also like to thank to my old friends, Gergely Szénássy and Tamás Hasenauer, for being 

always there for me and I am sure that we will spend much beautiful time together in the future. 

My great thanks goes also to Aleksandra Rawa, who not only encouraged me for the last six year, 

but has also been one of my best friends. 

Another person I would like to express my gratitude is Felícia András. Although we live from 

each other far-far away you are still my best friend and I am grateful that we can always count on 

each other.  

I must acknowledge with tremendous and deep thanks my dancing partner and friend, Julia 

Hofmann. Through your support and unwavering belief in me, I have been able to complete this long 

dissertation journey. You have motivated me in so many ways and there are no words that can express 

my gratitude and appreciation for all you have done and been for me. 

Lastly, I would like to thank my family for all their love and encouragement. For my parents who 

raised me with a love of science and have sacrificed everything for my brother and myself and always 

provided unconditional love and care. Although the physical distance between us is large now, you 

must know that I love you with all my heart and I would not have made it this far without you. Thank 

you! 

 

 

 

 

 

 

 

 

 

 January 2016, Munich  

 Gergő Dori 
  



 8 

 

 

 

Abstract ............................................................................................................................................. iii 

Acknowledgements ........................................................................................................................... vi 

Contents .............................................................................................................................................. 8 

1 Introduction.............................................................................................................................. 12 

1.1 Executive summary ............................................................................................................... 12 

1.2 The construction project ........................................................................................................ 12 

1.3 Objectives of scheduling ........................................................................................................ 13 

1.3.1 Time-cost trade-off ............................................................................................................ 13 

1.3.2 Time and cost limits of the project .................................................................................... 14 

1.3.3 Scheduling under limited resource availability ................................................................. 15 

1.3.4 Quality aspects ................................................................................................................... 16 

1.3.5 Flexibility of a schedule – the float time ........................................................................... 16 

1.4 Scheduling and optimization ................................................................................................. 17 

1.4.1 Simulation-based scheduling in the manufacturing industry............................................. 19 

1.4.2 The adaption of process simulation methods into the scheduling of construction projects .. 

  ........................................................................................................................................... 19 

1.5 Main contributions of this thesis............................................................................................ 21 

1.6 Structure ................................................................................................................................. 23 

2 Scheduling problems and conventional scheduling techniques ........................................... 25 

2.1 Executive Summary ............................................................................................................... 25 

2.2 Scheduling problems and conventional solution techniques in the construction industry .... 26 

2.2.1 Specific scheduling problems in the construction industry ............................................... 26 

2.2.2 Resource-Constrained Project Scheduling Problem .......................................................... 27 

2.2.3 Gantt chart ......................................................................................................................... 30 

2.2.4 Linear scheduling or line-of-balance method .................................................................... 31 

2.2.5 Network scheduling techniques ......................................................................................... 33 

2.3 Scheduling problems and solution techniques in the manufacturing industry ...................... 39 

2.3.1 Specific scheduling problems in the manufacturing industry ............................................ 40 

Contents 



Contents 9 

 

 

2.3.2 Disjunctive graph model .................................................................................................... 42 

2.4 Improving the scheduling techniques in the construction industry ........................................ 45 

2.4.1 Comparing the scheduling problems and solution techniques in the construction and the 

manufacturing industry .................................................................................................................. 45 

2.4.2 A drawback of conventional scheduling techniques – consideration of resources ............ 46 

3 Simulation-based scheduling ................................................................................................... 48 

3.1 Executive summary ................................................................................................................ 48 

3.2 Basic terms of simulation ....................................................................................................... 49 

3.2.1 The system and its components .......................................................................................... 49 

3.2.2 Model concepts .................................................................................................................. 51 

3.2.3 Steps of a simulation study ................................................................................................. 53 

3.2.4 Advantages and limitations of the simulation technique ................................................... 56 

3.3 The discrete event simulation ................................................................................................. 57 

3.3.1 Discrete event simulation model components and simulation concept .............................. 57 

3.3.2 Discrete event modeling styles ........................................................................................... 59 

3.4 Simulation-based scheduling in the manufacturing industry ................................................. 65 

3.4.1 Generating schedules for the shop problems by simulation ............................................... 65 

3.4.2 The adaption of simulation techniques into the construction industry ............................... 66 

3.5 Existing simulation-based scheduling approaches in the construction industry .................... 67 

3.5.1 CYCLONE ......................................................................................................................... 67 

3.5.2 Simulation frameworks inspired by the success of CYCLONE ........................................ 70 

3.5.3 STROBOSCOPE ................................................................................................................ 71 

3.5.4 Simphony ........................................................................................................................... 73 

3.5.5 Activity-based construction and activity object-oriented simulation strategy ................... 74 

3.5.6 Further simplifications of the discrete event simulation approach .................................... 75 

3.5.7 Integration of other tools into the simulation framework .................................................. 77 

3.5.8 Distributed simulations, high level architecture and CoSye .............................................. 78 

3.5.9 Petri Nets ............................................................................................................................ 80 

3.5.10 Agent-directed simulation of construction projects ....................................................... 82 

3.6 Summary and discussion ........................................................................................................ 83 

4 Discrete event simulation for generating construction schedules ........................................ 85 

4.1 Executive summary ................................................................................................................ 85 

4.2 Constraint-based modeling of construction operations .......................................................... 86 

4.2.1 Elements of a constraint-based discrete event simulation for construction operations...... 86 

4.2.2 Simulation concept of the constraint-based discrete event simulation .............................. 87 

4.3 Preparing the necessary data for the process simulation ........................................................ 89 

4.3.1 Related work in data preparation for discrete event simulation ......................................... 90 

4.3.2 Levels-of-detail approach ................................................................................................... 91 

4.3.3 Process patterns and activity packages ............................................................................... 92 

4.3.4 Creating the precedence graph ........................................................................................... 94 

4.3.5 Preparator ........................................................................................................................... 96 

4.3.6 Summary of the introduced methods ................................................................................. 98 

5 Determination of float time with constraint-based discrete event simulation .................... 99 

5.1 Executive summary ................................................................................................................ 99 

5.2 Related work on float time determination ............................................................................ 101 



10 Contents 

 

 

5.3 Concept of float time determination .................................................................................... 104 

5.3.1 Backward simulation ....................................................................................................... 107 

5.4 Calculation of total float time .............................................................................................. 108 

5.5 Limitations of the introduced float time determination method .......................................... 115 

5.6 Case study ............................................................................................................................ 119 

5.7 Taking multiple resource classes into account for construction tasks at float time 

determination ....................................................................................................................... 122 

5.8 Summary and conclusions on float time determination with constraint-based discrete event 

simulation ............................................................................................................................. 124 

6 Optimization of construction schedules – State-of-art ....................................................... 127 

6.1 Executive summary ............................................................................................................. 127 

6.2 Single variable optimization ................................................................................................ 128 

6.3 Combinatorial optimization problem ................................................................................... 130 

6.4 NP-hard optimization problem ............................................................................................ 132 

6.5 Solution strategies for solving NP-hard optimization problems .......................................... 133 

6.5.1 Exact solution methods for the RCPSP ........................................................................... 133 

6.5.2 Heuristic approaches to solve the RCPSP ....................................................................... 148 

6.6 Summary .............................................................................................................................. 158 

7 Simulation-based optimization of construction schedules ................................................. 160 

7.1 Executive summary - Optimization of construction schedules based on CBDES .............. 160 

7.1.1 Limitation of the constraint-based discrete event simulation .......................................... 161 

7.2 The priority swap of tasks .................................................................................................... 162 

7.3 The possible and the reasonable swaps ............................................................................... 164 

7.4 The effect of limited resources on the size of the search space and the amount of reasonable 

swaps .................................................................................................................................... 167 

7.5 Different optimization strategies to find near optimal solutions for the RCPSP using task 

priority swaps ............................................................................................................................... 167 

7.5.1 The enumeration tree ....................................................................................................... 169 

7.5.2 Greedy-like heuristic approach ........................................................................................ 171 

7.5.3 Simulated annealing-based heuristic approach ................................................................ 173 

7.5.4 Depth oriented heuristic search algorithm ....................................................................... 175 

7.6 Case Studies ......................................................................................................................... 175 

7.6.1 First case study ................................................................................................................ 175 

7.6.2 Second case study ............................................................................................................ 178 

7.7 Summary .............................................................................................................................. 180 

8 Summary and outlook ........................................................................................................... 182 

References ....................................................................................................................................... 190 

Appendix ......................................................................................................................................... 206 
 

 

 

 

 



Contents 11 

 

 

  



12 Introduction 

 

 

 

1.1 Executive summary 

Every construction site is unique. Even if identical buildings are built, the surrounding conditions 

(e.g. the ground material, traffic, already existing buildings, site layout and weather) or the 

construction conditions (e.g. available time, available resources or budget limits) vary from site to 

site. Therefore, every single construction site needs an individual schedule designed only for that 

building based on its individual conditions. Currently this is a time-consuming and labor-intensive 

iterative process that is performed manually in the construction industry. To speed up this demanding 

process computer-aided approaches such as simulation-based techniques have been adapted from the 

manufacturing industry and further development was made by researchers to meet the needs of the 

construction industry. These techniques are capable of evaluating and generating feasible 

construction schedules in short computational time. In this thesis, new, sophisticated extensions will 

be introduced for the simulation-based scheduling technique which enable the generation of near 

optimal and flexible schedules. 

1.2 The construction project 

A construction project is always made up of a set of construction tasks that symbolize atomic 

processes on a construction site. These construction tasks are necessary to erect the designed building. 

Every task requires a different kind of labor force, along with the machines and materials for its 

execution. When one of these resources is not available, the execution of the task cannot be started 
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and the construction might have to be delayed. Furthermore, the construction tasks have different 

kinds of interrelationships or dependencies upon each other that define the exact execution order of 

the affected tasks. The End-Start relationship is the most commonly one in use. It is also called 

precedence relationship, which defines that a task cannot be started until all of its predecessors have 

been completed. The construction tasks with their interrelationships can be visualized by a precedence 

graph that provides a clear representation of the overall project (Figure 1-1). 

 

Each of the construction tasks have estimated durations and might also have measures such as 

cost or quality. In order to know when a task should be executed and when the necessary resources 

should be available on the site, a construction schedule is necessary. Construction schedules are 

determined by the Project Manager and are used to control and monitor the progress of the 

construction. Scheduling is a complex and challenging task that can have different objectives. These 

objectives are discussed in the next section. 

1.3 Objectives of scheduling 

Not only do construction conditions vary from site to site, but also the contractor company may 

have different scheduling expectations that must be taken into account. These expectations can be 

formulated as the objectives of the scheduling.  

1.3.1 Time-cost trade-off 

The most common objective of scheduling is to find a schedule that is completed in a given time 

and has a low budget. These two criteria have an influence on each other and so it is complex to 

satisfy both. For example, when a task on a construction site must be executed faster than it has been 

planned, e.g. because of some delays of other tasks, additional resources need to be applied to 

accelerate the completion of the task (also called crashing the task), but this will also raise the costs. 

In other words, there is a trade-off between the makespan and the costs of a project (Hendrickson and 

Au 1989, Berthaut et al. 2011).  

Therefore the aim of scheduling is to find a schedule for which this so called time-cost trade-off 

is acceptable. Figure 1-2 represents a diagram showing the relation between the total cost and the 

makespan of a construction project. It is assumed, that the relation-line represents the best possible 

solution (the one with least total costs) for the corresponding schedule makespan including an optimal 

execution order of the tasks and resource utilization. Any change within the schedule (changing 

A

B

DC

Figure 1-1: Precedence graph of four construction tasks: A, B, C and D. The different colors correlate to different resource 

needs and the arrows represent precedence relationships between the tasks. The length of the task boxes is 

proportional with the execution duration of the task. 
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execution order of tasks, adding or subtracting resources, etc.) will introduce extra costs when 

wanting to keep the same makespan. 

As demonstrated in Figure 1-2, there is a schedule with the makespan 𝑡𝑚 where the total costs 

(𝑐𝑚) of the project are minimal. From this point, the makespan of a project can be shortened by adding 

extra resources, using a second shift and/or overtime and using machines with higher performance 

factors1. However, due to the time-cost trade-off this crashing process will induce additional total 

costs for the project. It may be that the profit, induced by the shorter makespan, becomes less than 

the additional costs of the acceleration. Alternatively, the minimal cost point should not be considered 

as an option for an ideal schedule, since both the makespan and the costs of the project increase 2. The 

favored time-cost trade-off values are always located on the left hand side from the 𝑡𝑚 makespan 

value. 

 

1.3.2 Time and cost limits of the project 

A tighter and also often necessarily used variation of the above introduced objective is not only 

to search for a good time-cost trade-off value, but also to ensure that you do not exceed a predefined 

makespan and/or cost limit (Gordon et al. 2002, Brucker 2007). In this case the schedule must be 

finished before a predefined deadline (due date – 𝑡2 und corresponding 𝑐2) and/or must not exceed a 

predefined budget (Figure 1-3 – 𝑐1 and corresponding 𝑡1). These constraints limit the feasible region 

of the possible solutions for the makespan between 𝑡1 ↔ 𝑡2 and for the costs between 𝑐1 ↔ 𝑐2. 
Therefore, when the duration of the project is more important than the costs, the solution with the 

lower makespan and higher costs (𝑡1; 𝑐1) shall be chosen. Alternatively when the costs play a more 

important role, the one with the lower cost but longer makespan (𝑡2; 𝑐2) will be selected. In the case 

                                                 
1 This technique is called crashing 
2 Right from the minimal cost point often the daily costs of the workforce and machines are, due to lower performance 

factors and/or lower amounts, lower than the daily costs of the one with minimal total costs, but due to the longer 

working time of these work forces, their total costs become higher than the referenced one. 

        

𝑐  𝑡

𝑡 𝑡        𝑐𝑡 𝑐  𝑡

    𝑡 𝑡 𝑡   
     𝑐𝑡 𝑐  𝑡

𝑡𝑚

𝑐𝑚

Figure 1-2: Relation between the schedule makespan and the total cost of a project (based on Berthaut et al. 2011 and 

Baker 1991) 
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where both components are equally important, a solution somewhere in between these boundaries 

might be selected. 

 

1.3.3 Scheduling under limited resource availability 

Another important objective of scheduling is to not exceed predefined resource limits on the 

construction site where the availability of the resources is limited, or possibly even unavailable, for a 

certain time frame (Brucker 2007, Klein 2000 and Blazewicz et al. 1983). Violation of these limits 

might lead to a delay in the project and therefore an increase in the total costs. The example on  

Figure 1-4 represents the resource diagram of a small project with a makespan of 17 workdays. On 

days 3, 5, 6 and 13 of this project the number of needed resources exceeds the limits of the available 

resources. In this scenario is likely that the project cannot be finished in time and rescheduling will 

be necessary. 

        

𝑐  𝑡     𝑡

𝑐  𝑡

𝑡        𝑡

    𝑡 𝑡 𝑡   
     𝑐𝑡 𝑐  𝑡

𝑡1 𝑡2

𝑐2

𝑐1

Figure 1-3: Restricting the area of feasible schedules by applying cost and time limits for the completion of the project 
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Related to the aforementioned objectives, an optimization problem can be formulated. The 

optimization problem is a search for the optimal execution sequence of construction tasks with a 

minimal makespan for the project, while not exceeding any resource limits. Based on the makespan 

of this optimal schedule, it can be determined if a predefined time limit for the project is manageable, 

or if further resources must be applied to meet this limit. 

The search for the most balanced resource utilization for a schedule with a predefined makespan 

is defined as another related optimization problem. This is called the resource-leveling problem. Here, 

the tasks are sorted and swapped in such a manner that the utilization level of the diverging resources 

for the whole makespan becomes as close to constant as possible. 

1.3.4 Quality aspects 

One further criterion for scheduling is to create a high quality product. The quality of a product 

depends primarily on the qualifications of the labor working on the product and the time being 

invested to create the product (Kang and Myint 1999, Tareghian and Taheri 2006). When a high 

quality product is desired the time and cost factors are not as important as the quality itself. To reach 

this goal highly qualified labor should be used with an extended time frame to complete the required 

work. Hence the higher the required quality of the product, the higher its costs will be. 

1.3.5 Flexibility of a schedule – the float time 

Another important aspect of scheduling is to create a flexible schedule. The key measure of 

flexibility within a schedule is the float time (Raz and Marshall 1996). Float time describes the time 

frame within which the execution of a task can be moved or how much the duration leeway of a task 

can change, without impacting the makespan of the project or the execution of subsequent tasks. The 

tasks without float time constitute the critical path of the project (Figure 1-5). The critical path can 

also be defined as the longest path or sequence of tasks throughout the project. The length of the path 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

needed resources 2 2 3 3 4 5 6 7 6 5 7 6 6 4 3 2 2

available resources 2 2 2 3 3 3 6 7 7 7 7 7 4 4 4 4 4

2 2

3 3

4

5

6

7

6

5

7

6 6

4

3

2 22 2 2

3 3 3

6

7 7 7 7 7

4 4 4 4 4

0

1

2

3

4

5

6

7

8

R
e
so
u
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e
s

Day

Figure 1-4: Diagram of the available and necessary resources of a short project (necessary resources: gray, available 

resources: black, resource limits exceeded: black box) 
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represents the shortest duration required to complete the project. A delay in any of these critical tasks 

will result in an increase of the project’s overall makespan and therefore in a delay of the project 

itself.  

Figure 1-5 presents an example schedule for the four tasks (A, B, C, and D) that have already been 

introduced in Figure 1-1. The precedence relationships of the tasks allow the simultaneous execution 

of tasks B and C, since B has a longer duration than C. Because C has a time frame from the end date 

of task A until the commencing date of task D, it can be moved freely without impacting the project’s 

makespan. This time frame represents the total float time of C. The tasks A, B and D are part of the 

critical path because they have no float time and moving or extending them will change the overall 

completion time of the project. To identify these critical paths within a project is very important since 

any change to these tasks will directly influence the makespan and also the costs of the project. 

Therefore, when two schedules exist for the same project containing the same makespan and similar 

costs, the preferred one is the schedule in which the tasks have more float time. 

 

1.4 Scheduling and optimization 

After setting up the objectives and restrictions of the construction project, a scheduling process 

that meets the objectives and satisfies the restrictions is carried out in order to establish a reasonable 

sequence of project tasks. The most commonly used scheduling techniques in the construction 

industry are the network scheduling techniques. Network scheduling techniques include the Program 

Evaluation and Review Technique (PERT), the Critical Path Method (CPM) and the Precedence 

Diagram Method (PDM) (Kerzner 2003). Further existing methods are the Gantt chart and linear 

scheduling methods. All of these techniques will be introduced and discussed in detail in Chapter 2.  

The use of one of these techniques always results in one single schedule that barely meets the 

aforementioned objectives or restrictions. The schedule determined by network scheduling 

techniques for example has an optimal makespan, but it is not capable of addressing resource 

restrictions on the construction site. Since in reality the amount of available resources is limited, 

delays will most likely occur resulting in an increase in both makespan and the costs of the project 

compared to the calculated values. 

Therefore, to determine a schedule that satisfies all the aforementioned requirements, further 

enhancements to the schedule are necessary. A scheduling process that satisfies all the objectives and 

restrictions can also be described as a multi-objective optimization, with the objectives of finding the 

schedule with the shortest makespan, lowest costs, highest quality, etc. An example of this problem 

is the so called Resource-Constrained Project Scheduling Problem (RCPSP – see Section 2.2.2) 

t
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Figure 1-5: Representation of float time and critical path within a schedule. Tasks: boxes; task interrelationships: arrows; 

critical path: dotted arrows; float time: grey, dashed box 
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(Pritsker et al. 1969, Blazewicz et al. 1983, Hartmann and Briskorn 2010, Beißert 2012). The RCPSP 

consists of finding the optimal schedule with the shortest makespan with respect to the precedence 

constraints between the tasks and the resource availabilities. This problem accurately describes the 

scheduling problem in the construction industry and therefore its solution will be one of the main 

topics of this thesis. 

The RCPSP is a combinatorial optimization problem (Blazewicz et al. 1983) that, due to the 

limited amount of available resources and the aim to find the optimal solution for complex cases, is 

considered an NP-hard problem and therefore it is infeasible to be solved within polynomial 

computational time (Blazewicz et al. 1983) (see Section 6.4). 

In Section 6.5.1 solution finding procedures (such as Branch-and-Bound, and Integer 

Programming) will be introduced that are capable of determining the exact optimal solution of this 

optimization problem. However, due to the complexity, the duration of the computation cannot be 

predicted.  

Therefore, further approaches have been developed that are capable of delivering not the optimal 

solution, but also good, near-optimal solutions for the problem in a shorter computational time. These 

solution approaches are called the heuristic methods and include simulated annealing, genetic 

algorithms, etc. (introduced in Section 6.5.2). The solution mechanism of the heuristics is based on 

intuitions and previous experiences. One goal of the author was to develop a method of solving the 

RCPSP in a short computational time, the trade-off being good solutions rather than optimal solutions.  

One such possible solution is the iterative enhancement of a schedule. This iterative scheduling 

process consists of four phases (Tulke 2010, Beißert 2012): 

Phase one: the fragmentation of the project into individual construction tasks and the 

definition of their interrelationships according to a desired construction scenario. The result 

of this step can be visualized amongst others by a precedence graph (Figure 1-1). 

Phase two: the determination of the duration for every task is based on the amount and 

performance of the available resources and the size of the task.  

Phase three: the connection and ordering of the individual construction tasks into a schedule 

according to their duration and their dependencies on other tasks. 

Phase four: phase two and phase three are repeated until the schedule meets all desired 

objectives of the scheduling. For that, in phase two, the amount and/or the performance of 

the available resources should be varied. If the objectives cannot be met this way, at phase 

one a new construction scenario should be defined and the complete process should be 

restarted. 

These four phases consist of the solution of an ordering, an assignment and an optimization 

problem (Beißert 2012). The ordering problem is the investigation of a multitude of possible 

schedules that can vary in the sequence order of the construction tasks or differ in their construction 

scenario. The assignment problem describes the decision made when the available resources are 

limited and a choice needs to be made as to which of several competing tasks should get the available 

resources. The optimization consists of the search for the schedule that best fits the desired 

optimization criteria. 

In the construction industry today these phases are carried out manually using conventional 

scheduling techniques (see Section 2.2) for phase three. The improvement and quality of the schedule 

is mainly dependent on the knowledge and previous experience of the designer. This is a time-

consuming process. To enhance and accelerate this process, computer-aided simulation techniques 
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from different industries have been investigated that are capable of efficiently solving scheduling 

problems with resource constraints. 

1.4.1 Simulation-based scheduling in the manufacturing industry 

Similar to the construction industry, the manufacturing industry also has scheduling problems. 

The shop problem, where an optimal sequence of tasks and machines is searched for, is a well-known 

scheduling problem. To find feasible solutions for such a problem computer-aided simulation 

methods have been applied in addition to the manual techniques. Simulation is defined by Shannon 

(1975) as “the process of describing a real system and using this model for experimentation, with the 

goal of understanding the system´s behavior or to explore alternative strategies for its operation.” In 

this definition, the exploration of alternative strategies for a shop problem can also be formulated as 

searching for feasible and productive schedules. Process simulation methods not only take resource 

limits into account, but also handle the other restrictions of the problem, e.g. interrelationships 

between the tasks and resource constraints that define which resources are necessary in order to 

execute the proper task. 

In contrast to the analytical solutions (such as Branch-and-Bound and Integer Programming – see 

Section 6.5), simulations can handle more complex interactions and can therefore result in a more 

realistic schedule. However, they are only capable of generating single stand-alone schedules each of 

which is one feasible solution to the problem but not the optimal one. It then becomes the job of the 

scheduler to optimize the process by changing the parameters of the model. Therefore, simulations 

are used to generate schedules for different scenarios. The results of these different scenarios are 

compared to each other so as to explore a wide range of possible schedules. Simulations also provide 

the possibility of testing every small detail of the schedule before starting the actual production. These 

tests can lower the risk of collisions and lower the high idle times for machines by identifying 

bottlenecks within the schedule. Since simulations are mathematically simpler then the analytical 

methods, they are easier to understand and use (Page and Kreutzer 2005). Therefore, these methods 

are not only used for research purposes, but also in the industry. However, such a simulation tool is 

quite pricey. The company needs both the software to work with, but also a skilled employee and a 

significant amount of accurate data about the project to be simulated. Fortunately all the costs and 

efforts associated with simulations will pay off during the production phase because of the advantages 

and capabilities of the simulation methods mentioned above (Page and Kreutzer 2005).  

1.4.2 The adaption of process simulation methods into the scheduling of 

construction projects 

Due to the success of the process simulation technique in the manufacturing industry, researchers 

adapted it for the construction industry (Halpin 1977, Martinez and Ioannou 1994, AbouRizk and 

Hajjar 1998a, Günthner and Borrmann 2011). The discrete event simulation (DES) turned out to be 

the most suitable technique for construction simulation, as tasks are modelled as a pair of events (start 

and finish) and the simulation time of the model jumps forward between these events while the 

model´s state stays constant between these discrete time steps (Banks and Carson 2009). The concept 

of the DES will be introduced in Section 3.3 in detail. Further suitable approaches to simulate 

construction processes are the Petri-Nets (Petri 1962, Petri 1966, Sawhney 1997) and the agent-based 

simulations (Knotts et al. 2000, Horenburg et al. 2012; Sawhney et al. 2003, Horenburg et al. 2012, 
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Kooragamage et al. 2013) which will be introduced in Section 3.5.9 and 3.5.10, respectively. To apply 

these simulation techniques to the simulation of construction projects, some changes and extensions 

of the simulation concept were necessary.  

Manufacturing processes are executed repetitively in a place bounded environment where 

machines are static and products travel on conveyor belts between them, whereas in the construction 

industry the resources (machines, labour) are dynamic and the product (the building) is static. In 

addition, operations in the manufacturing industry can only be executed by one specific machine, 

while in the construction industry one task can be executed with diverging resources without 

impacting the duration of the task. These behaviors lead to a more dynamic and varying site layout 

for the construction industry compared to the one of the manufacturing industry. Since the scheduling 

methods for the manufacturing industry are designed for a static factory layout with repetitive 

processes, the scheduling methods for a construction industry must be customized to a model that 

describes the dynamically changing layout.  

In the 1960s it was realized that although construction projects are unique, they contain repetitive 

processes and show similarities with the behavior of manufacturing industry processes, e.g. such as 

earth transport, tunneling or road construction that also can be modelled with a static layout 

(AbouRizk et al. 1992). These processes were the focus of the most important discrete event 

simulation-based construction simulation frameworks such as CYCLONE (Halpin 1977), 

STROBOSCOPE (Martinez and Ioannou 1994) and Symphony (Hajjar and AbouRizk 1999). The 

detailed introduction of these frameworks and their further development is introduced in Section 3.4. 

In order to apply also the layout of the construction site into the simulation Chahrour and Franz 

(2002) investigated the applicability of the building block-based simulation concept in construction 

project planning. This is widely used concept in the manufacturing industry. Chahrour (2006) 

introduced a prototypical simulation framework that uses product modeling concepts as data structure 

and is capable of integrating simulation concepts with CAD representations of the construction site. 

To face the problem with the dynamically changing site layout and to involve also non-repetitive 

processes into the simulation based on the research of Chahrour and Beißert et al. (2007b) a new 

simulation concept has been developed. The idea behind this new concept was to generate diverging 

schedules by following the behavior of real construction projects, such as obtaining diverging 

execution sequences of the tasks based on dynamic and spontaneous decisions (Beißert et al. 2007a, 

Wu et al. 2010a). To implement this spontaneous and dynamic behavior into the simulation concept, 

the DES was combined with the constraint satisfaction paradigm.  

The constraint satisfaction concept is a strong paradigm to model complex combinatorial 

problems (Blazewicz et al. 2007, König et al. 2009a), such as scheduling problems like the RCPSP. 

A constraint satisfaction problem is described by variables, domains and constraints, where the goal 

is a feasible solution that satisfies every constraint. For a construction scheduling problem, the tasks 

and resources (e.g. machine, employee and material) are defined as variables, and the 

interrelationships between the tasks, their resource needs and the availability of the resources are the 

constraints.  

By combining the constraint satisfaction paradigm with the simulation concept, a new and 

powerful technique was introduced, that is able to generate feasible schedules for construction 

projects taking also resource limits into account. This technique is called the constraint-based discrete 

event simulation (CBDES) (Beißert et al. 2007b, Beißert 2012). The CBDES always results in one 

feasible schedule and in case of a repeated simulation (Monte Carlo simulation), due to the random 

executable task selection, it is also able to generate diverging schedules. Hence, this technique also 

can be used for optimization purposes (Beißert 2012, Hamm and König 2010, Szczesny et al. 2012) 

and to generate feasible solutions for the resource-constrained project scheduling problem. For 
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optimization purposes, however, an extension is necessary that steers the simulation by defining 

diverse input data to generate better solutions that get even closer to the desired optimal solution. 

Near optimal solutions for the resource-constrained project scheduling problem can be generated in 

an efficient way using the constraint-based simulation approach extended with a steering algorithm 

(Chapter 7). This is the basis on which this thesis is grounded. 

One further drawback of the adapted simulation-based scheduling approaches is the high amount 

of necessary data to start the simulation. The preparation of all this data is a time consuming and 

laborious work. Possible solutions to accelerate this process will be introduced in Chapter 4. 

Another important characteristic of a task in the construction industry that is described differently 

in the manufacturing industry (idle time of machines) is its flexibility within the schedule, which can 

be described by its float time. A new approach will be introduced in Chapter 5 how to determine float 

time for individual construction tasks within a schedule under consideration of precedence and also 

resource constraints. 

1.5 Main contributions of this thesis 

This thesis focuses on construction process scheduling using the constraint-based discrete event 

simulation. Although the introduced methods have only been tested on bridge construction projects, 

they are applicable to any kind of construction project. The application of the developed methods has 

been applied to bridge construction projects, since the diversity of the applicable construction 

methods is restricted and the project scheme is clearly arranged compared to those of high rise 

building and further constructions.  

Although the introduced constraint-based simulation approach is a powerful tool in generating 

feasible schedules for construction projects, it requires a large amount of input data, including the list 

of schedulable tasks, the interrelationships between tasks, the required resources and the identification 

of the resources actually available on the jobsite. All of this data is required to start the simulation, 

but obtaining this data is a very time consuming process. Therefore, one aim of this thesis is to develop 

methods that accelerate the process of organizing all this data in a faster and more efficient manner. 

The developed and applied techniques are introduced in Section 4.3. These methods are 

advancements of the research work of Wu et al. (2010a). The levels-of-detail approach has been 

adapted and further process patterns have been developed. The activity packages have been extended 

with further attributes such as priority and further requirements relating to the necessary resources. 

As a result of this research a software program called “Preparator” has been developed that is capable 

of defining all necessary data for the simulation. The most important task of the Preparator is to 

connect the objects of a 3D construction model with process patterns, diverging necessary attributes 

for its construction and ordering the processes into a precedence graph.  

A significant advantage of the conventional network-based scheduling techniques over the 

simulation-based method is the capability of determining float time for every single task. A new 

method will be described to overcome this drawback of the simulation approach and to increase its 

competitiveness in comparison to the conventional network-based scheduling techniques. This new 

method extends the simulation approach with the capability of determining float time for every 

individual task in one iteration step (Chapter 5). To calculate float times, similar to the backward-

pass analysis used in CPM, a newly developed backward simulation method along with a coupling 

process extending the common forward discrete event simulation is introduced. To achieve schedule 

compatibility, every task has to start at the same time or later in time than it does in the forward 
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simulation. To this end, the task selection algorithm of the simulation has been modified so that the 

backward simulation uses a priority-based approach to determine the next executable task and new 

constraints are defined based on the results of the forward simulation. By comparing the results with 

the schedule of the forward simulation, the time difference between the earliest and latest start time 

of a task represents its total float time. 

Since the simulation-based scheduling technique generates feasible schedules in a fast and 

efficient way, it can be beneficially used for schedule optimization purposes. For this, an external 

algorithm is necessary that controls the input data of the simulation to generate diverse schedules.  

At this point it is important to stress that the number of possible feasible schedules for a large and 

complex construction project can be significant. Even using a small example where there are 10 tasks 

that each require the same resource with there being only one resource available, the amount of 

possible feasible schedules is the permutation of the tasks without repetition is: n! = 10! = 3628800. 

In reality, a small construction project is made up of several hundreds of tasks. A large construction 

project can have even more than ten thousands tasks and due to the factorial relationship in this 

particular case between the amount of tasks and the possible feasible schedules the number of possible 

feasible solutions is tremendous in these cases.  

Due to this very large solution space, the algorithm must be able to cover all of these feasible 

solutions and should be able to traverse between them in an efficient way. Therefore, a new algorithm 

has been developed based on the principle of swapping position of certain tasks within the schedule 

by swapping their priorities (see Section 7.3). The advantage of this algorithm compared to other 

steering algorithms applied to the CBDES is that swapping the priorities of these certain tasks will 

definitely lead to a new schedule. This cannot be assured with the other existing methods (see Section 

6.5.2.2 and Section 7.2). 

Although the developed algorithm is capable of covering every possible feasible solution to the 

problem, the determination of all of these solutions would not be feasible in the polynomial 

computational time. Therefore, in order to shorten the computational time of the optimization, the 

developed algorithm has been connected to heuristic algorithms (enumeration tree, greedy-like 

heuristic, simulated annealing and tabu search) that can result in near optimal solutions.  

Since optimization problems are very complex and difficult to solve, a three-staged automation 

system has been applied that enables the application of the aforementioned methods not only for 

research purposes, but also for planning purposes in the construction industry. The automation 

process is presented in Figure 1-6. Step one of the three-staged automation process consists of the 

preparation of the input data, followed by the simulation which generates a schedule based on the 

input data. As an iterative process the optimization algorithm controls the simulation and generates 

diverging schedules to find the schedule with the shortest makespan. The necessary steps to create 

this automated construction schedule optimization will be introduced in the corresponding sections 

of the thesis. 

 

Automated process of construction schedule optimization

1. Preparations 2. Simulation 3. Optimization

Figure 1-6: The automated process of automation of construction schedule optimization: 1. Preparation of the input data, 

2. Simulation, 3. Optimization. 
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1.6 Structure 

This thesis is organized into nine Chapters. The first two Chapters introduce the state of the art in 

process scheduling. The third Chapter addresses the introduction of simulations and simulation-based 

scheduling techniques. Furthermore, it contains a detailed literature review in simulation-based 

construction project scheduling. Chapters 4, 5, 6 and 7 represent the core of the thesis. Here, new 

methods will be introduced for the simulation-based scheduling technique and sophisticated heuristic 

optimization techniques to solve the resource-constrained project scheduling problem will be 

illustrated. These Chapters are closed by a case study, which describes the applicability of the new 

scheduling and optimization methods to the construction industry. The thesis is concluded by the 

summary of the results and an outlook. The Appendix contains simulation results for the validation 

of the new methods, code segments and simulation input data for the introduced case studies.  

 

 Chapter 2: Scheduling problems and conventional scheduling techniques 

The second Chapter of the thesis focuses on the general introduction of diverging scheduling 

problems such as the construction project scheduling problem, the shop problems and the resource-

constrained project-scheduling problem. The conventional scheduling techniques and solution 

methods for the introduced scheduling problems in both the construction and manufacturing 

industries will be reviewed in detail. Among others, the Gantt chart, network-based scheduling 

techniques and particularly the advantages of a simulation-based scheduling technique will be 

analyzed. After the comparison of the main characteristics of the construction and manufacturing 

industries, the expectations for an adaption of the simulation-based scheduling technique to the 

construction industry will be introduced. 

 

 Chapter 3: Simulation-based scheduling 

The application of the simulation-based scheduling technique forms the basis of this thesis. In 

addition to providing the definition and the basic terms of the discrete event simulation, an explicit 

historical review of applied simulation approaches from the emergence of simulation-based 

construction project scheduling approaches up to the most recently distributed simulation methods is 

presented. Further, the best-suited simulation approach for scheduling purposes in the construction 

industry will be discussed in depth. 

 

 Chapter 4: Discrete event simulation for generating construction schedules 

Here, the principles and the application of the constraint-based discrete event simulation that is 

capable to generate diverging schedules for project scheduling problems such as the RCPSP will be 

introduced. After introducing the state of the art of the constraint-based discrete event simulation and 

the data preparation a new approach will be introduced that accelerates the preparation process for 

the simulation-based scheduling caused by the large amount of input data that has to be prepared 

before the start of the simulation. When the input data for the simulation is complete, the simulation 

can be started. The exact working mechanism of the simulation will be explained on the using an 

example.  

 

 Chapter 5: Determination of float time with constraint-based discrete event simulation 

To enable the simulation to determine float time for every single construction task also taking 

resource constraints into account, the newly developed backward simulation approach will be 
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introduced and discussed in detail. Necessary restrictions and limitations of the method will also be 

addressed. 

 

 Chapter 6: Optimization of construction schedules 

Optimization of schedules in both the construction and manufacturing industries is a great 

challenge. In the manufacturing industry, the shop problems hinder attempts to find the schedule with 

the shortest makespan. In the construction industry, the resource-constrained project scheduling 

problem hinders determining the schedule with the shortest makespan. After the introduction of the 

basic terms of optimization, state-of-art deterministic and heuristic solution approaches for the 

RCPSP will be introduced. 

 

 Chapter 7: Simulation-based optimization of construction schedules 

Since complex and large optimization problems have a huge search space of possible solutions, a 

new optimization strategy will be introduced that uses the introduced constraint-based discrete event 

simulation technique and that is able to traverse through the search space of the optimization problem 

in an efficient way. The application of this strategy will be presented on the basis of three different 

heuristic optimization approaches. To present the application of the introduced methods, two 

comprehensive case studies will be presented. 

 

 Chapter 8: Summary and outlook 

The last chapter summarizes the results of the thesis and gives an outlook for further possible 

research topics related to the introduced research work. 
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2.1 Executive Summary 

Due to the uniqueness of each construction project, every single project requires detailed planning. 

“Planning, in general, can best be described as the function of selecting the enterprise objectives and 

establishing the policies, procedures, and programs necessary for achieving these objectives. It 

determines what needs to be done, by whom and by when, in order to fulfill one’s assigned 

responsibility” (Kerzner 2003).  

The planning process begins by setting up the global objectives and restrictions of the project. 

This is followed by a scheduling process to establish a reasonable sequence of project tasks that meet 

the objectives and satisfy the restrictions of the project. As it was introduced in Section 1.4, 

scheduling is an iterative process that is primarily carried out manually. It begins with the 

fragmentation of the project into individual tasks. This can be achieved by creating a specific work 

breakdown structure (WBS) for the construction tasks, which is a tree subdivision of all the tasks that 

are necessary to complete the project (Kerzner 2003). 

After the interrelationships between the project’s tasks are defined, the approximate duration of 

every single task is determined. This is followed by the determination of a feasible schedule based on 

the duration of each task and the restrictions of the project. This schedule will be evaluated according 

to the objectives of the project, such as duration and costs. When the schedule does not meet these 

global objectives, the schedule must be revised and reconstructed. This can be achieved by modifying 

either the sequence or the duration of the tasks, usually achieved by varying the amount of available 

resources like adding extra resources to the project. This however influences the time-cost trade-off 

of the project. Applying further resources will increase the costs but also will accelerate the project 

completion time in the most cases and vice versa (see Section 1.3.1). Diverging feasible schedules 

can be generated by changing the sequence of tasks or modifying the amount of available resources. 

2 Scheduling problems and conventional 

scheduling techniques 
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Such modifications should be carried out until a schedule is found that meets all the desired objectives 

of the project. 

Methods of determining feasible schedules that satisfy all these requirements will be the main 

topic of this chapter. First, the specific scheduling problems in the construction industry will be 

introduced including the resource constrained project-scheduling problem. This is followed by the 

description of the conventional scheduling techniques used in the construction industry, such as the 

Gantt or bar chart, linear scheduling- and network scheduling techniques (Kerzner 2003). Since the 

planning of construction schedules is mostly undertaken manually by a planner, the quality of the 

schedule depends on the planners’ experience. This work is based on the thesis that an improvement 

of the planning process can be achieved by applying computer-aided methods, such as simulations, 

which have already been successfully used in the manufacturing industry. Therefore, the second part 

of this chapter will give an overview of the scheduling problems and the various solutions used in the 

manufacturing industry, like the disjunctive graph model. The chapter is closed by a comparison of 

the main characteristics of the two industries with the introduction of possible methods to apply 

simulation-based scheduling methods to the construction industry. 

2.2 Scheduling problems and conventional solution techniques 

in the construction industry 

Due to high construction costs and short due dates, detailed scheduling of construction projects is 

more important today than ever before. The goal of scheduling is to efficiently arrange the execution 

order of a multitude of construction tasks with regard to different objectives as introduced in 

Section 1.3 to save on both time and costs. There are various types of constraints that must be 

considered in the planning process of construction schedules. The most important ones are the 

resource restrictions, material availabilities and the technological dependencies, also called 

precedence relationships, among the construction tasks. To understand the complexity of the problem 

that needs to be solved, it will be introduced in detail in the following sections. 

2.2.1 Specific scheduling problems in the construction industry 

As introduced in Section 1.2, a construction project is always made up of 𝑡 construction tasks 

(𝑇 = (1… 𝑡)), with t symbolizing atomic construction tasks on the site. Those are connected with 

each other through interrelationships (precedence constraints) and require a predefined amount of 

specific resources (e.g. labour and machines). A task can be executed by any resource available on 

the construction site that are capable of completing the specific task. Each resource can often be used 

to execute several tasks. For example a laborer can assemble the formwork of an element. On another 

day, that same laborer can pour the formwork with concrete. The different skills that a resource must 

possess in order to execute one specific task can be described by   (𝑅𝑘, ( = 1…  ). For example, a 

laborer must have the necessary skill to “armour” a structure in order to complete the task of creating 

a formwork for a structural component. A specific resource might have more skills that are needed to 

complete a specific task and a task might need different kinds of skills to be completed. Furthermore, 

every task has a duration 𝑑𝑡.  
A general scheduling problem in the construction industry is defined as the search for a sequence 

of the construction tasks that satisfies all the precedence relationships between the tasks without 
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taking resources into account. Such a problem can be solved by the Gantt-chart (Section 2.2.3), line-

of-balance (Section 2.2.4) and network scheduling techniques (Section 2.2.5). When the resource 

needs of the tasks and resource limits on a construction site are also taken into account, a scheduling 

problem under resource constraints is defined (see Figure 2-1). This problem is mathematically more 

complex than the first one and cannot be solved correctly by the aforementioned scheduling 

techniques (Herroelen et al. 1997, Brucker et al. 1999). To determine a feasible schedule for this 

problem that satisfies every precedence and resource constraint, further methods must be taken into 

consideration. These methods will be introduced in Chapter 3. Providing an objective for this 

scheduling problem, such as finding the shortest makespan for the project, defines a combinatorial 

optimization problem called resource-constrained project scheduling problem (Artigues et al. 2010). 

This specific problem will be the topic of the next Section. 

 

2.2.2 Resource-Constrained Project Scheduling Problem 

In order to determine a realistic schedule, not only the precedence relationships between tasks, 

but also resource constraints need to be considered. Such a problem is described by the resource-

constrained project scheduling problem (RCPSP) which has become the standard problem for project 

scheduling (Hartmann and Briskorn 2010). The RCPSP is a combinatorial optimization problem, 

which consists of finding the optimal schedule with the shortest makespan with respect to the 

precedence constraints between the tasks and the resource availabilities without preemption3. A 

formal definition of the problem is presented in Section 2.2.2.2. Further mathematical formulations 

will be introduced in Section 6.5.1. 

                                                 
3 When the execution of a task has been started it must be executed until its completion without any interruption. 

Figure 2-1: Schematic representation of a project scheduling problem under resource constraints. The tasks (𝑇𝑖) are 

represented in a precedence graph with their necessary resources (𝑅𝑘). The longer the box, the longer the 

duration of the task. 
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Blazewicz et al. (1983) have shown that the RCPSP belongs to the class of NP-hard optimization 

problems. This means that in a complex case it is not possible in polynomial time to find an optimal 

solution for the optimization problem (see Section 6.4). The RCPSP accurately describes the 

scheduling problem in the construction industry (Section 2.2.1). The main topic of this thesis is to 

find solutions for this problem. However, due to the NP-hardness of the problem, the author is not 

aiming to develop a deterministic method to find the actual optimal solution, but rather to generate 

feasible schedules (Figure 2-2) that satisfy all constraints and limitations of the RCPSP and improve 

upon them in an efficient way while still focusing on the goal of finding near optimal solutions. 

2.2.2.1 Categorization of schedules for the RCPSP 

To understand how a schedule can be described, the categorization of schedules will be introduced 

in this section. Sprecher et al. (1995) described four categories of schedules for the RCPSP. Feasible 

schedules belong to the first category where a result satisfies every precedence and resource constraint 

and never exceeds the resource limits. A semi-active schedule is a feasible schedule in which the tasks 

are pushed back in time while keeping the same schedule and task sequence. An active schedule is a 

feasible schedule where none of the tasks can be executed earlier without delaying another task 

(Sprecher et al. 1995, Hartmann and Kolisch 2000). The last category of schedules are the non-delay 

schedules. Baker (1974) defines a non-delay schedule as a feasible schedule in which “no machine is 

kept idle at a time when it could begin processing some operation”. Under a non-delay schedule every 

task is executed as early as its precedence and resource constraints allow. 

Non-delay schedules are a subset of active schedules, which are the subset of semi-active 

schedules and the feasible schedules as depicted in Figure 2-2 (Sprecher et al. 1995, Hartmann and 

Kolisch 2000). While the complete set of active schedules always contains the optimal schedule for 

the considered RCPSP, the complete set of non-delay schedules may not. 

 
    𝑡         

  

Figure 2-2: The categorization of the solutions of the RCPSP: S represents every possible solutions, F the feasible 

schedules, SA the semi-active schedules, A the active schedules and ND the non-delay schedules. Outside of 

F within S are the infeasible solutions that violate at least one constraint or limitation rule. The optimal solution 

(marked with X) is always in the set of the active schedules, however it might be outside of the non-delay 

schedules. 



Scheduling problems and conventional scheduling techniques 29 

 

 

This categorization will have an important role later by evaluating the solutions of the developed 

simulation technique (Section 7.1.1). 

Even though the RCPSP describes the project scheduling problem in a general way, it still cannot 

cover all of the situations that can occur in actual practice. Therefore many researchers have been 

working on new, more general, project scheduling problems, often based on the basic formulation of 

the RCPSP (Hartmann and Briskorn 2010). To order and compare these project scheduling problems, 

Brucker et al. (1999) and Hartmann and Briskorn (2010) integrated them into a survey. The major 

classes of the RCPSP are the single-mode case, the time-cost trade-off problems and the multi-mode 

case (Brucker et al. 1999). These cases will be introduced in the next sections. Further cases, such as 

the time lag problems, scheduling with preemption, scheduling multiple projects, cases with non-

regular objective functions (resource leveling problem and net present value problem) and problems 

with stochastic task durations, are described in Brucker et al. (1999) and Hartmann and Briskorn 

(2010) in detail. 

