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Zusammenfassung

Diese Bachelorarbeit behandelt das Thema �Generalisierte lineare Modelle mit parame-
trischen Linkfunktionen in R�. Nach einer kurzen Einleitung widmen wir uns den mathe-
matischen Grundlagen der linearen Regression, um die Theorie der generalisierten linearen
Modelle herzuleiten. Vieles der zugrundliegenden Theorie lässt sich auf die generalisierten
Modelle verallgemeinern. Während die linearen Modelle bei der Verteilung für den Fehler
auf die Normalverteilung beschränkt sind, kann in generalisierten linearen Modellen dafür
jede Verteilung der Exponentialfamilie verwendet werden. Im dritten Kapitel wird neben
der Beschreibung des Modells ein Überblick über die Schätzung mittels der Maximum-
Likelihood-Methode gegeben. Hierfür wird der sogenannte Fisher scoring Algorithmus
hergeleitet, welcher sich in den IWLS-Algorithmus (�iterative weighted least squares�) um-
schreiben lässt. Dieser fuÿt auf der Theorie der Schätzmethode der kleinsten Quadrate,
welche wir im Kapitel über lineare Modelle erklären. Ein zentraler Punkt dieser Arbeit
ist die De�nition eigener parametrischer Linkfunktionen und deren Implementierung in
R. Daher wird in Unterkapitel 3.3 darauf eingegangen, wie die Standard-Linkfunktionen
in R implementiert sind. Auÿerdem wird ein Überblick gegeben, welche Wahl für die
Linkfunktion für die jeweilige Verteilungsfamilie zulässig ist. Zuletzt wird das theoretis-
che Fundament gelegt um anhand einer Kennzahl, der Devianz, einzuschätzen, wie gut
das Modell zu den gegebenen Daten passt.

Nach dem theoretischen Teil werden im vierten Kapitel die Daten vorgestellt, welche in
dieser Arbeit immerzu Verwendung in den Beispielen �nden. Im fünften Kapitel wird die
R interne glm-Funktion auf die eben genannten Daten angewendet. Hauptaugenmerk gilt
der Devianz, welche eine Maÿzahl für den sogenannten �goodness of �t� ist. Sie misst wie
stark die Erwartungswerte des Modells von den gegebenen Daten abweichen. Je kleiner
die Abweichung ist, desto besser passt das Modell zu den Daten. Daher gilt es dasjenige
Modell auszuwählen, welches eine minimale Devianz liefert. In den Beispielen der gewöhn-
lichen glm-Funktion sind die resultierenden Devianzen zum Teil nicht zufriedenstellend.
Im sechsten Kapitel führen wir deshalb Transformationen für die Linkfunktionen ein. Dies
ist das Kernthema der Arbeit und wurde bereits von Czado (2007) thematisiert. Mithilfe
der parametrischen Linkfunktionen lässt sich in allen Fällen ein Modell erzielen, welches
besser auf die Daten passt, da die resultierende Devianz geringer ist.

Jedoch kennt man den optimalen Parameter nicht, der für die Minimierung der De-
vianz in der parametrischen Linkfunktion verwendet werden sollte. In Unterkapitel 6.3
wird die glmProfile-Funktion vorgestellt, die dieses Problem lösen soll. Nach Eingabe
eines Parameter-Vektors wird ein Plot der Devianz gegen den Parameter und die entsprech-
enden Werte ausgegeben. Auÿerdem wird der Parameter angegeben, der die Devianz mini-
miert mit entsprechender minimaler Devianz. Die glmProfile-Funktion wird im siebten
Kapitel auf die in dieser Arbeit verwendeten Datensätze angewandt. Im achten Kapitel
vergleichen wir die Ergebnisse der glm-Funktion für die Standard-Linkfunktionen mit den
Ergebnissen der glm-Funktion für die modi�zierten Linkfunktionen für die optimalen Pa-
rameter. Abschlieÿend geben wir eine kurze Zusammenfassung und einen Ausblick auf
interessante Weiterführungen der vorgestellten Themen und Funktionen.
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1 Introduction

In today's world, further analysis of the available data is often necessary. By saying the
word �data� we refer to a set of n observations or measurements made from di�erent
groups of objects or subjects (compare to Dobson (1999)(p. 1)). Regression analysis is
commonly used to describe the relationship among certain variables. Thus, we focus on
one dependent variable and try to describe it through one or more independent variables.

non-random measurement


Covariates
independent variables
explanatory variables
predictor variables
regressor variables

⇓ Examine the relationship between the observations ⇓

random measurement


Response
dependent variable
outcome

Table 1.1: Basic notation of the thesis.

Hence, we �nd ourselves in a probabilistic model and model our response through a
linear regression model using the following equation:

yi = β0 + β1xi1 + · · ·+ βkxik + εi

Here yi is the random response and xi1, . . . , xik is the set of known covariates. β0, β1, . . . , βk
are the unknown regression parameters and εi is the random error term. The underlying
assumption is that the relationship between the response and the covariates is linear.
Myers et al. (2002)(p. 1�.) states more precisely that the mean of the response is a linear
function of the unknown parameters. We will describe the linear regression model in detail
in Chapter 2. The description in Section 2.1 provides the notional basis for the entire
thesis. In addition we will focus on the least squares estimation and on the maximum
likelihood estimation in the framework of the linear models (see Section 2.2). However, as
Section 2.3 reveals, the linear models may be inappropriate in some situations.

For that reason we introduce the generalized linear models (GLMs) in Chapter 3. The
advantage of GLMs compared to the linear regression models is, that one can examine
a more applicable class of error distributions. The derived statistical models can handle
distributions coming from the exponential family, for example:

� normal distribution

� binomial distribution

� Poisson distribution

� gamma distribution



2 1 INTRODUCTION

After the description of the generalized linear models in Section 3.1 we will focus
on the estimation of the regression parameters. Section 3.2 will address the maximum
likelihood estimation. We will derive the Fisher scoring algorithm and rewrite it into the
iterative weighted least squares algorithm. Both algorithms can be used to estimate the
vector of unknown regression parameters β ∈ Rp. In Section 3.3 we will give an overview
of important families. In particular, the implementation of the common link functions in
R is of interest. Afterwards we will de�ne the deviance as a measure for the goodness of
�t of a generalized linear model (see Section 3.4). The third chapter will conclude with
an overview of the link functions in R and additional comments (see Section 3.5).

For every generalized linear model we have to de�ne a relationship between the linear
predictor and the mean through the so-called link functions. The problem is that we have
to choose the link function before even getting started with the regression analysis. By this
time we often have insu�cient information about an adequate choice of the link function.
Consequently, we have to face cases, in which the link function seems inappropriate. In
these cases we want to increase the goodness of �t by using parametric link families
performing a transformation on the tails (compare to Czado (1992) and Czado (2007)).
In Chapter 6 we will introduce the parametric link families and we will exemplify how
GLMs in R can be �tted using user-de�ned link functions (see Section 6.2). We will
present the tail modifying functions and an extension to the glm function in R (called
glmProfile). Either a single tail (�left� or �right�) or both tails can be modi�ed to increase
the goodness of �t. Therefore the parametric link functions can be seen as one- or two-
parametric extensions of the common link functions. The parameters of these user-de�ned
link functions can be derived by the glmProfile function.

We will accompany the theory by examples of the corresponding functions applied on
the data sets we will introduce in Chapter 4. In the �rst part we will apply the ordinary
glm function with a common link function (see Section 3.3 and Chapter 5) on the data
sets. In Section 6.2 we will examine the data again using parametric link functions in
the ordinary glm function. The optimal parameters for the tail modi�ying GLMs can be
derived by the glmProfile function, which we will de�ne in Section 6.3. In Chapter 7 we
want to present the output of the glmProfile function.

To clarify the improvement of the tail transformations we will present a short summary
of the main results of the examples in Chapter 8. The results show that the tail modi�ed
GLMs will increase the goodness of �t compared to the ordinary generalized regression
models in all cases. To conclude the work we will give a brief outlook and a summary of
the thesis in Chapter 9. The calculations, which needed to be done throughout the work,
can be found in the appendix (see Chapter A).

Remark 1.1 (Usage of statistical software)
Throughout this thesis we will support our theory using examples implemented in the
software environment of R using the R version 3.1.0 (2014-04-10). R is mainly used for
statistical computing and graphics and runs on almost every operating system. In addition
the users can apply a tremendous variety of functions coming along with the common
packages. A lot of functions and routines used in special analyses can be included using
the corresponding packages. There is also the possibility to include R output in LATEX-
documents. For my thesis I used the package knitr (see Xie (2013)) which allows to write
dynamic documents with R.
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R is very similar to the environment of the programming language S and it is a GNU
project (i.e. available as free software). A lot of code written in S runs under R as well.
Apart from some important di�erences we can regard R as a di�erent version of S. For
further information about the R Project please visit: http://www.r-project.org/.

Remark 1.2 (Idea of parametric link functions in S)
In this thesis we want to modify the common link functions in R. In Czado (1992) the
ordinary link families were extended by using an advantageous parametric class of link
transformations. This idea was elaborated in Czado (2007), where parametric link families
were used to �t GLMs in S. All functions (i.e. the hpsi functions and the glmProfile

function), which we present in this thesis, were therefore implemented in the statistical
environment of S.

The main task of this thesis is to implement the parametric link families in the statisti-
cal programming environment of R. In most cases we could use the framework as presented
in Czado (2007), converting the code into a basis running in the R environment. However,
there were also parts, in which we had to come up with new ideas (especially the de�-
nition of the link functions is di�erent). We also want to present the underlying theory
of generalized linear models in detail following the notation in Czado et al. (2013). The
resulting R code and the R data frames will be presented in the corresponding chapters.
Moreover, all data sets and functions described throughout this thesis were put together
in the package ParLinkFam, which contains help �les with descriptions and application
examples.

http://www.r-project.org/


4 2 THE LINEAR MODELS

2 The linear models

As the classical regression models are of great importance in statistical data analysis, we
�rst consider the simple linear regression model. In Chapter 2 we follow Czado et al.
(2013)(Sections 2.1 and 2.2) in presenting important results for the linear models. The
notional basis will be introduced in Section 2.1, where we will formulate the linear model.
Section 2.2 will focus on the estimation of the unknown parameters through least squares
estimation and through maximum likelihood estimation. However, as Section 2.3 shows,
the linear models cannot be used in all the desired applications. Hence, we will use the
underlying theory to derive the generalized linear models (as presented in Chapter 3).

2.1 Model description

The content presented in Section 2.1 can be found in Czado and Schmidt (2011)(Section
7.1) and Bates and Watts (2007)(Section 1.1). The linear regression model describes the
random response Y in dependency of the k known predictors (denoted by: x1, ..., xk).
For each observation (i.e. ∀i ∈ {1, · · · , n}) we assume that the observation yi made from
the response Yi is a linear function of the values of the covariates for this observation,
denoted by xi1, ..., xik. Of course this will not �t perfectly in all cases. Thus, for each
observation we will have to add a random error term (denoted by εi). In addition the
linear model contains the so-called intercept β0.

De�nition 2.1 (The linear model and its assumptions)
(i) linearity:

for each observation we assume that the random response is related to the covariates
in a linear way:

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi ∀i ∈ {1, . . . , n} (2.1)

with a random error term satisfying: E [εi] = 0 ∀i ∈ {1, · · · , n}.

(ii) independence:
the random error terms ε1, . . . , εn are independent.

(iii) variance homogeneity:
they also have a constant variance and it holds:

Var [Yi] = Var [εi] = σ2

(iv) normality:
lastly, the error terms ε1, . . . , εn follow a normal distribution.

Remark 2.2
� for one speci�c observation i ∈ {1, . . . , n} we will summarize the covariates xi1, ...,
xik in the covariate vector xi, also taking into account the in�uence of the intercept,
i.e. we get:

xi := (1, xi1, ..., xik)
> ∈ Rk+1 (2.2)



2.1 Model description 5

� we are interested in estimating the regression parameters β0, . . . , βk. All in all we
will thus estimate p := k + 1 unknown parameters from the n observations. The
vector of regression parameters will be denoted by:

β := (β0, β1, . . . , βk)
> ∈ Rp (2.3)

� Yi is a random variable and thus it can have an expectation or a variance. On the
other hand, we also have non-random quantities, for example the covariate vector xi.
However, sometimes random variables are also inconveniently denoted with small
letters (e.g. εi). Further commonly used abbreviations and notation are presented
in Section A.5.

� due to De�nition 2.1 we can conclude for the error terms that εi ∼ N (0, σ2) ∀i ∈
{1, · · · , n} since they follow a normal distribution with mean µε = 0 and a constant
variance σ2. Thus, ε1, . . . , εn are i.i.d. random variables.

� since β0, . . . , βk ∈ R and xi ∈ Rp we see that only εi is random in Equation (2.1).
Consequently, the distribution of Yi must be the same as for εi. Thus, Yi has to be
normally distributed. For the mean µi and the variance σ2 we get:

µi := E [Yi] = β0 + β1xi1 + β2xi2 + · · ·+ βkxik = x>i β (2.4)

Var [Yi] = Var [εi] = σ2

⇒ Yi ∼ N (µi, σ
2) ∀i ∈ {1, . . . , n}

Distribution of the random vectors

Since ε1, . . . , εn are i.i.d. N (0, σ2) distributed it is appropriate to think about the distri-
bution of the vector ε := (ε1, . . . , εn)>. Afterwards we can derive a distribution of the
following vector:

Y := (Y1, . . . , Yn)> (2.5)

in order to transform the linear regression model of De�nition 2.1 into matrix-vector
notation. For this we de�ne the design matrix X ∈ Rn×p.

De�nition 2.3 (The design matrix)
For n observations and the n corresponding covariate vectors x1, . . . ,xn the design matrix
X ∈ Rn×p is given by:

X :=


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
1 xn1 xn2 . . . xnk

 Eq. (2.2)
=


x>1
x>2
...
x>n

 ∈ Rn×p

De�nition 2.4 (Matrix-vector notation for linear models)
Using this de�nition we can rewrite the linear model in matrix-vector notation as follows:

Y = Xβ + ε with ε ∼ Nn(0, σ2In)

where Nn(µ,Σ) denotes the n-dimensional normal distribution with mean vector µ and
variance-covariance matrix Σ (see also Subsection 2.2.2).
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Remark 2.5
Assuming normality conditions we have (according to De�nition 2.4):

E [Y ]
E[ε]=0

= Xβ (2.6)

Var [Y ] = σ2In

⇒ Y ∼ Nn(Xβ, σ2In) (2.7)

2.2 Parameter estimation in linear models

We want to derive estimates for the unknown vector of regression parameters β ∈ Rp,
assuming that the conditions of De�nition 2.1 hold. We will introduce two techniques
to derive the estimates β̂ = (β̂0, . . . , β̂k)

> ∈ Rp out of the n observations given by the
observations made from the response (i.e. y1, . . . , yn) and the observations made from the
corresponding covariate vector (i.e. x1, . . . ,xn). Together these observations will form
the data (see Myers et al. (2002)(p. 8)).