2.2.2.2 Single mode case of the RCPSP 

The single mode case of the RCPSP is the basic formulation of the optimization problem. There 

are 𝑇 = {0,1… 𝑡, 𝑡 + 1} tasks that should be scheduled, where task 0 and t+1 are fictitious tasks for 

the beginning and the termination of the project. Furthermore there are k = 1,…, K resources with the 

amount of Rk units available. Every task has a fixed duration 𝑑𝑡. The tasks might be connected to 

other tasks (predecessors of task t are stored in Pt) with precedence relationships and may need a 

specific kind and/or amount of resources (rtk units of resource k) for their execution. The single mode 

RCPSP only uses renewable resources, meaning that the resource is available from the start until the 

termination of the project. When starting a task, the required resources will be reserved and cannot 

be picked up by any other tasks. When a task is completed, all of its resources will be set free and 

they can then be picked up by other tasks. Preemption (interruption) of tasks is not allowed. Once a 

task has been started, it will be completed within the predefined duration. The objective is to find a 

makespan-minimal schedule that satisfies all the precedence and resource constraints and resource 

limitations (Brucker et al. 1999). A mathematical model for the problem has been developed by 

Pritsker et al. (1969). 

2.2.2.3 RCPSP as time-cost trade-off problem 

In the single mode RCPSP, the duration of the tasks is predefined. However, the duration of a 

single task might be changed depending on “how much the planner is willing to pay for it” (Brucker 

et al. 1999). Therefore, in this generalized form of the problem, the single mode RCPSP is extended 

with a nonrenewable resource4: the budget of the project. The more nonrenewable resource that is 

allocated to a task, the faster its processing time becomes. The objective of the optimization is either 

to find the schedule with minimal makespan subject to a fixed upper boundary of the budget (the 

budget problem), or to find the schedule with minimal budget subject to a highest boundary of 

makespan (deadline problem). The nonrenewable resource is often measured in money, so these 

problems are also referred to as time-cost trade-off problems (Brucker et al. 1999).  

                                                 
4 Nonrenewable resource: A fixed amount of resource is available for the entire project makespan. When a 

nonrenewable resource is used, the amount of available resources will decrease through the frequency of usage. 
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This problem has been discussed in detail by Kelley and Walker (1961), 

Demeulemeester et al. (1996), Ranjbar et al. (2008), Hartmann and Briskorn (2010) and 

Zhou et al. (2013) amongst others. 

2.2.2.4 Multi-mode case of the RCPSP 

As introduced in the last sections, in the single mode RCPSP the duration of a task and the 

necessary resources to reach this duration are fixed and therefore only represent one single method 

for executing a task. In a multi-mode RCPSP the tasks have different alternatives for their execution. 

An alternative execution mode is represented by a combination of resource configuration (renewable 

and nonrenewable) and the corresponding task duration. The task must be performed in only one of 

its modes. Once a mode has been selected and started no changes or preemptions are allowed. The 

objective is to find the schedule with the minimal makespan. When only one execution mode is 

available for the tasks and there are no nonrenewable resources included in the project, the problem 

is the single mode case of the RCPSP (Hartmann and Briskorn 2010).  

The solution for the multi-mode RCPSP without nonrenewable resources has been discussed by 

several researchers including Hartmann (2001), Bouleimen and Lecocq (2003), Jarboui et al. (2008) 

and others. Further formulations and literature about the multi-mode RCPSP can be found in 

Hartmann and Briskorn (2010).  

Since the single mode RCPSP is already an NP-hard problem, and the time-cost trade-off and 

multi-mode problems are even more complex, the author will only focus on generating feasible 

solutions for the single mode problem. Hence in the introduced examples only renewable resources 

will be considered and no preemption of tasks will be allowed.  

In the next Sections the existing conventional scheduling methods that are capable of determining 

feasible schedules for the general scheduling problem will be introduced. The next Chapter will 

address the issue of why simulation-based scheduling can be advantageous compared to the 

conventionally used methods, and how discrete event simulation can be used to generate feasible 

solutions for the RCPSP. After introducing the existing methods for determining the optimal or near 

optimal solutions for the RCPSP in Chapter 6, a new technique will be introduced that uses an 

algorithm to steer the discrete event simulation and generate diverging feasible schedules in order to 

find near optimal solutions.  

2.2.3 Gantt chart 

The Gantt chart, also called the bar chart, was one of the first scheduling methods applied in 

project management and is still the most frequently used method in the construction industry. The 

first ideas (Gantt 1903) of the method were developed by Gantt, an American mechanical engineer 

and management consultant, contemporaneously with the method of Taylor (Taylor 1903) and dated 

from 1890. The two methods should be considered jointly as an integrated production planning and 

control system (Wilson 2003). The initial version of Gantt´s planning method was a tabular approach. 

The current chart form was introduced later (Gantt 1919). The visualization of the project schedules 

through a clearly arranged diagram, in which the tasks themselves are represented as bars over the 

temporal axes “provides a quick and easily understood means for describing project activities” 

(Wilson 2003).  

The position of the bar within the chart is described by the execution dates of the task: the 

beginning of the bar symbolizes the start date and the end of the bar symbolizes the termination date 
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of the task. Extending the representation of the bars with colors, significant additional information 

such as criticality, in progress, completed, necessary resources, etc. can be assigned to the tasks. With 

secondary bars, float time can also be represented. Putting further information on the temporal axis 

such as capacity, resource needs and costs extends the chart with a further dimension 

(Burghardt 2007). Placing every task of the project into a Gantt chart provides information about 

which tasks should be executed on a specific day or within a desired time interval (Figure 2-3). 

Due to the clear representation of the project, this method is still widely used for project 

management purposes and therefore also to plan construction schedules. The most commonly used 

software programs are MS Project and Primavera. However, the major disadvantage of this method 

is its inability to clearly show the interrelationships between the tasks leading to difficulties in both 

rescheduling within the project and in controlling the costs of the project (Kerzner 2003). 

 

2.2.4 Linear scheduling or line-of-balance method 

The linear scheduling method, also called line-of-balance method, is a two dimensional graphical 

representation of the tasks’ progress over time. The horizontal axis represents the change of time and 

the vertical axis represents the completeness of the task. A task is represented by a line. The start and 

end point represent the start and termination date of the task. Intermediate points on the line not only 

characterize the relative completion of the task, but also its location on the construction site. Hence 

the line-of-balance representation of a project illustrates both the temporal and the spatial distribution 

of the tasks and their interrelationships. This is useful to detect temporal and spatial bottlenecks within 

the schedule. This method is suitable for scheduling operations of a repetitive nature (like processes 

in the manufacturing industry, housing projects, high-rise buildings or large bridges), and for linear 

construction projects like pipelines, highways and tunnels. In the latter case, the linear partition of the 

construction site will be represented on the secondary axis (Figure 2-4). The first application of the 

line-of-balance technique was in the manufacturing industry to achieve and evaluate production flow 

rates for production lines (Al Sarraj 1990). The method was introduced by the Goodyear Company 

in the 1940s and was developed further by the US Navy in the 1950s (NAVMAT 1962). Lumsden 

(1968) and Khisty (1970) were the first to apply this method of scheduling to the construction 

industry. Since construction projects such as high rise buildings and bridges contain many non-

repetitive processes including excavations, foundations and superstructures (O´Brian 1975), 

nowadays this technique is principally used only for the scheduling linear construction projects (Long 

and Ohsato 2009). 

 

Figure 2-3: Gantt chart representation of the introduced construction project in Figure 2-1. The bars represent the planned 

execution time interval of a task. Behind the bars the for the tasks execution necessary resources are illustrated. 

The interrelationships between the tasks are hardly traceable. (MS Project 2007) 
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The advantage of this technique, besides the spatial and temporal representation of the project, is 

the illustration of the production rate for the individual tasks which can be determined as the slope of 

the production line. This is important because the duration of the project can be shortened by setting 

the production rate of simultaneously executed tasks to a similar rate by changing their resource needs 

(Figure 2-5). Using this technique, it is simple to adjust production rates for individual tasks and 

therefore to create a smooth and efficient flow of resources for the project (Arditi et al. 2002) and 

decrease the idle time for the machines and labor (Long and Ohsato 2009). 

 

Area 1 

Area 2 

Days1 2 3 4 5 6 7 8 9 10

Figure 2-4: Linear schedule representation of the introduced construction project from Figure 2-1. The construction site 

is divided into two regions: area 1 and area 2. The execution direction of every task is forward from the start 

point to the end of area two. There are tasks, such as task1, task 5, task 9 and task 10, which are executed 

continuously in both areas and the other tasks that are executed only in one area (e.g. task 2 in area 2 and task  3 

in area 1). 
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2.2.5 Network scheduling techniques 

The best suited technique to visualize interrelationships between tasks is a network 

(Kerzner 2003). Since the emergence of the network scheduling techniques in the 1950´s, they have 

become the most popular methods in modern project management. This is due to their theoretical 

accuracy and adaptability in a wide range of fields such as construction engineering (Yang and 

Wang 2010).  

2.2.5.1 Network representation of projects 

Networks are graphs that provide a mathematical representation of the project. By visualizing the 

network, its structure can be extended by further information such as the start and termination date of 

a task. A network consists of events and activities. Events characterize the start or end points of tasks 

and activities specify the work that has to be done between these two events (Kerzner 2003). 

Networks can be represented in two different kind of forms. The first form is the activity-on-arrow 

diagram (AOA). In this diagram, the nodes symbolize the events and the connecting arrows between 

them symbolize the activities (Figure 2-6). The second representation form is the activity-on-node 

diagram (AON), where, corresponding to the name, the nodes symbolize the activities and the arrows 

symbolize the interrelationships between the activities (Figure 2-7). The former AOA diagram 

representation was widely used by project managers in the construction industry until the emergence 

of the latter AON diagram in the 1960´s. However, the AOA diagram is still in use although some 

Area 1 

Area 2 

Days1 2 3 4 5 6 7 8 9 10

Figure 2-5: Linear schedule representation of the introduced construction project in Figure 2-1. Task 2 and task 8 have 

been accelerated (duration 1 day) in order to get more parallel execution lines and a more compact schedule. 
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deficiencies of the method have been identified, like its inability to illustrate connected tasks and its 

ability to only represent finish-to-start interrelationships between the tasks. In order to show more 

complex relationships (e.g. start-to-start, or more predecessors for one activity), ”dummy" activities 

must be introduced that have zero duration and unfortunately make the network look complex and 

confusing (see Figure 2-6). In contrast, the latter AON method is more flexible in this sense and can 

represent every major type of interrelationships (start-to-start, start-to-finish, finish-to-start and 

finish-to-finish). Since the activities are nodes of the network, the main information and data about 

the activity (e.g. start and finish date, duration, etc. – see Figure 2-7) can be placed inside the nodes 

as text providing more definite representation of the project than the AOA diagram where the text is 

placed on the arrows (Figure 2-6). Furthermore, the AON diagram can easily be converted into a 

Gantt chart representation. This process is not as simple for an AOA network due to the dummy 

activities. A detailed comparison of these two network diagrams is provided by O’Brian and Plotnick 

(2009) and Yang and Wang (2010).  

 

 

T1 (0,1)
1   (0,1)

T2 (1,3)
2   (1,3)

T5 (3,5)
2   (3,5)

T8 (5,7)
1 (5,7)

T9 (7,8)
1 (7,8)

T10 (8,9)
1 (8,9)

Events Task
Direct

Predecessor
Duration

1-2 T1 - 1

2-3 T2 T1 2

2-4 T3 T1 1

3-6 T4 T2 1

5-7 T5 T2, T3 2

4-8 T6 T3 2

10-11 T7 T5, T6 1

9-12 T8 T4, T5 2

12-13 T9 T8 1

14-15 T10 T7, T9 1

1 2

3

4
T3 (1,2)
1   (2,3)

6
T4 (3,4)
1   (4,5)

7

8
T6 (2,4)
2   (5,7)

12

11
T7 (5,6)
1   (7,8)

13

15

Event1 Event2
Task (Earliest Start, Earliest Finish)
Duration (Latest Start, Latest Finish)

Dummy 
activity

14

5

9

10

0 1 1

T1

0 0 1

1 2 3

T2

1 0 3

1 1 2

T3

2 1 3

3 1 4

T4

4 1 5

3 2 5

T5

3 0 5

2 2 4

T6

5 3 7

5 2 7

T8

5 0 7

5 1 6

T7

7 2 8

7 1 8

T9

7 0 8

8 1 9

T10

8 0 9

Earliest
Start

Duration
Earliest
Finish

Task

Latest
Start

Total
Float

Latest
Finish

Figure 2-6: Activity-on-Arrow representation of the introduced construction project in Figure 2-1. Ellipses: Events, 

Arrows: tasks, dashed arrows: dummy activities. 

Figure 2-7: Activity-on-Node representation of the introduced construction project in Figure 2-1. Boxes: tasks, Arrows: 

precedence relationships. Information about the tasks like earliest or latest start time are represented inside the 

tasks box. 
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There are three similar and commonly used scheduling techniques that are based on the 

aforementioned two network representations. Two of them, the Program Evaluation and Review 

Technique (PERT) and the Critical Path Method (CPM), are based on the AOA network and the 

Precedence Diagram Method (PDM) is based on the AON network. The former two techniques 

(PERT and CPM) were developed at the end of the 1950´s and aimed at solving large scheduling 

problems where the Gantt chart seemed to be inapplicable. An important feature of the AOA network 

representation is that interdependencies between activities can easily be visualized and modified. A 

further feature of these both methods is the determination of early and late start dates for each task. 

Via these parameters the float time for individual tasks, and so the critical path (see Section 1.3.5), of 

the project can be determined. Thus, temporal bottlenecks and critical processes within the project 

can be identified. Before introducing these three network scheduling techniques in detail, the general 

approach of how to determine a schedule with the network scheduling techniques will be discussed. 

2.2.5.2 Determining a schedule with network scheduling techniques 

To determine a schedule, all three aforementioned network scheduling techniques use the same 

methodology. After fragmenting the project into the necessary tasks and determining their predicted 

duration, a forward pass is carried out, where the earliest possible start date of the tasks is determined 

(see Figure 2-8). To keep the explanation of the method simple, the author will not use any complex 

interrelationships or delays between the tasks, just the common finish-to-start precedence 

relationship. The forward pass always moves forward in time. Therefore it starts with the first tasks 

of the project that have no predecessors and schedules them at the start date zero. The earliest 

termination date of a task can be calculated by adding that task´s duration to the earliest start date of 

the task. The earliest start date of a task is defined by the latest start date of all its predecessors´ 

earliest termination date, since a task cannot be started before all its predecessors are completed. 

When the earliest finish date of the last task in the schedule is determined, the forward pass and so 

the schedule is complete. 

The key advantage of the network scheduling techniques over the Gantt chart method is the 

capability of determining not only the earliest start and termination dates of an activity, but also the 

latest ones. This can be achieved by the backward pass. The backward pass works in a similar manner 

as the forward pass, but it proceeds backward in time and therefore it starts with the last task in the 

project (see Figure 2-9). After the forward pass is carried out, the earliest termination date of the last 

task in the project is detected. This spot forms the start point of the backward pass. To avoid delays 

in the project, the latest termination date of the last task of the sequence equals with its earliest 

termination date5. The latest start date of a task can be determined by subtracting its duration from its 

latest termination date. The latest termination date of a task is defined by the earliest of all its 

successors´ latest start date, similar to the earliest start date determined for the forward pass. The 

calculation continues until the latest start time for every task is determined and the initial point of the 

project is reached (O’Brien and Plotnick 2009).  

                                                 
5 Otherwise the makespan of the project would be extended 
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The difference between the latest and the earliest start dates of the tasks define the total float of 

the task which represents how much time reserve exists without there being an impact on the 

makespan of the project. The tasks without a total float time constitute the critical path of the project. 

A project can have several critical paths simultaneously. A delay in any of these tasks will result in 

an increase of the project’s overall makespan and therefore a delay of the project itself. For this 

reason, it is important to determine the float time for each task so that it is possible to identify tasks 

that are part of the critical path and tasks that only have very short float times. 
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Figure 2-8: Schematic representation of the forward pass for the construction project introduced in Figure 2-1. 

Determination of the earliest start and finish date of the tasks. Boxes: tasks, arrows: precedence relationships, 

dashed arrows: steps of the calculation. 

Figure 2-9: Schematic representation of the backward pass for the construction project introduced in Figure 2-1. 

Determination of the latest start and finish time of the tasks. Boxes: tasks, arrows: precedence relationships, 

dashed arrows: steps of the calculation. 
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Figure 2-10: Determination of float time and critical path for the construction project introduced in Figure 2-1. Boxes: 

tasks, arrows: precedence relationships, dashed arrows: steps of the calculation, fat arrows: critical path, fat 

boxes: critical tasks. 

 

Figure 2-11: Representing the critical path of the construction project introduced in Figure 2-1 on an AOA representation 

based CPM network. Ellipses: events, thick ellipses: critical events, arrows: tasks, dashed arrows: dummy 

activities, thick arrows: critical tasks. 
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2.2.5.3 Program Evaluation and Review Technique (PERT) 

The Program Evaluation and Review Technique (PERT) was developed in the 1950’s by the US 

Navy to plan the Polar Missile Program in order to complete it in the shortest possible time 

(Stretton 2007). To determine a schedule, in addition to the general scheduling technique introduced 

in Section 2.2.5.2, PERT uses three time estimates for the expected task´s duration: the most 

optimistic, the most likely and the most pessimistic one. For example, let’s assume that the most 

likely completion time of a task is three days. If everything goes well, the task can be finished in two 

days. However, if there are unexpected difficulties, it can take up to five days to complete the task. 

The determination of these time estimates are based on probabilistic distributions which allow the 

PERT to also calculate the odds of completing the project before a specific deadline (Kerzner 2003). 

A standard PERT network is presented in Figure 2-12. 

 

2.2.5.4 Critical Path Method (CPM) 

Simultaneously with the development of the PERT, another similar scheduling technique, the 

Critical Path Method (CPM), was developed by the DuPont Company. Their goal was to create a 

schedule with a better time-cost trade off (Kelley and Walker 1989), instead of finishing the project 

as soon as possible. As opposed to PERT, the CPM uses only one time estimate for the tasks (as 

represented in Figure 2-6) and since this estimate is not connected to any probabilistic values, the 

method is considered as deterministic in its nature. The determination of the schedule is carried out 

according to the general technique described in Section 2.2.5.2. Since CPM only uses one time 

estimate for a task, the estimate must be accurate enough to create a suitable schedule. Therefore, the 

CPM is primarily used in the construction industry where the companies have detailed databases 

concerning the completion time of the different tasks with specific conditions. When an accurate 

completion time of a task is available, an accurate partial completeness of the task can be determined. 

This can be used to evaluate the schedule during the project as the task is being executed 

(Kerzner 2003). 

In contrast, PERT is used on those projects, such as research and development, where the 

completion time of a task cannot be accurately predicted and therefore the partial completeness of a 

task is almost impossible to determine. This kind of schedule can only be evaluated when a task has 
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Figure 2-12: AOA-based PERT representation of the introduced construction project in Figure 2-1. On the arrows PERT 

uses three task duration estimates: the most optimistic, the most likely and the most pessimistic one. Below 

each arrow is the expected duration of the task. 
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been finished and when a milestone6 was reached. Therefore, PERT can be seen as an event-oriented 

method and CPM can be seen as an activity-oriented one. Since both methods use the AOA 

representation of the schedule in order to introduce complex task interdependencies, dummy activities 

must be used. 

2.2.5.5 Precedence Diagram Method (PDM) 

The Precedence Diagram Method (PDM) scheduling technique was developed by J. Fondahl and 

was first published in 1961 (Fondahl 1961). He tackled the same time-cost trade-off problem as 

DuPont and the US Navy. To address this problem he developed a new representation form and 

scheduling method called the activity-on-node network and Precedence Diagram Method 

(Fondahl 1987). The computerized version of the PDM was created by H.B. Zachry Co. of Texas and 

it was then commercialized by IBM (Snyder 1987, Weaver 2007). The path of identifying the 

schedule is the same as described in Section 2.2.5.2, but the PDM uses the AON network 

representation instead of the AOA. 

Since its emergence, the usage of the PDM has increased because of its clear advantages over the 

traditional PERT/CPM. Due to the AON network-based representation that avoids the necessity of 

dummy activities and allows the usage of complex task interrelationships, PDM diagrams are easier 

to draw and even complex schedules can be represented clearly with this program. Since it is more 

flexible than the earlier programs, it can provide a more realistic and accurate modeling of the project 

(Wiest 1982).  

Extensions for the interrelationships are the lead-lag factors. These represent a duration that can 

be attached to the task interrelationships, indicating a minimal time period by which the start or 

termination of a task leads or lags the start or termination of another task (Wiest 1982, Kerzner 2003). 

For example, for a concrete structure the task of removing the formwork cannot be started until one 

day after the concrete pouring task has been completed (because of curing). This is represented by a 

finish-to-start relationship with a one-day lag. 

 

2.3 Scheduling problems and solution techniques in the 

manufacturing industry 

In the manufacturing industry similar scheduling problems exist to those in the construction 

industry. This section will focus on these scheduling problems and on different solution methods how 

these problems can be solved. The designers of the manufacturing industry have developed many 

different methods to address the specific scheduling problems of this industry (Brucker et al. 1999). 

In this context the disjunctive graph model and the simulation-based scheduling methods will be 

                                                 
6 Milestones are special events in the schedule where key segments, packages or phases of the project are completed. 

Task pour
concrete

Task remove
formwork

F-S 1

Figure 2-13: Representation of lag in a PDM network: the task of removing the formwork can only be started one day 

after task of filling concrete has been finished (Finish-Start relationship with 1 day lag). 
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introduced in the next sections in detail, since they are relevant for the author’s research work. The 

simulation-based scheduling technique is the topic of Chapters 3, 4 and 5. Further static methods, like 

integer programming, will be introduced in Chapter 6.  

2.3.1 Specific scheduling problems in the manufacturing industry 

The most common scheduling problems in the industrial production process are the shop 

scheduling problems, such as the open shop problem, the flow shop problem and the job shop 

problem. These are special cases of the general shop problem and are widely used for modeling 

industrial production processes (Brucker 2007). 

The general shop problem is defined by   jobs  = 1, … ,   and   machines 𝑀1, … ,𝑀𝑚. Every job 

consists of a set of operations  𝑖𝑗 ( = 1,… ,  𝑖) and has a specific duration of  𝑖𝑗. Each operation 

must be processed by one of the above-defined machines, and precedence relationships must be 

defined among the operations of all jobs. In the case of the general shop problem the machines are 

dedicated, which means that each job must be processed on a specific machine. Furthermore, “each 

job can only be processed by only one machine at a time and each machine can only process one job 

at a time” (Brucker 2007).  The objective of a shop scheduling problem, similar to the RCPSP, is to 

find an optimal schedule with a minimal makespan. 

In contrast to the general shop problem, the RCPSP allows a task to be processed by any resource 

or any combination of resources that possess the necessary skill to complete the task. This represents 

the main difference between manufacturing processes and construction industry processes and 

explains why shop problems do not represent construction projects correctly. Yet another difference 

between the shop problem and the RCPSP is that for the RCPSP precedence relationships can be 

defined between every tasks, while for a shop problem precedence relationships can only be defined 

between operations of the same job.  

Based on these similarities and differences, it is recognizable that the shop problems are specific 

formulations of the RCPSP (Brucker et al. 1999), however these problems are still NP-hard in the 

strong sense (Blazewicz et al. 1983). Thus, a shop problem can be defined as an RCPSP where a task 

only needs one specific resource for its execution and the precedence constraints are defined only 

between tasks that belong to one job. Since the RCPSP is the generalized form of the shop problem, 

the solution methods of the RCPSP can be applied without restrictions to the shop problems but not 

vice versa. To apply the solution methods of the shop problems to solve the RCPSP, they must be 

extended first (see Section 2.4.1). 

The first special case of the general shop problem is the open shop problem. In the case of an open 

shop problem, there are no precedence relationships defined between the operations. Therefore, the 

objective is to find the best execution sequence of the operations belonging to the same job 

(e.g.  11 →  14 →  12 →  13). Also to find the best order of operations that must be processed on 

the individual machines (e.g. for 𝑀3:  25 →  32 →  31 →  21, see Figure 2-14) while obtaining the 

minimal makespan of all jobs. 
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In the flow shop problem, each job consists of   operations  𝑖,𝑗 that must be processed on the 

machine 𝑀𝑗. The precedence constraints between the operations are defined after the principle  𝑖,𝑗 →
 𝑖,𝑗+1 ( = 1,… , − 1) for each  = 1,… ,  . Thus, every job must be processed on each machine 

and the number of operations for every job equals with the amount of machines. The objective is in 

this case to find the optimal job execution order for every individual machine 𝑀𝑗 (e.g. 𝐽 𝑏2 → 𝐽 𝑏1 →
𝐽 𝑏3, therefore the execution order for 𝑀1:  21 →  11 →  31, see Figure 2-15). 
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Figure 2-14: Schematic representation of an open shop problem example: the operations ( 𝑖𝑗) of a   𝑏   have no 

precedence relationships between each other and are associated with one machine (𝑀𝑘) necessary for their 

execution. 

Figure 2-15: Example for a schematic representation of a flow shop problem: the m operations ( 𝑖𝑗) of every job are 

connected as a flow with precedence relationships to each other. Every task is executed on the machine 

corresponding to the position of the operations in the flow sequence. The task is to find the optimal execution 

order for the jobs. 
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The job shop problem (see Figure 2-16) is the generalization of the flow shop problem with a 

modified resource-job/operation restriction. In the job shop problem every job   consists of a sequence 

of  𝑖 operations:  𝑖,1,  𝑖,2, … ,  𝑖,𝑛𝑖, which must be processed precisely in this order. Therefore the 

precedence constraints should be formulated as follows:  𝑖,𝑗 →  𝑖,𝑗+1 ( =  1, … ,  𝑖 −  1).  Every 

operation  𝑖,𝑗 needs a resource  𝑖,𝑗 ∈ (𝑀1, … ,𝑀𝑚). Hence, every operation must be processed by one 

predefined machine, but there is no correlation between the position of the operation within the job 

to the selected machine position (e.g. in a flow shop problem operation 1-3 must be processed by M3. 

In the job shop problem it can be any other, predefined machine, e.g. M2). The objective is to find 

the optimal schedule with the minimal makespan (Brucker 2007). 

2.3.2 Disjunctive graph model 

To determine diverging feasible schedules for a shop problem, the disjunctive graph model (Roy 

and Sussmann 1969) is one of the methods used most (Blazewicz et al. 2000). The methods popularity 

is not only due to its ability to generate feasible schedules, but it can also be used for optimization 

purposes when the objective function of the optimization is regular (Brucker 2007). A disjunctive 

graph 𝐺 = (𝑉, 𝐶,  ) is defined as follows: 

 

V:  Vertices represent the operation of a job. The operations are weighted according to 

their processing times. 

C: represents the directed conjunctive arcs of the graph that are the precedence 

relationships between the operations. 

D: contains the undirected disjunctive arcs. Such arcs exist between two operations when 

they are not connected by a chain of conjunctive arcs but need the same machine to be 

processed and therefore they cannot be executed simultaneously. 

 

Figure 2-16: Schematic representation of a job shop problem: the jobs are made up of different ( 𝑖) amounts of operations 

( 𝑖𝑗) that are connected to each other with precedence relationships as described by the flow shop problem. 

For the job shop problem the ID of the required machine for a task’s execution is not necessarily equal to the 

task’s place in the flow sequence.  
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The basic idea for scheduling is to turn the undirected disjunctive arcs into directed conjunctive 

arcs and define straightforward sequences for every machine and operation in this way. The schedule 

is complete when every disjunctive arc has been turned into a fixed arc, and the resulting graph is 

acyclic. By varying the direction of the fixed arcs, diverging schedules might be generated  

(Figure 2-18 and Figure 2-19). By generating a schedule for every possible fixed arc direction, the 

complete feasible solution space of the project will be covered and the optimal schedule lies within 

the determined schedules. This optimization technique is called total enumeration which will be 

discussed in detail in Chapter 6.  

A heuristic optimization method for the different shop problems using the disjunctive graph model 

has been introduced by Mati (2010). He uses a feasible base schedule where all the disjunctive arcs 

have been turned into fixed arcs. Likewise he attempts to improve the schedule by swapping the 

direction of fixed arcs that belong to the critical chain. Brucker et al. (1994) developed a Branch-and-

Bound method-based (see Section 6.5.1.2) deterministic search tree algorithm. No disjunctions are 

fixed in the root node. The successor of a node always contains one more fixed arc than the previous 

node. The examination of a node terminates if all of the disjunctive arcs are fixed or if it can be proven 

that the node does not contain the optimal solution (Brucker et al. 1994). Abdelmaguid (2009) 

enhanced the aforementioned Branch-and-Bound method. He introduced the permutation-induced 

acyclic network (PIAN) where the decision variables are defined as the permutations of jobs instead 

of the binary decision variables associated with the disjunctive arcs. 

Since the disjunctive arcs forbid the simultaneous execution of task pairs that are not allowed to 

be executed simultaneously and assuming that the disjunctive graph model is acyclic, the method will 

always result in feasible schedules.  
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Figure 2-17: Disjunctive graph model of the first two jobs of the introduced job shop problem in Figure 2-16. Simple 

arrows: conjunctive arcs, double arrows: undirected disjunctive arcs. 
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Figure 2-18: One feasible solution for the introduced disjunctive graph from Figure 2-17. Every disjunctive arc has been 

turned into a fixed arc resulting in an acyclic graph defining exact execution orders of the operations for every 

single machine. 

Figure 2-19: Another feasible solution for the introduced disjunctive graph in Figure 2-17. By comparing the resulting 

feasible schedules of solution 1 and solution 2 it can be seen that schedule 2 is significantly shorter than 

schedule 1. 
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The generation of diverging schedules by varying the direction of the fixed arcs is presented with 

two solutions (Figure 2-18 and Figure 2-19) for the introduced disjunctive graph from Figure 2-17. 

Solution one (Figure 2-18) results in a relatively long schedule, since the idle time of the individual 

machines is long. In the second solution (Figure 2-19) the direction of the fixed arcs are directed so 

that it allows the simultaneous execution of more operations thus resulting in a shorter schedule 

makespan and less idle time for the machines. 

2.4 Improving the scheduling techniques in the construction 

industry 

As described in Section 2.2, the common scheduling methods in the construction industry are not 

capable of solving problems with resource constraints. The available methods, which have been 

developed for the manufacturing industry, are not applicable for construction processes, since they 

do not take the flexible assignment of resources to tasks based on description of skills into account.  

In order to improve the scheduling processes of the construction industry instead of using the 

conventional manually executed methods, computer-aided techniques should be applied. The goal is 

to improve the scheduling processes so that they can handle large and complex projects, to reduce the 

calculation period to determine near optimal schedules and to raise the validity of the generated 

schedules. One promising technique is the simulation-based scheduling technique. However, before 

introducing this technique it is important to understand the difficulties encountered in applying this 

technique to the construction industry. Therefore, in the next sections, the differences between the 

main characteristics of the two industries and the relations between the main scheduling problems 

(the resource-constrained project scheduling problem and the shop problems) will be discussed. 

2.4.1 Comparing the scheduling problems and solution techniques in the 

construction and the manufacturing industry 

Analyzing the scheduling problems in both construction and manufacturing industries while 

taking also resource constraints into account allows us to identify both some similarities and 

differences. The most general similarity is that both the construction project-scheduling problems and 

shop problems under resource constraints are made up of processes (called either tasks or operations) 

that might have interrelationships with other processes and all of them need resources for their 

execution. These similar foundations of the problems and the recognition that both problems contain 

repetitive operations7 encouraged researchers (Halpin 1977, Martinez and Ioannou 1994, Wales and 

AbouRizk 1996, Herroelen et al. 1997, AbouRizk and Hajjar 1998, Lu 2003, Blazewicz et al. 2007, 

König et al. 2007b, Tulke and Hanff 2007, Günthner and Borrmann 2011) to attempt to apply the 

same methods to solve these problems or to adapt solution methods from one industry to another.  

However, an adaption is not always a straightforward process and its difficulties lay mostly in the 

differences between these problems. In a shop problem “each machine can handle at most one job at 

a time and each job can be executed by at most one machine at a time. Thus, at any time, the execution 

of a job is restricted by the presence of a single scarce resource (Blazewicz et al. 2007).”  

                                                 
7 Such as earth transport in the construction industry or the preparation of a product in the manufacturing industry 
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In contrast, if the scheduling problem of the construction industry is considered as a resource-

constrained project scheduling problem (RCPSP), a task shall be executed at least by one resource 

(machine and labor) and it can be executed by any of the available resources that have the necessary 

skills. Thus, dependencies are not defined between the task and a resource itself, but between the task 

and the skill category that a resource must have in order to execute the task.  

This additional freedom creates a mathematically more complex constraint description between 

task and resource in the RCPSP than in the shop problem, where the connection is defined directly 

between a task and one specific resource. Since mathematically the foundations of the two problems 

are the same and the differences are only the boundary conditions (e.g. precedence and resource 

constraints), it can be proved that the resource-constrained project scheduling problem is the general 

formulation of the shop problems (Blazewicz et al. 1983). Thus, a shop problem can always be 

formulated as an RCPSP, but not vice versa.  

This is achievable by defining the jobs and their operations as independent sequences of tasks, 

where the tasks within a job are connected to each other with precedence constraints. Every task needs 

only one skill that can be executed by only one specific resource entity (machine) for its completion.  

Furthermore, through this classification, every solution technique that is able to solve the RCPSP 

can also be applied to solve the shop problems without restrictions, but not vice versa. To solve the 

RCPSP with methods that have been developed to solve a shop problem, first, the methods must be 

extended so that they can handle the more general precedence and resource constraints that were 

introduced above. As a consequence, the RCPSP is mathematically more complex and harder to solve 

than the shop problems (Blazewicz et al. 1983, Herroelen et al. 1997). 

2.4.2 A drawback of conventional scheduling techniques – consideration 

of resources 

A very significant drawback of the introduced conventional scheduling techniques in the 

construction industry (Section 2.2) is the missing capability to take resource constraints into account. 

To overcome this drawback, either an extension of these techniques or the usage of a new method is 

necessary. A simple extension for the common scheduling techniques is to manually push tasks 

forward in time along the time axis until all resource constraints are met (Figure 2-20). This is a time 

consuming iterative process that is inefficient in complex cases where the amount of tasks and 

interrelationships is high. This is due to the many infeasible schedules. Further challenges include the 

decisions of which tasks to push forward in time, since pushing different tasks forward results in 

different schedules with different makespans and costs. 
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Another possible approach to overcome the resource allocation problems while keeping within 

the predefined resource limits is the application of heuristic methods for the scheduling process 

(Hegazy 1999, Lu and Li 2003). These algorithms rank the tasks according to certain rules, like 

priority, earliest start time or other project specific values and then attempt to schedule the tasks in 

their ranking order while not exceeding any of the resource limits (Willis 1985). As further 

development of this technique, Lu and Lam (2008) introduced a method that is also able to take 

resource calendars into account for those occasions when the resources are only available on the 

construction site within a predefined time window. Although, these methods also facilitate resource 

constraints into account with common scheduling techniques, due to their complexity and time 

consuming preparations they are barely used in the industry. 

A suitable method for industrial application should not only be able to generate schedules by 

taking resource constraints into account but should also be easy to manage and should have a low 

computational time. The approach taken in this thesis follows the principle that such a method should 

be adapted from another industry, e.g. from the manufacturing industry, where the method has already 

proven its applicability.  

Since the process-simulation technique has already proven its effectiveness and efficiency for 

schedule generating purposes with resource constraints in the manufacturing industry, an adaption of 

this method could accelerate the conventional scheduling process in the construction industry. 

Although the process simulation method is not an optimization method it can be coupled with 

heuristic optimization techniques, in order to determine near optimal schedules. Furthermore, 

resources can be defined and handled on a simple and straight forward way. The basic terms of 

simulation and its applications in both manufacturing and construction industry are introduced in the 

next chapter. 
  

Figure 2-20: Pushing tasks forward along the time axis due to resource shortage. Above: basic schedule, below: updated 

schedule. There is only one R1 resource available on the site. Therefore either task 2 or task 3 and task 7 or 

task 8 which form the basic schedule must be pushed forward in time, since they exceed this resource limit. 

The author’s choice was to push task 3 and task 7 forward resulting in a schedule with a makespan that is one 

day longer than the basic one, but where the resource limits are all met. (Project from Figure 2-1) 
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3.1 Executive summary 

Simulation is an experimental technique that analyzes the reproduction of a real or imaginary 

process or system to explore its behavior over time. Simulation models are used to observe, predict 

and study how a process or a system reacts to parameter changes (e.g. performance factors, layout, 

etc.) and to investigate the reasons behind the specific simulation results. Further applications aim to 

design new models while exploring alternative configurations or to optimize specific parameters of 

the model. Since simulations are always abstractions of a real problem, they can be applied for 

problems with any complexity, where other techniques may fail (Banks 1998, Page and 

Kreutzer 2005). Therefore, the process simulation is also applicable for scheduling purposes with 

resource constraints. The first section of this chapter will explain the basic definitions, modeling 

concepts and components of the process simulation. After introducing and comparing current 

applications of simulation in the manufacturing and construction industries, a different simulation 

approach will be presented that is capable of not only evaluating schedules but is also able to generate 

schedules for construction projects. The advantage of this technique over conventionally used 

scheduling techniques such as the network planning methods is its capability to take not only the 

interrelationships between the tasks into account but also to factor into the schedule the applicable 

resource constraints. Thus, it can overcome the major limitations of network planning techniques. 

The exact concept and working mechanism of this process simulation will be introduced in detail in 

Chapter 4.  

 

3 Simulation-based scheduling 
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3.2 Basic terms of simulation 

Simulations are created to study the behavior of a system with desired objectives, e.g. how the 

system reacts on parameter or layout changes, or how to reach an optimal productivity with the 

predefined shop layout. A complete simulation-based study, in most cases, is composed of several 

simulation runs or simulation experiments that differ from another in some simulation parameters. A 

simulation run is always executed on a simulation model that represents the abstraction of a system 

to study and refers to the objectives of the simulation. The computer-based simulations are executed 

by simulation programs, where the simulation models and experiments are prepared and influenced 

by the user, who is also the observer of the simulations. Based on the observations about the behavior 

of the simulation model, conclusions to the real system can be drawn (Figure 3-1).  

 

3.2.1 The system and its components 

A system is a subset of the real world whose behavior is being analyzed. It is composed of a group 

of objects and elements (e.g. machines, tasks, labor, etc.), which are the entities. They might be joined 

with each other by interdependencies, by creating a sequence of operations, which define the system 

structure (Figure 3-2). The attributes are the properties of the entities that describe their 

characteristics such as quality, quantity, capacity, etc. (Banks 1998). In case of a construction project, 

for example, the entities are the machines, the building components and the construction tasks. The 

attributes of the building components are its material, its completeness or the deadline for completion.  

Changes that can affect the systems behavior might also occur outside of the system. This outside 

area is called the system environment and it is separated from the system itself by the system boundary. 

The position of the boundary between the system and the environment depends on the purpose of the 

study (Banks and Carson 2009).With a construction project, for example, the transport of materials 

and building parts is considered as part of the environment and so their influence on the construction 

itself is considered as low. However, when this influence is significant, it might be part of the system 

boundary. In this way boundary input or output parameters might be exchanged within the 

environment, such as the arrival dates of the materials in the case of the construction project. 

A system may not only be described by its components, but also by further characteristics. One 

such characteristic is the time dependency of the system. When the system does not contain any time 

Real world
system

Model

Observer / 
user

𝑐  𝑐      

        𝑡 𝑡   

       𝑐 

𝑏        

Figure 3-1: Interaction of the user, the system and the model (based on Page and Kreutzer 2005) 



50 Simulation-based scheduling 

 

 

reference, it is called a static system (e.g. the system of a bridge, that’s static behavior does not change 

over time). When the behavior of the system is time-dependent, it is called a dynamic system. A 

dynamic system has different system states that are defined by the value of all system state variables 

at any given point in time. System state variables are the collection of all information necessary to 

describe the state of the system at a certain point of time. This information can contain properties or 

attributes of system entities. The necessary state variables for a system are the function of the purpose 

of the study. So, one variable may be considered as a system state variable in one case but not in the 

other, even though the physical system is the same (Banks 1998). The behavior of the system is 

defined by a vector of the system states over time.  

An event is an “instantaneous occurrence that may change the state of the system” (Banks and 

Carson 2009). Furthermore, activities are defined as time intervals with a specific length. They might 

be triggered and terminated by an event. For a construction project, the states might be represented 

as the completeness of the construction (state 1: not started, state 2: in construction, 

state 3: completed), which can be defined by a state variable. An activity might be the construction 

of the building that lasts e.g. 100 days long. The events that are connected with this activity are the 

“start the construction” and the “finish the construction”. The former one might change the system 

state variable, for the completeness of the project, from “not started” to “in construction”, and the 

latter one to “completed”. 

 

Based on the interaction of the system with its environment two further system categories can be 

differentiated. While a closed system (e.g. an aquarium - Page and Kreutzer 2005 - Figure 3-3) has 

no interactions with its environment, an open system (e.g. a manufacturing plant or construction site) 

has at least one interaction point (see Figure 3-2 above). 

System Environment

Entity 1

Entity 2

Entity 3 Entity 4

Entity 5

   𝑡   𝑏   𝑑   

   𝑡       𝑡 1

   𝑡       𝑡     𝑡     𝑡  𝑡

   𝑡    𝑡  𝑐𝑡   

Figure 3-2: Representation of the system environment, the system boundaries and the system with its entities and their 

interactions. (Based on Page and Kreutzer 2005) 
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A further categorization of a system is that the system is either discrete or continuous. Discrete 

systems have state variables that only change their values at a discrete set point in time. For example 

the introduced small construction project can be considered as a discrete system, since the state of the 

project only changes when an event occurs (Figure 3-4).  

The state variables of a continuous system change, as its name says, continuously over time. An 

example is the temperature of a machine in a factory. During production the machine warms up and 

after a temperature limit is reached a cooling process starts until a normal temperature is reached 

again. Figure 3-4 illustrates the change of the state variable, the temperature of the machine, over 

time for this continuous system. 

 

3.2.2 Model concepts 

A model is the representation of the system being studied within a selected examination 

framework. Models help explain the system’s behavior and the effect of the interactions among its 

components (Page and Kreutzer 2005). The real world systems are mapped into models by 

abstraction and simplification of their components and functionalities. Therefore, a model is always 

simpler than the original system. However, it should always be complex enough “to answer the 
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Figure 3-3: Representation of a closed system that has no interaction at all with its environment. 

Figure 3-4: Representation of a discrete (left) and a continuous system (right) 
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questions raised” (Banks 1998) related to the system, but simple enough to understand the system’s 

behavior and to keep the simulation efficient. Which system components are crucial and which are 

ignorable depends on the purpose of the model. For a construction project, for example, it must be 

decided at which level of detail the single components of the building are modelled. Is it enough to 

consider coarse objects, like the abutment or superstructure of a bridge, or should it be more precise 

and consider a more detailed structure, like the sub-foundation, foundation, the walls of the abutment 

or the individual girders of the superstructure? It only depends upon what question the model aims to 

answer. For an approximate calculation in the planning phase of the building the former version might 

be enough. However, for a detailed analysis or calculation in the latter phase of the building a more 

detailed model is necessary.  

Simulation models can be categorized as static or dynamic, discrete or continuous and 

deterministic or stochastic (Figure 3-5). Static simulations, as static systems, are independent of time 

(Banks and Carson 2009). Dynamic simulations analyze how systems behave, respond or change over 

time. Dynamic simulation is, for example, the simulation of the production line of a factory to find 

out how many goods it can produce a day.  

 

Deterministic simulations contain no random variables, have known input data and result in a 

unique set of outputs (Banks and Carson 2009). As an example, a simulation of a factory with input 

materials and machines is considered deterministic when every arrival date of the materials is known 

and the processing times of the machines are all predefined. Different results might be determined by 

diverging factory layouts. Stochastic simulations have at least one random input variable that leads 

to random simulation outputs. Since the results of the simulation are affected by a random variable 

that only approximately describes the modelled variable, they can only estimate the characteristics of 

the real systems behavior (Banks and Carson 2009). For the factory simulation model both the arrival 

date of the materials and processing time of the machines can be replaced with random distributions, 

which will result in diverging results for the same factory layout. Results of such a simulation would 

be the average production rate of goods a day, or the average idle time of specific machines. 

Discrete and continuous models can be defined analogous to the discrete and continuous system 

introduced in Section 3.2.1. However, a discrete system is not necessarily modelled as a discrete 

simulation model, nor the continuous system as a continuous simulation model. Discrete systems 

might be simulated as continuous models and continuous systems as discrete models. Which model 

to choose, depends on the characteristics of the system and the purpose of the study (Banks and 

Carson 2009). Thus, the material transport on a construction site, for example, might be modelled 

discretely (states: stored, transported) when the transport itself is insignificant for the whole 

construction simulation. Although, if this process might collide with other processes and could cause 

Simulation 
models

Static Dynamic

Discrete Continuous

Deterministic DeterministicStochastic Stochastic

Figure 3-5: Categorization of simulation models (based on Page and Kreutzer 2005) 
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delays in the system, it is appropriate to model the transport with a continuous simulation model so 

that the location of the transport goods can be tracked down at any time. 

3.2.3 Steps of a simulation study8 

To analyze the behavior of a real system with simulations, different steps must be followed in 

order to gain reliable results in an efficient manner. These steps are part of the modeling cycle  

(Figure 3-6). 

The first step of the modeling cycle is the problem formulation. Before starting to implement or 

model anything, a clear statement about the problem to be analyzed must be declared (e.g. a new 

machine should be inserted into an already working production line, or an assembly line has a lower 

performance than excepted, etc.). It is important that every stakeholder (policy maker, analyst) 

involved in the planning process understands and agrees with the statements. The problem 

formulation might change during the study when some of the results are available. 

After declaring the problem, the objectives of the study and an overall project plan should be set. 

For the aforementioned assembly line, an objective might be to find an answer to the question of how 

to insert the new machine into the production line so that the performance increases. Or to figure out 

how the performance of an assembly line that is not performing as expected and cannot keep up with 

the plan could be increased. At this point in time it should be decided whether the simulation is the 

appropriate method to reach the stated objectives or whether other methods such as analytical 

methods, should be applied. Next, the alternative systems should be considered and the overall project 

plan should be set down. It should include all aspects such as how many people will work on the 

project, costs, deadlines and expected results (Banks 1998). 

When the problem and the objectives of the study are identified and the application of simulation 

techniques have been selected to analyze the problem, a simulation model can be built. For that, first 

the system, including its components and their interconnections, the system boundaries and the 

system environment should be stated. This identifies, for example, which part of an assembly line 

should be part of the system to be analyzed and which part only interacts with the system and serves 

as input data for it. To create an appropriate and efficient simulation model for a system is a complex 

and difficult task. Since the fields of application, systems to analyze and purposes of the study differ 

from case to case, it is not possible to give a set of instructions that will always lead to an appropriate 

and effective model. However, some general guidelines might be followed (Banks 1998). As Banks 

and Carson describe: “The art of modeling is enhanced by an ability to abstract the essential features 

of a problem, to select and modify basic assumptions that characterize the system, and then to enrich 

and elaborate the model until a useful approximation results” (Banks and Carson 2009). Thus, it is 

recommended to start with a simple model and extend it toward a higher complexity. When the 

necessary complexity of the model has been reached depends upon the purpose of the study. 

Parallel to the construction of the simulation model a data collection that defines the necessary 

input and output data for the model should be set up. Since the complexity of the model might change 

with time, the necessary data for the simulation should also be revised, and if necessary, changed. 

This results in a constant interplay between the construction of the model and the definition of the 

necessary data collection. 

Once all of the necessary data is in place, the implementation or modeling of the simulation model 

can be started. For that either a simulation language or a special purpose simulation software is 

                                                 
8 Based on the description of Banks and Carson (2009) and Page and Kreutzer (2005) 
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necessary. Simulation languages provide a powerful environment for simulations for the high 

qualified user, who has experience in programming. Some well-known simulation languages are 

GPSS, Arena, Simio, AnyLogic, Modelica, Matlab and Simulink, etc. These languages provide a 

great flexibility for users to set up and improve their models, but it is also very time consuming. 