2.2.1 Least squares estimation

In this subsection we will follow the calculation in Myers et al. (2002)(p. 7�.). We want
to �nd values for β̂ s.t. for every observation i ∈ {1, . . . , n} the �tted values

ŷi := β̂0 + β̂1xi1 + · · ·+ β̂kxik

do not lie too far from the observations yi = β0 + β1xi1 + · · · + βkxik + εi. Therefore we
want to determine the values β̂0, . . . , β̂k of β0, . . . , βk that minimize the sum of the squares
of the errors, which is given by:

De�nition 2.6 (Sum of the squares of the errors)
The i-th error term (i ∈ {1, . . . , n}) is given by:

εi = yi − (β0 + β1xi1 + · · ·+ βkxik)
see Eq. (2.4)

= yi − x>i β

Consequently, the sum of the squares of the errors is de�ned as:

Q(β | y) :=
n∑
i=1

ε2
i

see Eq. (2.4)
=

n∑
i=1

(yi − x>i β)2

Again we can rewrite the quantities in vector notation:

y := (y1, . . . , yn)> ∈ Rn

ε = (ε1, . . . , εn)>
Def. 2.4

= y −Xβ ∈ Rn

Therefore, we can rewrite the sum of the squares of the errors as:

Q(β | y) = ‖ε‖2
2 = ‖y −Xβ‖2

2 (2.8)
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To minimize Equation (2.8) we must at least satisfy the necessary condition of �rst order
(compare to Ulbrich and Ulbrich (2012)(Chapter 5)):

∂Q(β | y)

∂β
= 0

⇔ ∂

∂β

(
‖y −Xβ‖2

2

)
= 0

⇔ ∂

∂β

(
(y −Xβ)>(y −Xβ)

)
= 0

⇔ ∂

∂β

y>y − β>X>y︸ ︷︷ ︸
=(y>Xβ)

>
∈R

−y>Xβ + β>X>Xβ

 = 0

⇔ ∂

∂β

y>y − 2 y>X︸ ︷︷ ︸
=(X>y)>

β + β>X>Xβ

 = 0

⇔ ∂

∂β

(
y>y − 2(X>y)>β + β>X>Xβ

)
= 0

X>X is symmetric⇔ −2X>y + 2X>Xβ = 0

⇔ X>Xβ = X>y (2.9)

Remark 2.7 (Least squares normal equation)
Equation (2.9) is called the least squares normal equation. If the design matrix X ∈ Rn×p

is invertible (i.e. has full rank [rank(X) = min{p, n} = p, assuming n > p]), then we
can rewrite the least squares normal equation by solving it for the estimate β̂. I.e. the
minimum of Q(β | y) is attained at:

β̂ = (X>X)−1X>y

We refer to the solution β̂ using the term least squares solution or ordinary least squares
estimator for β̂.

2.2.2 Maximum likelihood estimation

In the following we will derive the maximum likelihood estimator for β following the
general de�nitions given in Czado and Schmidt (2011)(Section 3.3). Recall that we derived
Equation (2.7) and accordingly we have (assuming normality conditions hold):

Y ∼ Nn(Xβ, σ2In)

In this case the likelihood function is given by the density of the multivariate normal
distribution in n dimensions. According to Seber (1977)(p. 22�.) for Y ∼ Nn(µ,Σ)
(where Σ ∈ Rn×n is a positive de�nite matrix) the density is given by:

fY (y | µ,Σ) =
1

(2π)
n
2

√
det Σ

exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}
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Now for the response vector Y in a linear model we have:

Σ = σ2In

⇒
√

det Σ =
√

(σ2)n = (σ2)
n
2

⇒ Σ−1 =
1

σ2
In

⇒ (y − µ)>Σ−1(y − µ) =
1

σ2
(y − µ)>(y − µ) =

1

σ2
‖y − µ‖2

2

µ = Xβ

⇒ ‖y − µ‖2
2 = ‖y −Xβ‖2

2

Hence, the likelihood function of (β, σ) given y equals:

L(β, σ | y) =
1

(2πσ2)
n
2

exp

{
− 1

2σ2
‖y −Xβ‖2

2

}
The log likelihood is thus given by:

ln(L(β, σ | y)) = ln

(
1

(2πσ2)
n
2

)
− 1

2σ2
‖y −Xβ‖2

2

= −n
2

ln(2πσ2)− 1

2σ2
‖y −Xβ‖2

2

Eq. (2.8)
= −n

2
ln(2πσ2)− 1

2σ2
Q(β | y) (2.10)

Remark 2.8 (Same estimates from both estimation methods)
Since the only part depending on β in Equation (2.10) is Q(β | y), the maximum likeli-
hood estimation yields to the same estimate as the least squares estimation. In particular,
the least squares solution β̂ is both the least squares estimate and the maximum likelihood
estimate of β.

2.3 Disadvantages of the linear model

The arguments presented in this section can be found in Myers et al. (2002)(Chapter 1).

Remark 2.9 (Importance of the linear regression model)
The linear regression models are of importance because of a variety of reasons:

(i) if we have that E [Yi] = f(xi) (for a single covariate xi) is the relationship between
the response and the covariate, then a �rst order Taylor approximation yields to:

E [Yi] = f(x0) +
df(x)

dx
|x=x0 (x− x0) + remainder

Which leads to (ignoring the remainder and the error term): β0 + β1(x− x0). For k
covariates the �rst order Taylor approximation yields to Equation (2.4). Hence, the
linear models approximate the response as a �rst order Taylor approximation does.
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(ii) one can estimate the unknown p = k+1 parameters β0, . . . , βk by solving p lin-
ear equations simultaneously using the method of least squares. Many programs
facilitate regression model �tting through a implementation of this method.

(iii) further the statistical theory is well-developed and implemented in statistical com-
puter software (like R).

(iv) we can extend the theory of linear models to derive generalized linear models.

On the one hand, the linear regression model and its requirements are easy to un-
derstand. On the other hand, this implies that in many situations the linear model is
considered as too restrictive and not suitable. Some reasons why it may be inappropriate
are:

� we can only apply it for responses which follow a normal distribution.

� for continuous response variables the normality assumption can be unrealistic, e.g.
non-negative and highly right-skewed responses.

These restrictions imply that we cannot analyze discrete responses such as injuries or
patients su�ering from speci�c diseases or the occurrence of natural phenomena (like
hurricanes or earthquakes). In addition we cannot explore binary responses as many
�elds in science and engineering do. Often we regard responses being either a success
(encoded with 1) or a failure (encoded with 0).

We thus introduce a more general regression model meeting our requirements:

� applicable to a variety of problems, e.g. by allowing distributions from the expo-
nential family, such as:

� normal distribution (see Subsection A.1.1)

� binomial distribution (see Subsection A.1.2),

� Poisson distribution (see Subsection A.1.3),

� gamma distribution (see Subsection A.1.4),

� well developed statistical theory, i.e. a lot of literature related to the theory.

� computer software supporting the framework of the model.

The generalized linear models (GLMs) satisfy all of the requirements. Therefore, we
dedicate the complete next chapter to these important regression models.
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3 The generalized linear models

On the following pages we will present important results about generalized linear models.
The content presented below is also explained in Czado et al. (2013)(Sections 3.1, 3.2 and
3.3). As mentioned before, we now also allow for normal, binomial, Poisson and gamma
responses all being members of the exponential family. For this we will introduce the
exponential family and clarify the parameters for the single distributions (the calculation
can be found in the Section A.1). Then, we will formulate the generalized linear model
(see Section 3.1). In Section 3.2 we will focus on the theory of estimating the vector
of regression parameters β in this setting. The central role is played by the maximum
likelihood estimation. The big di�erence to linear models is that we now have to solve non-
linear equations, for which we will derive the iteratively weighted least squares algorithm.
We will also focus on the concept of families and link functions and we will show, how
they are implemented in the statistical programming environment of R (see Section 3.3).
Afterwards we will de�ne the so-called deviance in Section 3.4. The deviance serves as a
criterion for assessing the goodness of �t of a generalized linear model. The chapter about
generalized linear models will conclude with a short overview and comments on the link
functions (see Section 3.5).