Special purpose simulation software, such as Simphony (AbouRizk and Hajjar 1998) or Stroboscope 

(Martinez and Ioannou 1994) used by the construction industry provide an environment within which 

to model specific construction problems, like tunnel or bridge construction. These software systems 

offer the user predefined model component templates that can be used to establish a simulation model. 

These software systems do not require knowledge in programming and therefore can only be used for 

the selected specific purpose. However, they frequently give the user the opportunity to extend the 

predefined templates or create new templates and components by using the underlying programming 

language. 

When the simulation model is complete, it must be verified. The verification process should prove 

that the implemented simulation model is an accurate reflection of the designed model (Page and 

Kreutzer 2005) and that the computer program performs properly (Banks and Carson 2009). For that, 

the input parameters, the logical structure of the model and the results should be reviewed. For a 

complex model this is difficult, if not impossible. Therefore, the modeling strategy introduced above, 

of starting with a simple model and enhancing it further when it performs well, also simplifies the 

verification process of the model. In this case, only the new components and their logical structure 

shall be verified, since the existing model is already verified. 

After the verification, the simulation model must also be validated. Validation compares the 

simulation model to the real system (Kamat and Martinez 2003). This is often an iterative process 

that takes until the simulation results adequately represents the examined real system. For the 

assembly line, for example, the simulation results must match the performance of the real system in 

order to be validated. 

When the simulation model performs correctly (verified) and represents the real system accurately 

(validated) the experimental phase can be started. Depending on the purpose of the study, first, the 

experimental design must be stated. Diverging simulation scenarios (alternatives) should be defined 

that correlate to the initial purpose of the simulation. Alternatives might differ in model layout 

(different sequence of machines), components (further machines), input data (the arrival of 10% more 

material to work on), attributes (performance factor, capacity), etc. During the experimental design, 

different decisions have to be made depending on the kind of simulation, such as the length of the 

initialization period, the duration of individual simulation runs and the number of replications for 

each run. 

During the analysis the different scenarios are executed to estimate measures of performance for 

the ongoing simulation scenario (Banks and Carson 2009). To draw conclusions from the analysis 

results the user himself must detect patterns that are related to the purpose of the simulation (Page 

and Kreutzer 2005). Typical examples are that the performance of machine 3 is much lower than the 

performance of the other machines, or by switching the sequence of machine 1 and 2 the performance 

of the factory increases by 2% in average. 

When the analysis is completed the analyst decides based on the results of the simulations whether 

additional simulation runs are necessary or whether the available ones provide enough information 

on the behavior of the system and such that the initial question can be answered. 

Since simulations generate a huge amount of data, the documentation and clear representation of 

this data is a very important task (Page and Kreutzer 2005). Good representation and documentation 

is important for the analyst to find the above-mentioned interesting patterns and for external people 

to understand the working mechanism and characteristics of the examined model. For such purposes 
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graphical representations such as diagrams, bar charts and UML diagrams are usually used. Since 

different scenarios were simulated, it is important to document not only the results, but the model 

itself as well, so that a correlation between the model and the results can be deduced.  

The final step of the simulation modeling process is the practical application of the results of the 

simulation. According to the simulation results, decisions can be made that may change the 

production layout or may add additional machines to the production line in order to reach a higher 

production rate, or to avoid bottlenecks within the production line. If the simulation model that was 

created was used properly such that every necessary component and influence factor has been 

included into the model, the results will reflect the real behavior of the analyzed system and can also 

adequately predict changes in its behavior. 
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Figure 3-6: Steps of a simulation study (Banks 1998) 
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3.2.4  Advantages and limitations of the simulation technique 

Simulation is a promising technique for a user who tries to study problems of the real world, 

because simulations are capable of predicting how a system that is still in the planning phase would 

perform, or enhancing a system that is already in place. Additional reasons as to why the simulation 

is a favored technique in the manufacturing industry have already been addressed in Section 1.4.1. In 

this section further advantages and disadvantages of this technique will be discussed to get a realistic 

overview about this technique. 

One important characteristic of the simulation is its capability to model complex systems. Through 

simplifications and abstractions it can accurately model systems that cannot be analyzed by any other 

tool (Page and Kreutzer 2005). System modeling requires a high understanding of the system itself, 

its components and their interactions. Therefore, the understanding of the systems behavior improves, 

just through the modeling process, even before starting a simulation. Simulation is the perfect tool to 

experiment with the system. Parametric studies, what-if experiments, alternative scenario tests and 

bottleneck analyses can be executed before the real system has been built. The behavior of a system 

can be studied using simulations without impacting the real system. Once a model has been set up, it 

can be used as part of a bigger model, thus reducing modeling time. Furthermore, in dynamic 

simulations, the time can be accelerated or slowed down, so that important processes can be analyzed 

in slow motion, or long-term predictions can be made by simulating years of production in only 

seconds of simulation time.  

Beside these important positive characteristics, as with every other technique, simulation also has 

some limitations and disadvantages over other methods. The list of these limitations according to 

Page and Kreutzer (2005) are the following: 

 Conceptual gap between model and reality 

 Confusing a model with its reality 

 Lack of transparency 

 Inadequate data 

 Propensity of errors 

 High degrees of construction effort 

 Misplaced confidence in computer generated data 

 

Since a model is always a simplification and abstraction of the real system, the gap between model 

and system might become too large. Thus, the results of the simulation will no longer represent the 

accurate behavior of the system. Such a gap can occur due to misinterpreted relationships and working 

mechanisms, overseen (not modelled) components or inadequate goals (Page and Kreutzer 2005). 

The more complex the model, the higher the risk of a modeling error. Furthermore, one model 

represents only one of the many aspects, of how a system can be described or handled. Therefore, the 

significance of one simulation run should not be overestimated, and the conclusions should also 

involve different simulation models. In this context the transparency of a model is an important factor 

that can be lost e.g. by overly simplified assumptions, overcomplicated interactions or hidden 

parameters.  

One further category of risk is related to the input data of the simulation. Empirically inadequately 

supported estimates as input data may devaluate the results of the simulation. When the necessary 

adequate data is not available or cannot be obtained, an approach other than applying simulation 

techniques should be considered to solve the problem (Page and Kreutzer 2005). Furthermore, when 

the complexity of the model increases there is a higher risk of internal modeling errors that are hard, 

or in some cases impossible, to detect. To keep the risk as low as possible, the modeling shall be 
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started with a simple model and enhanced toward the desired complex scenario. Proper validation 

also guards the models from internal errors and is therefore an important part of modeling. Due to 

these difficulties that the analyzer has to face while modeling, the construction phase of a model is 

time-consuming and the analyzer requires increased abilities and skills to avoid the aforementioned 

mistakes and errors. To support the analyzers and accelerate the construction process of models, 

vendors of simulation software develop verified packages, also called templates that can be used to 

build up complex simulation models. Additionally, these packages are set up with output analysis 

capabilities to verify not only the working mechanism of the model, but also the feasibility of the 

results. Furthermore, due to the rapid development of computer hardware and specific simulation 

algorithms, the duration of a simulation is getting shorter and shorter (Banks and Carson 2009). Due 

to this technical advancement and the aforementioned advantages of the simulation, the application 

of this technique for scheduling purposes in the construction industry is useful. For such purposes the 

discrete event simulation is the most suitable one, which will be introduced in the next section. 

3.3 The discrete event simulation 

The discrete event simulation is a type of simulation that models systems for which changes in 

the system’s state, known as events, occur only at discrete points in times (Banks and Carson 2009). 

The simulation time of the model jumps forward in time between these events and the model´s state 

between these discrete time steps stays constant. Discrete event simulation has a wide range of 

application in many fields including engineering, health, management, telecommunication and 

transportation sciences (Fishman 2001, Banks and Carson 2009). Since it is capable of handling 

complex systems and providing information about its behavior, both researchers and industry apply 

this simulation technique to support their decision making processes. The next section will introduce 

the basic concept and different components of the discrete event simulation and explain how this 

technique works. After that, different simulation model designs will be introduced and compared to 

each other. 

3.3.1 Discrete event simulation model components and simulation concept 

The discrete event simulation, like other simulations, consists of entities that model the 

components of a real system and may interact with each other. Entities are represented by their states 

and methods or rules called events. Events are responsible for changing the entities’ states over time 

(Page and Kreutzer 2005). These events are associated with a time property that is responsible for 

triggering the state transformation at a specific point in time.  

Since the entities have different states it is important to illustrate how they change over time. For 

simulations two interpretations of time can be distinguished. The first one is the modeling time, which 

is a fictitious time that passes internally during the simulation and is independent from the duration 

of the computation. The second one is the real time, which passes during the execution of the 

simulation (Page and Kreutzer 2005). For example, a production simulation of a factory might take 

several seconds in real time, but during this time several years of modeling time might have passed. 

To model such a time a simulation clock is used (Banks 1998).  

To execute a simulation run, first, the modeling time is set to zero and the state of the model is set 

to the initial one. The simulation clock jumps to the first event and changes the state of the 
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corresponding entity according to the rules of the event. Many events, e.g. those that are responsible 

for starting an activity, might introduce further events into the simulation. Those events will be 

registered on the time line by the simulation controller for future consideration. When an event is 

executed, the modeling time jumps to the time step of the next event that occurs and triggers that 

event. The selected events that are planned to occur in the future are stored by the simulation 

controller in the event list. The event list is often represented by a queue where the events are ordered 

according to their appearance in time.  

Events that have the same event time are called parallel events and can be processed in any order 

unless further dependencies define it differently. The processing order of these parallel events can 

occur according to different queuing rules (Banks 1998, Banks and Carson 2009). In the first come 

first served rule (FCFS) the event that is placed into the queue first will be executed first. In contrast, 

with the rule of first come last served, the event that is placed into the queue first must wait until 

every other parallel event that is put into the queue is executed and the first event is executed last. A 

schematic representation of the two different queuing rules is represented in Figure 3-7. During 

simulation several operations might be executed with the event list such as event insertion or deletion, 

reordering or accessing events (Page and Kreutzer 2005). 

 

To advance time during a discrete event simulation there are two options available: the event 

based and the fixed time increment-based time advancement (Banks and Carson 2009). The advantage 

of using the event-based modeling time increment over fixed time increments is that it has the more 

precise representation of state transformations and it avoids the idle times caused by the unfortunate 

choice of fixed update time step sizes (Figure 3-8). 
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Figure 3-7: The first come first served (left) and first come last served (right) strategy for queuing systems. 

Figure 3-8: Comparison of the event-based (left) and the fix time increments-based (right) simulation clock advancement 

techniques. Due to the wrong time step size selection the last two events of the simulation must be delayed. 

(𝑡3 1 and 𝑡4 1 represent the time steps 𝑡3 and 𝑡4 in the first diagram on the left) 
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The simulation runs as long as there is an event remaining in the event list, or until some other 

predefined criteria (such as time interval, number of products produced, etc.) terminates the 

simulation.  

3.3.2 Discrete event modeling styles 

To synchronize the simulation time passage with the state changes of the model, three different 

approaches can be used. Page and Kreuzer (2005) describe how to use events, activities and processes 

for such purposes.  

Events describe changes in the model’s state at specific points in time. They can be generated 

either externally or internally depending on what the causes of the event is. Externally generated 

events are solely determined by the environment and can describe, for example, the arrival of 

transportations to the construction site. Internal events are caused by state transformations of further 

entities. For example, when a product has been produced, an event “load it to the transporter” might 

be generated. 

The second choice to synchronize time passage with state changes are the activities. They describe 

operations with specific durations between state changes. Therefore, state changes (events) always 

occur at the beginning and at the end of an activity. For example, a transporter arrives at the factory 

and has the state of “transporter loaded”. The arrival triggers an activity “unload transporter” which 

starts with the event “start unload” and sets the activity state to “unload in progress” and ends with 

the event “unload complete”, which leads to the next activity state “transporter unloaded”.  

As the third approach, processes can be used. They describe a sequence of activities that build the 

lifecycle of the entity. The lifecycle of an entity might be straightforward, e.g. for the transport of 

material first it must be transported to the construction site, then unloaded, then used to build the 

structure and maybe, some decades later, it gets demolished. The lifecycle of an entity can also be 

cyclic. For example, an excavator might be associated with the activities of “load transporter with 

mud” and “wait for the next truck to arrive”. These activities are repeated in a cycle as long as 

necessary until all of the mud has been transported. 

The relationship between the events, activities and processes is represented in Figure 3-9. Based 

on these three synchronization forms, different techniques can be applied to model time passage 

between the state changes. The conceptual details and working mechanism of these three 

aforementioned techniques will be introduced in the next sections of this chapter. Further, less 

commonly used techniques such as resource-based simulation or transaction9-based modeling styles 

will be mentioned in passing. 

                                                 
9 The components of a queuing scenario are servers and model requests. Servers are referred to as resources and model 

requests as transactions. 
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3.3.2.1 Process-oriented simulation modeling 

One of the most commonly used modeling techniques of discrete event simulations in the 

manufacturing industry is the process-oriented approach (Page and Kreutzer 2005), also called 

process interaction (PI) strategy (Martinez and Ioannou 1999, Mohamed and AbouRizk 2005). For 

this strategy the simulation model is created from the entities’ point of view. Therefore, every entity 

owns one process that is also called the lifecycle of the entity. The lifecycle contains every important 

procedure that the entity can go through. It includes a sequence of every activity in the order of their 

occurrence and every relationship to the other entities in the model. Simulation time passes whenever 

an event triggers a delay in the time instance (e.g. activity duration: one day). The lifecycles of the 

simulation model entities are executed in parallel (Figure 3-10). The control of execution is 

supervised by the simulation’s time management executive. At every point in time it traverses through 

the processes one after another while passing control to a process to make the next possible steps in 

the entities’ lifecycle. When the process cannot make any further steps in the entity’s lifecycle, the 

control will be given back to the executive, which than gives the control to the next process and so 

on until the simulation terminates. A process can modify the properties of an entity, generate new 

entities and lifecycles or activate or deactivate other entities at specific clock times. Furthermore, 

processes can deactivate themselves and pass control to the simulations time management executive 

or other entities in the model. Additionally they can terminate themselves and the lifecycle of other 

entities (Page and Kreutzer 2005). 
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Figure 3-9: Relationship between events (vertical lines), activities (boxes) and processes (curly brackets) represented with 

an example of two processes. A process might be the complete construction process of a wall. Activities could 

be assembling the reinforcement and formwork of the wall or pouring concrete. Events might represent the 

start of assembling the reinforcements, or finishing the pouring concrete activity. 
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The most important component of the process-oriented simulation is the simulation executive. It 

is responsible for executing the state changes at the right time and in the right order. To facilitate this 

requirement it can assign two states for every process: active or passive. An active process is allowed 

to execute its lifecycle until it gives up the control or inactivates itself. The passive processes are not 

allowed to execute their lifecycles until they get reactivated. Activation is performed by the executive 

or other processes. The passive state can last either for an indefinite time or for a predefined time 

period. By inactivating a process, its current state will be stored and until the process is reactivated at 

which time the process will continue from where it was stopped. The work of the executive costs real 

time but no modeling time. 

During the execution pseudo simultaneous processes may occur. These are processes that execute 

a state transition at the same model point in time. Such simultaneous transitions are not allowed in a 

simulation because they might change the state of the same entity, which would lead to a logical error 

since the simulation would not know which one is the current state of the entity. To avoid such errors, 

the pseudo simultaneous processes must be serialized. The activation order of these processes can 

have a significant impact on the results, therefore a reliable control of the serialization is important 

(Page and Kreutzer 2005). Reliability can be ensured by queuing systems. 

Queuing systems are mainly used for scenarios with resources and transactions that require that 

resources be processed in a specific order. Since resources have a limited capacity, when this limit is 

reached further transactions cannot be processed until the resource once again has work capacity. 

When a transaction cannot be processed it must wait and therefore it will be placed in the queue. 

Which transaction will be selected when the resource is available again depends on the strategy that 

is applied for the scenario. The most commonly used ones are the first come, first served strategy (see 

Section 3.3.1), the highest priority first strategy or the shortest completion time first strategy. The 

result of the simulation may vary depending on the strategy selected. Therefore, queuing systems are 

well suited for optimization purposes such as the optimal strategy for allocating transactions to the 

resources (Page and Kreutzer 2005). Such queuing systems can also be applied for process-oriented 

simulations to serialize pseudo parallel processes. 
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Figure 3-10: Parallel execution of two lifecycles (processes). The arrows represent interaction between the activities of 

the processes. 
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3.3.2.2 Event-oriented simulation modeling 

Event-oriented simulation is older than the process-oriented simulation and also goes by the name 

of event scheduling (ES) strategy (Page and Kreutzer 2005). Instead of grouping every activity to one 

process like in the process-oriented modeling, this technique clusters every event based on the time 

of their occurrence. One cluster represents simultaneous events that occur at the same model time but 

are most likely causally unrelated to each other. An example for a cluster could be when a loaded 

truck arrives to the construction site, an available excavator must be activated and one event must set 

its state to “in work”, while with another event the truck must be set to the state “unload in progress”. 

These events are correlated with two different entities but due to the interaction between them, they 

can be clustered into one big event. 

Due to these differences in the concepts of the simulations, the process for building the model is 

slightly different for the two simulations. To create a model for a process oriented simulation, the 

modeler concentrates primarily on one entity at a time, and collects every possible activity and 

interaction the entity has. During the same process for an event-oriented simulation, the designer must 

concentrate not just on one entity, but rather must address all the entities. The designer must collect 

every interaction, transformation and event for all of the entities that can happen at the same point in 

time. This is neither a more difficult nor an easier process creating a model for the process oriented 

simulation. In the end both simulations will have the same functionalities within the model. The only 

difference is that they are formulated from different points of view.  

For event-based simulations, similar to process-based simulations, the simulations executive plays 

an important role during the simulation. The executive processes the list of events that should be 

executed. The executive then selects the event with the earliest occurrence time. When there is more 

than one event at the same time to start, a queuing system can be used to order the execution. Every 

event condition, except for time conditions, must be implemented within the event routine 

(Hooper 1986). In an event-based simulation the time passes while the executive jumps from one 

event to the next event, which is located at a later point in time. 

3.3.2.3 Activity-oriented simulation modeling 

In contrast to the process interaction and event scheduling strategies, models for the activity 

oriented modeling (also called activity scanning (AS) strategy) are built up from the activities point 

of view. The model consists of activities that are waiting to be executed. To execute an activity all of 

its prerequisites, such as resources or logical dependencies, must be fulfilled. Therefore, at every step 

during the simulation, the simulation executive checks the prerequisites of the activities and starts all 

the executable activities. When there is no further activity to start, it jumps to the next recorded clock 

time. When an activity is completed, it releases its resources, which can then be allocated to other 

activities that have not yet been started. The activity scanning strategy is best suited for systems with 

highly-dependent components that need many conditions to allow activation (Hooper 1986), such as 

construction projects. The activity-oriented simulations have been developed especially for the 

construction industry. These use the modified form of the AS strategy such as the three-phase or the 

three-stage strategy. Both of these strategies are used to control the simulation experimentation. 

The three-phase strategy combines the AS with the event scheduling strategy and classifies the 

start and end events of the activities into two types of events. The first class comprises the B events 

that are bound events. B events are predictable and thus they are schedulable (Lin and Lee 1993). The 

second class, C events, consist of conditional events. Their start times depend on a fulfillment of 

certain conditions (Zhang et al. 2005). The first phase of the simulation advances the simulation time. 
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The second phase initiates the B events and phase three checks the conditions of the C events and 

initiates the executable ones. 

In contrast to the three-phase strategy, the three-stage strategy does not classify the activities. At 

stage one the simulation scans and checks every activity for their start conditions. Stage two advances 

the simulation time to the next activity start time and stage three finishes the affected activities and 

releases their resources. This strategy was developed by Shi (1999) for the activity-based construction 

simulator that will be introduced in more detail in Section 3.4. 

A representation form of an activity oriented model is the Activity Cycle Diagram (ACD), which 

can represent both the idle (circle) and active (rectangle) states of the simulation entities (Martinez 

and Ioannou 1999, Zhang et al. 2005). Within the ACD the alternating circles and rectangles are 

connected with directed arcs that represent the flow of resources (Figure 3-11). ACDs serve as 

blueprints for the development of AS simulation models (Martinez and Ioannou 1999). Shi (1999) 

introduces a simplified representation of the ACD, based on the three-stage strategy. He recommends 

modeling the two states of an activity as an attribute of the activity and to represent the two states 

only with one element. This is also advantageous for the modeler, since it is easier to model states at 

the local environment of the entity rather than independent from the activity through further elements 

(Shi 1999). 

 

3.3.2.4 Comparison of simulation strategies 

All three introduced simulation strategies view the real system from a different point of view. 

Therefore, numerous researchers have tried to determine which one of the above mentioned strategies 

is actually the best for simulation (Hooper 1986, Martinez and Ioannou 1999, Zhang et al. 2005). The 

researchers have all pointed out that there is no best strategy, however some are better suited to work 

with one special kind of system than the other ones. It is also evident that the selected strategy will 

significantly affect the modeling of the system. Therefore, the modeler should decide which strategy 

best suits the system needs and if he can implement the system in the most effective way. For their 
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Figure 3-11: Earth moving process represented with an ACD 
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support, researchers like Hooper (1986) collected the characteristics of the three strategies and 

provided advice for their best applications. 

Event scheduling strategy is very flexible in its application, but its model development process 

requires significant effort. This strategy is efficient for the execution of systems with relatively 

independent components, such as straight manufacturing lines, but it can become inefficient for 

models with relatively dependent components (Hooper 1986), such as the construction industry. 

In contrast, the activity scanning strategy is efficient for models with highly dependent 

components, where the components require the fulfillment of many conditions for their start. During 

the simulation, a considerable amount of work is required by the executive that verifies the conditions 

of the activities and determines their execution order. Due to these high computational efforts, the 

activity scanning strategy might become inefficient for models with relatively independent 

components (Hooper 1986). 

For many modelers, an attractive characteristic of the process interaction strategy (Banks 1998) 

is its close representation of the model to the problem and its straightforward model development and 

modification process. The logic behind a process is similar to the life cycle of a real system 

component. Furthermore, the process-oriented modeling collects both properties and behavior of an 

entity into one process that simplifies the modeling logic by narrowing the gap between the real 

system and the designed model (Page and Kreutzer 2005). During modeling, the modeler follows the 

sequence of activities that appear in the lifecycle of a component and when some activity changes, 

the process can be easily updated to reflect the change. However, this modeling advantage might 

cause difficulties during the simulation.  

The process interaction strategy (PI) -based simulation is the strategy that requires the most 

support from the executive. The PI-based simulation might have inefficient execution times. Due to 

the inactivation and reactivation of processes during the simulation, the implementation of the 

simulation itself with a programming tool that does not support coroutines10 becomes difficult. 

Programming languages, like JAVA, that does not support coroutines directly often use thread 

mechanisms to model the competing processes (Page and Kreutzer 2005). Since threads were 

originally designed for real time parallel computing purposes and not for the modeling of process 

oriented simulations, the computational time of such models might increase beyond the simulation 

time of an event or activity oriented simulation.  

According to Hooper (1986) and Martinez and Ioannau (1999) the PI strategy is best suited for 

systems where the moving entities have many attributes and the machines and resources that serve 

them have only a few attributes, along with a limited number of states and relatively few interactions. 

Such systems can be found in the manufacturing industry. On the other hand, Zhang, Tam and Li 

(2005) identify activity sequencing as the best suited strategy for the simulation of construction 

processes, where the activities (construction tasks) have many dependencies (resources and 

technological dependencies). Based on the newer programming techniques, they propose a new form 

of the AS strategy, the activity object-oriented strategy that will be introduced in Section 3.5.5 

A conclusion of the comparison is that the nature of the system could have an influence on the 

choice of strategy. Therefore modelers should first investigate the nature of the system before 

choosing a strategy to implement the simulation. It has been also identified that there is a correlation 

between the “ease of model development and incorporating future changes” (Hooper 1986).  

                                                 
10 Coroutines are computer program components that enable the suspension and reactivation of the execution at certain 

locations. 
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3.3.2.5 General-purpose and special-purpose simulation  

Simulation frameworks can be categorized into two classes such as general-purpose and special-

purpose simulations. The general-purpose simulation can be used to model almost any kind of real 

world system. Its most important feature is its flexibility and comprehensiveness that allows it to suit 

many modeling requirements (Hajjar and AbouRizk 1996). Through its flexible components and their 

programmability, the simulation model can be precisely tailored to reach any desired complexity. 

However, due to this freedom of programmability significant effort must be invested to create even a 

simple simulation model (Chua and Li 2002). Therefore, general-purpose simulations are useful only 

for designers and researchers with advanced programming skills and large simulation experience.  

To suit the needs of modelers who do not have such advanced programming skills or prior 

experience with simulations, special-purpose simulations have been developed. This second category 

of simulation targets to model only a specific domain of the real world such as tunneling, 

manufacturing, ship building, etc. Such simulations provide the modeler with a large set of predefined 

model components that are typical for the particular domain. The modeler uses these components to 

set up the simulation model (AbouRizk and Hajjar 1998). Due to the presence of predefined 

components, special-purpose simulations are not as flexible as general-purpose simulations. 

Therefore, to increase the flexibility of the special-purpose simulations, several frameworks allow the 

user to not only use the predefined set of components, but also to modify and extend them with new 

elements (Chua and Li 2002). 

In the construction industry there are numerous applications of both general and special purpose 

simulation frameworks. Those will be introduced in the next section. 

3.4 Simulation-based scheduling in the manufacturing industry 

As it has been introduced in the last sections, simulation methods are powerful tools to solve 

complex problems such as scheduling under resource constraints. While this technique is already 

widely used in the manufacturing industry, it is hardly known in the construction industry. The next 

section will address why the simulation approach is not as popular in the construction industry as in 

the manufacturing industry and compare its advantages and disadvantages to a static method such as 

the disjunctive graph model (Section 2.3.2). In Section 3.4.2 the discussion which began in 

Section 2.4.1 will be continued and further reasons will be introduced as to why the adaption of the 

simulation technique to the construction industry is a complex process. In the end of the section a 

simulation technique will be discussed. This simulation technique can efficiently be used in the 

construction industry for scheduling purposes. 

3.4.1 Generating schedules for the shop problems by simulation 

An excellent approach to plan or schedule feasible solutions for a scheduling problem in the 

manufacturing industry is to use computer-based simulation techniques. The first research results of 

simulation approaches go back to the late 1950’s (Day and Hottenstein 1970). The fundamental 

recognition by Nelson (1958), Jackson (1957) and Evans (1964) to consider the shop problem as a 

network of waiting-lines or queues is still one of the foundations of the modern simulation methods.  
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Dynamic simulation methods have been applied in the manufacturing industry for system design, 

operations planning and scheduling for more than 40 years (Smith 2003). Simulation models are 

capable of modeling complex system operating rules and with the inclusion of a coupled visualization, 

to visually evaluate the results (Bell and O´Keefe 1986). The model can be updated quickly in 

situations where there is a sudden change in the employee availability, machine performance, etc. and 

a new schedule can be generated in a short time (Concannon et al. 2003). Therefore, one advantage 

of the simulation is the ease of rescheduling the project when conditions change (Drake et al. 1995). 

Multiple “what-if” analysis and parametric studies can be carried out with the simulation to create 

efficient schedules. 

The advantage of simulation over static methods, such as the disjunctive graph model 

(Section 2.3.2), becomes significant when the project is made up of multiple operations and machines, 

and their interactions are numerous and complex. Assessing the applicability of a schedule and 

identifying inefficient schedules in advance in a short computational time, can only be achieved by 

applying simulation techniques. A further advantage of simulations is that they are capable of 

considering complex boundary conditions such as probabilistic distributions for operation durations. 

The applicability of schedules generated by static methods can be determined either by setting up 

a simulation model, or by the actual execution of the schedule in real time in the shop. The former 

leads to a doubled modeling of the same problem, but allows the prediction and identification of 

possible bottlenecks in advance, which can save time and costs during the execution. In the latter 

case, bottlenecks and conflicts appear real-time without prediction, leading to reduced performance 

and higher costs.  

In the manufacturing industry one simulation model represents one possible schedule for the 

scheduling problem. The schedule is composed of the determined production durations for a product. 

The schedule can be described by the factor productivity, which indicates how many products can be 

produced in a predefined period of time with the corresponding schedule, e.g. product/hour or 

product/day. By changing the order or the performance factors of the machines, a new schedule can 

be generated that can be described with a different productivity factor. Therefore it is important to 

stress that one simulation model represents only one feasible solution for the identified scheduling 

problem. In order to determine an optimal solution, the simulation needs an external algorithm 

capable of changing the simulation model that can steer the simulation. 

3.4.2 The adaption of simulation techniques into the construction industry 

The adaption of solution methods from one industry to another is not only encumbered by the 

differences of the methods itself (as introduced in section 2.4.1) but also by the differences in the 

characteristics of the industries. While processes of the manufacturing industry are executed mostly 

in a hall, which is generally not affected by any weather conditions, the processes of the construction 

industry take place in the open air, where rain and strong wind can have a significant impact on the 

performance factor of the workers and machines: In the worst case weather can even result in the 

need to stop the construction until the necessary conditions are in place again.  

Additionally, the production lines in the manufacturing industry have a static layout, which means 

that the products are moving along a conveyor belt and are prepared with machines that are stationary. 

This structure also represents the layout of the simulation model, where the products are moving from 

machine to machine. In contrast, the product of the construction industry, i.e., the building, is 

stationary and the machines and other resources are mobile. Thus the layout of the construction site 

is dynamically changing with time. 
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In addition, in the manufacturing industry one operation can only be executed by one specific 

machine. In contrast, in the construction industry one construction task might be executed with 

different resources without impacting the schedule, hence an explicit connection does not exists 

between resource and task. To define every possible resource-task connection, dynamically changing 

connections are necessary. Hence the layout of the simulation model for the construction industry is 

not as straightforward as for the manufacturing industry. 

Based on these theories Beißert et al. (2007b) developed a new constraint-based simulation 

method that has also been used by the author for scheduling purposes and will be introduced in the 

next Chapter in detail. 

3.5 Existing simulation-based scheduling approaches in the 

construction industry 

Similar to manufacturing engineers, construction engineers face the problem of developing and 

efficiently designing productive construction schedules. However, while manufacturing production 

plans contain many repetitive processes that are used to create the identical product many times, one 

right after the other, the construction of a building is a unique process and the result is always only 

one “product” (as described in Chapter 1). Even when constructing the same building at another place 

there will be differences in the boundary conditions, such as ground material, logistics, the 

surrounding neighborhood, weather conditions, etc. and therefore each building will be unique. 

AbouRizk, Halpin and Lutz (1992) name this uniqueness and the lack of repetitive processes as 

possible reasons why the study of work processes in the construction industry did not get much 

attention until the 1960’s. At that time the researchers realized that although construction projects are 

unique, they contain repetitive processes such as earth transport, tunneling, road construction, etc. 

and a closer investigation of these processes begun (AbouRizk and Hajjar 1998). With the emergence 

of computers, new computer-based techniques such as simulations appeared to solve problems related 

to scheduling in the construction industry. According to AbouRizk et al. (2011), Teicholz was the 

first who applied simulation methods to study the complexity of earth hauling systems. Based on the 

work of Teicholz with the “link-node” methodology, Gaarslev compared the results of queuing theory 

(see Section 3.3.2) and simulations with the use of a simple construction system (AbouRizk et 

al. 2011) 

Like in the manufacturing industry the schedule of the project is determined according to the 

results of a simulation run. During a simulation run the execution dates of an activity (start event and 

end event equals start date and termination date of the activity) will be saved and merged with other 

activities to create a schedule. The schedule can then be visualized for example with a Gantt chart 

(see Section 2.2.3). 

3.5.1 CYCLONE 

The first implemented general-purpose simulation framework that has been applied to simulate 

construction operations was introduced by Halpin at the beginning of the 1970’s (Halpin 1977). 

CYCLONE is an acronym for CYClic Operations Network and is a logical extension of the network-

based scheduling methods (see Section 2.2.5) to provide a better understanding of resource 

interactions on the process level (AbouRizk et al. 2011). The newest versions of CYCLONE (from 
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the 1990’s to the present) use an activity sequencing strategy-based discrete event simulation. 

Therefore, to develop a model one should focus on the involved resource and their interactions 

(AbouRizk et al. 1992). Resources are modeled as entities of the simulation and can have two states: 

active or idle. The former one is represented in the simulation environment by a rectangle and the 

latter one by a circle. Active and idle states of a resource are connected to each other with arcs in the 

simulation model. Events move the resource along the arcs and change their state according to their 

position (e.g. state 1: truck loaded (idle)  event 1: truck loaded for trip to dump zone  state 2: 

truck traveling (active)  event 2: loaded truck arrives at dump state: truck waiting to dump (idle) 

etc. see Figure 3-13). Thus a resource moves along the arcs and executes one activity after another. 

CYCLONE uses six different elements to build up a model: the normal element, the combi element, 

the queue, the function, the counter and the link or arc. The formal representation of these elements 

in CYCLONE is depicted in Figure 3-12.  

Normal elements are activities that have no constraints, such as travelling, dumping or spreading 

earth material. When a unit arrives to this element the process begins immediately without delay. In 

contrast, combi elements require more than one type of resource for their execution. The process only 

starts when all of the required resources have arrived to the element. Queue elements represent 

waiting areas for resources. A queue element is always followed by a combi element and a resource 

in the queue element must wait until the following combi element is ready to process it and picks it 

out of the list. Function elements are used to create new resource units for the simulation. Counter 

elements are used for statistical purposes to track the passage of time or amount of unit that have 

passed the counter. Passing a counter element for a unit does not cost any model time. The nodes are 

connected by links or arcs. Arcs represent the flow direction of the entities between the connected 

elements. 

 

Since CYCLONE has been developed for cyclic processes in the construction industry, the 

application of this simulation will be introduced using a simple earth transportation example. For 

earth transportation the necessary resources include excavators, trucks, dozers and of course the earth 

material that is to be excavated, transported and dumped. The simulation model is represented in 

Figure 3-13. It starts with a queue that defines the initial amount of dirt to excavate. In the next queue, 
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Figure 3-12: Modeling elements of CYCLONE 
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the initial number of excavators can be defined. This is also the queue where the idle excavators will 

return after they have loaded a truck. Similar to the excavators, another queue will be defined for the 

dozers at the other end of the model. The only missing resources are the trucks that will transport the 

excavated dirt to the deposit site. For that another queue is defined (Trucks waiting to get loaded) 

where the available amount is initialized and they can wait to be served by the excavator. For the 

loading activity a combi element is used (Excavate and Load dirt) that has three required components: 

an available excavator, available dirt and an empty truck. When this activity is complete the truck 

with the dirt is sent through an event to the next normal element: Travel. After the predefined length 

of time the truck will arrive to the queue “Trucks waiting to dump”. Meanwhile the excavator jumps 

back to the excavator queue and is ready to serve another truck.  

For the dumping activity, another combi element is defined that requires a waiting loaded truck 

and a dozer to start. When they are both available, the dumping starts and the truck and the dozer will 

be released again after the process is complete (or after a predefined amount of time). When the 

process is complete, the truck goes back to the queue for trucks waiting to get loaded through the 

normal element: Travel back. Simultaneously the dozer goes back to the queue for the dozers and is 

ready to unload another loaded truck.  

There have been three counters introduced to the model. One to measure the amount of dirt that 

has been loaded onto the trucks, the second measures how much dirt has been unloaded and the third 

measures the cycle time, or production rate, of the trucks.  

After completing the simulation model, a simulation of this simple scenario can be achieved. For 

example, having 20 units of dirt to excavate, with two excavators that can excavate and load one unit 

of dirt to a truck in 10 minutes, with a traveling time of 30 minutes to the dump site where one dozer 

is waiting to unload the trucks in 5 minutes of time, using five trucks that can transport one unit of 

dirt, all the dirt can be transferred to the dump site in 290 minutes. If ten trucks are available, the 

same scenario can be finished in 165 minutes. Further parametric studies could be performed by 

varying the performance of the excavators and the dozers or by changing the available number of 

them. 

 

  

Figure 3-13: Simple cyclic earthwork simulation model with CYCLONE. 
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3.5.2 Simulation frameworks inspired by the success of CYCLONE 

Due to the success of CYCLONE, at least three additional standalone implementations have been 

developed introducing new features and capabilities to the simulation (Martinez and Ioannou 1999). 

INSIGHT (Kalk and Douglas 1980) adapts the simulation to microcomputers and uses predefined 

graphical elements to construct simulation models at a faster pace. UM-CYCLONE, developed by 

Carr and Ioannou (Ioannou 1989), is the third implementation of CYCLONE. Ioannou provides a 

comparison between the performance of UM-CYCLONE and INSIGHT using two examples. In both 

examples UM-CYCLONE turned out to be more efficient. The fourth implementation was created 

by Halpin (1990) for microcomputers, thus the name microCYCLONE. The simulator has been 

enhanced by process cycle and stage buffer monitoring and a statistics collection mechanics to collect 

information between processes by Lutz (1990). 

CYCLONE uses the ACD representation of the system (see Section 3.3.2.3) not as a blueprint for 

the model but as the model itself. This representation form brings both advantages and limitations for 

the modeling. While using the ADS as a simulation model makes the modeling process simpler and 

easy to learn, but complex logics and interconnections that cannot be modelled by CYCLONE must 

be simplified (Martinez and Ioannou 1999). After the comparison of microCYCLONE and SLAM II, 

another well-established general-purpose simulation language, Gonzalez-Quevedo, AbouRizk, Iseley 

and Halpin (1993) concluded that the microCYCLONE system, in general, works well for the 

construction problems it was developed to address. Major drawbacks include the inability to 

recognize resource attributes, allow user-defined functions and to combine simulations. 

Chang (1989) tried to overcome the drawback with the resource attributes with RESQUE 

(RESource based QUEuing network simulation system) by including an overlay that introduces 

flexibility for the simulation by resource distinction and increased simulation control (Martinez and 

Ioannou 1999). However, RESQUE still had its limitations in resource representation and resource 

assembling and dissembling (Chua and Li 2002). 

Most network-based simulation languages represent the real systems by graphical models which 

require a separate input file to describe the system to be simulated. Liu introduced a new simulation 

system, COOPS (Construction Object-Oriented Process Simulation System), based on the concepts 

of CYCLONE enhanced with an object-oriented simulation design (Liu and Ioannou 1992). The 

integration of interactive computer graphics facilitates building simulation models within the 

simulation framework by graphical elements without the need of an input data. Due to the object-

oriented representation, every entity of the simulation becomes traceable and so the generation of 

simulation statistics such as which resource visited which activity at what time also become available. 

By introducing resource calendars, the working time of machines and labor can be restricted to 

predefined periods in time, e.g. laborers work only on weekdays. Liu and Ioannou introduce a new 

node: the router to the simulation that represents a binary random selection of possible ways (Liu and 

Ioannou 1992). 

CIPROS (Tommelein and Odeh 1994) also has an object oriented system that extends the resource 

representation of RESQUE by allowing multiple properties for the resources. Its hierarchically 

ordered expandable knowledge base of resources (e.g. labor, machines, equipment, material, etc.) and 

construction tasks accelerates the building process of simulation models. 

The former simulation frameworks were all general-purpose simulation frameworks in the 

construction industry. In contrast, STEPS (STructured Environment for Process Simulation) 

(McCahill and Bernold 1993) is a special-purpose simulation for planning and controlling basic 

earthwork projects. It is based on ACDs and was developed for the U.S. Navy Civil Engineering 



Simulation-based scheduling 71 

 

 

Laboratory. It supports the rule-based release of resources and different resource sizes in the same 

queue, but lacks a graphical interface (Chua and Li 2002). 

3.5.3 STROBOSCOPE 

STROBOSCOPRE is an acronym for State and ResOurce Based Simulation of Construction 

ProcEsses (Martinez and Ioannou 1994). It is a powerful general-purpose simulation framework, 

designed for modeling complex construction operations and for the development of special-purpose 

simulation tools (Martinez and Ioannou 1999). It supports the three phase AS strategy and the ACDs 

(Martinez and Ioannou 1999). In contrast to CYCLONE, the ACDs of STROBOSCOPE only 

represent the simulation model at the conceptual level. The detailed model is defined by a series of 

programming statements. Therefore, model specific details can only be found in the source code of 

the model. The elements of STOBOSCOPE are the supersets of those in CYCLONE, represented by 

five nodes and four special type of links (Martinez and Ioannou 1999). The Combi node is represented 

in STROBOSCOPE ADS by a rectangle cut-off in the top left corner. The further nodes correspond 

to the ones in CYCLONE (Figure 3-14). Beside the basic elements of CYCLONE (normal, combi, 

function and queues) the fifth node is the enhancement of the router node introduced in COOPS and 

it is called the fork node (smaller circle with an inscribed triangle). 

 

Links, such as Normal link, SameLink, Outlet and Inlet, are modelled as objects and so they also 

have attributes like strength and DrawAmount (Chua and Li 2002). The links within the model are 

named after the resource that flows through them followed by a number as identification. The simple 

earthmoving model that was introduced in Section 3.5.1, is represented with the STROBOSCOPE 

ACD in Figure 3-15. The model has been extended with a fork node that allows the possibility for 

trucks to select an alternative route for their return. 
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Figure 3-14: Nodal modeling elements of STROBOSCOPE 
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Every element in the ADS is connected with a method that describes its behavior. This method 

can be modified by rewriting or extending the code to reach the desired behavior of the node. The 

power of STROBOSCOPE has been proven by many researchers in many fields of construction 

industry, such as lean construction (Tommelein 1998), earthwork operations (Martinez et al. 1994), 

tunneling operations, quarry operations and concrete block manufacturing (references and further 

examples in Martinez and Ioannou 1999).  

In the 1990’s, many frameworks were available for the users to simulate construction operations. 

However, they were not widely known within the industry. This may be explained by the complexity 

of the construction operations themselves, the complexity of the simulations and primarily by the 

serious effort required to build up a simulation model. Therefore, researchers concentrated on 

developing simulation approaches that were more attractive for the industry. To accomplish this goal 

research has primarily been aimed at making the modeling process easier, less abstract and instead of 

making additional general-purpose simulations, making more special-purpose simulation (SPS) 

packages that completely model specific fields of the construction industry (earth work, tunneling, 

bridge construction, etc.). A goal of the research was also to lower the complexity of the simulations 

themselves, so that the program is easier for the user to manage.  

As a result of such research a simplified version of STROBOSCOBE, the EZStrobe, has been 

developed for users with less simulation experience providing the same power as the original program 

(Martinez 2001).  

  

Figure 3-15: STROBOSCOPE ACD for the simple earthmoving system that was introduced in Figure 3-13 extended by 

a fork element allowing the trucks to select a return route. The meaning of link names: DT stands for dirt, EX 

for excavator, DZ for dozer and TR for truck. 
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3.5.4 Simphony 

The three main standalone SPS tools used in the construction industry in the 1990’s were AP2-

Earth (Hajjar and AbouRizk 1996), CRUISER (Hajjar and AbouRizk 1998) and CSD (Hajjar et 

al. 1998). The first tool was designed for large earth moving processes, the second tool to model 

aggregate production plants, and the third to optimize construction site dewatering operations (Hajjar 

and AbouRizk 1999). Based on the experiences with these three tools, Hajjar and AbouRizk (1999) 

collected a broad set of requirements that are necessary to adapt a simulation framework in the 

construction industry.  

Simphony was introduced by Hajjar and AbouRizk (1999). It was designed to fulfill the following 

requirements: 

 A user-interface that supports the graphical representation and manipulation of the 

simulation model. 

 The possibility for advanced users to bypass the graphical system and enhance their 

models by code. 

 Hidden abstract underlying constructs for non-expert users. 

 Support of reusability of models and project tools.  

 Support of combination of models. 

Simphony is a discrete event simulation environment both for users with few simulation 

experiences and for developers. Developers can use Simphony to create new SPS templates11 that can 

be used by the normal users of the software.  

SPS templates can be created by the Simphony Designer, which provides the necessary 

programming environment for designers to implement their new elements. Once a new element is 

complete it will be stored in the Modeling Element Library and can be used for simulations.  

Normal users only have access to build models and execute simulations using the Simphony 

Editor. Simphony Editor provides users with a graphical interface containing multiple windows 

where different views of the model can be represented. For example, one window shows the layout 

of the model, another shows the project navigation tree, a third shows the available modeling 

elements, and the fourth shows a tracing window for the results. The created simulation models with 

their results are stored in the Construction Simulation Project Database. The User Model Library is a 

database similar to that found in prior simulation models in that it can be reused or combined with 

further models. The user interface of Simphony is depicted on Figure 3-16. 

                                                 
11 Collection of modeling components targeted for a single domain (Hajjar and AbouRizk 1999) 
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Simphony has been adapted to the .NET framework by AbouRizk and Mohamed (2002) and the 

new simulation engine Simphony.NET has been introduced. Further developments evolved with 

Simphony will be presented in Section 3.5.8. 

3.5.5 Activity-based construction and activity object-oriented simulation 

strategy 

The Critical path method (CPM) is a well-known and simple scheduling method that is widely 

used in the construction industry (Section 2.2.5.4). To narrow the gap between the academic and 

industrial use of construction simulations Shi (1999) raised the question: “Can simulation be made as 

simple as CPM without sacrificing its functionality?”. To answer this question, he developed a new 

simulation method called the activity-based construction (ABC). Since CPM uses only activities as 

planning foundation, the ABC technique simplifies the ACD representation of the model by 

introducing a single activity standing for both the “idle” and “active” state of the activity. Thus, the 

new model representation contains only activities. The state of an activity is treated as a new attribute 

which can be either active or idle. The necessary resources and further conditions for the activities 

can also be stored as attributes. The ABC model representation of the simple earth moving system 

that was introduced in Figure 3-13 is presented in Figure 3-17. 

Figure 3-16: The user interface of Simphony.NET 4.0 
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Based on the new modeling representation, Shi (1999) also introduced a new simulation strategy: 

the three-stage strategy. As discussed in Section 3.3.2.4, the first step of the three-stage strategy is to 

select the activity to start with by checking all the constraints it has (resources or logical constraints). 

After there are no more activities to start at the current point in time it moves to the second step 

whereby it advances the simulation to the next marked point in time. As step three, when an activity 

terminates, it releases the entities that were necessary for the execution of the activity, such as 

resources or reserved working area.  

Zhang, Tam and Li ( 2005) criticize the three-stage method because when there are a large number 

of activities and the activities have many dependencies and constraints, the simulation speed may 

slow down. Furthermore, allocation of entities (e.g. resources) occur only at the beginning of the 

activity and cannot be changed during execution. Even when further resources will be available 

during the execution they cannot be picked up by the activity. Therefore allocation policies must 

always be predefined for the three-stage strategy.  

Rahm et al. (2012) introduced an approach that is able to suspend activities in a discrete event 

simulation in the case of malfunction of the resource or disturbance and then continue the activities 

where they had been suspended after the resource is operational and the disturbance has gone. A 

similar interruption of activities when the finish event of another related task is triggered provides the 

possibility for the ABC method to allocate further resources to the suspended tasks.  

To support such dynamic decisions during simulation in allocating limited resources for multiple 

competing activities they developed a new strategy (activity object-oriented strategy), similar to the 

activity sequencing, enhanced with a further step. In this extra simulation step when an activity 

terminates it releases its resources and, based on different rules, these resources can then be picked 

up by activities already in active state (Zhang et al. 2005). To speed up the simulation, the constraint 

check of activities is only executed when a resource is released and not at every time step. To gain 

additional speed, only the activities that might need the released resources are checked instead of the 

program checking all of them.  