3.1 Model description

According to Fahrmeir and Tutz (2001)(p. 19�.), the density (or probability mass func-
tion, respectively) of the response Yi in a GLM (for i ∈ {1, . . . , n}) is a member of the
exponential family. This is a very useful class of distributions, which we will now de�ne.

De�nition 3.1 (Exponential family)
A random variable Y follows a distribution function of the exponential family, if its density
(or probability mass function, respectively) can be written in the following way:

f(y | θ, φ, ω) = exp

{
yθ − b(θ)

φ
ω + c(y, φ, ω)

}
where

� b(·) and c(·) are speci�ed functions determined by the distribution.

� φ ∈ R+ is the so-called scale or dispersion parameter.

� θ ∈ R is called canonical or natural parameter.

� ω is the weight.

Remark 3.2
For ease of notation we will often write

f(y | θ, φ) = exp

{
yθ − b(θ)
a(φ)

+ c(y, φ)

}
(3.1)

for random variables with distributions belonging to the exponential family. This form is
given in McCullagh and Nelder (1983)(p. 20f) and it is valid, since we commonly have

a(φ) =
φ

ω
. (3.2)
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Example 3.3 (Members of the exponential family)
According to Hardin and Hilbe (2007)(p. 9), the exponential family includes the following
distributions:

� normal or Gaussian distribution

� binomial distribution

� Poisson distribution

� gamma distribution

� inverse Gaussian distribution

� geometric distribution

� negative binomial distribution

In the following table we summarize important components of the exponential family
distribution for the most important distributions in the setting of generalized linear mod-
els. For each of the following distributions we show in the appendix (see Section A.1),
that they belong to the exponential family by deriving the single components. A similar
table can be found in Fahrmeir and Tutz (2001)(p. 21).

Distribution θ(µ) b(θ) φ φ known ω a(φ) = φ
ω

N (µ, σ2) µ θ2

2
σ2 × 1 σ2

ScaledBin(n,p) ln( p
1−p) ln(1 + exp {θ}) 1 X n 1

n

Poi(λ) ln(λ) exp {θ} 1 X 1 1

Γ(µ, ν) − 1
µ

− ln(−θ) 1
ν
× 1 1

ν

Table 3.1: Components of the exponential family distributions for important families.

Similar to the de�nitions given in Fahrmeir and Tutz (2001)(p. 434) and McCullagh
and Nelder (1983)(p. 18), we will now de�ne the components of a generalized linear
model.

De�nition 3.4 (Generalized linear model)
A generalized linear model will be described by means of the following three components

(i) the random component:
for each observation i ∈ {1, · · · , n} the corresponding random response Yi is inde-
pendent of the other responses and follows a distribution belonging to the expo-
nential family, i.e. its density (or probability mass function, respectively) is of the
form:

f(yi | θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
(ii) the systematic component:

for each observation i ∈ {1, · · · , n} we de�ne the linear predictor ηi by:

ηi = ηi(β) := xTi β
Eq. (2.2)

=
Eq. (2.3)

β0 + β1xi1 + · · ·+ βkxik (3.3)

where β0 ∈ R is called intercept and β ∈ Rp is the vector of regression parameters.
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(iii) the parametric link component:
it relates the random component with the systematic component. Therefore, we
consider (comparable to Equation (2.4)) the mean µi = E [Yi] for each observation
i ∈ {1, · · · , n}. The di�erence is, that we do not assume, that the mean is exactly
equal to the linear predictor. Instead we assume a relationship according to the
so-called link function g : G → H (with G,H ⊂ R):

g(µi) = ηi(β) = xTi β (3.4)

Remark 3.5
� similar to Equation (2.4), De�nition 2.4 and Remark 2.5 we can rewrite the linear
predictor in matrix-vector notation:

η (β) = η = Xβ ∈ Rn (3.5)

� the sets G,H represent restrictions coming from the assumption µi = E [Yi]. Surely
this restriction of µi yields to restrictions on ηi (e.g. through the domain of the

linkinverse F (η) we get η
!
∈ H).

� throughout the work we will denote by F (η) = F (ηi) the inverse of the link function,
i.e. F (·) = g−1(·) is a function of η. We have F : H → G and µi = F (ηi).

� Hence, we have: g is a function of µ (i.e. g(µ)) with g : G → H. Thus, we have
µ ∈ G. For the linkinverse we have F: H → G is a function of η (i.e. F(η)). Thus,
we have η ∈ H. We can see that the link component of a GLM relates the linear
predictor ηi to the expectation µi.

Theorem 3.6 (Expectation and variance of the exponential family)
Assume Y has a distribution from the exponential family, than we have

E [Y ] = b′(θ)

Var [Y ] = b′′(θ)a(φ)

Proof:
A proof can be found in McCullagh and Nelder (1983)(p. 20f.).

2

Remark 3.7 (Variance function v(µi))
As described in Fahrmeir and Tutz (2001)(p. 20), the canonical parameter θi is a function
of the mean µi (i.e. θi = θ(µi)). Further the variance is of the following form:

Var [yi | xi] = σ2(µi) = φ
v(µi)

ωi

where the variance function v(·) is determined by v(µi) = b′′(θi) = ∂2b(θi)
∂2θi

. This separation
for the variance is made, because b′′(θi) depends on θi (and thus on µi) while the other
part a(φ) is independent of θi (see McCullagh and Nelder (1983)(p. 21)).
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Example 3.8 (Expectation and variance for the exponential family)
As in Fahrmeir and Tutz (2001)(p. 21), we can calculate the expectation and the variance
for the members of the exponential family using Theorem 3.6 and the components we have
presented in Table 3.1:

Distribution E [Y ] = b′(θ) variance funct. = b′′(θ) Var [Y ] = b′′(θ)φ
ω

N (µ, σ2) µ = θ 1 σ2

ω
= σ2

ScaledBin(n,p) p = exp{θ}
1+exp{θ} p(1− p) = exp{θ}

(1+exp{θ})2
p(1−p)
ω

= p(1−p)
n

Poi(λ) λ = exp {θ} λ λ
ω

= λ

Γ(µ, ν) µ = −1
θ

µ2 µ2

νω
= µ2

ν

Table 3.2: Moments of generalized linear model families.

3.2 Parameter estimation in generalized linear models

We want to estimate the unknown parameter vector β ∈ Rp in the following setting. We
assume that Y (as de�ned in Equation (2.5)) �ts in the setting of a GLM with covariate
vector xi for the i-th response Yi given by:

xi = (xi1, . . . , xip)
> ∈ Rp (3.6)

Remark 3.9 (Change in notation)
Now we want to introduce a more advantageous way to write the vectors xi and β intro-
duced in the Equations (2.2) and (2.3).

� Equation (3.6) does not contain any ones for the intercept (xi1 = 1). Instead it
begins with xi1 as its �rst component while now xip is the last component. It is still
a vector of dimension p (p = k+1), i.e. xi ∈ Rp and hence, the design matrix X has
still the same form (i.e. X ∈ Rn×p).

� therefore our vectors are shifted in the following sense. We can w.l.o.g. assume the
intercept to be one of the parameters. We therefore denote the intercept β0 by β1

with the following notation:

(1, xi1, . . . , xik)→ (xi1, . . . , xip)

(β0, β1, . . . , βk)→ (β1, β2, . . . , βp)

� this is just a change in notation proving a more comfortable notation. Nothing
changes in the mathematical theory we have developed so far.