3.5.6 Further simplifications of the discrete event simulation approach  

To further simplify and speed up the model development cycle, Chua and Li (2002) proposed a 

new simulation approach: the Resource-Interacted Simulation (RISim). By focusing on the resource 

and process level of the system, users without much knowledge about simulation can easily generate 

new simulation models (AbouRizk and Hague 2009). 

To extend the previous work of Shi (1999) and Hajjar and AbouRizk (1999), Lu (2003) developed 

the Simplified Discrete Event Simulation Approach (SDESA). This new approach simplifies the 
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Figure 3-17: ABC representation of the simple earth moving system that has been introduced in Figure 3-13  
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activity sequencing strategy by removing the test head for checking the event conditions from the 

“begin service” and merges the “arrival” event into the “begin event” (Lu 2003). The new executive 

is represented in Figure 3-18. 

The SDESA distinguishes between disposable and reusable resources. In the case of a disposable 

resource, when an activity is complete it will not be released but rather remains unavailable for further 

activities. Disposable resources include reinforcement cages and specific materials. Reusable 

resources will be identified as available after the completion of an activity and can be picked up by 

other activities. Reusable resources include labor work forces and machines. All resources are stored 

within one dynamic resource entity queue during simulation. 

The SDESA reduces the queuing structure into a single dynamic queue of flow entities. Flow 

entities are passing through a sequence of activities in a process, and are interacting with resources at 

each activity for a certain duration (Lu 2003). Flow activities only contain a time cell to track arrival, 

waiting and departure times at activities. 

Hence, the complete simulation process is simplified to the interaction of two dynamic queues: 

the flow entity queue and the resource entity queue. 
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Figure 3-18: Flowchart of the SDESA executive (source: Lu 2003) 
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3.5.7 Integration of other tools into the simulation framework 

With the increased popularity of Computer Aided Design (CAD) software in the construction 

industry such as AutoCAD or MicroStation, toward the end of the 20th century researches realized 

that integrating such a tool into the simulation framework could be beneficial. Using visualization 

software to aid the simulation model declaration, information such as physical product attributes, 

geometric data and volumetric data can be transferred automatically to the simulation. Furthermore, 

site layout and additional geometric data of the construction project are mostly stored in CAD 

drawings. These are very important inputs to create an accurate simulation model and can be imported 

from CAD drawings. 

To provide a more effective definition of project and simulation models Xu and AbouRizk (1999) 

integrated AutoCAD models into Simphony. The CAD model of the system is embedded within the 

product hierarchy of the simulation model. It is used to feed the simulation with information about 

geometrical and volumetric data and characteristics of the site.  

3D visualization tools cannot only be used to provide input data for the simulation but also to 

visualize the results. By integrating a time element to the visualization, a 4D representation of a 

schedule can be established. Zhang (2000) introduced the 4D Graphics for Construction Planning and 

Site Utilization (acronym 4D-GCPSU) platform for planning construction projects. This framework 

not only facilitates the planning of building construction but also the resource management and the 

site space utilization. It has been enhanced by Wang et al. (2004), who extend the framework by site 

layout assessment, dynamic resource management and cost control so that project managers can 

update their resource plans according to the changes in their schedule. 

Dawood et al. (2003) developed an integrated information resource base for 4D/Virtual Reality 

construction processes simulation that is composed of a database of building components (as CAD 

packages from AutoCAD), Project Management package and graphical user interfaces. After the 

simulation the schedule is presented in a 4D AutoCAD environment. 

Kamat and Martinez (2003) introduced VitaScope, a discrete event simulation system based on 

STROBOSCOPE integrated with a 4D visualization package. The visualization of construction 

schedules is helpful to identify logical, temporal and spatial errors within the schedule. Therefore a 

4D visualization of schedules can also be used to validate the schedule (Kamat and Martinez 2003).  

Chahrour (2006) uses AutoCAD to determine the input data for the simulation of earth moving 

processes. His prototypical simulation framework uses product-modeling concepts as data structure 

and is capable of integrating simulation concepts with CAD representations of the construction site. 

Tulke and Hanff (2007) introduced a new Building Information Model (BIM) based 4D 

visualization approach instead of the CAD model-based approach. Since a BIM approach contains 

not only the 3D geometry of the connected building but also further information as to elements such 

as material, construction method and geometrical data (Eastman et al. 2011), it can be used to 

determine the duration of tasks automatically by selecting quantities from the model. In the CAD-

based approach such a determination has to be done manually. Therefore, the process of setting up a 

simulation model can be achieved faster using the BIM-based approach than with the CAD model-

based approach. 

Since the gaming industry is one of the leaders in 3D visualization, ElNimr and Mohamed (2011) 

utilize the game engine Blender to visualize the results of a simulation run.  

Another game engine-based 4D visualization was introduced by the author of this thesis (Dori and 

Borrmann 2011). The introduced aim was to visualize not only the building phases of the individual 

building components, but also to create 4D movements of the resources such as labor and machines 

to detect both logical and spatial collisions on the construction site. To achieve this goal, animation 
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snippets were introduced, each one intended to represent a change of one geometrical parameter or 

attribute (e.g. rotation, movement, change transparency). Animation snippets are the basic elements 

of an animation chain, which describes the complete lifecycle of movements of a visualized entity. 

The animation snippets and animation chains are created automatically based on the results of the 

simulation. However, every single path of possible movement must be drawn within the visualization 

framework (called Animator, which is based on the Irrlicht game engine) and connected to an 

animation snippet manually before the start of the visualization. This is a time consuming and 

inefficient process that should also be automated in order to create a visualization package that is 

useful for the industry. 

3.5.8 Distributed simulations, high level architecture and CoSye 

The long-term goal of construction simulations is to achieve a fully integrated and highly 

automated environment that can be used through the complete lifecycle of the building. To achieve 

this goal, the simulation approaches used in the construction industry must be re-engineered on a 

foundational level (AbouRizk and Hague 2009). A suitable foundation for such an environment can 

be established e.g. by distributed simulations, specifically by using High Level Architecture (HLA) 

approaches.  

HLA is a standard of the IEEE (IEEE 1516 - 2010) developed originally by the Defense Modeling 

and Simulation Office (DMSO) of the Department of Defense (DoD) with aircraft and weapon system 

development purposes. It provides rules to connect simulations with each other to create an even 

larger simulation. Such is reached through the real-time communication and data-sharing between 

the federates (e.g. a simulation, a database, visualization or further software components). The 

communication between federates is governed by the Run Time Interface (RTI).  

The communication between federates and the RTI is established through ambassadors. Direct 

communication between federates is not allowed, so information exchange always must flow through 

the RTI. The collaboration of two or more federates describe a federation. The Federation Object 

Model (FOM) describes the universe of the simulation. It contains every necessary object and data 

that is involved with the simulation. The federates share all objects and data with each other. The 

basic functionality of the HLA is depicted in Figure 3-19. 
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AbouRizk and Hague (2009) introduced a new HLA-based simulation environment called 

COnstruction SYnthetic Environment (COSYE) that supports the parallel and distributed simulation 

of construction operations and development of large scale construction simulations. By using HLA 

and COSYE, the designer can decompose the originally complex construction system into smaller 

and simpler components and define them as federates. Federates can be developed independently and 

connected later with COSYE. Federates can be distinguished as main federates, such as the site 

manager, the process model, fabrication shop, etc., or supportive federates, e.g. resource allocation, 

calendar or visualization (AbouRizk et al. 2010). The application of COSYE in collaboration with 

industrial partners has been presented by AbouRizk et al. (2010) for industrial construction and Xie 

et al. (2011) for tunnel construction.  

Hollermann et al. (2012) developed an HLA-based distributed communication system for bridge 

construction. The federates in this case represent the actors of the construction operations, such as the 

design engineer, site manager or the client. The introduced FOM define classes based on the Industrial 

Foundation Classes (IFC - ISO 16739:2013) to enhance the communication between the different 

involved parties and create one common shared model.  
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Figure 3-19: Components of the High Level Architecture: The federation, the RTI, the FOM, federates and Ambassadors 
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3.5.9 Petri Nets 

In addition to discrete event simulation, Petri Nets (Petri 1962, Petri 1966) are also widely used 

for general simulation applications. Petri Nets provide a mathematical formulation and graphical 

representation of the studied discrete system. A Petri Net is a directed, weighted, bipartite graph that 

consists of four basic types of modeling elements (Sawhney 1997): places, transitions, links and 

tokens (Figure 3-20).  

 

Places (Circles) represent states of the system. Transitions (squares) are activities that cause a 

change in the system’s state. Links represent connections between places and transitions, and describe 

the flow direction of the tokens. Tokens are resources that are necessary to trigger or fire a transition 

(Wakefield and Sears 1997).  

The simulation model is made up of alternating place and transition elements connected with 

links. Initial tokens can be positioned into places. A transition can fire when all necessary places 

before it are occupied by a token. When a transition is fired it consumes all the tokens in front of it 

and generates new tokens to put into the follower places. A transition might hold up the tokens for a 

time period that supports the time passage of the model (Jensen 1991).  

Such a description of a network is practically identical with the functionality and appearance of 

the Activity Cycle Diagram (Section 3.3.2.3 - Figure 3-11) (Lin and Lee 1993). A place is analogous 

to a queue, or a transition, the tokens to the resources and the holding period of a transition to the 

duration of an activity (Martinez and Ioannou 1999). Therefore, Petri Nets are often used to study 

systems formulated as the three-phase AS strategy (see Section 3.3.2.3) and show high potential to 

simulate construction operations (Lin and Lee 1993). The Petri Net representation of the simple earth 

moving process that has been introduced in Figure 3-13 at the initial state is depicted in Figure 3-21 

and an intermediate state after 15 entities of dirt have been transported is depicted in Figure 3-22. 

   𝑐        𝑡

𝑡     𝑡          𝑡

𝑡           𝑡

  𝑐       𝑡
 

Figure 3-20: Modeling elements of a Petri Net 
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Sawhney (1997) draws attention to three important requirements which are necessary to allow 

efficient scheduling of construction operations with Petri Nets. The three requirements are the 

following: “First, the ability to provide hierarchical breakdown of a complex construction project. 

Second, the incorporation of risk and uncertainty in the activity time and cost estimates and the 

network logic. Third, the modeling of dynamic resource allocation and utilization on a construction 

project”.  

The main reasons why the application of Petri Nets are favored to simulate construction processes 

are collected by König (2004) and Berkhahn et al. (2005). These are the following: the graphical 

representation of the system, the bipartite structure containing places and transitions to model states 

and activities, the token concept for modeling logical conditions and dependencies and “the 

mathematical formalism for structural, behavioral and simulation analysis of engineering process 

models”. However, this technique also has limitations, including the inability to represent directly 

bulk materials. For instance, soil or aggregate that should be transferred from one place to another 

cannot be modelled directly with Petri Nets (Martinez and Ioannou 1999).  

Since the emergence of Petri Nets, the method has been developed and enhanced with further 

functionalities such as the aforementioned time association with transitions. These are called the Time 
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Figure 3-21: Petri Net model of the in Figure 3-13 introduced simple earth moving project at the initial state 

Figure 3-22: Petri Net model of the in Figure 3-13 introduced simple earth moving project in the state after transporting 

15 entities of dirt to the dump area. 
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Petri Nets (TPN). A time delay for generating new tokens can be either deterministic or represented 

by any stochastic distribution function. Further information about the TPN can be found in Wakefield 

and Sears (1997). Another extension is the Colored Petri Nets (CPNs) that allows the association of 

different colors to tokens, thereby creating distinctions between different resources. Such distinctions 

can also be used for transitions that need e.g. one yellow and two blue resources to fire (Jensen 1996). 

Beside the aforementioned theoretical development of Petri Nets for construction operations, the 

technique has also been applied to investigate the behavior of real systems such as earth moving 

operations (Wakefield and Sears 1997, Cheng et al. 2011), concrete placement operations (Wakefield 

and Sears 1997), bridge construction scheduling (Sawhney and Vamadevan 2000), geotechnical 

planning process (Berkhahn et al. 2005) and building design process (Cheng et al. 2013). In spite of 

all these applications and the development of Petri Nets, the discrete event simulation is still the 

favored approach for both researchers and industry to simulate construction operations. The reason 

for that is often ascribed to the more complex simulation logic of the Petri Nets, however, a clearly 

formulated statement does not exists. 

3.5.10 Agent-directed simulation of construction projects 

Agent-directed simulation is a specialization of distributed Artificial Intelligence (AI) for which 

the experiment is constructed around a set of agents (individual AI) that are capable of interacting 

with each other and with their environment (Knotts et al. 2000, Sawhney et al. 2003). Agents are 

intelligent software modules with cognitive abilities such as autonomy, perception, reasoning, 

assessing, understanding, learning, goal processing and goal directed knowledge processing (Ören et 

al. 2000, Mohamed and AbouRizk 2005). These agents act as the assistants of the user who can sense 

the conditions of their environment, assess their situation, make decisions and react according to a set 

of rules (Sawhney et al. 2003).  

Ören et al. (2000) differentiated three categories of agent simulations according to the synergy 

between agent and the simulation. The first one is the agent simulation, where intelligent entities such 

as humans or intelligent devices are simulated. The second one is the agent-based simulation in which 

the agents are used to generate model behavior in the simulation. Model behavior can be defined by 

the main characteristics of the agents and how they act or react under certain condition changes. The 

third category is the agent-supported simulation. Here, agents are used to support the simulation 

operations such as “front-end and/or back-end user/system interface operations as well as activities 

related with simulation software.” (Ören et al. 2000). 

Agent-directed simulations are useful to study problems with emergent complexity. Although the 

individual agents might be simple in nature, due to the interaction between them the whole system 

becomes capable of modeling complex behaviors (Knotts et al. 2000). They are described as being 

more robust, flexible and fault-tolerant than traditional systems. A further advantage of this technique 

is its instinctiveness which helps to better understand the behavior of complex systems (Knotts et 

al. 2000). By developing an agent-directed system the issues are identified as the representation of 

the model including the structure of the agents and the system architecture, the communications, 

system dynamics, the overall system control and the conflict resolution (Shen and Norrie 1999). 

Furthermore, the model development is a time consuming process, since every possible interaction 

between agents, and between agents and the environment must be defined and implemented (Kugler 

and Franz 2007). 

The application of agent-directed simulation in construction operations is advantageous for taking 

safety or space requirements of resources into account (Sawhney and Vamadevan 2000). In such a 
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simulation, the resources are modelled as agents that try to find the best working area where the 

available space and safety requirements are satisfied to determine the most effective safety plan. 

Kugler and Franz (2007) introduced a concept of a multi agent-based simulation for high-rise 

buildings where the active components of the simulation, such as cranes, labour and vehicles, are 

modelled as agents. 

A similar agent-based scheduling technique of Knotts et al. (2000) has been enhanced by 

Horenburg et al. (2012). They applied different agents for both activities and resources and put them 

into an auction-based environment. The agents negotiate with each other as to which activity should 

be executed with what resources in order to find a schedule with near optimal makespan. Kim and 

Kim (2010) developed SIMCON, a multi-agent-based simulation system for construction operations 

to model the effect of congested flows (such as traffic and trucks) on the construction site while taking 

the layout of the site into account. Kooragamage et al. (2013) introduced the concept of an agent-

based model for planning site logistics by focusing on spatial time clashes between the construction 

objects and resources.  

In summary, agent-directed simulations are powerful frameworks to simulate complex systems 

with large numbers of interactions such as construction operations. However, much research in this 

field must be done to establish a simulation tool as usable for the industry as the discrete event 

simulation. The lack of transparency at agent interactions and decision makings, the restricted control 

over the simulation of the user, and the time consuming model development are the primary reasons 

why the author of this thesis prefers to use the discrete event simulation for his research. 

3.6 Summary and discussion 

In the last chapter it has been shown how the simulation techniques are capable of simulating 

scheduling problems both in the manufacturing and construction industries. After introducing the 

basic terms of the simulation, the concept and the characteristics of the discrete event simulation were 

discussed. The discrete event simulation is a type of simulation in which the changes in the system 

state, so called events, occur only at discrete points in time. The simulation time jumps forward in 

time between these events while the model´s state stays constant between these discrete time steps. 

The DES is a powerful tool to solve complex problems such as scheduling under resource constraints. 

The advantage of the DES over the conventionally used scheduling tools is that it can handle not only 

precedence constraints, but also resource constraints thereby generating more realistic schedules then 

the conventional methods. This technique is already widely used in the manufacturing industry, 

however, it is hardly known in the construction industry. 

The advantages of simulations over analytical solutions, include: 

 Simulations can handle complex interactions in a simple manner thereby resulting in 

a more realistic schedule...  

 Simulations provide the possibility to test every small detail of the schedule before 

starting the actual production… 

 These tests can lower the risk of collisions and lower the high idle times for machines 

by identifying bottlenecks within the schedule… 

  Simulation methods are easier to understand and use than analytical methods… 
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Due to these advantages, researchers have worked to adapt simulation methods to the construction 

industry since the middle of the 20th century. However, this adaption is not a straightforward process 

due to the differences between the two industries. 

The main reasons for the difficulties in adapting the simulation methodology are the uniqueness 

of the construction projects and the lack of repetitive processes on the construction site. While 

manufacturing production plans contain many repetitive processes that are used to create the same 

product many times, the construction of a building is a unique process and the result is always only 

one “product”. 

Furthermore, the production lines in the manufacturing industry have a static layout. The products 

are transported with conveyor belts between stationary machines where they get prepared. This 

structure also represents the layout of the simulation model. In contrast, in the construction industry, 

the building (the product) is stationary and the resources are mobile. Thus the layout of the 

construction site is dynamically changing in time which is a complex job to model with simulation. 

Additionally, in the manufacturing industry one operation can only be executed by one specific 

machine. In contrast, in the construction industry one construction task might be executed with 

different resources without impacting the schedule. Hence the layout of the simulation model and the 

connections between resources and construction tasks are more complex for the construction industry 

than for the manufacturing industry. 

The developed simulation frameworks for the construction industry, e.g. CYCLONE, 

STROBOSCOPE, Symphony and further frameworks, are mainly focusing on modeling repetitive 

construction processes like earth hauling processes, tunneling, or road construction. To determine a 

schedule for construction projects with non-repetitive processes such as the construction of high-rise 

buildings and bridges, the models using the aforementioned simulation frameworks become very 

complex. Furthermore, due to the applied rigid sequences of activities, these simulation frameworks 

are not capable of modeling the dynamically changing environment of a construction site. 

Based on these theories, in order to develop a method that could handle both precedence and 

resource constraints in a simple and straightforward way while still being able to simulate non-

repetitive construction processes, Beißert et al. (2007b) developed a new constraint-based simulation 

method that has also been used by the author for scheduling purposes and will be introduced in the 

next chapter in detail. 
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4.1 Executive summary 

The optimization of schedules is only possible if the order of single construction tasks can be 

rearranged within the schedule and the rearrangement results in a feasible schedule. The optimization 

of schedules is a combinatorial problem due to the arrangement of the single tasks. Combinatorial 

problems can efficiently be modelled by the constraint satisfaction paradigm (Rossi et al. 2006). A 

group of German researchers (König et al. 2007a, König et al. 2007b, Beißert et al. 2007b) integrated 

the constraint satisfaction paradigm into a discrete event environment and with this they created a 

new constraint-based discrete event simulation approach (CBDES). The overall goal of the group was 

“to simulate different practicable solutions, which can be analyzed regarding principal guidelines 

such as time, cost and quality” (König et al. 2007b). Since the CBDES is a method to generate single 

feasible schedules for the resource-constrained scheduling problem (RCPSP), it is able to generate 

feasible schedules for the optimization of construction schedules. This will be introduced in 

Chapter 7. The working mechanism of the CDBES will be introduced in detail in the following 

sections. 

One highly criticized part of the simulation-based scheduling is the time-consuming process of 

preparing the data. Therefore a new 3D geometry-based method has been developed in order to 

accelerate these tasks for the simulation and to make the simulation more appealing for industrial use. 

The methods developed for data preparation before the data is inserted into the simulation will be 

presented in Section 4.3. 

The benefit of the network planning techniques over the simulation is the capability to determine 

float time. A new technique has been developed in the frame of this thesis that extends the discrete 

event simulation technique with the capability of determining float time for each individual task. This 

increases the competitiveness of the simulation approach relative to the network planning techniques 

4 Discrete event simulation for 

generating construction schedules 
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and makes it more attractive for industrial use. A detailed description of this technique will be 

presented in Chapter 5.  

4.2 Constraint-based modeling of construction operations 

A constraint satisfaction problem (CSP) is defined as a triple 𝑃 = 〈𝑋; ; 𝐶〉, where 𝑋 is a set of 

variables,   corresponds to the domain of the values and 𝐶 is a tuple of constraints (Rossi et al. 2006). 

The solution process of the CSP searches for a value combination of the variables that satisfies all the 

constraints.  

In the case of a construction operation system, activities and resources are represented as variables 

of the CSP, with resource requirements of activities and their technological dependencies as 

constraints. Hence, a feasible solution (schedule) will satisfy all of the sequential dependencies 

between the activities, the resource requirements and the resource limitations.  

4.2.1 Elements of a constraint-based discrete event simulation for 

construction operations 

As introduced in Section 2.2 and 2.4, a construction project can be formulated as a resource-

constrained project-scheduling problem (RCPSP). The basic components of a construction project 

are the construction tasks that can be modeled as a pair of events or an activity in a discrete event 

simulation environment (Section 3.3.1). Construction tasks also build the basic components of the 

CBDES but they are modelled as simple variables that have certain restrictions and requirements such 

as technological dependencies and resource needs. However, a task represents the same procedure as 

an activity within the discrete event simulation environment, because due to the implemented 

constraint satisfaction methodology it is represented as a variable and not as a pair of events. It is of 

utmost importance to differentiate between the names. Construction tasks have three states: not 

started, in progress and finished. In the basic version of the CBDES after a task has been started it 

cannot be interrupted during its execution. However, extensions have been developed that allow the 

interruption of tasks during their execution (Rahm et al. 2012). 

Resources such as working equipment, man power, material or workspace are necessary to 

execute construction tasks. Resources can be categorized into two classes. The non-renewable 

resources can only be used once for a construction task at the construction site. After the work is 

terminated, these resources are not available for other tasks. Non-renewable resources include rebar 

cages, specific wood elements and precast concrete or formwork elements. In contrast, renewable 

resources can be used to execute several construction tasks, one right after another. After one task 

has been terminated machines, labor, construction space and other renewable resources will be 

available again for use on another task. Resources such as labor might have diverging skills. Skills 

are used to describe the nature of tasks a resource is capable of executing. One laborer might be 

trained in pouring concrete, another one in assembling formwork and a third in both tasks. Resources 

can have two states: available or in use. 

Constraints describe boundary conditions for the construction site that are necessary to erect the 

building. Sriprasert and Dawood (2002) introduced three class of constraints in the construction 

industry. The first class is composed of the physical constraints such as technological dependencies 

(e.g. task A must follow task B), space requirements, safety and the environment. The second class 



Discrete event simulation for generating construction schedules 87 

 

 

contains the contract constraints such as deadlines (time), budget (costs), quality and special 

agreements. Enabler Constraints form the third class of restrictions and involve constraints that 

pertain to the resources such as requirement, availability, capacity, perfection and continuity. 

Additionally constraints about information such as requirements, availability and perfection are 

included. 

In addition the two types of constraints, hard- and soft-constraint, can be distinguished. Hard-

constraints define stringent conditions for a construction task and must be fulfilled before the task 

can be started. Technological dependencies, resource needs and safety criteria belong to this type of 

constraints. Soft-constraints, in contrast, define appropriate conditions, the fulfillment of which is not 

completely necessary (Rossi et al. 2006). Soft-constraints can be used to implement productivity 

requirements such as a relation between the workers’ productivity and the available work space 

(Beißert et al. 2007b, Beißert et al. 2010). In this research the author will only use hard-constraints 

for the developed methods. 

4.2.2 Simulation concept of the constraint-based discrete event simulation 

As mentioned in the introduction of the chapter, the constraint-based approach is integrated for 

the new simulation technique into the discrete event simulation. The discrete event framework is used 

to inspect points in time where a construction task can be started or terminated. The constraint 

checking algorithm is implemented within the start event of the tasks (Figure 4-1), which searches 

for construction tasks that can be started. A second event is applied in order to finish a task and release 

its used resources. The complete simulation is constructed of two general events: the start of 

construction tasks and the termination of construction tasks (Beißert 2012).  

The course of actions for the start of construction task is depicted in Figure 4-1. When a new event 

occurs, first, all the constraints with the state of “not started” will be checked. These not started tasks 

are stored in a queue for not yet started tasks. The constraint checking always starts with the first task 

on the list and checks if all its constraints are fulfilled. If one of the constraints is not fulfilled, the 

constraint checking process of the task will be skipped and the constraints of the next task on the list 

will be checked. This process continues until the end of the list is reached. When all the constraints 

of a task are fulfilled (including precedence and resource constraints) the task will be started, its 

needed material, resources and spaces will be locked and the necessary new events will be generated. 

As soon as there are no more executable tasks available, the simulation proceeds to the next point in 

time where an event occurs (Beißert 2012). 
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An important characteristic of the introduced start event is that even when more tasks could be 

started in parallel, it is always the first task on the waiting list that will get the available resources, 

while the other tasks have to wait until the necessary resources are once again available. Therefore, 

the order of the tasks within the list of not started tasks plays an important role for the generation of 

schedules. Varying the order of the tasks within the list will result in different execution sequence of 

the tasks. Therefore, different schedules for the same project can be generated with the same boundary 

conditions (e.g. same amount of available resources). 

In the example presented in Figure 4-2 three tasks are waiting to be scheduled: A, B and C. They 

all need one unit of the same resource from which two units are available on the jobsite. By varying 

the order of the task list, different schedules can be generated. 

 

The ordering of the tasks within the task list can be based on random selection or on different 

strategies. Strategies can be implemented by soft-constraints (Beißert et al. 2010), which define 

diverging priorities for the tasks. Depending on the fulfillment of the soft-constraints a task might get 

a higher priority than others and thus it ascends in the task list. The higher the priority of a task, the 

higher its position in the task list. 
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Figure 4-1: Structure of the start event for the CBDES (König et al. 2007b, Beißert et al. 2007b, Beißert 2012) 

Figure 4-2: Different generated schedules based on the order of tasks within the task list 
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As soon as the end of the task´s execution is reached the “finish of construction task” event will 

be triggered. It is responsible for releasing the resources (setting the state of reusable resources to 

available) and to set the state of the task to finished (Figure 4-3). After tasks have been terminated a 

start of construction tasks event will be activated to look for tasks that could be started with the new 

released resources. 

 

The simulation proceeds until all the tasks are terminated, or until there are no more tasks that can 

be started. Every event and resource allocation is recorded during a simulation run, thus a detailed 

evaluation of the results is achievable. One simulation run always calculates one feasible schedule 

with a corresponding resource utilization. Flexibility in scheduling can be implemented by applying 

different strategies or modified task priorities. In this case, the order of tasks within the executable 

queue will be diverging and so, the execution order of the tasks will also be diverging. Thus for the 

concerned project with the same precedence and available resource configuration diverging schedules 

can be generated. Further changes can be introduced by varying the input data of the simulation, such 

as the sequence of the tasks or the available resources. Thus, different practicable solutions might be 

generated for one specific scheduling problem, which can be analyzed regarding the makespan, the 

costs of the project and the quality of the built components (König et al. 2007b). 

In order to generate a schedule, DESMO-J, a discrete event-based simulation engine (Page and 

Kreutzer 2005) that has been extended with the constraint-based methodology (König et al. 2007b) 

is used. The necessary input data is prepared by means of the Preparator (Section 4.3.5 - Dori and 

Borrmann 2011) and is imported into the simulation engine. This discussed simulation technique is 

called forward simulation and it will also be important for the determination of float time under the 

consideration of resource constraints (Chapter 5). 

4.3 Preparing the necessary data for the process simulation 

Before a simulation run can start, every necessary input data must be defined beforehand. This 

includes information as to the following:  

 construction tasks;  

 the resources required for each task;  

 interdependencies between the tasks,  

 available resources; 

 performance factors of the resources. 

 

However, the constraint–based discrete event simulation does not need an explicitly defined 

activity cycle diagram (ACD) like the common discrete event simulation. Instead, it requires a list of 

Finish task

Release resources and spaces

        𝑡

Figure 4-3: Finish of a construction task event in the CBDES (König et al. 2007b, Beißert 2012) 
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tasks and their constraints (Wu et al. 2010a). Despite this simplification, the input data preparation 

for the CBDES can become just as time consuming as for the introduced discrete event simulations. 

Defining the necessary input data is mostly performed manually. This includes tasks and their 

dependencies. For example, a small bridge construction site contains 32 tasks and 50 precedence 

relationships. However the same preparation process for the second case study (Section 7.6.2) with 

457 tasks and 523 precedence relationships would be a very complex and error-prone task when done 

manually (Wu et al. 2010a). Therefore half- or fully automated computer aided methods are necessary 

to support the planner and make this process faster and safer. 

4.3.1 Related work in data preparation for discrete event simulation 

As already introduced in Section 3.5.7, many researchers integrated 3D modeling software such 

as AutoCAD or MicroStation into the simulation environment to accelerate the time consuming 

process of defining input data, to visualize the results and to make the simulation-based scheduling 

more attractive for the industry (Zhang et al. 2000, Dawood et al. 2003, Kamat and Martinez 2003, 

Tulke and Hanff 2007and ElNimr and Mohamed 2011). These two methods enhance the data 

preparation process of the simulation, however, they rely on the utilization of the predefined modeling 

system components. Tulke (2010) gives an overview of further existing strategies for data preparation 

for 4D-simulations12 by assigning construction tasks to 3D-objects. He identified five existing 

methods. These five methods include the manual linking of every single task to a 3D-object, linking 

temporal data to 3D-objects within a CAD software framework, creating a consistent hierarchic 

structure for the process and the product model (Dawood et al. 2003), the use of databases for the 

selection of building components based on its object type and further attributes and lastly, an 

interactive preparation of a schedule in a 3D environment with simultaneous specifications for 4D 

visualization (Zhou et al. 2009). 

Wu et al. (2010a) introduced a sophisticated approach that combines some of these approaches 

and enables schedulers to use any kind of 3D-model to generate input data for simulations, 

independent from the modeling system. The presented methodology aims to receive the necessary 

input data for the simulation interactively by assigning construction tasks to 3D-model components. 

To enhance this quite time-consuming manual process (Koo and Fischer 2003, Tulke 2010), Wu et 

al. (2010a) applied a hierarchical approach that allows the planner to subsequently refine both the 

product model (product break down structure) and the process model (work break down structure). 

Furthermore, they developed a pattern-based approach for the assignment process that collects every 

task that needs to be performed for the selected building component and merges them into one 

construction process pattern. This approach considers the internal interdependencies and resource 

needs. Since the author of this thesis used the introduced methodology to define input data for his 

research, it will be introduced in detail. 

  

                                                 
12 4D-Simulation is a framework where the simulated schedule will be visualized with the use of a 3D-model and a 

linking of temporal information to the 3D-components. 
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4.3.2 Levels-of-detail approach 

To enhance the manual construction task assigning process to 3D-model components a levels-of-

detail approach is applied. It allows planners to start their work with a coarse and simple model of 

the project and refine and decompose its components step-by-step according to the work breakdown 

structure (WBS) of the project. WBS is used to analyze the structure of a project and to show the 

relationships between tasks and components. Its advantages lie in the systematic representation of the 

construction project’s structure (Melzner et al. 2012). Wu et al. (2010a) introduced a hierarchic 

assigning process of construction tasks based on the parallel refinement of the process and product 

model of the project. The advantage of such a model is that general attributes or characteristics of 

elements on higher levels can be applied to both process and product model elements at the same 

time. These will automatically be stored in further refined elements. Furthermore, the parallel 

refinement of the process and product model provides a straightforward connection between 

processes and geometry at any level-of-detail.  

On the highest level of both models are the construction elements of the building and the building 

itself, which form the coarsest elements. With each step the models will be deconstructed and refined 

and further information might be assigned to the components, such as the construction method of the 

building or bridge on the first level (e.g. balanced cantilever, standard false work, etc.). Based on the 

decision made at the first level the components of the second level can be generated automatically 

when extended with further information (e.g. amount of spans).  

On the second level of the model hierarchy are the elements of the building, such as the abutment 

or a pier of a bridge or the different stories of a high-rise building. The second level of the process 

model frames the corresponding construction processes, such as the construction of the abutment or 

the pier. On the second level materials can be assigned to the process model components thereby 

generating the components of the third level.  

The sub-elements are located on the third level. These are refined components of the elements, 

such as the foundation of a pier or a piece of wall on a specific story. The third level of the process 

model collects the corresponding construction tasks such as the construction of the foundation or the 

wall.  

At this point construction methods can be selected that contain single construction tasks that can 

be generated in the fourth level of the process model, depending on the material of the component. 

Corresponding product model components will be generated automatically. An example of the 

refinement process is shown in Figure 4-4. Here a bridge construction project is decomposed to its 

elementary components based on the methods of Wu et al. (2010a). 
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Although the presented example is made up of four levels, the number of levels can vary with the 

type of the modelled building and the selected construction methods (Marx and König 2011). 

However, the finest components of the process model will always represent the atomic tasks which 

will be used by the subsequent constraint-based discrete event simulation (Wu et al. 2010a). 

4.3.3 Process patterns and activity packages 

The aforementioned construction methods that can be assigned to the components of the process 

model are formalized as predefined process patterns. “A process pattern combines a number of 

process components and their precedence relationships and thus represents a companies’ knowledge 

of how to execute certain construction methods. This is used to generate the process components for 

the next level-of-detail” (Wu et al. 2010a). Process patterns significantly accelerate the preparation 

time of process models, since the operator only selects the appropriate method after which further 

components are generated automatically. In addition, the operator may change or introduce new 

process patterns that will also be stored in the list of available patterns where they can also be applied 

in other projects. The author of this thesis was focusing on creating process patterns primarily for 

bridge construction projects. Process patterns for other fields of construction are presented by Marx 

and König (2011). A simple process pattern for cast-in-situ built reinforced concrete components is 

presented in Figure 4-5. 
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Figure 4-4: Representation of the levels-of-detail approach on a simple bridge project. Normal arrows: precedence 

constraints, dashed arrows: hierarchic decomposition, dotted arrows: construction method selection, double 

arrows: automatic generation of new components (Wu et al. 2010a). 
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As explained at the end of the last section, the tasks on the finest (last) level of the process model 

play an important role, since they will be used for the simulation. Therefore they need to store more 

information than the other components of the model. Hence, the activity packages were introduced 

that store all of the necessary data about the task that is needed for the simulation. Examples of data 

that is necessary for a task include the name of the task, all pre-conditions, the building component 

that the task belongs to, its material and all necessary resources (Wu et al. 2010a). An activity package 

is presented in Figure 4-6. When selecting a construction method for a level 3 process component, 

the corresponding activity packages will be generated automatically and inserted into the process 

model. 
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Figure 4-5: Process pattern for cast-in-situ constructed reinforced concrete building component (based on Wu et al. 2010a) 

Figure 4-6: Activity package. Left: content, right: example (based on Wu et al. 2010a) 
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4.3.4 Creating the precedence graph 

When the introduced hierarchic deconstruction process is completed, the precedence graph of the 

construction tasks can be represented. A simple example for the hierarchic precedence graph is 

presented in Figure 4-7.  

 

Before starting the simulation of the project, the precedence relationships defined at higher levels 

(every level except of the finest (last) and the first level) must be mapped to the tasks on the finest 

(last) level. This step is crucial, because only these tasks are imported into the simulation. 

Therefore, the precedence relationships of higher levels will be mapped to the finest (last) level 

automatically. This occurs step-wise from the highest to the lowest level. By mapping one precedence 

relationship all the tasks of the predecessor component that have no successor within the component 

will define a new constraint as precedence. A simple illustration of the method is depicted in  

Figure 4-8. 
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Figure 4-7: Hierarchic precedence graph representation of a simplified bridge construction project´s process model. 
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However, the automated mapping of higher-level dependencies might lead to misinterpreted 

technological dependencies on lower levels, as introduced in the next small example. In this case, the 

higher level precedence constraint between the two sub-elements of Figure 4-7 (Pier Shaft and Pier 

Head) define a strict execution sequence of their tasks such as represented in Figure 4-9. However, 

constructing the formwork and tie rebar of the pier head beam does not require removing the 

formwork of the pier shaft, because they could start after the concrete is cured. The corrected 

precedence graph is represented in Figure 4-10. 

 

 

To avoid such misinterpretations, the mapping of higher-level precedence constraints always has 

to be controlled and corrected by the operator before starting the simulation. This can be obtained by 

a simple graph visualization tool that enables the reconnection of precedence constraints between 

construction tasks.  
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Figure 4-8: The process of mapping high-level precedence-constraints to the task-level: set a new constraint between all 

the tasks of the predecessor component that have no successor within the component (task D, E) as precedence 
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Figure 4-9: Misinterpreted higher-level precedence relationship between the sub-elements of Figure 4-7. The formwork 

construction and rebar assembly of the pier head beam can already begin when the concrete of the pier shaft is 

cured. 

Figure 4-10: Corrected precedence graph of the introduced task sequence in Figure 4-9 
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Since for the simulation only the construction tasks on the finest (last) level are necessary, their 

graph will be cut off of the hierarchic tree when it is completed. It is important to mention that, even 

if this precedence graph (such as in Figure 4-10) looks exactly like the simplified activity cycle 

diagram (ABC) of Shi (1999) (see Section 3.5.5), it has a completely different meaning. The arcs 

within the precedence graph for the CBDES represent only precedence relationships between the 

tasks, while the arcs in an ABC also represent the resource flow between the activities.  

4.3.5 Preparator 

To support the planner in preparing the necessary input data for the simulation a software called 

Preparator has been developed by Wu et al. (2010a). The Preparator is a graphical user interface 

(GUI) that is used to establish the precedence graph of a construction project by connecting the 

predefined process patterns to 3D-model components of the building or a bridge. Connecting it to a 

3D-model not only simplifies the assigning process of tasks and the preparation of the precedence 

graph, but also allows for the control of the results of the task assignment to get data for the quantity 

take-off for the tasks and to visualize the results of the simulation. When all tasks and dependencies 

have been created the graph can be delivered to the simulation. 

The functionalities of the Preparator software have been enhanced by the author to define all 

necessary input data for the simulation. The GUI of the Preparator is presented in Figure 4-11. The 

window for the 3D-model is placed at the bottom in the middle of the screen. On the left side of the 

window is the list of assigned and non-assigned objects. Above the list of objects there is a list of the 

necessary construction methods (process patterns) to build up the hierarchic process models. At the 

top of the window in the middle there is a list of tasks that belong to the selected process pattern. Next 

to the selected task its precedence relationships are listed. Below the list of tasks is the customization 

window for the activity packages. With these functionalities the precedence constraints and the 

necessary resources for a task can be defined. On the right side of the screen, the current hierarchy of 

the process model is located. When selecting a 3D-object in the 3D-model window, the object will 

be selected in the object list and a process pattern can be assigned to it. After customizing the 

attributes of the corresponding construction tasks the pattern can be added to the hierarchy and the 

next 3D-object can be selected and so on (Dori and Borrmann 2010) until the graph is completed. 
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Higher level precedence relationships can be revised on the main window of the Preparator when 

the assignment process is completed. A further extension is the Resource manager, where the 

available machines and labor for the simulation can be defined. These further extensions make it 

possible to join all the necessary data in one tool. 

Another software tool to generate input data for the CBDES has been developed at the University 

of Bochum in Germany. The SiteSim Editor is based on the same principles as the Preparator but it 

has been enhanced with further functionalities. These additional functionalities include the ability to 

define spatial constraints and strategic constraints (Marx and König 2011). Spatial constraints assign 

working space to construction tasks, which must be free in order to execute the task. When all the 

precedence and resource constraints of a task are fulfilled and the working space is also free, the task 

can be started. Otherwise, it must wait until the workspace is free again. Strategic constraints create 

grouped assignments for tasks such as pouring concrete, as represented for three columns in  

Figure 4-12. This kind of assignment is important in order to have both a high degree of utilization 

and to save costs and time for bigger machines. 
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Figure 4-11: The graphical user interface of the Preparator 
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Melzner et al. (2011) introduced a BIM- (BIM - Eastman et al. 2011) and an integrated dynamic 

data source-based preparation method that is used to define input data for the process simulation. The 

advantage of a BIM is that the objects contained in the model provide information about the 

construction data such as material, time and cost. They can be read automatically for the quantity 

take-off and to automatically generate construction methods for 3D-objects. The construction 

methods are similar to the process patterns and they are stored in the dynamic data source.  

Tauscher et al. (2007) developed a Case Based Reasoning (CBR) scheduling tool called Alice that 

has also been used by Mikulakova et al. (2010) and Hartmann et al. (2012). The software 

automatically compares building components of a BIM with the construction parts that have already 

been successfully constructed and stored in a database. It then suggests related applicable 

construction methods for the construction of the building component. Further methods can be added 

by the operator if the desired method is missing from the database.  

Melzner et al. (2012) suggests the standardization of the input data for the simulation in order to 

reduce the effort of model generation. 

4.3.6 Summary of the introduced methods 

In the last sections methods have been introduced that aim to accelerate the time consuming input 

data preparation for process simulations. Since every construction project is unique, in spite of 

automated hierarchic modeling, process patterns, activity packages and 3D-model connection, the 

process of creating the task sequence of an entire project is still time consuming due to the large 

amount of customizable data that is required (e.g. performance factors, necessary resources for 

individual tasks). BIM and knowledge-based methods such as the case-based reasoning, provide a 

good basis for overcoming these issues and for an automated precedence graphs generation for the 

entire construction project. However, further research is necessary to improve the quality of this 

approach (Mikulakova et al. 2010). Further research should investigate how the creation of custom 

construction methods and input of custom data could be accelerated. Another important field of 

research is the automated definition of different construction scenarios for the same project. This 

would allow the planner to not only compare schedules with different task sequences, but also 

schedules with different construction scenarios. 
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5.1 Executive summary 

The creation of a detailed schedule for a construction project that takes into account the available 

resources and precedence relationships between the various construction tasks is a challenging task 

for construction managers. The key measure of flexibility within the schedule is the float time (Raz et 

al. 1996). Float time can be differentiated into two classes. The total float time describes the time 

frame within which the execution of a task can be moved, or the flexibility that exists to complete the 

task without impacting the completion time of the project. The free float time describes the amount 

of time that a task in a project can be delayed without causing delay to the subsequent tasks  

(Figure 5-1).  

The current standard approach to determine float times in the construction industry is to use 

network scheduling techniques such as the Precedence Diagram Method (PDM), the Critical Path 

Method (CPM), Program Evaluation and Review Technique (PERT). A detailed description of these 

methods was provided above in Section 2.2.5. Where material and resource restrictions do not need 

to be considered, i.e. only precedence relationships of tasks are crucial, the schedule can be analyzed 

by applying one of the network scheduling methods. In these situations the calculation of float times 

for tasks is a straightforward procedure. Starting with the first task, the execution time will be added 

to the start time. The result is the earliest end time of the first task as well as the earliest start time of 

the successor tasks. After finishing this process, called forward-pass, the earliest possible start time 

is calculated for each task.  
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Subsequently, a backward-pass is conducted, which works in a similar manner. Starting with the 

last tasks, i.e. those that have no successors, the latest start and end times of all the tasks are calculated 

as discussed in Section 2.2.5.2. The difference between the latest start time and the earliest start time 

defines the total float time of a task. The free float of a task can be determined by subtracting the 

latest finish time of the task from the earliest start time of the earliest successor of the task. Hence, to 

determine the free float of a task the backward pass is not necessary. Therefore in this thesis the author 

will concentrate only on the determination of the total float time of every single task. The tasks 

without total float time constitute the critical path. A delay in any of these tasks will result in an 

increase in the project’s overall time span and therefore in a delay of the project itself. For this reason 

it is important to determine total float times for each task, in order to identify those tasks that are part 

of the critical path or have only short total float time. 

If the availability of resources is limited for a project, the results that have been calculated with 

one of the conventional network scheduling techniques can be misleading. Using the 

PDM/CPM/PERT method alone it is not possible to consider anything other than precedence 

constraints. Therefore, the network scheduling techniques cannot determine feasible schedules and 

total float values under limited resource availability. In this section a new approach will be presented 

that makes it possible to calculate float times for all tasks in a resource-constrained project schedule. 

To determine a schedule, the constraint-based discrete event simulation discussed in Chapter 4 is 

used. This simulation technique is capable of determining the earliest start date for each task while 

taking into consideration the resource constraints. However, in order to determine total float time the 

latest start date of a task is also necessary. In the past, this information was not available with the 

introduced simulation technique. Therefore, a new method will be introduced that extends the 

constraint-based discrete event simulation so that it is able to determine float time for construction 

tasks. In a manner similar to the forward- and backward-pass analysis of the network scheduling 

techniques, this approach combines the forward and backward simulation concept with additional 

methods that apply restrictions to obtain an identical order of tasks for the backward simulation and 

the forward simulation. 
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Figure 5-1: Difference between the free and the total float (top: precedence graph of the tasks, middle: free float, bottom: 

total float, dashed box: float) 
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The following section gives a review of the different approaches analyzed in the available 

literature. The latest research on the topic of float calculation using network scheduling and further 

techniques will be presented. The Sections 5.3 and 5.4 describe in detail the concept of calculating 

float times using combined forward and backward simulation. The limitations of the introduced 

method is discussed in Section 5.5. A comprehensive case study is presented in Section 5.6, and in 

Section 5.7 the same case study with the addition of multiple resource needs is analyzed. The final 

section, Section 5.8, contains concluding remarks and an outlook on future research objectives. 

5.2 Related work on float time determination 

The most widely applied approach in today’s construction-process planning is the CPM. As 

Kelley (1961) has shown, this approach is optimal for construction schedule planning because it 

minimizes the overall project duration. However, this approach only works without resource 

restrictions. Scheduling in situations where there are resource constraints is a much more complex 

problem. Raz and Marshall (1996) point out that the results can be misleading when the CPM is 

applied to float determination while taking a limited amount of resources into account. Using CPM 

alone, the situation can occur where the resource limits will be exceeded (Figure 5-2).  

 

To solve this overutilization problem, heuristic methods can be applied to level the resources and 

decide to which of the competing tasks the resources should be allocated to first so as not to exceed 

the resource limits (Willis 1985, Raz and Marshall 1996, Hegazy and Menesi 2012). As a result, some 

tasks may be scheduled later than their actual latest execution dates under the CPM analysis because 

the required resources are not available. These conflict with the scheduled dates of the tasks and 

therefore the float times are no longer applicable. Possible alternative solutions are introduced in 

Figure 5-3. 

To solve this problem, Raz and Marshall (1996) propose new float definitions that retain the 

original meaning of float. They introduce the scheduled total float (and scheduled free float) which 

is the difference between the latest scheduled date and earliest scheduled date of a task. Scheduled 

dates fulfill both the precedence and resource constraints of the task and the resource limits of the 

project. To determine these scheduled dates a resource-constrained forward- and backward-pass is 
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Figure 5-2: Exceeding the resource limits within a schedule determined by CPM. (Precedence graph of the tasks is 

depicted in Figure 5-1) 
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carried out using heuristic algorithms for resource leveling. Using their approach it is possible to 

obtain a more precise and accurate measure of schedule flexibility and risk.  

Goldratt (1997) introduces the definition of the critical chain, a series of tasks satisfying both 

precedence and resource constraints (equals critical path with satisfied resource constraints and 

limits). A delay in one of these chain tasks would extend the total duration of the project. In this 

thesis, the author will also use this definition for critical tasks taking resource constraints into 

consideration. Bowers (2000) redefines the definition of float time. He calculates the float time as 

the difference between the earliest and the latest start time of the task of all possible schedules with 

identical durations. The article opened a discussion between Lu and Kim and de la Garza (Lu et 

al. 2006) where the authors suggested using a common set of examples that the authors could use to 

test and evaluate the performance of each of their methods. 