The estimation of β can be done by using themaximum likelihood estimation (MLE) in
GLMs (see De�nition 3.11). To develop the theory about MLE we need some de�nitions.
By Theorem 3.6 and Remark 3.7 we can rewrite the canonical parameter θi in terms of
the mean µi. This motivates the following de�nition:
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De�nition 3.10 (Inverse mean function in GLMs)
The inverse mean function h(·) in a GLM is de�ned through:

h(·) = (b′)
−1

(·)

and satis�es
h(µi) = θi ∀i ∈ {1, . . . , n} (3.7)

Further µi is a function of ηi (see Remark 3.5) and ηi depends on the regression
parameters β1, . . . , βp (see Equation (3.4)). Now we want to concentrate on the estimation
of β and thus other parameters are assumed to be known.

In the following we want to introduce the method of maximum likelihood estimation
comparable to Czado and Schmidt (2011)(Section 3.3). The maximum likelihood estima-
tion is the most important method to derive an estimator for the unknown parameter
or parameter vector, respectively. In our case this is the vector of regression parameters
β = (β1, . . . , βp) ∈ Rp. Therefore, this method determines the maximum likelihood esti-

mate (MLE) denoted by β̂ by maximizing the so-called likelihood function. The estimator
(random variable) is called maximum likelihood estimator (also abbreviated by MLE) and
unfortunately it is also denoted by β̂. This notional inconvenience has also been addressed
in Wood (2006)(p. 60). Hence, we want to �nd p maximum likelihood estimates β̂j for
j ∈ {1, . . . , p} from the data given by the observations yi we can observe from Yi (for
i ∈ {1, . . . , n}).

De�nition 3.11 (Maximum likelihood estimation in GLMs)
Given one single observation yi, the likelihood function of the parameter β is given by
its density (or probability mass function, respectively). In GLMs the response Yi follows
a distribution of the exponential family (see De�nition 3.4). Therefore, the likelihood
function is given by:

Li(β, φ | yi) := f(yi | θi, φ)
Yi ∼ Exp. Fam.

=
see Def. 3.1

exp

{
θiyi − b(θi)

a(φ)
+ c(yi, φ)

}
(3.8)

Maximizing the likelihood function to obtain the MLE β̂ is equivalent to optimizing the
so-called log likelihood. The log likelihood for observation yi is given by:

li = li(β, φ | yi) := ln [Li(β, φ | yi)]
Eq. (3.8)

=
θiyi − b(θi)

a(φ)
+ c(yi, φ) (3.9)

By De�nition 3.4 the random responses Yi of a GLM are independent. Therefore, the
joint density is simply the product of all marginal densities (the same holds for probability
mass functions). Consequently, the likelihood function for the vector of observations
y := (y1, . . . , yn)> (we observe from the vector of responses Y ) is the product of the
likelihood functions Li(β, φ | yi) for the single observations. Hence, we get:

L(β, φ | y) =
n∏
i=1

Li(β, φ | yi)
Eq. (3.8)

= exp

{
n∑
i=1

(
θiyi − b(θi)

a(φ)
+ c(yi, φ)

)}
Eq. (3.9)

= exp

{
n∑
i=1

li(β, φ | yi)

}
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In this setting the log likelihood is given by:

l(β, φ | y) := ln [L(β, φ | y)] =
n∑
i=1

li(β, φ | yi) =
n∑
i=1

(
θiyi − b(θi)

a(φ)
+ c(yi, φ)

)
(3.10)

Therefore, the log likelihood in a GLM is given by the sum of the log likelihoods for the
single observations yi for i ∈ {1, . . . , n}. This derivation can be veri�ed by comparing the
steps to the calculation made in Wood (2006)(p. 61�.).

Now our goal is to maximize the log likelihood given in Equation (3.10). For this we
must at least satisfy the �rst order optimization criterion: ∂l(β,φ|y)

∂βj
= 0 ∀j ∈ {1, . . . , p} and

hence we need partial derivatives for iterative gradient descendant methods (see Ulbrich
and Ulbrich (2012)). As calculated in Dobson (1999)(p. 146) we receive:

∂li
∂βj

=
yi − µi
Var [Yi]

(
∂µi
∂ηi

)
xij

Thm. 3.6
=

yi − µi
b′′(θi)a(φ)

(
∂µi
∂ηi

)
xij (3.11)

∂l(β, φ | y)

∂βj
=

n∑
i=1

∂li
∂βj

Eq. (3.11)
=

n∑
i=1

(
yi − µi

b′′(θi)a(φ)

(
∂µi
∂ηi

)
xij

)
(3.12)

Now we de�ne the weights in GLMs (see McCullagh and Nelder (1983)(p. 33)) to
rewrite the optimization condition in Equation (3.12):

De�nition 3.12 (Weights in GLMs)
Let b′′(·) be the variance (see Remark 3.7), then the weights in generalized linear models
are de�ned through:

Wi = Wi(β) :=

(
∂µi
∂ηi

)2

b′′(θi)

Remark 3.13
With this de�nition the formula in Equation (3.12) is equivalent to:

∂l(β, φ | y)

∂βj
=

n∑
i=1

1

a(φ)
(yi − µi)Wi(β)

(
∂ηi
∂µi

)
xij

In the following calculations we will derive the quantities presented in Fahrmeir and
Tutz (2001)(p. 38�.) and McCullagh and Nelder (1983)(p. 31�.) using our notation.

Remark 3.14
Since a(φ) is independent of β, we don't need to consider the scale parameter φ while
optimizing. In Fahrmeir and Tutz (2001)(p. 38) this is re�ected by assuming w.l.o.g.
φ = 1. For this reason the following de�nitions are given in their unscaled forms, not
including the parameter φ. This is su�cient to derive point estimates of β.

Following the calculation in McCullagh and Nelder (1983)(p. 32�.), it is su�cient to
solve the so-called unscaled score equations of a GLM in order to get the MLE β̂ of β:
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De�nition 3.15 (Unscaled score equations in GLMs)
We de�ne the unscaled score through:

sj(β,y) :=
n∑
i=1

(yi − µi)Wi(β)

(
∂ηi
∂µi

)
xij

!
= 0

The set of equations de�ned through s1(β,y), . . . , sp(β,y) is called the unscaled score
equations. Again we de�ne the corresponding vector through:

s(β,y) := (s1(β,y), . . . , sp(β,y))> ∈ Rp (3.13)

This vector is called the p-dimensional score function.

Since the likelihood equations are non-linear, they often can be solved only numerically
through iterative algorithms (see Fahrmeir and Tutz (2001)(p. 42)). One of them is the
Fisher scoring algorithm, which will be derived now.

De�nition 3.16 (Unscaled Hessian matrix in GLMs)
The unscaled Hessian matrix in a GLM is given by:

H = H(β,y) :=
∂s(β,y)

∂β
=


∂s1(β,y)
∂β1

∂s1(β,y)
∂β2

. . . ∂s1(β,y)
∂βp

∂s2(β,y)
∂β1

∂s2(β,y)
∂β2

. . . ∂s2(β,y)
∂βp

...
...

...
∂sp(β,y)

∂β1

∂sp(β,y)

∂β2
. . . ∂sp(β,y)

∂βp



=

(
∂2l(β,y)

∂βi∂βj

)
i,j∈{1,...,p}

=


∂2l(β,y)
∂2β1

∂2l(β,y)
∂β1∂β2

. . . ∂2l(β,y)
∂β1∂βp

∂2l(β,y)
∂β2∂β1

∂2l(β,y)
∂2β2

. . . ∂2l(β,y)
∂β2∂βp

...
...