Lu and Li (2003) introduced the Resource-Activity Critical Path Method (RACPM), in which 

they apply further precedence constraints to activities that require the same resources (resource-

activity combined precedence relationships) in order to determine the tasks float time. These 

constrains are set between a currently investigated activity and its resource-constrained successor 

activities. These include the immediately following activities that in part or in total involve the 

resources used in the currently investigated activity.  

Kim and de la Garza (2003) introduced the Resource-Constrained Critical Path Method (RCPM) 

that describes resource links for the backward pass. The resource links are created between tasks if 

an activity must be delayed because of a resource constraint. They evaluated their method (Kim and 

de la Garza 2005) by comparing the results of the RCPS with other studies, among others with the 

RACPM (Lu and Li 2003) and the methods of Bowers (2000). As a result they summarize that 

“Bowers’ method does not consider technological relationships while identifying resource links” and 

“Lu’s method may generate a large number of redundant resource links…these do not cause any time 

calculation errors, but the complexity of the scheduling network will be significantly increased.” The 

RCPM does not detect certain resource links when they do not affect the total floats of activities, so 

that RCPM procedure to find resource links is required whenever the schedule is updated.” With the 

introduced advantages the RCPM could be a more practical tool for solving scheduling problems than 

the other methods (Kim and de la Garza 2005). 

Lu and Lam (2008) state that CPM is not able to handle resource calendars for the total float 

determination. They propose a new method for eliminating this drawback based on forward-pass 

analysis alone. They generate a schedule under resource limit and resource calendar constraints and 

obtain the base project duration. They then select a task and extend its duration iteratively by one day. 

In every iteration step a resource leveling analysis is run and the project duration is updated. As long 

as the updated project duration is not greater than the base project duration the total float time of a 

task gains is extended by one extra day. This process continues until all the float times for all the 

tasks have been calculated. 
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Moreover, Hegazy and Menesi (2010) point out that the CPM algorithm has no mechanism for 

considering multiple resource constraints, such as deadline and limited resources. It is therefore often 

difficult to generate schedules that are feasible for all constraints, i.e. one solution in response to one 

constraint may conflict with another solution for another constraint. Hegazy and Menesi’s proposed 

solution is a mechanism that is based on a finer level of granularity. This is achieved by breaking 

down the task’s duration into separate time segments. As described above, researchers have proposed 

improvements to CPM, in order to determine more accurate and more realistic information about float 

time. In addition to the segmentation technique, the researchers have proposed alternative heuristic 

approaches, e.g. genetic algorithms to generate a schedule that can satisfy both deadline and resource 

constraints (Hegazy and Menesi 2012).  

Lim et al. (2011) discuss the limitations of the currently used approaches in interpreting flexibility 

of resource-constrained projects. They point out that an appropriate definition of float cannot be based 

on one single schedule because multiple schedules can exist with the same project duration. Therefore 

they redefine the notion of critical activity with a broader scope: “An activity is a critical activity if 

the maximum of its float values is zero for a specified completion time of the project.” 

The total float time definition of the author differs from this last statement. Due to the resource 

constraints, varying the execution order of the tasks may result in the same project makespan but with 

A

B

FEC

D

     𝑡    
   𝑑       𝑐  

𝑡

1

 

 
      𝑐      𝑡

A

B

FEC

D

     𝑡    
   𝑑       𝑐  

𝑡

1

 

 
      𝑐      𝑡

  𝑡    𝑡        𝑡    1

  𝑡    𝑡        𝑡    2

A

B

FEC

D

     𝑡    
   𝑑       𝑐  

𝑡

1

 

 
      𝑐      𝑡

  𝑡    𝑡        𝑡     

Figure 5-3: Alternative solutions for the in Figure 5-2 introduced resource limit exceeding problem: pushing one of the 

tasks B, C or D forward in time. 
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a different critical chain. Such a configuration might conclude that there are only a few or even no 

critical tasks within the schedule.  

To discuss this behavior let us consider an example with three tasks with the same duration, 

without precedence constraints and with the same resource needs (Figure 5-4). When there are only 

two units of resources available, it is obvious that one of the tasks must be pushed forward in time so 

that two of them can be executed simultaneously. Therefore, there are three different schedules that 

can be generated for the three tasks without exceeding the resource limits. The three different 

schedules have exactly the same duration since the three tasks have the same duration. Therefore, in 

order to keep the scheduled time limit, the task that has been pushed forward and one of the tasks in 

front of it have no float time. Otherwise the makespan of the schedule would become longer.  

Since the task that has been pushed forward is always only restricted by one of the other two tasks 

(if task A is pushed forward either B or C can have float time), for one schedule there are two 

alternatives as to which task has float time (Figure 5-4). According to Lim et al. (2011), when 

considering every possible combination of the task sequences it is clear that since all of the tasks has 

at least in one combination float time, none of them is critical. However, as discussed above, two of 

them are always part of the critical chain. Therefore, every single schedule should be treated as a 

stand-alone result of the project and the results of diverging schedules with the same makespan and 

resource configuration should not be combined with each other. This can lead to loose assumptions 

about actually critical tasks and so the project might only be completed with delay. 

 

 

There might exist diverging schedules with the same makespan, but their resource utilization and 

the execution order of the tasks are different and so the two schedules cannot be converted from one 

to another without violating one of the constraints. How the execution order of the tasks influences 

the results of float time and why similar schedules with the same makespan cannot be used for float 

time detection will be discussed in Section 5.3. 

5.3 Concept of float time determination 

One of the goals of the author’s research was to calculate the total float time for individual tasks 

and to determine the critical chain of tasks considering resource constraints and limited resource 

availability in a construction project schedule generated using constraint-based discrete event 

simulation. This simulation technique is favored due to the lack of other flexible constraint 
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Figure 5-4: Solution combinations for the introduced example (dashed gray box: total float time) 
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satisfaction modeling approaches and because it is a simple way of generating feasible schedules that 

satisfy both precedence and resource constraints. In addition, in the developed approach the goal was 

to calculate total float time in a single calculation step without using heuristic or iterative algorithms 

and the discrete event simulation is able to provide the required results. 

In order to calculate total float, similar to the backward-pass analysis used in CPM, a newly 

developed backward simulation method along with a coupling process extending the common 

forward discrete event simulation is introduced. Using the forward simulation, the earliest schedule 

date of all tasks can be determined with the predefined resource and execution order configurations. 

Accordingly, inverting the direction of the simulation will result in the latest schedule date for all the 

tasks considering resource availabilities. So, in principle, when the makespan of the schedules and 

the tasks’ execution sequence determined by the forward and the backward simulation is identical, 

the difference between the resulting schedule date of the backward and forward simulation for the 

single tasks represents its total float time while taking into consideration resource availability. When 

the total float of a task is zero, it is a part of the critical chain. The determination of the float time13 

for the individual tasks consists of three main steps: 

 

1. Determine schedule with forward simulation; 

2. Determine schedule with backward simulation; 

3. Compare the results of the forward and backward simulation and determine float time. 

 

The principle of simulation-based total float calculation is presented in Figure 5-5. Four tasks are 

to be simulated: A, B, C and D. B and C must follow A, and C must follow B and C. The execution 

time for each task is different. When simulating these tasks using forward simulation, B and C will 

                                                 
13 While mentioning float time in the thesis it always refers to the total float of a task. 
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Figure 5-5: Concept of determining total float and critical chain by combining forward (left) and backward simulation 
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start right after A has been finished, and D will start after B has been finished (C finished earlier). If 

we simulate these same tasks backwards, B and C will be performed right after D has been completed 

and A will be performed after B has been completed (C finished earlier) due to the reversed direction 

of the simulation. The two results can be combined with one another because the complete execution 

time and the order of the tasks are the same. Task C has a float time between the finish of task A and 

the start of task D. The critical chain of the schedule is therefore ABD because they have zero 

float time.  

To determine total float for individual tasks, as in the simple example above, it is important that 

the order of the task execution sequence for the forward and backward simulations is identical. When 

the makespan of the determined schedules with the forward and backward simulations are the same, 

however, the sequence of the tasks is not identical. In that situation some tasks may start earlier in the 

schedule generated by the backward simulation (latest start time) than in the schedule generated by 

the forward simulation (earliest start time), thus the float time cannot be determined.  

In order to determine total float it is crucial that every single task must start later in the schedule 

generated by the backward simulation than in the schedule generated by the forward simulation. To 

achieve this, a number of mechanisms have been developed and will be discussed in the following 

sections. 

In order to take resource limitations into account not only for the scheduling process, but also for 

float time calculation, the resource limitations will also be considered during float time calculation. 

Therefore, if the resource limits within a float time range of several tasks will be exceeded, the float 

time of a task that has been executed earlier with the forward simulation will be shortened. In the 

example shown in Figure 5-6, task C has been executed before task D in the schedule generated by 

the forward simulation so the total float of C will be shortened by the execution length of task D 

(compare results in Figure 5-6 float time without resource limits). Thus the resource limits will not 

be exceeded when the execution of task C starts only at its latest start time. 

 

To implement this behavior and obtain reliable results from the connected simulations, conceptual 

changes and restrictions have to be made in the existing simulation model. The necessary conceptual 

extensions of the simulations will be introduced in next sections. 
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Figure 5-6: Determination of float time taking resource limitations into account  

(tasks: A, B, C, D, E; resources: R1 (white), R2 (dark gray); precedence relationships: AB, AC, AD, 

BE, CE, DE (thin arrows); float time: dashed light gray boxes; critical chain: large arrows)  
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5.3.1 Backward simulation 

The backward simulation is used to establish the latest execution date of the tasks that can be used 

to determine total float for each individual task within the project. The concept of backward 

simulation is basically the same as that of forward simulation (see Section 4.2.2) – the simulation 

actually runs forward in time but with reversed execution conditions. Using this approach, the 

resulting schedule is calculated based on a simulation that starts from a virtual completion date of the 

construction project and runs backwards in time until the starting point of the construction process is 

reached. The reversed conditions mean an inversion of the precedence constraints. For example, for 

forward simulation Pour Concrete is executed after Construct Formwork; for backward simulation 

Construct Formwork follows Pour Concrete (Figure 5-7). This entails reordering the priorities of the 

tasks and reversing the resource calendar. To realize this inversion, a function is written which 

reverses the order of the precedence constraint at the beginning of the simulation, thereby changing 

the successor into the predecessor and the predecessor into the successor. 

 

To test the applicability of the backward simulation approach, a simple test case was utilized with 

unlimited resources (see Appendix). This configuration meant that the simulations are independent 

of resource constraints and task priorities, and the total duration of the project depends only on the 

precedence constraints between the tasks. The calculated results are identical to the results determined 

by the CPM/PDM. Therefore the order of the executed tasks of the backward and forward simulation 

is identical. Furthermore, since the results are identical to the schedule determined by CPM/PDM, 

the generated execution dates of a task represent its earliest and latest execution dates. Thus the 

difference between the scheduled dates of a task in the forward simulation versus the backward 

simulation represents the task’s total float. The simulations with unlimited resources essentially 

reproduce the results of the CPM/PDM. 

This served as the verification and also validation of the basic backward simulation concept. 

However, to determine float time for tasks within a project with restricted resources further 

restrictions must be applied, which will be introduced in the next section. 
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Figure 5-7 Precedence relationships for forward simulation (left) and for backward simulation (right) 
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5.4 Calculation of total float time 

It has been shown that the introduced forward and backward simulation concepts works well for 

projects with unlimited amount of resources. However, when the amount of available resources is 

restricted the concept of total float determination becomes more complex.  

Executing the backward simulation with restricted resource availability and comparing the results 

to the results of the forward simulation, as discussed at the beginning of this chapter, may result in a 

discrepancy. The order of the executed tasks is not identical to the result of the forward simulation so 

the float time and the critical chain of tasks cannot be determined. This problem occurs because the 

task execution process of the simulation is based on the order of the task list and, since it is randomly 

generated, the task execution order is different in the forward simulation when compared to the 

backward simulation. Hence, the total float time of the tasks cannot be determined. 

A first approach to solving this issue might lie in the use of priorities assigned to the tasks. Thus 

the simulation uses a priority-ordered list instead of the FCFS queue to determine a feasible schedule. 

However, this list of priorities is not used to implement soft-constraint (Section 4.2.2), but rather to 

link the forward and the backward simulation with the goal of achieving the same order in the task 

execution. However, only reversing the tasks’ priorities can induce a change into the execution 

sequence of the tasks (Figure 5-8) and thus the total float still cannot be determined. To illustrate the 

issue a simple example consisting of four tasks is presented (Figure 5-8). One of the tasks uses a 

different resource than the other three and there is only one resource unit pro resource category 

available for the project. In this example with the forward simulation the tasks C and D have been 

executed before task B. But because of their higher priority for the backward simulation the order of 

the tasks has been changed and thus no feasible float time can be determined. 

 

Therefore, to obtain an identical order of tasks for the backward simulation and the forward 

simulation, during the forward simulation each of the executed tasks is assigned a new priority. 

Since the end of a task represents the beginning of the task for the backward simulation, the new 

priorities will be set according to the finish date of the task’s execution (the later the finish date is, the 

higher the priority) after the forward simulation has finished (priorities for the forward simulation are 

assigned randomly). The backward simulation then uses these priorities to replace the FCFS list with 

a priority-ordered list of executable tasks for every time step when tasks are competing for resources, 

and then tries to collect the necessary resources for the one with the highest priority. If that is not 

possible, the next task with the second highest priority is chosen and so on. We call this the priority-
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Figure 5-8: Issue with reversed priority settings for the backward simulation: change in the execution order of the tasks 

(R: resource class, P: priority) 
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by-end-date method. By using this method, the order of the executed tasks is identical for both the 

forward simulation and the backward simulation (Figure 5-9). 

 

However, to extend the application of the priority-by-end-date method to larger and more complex 

cases than the introduced example with 4 tasks, further mechanisms must be introduced to keep the 

sequence of the tasks identical within the schedule generated by forward and backward simulation. 

To understand the developed mechanism, a new term, the independent task, i.e. tasks that are 

independent from each other, will be introduced. The position of these tasks within the execution 

sequence using only the priority-by-end-date method for the backward simulation might change 

pushing other tasks forward in time thereby making it impossible to determine feasible total float. To 

avoid this change within the execution sequence a mechanism has been developed that will be 

introduced after a further discussion of the role of independent tasks. 

As introduced in Section 4.3 the constraint-based discrete event simulation requires a precedence 

graph to start the simulation. The independent tasks use resources from the same resource class and 

are lying on different paths of the precedence graph so that a direct path between the two tasks cannot 

be found. Thus these are the tasks that might be executed simultaneously with each other within a 

schedule. Such tasks will play an important role both at total float detection and later at the 

optimization of the schedules (introduced in Chapter 7). 

The determination of those independent tasks from the precedence graph that is a directed acyclic 

graph is realized by means of the transitive closure of the graph, which describes whether or not a 

path exists between two tasks. In a directed acyclic graph when, e.g. task B depends on task A, it 

means that a path from A to B exists within the graph. Although the dependency is a symmetric 

characteristic (if task A depends on task B, then task B must also depend on task A) due to the directed 

precedence graph, the reversed dependency is not part of the transitive closure. To include this 

reversed dependency within the matrix the transitive closure must be copied through mirroring over 

the diagonal of the matrix thereby creating a dependency from task B to task A as well. However, it 

is important to mention that this dependency does not mean a directed precedence constraint between 

A and B. This only confirms that there is a path existing between A and B. The dependency matrix 

can be used to determine separated paths between the start and end task of a project or between two 

tasks (Figure 5-10). 
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Figure 5-9: Applying the new priorities based on the priority-by-end-date method for the backward simulation. The new 

priorities are set according to the finish date of the task in the forward simulation. The result is an identical 

execution sequence of the tasks with the backward simulation, therefore total float and the critical chains are 

determinable. (Float: dasher gray box, critical chain: large arrows) 
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Thus, the dependency matrix will always be symmetric (if A can be reached from B, then B can 

be reached from A as well). The dependency matrix is a symmetric matrix that describes whether a 

path between two tasks exists or not. A row or column represents all the dependencies of a task. When 

a path exists between the two concerned tasks the matrix value is set to 1. Otherwise, it is set to 0. 

Since an examined task is always dependent on itself, the elements of the main diagonal of the 

dependency matrix are always set to 1. 

Furthermore, according to the definition of the independent tasks, it is important that these tasks 

use the same resources for their execution. This means that the dependency matrix must be 

fragmented according to the available resource classes. The tasks and their dependencies that have 

the same resource needs are selected from the dependency matrix and collected in the fragmented 

dependency graph. When a task needs different resource classes for its execution it will be a part of 

additional fragmented dependency matrixes. When an element of the fragmented dependency matrix 

is 0, the corresponding tasks are a pair of independent tasks. 

To determine the fragmented dependency matrices for a more complex example (Figure 5-10), 

first the adjacency matrix of the complete project has to be determined (Figure 5-11). This matrix 

describes the neighborhood relationships of two tasks. If an entry of the matrix is 1, then a precedence 

relationship exists between them. Using the adjacency matrix, the transitive closure of the project will 

be determined (Figure 5-11). Finally, the transitive closure will be mirrored and fragmented according 

to the resource classes (dark grey and light gray) as described in the last section, so that each resource 

class has its own fragmented dependency matrix with all the tasks that the examined resource require 

(Figure 5-12). Figure 5-13 represents the different possible paths according to the fragmented 

dependency matrices of the different resource classes between the start and the end of the introduced 

precedence graph. The length of a path can be determined by summing up the duration of every task 

that the path contains. 
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Figure 5-11: Adjacency matrix (left) and the transitive closure (right) of the introduced precedence graph (Figure 5-10) 

Figure 5-12: The dependency matrix and the fragmented dependency matrices for the different resource classes (dark and 

light gray). Black elements with white text: independent pair of tasks 

Figure 5-13: Different possible paths between the start and the end of the introduced precedence graph (Figure 5-10) 

according to the fragmented dependency graph  
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However, the priority-by-end-date method is an essential element of the float time determination, 

in complex cases additional mechanisms must be applied to keep the execution order of the tasks 

identical for the backward and forward simulation in order to be able to determine feasible total float 

for the individual tasks while also taking resource constraints into account. 

As presented in Figure 5-14, in the forward simulation A, B, D, F and E build a path. Task C is 

executed between task A and task F on a path parallel to the path consisted of task B, task D and task 

E. C and D use the same resources and in the forward simulation C is executed before D.  

Since the backward simulation uses only the priority-by-end-date method, although C was 

executed before D in the forward simulation it can be started right after E because D still has a 

successor (F) which has to be executed first. So the execution order of C and D is swapped in the 

backward simulation. We call this the unintended swap phenomenon. Such a swap in the execution 

order is not allowed by float time determination since it would mean that there is a time period when 

task C and D can be executed simultaneously. Thus, during this time period the resource limits would 

be exceeded. Therefore the relative order of task C and D must be kept the same and the total float of 

task C must be shortened (Figure 5-14). It is important to mention that task C could also be executed 

after task D, but this would mean another schedule with a different sequence order of the two tasks 

than the sequence order set forth above. 

 

An additional extension is therefore necessary to prevent this task order swap in the backward 

simulation and to be able to calculate the feasible total float of the tasks. A favored solution would 

be to apply additional precedence constraints similar to the resource-activity combined precedence 

relationships introduced by Lu and Li (2003) between the tasks using the same resources based on 
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Figure 5-14: Results of the forward (1) and backward (2) simulations. 

The problem (3): exceeding the resource limits at the time period of float time. 

The solution (4): maintain the relative order of C and D  shorter total float time for C. (different colors: 

different resource needs)) 
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the result of the forward simulation. This means that the order of the task execution paths for the 

different resource types will be kept the same for the backward simulation as it was for the forward 

simulation. We call this restriction sequence enforcement constraint. 

If the available amount of resources permits more tasks to be executed in parallel, the problem 

becomes more challenging and the following rules have to be considered when the additional 

sequence enforcement constraints are generated: 

Create precedence constraints between an examined task and the successors of every independent 

task that finishes later or at the same date in the forward schedule as the examined task where the 

sum of the necessary resources of all the independent tasks between the task and the examined task 

exceeds the resource limit. 

 

The following steps are necessary to determine the sequence enforcement constraints: 

1. Determine a schedule using the forward simulation; 

2. Identify the independent tasks; 

3. For every task in the schedule; 

3.1. Select first finishing task in the schedule; 

3.2. “sum of necessary resources” = “necessary number of resources of the selected task”; 

3.3. Store the tasks that are independent from the selected task in the list of independent tasks; 

3.4. Delete every task from the list of independent tasks that terminates earlier than the finish date 

of the selected task; 

3.5. While “sum of necessary number of resources” ≤ “available number of resources”; 

3.5.1. Select next finishing independent task from the list of independent tasks; 

3.5.2. “Sum of necessary number of resources” == “sum of necessary number of resources 

+ necessary number of resources of the selected independent task”; 

3.6. Create a sequence enforcement constraint between the selected task and the successors of the 

selected independent task; 

3.7. Delete every task from the list of independent tasks that are not independent from the selected 

independent task; 

3.8. Delete the selected independent task from the list of independent tasks; 

3.9. While the list of independent tasks is not empty; 

3.9.1. Create additional precedence constraint between the selected task and the successors 

of the next finishing independent task in the list of independent tasks; 

3.9.2. Delete every task from the list of independent tasks that are not independent from the 

selected independent task. Delete the selected independent task from the list of 

independent tasks. 

 

To illustrate the meaning of this complex rule let us consider an example of nine tasks. Their 

precedence graph and resource needs are depicted in Figure 5-15. The priority of a task corresponds 

with its name. For the simulations there are two units of every resource available; hence the given 

configuration will result in the schedule presented in Figure 5-15 when conducting the forward 

simulation.  

Based on the determination algorithm introduced in the previous sections, the independent tasks 

within the generated schedule are the following: Task  1 is independent from Tasks 3, 4, 7 and 8; Task 

3 is independent form Tasks 1, 4, 5 and 8; Task 4 is independent from Tasks 1, 3, 5, and 7; Task 5 is 

independent from Tasks 3, 4, 7 and 8; Task 7 is independent from Tasks 1, 4, 5 and 8 and Task 8 is 

independent from Tasks 1, 3, 5 and 7. Every other combination of tasks is dependent on each other, 
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so they cannot be executed simultaneously and cannot be considered for sequence enforcement 

constraints determination. 

 

After identifying the independent tasks, the sequence enforcement constraints must be set for 

every task in the project. This process goes forward in the schedule and investigates every single task 

to determine whether a new constraint can be set for the selected task or not. First it selects the first 

task in the schedule: Task 2. Since there are no other tasks which are independent from it the process 

proceeds to the next finishing task: Task 3. Next, this method performs the same process forward in 

time through all the associated independent tasks according to their finish date. For example, for 

Task 3 it selects Task 1 first. Task 1 and Task 3 both require one unit of resource. The sum of the 

resource units required totals two units, which is equal to, but does not exceed, the limit of two 

resources. Therefore it advances one step further and selects the next finishing independent task in 

the schedule: Task 4.  

To determine how many resource are used up to this point, the program adds the required amount 

of resources of Task 4 (1) to the prior total (2). This is 3, which exceeds the resource limit (2) and 

therefore a sequence enforcement constraint will be set to the successor of Task 4, which is Task 6. 

It is important to mention that for the calculation of the sum of the used resources only one task per 

path will be taken into account, since additional tasks cannot be executed simultaneously. 

Furthermore, when a constraint is set to one task, the further independent tasks on the same path will 
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Figure 5-15: Determination of the sequence enforcement constraints for the backward simulation after the forward 

simulation. (Different colors: different resource needs, arrows: new constraints, dashed boxes: float time) 
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be ignored as the relative order is fixed in this case. The sequence enforcement constraints for a 

selected task will be set as long as the list of independent tasks is not empty. The only task left in the 

list of independent tasks is Task 5 (Task 1 has already been taken into account, Task 4 has been 

selected as the one to connect with, thus Task 8 has also been ignored). Since it has no successor, no 

additional constraint will be set. 

The introduced constraint setting method proceeds to the next finishing task in the schedule 

generated by the forward simulation, which is Task 1. Since the method is no longer at the beginning 

of the schedule, the independent tasks that were already completed before Task 1 will not be 

considered for further constraint determination. Hence, the possible independent tasks for Task 1 are: 

Task 4, 7 and 8. Following the same procedure as for Task 3, a sequence enforcement constraint can 

be set to Task 9 (the successor of Task 8). In this case the sum of needed resources were built from 

the resource needs of Task 1, 7 and 8, which exceed the resource limit. Since every other independent 

task has been either considered or has no successor, the method proceeds to the next finishing task.  

This process is continued until all the tasks have been considered for creating sequence 

enforcement constraints. The sequence enforcement constraints of the example are also represented 

in Figure 5-15. The corresponding results of the backwards simulation and the determined float times 

for the individual tasks are also represented in Figure 5-15. Because of the sequence enforcement 

constraints in backward simulation Task 5 did not swap positions with Task 8. Therefore the 

execution sequence of tasks is the same as in the forward simulation and no resource limits are 

violated. 

Using the sequence enforcement constraints, the execution chain of the tasks is identical to that 

of the forward simulation. The backward simulation follows the task order of the forward simulated 

schedule which results in all the tasks starting later or at the same time as they do in the forward 

simulation. Therefore, a feasible total float for the individual tasks can be determined. In order to 

calculate total float for each individual task, the results of the forward and backward simulation are 

compared to one another. If a task in the backward simulation starts later than in the forward 

simulation, the task has a float time. The total float for each task is the difference between the two 

results. If the results are the same, the task has no float and is therefore part of the critical chain.  

5.5 Limitations of the introduced float time determination 

method 

In applying the introduced priority-by-end-date method and the sequence enforcement constraints 

for the backward simulation, the result will always be feasible float time amounts for the individual 

tasks within the examined schedule. When the number of available resources only allows the 

execution of one task at a time (such as the examples introduced in Figure 5-9 and Figure 5-4), the 

results of the float time determination are correct. The determined total float is the maximum amount 

of time a task could be pushed forward in time. The sequence of tasks is straightforward and the limit 

of the total float is either the start time of the next task using the same resource or the successor of 

this task. In Figure 5-15 an example was introduced where more of the tasks could be executed 

simultaneously. In this case, the total float time results were also correct. Extending this example by 

additional tasks as depicted in Figure 5-16, the limitation of the introduced methods can be identified. 

In this case the length of the three independent paths’ are greatly different so that  

|Path 1| >> |Path 2| + |Path 3|. 
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Figure 5-16: An example with large path length differences (|𝑃 𝑡  1| >> |𝑃 𝑡   |  + |𝑃 𝑡   |) 

The results of the forward simulation, the applied sequence enforcement constraints and the results 

of the backward simulation are depicted in Figure 5-17. Due to the sequence enforcement constraints, 

Task 1 will have float time only until the beginning of Task 6, which is less than the expected amount 

of time (Figure 5-17). This is due to the introduced sequence enforcement constraints that are 

designed to always deliver a feasible result which does not exceed the resource limits, even during 

the time period of the float. Unfortunately, this assumes that tasks that have been executed 

simultaneously with the forward simulation will also be executed simultaneously in the backward 

simulation and will be surrounded by the same tasks. This cannot be guaranteed when there are 

significant differences between the simultaneously executable paths’ length as in Figure 5-16. 

Particularly when a task has a larger actual float than the duration of the simultaneously executed 

task (|float of task 4| > |task 1|), a phenomenon called serialization of tasks can be observed. When 

such a situation exists where additional resources are available to execute more tasks at the same 

time, the execution order of the tasks can be reordered without exceeding the resource limit  

(Figure 5-18) all the while maintaining the same execution order for both the forward and backward 

simulation. Thus, by using the introduced determination technique, the determined float time amounts 

will be however feasible14, but shorter than actually possible. 
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Figure 5-17: The simulation results from the example introduced in Figure 5-16. In the bottom are the manually corrected 

or expected results. 
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Figure 5-18: The effect of serialization for the determination of float time. (Dashed boxes: float time; boxes in float time: 

start point and order of serialization) 

Further research is required to solve the problem as to how to loosen the restrictions of the 

sequence enforcement constraint setting method to keep the determined amount of float for every 

task still feasible but also correct in every case. A case study is introduced in the next section to test 

the applicability of the introduced float time determining methods on larger precedence graphs. 
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5.6 Case study  

To test and validate the application of the introduced approach, a simplified representation of an 

already completed bridge construction project will be examined. The bridge is made of two 

abutments, a pier and two pre-cast girder elements. After the construction of the foundation and the 

head of the foundation for the pier have been completed, the abutments and the shaft of the pier must 

be constructed. This requires constructing the formwork, tying the rebar, pouring the concrete and 

removing the formwork (for simplicity’s sake, the curing time for the concrete has been omitted). 

Before lifting the girders the corresponding abutment and the pier have to be poured with concrete, 

the racks for the bearings must also be poured with concrete and a scaffold has to be built next to the 

pier. After the girders are lifted, the concrete for the deck and the girder heads can be poured, and the 

parapets can also be created. When all of these tasks has been completed, a sealing system can be 

built for the bridge, and the scaffold for the pier can be removed.  

There are three categories of resources used: 

1. Formwork-works and others:  “casing” 

2. Assembly-works:    “armouring” 

3. Concrete pouring-work:  “concreting” 

The resources are calibrated so that two tasks from the same resource type can always be executed 

at a time. The precedence graph of the tasks is represented in Figure 5-19. The mapping between 

number and task can be found in Figure 5-21. 

 

In order to prevent the unintended swap phenomenon we apply the sequence enforcement 

constraints to the schedule produced by the forward simulation. The fragmented dependency matrices 

for the resources are depicted in Figure 5-20. The result of the float time determination without the 

sequence enforcement constraints is presented in the Appendix. The result of the backward simulation 

with the sequence enforcement constraints is also depicted in the Appendix. 
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Figure 5-19: Precedence graph of the introduced test case. Colors: resources, such as blue: “concreting”, purple: 

“armouring” and green: “casing”. 
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The results of the forward and backward simulation are presented in Figure 5-21. Since the 

makespan and the order of the tasks of the backward simulation is identical to that of the forward 

simulation, the difference between the scheduled dates of the backward simulation (latest date) and 

the forward simulation (earliest date) represent a feasible amount of total float for every individual 

task which does also not exceed the resource limits.  

Furthermore, the critical chain of the tasks can also be identified. It is built up as follows (indicated 

with red text in the figure): Abutment 2: foundation   Pier 1: head beam  Pier 1: tie rebar Pier 1: 

pour concrete  Pier 1: remove formwork  Superstructure: scaffold  Girder 1: lift & Girder 2: 

lift  Deck   Girder heads   Sealing  Remove scaffold. The total duration of the project with 

the given resource configuration is 35 days. The calculated total float time for the individual tasks are 

indicated in Figure 5-21.  
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Figure 5-20: The fragmented dependency matrices of the resource classes used for the test case. 1: dependent tasks, empty 

cell: independent tasks, green: “casing”, blue: “concreting”, purple: “armouring”. 
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While the presented results of the introduced test case are feasible, three tasks can be identified 

manually where the sequence enforcement constraints caused an over-constrained case, and the 

amount of float became shorter than it could be. These tasks are the “remove formwork”, “tie rebar” 

and “pour concrete” tasks for abutment 2. 

By correcting the results manually, the “remove formwork” task of abutment 2 could be pushed 

forward until the end of day 24. This leads to 9 days of total float time. Under this scenario the „tie 

rebar” task of the abutment 2 results in 7 days of float time, and the corresponding “pour concrete” 

task results in 6 days of float (Figure 5-22). When allocating these tasks the described amount of float 

time, with serialization of the concerned tasks the resource limits and the order of tasks will not be 

violated. 
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Figure 5-21: Feasible results of the forward and backward simulation using the priority-by-end-date method and sequence 

enforcement constraints between tasks using the same resources: total float 
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5.7 Taking multiple resource classes into account for 

construction tasks at float time determination 

The determination process of float time for schedules when the tasks require multiple resources 

from different classes is the same as previously introduced for the one resource class per task case. 

The difference is that a task will be a part of multiple resource dependency matrices and so it might 

have more sequence enforcement constraints for the backward simulation than tasks that need only 

one resource class. Therefore, the more resource classes a task needs for its execution, the more 

restricted will be the time frame within which it can be moved freely thereby reducing also the 

possibility of serialization. 

To visualize the restricting behavior of multiple resources for the above-introduced bridge 

construction example, further resource needs for individual tasks have been applied. A crane and a 

general class of construction worker have been added to the resource management pool in order to 
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Figure 5-22: The expected result of the float time determination (created manually) 
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see the effect of multiple resource assignments. The worker has been added as a necessary resource 

for every “construct formwork” and „tie rebar” tasks. The crane has also been added as a necessary 

resource for the transport of the two girders and to create the bearings and the scaffold. The amount 

of available worker units and the one crane have been defined as input data for the simulations. The 

result of the float time calculation is depicted in Figure 5-23. 

The multiple resource constraints for the concerned tasks resulted in many changes to the 

schedule. First, the makespan of the project became longer. Second, the float time of the tasks was 

reduced. Thus, the project has two simultaneous critical chains: one through the construction tasks of 

the pier, and the other one through the task chain of the abutment 2. 

 

Furthermore, due to the multiple resource constraints the possibility of serialization of the tasks 

is reduced as well. For this example three tasks could be identified that could have more float time: 

Abutment 1: remove formwork and the two girder transport tasks. The first one could have 3 more 

days of float, the latter ones 1 and 2 days, respectively (Figure 5-24). 
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Figure 5-23: Results of the float time calculation after introducing further resource constraints to the project 
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5.8 Summary and conclusions on float time determination with 

constraint-based discrete event simulation 

Calculating total float for construction projects while taking into account the available resources 

is a challenging task. Conventional network planning techniques (e.g. critical path method) are able 

to analyze and calculate float time but are not adequate for considering resources. By contrast, discrete 

event simulation is capable of considering resources, but unable to calculate float time. In our research 

work we use a discrete event simulation engine extended with a constraint-based discrete event 

simulation methodology to generate feasible construction schedules.  

A new methodology has been introduced that extends the constraint-based discrete event 

simulation with the ability to calculate the total float time for each individual task of the construction 

project in one iteration step. For this methodology the backward simulation in combination with 

forward simulation was used. The most challenging task in the backward simulation is to follow a 

task execution sequence identical to that of the forward simulation. In order to achieve schedule 
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Figure 5-24: The expected results of the introduced example with multiple resource constraints 
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compatibility between forward and backward simulation, the execution order of the tasks must be 

identical and every task has to start at the same time or later in time than in the forward simulation. 

To this end, the task selection algorithm has been modified so that the backward simulation uses the 

priority-based priority-by-end-date approach to determine the next executable task.  

The allocation of priorities according to the end date of a task was important since the decisions 

about the execution order of the tasks with constraint-based discrete event simulation are made at the 

beginning of every task. Since the beginning of a task for the backward simulation correlates to the 

end of that task in the forward simulation, a priority setting according to the end date of the tasks can 

lead to a similar execution order with the backward simulation that has been generated by the forward 

simulation. Due to the strict correlation between the end date of a task in the forward simulation and 

the selection method of the CBDES for the next execution task, any further priority setting rules 

(according to start-time, based on time interval from project start or to project end, etc.) for the 

backward simulation might lead to a diverging execution order of the tasks. 

To solve the unintended swap phenomenon where several independent tasks that use the same 

resources swap position in the backward simulation, sequence enforcement constraints are defined 

based on the result of the forward simulation. 

By comparing the results of the backward simulation after applying these constraints with the 

schedule of the forward simulation, the execution order of the tasks will be identical and every task 

will start later in time. Hence, the time difference between the earliest and latest start time of a task 

represents its total float without exceeding the resource limits at any time during the project. The 

tasks without total float comprise the critical chain of tasks for the respective configuration of 

resources. A comprehensive case study was introduced to illustrate the application of this new 

approach and demonstrated that the determination of detailed total float for each individual task using 

discrete event simulation taking into consideration available resources is realizable and that the 

determined results are also feasible. However, in some cases the determined amount of float is lower 

than is realistically possible. 

The lower float time can be explained by the fact that the introduced sequence enforcement 

constraints were developed to always deliver a feasible result without exceeding the resource limits, 

even including the time period of the float. This assumes that tasks which were executed 

simultaneously with the forward simulation will also be executed simultaneously and will be 

surrounded with the same tasks in the backward simulation. This cannot be guaranteed when there 

are great differences between the simultaneously executable paths’ length, particularly when a task 

has a larger actual float than the duration of the simultaneously executed independent task. 

In this case the two tasks can be pushed after another in time and as one “connected task” they 

might be pushed further forward in time than apart. On this way they gain more float as would they 

be pushed separated forward in time. We call this phenomenon serialization. Further research should 

investigate how to loosen the restrictions of the sequence enforcement constraints so that the results 

are both feasible and correct in every case. 

It is important to stress that the introduced total float determination methods always work only 

with one schedule. Hence, the determined total float of the individual tasks correspond to the schedule 

that has been determined by the forward simulation. By generating diverging schedules with different 

task execution orders, the total float for the individual tasks will also be different. 

Furthermore, decisions made by the author of this thesis, such as when more independent tasks 

are executed simultaneously during the forward simulation, the task that finishes later will have the 

larger float, affect the schedule. By changing these rules diverging float schemes might be generated 

for the same schedule. Further research should investigate how the total float of a task changes when 
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this rule is turned around such that the earlier a task finishes, the more float time it gets, or the higher 

the task’s initial priority is, the higher its float time will be. 

With the introduced enhancements of the simulation technique such as the methods for data 

preparation and the float time determination while taking also resource constraints and limits into 

account, the simulation-based scheduling methods have transcended the functionalities of the 

conventionally used network-based scheduling techniques. To gain further advantage for the 

simulation-based scheduling approach over these conventional techniques and to make it more 

attractive for the industry, a CBDES-based optimization strategy will be introduced in the next 

chapters. 
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6.1 Executive summary 

The last two chapters introduced methods to determine feasible solutions for the resource-

constrained project scheduling problem (RCPSP). The RCPSP is a combinatorial optimization 

problem that also accurately describes the optimization problem of construction schedules under 

resource constraints with the goal of finding the schedule with the shortest makespan. In this chapter 

the basic principles of optimization will be introduced.  

In general, optimization problems are categorized in different ways. The first sort of 

categorization is according to the number of variables that should be optimized. When there is only 

one variable that should be optimized then it is a single variable optimization problem. For example, 

in the RCPSP the variable is the makespan of the project. When there are more variables, such as 

makespan, cost, quality, etc., it is categorizes as a multi-objective optimization problem. Since the 

main topic of this thesis is the solution of the RCPSP, only the basic principles of a single variable 

optimization will be introduced in this chapter. This is approached in Section 6.2. 

Section 6.3 discusses a further categorization of optimization problems that is made according to 

the distribution of the search space. The search space of an optimization problem can either be 

continuous or discrete. A combinatorial optimization problem has a discrete search space or a search 

space that can be reduced to discrete. The RCPSP also belongs in this class, therefore it will be 

introduced in detail. 

Section 6.4 discusses the complexity of optimization problems of the RCPSP. The RCPSP belongs 

to the class of NP-hard optimization problems that are probably unsolvable in polynomial time. After 

the introduction of the characteristics of an NP-hard problem, solution strategies will be introduced 

in Section 6.5. 

6 Optimization of construction schedules – 

State-of-art 
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The discussed solution strategies were selected because they are all capable of solving the RCPSP. 

In these sections, after the detailed introduction of the solution method, the application of the method 

on the RCPSP will be discussed. The chapter is closed by a summary and an outlook. 

6.2 Single variable optimization 

Optimization problems can be categorized in different ways. The basic categorization is done 

according to the amount of variables that should be optimized. When the amount of optimization 

variables is one, it is a single variable optimization problem. When there are more variables, it is 

called a multi-objective optimization problem. Since the resource-constrained project scheduling 

problem (RCPSP) is a single variable optimization problem that searches for the one schedule with 

the shortest makespan, the single variable optimization will be introduced in detail in this section. 

First, let us introduce this problem in general by considering a simple continuous optimization 

problem that is shown in Figure 6-1. The goal of the single variable optimization is to find the one 

optimal solution from the search space 𝑋 that best fits the objective function  ∶ 𝑋 → 𝑅. Single 

variable optimization problems can be divided into two subcategories according to the nature of the 

objective function. When the search aims to find the maximum solution, it is a maximization problem; 

in contrast, when the search looks for the minimum solution, it forms a minimization problem. 

Maximization problems can be turned into minimization problems and vice versa by simply changing 

the sign of the objective function (duality principle e.g. Rao 2009). 

An optimal solution in the search space can either be local or global. A solution  ∗ is considered 

as local optimum when there is no other solution existing in the neighborhood15 of  ∗ that has a better 

objective function value than  ( ∗). This means that for a maximization problem  
 ( ∗) ≥   ( ´) ∀ ´ ∈ 𝑋´ where 𝑋´ ⊆ 𝑋 is the neighborhood of x´. 

Furthermore,  ∗∗ is considered as global optimum of the optimization problem when no other 

solution exists with a better objective function value in the entire search space than  ( ∗∗). This 

means that for a maximization problem  ( ∗∗) ≥   ( ) ∀ ∈ 𝑋. Since 𝑋´ ⊆ 𝑋 the global optimum of 

the search space is always a local optimum as well (see Figure 6-1). The minima of an optimization 

are described by the same equations as above with inverted relationships (Deb 2004). 

                                                 
15 For detailed description see Section 6.3, Figure 6-3 and Figure 6-4. 
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These equations can describe an optimization problem when the complete search space 𝑋 is 

considered as feasible. In reality, the solution space is often restricted by boundary conditions, 

represented by equations or inequations, so that the feasible search space is reduced to  ⊆ 𝑋. In 

addition,   is not necessarily a contiguous space (see Figure 6-2). The solutions of the feasible search 

space are also called candidate solutions. For the fragmentation of the feasible search space, infeasible 

solutions have to be used as intermediate steps in some cases in order to reach some candidate 

solutions. These infeasible solution intermediate steps are not useful results for the optimization 

problem but in many cases they must be determined in order to reach further feasible solutions.  

 

   

 

  𝑐     𝑡   

   𝑏     𝑡    

 3 2 1

  1

  3

  2

𝑋  

Figure 6-1: Local optima and global optimum of a general continuous single value objective function f(x) for a 

maximization problem 

Figure 6-2: The solution space X and the fragmented feasible solution space F for a 2 dimensional space. The space 

inside X and outside of F represents the non-feasible solutions. 
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6.3 Combinatorial optimization problem 

Another classification scheme of optimization problems can be achieved according to the 

distribution of the problem’s search space. The search space of an optimization problem can either 

be continuous (see Figure 6-3) or discrete (see Figure 6-4). An optimization problem with a discrete 

search space, or with a space that can be reduced to discrete, is called a discrete or combinatorial 

optimization problem. As already introduced in Section 2.2.2 the resource-constrained project 

scheduling problem (RCPSP) belongs to the class of combinatorial optimization problems. The 

solutions of the RCPSP are discrete schedules that represent different sequence combinations of the 

corresponding tasks.  

A further difference between continuous and combinatorial optimization problems is that in 

continuous optimization problems, generally the objective is a real number or function, such as the 

value of  ( 2) in Figure 6-1. In the combinatorial case, the objective is a discrete object or a set of 

objects (Papadimitriou and Steiglitz 1998).  

One important characteristic of optimization problems is how neighborhood solutions are defined. 

Neighborhood solutions can influence both the effectiveness and computational effort of the 

optimization and play an important role in exploring the search space. 

The neighborhood solutions for a continuous problem with a continuous search space can easily 

be defined by a Euclidian distance range from the considered point (see Figure 6-3). In contrast, 

neighborhood solutions for discrete problems with discretized solution spaces are not as clearly 

definable. Often different definitions for neighborhood solutions exist for the same problem.  

In Figure 6-4 two examples of search algorithms that are based on traversing between discrete 

neighborhood solutions are presented. The favored algorithm only traverses between feasible 

solutions, while the other one also determines non-feasible solutions that could significantly increase 

the computational effort of the algorithm. The aim of the author was to find an algorithm that could 

traverse through feasible solutions as a solution for the RCPSP. The developed algorithm that can 

traverse only through feasible solutions for the RCPSP will be presented in Chapter 7. 

 

 

   

   

𝑃
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 Figure 6-3: Neighborhood solutions for a point 𝑃 in a continuous solution space: every point   whose distance from 

   is smaller than a predefined Euclidian distance of  . ∀ ∈ 𝑋,   −   ≤  𝑌 ≤   +   



Optimization of construction schedules – State-of-art 131 

 

 

 
 

 

 

 

 

Combinatorial problems in general deal with tuples16, permutations17, matroids18, graphs19 and 

related structures in most of the cases. The most common problems that involve combinatorial 

optimization are the traveling salesman problem, the minimum spanning tree problem, the knapsack 

problem and the vehicle routing problem (Michalewicz and Fogel 2004). 

For the traveling salesman problem, a list of cities and the distances between each pair of cities is 

given. The objective is to find the shortest possible route that visits every single city exactly once and 

returns back to the city of origin. When there are n cities in the model, the complete search space is 

made up of   (  )⁄  solutions (Michalewicz and Fogel 2004). When the amount of cities is, for 

example 20 the number of solutions is higher than 6 ∗ 101 . To find the one optimal solution from 

all of these results can become impossible. 

The knapsack problem is defined by a set of items. Every item has a mass and a value. The goal 

is to find a collection of items whose total weight equals a predefined weight or is under a limit, and 

whose total value is as large as possible. Similar to the traveling salesman problem, solving this 

problem can become complex and unsolvable in polynomial time, even in cases where there are just 

a small number of items. 

All of these problems have the combinatorial explosion in common. This means that increasing 

the size ( ) of the problem will excessively increase the size of the search space 𝑋. In most cases |𝑋| 
is a function of the factorial of the problem size, so |𝑋| =  (  ). Presenting an example with a 

function of n!, the size of the solution space for  =   objects will be 1 0. Increasing the size of   

by one ( = 6), the size of the search space increases to 7 0 solutions. A problem with  =   0 

objects will have a complete search space consisting of  ,   ∗ 1018 solutions. 

For smaller problems such as where  =    or 6, the determination of every possible solution is 

achievable. This solution method is called the total enumeration. For bigger problems, such as where 

 =  0 and more, this type of solution technique becomes impossible due to the high number of 

solutions. Therefore, further solution techniques must be considered. Possible techniques for this 

situation will be introduced in Section 6.5.  

                                                 
16 Ordered list of elements 
17 Arrangement of a set of objects into a particular order 
18 Or independence structure is a structure that captures and generalizes the notion of linear independence in vector 

spaces 
19 A representation of a set of objects connected with links to each other 

 :

𝑋 =     
 : 

favored search 
algorithm

search algorithm using also 
non feasible results

Figure 6-4: Different possibilities of neighborhood solution-based algorithms for a discrete search space to traverse 

between the solutions. Feasible solutions are marked with a cross, infeasible with a round circle. The first 

search algorithm also considers infeasible solutions in some cases. The favored search algorithm traverses 

only between feasible solutions. 
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Considering the RCPSP where the problem size ( ) equals the number of tasks that have to be 

executed, even for a smaller construction project   ≥   0. As mentioned above, the total enumeration 

of a problem with that size is impossible, so further solution methods are necessary to optimize these 

construction schedules. To find a suitable solution method, first the complexity of the problem must 

be discussed. 