...
∂2l(β,y)
∂βp∂β1

∂2l(β,y)
∂βp∂β2

. . . ∂2l(β,y)
∂2βp

 ∈ Rp×p

Remark 3.17 (Observed Fisher information matrix)
The negative of H is called the observed Fisher information matrix:

Iobs(β) = −H(β,y) = −
(
∂2l(β,y)

∂βi∂βj

)
i,j∈{1,...,p}

∈ Rp×p (3.14)

De�nition 3.18 (Unscaled Fisher information matrix in GLMs)
The unscaled Fisher information matrix (also called the expected Fisher information) is
given by the expectation of the negative of the unscaled Hessian matrix:

I := I(β) := E [−H(β,y)] = E [Iobs(β)] ∈ Rp×p
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We now compute the component Iij (i.e. the entry in the i-th row and the j-th column
of the unscaled Fisher information matrix I) as in McCullagh and Nelder (1983)(p. 32).
Therefore, we �rst compute one entry of the unscaled Hessian matrix.

Hij =
∂2l(β,y)

∂βi∂βj
=
∂si(β,y)

∂βj

Def. 3.15
=

∂

∂βj

[
n∑
z=1

(yz − µz)Wz(β)

(
∂ηz
∂µz

)
xzi

]

=
n∑
z=1

(yz − µz)
∂

∂βj

[
Wz(β)

(
∂ηz
∂µz

)
xzi

]
︸ ︷︷ ︸

= ∂
∂βj

[
1

b′′(θz)(
∂µz
∂ηz

)xzi
]

+
n∑
z=1

∂

∂βj
[(yz − µz)]︸ ︷︷ ︸

=−( ∂µz∂ηz
)xzj

Wz(β)

(
∂ηz
∂µz

)
xzi︸ ︷︷ ︸

= 1
b′′(θz)(

∂µz
∂ηz

)xzi

=
n∑
z=1

(yz − µz)
∂

∂βj

[
1

b′′(θz)

(
∂µz
∂ηz

)
xzi

]
+

n∑
z=1

−
(
∂µz
∂ηz

)
xzj

1

b′′(θz)

(
∂µz
∂ηz

)
xzi

=
n∑
z=1

(yz − µz)
∂

∂βj

[
1

b′′(θz)

(
∂µz
∂ηz

)
xzj

]
−

n∑
z=1

1

b′′(θz)

(
∂µz
∂ηz

)2

xzixzi (3.15)

Now we have to take the expectation of the negative of Equation (3.15) to get the corre-
sponding entry of the unscaled Fisher information matrix:

Iij = E [−H(β,y)]ij = E

[
−∂si(β,y)

∂βj

]
E[Yz ]=µz

=
n∑
z=1

1

b′′(θz)

(
∂µz
∂ηz

)2

xzixzj =
n∑
z=1

Wzxzixzj (3.16)

We de�ne:

W := W (β)
Def. 3.12

:= diag(W1(β), . . . ,Wn(β)) (3.17)

= diag(W1, . . . ,Wn) =



W1

W2 0
. . .

0 Wn−1

Wn


Using this very advantageous notation we can rewrite the unscaled Fisher information
matrix as (see also Fahrmeir and Tutz (2001)(p. 41)):

I(β) = X>W (β)X

Remark 3.19
Here X ∈ Rn×p is de�ned as in De�nition 2.3. We had:

X =


x>1
x>2
...
x>n

⇒ X> = (x1,x2, . . . ,xn) ∈ Rp×n
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Remark 3.20 (Finding stationary points using the Newton algorithm)
A stationary point of a function f : Rn → R (f ∈ C2) can be found using the so-called
Newton algorithm. The algorithm seeks for a stationary point x∗ with ∇f(x∗) = 0 by
using the following iterative scheme (see Ulbrich and Ulbrich (2012)(algorithm 10.6)):

xn+1 = xn − ∇2f(xn)−1︸ ︷︷ ︸
inverse of the Hessian matrix

∇f(xn)

Our function to be optimized (i.e. maximized) is the log likelihood function, i.e.

f = l(β, φ | y)

⇒ ∇f = s(β,y)

⇒ ∇2f = H(f)
Def. 3.16

= H(β,y)

Therefore, we would imagine that an iterative scheme such as:

βn+1 = βn −H−1(βn,y)s(βn)

would su�ce to �nd the maximum likelihood estimate β̂. However, we have to face the
following problems:

� only for canonical links the expected Fisher matrix is equal to the observed Fisher
information matrix. We would like to avoid dependence on the data.
⇒ We take the expected Fisher information matrix in our further calculations.
Another advantage is that it is easier to evaluate and always positive semi-de�nite
(see Fahrmeir and Tutz (2001)(p. 42)).

� the Newton algorithm opens up a whole theory about convergence and starting val-
ues (i.e. one could also �nd a minimum using this algorithm, no global convergence).
⇒ Not regarded, but the ambitious reader can read more about it in Ulbrich and
Ulbrich (2012).

� MLEs might not exist and one has to convince oneself that it is (in case of existence)
unique.
⇒ Not regarded, but the ambitious reader can read more about it in Fahrmeir and
Tutz (2001)(p. 43�.) and the literature given there.

The algorithm, which is derived out of these considerations is the so-called Fisher
scoring algorithm (compare to Fahrmeir and Tutz (2001)(p. 39�.)). The result β̂ may
not be a global maximum of l(β, φ | y) but it is a solution to s(β,y) = 0.

De�nition 3.21 (Fisher scoring algorithm)
(i) Choose initial values β0 (i.e. an initial estimate β̂0) and accuracy ε ∈ R+. Let us

denote by βr the current estimates of β.

(ii) while ‖βr − βr+1‖ ≥ ε do: for each step r ∈ N0

βr+1 := βr + I−1(βr)s(βr,y) (3.18)

(iii) Set β̂ := βr+1
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Remark 3.22 (Rewrite the Fisher scoring algorithm)
The Fisher scoring algorithm determines the MLE β̂ of β. There is however another way
to rewrite this algorithm using iteratively weighted least squares. An advantage is, that
we can use statistical software to estimate the regression parameter vector β (see Hardin
and Hilbe (2007)(p. 29)). Hence, we will now derive the iterative weighted least squares
algorithm based on the Fisher scoring algorithm.

The iteration in Equation (3.18) can be written as

βr+1 = βr + I−1(βr)s(βr,y)

⇔ I(βr)βr+1 = I(βr)βr + s(βr,y) (3.19)

Therefore, we calculate the j -th element of the right hand side in Equation (3.19):

(I(βr)βr + s(βr,y))j

=



I11(βr) I12(βr) . . . I1p(β

r)
I21(βr) I22(βr) . . . I2p(β

r)
...

. . .
...

Ip1(βr) Ip2(βr) . . . Ipp(βr)

 (βr1 , . . . , β
r
p)
> + (s1(βr,y), . . . , sp(β

r,y))>


j

=



I11(βr) I12(βr) . . . I1p(β

r)
I21(βr) I22(βr) . . . I2p(β

r)
...

. . .
...