6.4 NP-hard optimization problem 

To describe the complexity of optimization problems, let us now concentrate on decision 

problems. These are problems with the solution of either yes or no. Every optimization problem can 

be transformed into a decision problem. For example for a minimization problem: change the 

objective of the optimization instead of seeking the minimum value, ask the question: “is there a 

solution smaller than  ?” (Garey and Johnson 1979). 

Every decision problem that can be solved in polynomial time20 belongs to the class P. A decision 

problem is called NP (Nondeterministic Polynomial-time) when proof exists that can be verified in 

polynomial time for the yes answers. However, to find such proof can become very time consuming. 

Alternatively, NP problems can be defined as decision problems which can be solved by a 

nondeterministic Turing-machine in polynomial time (Garey and Johnson 1979). 

It can be proven that  𝑃 ⊆ 𝑃, since, when a decision problem can be solved in polynomial time 

(P), it can also be verified in polynomial time (NP). However, an open question is whether 𝑃 =  𝑃 

or 𝑃 ≠  𝑃21. 

In addition, a decision problem   is NP-complete if  ⊆  𝑃, making every problem in NP 

reducible to  . In other words, the problem   can be solved using the same problem with modified 

formulation. Thus, NP-complete problems can always be transformed into each other. However, 

obtaining a solution to NP-complete problems is very difficult and so far inefficient. Every known 

deterministic solution algorithm has exponential complexity which makes the solution of the problem 

impossible in large cases. 

Furthermore, when a problem is at least as hard as the hardest problems in NP, it is called NP-

hard. Since NP-complete problems are the hardest problems of NP, they are also considered to be 

NP-hard. Consequently, if an NP-hard problem could be solved in polynomial time, it would make it 

possible to solve all NP problems in polynomial time. 

Common to every NP-hard decision problem is that they can only be solved by exponential or 

factorial time complexity. Solving these problems with total enumeration is beyond the limits of 

computational power. Exact solutions though can be determined by using modifications of the total 

enumeration (Garey and Johnson 1979). For example, an accepted approach is to divide the search 

space into smaller areas and ignore regions where the optimum solution definitely cannot be found 

(Branch-and-Bound). Since the resource-constrained project scheduling problem and the 

optimization of construction schedules are considered as NP-hard problems (Blazewicz et al. 1983), 

                                                 
20 An algorithm is said to be solvable in polynomial time when the running time of the problem is bounded from the top 

by a polynomial expression. It means that the number of steps required to complete the algorithm for a given input has 

the time complexity of  ( 𝑘) for some non-negative integer constant k, where n is the complexity of the input. 

Problems like addition, multiplication, sorting, shortest path search, linear programming etc. belong to this class. 
21 If an NP-complete problem exists which is polynomial-time solvable, then P = NP. However, if some problem in NP 

is not polynomial-time solvable, then P ≠ NP and all NP-complete problems are not polynomial-time solvable.  

(For additional discussion regarding this problem, please see in da Costa et al. (2007)) 
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the different solution methods for these specific problems will be described in detail in the next 

sections. 

6.5 Solution strategies for solving NP-hard optimization 

problems 

Solving an NP-hard optimization problem, that has an exponential complexity and therefore a 

large workspace (such as the RCPSP), with total enumeration is not a conceivable way. Other exact 

solution methods for these problems, such as Branch-and-Bound or Integer Programming, require a 

significant amount of knowledge about either the solvable problem or the structure of the search 

space. Without this knowledge these exact solution methods cannot be applied and the only solution 

left is the total enumeration. These exact solution methods will be introduced briefly in Section 6.5.1. 

As an alternative solution, the heuristic approaches can be applied, searching not for the optimal 

solution exactly, but for one good solution that is near to the exact optimum. These methods are based 

on decisions that can significantly reduce the computational effort and can lead to a good, near-

optimal solution. These decisions are based on common sense or intuition such as the rule of thumb, 

a good guess or estimations. The heuristic approaches to solve the RCPSP are introduced in 

Section 6.5.2. 

6.5.1 Exact solution methods for the RCPSP 

The RCPSP is considered to be an NP-hard combinatorial optimization problem. Due to the 

combinatorial explosion for larger problems the search space of the problem might become so large 

that it can no longer be solved by total enumeration. The basic idea behind the exact solution methods 

is to find a way to restrict the search space to a smaller search space or to smaller search spaces in 

which the exact optimal solution must be found. Therefore, exact optimization methods always 

require a large amount of background knowledge about the problem that has to be solved. When the 

problem is slightly changed, the applied algorithms must be changed as well. 

6.5.1.1 Integer programming  

One approach to determine the exact solution of the RCPSP is to turn it into an Integer 

Programming (IP) problem and solve it. IP is similar to common linear programming (LP)22 with the 

restriction that some or all of the variables must take on integer values. The LP problems are 

considered as solvable in polynomial time (Khachiyan 1979). This small restriction (integer values) 

of the IP makes the problem NP-hard (Garey and Johnson 1979). This difference between an LP and 

an IP problem will have an important role later when solving the IP problem. When all of the variables 

are restricted to integer values, it is a pure integer programming problem (IP); when only some of 

them are restricted, it is called a mixed integer programming (MIP) problem. When all the variables 

are restricted to the value of one or zero, the IP is called a binary integer programming (BIP) problem.  

                                                 
22 Linear programming is a method to determine an optimal solution in a mathematical model whose requirements are 

represented by linear relationships. 
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Let us now discuss the general parameters, restrictions and how to solve a general IP problem. 

Given the following formulation of a general linear programming problem: 𝑐 =  (𝑐1, . . . , 𝑐𝑛), 
 𝑏 =  (𝑏1, . . . , 𝑏𝑚), a matrix   of constraints with   rows and   columns (and entry  𝑖𝑗 in row   and 

column  ), and   a subset of {1, . . . ,  }. Find the solution vector   =  ( 1, . . . ,  𝑛), while solving the 

following problem:     (𝑐𝑇 ) subject to: 

 

    ≤  𝑏 ( 1 ) 

   ≥  0 ( 2 ) 

Extending this formulation with the restriction that  𝑗 is an integer whenever  ∈   ( 3 ), then the 

result is the formulation of an IP problem. Thus, when   is empty, it is a simple LP problem, and 

when it is not empty, but does not contain all of {1, … ,  }, it is an MIP problem. To visualize the 

differences between the three different methods, a specific example is introduced:  

First, let us consider an LP problem, which should maximize the objective function  1 +  2 

subject to  11 1 +  12 2 ≤ 𝑏1;  21 1 +  22 2 ≤ 𝑏2;  31 1 +  32 2 ≤ 𝑏3 (which corresponds to 

inequation 1 above) and  1;  2 ≥ 0 (inequation 2 above). The solution of the problem is presented in 

Figure 6-5. It is visible and coherent how the restrictions reduce the size of the feasible search space. 

It has been proven that the potential optima of the problems are always in the intersection points of 

the restricting equations (Dantzig 1951). In our case, the five potential optima are marked with solid 

circles in Figure 6-5. These possible optima have to be passed to the objective function for  1 and  2 

and the point with best result is the optimum.  

With the restriction that the values of  1 and  2 must be integers (restriction 3), the feasible 

solutions make up the discrete points within the space of the restricting equations (see Figure 6-6). 

Now this has turned into an IP problem. Allowing  2 to being continuous, the solvable problem 

describes an MIP problem, since  1 must be an integer and  2 is continuous. In this case, the feasible 

solutions build parallel lines within the feasible region (see Figure 6-6). These restrictions to the 

search space turned both IP and MIP problems into NP-hard problems (Garey and Johnson 1979). 

Let us assume, that the optimum of the LP problem was around the intersection point of the first and 

second restricting inequation (2,4; 5,1). Since these values are not integers the application of further 

methods, to find the optimum of the IP and the MIP problem must be contemplated. 
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 11 1 +  12 2 ≤ 𝑏1

 21 1 +  22 2 ≤ 𝑏2

 31 1 +  32 2 ≤ 𝑏3

Figure 6-5: Representation of the introduced two-dimensional LP problem 
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Solution methods for IP problems 

According to Land and Doig (1960) the best strategy to solve IP and MIP problems developed in 

the last 50 years was to apply the Branch-and-Bound method. Nowadays this method is still a 

powerful and popular method, since in the last decades several methods have been developed based 

on the theory of the Branch-and-Bound. The common strategy in every solution approach is to divide 

the original problem into smaller sub problems with the goal of recursively solving each of them 

(Galati 2010). The difficulty for the solution is how to define accurate and tight boundaries for the 

feasible integer search space. There are three commonly applied methods to define these boundaries, 

however they are frequently combined into hybrid solution methods as described by Genova and 

Guliashki (2011).  

The first class of methods which was introduced by Gomory in the 1950´s (Gomory 1958) consists 

of cutting plane algorithms that are based on polyhedral combinatorics. The cutting plane method 

cuts the feasible integer solutions out of the LP solutions of the polyhedron, assuring that every 

feasible IP solution is still inside the remaining region. A depiction of how this algorithm aims to 

tighten the bounding area around the feasible IP solutions is presented in Figure 6-7. 
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Figure 6-6: IP (left) and MIP (right) representation of the introduced two-dimensional problem (the feasible integer 

solutions are marked with X. 

Figure 6-7: Cutting plane method: Cutting out bounding non-integer LP solutions so that every integer solution stays 

inside the considered solution space. 
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The second class of methods to solve the IP are the enumerative approaches such as Branch-and-

Bound (B&B), Branch-and-Cut (B&C) and Branch-and-Price (B&P). Of these, the most commonly 

used enumerative approach is the Branch-and-Bound method consisting of two phases. During the 

branching phase, the algorithm divides the problem into smaller sub-problems and for each sub-

problem the algorithm seeks to obtain a bound on how good its best feasible solution can be. In the 

bounding phase, the algorithm seeks to eliminate sub-problems that do not contain the optimum and 

so they will not be investigated further. By integrating these two algorithms, a tree structure of the 

search can be introduced. The branching process creates new branches of the enumeration tree and 

the bounding process cuts off branches that will not be investigated further (see Figure 6-8). The first 

approach for solving IP problems with Branch-and-Bound was introduced by Land and Doig (1960). 

The branching process of the IP problem introduced above is shown in Figure 6-9, where the search 

space is divided into two separate parts: left and right from the LP optimum of the problem.  

 
 

 

 

 

 

Combining the Branch-and-Bound technique with the cutting plane algorithm results in a new and 

powerful class of IP problem solving algorithm: the Branch-and-Cut method. The advantage of this 

X X X
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Figure 6-8: Tree structure of the B&B approach (enumeration tree). X: fathomed branches 

Figure 6-9: Branching process of the introduced IP problem 
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method is that by applying the cutting plane algorithm it tightens the bounds for the branching, 

restricting those that take on integer values, steering the algorithm to the optimal solution in a better 

and faster way (see Figure 6-10). A detailed description of this method can be found in Caccetta and 

Hill (2001) and Mitchell (2002). 

 

 

The third method of the enumerative approaches is the Branch-and-Price algorithm, which is 

similar to the Branch-and-Cut method, except that it focuses on column generation rather than row 

generation for the enumeration tree. For every node in the enumeration tree further columns might be 

generated in order to tighten the search space. One column, also called the “pricing problem”, creates 

a new sub-problem, which is solved to identify columns that are allowed to enter the basis. If such 

columns are found, the bounds of the search space will be updated for the LP problem, and the 

possible optima will be searched for. Branching occurs when no columns “price” is able to enter the 

basis and the solution does not satisfy the integrality condition. A detailed review of the column 

generation and the Branch-and-Price algorithm can be found in Barnhart et al. (1998). 

Branch-and-Cut and Branch-and-Price are similar and complementary procedures that can also 

be combined resulting in the Branch-and-Cut-and-Price algorithm. When the methods are combined, 

cuts and columns are generated dynamically. Further description of this method is provided by 

Ladányi et al. (2001). A detailed introduction of solving RCPSP with Branch-and-Bound approaches 

will be introduced in Section 6.5.1.2. 

The third category of IP problem solving methods is the Relaxation and Decomposition methods. 

There are three widely used relaxation approaches for the IP problems that create lower bounds for 

minimization problems or upper bounds for maximization problems: Linear Programming 

Relaxation, Combinatorial Relaxation and Lagrangian Relaxation. The first two methods extend the 

search space of the IP problem without changing the objective function, while the third one defines a 

new objective function which results in the same or a greater value23 in the fixed feasible search space 

(Genova and Guliashki 2011).  

The first relaxation method is the Linear Programming (LP) relaxation, which is achieved by 

deleting the integrality constraint (3), allowing continuous values as solutions, and retaining the same 

objective function and constraints. Thereby, an in polynomial time solvable LP problem was 

generated which bounds the solvable IP problem (Shmuel 1954). This method has already been 

                                                 
23 For a maximization problem; for a minimization problem smaller value. 

Figure 6-10: The branching process of the introduced IP problem combined with the cutting plane algorithm (B&C) 
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applied to the introduced examples (see Figure 6-5 - Figure 6-10) to generate bounds for the B&B or 

B&C methods. When the optimum of the LP relaxation is not an integer solution, further 

decomposition methods must be applied, such as the Branch-and-Bound, Branch-and-Cut, etc. The 

primary reason to apply the LP relaxation method is its ability to efficiently and reliably solve LP 

problems such as the simplex method, the duality principle (Dantzig1951) and the interior point 

method (Karmarkar 1984).  

The second relaxation approach is the combinatorial relaxation. This method removes a set of 

inequality constraints to make the IP problem easier to solve. While the determination of the LP 

relaxation is a straightforward procedure, the determination of the combinatorial relaxation is more 

complex. The structural approach (Genova and Guliashki 2011) applies algorithms that determine the 

necessary bounds of the objective function and are often solved by graph-theoric methods (see Iwata 

and Murota 2001). 

The third relaxation approach is the Lagrangian relaxation method described by Geoffrion (1974) 

and Fisher (1981). The Lagrangian relaxation aims to relax the complicated constraints matrix (1) 

and to bring the constraints with associated Lagrangian multipliers into the objective function. In this 

way, the resulting sub-problems are easier to solve. The sub-problems are solved repetitively until an 

optimal solution is found for every multiplier. A decomposition method for the optimization, e.g. the 

Benders decomposition method, can be used, to solve the problem iteratively (see Benders 1962). 

Since all the relaxation methods mentioned above restrict the search space for the IP problem, all 

of them can be combined with the Branch-and-Bound algorithms. The last two methods are special-

purpose algorithms and the LP relaxation can be applied generally to every IP problem.  

IP problem formulations for the RCPSP 

To solve the RCPSP as an IP problem, first, it must be converted into an IP problem. This is a 

complicated process since the formulation can differ from problem to problem. The most common 

formulation is achieved as a Mixed Integer Programming (MIP) problem, which can be divided into 

three further categories24.  

The first category collects the 0-1 time-indexed formulations of the MIP problem. These 

formulations are based on the variable  𝑖𝑡, where  𝑖𝑡 = 1 if, and only if, the process   starts exactly 

at time 𝑡, otherwise defined as 0. Defining 𝑇 as the upper bound of the project duration and assuming 

integer process durations, the objective function of the problem can be defined as the minimization 

of T. The basic discrete-time formulation (DT) was introduced by Pritsker et al. (1969) and a similar 

approach called disaggregated discrete-time (DDT) was developed by Christofides et al. (1987) with 

a different formulation of the precedence constraints. Demeulemeester et al. (1994) discusses some 

issues with the DDT formulation of Christofides and introduces a new branching strategy that 

“guarantees the determination of the optimal solution in all instances of the problem at the expense 

of an increase in node evaluations and average CPU time”. Further time indexed formulations for the 

RCPSP were used by Stinson et al. (1978) and Fisher (1970). 

The second category of MIP problem formulation for RCPSP are the sequence-based disjunctive 

MILP-formulations, also called flow-based formulations. These formulations involve binary variables 

 𝑖𝑗, where   and   are processes, and  𝑖 are continuous variables that describe the start time of the 

process  . When the duration of the process   is  𝑖, then  𝑖𝑗 = 1 if, and only if,  𝑖 +  𝑖 ≤  𝑗. To apply 

this method to the RCPSP further variables must be defined that model the resource flow. These are 

discussed by Artigues et al. (2008). 

The third category of the formulations are the event-based formulations. In this case the binary 

variable  𝑖𝑒 is used to describe that process   either starts, ends, or is in process at event  . Events 

                                                 
24 The description of the three categories follows the description of Koné et al. 2011 
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occur when a process starts or ends, and the continuous variable 𝑡𝑒 is used to describe the start time 

of an event. This method was originally proposed for single machine scheduling but has been 

extended to other fields also to solve RCPSP (Zapata et al. 2008, Koné et al. 2011 and Artigues et 

al. 2013). 

Event-based formulations and further hybrid approaches connecting integer programming (IP) 

with constraint programming (CP) and satisfiability testing (SAT) are the actual state-of-art in 

RCPSP modeling as an IP problem (Artigues et al. 2013 and Berthold et al. 2010a). Many years have 

passed since the statement of Hadley in 1964 about the formulation of the RCPSP as an IP: 

“For any realistic problem the number of constraints will be huge and a solution is, at present, 

quite impossible. However, it is interesting to show that the problem can be formulated as an integer 

programming problem.” 

Since that time, both the mathematical and computational improvements have resulted in 

significant progress in solving IP formulations of the RCPSP. This process is now assisted by 

automated solvers for IP problems, such as SCIP, LINDO, FICO Xpress, and by LP problem solvers, 

such as LAZYFX, CPLEX, QSopt-ex providing higher and lower bounds for the IP problem. These 

software programs and research results made it possible to determine a feasible (but not necessarily 

optimal) solution for an IP formulation of the RCPSP with 30 activities in reasonable time (Koné et 

al. 2011). However for bigger problems with 480 instances and 60 activities it is hard to determine 

the optimal solution, even with the newest hybrid approach (Berthold et al. 2010b). Due to this high 

computation time and complex formulation of the problem, many researchers are turning to use 

simpler and faster methods such as heuristic approaches, at the expense of the accuracy, to solve the 

RCPSP (Section 6.5.2). In the next section the Branch-and-Bound technique, another exact solution 

method which has already been mentioned, will be introduced in detail. 

6.5.1.2 Branch-and-Bound 

As described in the last section, Branch-and-Bound is a powerful technique to solve IP problems. 

However, this method alone is also capable of providing solutions for the RCPSP. The general process 

of the Branch-and-Bound calculation is the follows: 

First, the complete problem is subdivided into simpler sub-problems (branching) for a general 

problem. Next these sub-problems will be solved and enumerated. Thereafter, sub-problems where 

the optimal solution clearly cannot be found are fathomed and eliminated from further investigation.  

The determination process of the solutions can be represented on a so called enumeration tree that 

is made up of nodes and branches. The tree begins with the root node, which in general represents 

e.g. the whole problem. After dividing these problem into sub-problems the sub-problems will be 

represented as nodes on the next level of the tree connected with a branch to the root node and so on. 

When a node becomes fathomed no further calculations will be performed with the corresponding 

node (See Figure 6-8 on page 136). Another possible interpretation of the enumeration tree is when 

the nodes of an enumeration tree represent discrete solutions for an optimization problem, such as 

individual schedules for the RCPSP. In this case the enumeration tree can be used to traverse through 

the search space of the problem and to ignore non promising solutions and branches. There are three 

possible ways to traverse through the nodes of an enumeration tree: 

1. Depth First Search: In this case, the enumeration tree is explored from the root node along 

one single branch as deep as possible without backtracking25 (see Figure 6-11). An example 

of the application of this technique being used to solve the RCPSP can be found in De Reyck 

                                                 
25 Without jumping back to nodes on the higher level until the deep search is finished. 
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and Herroelen (1998), in which every node of the enumeration tree represents the same 

network of tasks and on every level they are extended with extra precedence relationships in 

order to solve resource exceeding conflicts. 

 

2. Breadth First Search: In contrast to the Depth First Search, this exploration of the enumeration 

tree occurs not top-down, but rather sidelong. First, every neighbor node of one level will be 

examined and only after that level is complete will the exploration jump one level deeper (see 

Figure 6-12). An example for this approach for the solution of the RCPSP is the enumeration 

tree presented by Stinson et al. (1978). In this tree, every node is a partial schedule, 

representing scheduling decisions for the complete network. 

 

3. Best First Search: This method always selects the most promising solution on one level for 

further investigation and further branching (see Figure 6-13). An example for the best first 

search is the Dijkstra´s algorithm (Dijkstra 1959). This algorithm is a solution method for 

finding the shortest path between two nodes of a network. After searching for possible routes, 
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Figure 6-11: Schematic representation of the working mechanism of the depth first search without fathoming any nodes 

(numbers: order of determination) 

Figure 6-12: Schematic representation of the working mechanism of the breadth first search without fathoming any nodes 

(numbers: order of determination) 
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it always takes the shortest one for further investigation until the desired destination node is 

reached (Dijkstra 1959). 

 

Since the 1960’s a variety of Branch-and-Bound algorithms have been developed to solve the 

RCPSP. The different alternatives use diverse branching schemes and pruning methods in order to 

find the one schedule with the shortest total duration.26 The main functionalities of these three 

methods are similar to each other: The Branch-and-Bound algorithm reduces the search space or the 

nodes of the enumeration tree as long as it is sure that the optimum is still inside the search space. 

After identifying all of the non-fathomed results or nodes, the optimum can be identified. This method 

can work for small problems as presented in the next example. However for a larger problem it 

becomes time consuming and inefficient, since it must evaluate every non-fathomed node. 

The Precedence Tree was introduced by Patterson et al. (1989). This method starts the 

enumeration tree with a dummy task at the top and then for every further level it extends the 

“schedule” with one eligible task whose predecessors are already scheduled. Following a depth first 

search, the scheduling process runs down from the top to the bottom of the tree until every task is 

scheduled. Then a backtracking to the previous level occurs and the next eligible task is chosen to be 

scheduled. Thus, a new branch for the tree is created.  

Each branch from the root to a leaf node is one complete schedule and corresponds to the 

permutation of the precedence feasible set27 of tasks. An example is presented in Figure 6-14. Here 

four tasks must be scheduled: 1, 2, 3 and 4. Two precedence relations are defined: one between 13 

and another between 24. For this example we will assume that the duration of every task is one 

time instant. Task 2 requires 2 units of resources, task 1, 3 and 4 each require one unit. The amount 

of available resources is limited to 2 units.  

                                                 
26 The description of the alternative methods follows the structure of (Brucker et al. 1999) 
27 Precedence feasible set: each predecessor of a task has a smaller index in the set than the task itself (Brucker et 

al. 1999) 
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Figure 6-13: Schematic representation of the working mechanism of the best first search without fathoming any nodes 

(numbers: order of determination) 
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Starting the tree with the dummy element 0, the first tasks that are eligible to be started are tasks 1 

and 2. These tasks form the first level and the first two branches of the precedence tree. The next 

possibility is following the branch of task 1, task 2 or task 3 so that these could be scheduled next. 

Similarly task 2, task 4 and task 1 could be executed as followers. These tasks build the next level of 

the tree. This branching process proceeds until every possible sequence of the four tasks has been 

determined. To generate a schedule, the tasks will be placed into the schedule according to their order 

in a branch of the precedence tree, and are pushed back in time as long as the resource limits and their 

precedence constraints allow. In this way three different schedules are determined for the introduced 

example (see Figure 6-15). The first schedule, schedule A, belongs to the first and second branch, the 

second possible schedule, schedule B can be determined by the third branch, and the schedule C, is 

developed from the evaluation of the fourth, fifth and sixth branches. 

 

 

An explanation for the same results for different branches is that even though the order of the 

tasks was different after determining the schedule, the tasks could be executed simultaneously due to 

the amount of available resources. By decreasing the available amount of resources to one unit (and 

assuming that task 2 only requires one unit of resource instead of two), six different schedules would 

result. As a conclusion it can be said that if two tasks can be started at the same time their sequence 

order in the precedence tree is insignificant. Therefore the further tree parts of one of the tasks can be 

Figure 6-14: Representation of a precedence tree for the task chains 13 and 24. The higher the activity the more 

resources it needs. The letters in the boxes at the bottom represent the resulting schedules from Figure 6-15. 

Figure 6-15: The three different schedules determined by the precedence tree 
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neglected. The results would be identical with the results of the other tasks branches. Hence, by 

fathoming parts of the enumeration tree, the analysis of the precedence tree can be accelerated. As a 

result of the precedence tree a list of possible schedules has been determined which also contain the 

actual optimal schedule. The optimal schedule can be found after the evaluation of the resulting 

schedules. 

In this case the Branch-and-Bound technique was used to prune those branches out of the 

precedence tree that will achieve the same results as another branch thus reducing the search space 

of the problem.  

The second approach in using Branch-and-Bound for RCPSP is the enumeration tree with the 

Delay Alternatives. The major difference between this tree and the aforementioned one is that instead 

of tasks, it works with partial schedules. Each level of the tree represents one time instant (decision 

point) where non-scheduled tasks may be started. This method was introduced by Christofides (1987) 

and then improved upon by Demeulemesteer and Herroelen (1994). Further enhancements were made 

by De Reyck and Herroelen in order to solve RCPSP with generalized precedence relationships 

(De Reyck and Herroelen 1998).  

The algorithm begins with an empty schedule. During the first step it collects every task that could 

be started at the examined time frame. The branching process operates by delaying different 

combinations of tasks, so that the necessary resources remain under the predefined resource limit. 

During the next time frame new tasks might be added to the schedule, which might result in the 

resource limits being exceeded again. Thus, further branches have to be created by pushing tasks 

forward in time. The process ends when every task has been scheduled without exceeding the resource 

limits.  

The Branch-and-Bound tree of the previous example determined by delay alternatives is presented 

in Figure 6-16. At time step 0 (t=0) tasks 1 and 2 could be started but this will exceed the resource 

limits so either task 1 or task 2 has to be delayed. These two forward pushes create the first two 

branches of the tree at time step 1. If task 2 is pushed forward and task 1 is scheduled that means that 

task 3 could be started simultaneously with task 2. This would once again exceed the resource limits, 

so either task 2 or task 3 have to be delayed, creating two new branches for the tree (t=2). Delaying 

task 3 results in the schedule A, since in the next step task 4 can be executed in parallel with task 3 

without exceeding the resource limits. While pushing task 2 forward in time, task 4 has to wait until 

task 2 is scheduled due to the precedence constraint. Thus, at time step 3 no tasks have to be delayed 

since the resource limits have not been exceeded. Next, task 4 can be scheduled and the result is 

schedule B from Figure 6-15. Return to the first branching process (t=1) and select the next branch 

where task 1 is delayed. Now task 4 can be scheduled parallel with task 1 at the next time step. 

Thereafter task 3 can be scheduled after task 1 and task 4 without delaying any tasks resulting in the 

schedule C. In this way every possible branch has been identified for the presented problem. After 

identifying and evaluating all these schedules, the optimum schedule can be selected. 
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In comparison with the precedence tree method, this approach allows the user to withdraw 

scheduling decisions at the current level rather than only at a lower level (Brucker et al. 1999). This 

allows the user to make scheduling decisions during the creation of the tree and not just afterwards. 

The third method for creating the Branch-and-Bound tree is the Extension Alternatives. Similar 

to the last delay-based approach, the levels of the extension alternatives tree symbolize decision points 

and contain partial schedules. This method also starts with an empty schedule and searches for 

possible task combinations that could be scheduled that do not exceed the resource limits. These task 

combinations build the different branches of the tree. After selecting one combination the algorithm 

jumps to the next decision point and again collects possible executable task combinations under the 

resource limit. This process continues until every task has been scheduled. The interpretation of the 

previous example is presented in Figure 6-17. 

Figure 6-16: The Branch-and-Bound tree of the example determined by delay alternatives 
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Starting with an empty schedule, the first possible extensions are either starting with task 1 or 

task 2. They cannot be started simultaneously because in that case the resource limits would be 

exceeded. Further, tasks 3 and 4 cannot be started because of the precedence relationships to tasks 1 

and 2. Following the branch of task 1, then task 2 or task 3 could be scheduled at the next decision 

point (t=1). These two tasks structure the next two branches. If task 2 is scheduled first, then task 3 

and task 4 can be executed simultaneously in the next step, resulting in the schedule B. Scheduling 

task 3 after task 1 is the only possibility to schedule task 2 after task 3 (t=3) and task 4 after that. This 

results in schedule A (see Figure 6-15). When starting the schedule with task 2, at the second decision 

point (t=1) the schedule can be extended with task 1 and task 4, which can be executed 

simultaneously. The last extension is task 3 and creating schedule C. Note that while the previous 

method allows the user to delay tasks that are scheduled on a lower level, this method does not allow 

the withdrawal of scheduling decisions from the lower levels. This restriction leads to a smaller search 

space for the extension alternatives method without losing optimality. The optimum can be identified 

after evaluating the schedules. 

One further approach to represent the Branch-and-Bound tree is the Block Extensions method, 

introduced by Mingozzi (1998). This approach uses time intervals as markers for the levels in the 

Branch-and-Bound tree. The blocks represent a list of tasks that can be scheduled jointly within the 

defined time interval of the level. Moreover, partial schedules are represented as the sequence of 

blocks. The branching process occurs by adding different new blocks to the partial schedule. 

Brucker et al. (Brucker et al. 1998) introduced a further Branch-and-Bound algorithm using 

Schedule Schemes. Schedule schemes represent sets of feasible schedules using different relations 

Figure 6-17: The Branch-and-Bound tree of the previous example determined by the extension alternatives 
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between tasks like parallelism (N), conjunction (C), disjunction (D) and flexibility (F).  

Every  = (𝐶,  , ,  ) vector represents a single schedule of the search space. The root of the 

Branch-and-Bound tree contains the scheduling scheme (𝐶0,  0, 0,  ). Selecting one flexibility 

relation and turning it into a disjunction or a parallelism relation causes branching. The branching 

process is repeated until  = 0 is reached28 for every possible scheme. An example for the application 

of this approach is presented in Brucker et al. (1998). 

The last Branch-and-Bound algorithm is based on the Minimal Forbidden Sets. It was introduced 

by Igelmund und Radermacher (1983a and 1983b) and was also used by Stork and Uetz (2005). Since 

a similar approach is used for our optimization algorithm, the minimal forbidden sets method will be 

introduced in detail29. Let’s assume that 𝑉 = {1, , … ,  } is a set of tasks that has to be scheduled. 

(𝑉, ≺) is a partially ordered set of tasks according to the precedence constraints so that if 

𝑡      ≺  𝑡     , then   can not be started before i has been completed. In order to start a task, it 

needs different types of resources:  = 1, … , 𝑑. The available amount of resources for the resource 

type   is defined by 𝑏𝑘 ≥ 0. Each task   requires 0 ≤  𝑘𝑗 ≤ 𝑏𝑘 units of resources during its 

execution.  

A schedule is considered to be feasible if at any time 𝑡, all the precedence constraints are respected 

and the sum of necessary resources for the tasks in process ( (𝑡) ⊆   𝑉) does not exceed the amount 

of available resources 𝑏𝑘. Given the latter description of the RCPSP, “a subset  ⊆ 𝑉 of tasks is called 

a forbidden set, if   is an anti-chain30 with respect to the partial order (𝑉, ≺) and some resource type 

k exists with ∑  𝑘𝑗 > 𝑏𝑘𝑗∈𝐹 . If   is forbidden, but no proper subset of   is forbidden, then   is a 

minimal forbidden set (Stork and Uetz 2005). In other words, a minimal forbidden subset of the tasks 

is when all the n tasks of the subset are pairwise not linked through any precedence relationship to 

each other, however, they must not be scheduled simultaneously, because in that case at least one 

resource limit would be exceeded.  

The Branch-and-Bound algorithm is used to create a tree of minimal forbidden sets where every 

leaf represents a minimal forbidden set. At the beginning the tree contains every possible subset of 

the nodes. A node u is discarded as soon as it is clear that neither the corresponding set U nor any 

superset of U that is located in the subtree rooted at u is a minimal forbidden set. This process is 

repeated recursively as long as the tree only contains minimal forbidden sets. The exact description 

of the algorithm can be found with an example in Stork and Uetz (2005). 

The advantage of forbidden sets is that when all of the resource conflicts caused by every minimal 

forbidden set can be solved, they can be used to generate a feasible schedule. One possible solution 

would be to pause one task until more resources are again available. This leads to combinatorial 

problems on graphs with AND/OR precedence constraints (Möhring et al. 2004). It has been shown 

that certain IP formulations for the RCPSP can be based on minimal forbidden sets. As such, minimal 

forbidden sets might be used to derive cutting planes and even facets of the scheduling polyhedron 

(Olaguibel and Goerlich 1993). 

Determination of higher and lower bounds for the Branch-and-Bound-based RCPSP 

calculations 

In order to decrease the size of the search space of the Branch-and-Bound algorithm, certain 

branches, where the optimum surely cannot be found, should be fathomed and so removed from 

further calculations. To determine if the optimum could be inside a sub-region, higher and lower 

                                                 
28 It means that no more change can be introduced to the schedule scheme. 
29 The RCPSP formulation of (Stork and Uetz 2005) is used to introduce the meaning of minimal forbidden sets. 
30 If P is a finite partially ordered set, then an antichain in P is a set of pairwise incomparable elements. In Section 5.4 

these anti-chain elements are described as independent tasks. 
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bounds are used which try to approximate the optimum from above and below, respectively. The 

tighter these bounds are, the earlier a branch could be fathomed thereby reducing the calculation time 

even more.  

If it can be proven that a reliable lower bound of the examined branch exceeds the higher bound, 

the branch can be fathomed. For RCPSP the commonly used value for the higher bound is the 

makespan of the current best schedule. After determining some elements of the enumeration tree this 

can provide a good upper bound for the optimum. In contrast, to determine an accurate and tight lower 

bound for the RCPSP is a more challenging task. 

One possible lower bound is the relaxation of the resource constraints. This leads to the critical 

path length, which is a very simple bound. With this method partial schedules can be extended with 

the length of the critical path of the nonscheduled tasks. When this result exceeds the duration of the 

higher bound, the examined branch can be fathomed. Since the lower bound is the possible lowest 

duration of the branch and the higher bound represents the so far found best solution, every further 

calculation on this branch will result in a suboptimal schedule. This approach can fathom branches at 

the later phases of the calculations when the big part of the tasks has already been scheduled and the 

difference between the optimum and the partial schedules is small. 

Stinson et al. (1978) introduce a second possible lower bound for the RCPSP by relaxing the 

precedence constraints. This is called the resource-based lower bound. In this case, the already 

scheduled partial schedules will be extended by taking only the resource constraints and limits into 

account.  

Chaleshtari and Shadrokh (2012) use the so called precedence-based earliest start time and the 

resource-based earliest start time of the tasks in order to determine the feasible lower bound for the 

RCPSP with cumulative resources. This is based on the aforementioned two methods. 

Stinson et al. (1978) introduce a third approach called the critical sequence lower bound. It takes 

the critical path of not yet scheduled tasks and inserts an extra task into the sequence that is not part 

of the critical path. The determination of the lower bound simultaneously takes both precedence and 

resource constraints into account, gaining a higher lower bound in certain cases than for the critical 

path-based lower bound. 

Christofides et al. (1987) introduce a Linear Programming-based approach similar to the critical 

sequencing lower bound. First, they relax the resource constraints. After that they assume, that task 

  and 𝑏 cannot be executed simultaneously because of the resource limits. Therefore in every 

schedule, task   and 𝑏 will be executed after each other, although their relative order is unknown. 

Therefore they create two subproblems: one, when   is before 𝑏 and second, when 𝑏 is before  . If 

both of the solutions exceed the current best solution, the partial solution cannot lead to a better 

solution, so the node can be fathomed. The method can be extended for higher amount of tasks as 

well. 

Mingozzi et al. (1998) introduced an LP-based partial relaxation of the precedence constraints 

allowing preemption, and provide lower bounds for the RCPSP. These lower bounds are proven to 

be tighter than the critical sequence lower bound of Stinson et al. (1978) (Kolisch et al. 1995). 

Demeulemeester and Herroelen (1997) have improved this method and proved it to be more 

powerful in combination with the critical path-based lower bound than the one from Mingozzi. It is 

based on a list of companions for every task which can represent e.g. tasks, which can be executed 

simultaneously, respecting both the resource and precedence constraints. “All unscheduled task   with 

non-zero duration are then entered in a list   in non-decreasing order of the number of companions 

(non-increasing duration as a tie-breaker). The following procedure then yields a lower bound, called 

LB3, for the partial schedule under consideration: 
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LB3:= the earliest completion time of the tasks in progress 

While list   not empty do: 

Take task   on top of list   and determine its duration 𝑑𝑗; 
LB3:=LB3 + 𝑑𝑗; 
Remove task   and its companions from list  ; 

End do.” 

A detailed example for the application of the method is presented by Demeulemeester and 

Herroelen (1997). 

One further approach applies Column Generation Technique in order to solve the linear program 

directly. The original approach was introduced by Gilmore and Gomory (1963) and has been 

enhanced by Brucker and Knust (1998) taking time windows into account for the tasks. “These time 

windows are derived from precedence constraints and using a fictitious upper bound T for the 

makespan. Now the columns correspond to sets of tasks, which can be scheduled jointly in the given 

time window. The objective is to find a preemptive schedule that respects all the time windows. If 

such a schedule does not exist, is a lower bound.” (Brucker et al. 1999) 

Two further and obvious approaches to generate lower bounds for the RCPSP are the LP-

relaxation and the Lagrangian-relaxation (introduced in Section 6.5.1.1) of the IP formulation of the 

problem.  

These aforementioned approaches can also be combined with each other and the one with the 

highest result can be used as the lower bound for the examined schedule or partial schedule. 

Determining tight lower and higher bounds for the Branch-and-Bound solution of the RCPSP can 

reduce the search space and so largely accelerate the calculation. Therefore, Brucker et al. were the 

first, who were able to verify 326 of the 480 benchmark problems with 60 tasks under an hour time 

limit (Brucker et al. 1999). Since there is a high potential to use Branch-and-Bound algorithms for 

optimization problems like the RCPSP, a new Branch-and-Bound-based heuristic algorithm has been 

developed to determine near optimal solutions for simulation-based schedule optimization problems. 

The new approach will be introduced in Section 7.5. 

6.5.2 Heuristic approaches to solve the RCPSP 

Although the deterministic solution approaches are able to find the optimal solution for the 

RCPSP, they need a very high computational time to deliver this result. Therefore, further approaches 

have been developed that are capable to deliver not the optimal but one good, near optimal solution 

for the problem in a shorter computational time. These solution approaches are called the heuristic 

methods and are based on previous experiences and intuitions. 

At the early stages31 heuristic algorithms were developed with the focus on solving single complex 

combinatorial optimization problems. Later, the focus of the research turned to find a way to apply 

these methods to different problem classes instead of finding a single solution method for a single 

problem (Henderson and Nelson 2006). These general applicable heuristics that can be applied for a 

wide range of optimization problems are called metaheuristics. The common characteristic of these 

methods is that they only define the general strategies of how to solve the problem. The fine tuning 

of the optimization parameters must be completed by the user, however these vary for every single 

                                                 
31 Before the 1980s 
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problem. Guidelines how to use heuristics in combinatorial optimization can be found in Hertz and 

Widmer (2003).  

The general solution method of an optimization problem with metaheuristics starts by obtaining 

an initial solution or an initial set of solutions. During an improving search guided by the rules of the 

applied method better solutions will be searched for. The search continues till either the search is 

stopped manually, a maximum number of iterations is reached or the best solution so far has not been 

improved for a predefined amount of iterations. In every iteration step there is a solution or set of 

solutions that represent the current best solution of the search. Therefore, stopping the search at any 

time will deliver a current best solution. Applied metaheuristic approaches such as simulated 

annealing, genetic algorithm, tabu search or ant colony optimization to solve the RCPSP will be 

presented in Section 6.5.2.2. 

6.5.2.1 Heuristics 

The most known and frequently applied heuristics to solve the RCPSP are the X-pass, also referred 

to as priority rule-based heuristics. As its name says it applies a priority rule that will decide which 

task to start in tied situations, e.g. when two tasks are competing for the same resource. As Brucker et 

al. (1999) describes, the advantages of priority-based scheduling are its intuitiveness, easy 

implementation and fast computational effort. 

Priority rules can be very diverging. Kolisch and Hartmann (1999) collected the list of applied 

priority rules and distinguished between network, time, resource-based and lower and upper bound 

rules. Network-based priorities can be applied e.g. according to the rank of the task within the 

precedence graph, or depending on how near the task is to the resource unconstrained critical path 

making its priority higher. Secondly, time-based priorities can be applied e.g. according to the 

processing time of the task or the float time of the task. Applying resource-based priorities according 

to the necessary resources of the task causes the priority to increase the more resource is needed or 

vice versa might be. 

Further classification such as local or global rules can be applied according to the amount of 

employed information. Local rules only employ information from the considered task itself, while 

global rules also consider further information such as the project makespan, robustness etc.  

When the priority of a task stays constant for the iteration process of the schedule generation it is 

called static priority. When it changes during scheduling it is a dynamic priority. A list of 

corresponding literature is collected by Kolisch and Hartmann (1999). 

The oldest heuristics are the single pass methods that apply one priority rule to generate one 

feasible schedule. A list of literature about how different priority rules can be applied to generate one 

schedule is collected by Kolisch and Hartmann (1999 and 2006) and Brucker et al. (1999). 

In the so called multi-pass methods not only one but several feasible schedules are generated for 

the same problem. According to Kolisch and Hartmann (1999) the most common multi-pass methods 

are the multi-priority rule methods, the forward-backward scheduling methods and the sampling 

methods. The first method applies different priority rules in order to generate schedules. The forward-

backward scheduling methods alternate between the forward and backward scheduling iteratively to 

generate schedules. Sampling methods use one priority rule to determine different schedules by 

“biasing the priority rule through a random machine” (Hartmann and Kolisch 2000). 

As Brucker et al. (1999) describes, the advantages of the priority-based scheduling over 

mathematical approaches are its intuitiveness, easy implementation and fast computational effort. 

Due to these advantages and their simplicity they have been widely adopted to solve problems in 

construction schedule optimization (Zhou et al. 2013). 
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Further, more elaborate heuristics such as the truncated Branch-and-Bound approach, integer-

based heuristics and disjunctive arc concepts are mentioned by Brucker et al. (1999). A detailed 

description of the Fondahl’s method, the Structural model, the Siemens approximation and structural 

stiffness heuristics is found in Kolisch and Hartmann (1999) and Zhou et al. (2013). 

6.5.2.2 Metaheuristics 

Metaheuristics have mainly been developed to solve the hardest combinatorial optimization 

problems with a discrete search space like the RCPSP. The general working mechanism of a 

metaheuristic algorithm is to first define one or a set of initial solutions that will be iteratively 

enhanced in regard to a desired criteria using assumptions and instincts (Zhou et al. 2013). In this 

section the metaheuristics used to solve the RCPSP such as the greedy method, tabu search, simulated 

annealing and the population-based metaheuristics like the genetic algorithm, the particle swarm 

optimization and the ant colony optimization will briefly be introduced. 

Greedy algorithm 

The greedy heuristic algorithm, which is also called best fit strategy solves the optimization 

problem in a series of steps. Its specialty is that at every iteration step when a value has been assigned 

to the decision variables only the one best solution will be selected for further calculations. Hence, 

the algorithm assumes that at every iteration step the current best solution provides the best possible 

move to find the optimal solution, therefore the name greedy algorithm (Michalewicz and 

Fogel 2004). As Gass and Harris (2001) describe, the greedy algorithm is “ a heuristic algorithm that 

at every step selects the best choice available at that step without regard to future consequences”. This 

could however lead to a situation where the algorithm stacks into a local optimum, since it cannot 

find any better solution in the surrounding area and therefore it cannot find the actual optimal solution. 

To exit such local optima an extension is necessary that allows it to also consider worse results 

than the current best solution. However such extension will make the simple algorithm more complex. 

Solution strategies with greedy algorithm for combinatorial optimization problems such as the 

traveling salesman problem are described by Michalewicz and Fogel (2004). The so called greedy 

randomized adaptive search procedure (GRASP) is used for the heuristic solution of the multi-mode 

RCPSP. Since the multi-mode RCPSP is not the topic of this thesis, the method will not be introduced 

in detail. A detailed description of the method and its applications can be found in Feo and 

Resende (1989), Festa and Resende (2001), R. Alvarez-Valdes et al. (2008) and Ranjbar (2012). The 

working mechanism of the GRASP is similar to the greedy algorithm: each GRASP-iteration consists 

of two phases. In the first construction phase randomized feasible solutions are produced and in the 

second phase, the improvement or local-search phase, a local optimum is searched for in the 

neighborhood of the constructed solutions (Ranjbar 2012). During the greedy randomized 

construction the algorithm randomly selects elements from the candidate list and adaptively 

reevaluates the best result. The local search algorithm works iteratively and replaces the current best 

solution by a better solution in the neighborhood of the current solution. 

A GRASP heuristic with constraint-based simulation (CBDES) for the generation of daily 

efficient schedules in regard to specific execution strategies has been developed by König et al. 

(2009b). The GRASP heuristic is used to extend the start task routine of the CBDES in order to 

determine the next executable tasks and its successors on the corresponding day of the schedule. 

Afterwards an optimized order of the concerned tasks and resource assignments is identified (König 

et al. 2009b). 
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In the construction phase of this GRASP an initial schedule is generated for a working day. For 

every new working day an event is generated. On the corresponding working day executable tasks 

are stored in the daily candidate list and in a topological ordered graph of the tasks. The schedule and 

the resource assignments for the day are determined based on this daily candidate list. 

The local search phase of the GRASP is based on a standard tabu search algorithm, which will be 

introduced in detail in the next section. To generate neighboring solutions a random swap between 

two candidates of the daily candidate list considering the fulfillment of both precedence and resource 

constraints is applied. An executed substitution of the candidates is then prohibited for a predefined 

amount of further steps. Once an improved solution is found the current best solution will be updated. 

The search stops when a predefined number of iterations is reached without improvement (König et 

al. 2009b). 

One further greedy-like heuristic algorithm extended with a tolerance factor CBDES for the 

solution of the single mode RCPSP will be introduced in Section 7.5.2. 

Tabu search 

Tabu search is the extension of the greedy or best fit search heuristic which allows it to exit from 

local optima, through forbidding previously executed moves that might lead back to an already visited 

result for a predefined amount of time or calculation steps. The method was developed by 

Glover (1989 and 1990). During optimization, it evaluates the neighborhood solutions and proceeds 

with the best solution. To exit local optima and avoid cyclic behavior such as returning back to the 

same node time after some time a tabu list has been set up, which acts as a memory for the search. 

The purpose of the tabu list is to forbid the neighborhood moves that might lead back to recently 

visited solutions such forcing the search to explore new fields of the search space and to escape from 

local optima. 

Therefore, in contrast to the greedy algorithm, the tabu search heuristic can accept worse solutions 

than the actual one. How many of those solutions are accepted depends on how long a move stays in 

the forbidden set. Defining this value too small, the search might not escape from local optima, 

defining it too large maybe causes potential good solutions to be excluded from the search. 

For the RCPSP Baar et al. (1999) developed two tabu search algorithms. Their schedule 

generation is based on the schedule scheme representation of the project, in which relations like 

conjunction, disjunction, parallelism and flexibility are defined. To determine a feasible schedule 

from the representation form they developed a decoding procedure that determines a feasible schedule 

that satisfies every disjoint relation. To generate neighborhood solutions they turn flexibility relations 

into parallel relations and vice versa. The dynamic tabu list is used to forbid previous relation turns 

(Hartmann and Kolisch 2000). 

Artigues et al. (2003) iteratively selects tasks from the schedule, which first will be deleted from 

the schedule and then reinserted based on their network-flow-based insertion algorithm. The tabu list 

is constructed of the task itself and its resource predecessors and successors (Kolisch and 

Hartmann 2006).  