Ip1(βr) Ip2(βr) . . . Ipp(βr)



βr1
βr2
...
βrp

+


s1(βr,y)
s2(βr,y)

...
sp(β

r,y)



j

=


∑p

z=1 I1z(β
r)βrz + s1(βr,y)∑p

z=1 I2z(β
r)βrz + s2(βr,y)
...∑p

z=1 Ipz(βr)βrz + sp(β
r,y)


j

=

p∑
z=1

Ijz(βr)︸ ︷︷ ︸
Eq. (3.16)

=
∑n
m=1Wm(βr)xmjxmz

βrz + sj(β
r,y)︸ ︷︷ ︸

Def. 3.15
=

∑n
i=1 (yi−µri )Wi(β

r)

(
∂ηr
i

∂µr
i

)
xij

=

p∑
z=1

n∑
m=1

Wm(βr)xmjxmzβ
r
z +

n∑
i=1

(yi − µri )Wi(β
r)

(
∂ηri
∂µri

)
xij

=
n∑
i=1

Wi(β
r)xij


p∑
z=1

xizβ
r
z︸ ︷︷ ︸

=x>i β
rDef. 3.4

=
Rem. 3.9

ηri

+(yi − µri︸︷︷︸
=g−1(ηri )

)

(
∂ηri
∂µri

)


=
n∑
i=1

Wi(β
r)xij

[
ηri + (yi − µri )

(
∂ηri
∂µri

)]
︸ ︷︷ ︸

:=Zri

=
n∑
i=1

Wi(β
r)xijZ

r
i (3.20)
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Remark 3.23
The variable Zr

i := ηri + (yi−µri )
(
∂ηri
∂µri

)
is called adjusted dependent variable (or �working

observation vector� in Fahrmeir and Tutz (2001)(p. 42)).

Calculating the j -th element of the left hand side in Equation (3.19), we get:

(
I(βr)βr+1

)
j

=



I11(βr) I12(βr) . . . I1p(β

r)
I21(βr) I22(βr) . . . I2p(β

r)
...

. . .
...

Ip1(βr) Ip2(βr) . . . Ipp(βr)



βr+1

1

βr+1
2
...

βr+1
p



j

=


∑p

z=1 I1z(β
r)βr+1

z∑p
z=1 I2z(β

r)βr+1
z

...∑p
z=1 Ipz(βr)βr+1

z


j

=

p∑
z=1

Ijz(βr)︸ ︷︷ ︸
Eq. (3.16)

=
∑n
i=1Wi(β

r)xijxiz

βr+1
z =

p∑
z=1

n∑
i=1

Wi(β
r)xijxizβ

r+1
z

=
n∑
i=1

Wi(β
r)xij

p∑
z=1

xizβ
r+1
z︸ ︷︷ ︸

=x>i β
r+1Def. 3.4

=
Rem. 3.9

ηr+1
i

=
n∑
i=1

Wi(β
r)xijη

r+1
i (3.21)

If we combine Equation (3.20) and Equation (3.21), we get:

n∑
i=1

Wi(β
r)xijη

r+1
i =

n∑
i=1

Wi(β
r)xijZ

r
i ∀j ∈ {1, . . . , p}

With W (βr) de�ned similarly to Equation (3.17), we can rewrite this equivalently in
matrix-vector notation (compare to Fahrmeir and Tutz (2001)(p. 42)):

X>W (βr)︸ ︷︷ ︸
:=W r

Xβr+1 = X>W (βr)︸ ︷︷ ︸
:=W r


Zr

1

Zr
2
...
Zr
n


︸ ︷︷ ︸

:=Zr

⇔ X>W rXβr+1 = X>W rZr (3.22)

⇔ βr+1 = (X>W rX)−1X>W rZr (3.23)

Remark 3.24 (Advantages of the IWLS)
According to Fahrmeir and Tutz (2001)(p. 42), the advantage of the IWLS is that one
can use results for the least squares estimation for the iteratively weighted least squares
after adequate modi�cations.
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Remark 3.25 (Origin of the name �iterative weighted least squares�)
In Subsection 2.2.1 we derived the ordinary least squares estimation in linear models.
Now we want to derive the concept of weighted least squares. The calculation is similar
to the calculation we made for the ordinary case and can be found for instance in Myers
et al. (2002)(p. 49�.).

De�nition 3.26 (Generalized least squares estimator of β)
We consider the model:

Z = Xβ + ε with ε ∼ Nn(0,W )

with W ∈ Rn×n known, positive de�nite (i.e. only positive eigenvalues). Then, we get β̂
by solving the so-called generalized normal equation (as seen in Remark 2.7 for the least
squares estimator):

X>W−1Xβ = X>W−1Z (3.24)

⇔ β̂ = (X>W−1X)−1X>W−1Z

Here β̂ depends on the weights (more precisely on the variance-covariance matrix W).
Thus, β̂ is called the weighted least squares estimator.

With this intuition we can understand that Equation (3.22) corresponds to the generalized
normal equation (as given in Equation (3.24)). We examine the weighted least squares of
the response Zr with design matrix X and weights (W r)−1. Hence, it seems reasonable
to speak of iteratively weighted least squares (IWLS).

Finally, we can present the iterative weighted least squares (IWLS) algorithm, which is
derived from the iterative Fisher scoring algorithm (see De�nition 3.21). This routine is
also used in the glm function in R in the default method (see help(glm.fit)).

De�nition 3.27 (IWLS for estimation of β in GLMs)
(i) Choose initial values β0 and accuracy ε ∈ R+. Let us denote by βr the current

estimates of β (for r ∈ N0).

(ii) while ‖βr − βr+1‖ ≥ ε do: determine for each observation i ∈ {1, . . . , n}

� the current linear predictors: η̂ri := x>i β
r

� the current �tted means: µ̂ri := g−1(η̂ri )
Rem. 3.5

= F (η̂ri )

� current canonical parameters: θ̂ri := h(µ̂ri )

� adjusted dependent variables: Zr
i := η̂ri + (yi − µ̂ri )

(
dηi
dµi

∣∣∣
µi=µ̂ri

)

� W r
i :=

[
b′′(θi)|θi=θ̂ri

(
dηi
dµi

∣∣∣
µi=µ̂ri

)2
]−1

Regress Zr
i on xi (i.e. xi1, . . . , xip) with weights (W r

i )−1 to obtain new estimates
βr+1, i.e. derive βr+1 using (see Equation (3.23) and Remark 3.25):

βr+1 = (X>W rX)−1X>W rZr
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Remark 3.28 (Asymptotic normality of the MLE)
According to Fahrmeir and Tutz (2001)(p. 44), the maximum likelihood estimator β̂ is
asymptotically normally distributed. We have the following asymptotic behavior for a
large number of observations (n large):

β̂ ∼ Np(β, I−1(β))

Therefore, we also get an asymptotic result for the variance-covariance matrix of the
maximum likelihood estimator β̂:

Cov
(
β̂
)
≈ I−1(β)

Remark 3.29 (Derivation of the IWLS)
For the derivation of the IWLS in our notation we cited McCullagh and Nelder (1983)
and Fahrmeir and Tutz (2001) for the most important steps. Similar derivations can also
be found in other literature about GLMs, for example in Dobson (1999)(see Section 4.4).
But as every book (or author, respectively) has its own notation, it is advisable to restrict
oneself to only few resources.
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3.3 Families and link functions

By the term family we refer to the distribution of the error term and the link function
in the model. In R this is one of the arguments, which have to be speci�ed in the glm

function (see help(glm)). If we call a family without specifying the link function, then
the default link will be used. The link functions that are already implemented in R can
be seen in Figure 3.1. The default links are printed with blue letters. However, it is also
possible to call the glm function with user-de�ned links (see Chapter 6). We need to
choose the link according to the data we want to examine. The following diagram may
help (see Fahrmeir and Tutz (2001) and help(family) in R):

available

data

Continuous response Counting response Binary response

Gaussian family

Gamma family

Inverse Gaussian

family

Poisson family Binomial family

Identity Link

Log Link

Inverse Link

Inverse Link

Identity Link

Log Link

1/mu ˆ 2 Link

Inverse Link

Identity Link

Log Link

Log Link

Identity Link

Sqrt Link

Logit Link

Probit Link

Cauchit Link

Log Link

Cloglog Link

Figure 3.1: Families implemented in R (quasi families are missing) with the names of
accepted link functions. The default links are printed with blue letters.
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Remark 3.30
In the following we will not examine every possible link function and every possible family.
In particular, we will not focus on the inverse Gaussian family. All the other families will
be discussed with their corresponding default link functions. For the binomial distribution
the probit link function will also be discussed.