Skowronski et al. (2013) introduced a tabu search-based heuristic algorithm to solve the multi-

skilled RCPSP, where tasks need resources that have all the necessary, mostly diverging skills. They 

generate neighborhood solutions on two different ways: the swap-based neighborhood and the 

random-based neighborhood. “The first one bases on the swapping resources within the pair of tasks, 

while the second approach assumes assigning any resource that is capable of performing given task 

(Skowronski et al. 2013)”. The tabu list consists of previous moves that are forbidden in order to 

discover new solutions for the problem. 
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Further tabu search-based solution methods for the RCPSP such as the method from Nobe and 

Ibaraki or from Thomas and Salhi are collected in Kolisch and Hartmann (2006). 

 

Simulated annealing 

Simulated annealing is a metaheuristic that is capable to escape local optima, similar to the tabu 

search algorithm. The basic analogy of the simulated annealing is taken from thermodynamics. To 

grow crystals the process begins with the heating of raw materials into the molted state. Then, the 

temperature will be reduced and the crystallization process begins. When the temperature sinks too 

fast, irregulations will appear in the crystal structure which lead to a higher trapped energy state of 

the crystal as for a perfectly structured crystal. The following analogy between the physical system 

and the optimization problem can be drawn. The feasible solution can be represented as the state of 

the system, where an evaluation function represents the energy stored in the system. The optimal 

solution is the ground state of the system and the control parameter temperature can be applied to 

model (Michalewicz and Fogel 2004). 

The simulated annealing optimization method was introduced by Kirkpatrick et al. (1983). The 

solution starts with a set of initial solutions. Neighborhood solutions are generated by “perturbing” 

the current solutions. When a solution is better than the current optimum it will be accepted directly. 

If it is worse it must satisfy the evaluation criteria (e.g. temperature) to be accepted and to be used to 

determine further solutions. As the algorithm proceeds, the limit of the evaluation criteria is lowered 

and such the probability to accept worse results than the current best one sinks (Kolisch and 

Hartmann 1999).  

For the solution of the RCPSP Bouleimen and Lecocq (2003) introduced a simulated annealing-

based method. To generate schedules they used a precedence feasible activity list representation of 

the project, where each task in the list must appear later than its predecessors. A neighborhood 

solution is generated by shifting one task in the list such that it still stays precedence feasible. They 

applied a multiple cooling chain that is progressively reducing the temperature and also the 

acceptance rate. 

König and Beißert (2009) introduced a simulated annealing method that uses the constraint-based 

discrete event simulation to generate feasible schedules. As input for the simulation they use an 

execution list that defines the position of a task within the schedule. To create neighborhood solutions 

they randomly substitute two construction tasks of the same rank in the execution list. The rank of a 

task depends on its ancestor degree and is determined by the maximum length of connected ancestors 

within the precedence graph (König and Beißert 2009). The new list is then used as input for the 

CBDES that generates the feasible neighborhood solutions. To lower the acceptance rate after the 

iteration steps they used a linear decreasing temperature value. The limitation of this method will be 

discussed in Section 7.2, where a similar CBDES-based simulated annealing method will be 

introduced. 

Population-based optimization, the evolutionary algorithms 

The previously introduced heuristic optimization methods all only consider one single current best 

solution in order to generate neighborhood solutions. The idea behind the evolutionary algorithms is 

not to consider one, but to consider a whole population of solutions. These optimization techniques 

are based on the natural evolution and/or on the social behavior of species that is guided by learning, 

adaption and evolution (Elbeltagi et al. 2005). The most widely used evolutionary algorithms are the 

genetic algorithms, the particle swarm optimization and the ant colony optimization. These three 

techniques and their application on the RCPSP will be introduced in the next sections. Further 
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evolutionary algorithms, such as memetic algorithms, shuffled frog leaping methods are briefly 

described by Elbeltagi et al. (2005). 

 

Genetic algorithms 

Genetic algorithms (GA) have been introduced by Holland (1975) and were the first evolutionary 

algorithms. They are inspired by the improved fitness of biological systems or populations through 

the evolution. The three most important steps of the GA are the cross over, mutation and selection. 

After determining an initial population of solutions for the optimization problem, two existing 

solutions will be mated (cross over) and/or mutated in order to generate new ones (offspring) (Kolisch 

and Hartmann 1999). As next, the best fitting solutions of the population will be selected as survivors 

and the rest of the solutions will be deleted. The fitness value of a solution is mainly determined based 

on the objectives of the optimization.  

From the solutions that survived through crossover and/or mutation offspring solutions will be 

determined, which are then again followed by a selection process and so on. This process is usually 

continued for a large number of generations in order to obtain near-optimal solutions (Elbeltagi et 

al. 2005). The results of the GA depend on the initial size of the population, the amount of generations, 

the cross over rate and the mutation rate. While large populations raise the likelihood to find better 

fitting solutions, they also increase the processing time. 

A solution for the GA is represented by a chromosome. By cross over a part of one chromosome 

will be overwritten or exchanged with another chromosome to generate offspring solutions. Mutation 

can be interpreted as an arbitrary change of the information stored in a chromosome. Mutation is 

useful to avoid stagnation or to exit local optima (Elbeltagi et al. 2005). In usual cases a mutation rate 

under 0.1 is used. 

To use GA to solve the RCPSP first a suitable mapping between the task list or schedule and the 

chromosome representation must be found. The two main mappings or so called encoding schemes 

that are used are the priority-based and the permutation encoding. In the former one, the priority 

values of the tasks are set in the priority list. If a resource conflict occurs during scheduling the task 

with the higher priority will be scheduled first. In case of the permutation encoding, all the activities 

are permutated in a precedence feasible task list (activity list representation). The earlier the task 

appears at the beginning of the list the earlier it will be scheduled (Zhang et al. 2008). 

Kolisch and Hartmann (1999 and 2006), Brucker et al. (1999) and Zhou et al. (2013) collected 

many existing GA approaches for the solution of the RCPSP or the construction optimization problem 

using these schemes. Some of them will also be briefly introduced here. 

Hartmann (1997) introduced a GA for the RCPSP-based on the activity list representation of the 

project. In his work Hartmann describes three possible types of cross overs for the GA.  

The one-point cross over takes two parents, splits them at one certain point and puts the selected 

parts together in order to generate offsprings (Figure 6-18). The two-point cross over defines two 

points where the chromosomes of the parents will be split and it takes e.g. the first and the third part 

from the first parent and the second part from the second parent or the other way around  

(Figure 6-19). The third, uniform cross over uses a sequence of random numbers to determine the 

origin of a chromosome component. Depending on the value of the random number the value of the 

component either comes from the first or from the second parent (Figure 6-20).  
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Hartmann used the two-point cross over for his calculations and compared the results with 2 

further GAs and the sampling method, which had been outperformed. 

Sriprasert and Dawood (2003) introduced a GA that is capable to consider multiple constraints 

such as “activity dependency, limited working area and resource and information readiness”. The GA 

alter the tasks’ priorities and construction methods in order to reach near optimal solutions 

corresponding to project duration, cost and resource utilization.  

Zheng et al. (2004) developed a multi-objective GA model for the optimization of construction 

time-cost trade-off problems. For that they introduced the modified adaptive weight approach 

(MAWA) that replaces the “traditional fixed or random weights, and integrates time and total cost 

into a single objective for simulation”. Furthermore it can efficiently exploit information of previous 

calculations and so it can guide the search toward the desired solution without losing randomness. 
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Figure 6-18: One-point cross over: chromosomes made up of eight binary components. The components of the offspring 

are originated before the splitting point from the first parent (light grey) and after that from the second parent 

(dark grey) 

Figure 6-19: Two-point cross over: chromosomes made up of eight binary component. The components of the offspring 

are originated before the first splitting point and after the second one from the first parent (light grey), between 

them from the second parent (dark grey). 

Figure 6-20: Uniform cross over: chromosomes made up of eight binary component. The components of the offspring are 

originated from the first parent (light grey) if the random value (RND) is zero, from the second parent (dark 

grey) results the random value if it is one. 
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Zhang et al. (2008) introduced another effective GA to solve the single mode RCPSP. They use a 

position-based cross over method that takes components of the first parent’s chromosome inserts it 

to the child’s chromosome and then fills the missing components from the second parent keeping 

their relative order (Figure 6-21). 

 

The GA inherits the merits of the priority-based and the permutation encoding schemes and such 

reduces the search space (Zhang et al. 2008).  

A two phase GA has been introduced by Chen and Weng (2009) to solve the RCPSP. In the first 

phase of the GA, a time-cost trade-off analysis is performed to find the execution mode for the 

individual tasks. In the second phase the priority-based encoding is used with the one-point cross over 

method to generate feasible schedules that satisfy all constraints of the project. 

Montoya-Torres et al. (2010) proposed an alternative representation of the chromosomes using a 

multi-array object-oriented model in order to take advantage of programming features for the design 

of decision support systems. By comparing their results with the results of previous GAs it has been 

shown that this method delivers similar results in less computational time. 

Szczesny et al. (2012) introduced a GA-based heuristic optimization with the CBDES for 

construction schedule optimization. They use the CBDES extended with the priority-based task 

selection to determine the next executable task in order to generate feasible construction schedules. 

As input data for the simulation the precedence graph, the priority list of the tasks, their resource 

needs and the available resources is used. In their paper a new rank-based cross over operator is 

introduced by Syswerda (1991) that enhances the Order Cross over-2 (OX2).  

In their GA-based heuristic optimization, a chromosome describes the priority of the individual 

tasks and is used as input for the simulation. Therefore, the length of a chromosome corresponds to 

the amount of tasks within the project. The earlier the task appears in the chromosome the higher is 

its priority for scheduling.  

In order to generate new offsprings, the new rank-based cross over operator is used that combines 

the chromosomes of two parents. The rank of a task is described by the maximum length of connected 

ancestors within the precedence graph. In the cross over, first the first parent’s chromosome is copied 

into the child’s chromosome. Then, a third or a half of the second parent’s chromosome is applied 

also keeping the relative order of the tasks to the child’s chromosome. The working mechanism of 

the AOX2 is based on the theory that the permutation of rank equal tasks is considered to be safe 

since no precedence constraints are violated. Therefore, the AOX2 selects one task randomly in the 

second parent’s chromosome and identifies every other tasks with the same rank. Then, the relative 

order of these equal ranked tasks is applied to the child’s chromosome. The crossover is finished 

when at least one third of the child chromosome is permutated (Szczesny et al. 2012). 

1 3 5 4 7 2 8 6 4 2 7 1 6 3 8 5

7 3 5 4 1 2 6 8

𝑃    𝑡 1 𝑃    𝑡  

         

Figure 6-21: Position-based cross over: chromosomes made up of eight components that represent task IDs from a 

schedulable project. The selected component of the first parent (light grey) will be inserted into the offspring 

at the same position. The missing element will be filled up from the second parent (dark grey) keeping the 

sequence of the components. 
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To turn the chromosomes into feasible schedules the CBDES is used. A comparison between the 

crossover operator OX2 and AOX2 is presented by Szczesny et al. (2012). As a result it has been 

shown that AOX2 clearly outperforms OX2, however the methods should be tested on more detailed 

and realistic case studies. 

The critical point of using GA to solve the RCPSP is the size of the population (Zhou et al. 2013). 

Large populations have a higher likelihood to find the desired optimal solution, however, it can 

greatly increase the computational effort. Small populations on the other hand might miss the optimal 

solution. Due to the random searching mechanism of the GA there is always a chance to find a better 

solution for the problem in the next generation. Therefore it is difficult to determine an accurate 

stopping criterion for the algorithm (Zhou et al. 2013). 

Particle swarm optimization 

The particle swarm optimization (PSO) technique has been developed by Kennedy and 

Eberhart (1995) and it was inspired by the social behavior of a “flock of migrating birds trying to 

reach an unknown destination” (Elbeltagi et al. 2005). Every bird in the population is concerned as a 

particle for the optimization. A particle is analogue to the chromosomes of the GA. In contrast to GA, 

the particles are not mated to create offsprings, but to discover their neighborhood by interacting with 

each other and heading towards their destination: the optimum. 

To reach their destination every bird in a flock looks to different directions. Through 

communication they can identify the bird that is in the best position to reach the goal and every other 

bird will fly towards it with a velocity depending on its current position. Then every bird investigates 

its new location again and identifies the bird in the best position and so on till the desired destination 

is reached (Elbeltagi et al. 2005). 

A PSO starts with an initial group of random particles. Every particle stores its current position, 

its best previous solution and the flying velocity. In every iteration step the position of the best particle 

is determined and the velocity of every other particles will be updated in order to catch up with the 

leading one (Elbeltagi et al. 2005). 

The first PSO application for the RCPSP was introduced by Zhang et al. (2006). As for the GA, 

PSO is also important to find a suitable mapping between the particles and the RCPSP representation. 

Zhang et al. (2006) used the priority-based representation of the tasks as particles. Since the priority 

of a task can be determined on multiple ways such as critical index, duration, amount of necessary 

resources, amount of successors, etc. a multi-pass heuristic is proposed. There is no systematic 

measure that describes which sole result has the best solution according to the optimization criteria.  

The multiple-pass heuristic considers diverging priority strategies and tries to propose the best 

fitting one for every single pass. Furthermore, a local search way is recommended that adjusts the 

start time of tasks based on the current multiple-results of the multi-pass method (Zhang et al. 2006), 

such improving the schedule. To determine a schedule from a particle a parallel transformation is 

used.  

After a performance comparison between the GA and the PSO for a benchmark project the PSO 

turned out to be more efficient than the GA. Therefore, as Zhang et al. (2006) summarized: the PSO 

provides an “efficient and easy-to-implement” alternative to analyze the RCPSP. 

Ming Lu (2008) used the Simplified Discrete Event Simulation (SDESA – see Section 3.5.6) with 

a PSO to automate the solution of the RCPSP. For mapping, as in the previous case, the priority-

based activity representation is used. The SDESA is used to generate schedules based on the priorities 

of the tasks defined in the particles. After a population of schedules have been generated the PSO 

algorithm updates the position of every particle, identifies the best neighboring and global solution 

and adjusts the velocity and position of every particle (Ming Lu 2008). The method is evaluated both 

on a small example and a real construction project. 
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Chen (2011) introduced the justified particle swarm optimization technique (JPSO) to solve the 

RCPSP. Justification is a technique, developed by Valls et al. (2005), which adjusts the start time of 

each scheduled activity to further shorten its makespan. After justification it is important for JPSO to 

synchronize the justified position and the corresponding position vector of the particle. By comparing 

the results of the JPSO with the results of further, previously introduced metaheuristics the JPSO is 

stated as an effective and efficient algorithm to solve the RCPSP. 

The general PSO method and its further developments can be summarized as effective algorithms 

to solve combinatorial optimization problems and with this they can solve the RCPSP. However, 

since it is a heuristic algorithm the obtained solution is not necessarily the global optimum. The 

parameters of the PSO play an important role for the analysis. According to Zhou et al. (2013), the 

selection of these parameters could cause convergence, divergence and oscillation of the particles. In 

addition the speed of the particles will decrease and such the capability to find further feasible 

solutions is also reduced when the variety of the population deceases (Zhou et al. 2013). 

Ant colony optimization 

The ant-colony optimization (ACO) involves the social behavior of ant colonies. The algorithm 

has been introduced by Dorigo et al. (1991) and is based on the theory that ants are able to find the 

shortest path between a specific destination (e.g. food source) and their nest. This is achieved through 

the pheromone trails. Pheromones are used as an indirect communication source between ants and 

they are set free every time ants travel. Other ants are capable of following this trail and they deposit 

further pheromones on it. The higher the density of pheromone is on a trail the higher the chance will 

be that other ants select the same route.  

When searching for food sources ants randomly discover their environment by rotating around 

obstacles and depositing pheromones on all sides of the obstacle. After finding a food source the ant 

will randomly select a route back to the nest which is located between the available trails. The ants 

going to the food source and returning back to the nest will select a route and deposit further 

pheromones on it as they travel. The shorter the trail, the faster the ant will be for every cycle of food 

transport and will be able to run more often than ants with longer trails between the food source and 

the nest. Therefore the shorter trail will contain more pheromones and will be favored by other ants 

as well. Gradually, this process will lead every ant to select this shortest path. 

To implement the construction scheduling problem as an ACO, the scheduling problem might be 

represented as a weighted network graph. The graph is the precedence graph of the tasks and the 

weight is the current pheromone level of the considered edge (Zhou et al. 2013). In order to start the 

search an initial amount of pheromones should be assigned to every edge of the network. Selection 

probabilities can be determined based on the pheromone level of the edges. An artificial ant is capable 

to travel from the first to the last task in the project following the pheromones. When the ants travel 

on the network the pheromone level of the edges and of the selection probabilities will be updated. 

The iteration of ant runs is processed until the termination criteria is reached (Zhou et al. 2013). 

Fundamental research has been done on this field by Merkle et al. (2002), Ng and Zhang (2008), 

Afshar et al. (2009) and Duan and Liao (2010). On the one hand they have proven that the ACO is a 

powerful method to solve the RCPSP and on the other hand they have drawn attention to several 

problems of the algorithm. The premature convergence phenomenon, the termination criterion and 

the parameter determining methods should be analyzed further in order to enhance the ACO and gain 

a better application for the algorithm (Zhou et al. 2013). 
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6.5.2.3 Hyperheuristics 

In the previous sections heuristic solution methods have been introduced for the resource-

constrained project scheduling problem without completing the list. Compared to the deterministic 

approaches these algorithms are capable to generate feasible solutions for optimization problems in 

low computational time, however their results might be suboptimal. Based on these algorithms a new 

generation of heuristics called hyperheuristics was born.  

Hyperheuristics are high-level approaches that control multiple low-level heuristics in order to 

find a near optimal solution for the optimization problem. The hyperheuristics know the strength and 

weaknesses of low-level heuristics and can select the most suitable one to apply for the next iteration 

step (Glover and Kochenberger 2003). The biggest difference between the heuristics and 

hyperheuristics is that the heuristics are working on the solution space of the problem, while the 

hyperheuristics are working on the solution space of the heuristics. With other words, depending on 

the current results a high-level heuristic algorithm first selects a low-level heuristic algorithm which 

should be applied to determine the next new solutions.  

One hyperheuristic approach for the solution of the RCPSP has been introduced by 

Anagnostopoulos and Koulinas (2012). They applied a GRASP-hyperheuristic that controls eight 

low-level heuristics against ACO and GA algorithms in two case studies. The hyperheuristic resulted 

in a better solution than the heuristics in every case. Further hyperheuristic approaches to solve the 

single-mode RCPSP are not known to the author to the date of writing this thesis. However, since the 

hyperheuristics are able to use the advantages of all the low-level metaheuristics, further research 

should be carried out in order to investigate the application of this technique to the solution of the 

RCPSP. 

6.6 Summary 

In this chapter existing optimization techniques have been discussed that solve scheduling 

problems in the construction industry. After introducing the basic compounds and characteristics of 

an optimization, the combinatorial optimization problems and the complexity of a problem were 

discussed. The RCPSP accurately describes the scheduling problem in the construction industry and 

is considered as an NP-hard combinatorial optimization problem. This means that a rather complex 

problem cannot be solved in polynomial time. 

Due to the combinatorial explosion, the size of the search space for more complex problems 

becomes very large. Thus the introduced deterministic solution methods for the RCPSP aim to reduce 

this large search space into a smaller area where the optimum can be found. Such algorithm is e.g. 

the Integer Programming approach or the Branch-and-Bound method which can be used to solve the 

RCPSP in different formulations. 

Although the deterministic methods determine the optimal solution for the RCPSP, they require 

a high computational time. Therefore, heuristic approaches have been introduced that are capable to 

deliver not the optimal but one good, near optimal solution for the problem in shorter computational 

time. These solution approaches are based on previous experiences and intuitions. 

The discussed heuristic algorithms are more suitable for the application in the industry due to the 

shorter computational time, than the exact solution methods. Furthermore these heuristic methods are 

simpler and easier to handle, than the deterministic methods. However they deliver only good 

solutions for the problem instead of optimal ones. Due to the continual improvement of the diverging 
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heuristic methods it cannot be clarified which one suits best to solve the RCPSP. All the introduced 

methods determine good solutions for the RCPSP with continuously improving performance. Based 

on the discussed metaheuristic approaches, in the next chapter three combined metaheuristic 

algorithms will be introduced with the constraint-based discrete event simulation for the automated 

solution of the RCPSP. 
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7.1 Executive summary - Optimization of construction 

schedules based on CBDES 

As introduced in Chapter 6 the optimization of a construction schedule can be formulated as a 

search for the optimal schedule for the resource-constrained project scheduling problem (RCPSP). 

The RCPSP is an NP-hard combinatorial optimization problem, which in most cases has such a large 

search space of discrete solutions that all of them cannot be determined in polynomial time. 

In Chapter 4 the constraint-based discrete event simulation (CBDES) that is capable of 

determining single feasible schedules for the RCPSP was introduced. With a suitable steering 

algorithm that manipulates the input data for the simulation, the CBDES could be used to generate 

various feasible solutions with multiple simulation runs. Furthermore, by using one optimization 

method as a steering algorithm for the simulation it can be used not only to generate various schedules, 

but also for optimization purposes.  

Therefore an algorithm has been developed within the framework of this thesis that varies the 

input data for the simulation in a systematic manner so that the simulation generates various feasible 

schedules in order to find a near optimal schedule. Such methods for the steering of the CBDES were 

initially introduced by König and Beißert (2009) (see Section 7.2) and Szczesny et al. (2012) (see 

Section 6.5.2.2 – Genetic algorithms). The common thread in both of the existing methods is that they 

manipulate the priority of the single tasks to influence their execution order during the simulation and 

thus within the generated schedule. The drawback of these methods is that there is a chance that after 

manipulating the tasks’ priority the generated schedule is the same as it was before the manipulation. 

The reasons for this result will be discussed in Section 7.2 in detail. One of the author’s goals was to 

7 Simulation-based optimization of 

construction schedules 
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develop an algorithm that is capable of manipulating the priority of the tasks so that after the order of 

the tasks has been changed, a new schedule is produced (see Section 7.3). 

The working mechanism of the algorithm is similar to that of the disjunctive graph model for the 

shop problems (see Section 2.3.2). In this case, however, it is not the direction of the disjunctive arcs 

that are swapped but rather the priorities of specific tasks. The disjunctive graph model itself cannot 

be applied for the RCPSP since for the completion of a task in the RCPSP more than one resource 

can be applied and tasks that require the same resource class for their execution can also be executed 

simultaneously. Therefore an exact predefined sequence of tasks, such as the fixed arcs of the 

disjunctive graph, is inapplicable. Thus the usage of priorities instead of further precedence 

constraints allows a more flexible selection of the tasks. Priorities define the execution order of the 

tasks. When the necessary resources are available the affected tasks can also be executed 

simultaneously. Sections 7.2 and 7.3 address changing the priorities of tasks to generate new 

schedules with the constraint-based discrete event simulation. Section 7.4 discusses how the 

introduced algorithm influences the search space of the possible solutions for the RCPSP. 

The application of this algorithm however ensures the generation of various schedules with the 

CBDES. It is still not an optimization tool. This algorithm has been coupled with different methods 

to improve the generated results of the simulation. For the optimization the author applied three 

heuristic optimization methods – greedy-like, simulated annealing and tabu search algorithm. How 

best to use these methods to generate near optimal schedules with the CBDES will be discussed in 

Section 7.5. These specific methods were selected due to their short computational time and simple 

working mechanism. The chapter is closed by two comprehensive case studies and a summary. 

7.1.1 Limitation of the constraint-based discrete event simulation 

As introduced in Chapter 4, the constraint-based discrete event simulation (CBDES) is able to 

generate feasible solutions for the resource-constrained project scheduling problem (RCPSP). To 

obtain the solutions it uses the described start and end event functions. The start event checks for 

which tasks are all precedence constraints fulfilled. If one task is found and the necessary resources 

are available then the task will be executed. Every task will be executed as early as possible taking 

precedence and resource constraints into account. However, executing a task as early as possible 

within a schedule is not always a good strategy. Sometimes delaying a task might deliver a better 

result. Consider, for example the four tasks depicted on the precedence graph in Figure 7-1. Tasks A 

and B use resource “gray”, and tasks B and C use resource “white”. Only one resource is available in 

both resource classes. Due to the constraint configuration, with the CBDES task B will always be 

executed before task C, because at the point in time when B could be started, C still has a non-fulfilled 

precedence constraint: A. Since the CBDES requires that every task be executed as early as possible, 

there will be no schedule where B is executed after C (Figure 7-1 – 2. schedule). This is due to the 

time increment-based scheduling generation scheme of the CBDES (introduced in Section 4.2.2).  
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The algorithms that the CBDES applies to generate feasible schedules belongs to the class of 

parallel scheduling (time increment-based) methods, which has been proven to generate only non-

delay schedules32 (Kolisch 1996, Hartmann and Kolisch 2000). As it has been proven that the optimal 

solution for the RCPSP might be outside of the non-delay schedules, it is also possible that the results 

of the CBDES do not contain the actual optimal schedules (as presented in Figure 7-1). Hence a 

deterministic optimization strategy using the CBDES shall not be considered. However, this 

scheduling method is useful for heuristic optimization techniques, where a near optimum or good 

solution is the goal, rather than the optimal solution. 

7.2 The priority swap of tasks 

In order to find the optimal or a “good” solution for an optimization problem a very large number 

of feasible solutions must be determined and taken into account. For the RCPSP the constraint-based 

discrete event simulation is a method that is able to determine single feasible schedules. To determine 

various schedules for the scheduling problem in which the technological dependencies and the 

resource configurations are fixed, the execution order of the tasks within the schedule must be 

manipulated. A simple example of how various schedules with different makespan can be determined 

                                                 
32 See Figure 2-2 in Section 2.2.2.1. 
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Figure 7-1: Limitation of the constraint-based discrete event simulation: In some cases the complete set of results does 

not contain the optimal schedule (minimal makespan). White and grey: two resource classes. 
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by swapping tasks within the schedule is presented in Figure 7-2 and Figure 7-3. The project is made 

of nine tasks (A-I) and requires two different classes of resources (dark and light grey). There is only 

one unit for both resource classes available on the site. 

 

 

With the constraint-based discrete event simulation the determined order of the tasks within the 

schedule is ruled by the predefined precedence constraints (technological dependencies) and the 

priorities of the tasks. Since the precedence relationships of the project must be kept fixed and newly 

introduced precedence constraints would prevent the possible simultaneous execution of the 

corresponding tasks, one promising approach to introduce a change into the execution sequence of 

tasks is to manipulate the priorities of the tasks. To generate one base schedule, like schedule 1 in 

Figure 7-3, an arbitrarily distributed priorities might be applied for the single tasks. However, it is 

important that none of the tasks should have identical priorities, otherwise a priority swap between 
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Figure 7-2: Dependency graph and ranking of an example project with two resource classes (dark and light grey) 

Figure 7-3: Resulting different schedules by swapping the position of task D and F within the schedule  
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tasks might have no effect on the result. Thus, swapping the priorities of task D and F in schedule 1 

will have the result presented as schedule 2. As this example shows, a good selected priority swap 

can be used to determine a new schedules. However, a randomly applied priority swap is not a way 

to consider. For example, a priority swap of task A-H or C-I will not change anything on the schedule 

since they are either precedence related or they do not use the same resource. Therefore further rules 

must be defined which can identify the swaps that can cause a change in the schedule. Deciding which 

swaps to make is addressed in the following sections. The results that are determined by applying one 

of these swaps are defined as neighborhood solutions for the optimization problem.  

The feasible search space of the RCPSP can become very large, and many different solutions must 

be taken into account. Therefore, in order to find the optimal or near optimal solution in an efficient 

way, only the swaps that will certainly generate new schedules should be applied. Thus, the 

development of an algorithm that is able to cover all of the feasible solutions of the search space is 

required. This algorithm must avoid the generation of repeated schedules and must be able to traverse 

through the search space by steering the simulation in such a way that it generates a new schedule 

with every single swap.  

Therefore, as it has been already discussed, applying a random swap-based algorithm to steer the 

simulation to find the optimal or good solutions for the RCPSP is not a way to consider. A more 

sophisticated approach is the rank-based swap of tasks within the execution list introduced by König 

and Beißert (2009). The rank of the task is described by the maximum length of the chain of connected 

predecessors from the start until the end of the examined task (Figure 7-2). Since this approach allows 

for the execution of a swap only between tasks with the same rank, the amount of swaps that do not 

change the schedule is less than in the completely random case, but is still not zero.  

This is because this algorithm is not taking the resource classes into account. In a situation where 

more of the tasks that need the same resources for their execution could be started at the same point 

in time but where the available amount of resources do not allow the simultaneous execution of these 

tasks, the tasks with the highest priority will be executed. In this example, the tasks with lower priority 

must wait until the resources are once again available. By swapping the priority of two of the tasks, 

a new execution order might be generated. Therefore a priority swap must always be defined between 

tasks that use the same resource classes. Swapping the priorities of two tasks that do not use the same 

resource classes will not directly affect their position in the queue. For example, swapping the priority 

of tasks B and C, or D and E (all rank 1) will not affect the generated schedule and the result will be 

identical to schedule 1.  

Another drawback of allowing swaps only between tasks with the same rank is that swaps which 

could introduce changes into the schedule are neglected. To illustrate, consider the project presented 

in Figure 7-2. A swap between D-F or C-G is not allowed with the introduced rank-based method 

since these tasks have different ranks within the graph. Although, as it has been presented in  

Figure 7-3, these tasks can actually change the result of the schedule. 

To make the swapping approach of task priorities more efficient a new methodology has been 

developed that can determine every possible swap that can result in a change in the schedule while 

also taking into account the different resource classes. 

7.3 The possible and the reasonable swaps 

As described in the last section, it is important that the tasks whose priorities are to be swapped 

use the same resources. Additionally, they should build an independent or disjunctive pair of tasks, 

otherwise their execution order would already have been defined by precedence constraints (see 

Section 5.3). The pair of tasks that satisfies these criteria create the list of possible swaps. This list 

includes all of the swaps that could be applied to a schedule in order to introduce a change. 
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To determine every possible swap the fragmented dependency matrices of the precedence graph 

will be used (see Section 5.4). The fragmented dependency matrices describe exactly those tasks 

which use the same resources and which are independent from each other (zero element in the matrix). 

Therefore the amount of possible swaps is the sum of the zero elements within the different transitive 

closures for the resource classes divided by two, since the matrixes are symmetric and swapping the 

priority of task A with task B is the same as swapping the priority of task B with task A. Swapping 

priorities of dependent processes (transitive closure value 1) is pointless because they have a 

predefined and strict order in the graph and generated schedule which cannot be changed. The 

dependency graph of the introduced example is presented in Figure 7-4 (already presented in 

Section 5.4 and in Figure 5-12). 

 

However, applying a possible swap to a schedule with a restricted resource configuration will not 

always have an effect on the newly generated schedule. This occurs when one of the tasks which 

could be swapped is executed at the beginning of the schedule and the other one is executed at the 

end. This will not change anything in the schedule because there are other tasks between the examined 

tasks using the same resources and so their position within the schedule cannot be swapped. 

The swaps which will change the schedule are called reasonable swaps. Reasonable swaps are a 

subset of the possible swaps. The amount of reasonable swaps varies between zero and the amount 

of possible swaps depending on the resource utilization of the project.  

To determine the list of reasonable swaps, first a feasible schedule must be generated. This is 

important to find out how the execution sequence of the tasks is alike after resource constraints and 

limits are considered. The next step of a reasonable swap determination is to apply an algorithm that 

identifies all of the possible swap candidates for every single task within the schedule using the 

fragmented dependency matrices of the project. This results in a list of possible tasks with which the 

considered task could be swapped. The reasonable swap candidates for the task will originate from 

this list. To determine which tasks qualify as reasonable swap candidates, a time frame will be defined 

within which this candidate task must be started. This is in addition to the resource and precedence 

relationship restrictions that have already been checked by the dependency matrix. Should a task not 

start in the required time frame, it will be deleted from the list of reasonable swaps. 
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Figure 7-4: The dependency matrix and the fragmented dependency matrices for the different resource classes (dark and 

light gray). Black elements with white text: independent pair of tasks 



166 Simulation-based optimization of construction schedules 

 

 

The time frame is defined by the latest termination date of the tasks predecessors and the start 

date of the task itself (Figure 7-5). This time frame is important because the examined task cannot be 

started earlier than its predecessors’ finish date. Therefore it is useless to swap priority with another 

task that starts earlier than this date, since the other task will always be executed earlier than the 

examined task. Furthermore, when there is a possibility to swap the task’s priority with another task 

that starts later than the task itself, it will be determined during the search for possible swaps 

conducted on behalf of the other task. 

 

When the reasonable swaps for every task in a particular schedule have been determined, applying 

any of them will result in a different schedule than the previous one. Any other swaps will not directly 

change the results. An indirect effect from a random swap is possible when the relation in any of the 

reasonable swaps is changed. For example, swapping the priority of the considered task and its 

predecessor in Figure 7-5 will have no direct effect on the results. However, if the priority of the 

predecessor was higher than the one of the task “independent 2”, then after the swap the considered 

task will have a higher priority than “independent 2” and therefore it will be executed right after its 

predecessor (Figure 7-6). 

 

A random priority swap that changes the order of tasks resulting in a new schedule can always be 

traced back to a relation change in one or more of the reasonable swaps. Therefore, in order to 

generate new, different schedules the author only uses the reasonable swaps. Applying one reasonable 

priority swap for the project results in a new schedule, which is defined as a neighbor solution of the 

base schedule. Therefore, the distance between the two different schedules in the search space can be 
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Figure 7-5: Schematic illustration of the reasonable swap determination: the list of possible swaps of independent tasks 

is restricted by the ones that start between the latest finish date of the task’s predecessors (t1) and the task itself 

(t3). Priorities: Predecessor: 10, Independent 1: 8, Independent 2: 6, Independent 3: 4, Task: 2. Reasonable 

swaps: Task and Independent 2; Task and Independent 3. 

Figure 7-6: New partial schedule after swapping the priorities of the Task and its Predecessor. New priorities: Predecessor: 

2, Independent 1: 8, Independent 2: 6, Independent 3: 4, Task: 10. Indirect effect: the priority relation of the 

Task and Independent 2 changed. 
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defined as the amount of reasonable swaps that are necessary to reach one schedule from the other 

one. 

7.4 The effect of limited resources on the size of the search 

space and the amount of reasonable swaps 

Using the technique described above, the complete solution space of schedules that can be 

generated with the constraint-based discrete event simulation for the schedulable project with 

predefined precedence relationships and resource configurations, can be covered. 

However, the number of possible schedules and the number of reasonable swaps is highly 

dependent on the resource utilization of the project. When the available number of resources is high 

enough and only one schedule can be determined, it is similar to the results of the CPM and no 

reasonable swaps are available. This is due to the fact that every task has been started at its earliest 

possible start time and no variety can be introduced to the schedule. Lowering the amount of available 

resources for the project means that an increasingly fewer number of tasks can be executed 

simultaneously, causing them to have to be delayed due to the lack of necessary resources. Depending 

on which tasks are delayed the number of possible schedules increases. 

When a task is delayed the gap between the task’s start date and its predecessor’s finish date 

becomes larger and larger. This leads to a growing time frame for the task where reasonable swaps 

can be searched. Therefore, in decreasing the amount of available resources, the number of possible 

schedules and the amount of reasonable swaps will increase. However, this number is limited by the 

amount of all possible swaps. 

Essentially, reasonable swaps can be viewed as the decisions the scheduler must make in order to 

stay under the predefined limit of resources (e.g. task A and B could have been executed 

simultaneously but one of them must be pushed forward in time due to the lack of resources). 

Therefore, this technique is not only an efficient method to determine neighborhood solutions for a 

schedule, but it is also useful to analyze existing schedules and identify bottlenecks within them. A 

reasonable swap illustrates a decision made during the scheduling process. Increasing the available 

resources at this date results in eliminating the identified swap and thus the concerned tasks can be 

executed simultaneously, shortening the duration of the project on minimal costs. 

The advantage of the introduced technique is its capability to identify every reasonable swap 

within a schedule, thus the neighboring solutions can be generated efficiently without duplicating any 

of the existing schedules. The next section will discuss how the reasonable swaps can then be used to 

find near optimal solutions for the RCPSP. 

7.5 Different optimization strategies to find near optimal 

solutions for the RCPSP using task priority swaps 

As introduced in Chapter 4, the constraint-based discrete event simulation is capable of generating 

single feasible solutions for the RCPSP. Using the reasonable swaps introduced above, neighborhood 

solutions for one base schedule can be generated. The RCPSP’s objective is to find the one schedule 

with the minimal makespan. Since the search space of the RCPSP can become large, an algorithm 

that can efficiently traverse through the search space jumping from one solution to another is 

necessary to search for the schedule with the shortest makespan. 
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One solution is to use an enumeration tree. The randomly generated base schedule, which should 

be optimized, is placed at the top. Every branch of the tree symbolizes one applied reasonable swap 

and results in a neighborhood solution. Since the branching process is independent from the fitness 

function of the optimization, the same model can be used for different optimization criteria (e.g. 

duration, cost, robustness etc.). 

Before introducing the functionality of such an enumeration tree, we must determine how much 

the application of the reasonable swaps can accelerate the search process for the optimal solution as 

opposed to a random possible swap. 

The most general approach to determining the optimal solution for the RCPSP would be the total 

enumeration of the problem. This means generating a schedule by simulation for every permutation 

of the possible swaps. In this case the number of generated schedules equals the sum of all 

permutations selecting   swaps of   distinct possible swaps: 
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So far this sum is independent from the number of tasks within the schedule. Therefore, when 𝑡 
equals the number of tasks in the schedule, the total number of possible swaps is limited from above 

with the sum of the arithmetic progression from 1 to t-1:  
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This value represents the number of elements within the half triangle of the dependency matrix, 

which stands for the maximal total number of possible swaps when every task needs the same 

resource and there are no precedence relationships defined between the tasks. In this case every 

element of the dependency matrix except for the diagonal will be zero. Every single introduced 

precedence relationship will decrease this number exponentially. Thus, the number of generated 

schedules using this swap technique is limited to: 
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Taking the introduced precedence graph in Figure 5-10 (Section 5.4) as an example where 𝑡 =  9 

and  = 8, the total number of solutions are: 
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By only using the possible swaps instead of swapping the priority of every task with every other 

task it is apparent how many of the possible schedules can be reduced. Because of the factorial 

relationship between the number of swaps ( ) and the number of all possible schedules, increasing 

the number of possible swaps causes the number of possible schedules to explode. For the above 

example with 8 swaps using an average calculation time of 25 milliseconds, it would take 45.6 

minutes to identify every possible schedule. If you increase the number of possible swaps by just one 

further swap, the total calculation time will be 6.85 hours. For 10 possible swaps the amount of 

possible schedules will be 9864101 and the total calculation time will be 68.5 hours. 
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Every further swap will multiply the number of possible schedules and so the calculation time 

will increase as well. As presented earlier, the list of possible swaps also contains swaps that will not 

change the schedule, so the duplication rate of the schedules is higher than zero. Therefore, to reduce 

the calculation time and the number of duplicated schedules instead using all the possible swaps, just 

the reasonable swaps should be used. 

However, since the amount of possible schedules and reasonable swaps is dependent on the 

resource utilization of the project, the exact amount of possible schedules cannot be foreseen. 

Although the amount of diverging schedules is limited from above with the amount of schedules for 

all the possible swaps, and from below when the results are equal with the CPM schedule: one. When 

the amount of different schedules according to reasonable swaps is “ ”, then: 

1 ≤  ≤   ∗∑
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Considering, for example, a bridge construction project with approximately 300 tasks. Due to the 

amount of precedence constraints let us assume that the number of the possible swaps is 

approximately 100. Using the introduced total enumeration method the determination of the optimal 

schedule would take years. A more sophisticated method is required that is capable of reducing this 

calculation time into an acceptable range. 

Since the constraint-based discrete event simulation is only capable to generate non-delay 

schedules for the RCPSP (see Section 7.1.1), it is possible that the actual optimal schedule cannot 

even be generated by using this method. A deterministic optimization strategy should not be 

considered until the CBDES has been extended to cover the complete search space of active 

schedules. However, the CBDES supported by an efficient heuristic algorithm could deliver not 

necessarily the optimal result, but one good, near optimal solution in a short calculation time. For 

that, an enumeration tree-based approach has been developed. The enumeration tree represents all the 

possible solutions the CBDES could generate, with a randomly generated schedule at the top. To 

reduce the search space, the nodes of the enumeration tree will only be identified where it is probably 

profitable to do so. To determine near optimal solutions for the RCPSP with the enumeration tree two 

basic meta-heuristic approaches have been implemented and compared to each other. These two 

heuristic methods that traverse by way of different paths through the enumeration tree and steer the 

simulation in different ways will be introduced in the next sections. 

7.5.1 The enumeration tree 

In order to collect and order the solutions of the constraint-based discrete event simulation for the 

heuristic optimization of the RCPSP an enumeration tree will be used (introduced in Section 6.5.1.2). 

The working mechanism of the calculation is based on the principles of the Branch-and-Bound 

method. The similarities are that both methods try to reduce the large search space by pruning 

branches from the tree. The main difference is that while the Branch-and-Bound is a deterministic 

method that only prunes branches of the tree that clearly do not contain the optimum result, our 

approach is a heuristic method that prunes away branches even when the probability of finding a 

better solution than the current optimum on the branch at issue is low. 

Every node of the enumeration tree represents one feasible schedule. On the top of the 

enumeration tree is a randomly generated schedule, which shall be enhanced. The schedules on the 

next level will be generated by applying one of the reasonable swaps from the schedule. Therefore 
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the schedules on the second level are the neighbor schedules of the base schedule, the ones on the 

third level are the neighbor schedules of the ones on the second level, and so on.  

In order to decide which nodes of the enumeration tree should be determined two meta-heuristic 

algorithms have been applied. A third strategy will also be introduced based on the experiences with 

the former algorithms. The difficulty of the reasonable swap-based heuristic optimization is that the 

result of a swap cannot be predicted. Applying a swap might result in a better schedule but it could 

also lead to a worse one. It is also possible that applying one or two swaps at first leads to slightly 

worse results initially but with the third swap the result will become better again (Figure 7-7). This 

corresponds to the optimization theory that in order to leave local optima, worse results should also 

be accepted (see Section 6.5.2). Therefore, the applied optimization algorithms have been developed 

such that they are able to take this behavior into account.  

 

The following sequence illustrate the general working mechanism of the enumeration tree: 

 

Step 1. Generate a random base schedule (root node) 

Step 2. Determine every reasonable swap for the base schedule and by applying them one-by-

one determine the child nodes 

Step 3. Evaluate the generated nodes. Fathom all nodes where the makespan of the considered 

schedule is worse than the makespan of the current best solution extended with a 

predefined tolerance factor  

Step 4. Determine the child nodes of the non-fathomed nodes 

Step 5. Repeat 3-4 till there are no further nodes to consider or a predefined amount of levels 

reached. 

 

The first discussed strategy is a greedy-like optimization where only those nodes of the tree that 

are within a predefined tolerance range of the current best schedule will be considered further. The 

second strategy is based on the simulated annealing strategy. In this case the more schedules that have 

been determined, the lower this tolerance will be set. The exact working mechanism of these methods 
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Figure 7-7: Schematic representation of a part of the enumeration tree. Every node symbolizes one schedule. On the top 

is level 1 representing a randomly generated base schedule. The number in the nodes represents the makespan 

of the schedule. One arrow accords to one applied reasonable priority swap. 
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will be discussed in the corresponding sections. Furthermore, these heuristic methods have been 

enhanced with a tabu search algorithm that forbids a re-swap of previously swapped priorities, e.g. 

after swapping the priority of task D and F, a child node that is created by swapping back the priorities 

of task F and D is forbidden. This would create a loop inside the tree since the children of the re-

swapped node are the same as for the node two levels higher thus exploding the search space (see 

Figure 7-8). The introduction of the developed heuristic optimization methods is followed by two 

case studies and the comparison of the effectiveness of the techniques. 

 

 

7.5.2 Greedy-like heuristic approach 

Since the search space of the RCPSP can become large depending on the size of the problem, the 

number of possible schedules also becomes high. In order to find one good, near optimal solution in 

a time efficient way, many of these solutions, which have a high likelihood of not representing a good 

solution, should not be determined. However, to decide which schedule to neglect and which to 

explore is a complex task. As mentioned in the previous section, the result of a priority swap cannot 

be foreseen since it can either result in a schedule with a shorter or with a longer makespan. Hence, 

an exact algorithm, such as the lower and upper bunds for the Branch-and-Bound method (see 

Section 6.5.1.2), to determine which nodes should not be considered any further cannot be 

formulated. 

However, to reduce the amount of schedules that should be determined, a tolerance factor has 

been introduced. It represents a limit for the makespan of the schedules. The tolerance factor is either 

given as a percentage or in the form of a time interval and describes how much longer the makespan 

of a schedule is allowed to be than the current minimal makespan in order to be considered for further 

calculations. The value of an accurate tolerance factor depends on the makespan of the project and 

the actual duration of the single tasks. As discussed at the presented case studies in Section 7.5.4, for 
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Figure 7-8: The effect of re-swapping: a loop inside the enumeration tree. The child nodes of node a and node b are 

determined at every 2nd level. The nodes represent a feasible schedule. The re-swapping is marked with gray 

node-background. To avoid this behavior a tabu search algorithm is applied that forbids to re-swapping of 

previously swapped priorities. 
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smaller problems with the makespan of about 100 time instances and tasks with an average duration 

of 4-5 time instances a tolerance factor of approximately 10% shall be considered as a good start 

value. For larger projects with a makespan of approximately 1000 time instances and tasks with an 

average duration of 10-20 time instances the tolerance factor shall be lowered to 1-5%. 

When the makespan of a schedule is longer than it is allowed to be as defined by the tolerance, 

then the likelihood that the schedule will deliver an outstanding schedule later is low. Therefore it 

will not be considered for further calculations. To determine the ratio of the considered schedule and 

the current schedule with minimal makespan, the function   shall be used. 

 = {
         

𝑐     𝑡                 
} 

When 1 <  < 𝑇, the node will be used for further calculations and its neighborhood solutions 

will be determined. If  > 𝑇 the node will not be considered for further calculations.  

The working mechanism of the greedy-like heuristic is the same as discussed in the last section 

for the general case. First, a base schedule must be generated. This forms the node on the highest 

level. Next, this node will be selected to create its neighborhood solutions (child nodes), which will 

construct level 2. To create level 2, all the reasonable swaps of the node will be determined using the 

dependency matrix of the project and the formulas defined in Section 7.3. When the list of reasonable 

swaps is complete, one priority swap will be applied and a new schedule will be created by the 

constraint-based discrete event simulation. This result builds a new branch of the enumeration tree 

and a new node on the next level. This process is repeated until a schedule for all the reasonable 

swaps has been determined. Once they are all complete they will be evaluated based on their own 

makespan and the makespan of the current shortest schedule. When a node does not meet the criteria 

of the tolerance factor, the node will be discarded. Next, the nodes of the second level that were not 

fathomed will be selected and their neighborhood solution will be determined. The functionality of 

the method is presented on a simple fictitious example with a manually created enumeration tree in 

Figure 7-9. 
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Figure 7-9: Schematic representation of the greedy-like heuristic algorithm. Grey: Fathomed nodes, dashed ellipse: 

current best solution, arrows: applied swaps. Tolerance factor: 15%. 
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After generating the base schedule with the duration of 100 time instances, all reasonable swaps 

will be applied and the nodes of level 2 will be generated. On level 2 the tolerance factor is set to 

15% and the current best solution is 95 time instances, leading to the outcome that every schedule on 

this level that lasts longer than 109 time instances will be identified (120 and 115). For the nodes that 

were not identified (105, 95 and 97), their reasonable swaps will be determined and applied. On 

level 3 a new current best solution has been found with 92 time instances, therefore the new tolerance 

limit for schedules is 106 time instances. The search continues until there are no new nodes available 

or until a predefined amount of levels is reached. 

In order to reduce the amount of repeated schedules in the enumeration tree, the swap that has 

been applied to get the considered node is prohibited for the determination of the next child nodes. 

This avoids the situation where after executing a swap at the next level it will be re-swapped again. 

Further investigation on repeated schedules within the enumeration tree has been made by Bügler and 

Borrmann 2014. They pointed out that a swap should be prohibited until another swap has been made 

either before the temporal position of the concerned swap or until one of the involved tasks has been 

used by another swap. 

Using the above described tolerance factor for the optimization the size of the search space can 

be varied. Setting the tolerance to 15%, for example only the schedules under the makespan relation 

value of 1.15 will be considered further (as depicted in Figure 7-9). At the first level of this example 

only the schedules under the duration of 115 time instances will be selected for further consideration 

when the actual minimum project duration is fixed to 100 time instances. If the tolerance values are 

set too low the results may quickly get stuck in a local optimum. If the tolerance values are set too 

high, the search space and the calculation time will explode. To determine some general rules on how 

to select an accurate tolerance factor a parametric case study will be presented in Section 7.5.4.  

The completely greedy variation of the technique is when the tolerance value is set to 0%. This 

algorithm only considers the best solution of every level as long as it is improved. When no 

improvement can be found the algorithm terminates from itself. 

7.5.3 Simulated annealing-based heuristic approach 

The working mechanism of the simulated annealing-based approach is similar to that of the 

greedy-like algorithm. The idea behind the simulated annealing is to define a higher bound for the 

results that are accepted. With every calculation step lower this higher bound till no better results can 

be found. This method due to the high bound for the results has a good chance to exit local optima. 

This is also important for the reasonable swap-based heuristic optimization, since a good result can 

be preceded with some worse solutions within the enumeration tree. In this case the higher bound of 

the algorithm is represented by the tolerance factor introduced in the last section, which will be sink 

by every new level of the tree. 

The functionality of the reasonable swaps-based simulated annealing algorithm is the follows: 

1. Generate base schedule and initialize tolerance factor 

2. Select the next not yet considered level  

3. Select a not yet considered and not fathomed node on the selected level 

4. Determine every reasonable swap for the selected node 

5. Apply one reasonable swap, determine the schedule and create a new branch for the 

enumeration tree 

6. Repeat 5. till all the reasonable swaps has been applied for the node 
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7. Evaluate the generated nodes. Fathom all nodes where  > 𝑇, or where the makespan is larger 

than the makespan of the current best solution extended with the tolerance factor 

8. Repeat 3-7 till there are no further available nodes on the considered level 

9. Lower the tolerance (𝑇) 

10. Jump back to 2. or terminate the calculation if the predefined amount of levels is reached 

 

Similar to the greedy-like algorithm the simulated annealing algorithm works with an enumeration 

tree and a tolerance factor. However, they differ in how the tolerance factor is handled during the 

optimization. While for the greedy-like algorithm the tolerance factor is fixed to one value, the 

tolerance factor for the simulated annealing case changes dynamically. It is advised to start the 

simulated annealing with a higher initialized tolerance than for the greedy-like method, since it will 

be sunk with every generated level. The higher initial tolerance also means a wider start field for the 

simulated annealing which will be narrowed later on by lowering the tolerance factor. The lowest 

limit of the tolerance factor is 0% which would mean that equally good results or better ones will be 

accepted by the algorithm for further calculation. When none of the nodes satisfy such criteria the 

optimization will be terminated and the best solution found will be delivered to the planner. 

 

Figure 7-10 represents the application of the simulated annealing algorithm for the introduced 

simple fictitious partial enumeration tree example extended by one further level. The initial tolerance 

has been set to 25%, being higher than the one for the greedy-like algorithm. After the generated base 

schedule and the applied reasonable swaps, a new current best node has been found with 95 time 

instances. Therefore in this example, only the node with the duration of 120 time instances will be 

fathomed. The next step in to sink the tolerance factor to 20%. The reasonable swaps of the not 

fathomed nodes on level one will be determined and applied one by one. The current best solution 

will be updated to 92 time instances and the nodes that do not meet the tolerance criterion will be 

fathomed. The calculation is continued as long as non-fathomed nodes are available on the next level 
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Figure 7-10: Schematic representation of the working mechanism of the simulated annealing algorithm to traverse through 

the solutions of the enumeration tree. Grey node: fathomed, dashed ellipse: current best solution, arrows: 

applied swaps, T: tolerance factor at the corresponding level 
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or until a predefined amount of levels has been reached. In the presented case every node on level six 

in the partial enumeration tree is fathomed and so the calculation terminates. 

 

 

7.5.4 Depth oriented heuristic search algorithm 

As discussed in Section 7.5.1, the previously introduced heuristic optimization methods are 

enhanced with a tabu search algorithm. This enhancement was put in place to avoid the re-swapping 

of task priorities for the child nodes which would lead to a loop inside the enumeration tree. Although 

the tabu search algorithm avoids the repeated generation of the same schedule on the same branch, 

the same schedule can still be generated on different branches of the tree. When this schedule is 

identified as good solution and is not fathomed, then the child nodes of these nodes will be identical 

and thus every child node will be determined multiple times. No exact algorithm has yet been 

developed which avoids this duplication. A solution to reduce the amount of identical determined 

schedules on different branches is to use enumeration trees that determine results only a few levels 

deep (about 4-6, depending on the size of the problem) and then restart the optimization with the 

current best solution as the root node. Through a predefined number of levels the identically 

determined schedules will be ignored and the optimization continues with only the current best 

solution. Since this algorithm is able to reach deep levels of the enumeration tree, the author has 

identified this method as a depth oriented heuristic search algorithm. Similar conclusions were drawn 

also by Bügler and Borrmann (2014). Since the simulated annealing method can restrict the number 

of determined levels by lowering the tolerance factor, the application of the depth oriented method 

coupled with the introduced simulated annealing-based heuristic approach is recommended. The 

application of this method is necessary for problems that are made of more than 40-50 tasks. If there 

are fewer tasks the effect of identical generated schedules on the determination process is acceptable. 

Hence the application of this method will be introduced for a larger case study in Section 7.6.2. A 

comparison between the introduced heuristic optimization techniques executed on a real bridge 

construction project will be presented in the next section.  

7.6 Case Studies 

7.6.1 First case study 

To test the applicability of the first two heuristic optimization strategies introduced above, a small 

case study has been conducted using the simple bridge project example introduced in Section 5.5. 

The project is made up of 34 tasks which require one of three kinds of resource classes: “Armouring”, 

“Casing” and “Concreting”. In order to obtain more alternative solutions, the amount of available 

resources compared has been lowered from the amount used in the test case in Section 5.5. The unit 

resources for this problem are: casing: 1, armouring: 2 and concreting: 1. The priorities of the tasks 

were assigned according to the start time of the corresponding task in the schedule depicted in  

Figure 5-23 (Page 123) and is presented in the Appendix. The generated base schedule is depicted in 
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Figure 7-11. The calculations were executed on a computer with four Intel i7-4700 HQ @2.400 GHz 

cores with 8GB RAM. 

 

The makespan of the base schedule is 50 days and 13 reasonable swaps have been identified that 

can change the execution order of the tasks. The objective of the case study is to enhance this 

makespan using the greedy-like and the simulated annealing-based heuristic optimization strategies 

and compare their results. The fragmented dependency matrices of the project are represented in 

Section 5.5, in Figure 5-20. The number of independent task pairs within the schedule is 78. Thus, 

the number of possible schedules for this simple project according to Section 7.4 is about 2,35*10^78. 

Since the makespan of the project is relatively low compared to real construction projects that 

often last several years, higher tolerance factors might have been applied. For example 10% tolerance 

would accept schedules that are shorter than 55 days in the first generation of schedules. Table 7-1 

demonstrates the necessity of the tolerance factor and how it influences the results of the optimization. 

Since both optimization methods were developed for industrial use, where the duration of the 

Figure 7-11: The base schedule for the introduced test case with reduced resource availability 
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calculation is important, the optimization process for this small problem will be stopped after 

2 minutes. Furthermore, this manual stopping will only be applied when the amount of accepted nodes 

on one level is high (more than 100000) and because of such cases the algorithm becomes too 

inefficient. 

 

In the first scenario a completely greedy algorithm was applied to solve the problem. Since the 

tolerance factor in this case was 0% and since in the first neighborhood schedules none had a shorter 

makespan than the base schedule, the optimization terminated without any improvement. Therefore, 

to determine more schedules and possibly improve the results of the makespan optimization, a higher 

tolerance factor must be set. 

Thus, the following scenarios were executed with the greedy-like algorithm with non-zero 

tolerance factors. In the first case (scenario 2), a low tolerance factor of 1% was applied. The results 

show that the algorithm proceeded further than it had in the completely greedy case and reached the 

10th level of the enumeration tree identifying more than 1.2 million schedules. The best solution found 

enhances the makespan of the base schedule by one day. Because of the low tolerance factor, the 

algorithm identified many nodes and therefore a higher tolerance factor of 5% was tested in the second 

scenario. By using the second scenario, a solution was found at the fourth level of the enumeration. 

This solution has a makespan of 47 days. This schedule is the best solution for the considered 

problem.  

Since the solution is on the fourth level of the enumeration tree and it was not identified in the 

first and second scenario, it is clear that one of its ancestors on a higher level had a larger makespan 

than it was allowed. Therefore this node had been ignored and the node with a shorter makespan 

could not be reached. By raising the tolerance factor in the second scenario, this schedule was not 

precluded, and in the next iteration step the best solution uncovered so far was found. 

Further scenarios using the greedy-like algorithm considered even higher tolerance-factors, 

however they did not lead to any better solutions than the second scenario. To test whether a better 

solution might exist a scenario (5) with the computation time of 5 minutes has been executed with 

the tolerance factor of 5%. The scenario did not deliver any further improvement. 

For the scenarios 6-9 the simulated annealing algorithm was used. Since with this algorithm the 

tolerance factor is lowered at every level, the scenarios might start with a higher tolerance factor than 

the ones for the greedy-like algorithm. This allows the consideration of a wider field of schedules at 

the beginning of the optimization than the greedy-like strategy. This wider field will be narrowed at 

every level of the enumeration tree by lowering the tolerance factor. When the tolerance factor of the 

simulated annealing algorithm reaches zero, the optimization proceeds from that point on as a greedy 

algorithm.  

Test 

scenario
Strategy

Tolerance 

factor [%]

Rate of tolerance 

decrease 

[%/level]

base schedule 

makespan 

[days]

best found 

makespan 

[days]

amount of 

simulation 

runs

calculation 

time [min]

reached 

level

1 Greedy 0 0 50 50 15 < 00:01 2

2 Greedy-like 1 0 50 49 1262327 02:00 10

3 Greedy-like 5 0 50 47 1137682 02:00 9

4 Greedy-like 10 0 50 47 947878 02:00 7

5 Greedy-like 5 0 50 47 2561125 05:00 8

6 Simulated annealing 10 1 50 47 1278110 02:00 9

7 Simulated annealing 10 3 50 49 2600 < 00:01 5

8 Simulated annealing 15 3 50 47 3679 < 00:01 6

9 Simulated annealing 20 3 50 47 726698 00:59 9

Table 7-1: Results of the first optimization case study 
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At the first scenario, the tolerance factor was set to 10% and the rate of decreasing was set to 1% 

per level. The calculations were interrupted after 2 minutes at the amount of over 1.2 Million 

determined schedules. Within these schedules the best one was the same as the best solution of the 

greedy-like search. 

In order to test how the decreasing rate of the tolerance factor might influence the results, in the 

second scenario it has been raised to 3% per level. In this case the optimization terminated after 2600 

schedules since it could not find any better solutions in the neighborhood of the determined solutions. 

Since the starting tolerance factor was not high enough due to the higher decreasing rate, the solution 

with the makespan of 47 days on the fourth level was not found. Therefore for the next scenarios the 

initial tolerance factor has been raised. In both further scenarios this solution has been found but no 

further improvement was observed. 

However the introduced case study was a simple example and the makespan of the best schedule 

was near to the makespan of the base schedule on order to describe the general characteristics of the 

introduced two heuristic methods. Furthermore the importance of considering worse results than the 

current best has also been shown. 

7.6.2 Second case study 

With the previous test scenario it has been shown that both introduced heuristic optimization 

techniques are capable of improving the makespan of a construction schedule. However, it is 

important to stress that the results depend on the proper selection of the tolerance factor and the 

decreasing rate, which is difficult to properly select without any previous knowledge about the 

considered problem. Furthermore, since the actual optimum is not known, the quality of the best 

found schedules cannot be evaluated. Due to the small size (number of reasonable swaps) and 

makespan of the first case study, the number of results were low and therefore making it was hard to 

find any noticeable improvement in the makespan. Therefore a larger construction project scenario 

with 457 tasks using 6 different classes of resources has also been tested.  

The list of the tasks and precedence relationships has been adapted from a real construction 

project, but the durations and resource requirements have been modified manually. The resource 

utilization has been calibrated such that the makespan of the base schedule is 590 days and within the 

schedule 353 reasonable swaps can be executed. The input data for the simulation is presented in the 

Appendix. Since the makespan of this project is much longer than in the previous test case, the 

duration-based tolerance factor will be used. Furthermore, due to the larger project size a longer 

calculation time limit of 5 minutes is set. The results are presented in Table 7-2. 

The first completely greedy scenario terminated after the third level of neighborhood solutions 

with the improvement of 14 days. Introducing a tolerance factor of 1 day (scenario 2) the calculation 

proceeded one level further, but the best solution has not been improved. Setting the tolerance factor 

to 5 days (scenario 3) the optimization proceeded even further and the calculation was stopped 

manually after 5 minutes. This resulted in a schedule that improved the makespan by 16 days when 

compared to the base schedule. To analyze how higher tolerance factors might influence the results a 

10 day tolerance factor was applied for scenario 4. It resulted in a new best solution with the makespan 

of 568 days. Raising the tolerance factor to 20 days (scenario 5) the optimization reached only the 

4th level of the enumeration tree, due to the high amount of accepted schedules and the limited time. 

The current best solution with the makespan of 568 days on the 5th level was not located.  

In the first two scenarios (scenario 6 and 7) with the simulated annealing algorithm the base 

tolerance was set to 5 days which is relatively low. In the former case the decreasing rate was set 
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from 2 days in the latter one to 1 day. In both cases the calculations terminated by themselves. In 

scenario 6 the best solution that was found had the makespan of 574 days. In scenario 7 the best 

solution has a makespan of 562 days. The former result corresponds to the schedule determined with 

the 3rd greedy-like scenario while the latter one is a new current best solution for the problem. A new 

best solution could be found because the search was able to proceed deeper in the search tree than in 

the previous scenarios. 

For the next scenarios, similar to the scenarios with the greedy-like algorithm, the tolerance factor 

was raised. Scenarios 8, 9, 10, 11 and 12 had a base tolerance factor of 10 days and a decreasing rate 

of 5, 3.5, 3, 2 and 1 day(s) respectively. The lower the decreasing rate, the lower was the level reached 

within the enumeration tree thereby improving the results found. The best solution was found in 

scenario 12 with the makespan of 556 days. This scenario has been stopped manually after 5 minutes 

again due to the high amount of accepted schedules. Every other scenario terminated by itself after 

the calculation time represented in Table 7-2. In the last scenario (13) the tolerance factor was raised 

to 20 days and the decreasing rate was lowered to 3 days/level. This scenario had to be stopped 

manually after 5 minutes, similar to scenario 5, due to the high number of accepted solutions. 

 

As the presented case studies have shown, both the greedy-like and the simulated annealing 

strategies turned out to be an effective approach to optimize construction schedules. The challenge in 

both techniques is setting the correct tolerance factor and setting the proper decreasing rate for the 

simulated annealing. As demonstrated earlier, these two values can have a significant effect on the 

calculation time. Setting them too low might cause good solutions to be neglected (scenario 1, 2, and 

6 for test case 2), while setting them too high might cause the search to become inefficient (scenario 

5 and 13 for test case 2). As a general rule, the starting configuration for smaller problems with the 

makespan of approximately 100 time instances and tasks with an average duration of 4-5 time 

instances should be a tolerance factor of approximately 10% for both strategies. For larger projects 

with a makespan of approximately 1000 time instances and tasks with an average duration of 10-

20 time instances the tolerance factor should be lowered to 1-5%. 

In comparing the two techniques it is clear that within the same time limit the simulated annealing 

approach was able to reach deeper levels of the enumeration tree and often resulted in a schedule with 

a shorter makespan than the greedy-like algorithm. On the one hand this can be attributed to the 

decreasing tolerance factor because more and more solutions can be identified on deeper levels than 

with the greedy-like algorithm. On the other hand, this could also be attributed to the lower rate of 

identical determined schedules (introduced in Section 7.5.1). 

Test 

scenario
Strategy

Tolerance 

factor 

[days]

Rate of tolerance 

decrease 

[days/level]

base schedule 

makespan 

[days]

best found 

makespan 

[days]

amount of 

simulation 

runs

calculation 

time [min]

reached 

level

1 Greedy 0 0,00 590 576 597 00:02 3

2 Greedy-like 1 0,00 590 576 840 00:03 4

3 Greedy-like 5 0,00 590 574 88240 05:00 5

4 Greedy-like 10 0,00 590 568 88498 05:00 5

5 Greedy-like 20 0,00 590 570 88430 05:00 4

6 Simulated annealing 5 2,00 590 574 48515 02:53 5

7 Simulated annealing 5 1,00 590 562 51598 03:04 8

8 Simulated annealing 10 5,00 590 574 53417 03:10 5

9 Simulated annealing 10 3,50 590 570 57242 03:26 6

10 Simulated annealing 10 3,00 590 562 1849 00:07 7

11 Simulated annealing 10 2,00 590 559 16722 00:59 8

12 Simulated annealing 10 1,00 590 556 86500 05:00 10

13 Simulated annealing 20 3,00 590 570 87317 05:00 5

Table 7-2: Results of the second optimization case study 
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However the tabu search algorithm prohibits to swapping back the last applied priority swap, 

making it still possible that the same schedule is determined multiple times. With the greedy-like 

strategy these multiply determined non-fathomed schedules deliver the same results every time and, 

due to the constant tolerance factor, they will always be accepted thereby expanding the width of the 

enumeration tree and the calculation time. For the simulated annealing case, due to the decreasing 

tolerance rate, these nodes might all be fathomed on the next level. To demonstrate the effects of 

multiply determined schedules the depth oriented algorithm coupled with the simulated annealing 

heuristic approach will be tested in the second case study. The results are presented in Table 7-3.  

In the beginning the tolerance factor was set to 10 days and the decreasing rate to 3 days/level. 

When the improvements of the current best schedule became lower, the tolerance factor was 

decreased to 4 days and the decreasing rate to 2 days/level. With a higher tolerance factor most of the 

previous results would have been accepted again and the search space would have stayed large. 

Therefore when the rate of improvement of the current best schedule decreases, the starting tolerance 

factor and the decreasing rate should also be decreased. 

 

After the 11th run no further improvements could have been determined. The best determined 

solution had a makespan of 519 day which means an improvement of 71 days or 12% compared to 

the makespan of the randomly generated base schedule. The complete calculation took 33:47 minutes, 

which is a time worth to invest to gain the previously introduced improvements of a schedule. 

Comparing the results with the results of the first simulated annealing-based approach an 

improvement can be clearly identified. However, the calculations took longer the best found schedule 

is 51 days (550 days - 519 days = 51 days = 10% of total makespan of the current best solution) 

shorter than for the simulated annealing approach. Therefore the application of the depth oriented 

search is preferred as long as an efficient algorithm is developed that is capable to avoid the repetition 

of the same schedule inside the whole enumeration tree. 

7.7 Summary 

To summarize the results of the last chapter, the introduced reasonable swap-based optimization 

strategies are effective ways to optimize construction schedules. Using the depth oriented simulated 

annealing approach deeper levels of the enumeration tree might be reached and such further 

Run

Tolerance 

factor 

[days]

Rate of tolerance 

decrease 

[days/level]

base schedule 

makespan 

[days]

best found 

makespan 

[days]

amount of 

simulation 

runs

calculation 

time [min]

reached 

level

1 10 3,00 590 562 1849 00:07 6

2 10 3,00 562 548 40080 02:22 6

3 10 3,00 548 543 77198 04:25 3

4 10 3,00 543 541 91250 05:20 3

5 10 3,00 541 540 89302 05:02 3

6 4 2,00 540 538 71019 03:49 4

7 4 2,00 538 536 120542 06:35 4

8 4 2,00 536 527 7190 00:24 4

9 4 2,00 527 525 6644 00:22 4

10 4 2,00 525 523 41126 02:21 4

11 4 2,00 523 519 54405 03:00 4

Table 7-3: The results of the depth search oriented simulated annealing optimization strategy 
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improvements might be found than in the normal simulated annealing approach, since the number of 

multiply determined identical schedules is lower. It is important to stress that since the introduced 

strategies are heuristic approaches, it cannot be proven that the best solutions found while using the 

program are in fact the actual optimum of the optimization problem. In order to further enhance the 

effectiveness of the introduced reasonable swap-based optimization strategies an algorithm is 

necessary that is capable of detecting and identifying existing results already in the enumeration tree. 

This is important to avoid repetition of accepted schedules and to keep the breadth of the search as 

narrow as possible. With a depth oriented search the chances of obtaining more results that are better 

than those obtained from a base schedule are even higher. 

Selecting a proper tolerance factor for the determination is a challenging task. Its value depends 

on the makespan of the project and the actual duration of each single task. As discussed in the 

presented case studies, for smaller problems with the makespan of approximately 100 time instances 

and tasks with an average duration of 4-5 time instances, a tolerance factor of around 10% should be 

considered as a good starting value. For larger projects with a makespan of approximately 1000 time 

instances and tasks with an average duration of 10-20 time instances, the tolerance factor shall be 

lowered to 1-5%. When the average duration of the tasks increases, the tolerance factor should also 

be increased since the variance of the makespan of the results is larger than for projects with lower 

average task duration. Furthermore, for the depth oriented search, when the rate of improvement of 

the current best schedule decreases between optimization runs the starting tolerance factor and its 

decreasing rate should also be decreased in order to reduce the search space and to decrease the rate 

of the repeated calculation of results that were already determined by previous optimization runs. 
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Nowadays in the construction industry schedules are created manually in a time consuming and 

laborious way. Therefore, the aim of this thesis was to enhance, accelerate and, where possible, 

automate this scheduling process. In this thesis different concepts and methods have been presented 

for the creation of near optimal and flexible schedules for construction projects. The beginning of the 

thesis discussed in general terms the definition of a construction project, including its components 

and kinds of relationships and restrictions that exist among the various components. Here, the ideas 

of construction tasks, precedence relationships, also called technological dependencies between tasks, 

resources and resource constraints were introduced (Chapter 1). 

Since every construction project is unique, they all require an individual schedule for their 

execution. Schedules describe the execution sequence of the construction tasks and also give 

information about the resource utilization. Scheduling is an iterative process that searches for a 

schedule that satisfies all of the predefined restrictions such as resource limits and objectives. An 

example of a common objective for a construction project is finishing a project before a deadline. 

A schedule that satisfies all the restrictions or constraints is called a feasible schedule. While 

feasible schedules satisfy all the precedence and resource constraints, they do not necessarily satisfy 

all of the scheduling objectives. An objective of scheduling (Section 1.3) can be to find the schedule 

with the shortest makespan. This scheduling problem in the construction industry can be formulated 

as a resource-constrained project scheduling problem (RCPSP - Section 2.2.2). The objective of the 

RCPSP is to find the schedule with the shortest makespan while satisfying all of the precedence and 

resource constraints of the tasks without preemption. The RCPSP belongs to the class of NP-hard 

optimization problems, which means that finding the optimal solution is not possible in polynomial 

time. How to determine feasible, but not necessarily optimal, solutions for the RCPSP is one of the 

main topics of this thesis. 

In the construction industry, as described in Section 2.2, the schedules are primarily determined 

by the network scheduling techniques such as the Critical Path Method or the Precedence Diagram 

method. These methods have the advantage of allowing the user to create a schedule quickly and 

easily. However, these methods cannot take resource constraints into consideration. This can result 

8 Summary and outlook 
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in an overutilization of resources, since the necessary resources are not available on the construction 

site, thereby leading to a continuous extension of the completion time. Furthermore, due to this 

limitation, these methods are not capable of determining feasible solutions for the RCPSP. 

To enhance the scheduling process in the construction industry, first, similar scheduling problems 

and their solution methods from the manufacturing industry were studied and discussed (Section 2.3). 

In the manufacturing industry the most important scheduling problems are the shop problems. As 

described in Section 2.4.1, the shop problems are a subset of the RCPSP. Due to the more general 

resource and precedence constraints their solution methods are only useful in finding a solution for 

the RCPSP if extensions are included. 

One promising approach that is capable of taking resource constraints into account is the 

simulation-based scheduling technique, specifically called the discrete event simulation (Section 3.3). 

The discrete event simulation is a type of simulation that models systems for which changes in the 

system state, so called events, occur only at discrete points in time. The simulation time of the model 

jumps forward in time between these events while the model´s state between these discrete time steps 

stays constant. This simulation is able to handle complex systems and provide information about its 

behavior. Therefore both researchers and those in the industry apply this simulation technique to 

support the decision making processes. Within the wide range of applications the discrete event 

simulation is also suitable for solving scheduling problems. 

Section 3.5 introduces a detailed review of existing scheduling approaches based on simulation 

techniques for the construction industry. It is however important to emphasize that these approaches 

are only applicable for repetitive construction processes such as earth hauling, earth transport and 

tunneling. The review collects the most significant simulation frameworks from the origins of 

construction simulations until the present time. The concept of CYCLONE, STROBOSCOPE, 

Simphony and Cosye were discussed in detail.  

The direct application of the discrete event simulation to solving construction project scheduling 

problems was not possible due to the complexity of the scheduling problems and the differences 

between the main characteristics of the manufacturing industry versus the construction industry 

(Section 3.4). This is primarily due to the necessarily rigid sequences of activities that are common 

in the manufacturing industry. Such a behavior is only suitable for machine driven or for cyclic 

construction processes, such as earth transportation, as described by the introduced construction 

simulation frameworks. In contrast, the sequence of tasks and the working path of the resources on a 

construction site are more dynamic and spontaneous. Hence, decisions such as identifying which of 

several tasks to execute when there are only enough resources to start one task can only be solved 

with the discrete event simulation in a very complex way. 

This dynamic decision-based behavior describes a combinatorial problem. Since combinatorial 

problems can be solved efficiently by the constraint satisfaction paradigm, a group of German 

researchers (König et al. 2007a, König et al. 2007b, Beißert et al. 2007b) integrated the constraint 

satisfaction paradigm within the discrete event environment and created the constraint-based discrete 

event simulation approach (CBDES – Section 4.2). The CBDES is capable of determining single 

feasible schedules for scheduling problems while also taking precedence and resource constraints into 

account. The advantage of this technique over other simulation approaches is its capability to make 

dynamic decisions about which task to execute in tied resource situations. If different decisions in the 

execution sequence of the tasks for the same problem are made, then the program generates a number 

of practicable solutions which can be analyzed to address specific issues such as time, cost and 

quality. Therefore, with the proper steering algorithm, the CDBES can also be used for optimization 

purposes such as solving the RCPSP. 
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However, before starting an optimization problem with the CBDES a number of extensions and 

enhancements must be introduced to make this simulation approach useful and acceptable to the 

construction industry. The first characteristic that negatively affects the popularity of simulations in 

the industry is the time-consuming preparation process of the input data (Section 4.3). Every 

simulation run requires the definition of every single construction task along with their technological 

dependencies, their resource requirements and the available amount of resources. To collect and 

organize all of this data is not only time consuming but also a complex task where the overview of 

the completed data can easily be lost. To accelerate this data preparation process and get the data 

better organized, Wu et al. (2010b) introduced a levels-of-detail hierarchy (Section 4.3.2) and a 

pattern-based approach (Section 4.3.3) that was then further enhanced by the author of this thesis.  

To enhance this preparation process a software-tool called Preparator (Section 4.3.5) was 

developed that applies the introduced levels-of-detail approach and the process patterns. With the 

Preparator the user can connect these process patterns and activity packages with 3D objects of the 

building to provide a clear overview of the already assigned construction tasks. By using the 

Preparator, building components whose construction methods are not yet assigned might be 

identified. The use of a 3D model also facilitates the creation of precedence relationships between 

construction tasks that belong to different building components such as identifying that the building 

of the abutment must precede the construction of the superstructure. 

Therefore, using the Preparator can accelerate the preparation process of the input data required 

for simulations. However, the overall preparation is still time consuming due to the large amount of 

customizable data (e.g. performance factors, necessary resources for individual tasks, etc.) in spite of 

automated hierarchic modeling, process patterns and 3D-model connection.  

Hence, further research must be undertaken in this field to achieve a simulation technique that is 

also favored by the industry. A BIM and knowledge-based method, such as the case-based reasoning, 

represent a good basis for overcoming these issues and for an automated precedence graph generation 

for an entire construction project. Further research should focus on ways in which the creation of 

custom construction methods and input of custom data can be accelerated or automated. In addition, 

another important research task is how to compose automated definitions of different construction 

scenarios for the same project. This would allow the planner to compare not only schedules with 

different task sequences, but also schedules with different construction scenarios, such as diverse 

resource utilizations. 

Beside the enhancement of the input data preparation of process simulation, in order to raise the 

acceptance rate of the simulation-based scheduling within the construction industry it must become 

competitive with the conventionally used network scheduling techniques. The network scheduling 

techniques are able to determine float time for individual tasks in a simple manner, taking only 

precedence constraint into account. Therefore the author introduced a newly developed simulation-

based technique that is able to determine total float for every individual task in the project also taking 

precedence and resource constraints into account in one determination step (Section 5.3 and 

Section 5.4). 

This was achieved by a methodology that is similar to the forward and backward pass of the 

network scheduling techniques. For the simulation, the concept of the forward and backward 

simulation has been introduced. The concept of the forward simulation is identical to the concept of 

the introduced CBDES method (Section 4.2.2). It is used to generate a feasible schedule for which 

the total float time of the tasks is determined.  

The concept of backward simulation (Section 5.3.1) is basically the same as that of the backward 

pass – the simulation actually runs forward in time but with reversed execution conditions. Using this 

approach, the resulting schedule is calculated based on a simulation that starts from a virtual 
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completion date for the construction project and runs backwards in time until the starting point of the 

construction process is reached. The most challenging task in the backward simulation is to follow 

an identical schedule sequence to that of the forward simulation.  

In order to achieve schedule compatibility, every task has to start at the same date or later in time 

than in the forward simulation. To this end, the task selection algorithm was modified so that the 

backward simulation uses a priority-based approach to determine the next executable task. The 

priorities of the tasks are assigned according to the completion date of the task in the forward 

simulation. To solve the unintended swap phenomenon where several independent tasks that use the 

same resources swap position in the backward simulation, sequence enforcement constraints are 

defined based on the result of the forward simulation. 

By comparing the results of the backward simulation after applying these constraints with the 

schedule of the forward simulation, the execution order of the tasks will be identical and every task 

will start later in time. Hence, the time difference between the earliest and latest start date of a task 

represents its total float without exceeding the resource limits at any time during the project. The 

tasks without total float comprise the critical chain of tasks for the respective configuration of 

resources. A comprehensive case study was introduced to illustrate the application of this new 

approach and demonstrated that the determination of detailed total float for each individual task using 

discrete event simulation taking into consideration available resources is realizable and that the 

determined results are also feasible (Section 5.5). However, the limitations of the method were also 

revealed.  

When there is a large enough time frame within the schedule, and within this large time frame 

independent tasks that are executed simultaneously, can be pushed one after another without 

exceeding the resource limits, a phenomenon called serialization of tasks can be observed. This 

situation leads for the float time determination to an over-constrained case. Therefore the determined 

float times for these tasks will be less than their actually possible total float. 

The serialization of the tasks means, that the simultaneously executed tasks during the forward 

simulation might be ordered into a series of tasks. Thus, creating one larger, connected task made of 

two smaller tasks. On this way they require fewer resources than unconnected and so they can be 

pushed more forward in time such gaining more float than would they be pushed separated forward 

in time. When no serialization can occur the determined float values for the individual tasks are 

correct. Further research should investigate how to loosen the restrictions of the sequence 

enforcement constraints so that the results are both feasible and correct in every case. 

The application of the developed methodology was also been presented with multiple resource 

constraints for the individual tasks (Section 5.7). Here, due to the larger number of resource 

constraints, the flexibility of the tasks has been restricted thereby reducing the amount of total float 

for the tasks. 

With the enhancement of the input data preparation process and the float time determination 

method, the constraint-based discrete event simulation has been made competitive with the 

conventionally used network scheduling techniques. An additional development for this technique 

was an external algorithm that is capable of guiding and steering the simulation through the search 

space of the RCPSP to determine feasible schedules with near optimal makespan for the considered 

construction project. 

Chapter 6 included the most important definitions, characteristics and features of an optimization 

problem, such as the RCPSP, and a discussion regarding some already developed optimization 

techniques. 

The RCPSP belongs to the class of NP-hard combinatorial optimization problems. As already 

explained above, this means that it is not possible to determine the optimal solution in polynomial 
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time. Due to the exponential complexity of the problem and the combinatorial explosion, the larger 

the problem becomes (e.g. the more tasks the project contains), the more the size of the search space 

explodes making the identification of all of the possible solutions impossible. Therefore, the 

application of advanced solution methods is necessary since they are capable of manipulating the size 

of the search space by subdividing, reducing or traversing through it. 

The two deterministic approaches, the Integer programming technique (Section 6.5.1.1) and the 

Branch-and-Bound method (Section 6.5.1.2) were analyzed in detail by focusing on the solutions for 

the RCPSP. Such deterministic solution techniques are capable of identifying the actual optimal 

solution for the optimization problem but greater computational effort is required for larger problems.  

In contrast, heuristic solutions are capable of generating feasible solutions for optimization 

problems in low computational time. However, their results may be suboptimal. These methods are 

based on decisions that are inspired by common sense or intuition such as the rule of thumb, a good 

guess or the use of an estimate. The working mechanism of the most widely used heuristic approaches 

like the Greedy algorithm, the tabu search, the simulated annealing, the genetic algorithm, the particle 

swarm optimization and the ant colony optimization were discussed in detail in Section 6.5.2. Using 

these techniques to solve the RCPSP was addressed in the corresponding sections.  

Since the CBDES uses a time increment-based scheduling algorithm it is only able to generate 

non-delay schedules, which might not contain the actual optimal solution for the optimization 

problem (Section 7.1.1). Therefore, the application of a deterministic solution strategy that uses the 

CBDES to solve the RCPSP might result in a solution other than the actual optimal solution. When 

the industrial application of software is desired, the computational time of the solutions process 

should be low in order to keep the techniques attractive. Therefore the author decided to develop a 

heuristic method that guides the CBDES in an effective way through the search space of the makespan 

optimization problem to generate near optimal solutions for the RCPSP. 

The idea behind the new heuristic approach is to use an algorithm that swaps the position of certain 

task pairs within the schedule and so it is capable of traversing through the search space of the RCPSP. 

Furthermore it was important that applying a swap of tasks within the program results in a new 

schedule. This is considered as an important development compared to existing heuristic approaches. 

The first phase of the research was to identify the task pairs that when swapped result in a change in 

the schedule. These are called reasonable swaps (Section 7.3). To determine the list of reasonable 

swaps first a feasible schedule must be generated with the CBDES. In this schedule points in time 

can be identified where tasks requiring the same resources cannot be executed simultaneously due to 

resource limits. The combinations of the corresponding tasks create the list of reasonable swaps. The 

list of reasonable swaps varies with the schedules. In order to manipulate the order of these tasks 

within the schedule a priority-based scheduling algorithm was applied for the CBDES. Swapping the 

priorities of a reasonable swap will generate a new and different schedule. Furthermore, a reasonable 

swap is identified as a decision made by the simulation during the scheduling process. Increasing the 

available resources at this date results in eliminating the identified swap and thus the concerned tasks 

can be executed simultaneously, shortening the duration of the project on minimal costs. 

The next phase of the research was to define an algorithm that is capable of using these reasonable 

swaps and steering the simulation to generate schedules that work toward the optimum. An 

enumeration tree was used to represent the search space and the results of the optimization. A 

neighbor solution is generated by applying one reasonable swap to the schedule. A randomly 

generated base schedule is on the top of the enumeration tree. Each level works toward enhancing the 

schedule to move it more toward an optimal schedule. The schedules on the next level will be 

generated by applying one of the reasonable swaps from the schedule.  
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To traverse effectively in this enumeration tree two meta-heuristic approaches were introduced. 

An additional third strategy has also been developed based on the experiences with the previous two 

methods. The idea behind traversing within the enumeration tree is to determine a node and evaluate 

its result. When it is acceptable the neighborhood solutions are generated for it. When a node is not 

acceptable under the program, it is identified and deleted from any further calculations. Since the 

result of a reasonable swap cannot be foreseen, a swap might result in a better schedule but it could 

also lead to a worse schedule. Therefore it was important for the developed techniques to be able to 

exit from local optima. This was achieved by adding in a tolerance factor. The tolerance factor defines 

a limit of how much longer than the current best solution a schedule is allowed to be in order for it to 

be considered for further calculations. 

The first steering technique is a Greedy-like algorithm (Section 7.5.2) that uses a constant, 

relatively low tolerance factor. The second steering technique is a simulated annealing-based 

technique which starts with a higher tolerance factor then the greedy-like algorithm. The tolerance 

factor is then reduced at each new level of the enumeration tree (new neighbor solutions). Both 

strategies are enhanced with a tabu search algorithm that prohibits the “swap-back” of the previously 

applied last reasonable swap thereby lowering the chance of identifying the same schedule multiple 

times. Although the tabu search algorithm avoids the repeated generation of the same schedule on the 

same branch, the same schedule can still be generated on different branches of the tree causing the 

identification of the same child nodes multiple times. To reduce the effect of the potential of 

identifying the same schedule multiple times within the enumeration tree, a third approach 

(Section 7.5.4) has been developed. This approach is called the depth oriented heuristic search 

algorithm. This approach uses the simulated annealing approach to determine results only few levels 

deep within the enumeration tree (levels 4-6 depending on the size of the problem) and then restarts 

the optimization with the current best solution as root node. Thus after the predefined number of 

levels the duplicated schedules will be ignored and the optimization continues with only the current 

best solution. 

Two case studies have been investigated to test the applicability of these heuristic optimization 

strategies (Section 7.5.4). As a result of the study, both previously introduced former meta-heuristic 

optimization methods turned out to be effective for identifying the optimal construction scheduled 

relative to makespan and for solving the RCPSP. In comparing the two techniques, it was 

demonstrated that within the same computation time limit the simulated annealing was able to reach 

deeper levels of the enumeration tree and often was able to find a schedule with a shorter makespan 

than the greedy-like algorithm. This could be due to the decreasing tolerance factor which allows for 

more solutions identified on deeper levels than with the greedy-like algorithm. Alternatively, this 

could be due to the lower rate of duplicated schedules.  

By comparing the results of the third, depth oriented heuristic search algorithm with the simulated 

annealing approach, it is clear that the depth oriented approach found a better solution for the problem. 

Although the calculations took longer, the best schedule found from using the depth oriented approach 

had a makespan that was approximately 10% shorter than the total makespan of the current best 

solution using the simulated annealing approach. Therefore the application of the depth oriented 

search is preferred. The better results can be explained by the reduced search space of the method due 

to the reduction of the duplicated schedules. 

It is important to stress that since the introduced strategies are heuristic approaches, it cannot be 

proven that the best solutions found by these approaches are in fact the optimal solution for the 

optimization problem. Further improvements can be introduced by further reducing the number of 

duplicate schedules. 
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The selection of the proper tolerance factor for the optimization is a challenging task. Its value 

depends on the makespan of the project and the actual duration of each task. For smaller problems 

with the makespan of approximately 100 time instances having tasks with an average duration of 4-

5 time instances, a starting tolerance factor of 10% should be considered. For larger projects with a 

makespan of approximately 1000 time instances having tasks with an average duration of 10-20 time 

instances, the tolerance factor should be lowered to 1-5%. When the average duration of the tasks 

increases, the tolerance factor should also be increased. Furthermore, for a deeper search, when the 

rate of improvement of the current best schedule decreases between optimization runs the starting 

tolerance factor and its decreasing rate should also be decreased in order to reduce the search space 

and to avoid or lower the rate of the duplication of results already determined by previous 

optimization runs. 

In summary, in this thesis, simulation-based methods were introduced for data preparation, float 

time determination and schedule optimization for construction projects. The purpose of the conducted 

research was to raise the competitiveness and acceptance of simulation-based scheduling techniques 

in the construction industry. This has been achieved by the introduction of new approaches. These 

are the software Preparator, the float time determination under resource constraints, and the 

reasonable swap-based heuristic optimization strategies.  

To achieve further success with the simulation-based scheduling, first its scheduling algorithm 

should be enhanced so that it is capable of determining active schedules in addition to its current 

ability to identify non-delay schedules. Thus it could also be used for deterministic optimization 

purposes. Furthermore, additional methods should be developed that automate and also accelerate the 

data preparation process for the simulation. For the float time determination a solution for the 

serialization problem would result in a technique that is capable of determining the correct amount of 

float time for every individual task in the resource constrained case. The further development of the 

priority swap-based heuristic optimization technique would also likely further reduce the number of 

duplicate schedules. Additional research should extend the application field of the CBDES to generate 

feasible solutions for the multi-mode RCPSP, which would support the analysis of different scenarios 

for construction projects. One further important research topic should address the application of time 

and space constraints for single tasks that define a frame in which the corresponding task or tasks 

must be executed. 

The introduced approaches are mostly applicable in the later design phases of a construction 

project when there are enough information about the construction site, the boundary conditions such 

as restrictions in time and space and the building or bridge itself available. Through the developed 

methods one can accelerate the design phase of a construction project and so the designer has the 

opportunity to investigate higher number of scenarios for the project, or to prepare the selected design 

more detailed in a higher quality than before. 
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List of new constraints for the in Figure 5-21 introduced test 

case 

Superstructure1/Girder2/Transport depends on Abutment2/Pour Concrete 

Superstructure1/Girder2/Transport depends on Pier1/ Pour Concrete 

Superstructure1/Girder2/Transport depends on Abutment1 /Pour Concrete 

Superstructure1/Girder2/Transport depends on Superstructure1/Scaffold 

 

Superstructure1/Girder1/Transport depends on Abutment2/Abutment2/Pour Concrete 

Superstructure1/Girder1/Transport depends on Pier1/Pier1/Pour Concrete 

Superstructure1/Girder1/Transport depends on Abutment1/Abutment1/Pour Concrete 

 

Pier/Foundation depends on Abutment1/Construct Formwork 

Pier/Foundation depends on Abutment1/Tie Rebar 

Pier/Foundation depends on Abutment2/Remove Formwork 

 

Abutment2/Foundation depends on Pier1/Tie Rebar 

Abutment2/Foundation depends on Pier1/Create Formwork 

Abutment2/Foundation depends on Abutment1/Remove Formwork 

 

Abutment2/Tie rebar depends on Pier1/Pour Concrete 

 

Abutment1/Foundation depends on Pier1/Pier1/Tie Rebar 

Appendix 
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Abutment1/Foundation depends on Pier1/Pier1/Create Formwork 

Abutment1/Foundation depends on Abutment2/Remove Formwork 

 

Abutment2/Create Formwork depends on Pier1/Pour Concrete 

Abutment2/Create Formwork depends on Abutment1/Pour Concrete 

 

Pier1/Head Beam depends on Abutment2/Remove Formwork 

Pier1/Head Beam depends on Superstructure1/Bearings 

Pier1/Head Beam depends on Abutment1/Remove Formwork 

 

Abutment2/Pour Concrete depends on Pier1/Remove Formwork 

Abutment2/Pour Concrete depends on Abutment1/Remove Formwork 

 

Abutment1/Formwork depends on Superstructure1/Scaffold 

 

Abutment2/Remove Formwork depends on Superstructure1/Girder2/Lift 

Abutment2/Remove Formwork depends on Superstructure1/Girder1/Lift 

 

Abutment1/Remove Formwork depends on Parapet2/Pour Concrete 

Abutment1/Remove Formwork depends on Parapet1/Pour Concrete 

 

Superstructure1/Girder2/Lift depends on Parapet1/Remove Formwork 

 

Superstructure1/Girder1/Lift depends on Parapet2/Remove Formwork 

 

Parapet1/Pour Concrete depends on Superstructure1/Girder Heads 
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Results to the verification and validation of the introduced 

total float determination methods in Section 5.3 and 5.4 
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Precedence Graph: 

 

Results of the forward simulation (available resources: unlimited): 
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 Day 1 2 3 4 5 6 7 8 9 

 
 

 

 

0 1 1

T1

0 0 1

1 2 3

T2

1 0 3

1 1 2

T3

2 1 3

3 1 4

T4

4 1 5

3 2 5

T5

3 0 5

2 2 4

T6

5 3 7

5 2 7

T8

5 0 7

5 1 6
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7 2 8

7 1 8
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7 0 8
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8 0 9
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Duration
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Task
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Results of the total float determination: 

Results determined by the PDM: 
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Results of the total float determination without the sequence 

enforcement constraints for the test case introduced in 

Figure 5-21 

 
  

Float: 8 days

Float: 0

Float: 5 days

Float: 5 days

Float: 9 days

Float: 5 days

Float: 22 days

Float: 2 days

Float: 8 days
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Float: 9 days
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Float: 10 days

Float: 5 days
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Results of the backward simulation with the sequence 

enforcement constraints for the case study introduced in 

Figure 5-21 

 
 

 

  

 



212 Appendix 

 

 

List of priorities for the case study in Section 7.5.4 

Abutment 1/ Pour concrete  19 

Abutment 1/ Create Formwork  26 

Abutment 1/ Remove Formwork  17 

Abutment 1/ Tie Rebar   25 

Abutment 1/ Foundation   30 

Abutment 2/ Pour concrete  24 

Abutment 2/ Create Formwork  29 

Abutment 2/ Remove Formwork  21 

Abutment 2/ Tie Rebar   28 

Abutment 2/ Foundation   32 

Parapet 1/ Pour concrete   7 

Parapet 1/ Create Formwork  11 

Parapet 1/ Remove Formwork  6 

Parapet 1/ Tie Rebar   10 

Parapet 2/ Pour concrete   5 

Parapet 2/ Create Formwork  9 

Parapet 2/ Remove Formwork  4 

Parapet 2/ Tie Rebar   8 

Pier 1/ Pour concrete   20 

Pier 1/ Create Formwork   23 

Pier 1/ Remove Formwork  18 

Pier 1/ Tie Rebar    22 

Pier 1/ Foundation   31 

Pier 1/ Head Beam   27 

Superstructure/ Bearings   16 

Superstructure/ Scaffold   15 

Superstructure/ Girder 1/ Transport 34 

Superstructure/ Girder 1/ Lift  14 

Superstructure/ Girder 2/ Transport 33 

Superstructure/ Girder 2/ Lift  13 

Superstructure/ Deck   12 

Superstructure/ Girderheads  3 

Superstructure/ Sealing   2 

Superstructure/ Remove Scaffold  1 
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Input data for the second optimization case study in 

Section 7.6.2 as XML file 

See https://www.cms.bgu.tum.de/de/team/46-team/161-dori/... 
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