For a link function in R we need the following speci�cations (see help(make.link)):

(i) linkfun: the link function, i.e. a function of the parameter µ.

(ii) linkinv: the inverse link function, i.e. a function of the parameter η.

(iii) mu.eta: the derivative (dµ
dη
), i.e. the �rst derivative of the linkinv function. It is a

function depending on η.

(iv) valideta: a function of η which states �TRUE� if η is in the domain of linkinv.

(v) name: the name to be used for the link function.

3.3.1 Gaussian family

We consider the case of a normal distribution (i.e. we assume that the errors follow
a normal distribution) and choose the identity link. This leads us to the simple linear
regression model as introduced in De�nition 2.1. Consequently, the linear predictor and
the mean are equal (see Equation (2.4)). The relationship between the linear predictor
and the mean is re�ected by the identity link. It is the most common used link for the
Gaussian family and thus it is set as the default link in R (i.e. link= �identity�). However,
if we notice that a non-linear relationship seems more appropriate, we can also choose
another link (see Fahrmeir and Tutz (2001)(p. 23)). The log link (i.e. g(µ) = ln(µ)) or
the inverse link (i.e. g(µ) = 1

µ
) are allowed (see also Figure 3.1). We would like to refer

to this situation using the term Gaussian regression model.

Remark 3.31
� the mean of the Gaussian distribution satis�es µ ∈ R. Hence, we have G = R.

� since the link is the identity we have η ∈ R and consequently we have H = R. This
is also the restriction encoded through valideta in the link function.

Example 3.32 (Gaussian family (link = �identity�))
In R the identity link is de�ned through:

make.link("identity")

## $linkfun

## function (mu)

## mu

## <environment: namespace:stats>

##

## $linkinv
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## function (eta)

## eta

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## rep.int(1, length(eta))

## <environment: namespace:stats>

##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>

##

## $name

## [1] "identity"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the identity link function in a Gaussian regression model is de�ned through:

(i) linkfun: η = g(µ) = µ

(ii) linkinv: µ = g−1(η) = F (η) = η

(iii) mu.eta: dµ
dη

(F (η)) = 1

(iv) valideta: 1{η∈R} = TRUE

3.3.2 Binomial family

Let us consider binomial responses. According to Fahrmeir and Tutz (2001)(p. 24), the
setting of a binomial regression is the following.

De�nition 3.33 (Binomial regression model)
Consider we are given the data for n observations i.e. for i ∈ {1, . . . n} we are given the
realizations yi of the responses and the values of the known covariates xi. Recall that
the yi are realizations from the random variable Yi, where Y1, . . . , Yn are independent (see
De�nition 3.4). Since the responses are binary, they can only take values in {0, 1}, i.e.
∀i ∈ {1, . . . n} we have Yi = 0 or Yi = 1. Therefore, we can determine the binary variable
completely by its success probability. Given a covariate vector xi, the success probability
is de�ned through:

pi := p(xi) := P (Yi = 1 | xi) = E [Yi | xi]
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Remark 3.34
� the success probability must ful�ll the constraint : p(xi) ∈ [0, 1] ∀i ∈ {1, . . . n}.

� please notice that for a binary random variable the expectation is the success prob-
ability, i.e. we have pi = E [Yi] =: µi.

In the following we want to restrict ourselves to two important models for the success
probability: the logistic regression model and the probit regression model as given in
Fahrmeir and Tutz (2001)(p. 24�.).

De�nition 3.35 (Logistic regression model)
In the logistic regression model we take:

p(xi) = P (Yi = 1 | xi) =
exp{x>i β}

1 + exp{x>i β}

By replacing through known quantities we get:

µi = pi := p(xi) = F (ηi) =
exp{ηi}

1 + exp{ηi}

De�nition 3.36 (Probit regression model)
In the probit regression model we take:

p(xi) = P (Yi = 1 | xi)
Rem. A.3

= Φ(x>i β)

By replacing through known quantities we get:

µi = pi := p(xi) = F (ηi) = Φ(ηi)

Remark 3.37
As described in Fahrmeir and Tutz (2001)(p. 25), we do usually consider scaled binomial
responses when examining binomial responses. I.e. we consider Y ∗i := Yi

ni
as responses

(for i ∈ {1, . . . , n}). For the distribution of Y ∗i we introduce the term �scaled binomial
distribution�. In the following we will only refer to GLMs with scaled binomial responses
and thus we introduce the following notation.

De�nition 3.38 (Scaled binomial distribution)
For Y ∼ Bin(n, p) we say Y ∗ := Y

n
∼ ScaledBin(n, p) follows a scaled binomial distribu-

tion. For the ordinary binomial distribution we can take values k ∈ {0, 1, . . . , n}, while
for Y ∗ ∼ ScaledBin(n, p) we have k∗ := k

n
∈ {0, 1

n
, 2
n
, . . . , n−1

n
, 1}). In Subsection A.1.2

we show that the scaled binomial distribution is a member of the exponential family.
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For Y ∗ ∼ ScaledBin(n, p) the expectation is E [Y ∗] = µ = p ∈ (0, 1). Therefore,
we seek for a link function g : (0, 1) → R. Using the De�nitions 3.35 and 3.36 and
g(·) = F−1(·) we can see that such functions are given by:

� g(µi) = ln
(

µi
1−µi

)
(inverse of the distribution function of the logistic distribution)

� g(µi) = Φ−1(µi) (inverse of the distribution function of the standard normal distri-
bution)

If we take the inverse of the distribution function of the logistic distribution as link
function, we speak of the logistic regression. Likewise, if we take the inverse of the distri-
bution function of the standard normal distribution, we speak of the probit regression.

Remark 3.39
� we have for the expectation µ ∈ (0, 1). Therefore, we choose G = (0, 1).

� since the link is either logit or probit we receive η ∈ R as restriction. Hence, we have
H = R. This is also the restriction encoded through valideta in the link function.

Example 3.40 (Binomial family (link = �logit�))
In R the logit link is de�ned through:

make.link("logit")

## $linkfun

## function (mu)

## .Call(C_logit_link, mu)

## <environment: namespace:stats>

##

## $linkinv

## function (eta)

## .Call(C_logit_linkinv, eta)

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## .Call(C_logit_mu_eta, eta)

## <environment: namespace:stats>

##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>

##

## $name

## [1] "logit"

##

## attr(,"class")

## [1] "link-glm"
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We made the e�orts to see how these C-code functions are de�ned:

� linkfun: .Call(C_logit_link,mu)

� linkinv: .Call(C_logit_linkinv, eta)

� mu.eta: .Call(C_logit_mu_eta, eta)

Remark 3.41 (Assessing C-Code in R)
Since the code is written in the programming language C, we don't have access to it
directly. We are also not able to view it with R without further ado. We are following
Ligges (2006) to assess the underlying C-code. Especially the section �Compiled Code
Sources� is of interest. Therefore we proceed taking the following steps:

(i) we download the R source bundle from the CRAN mirror (e.g. GWDG Goettingen
under http://ftp5.gwdg.de/pub/misc/cran/src/base/R-3/R-3.1.0.tar.gz). It
is important to download the R source bundle, since the source �les are not included
in the binary version of R, nor in the included packages. This way we can examine
the original sources R has been installed from.

(ii) we receive a �le ending with �....tar.gz�. This �le is compressed twice. If you have
unpacked it entirely, you can �nd the source code under

�.../src/library/stats/src/family.c�

(e.g. if we download �R-3.1.0.tar.gz� we can �nd the C source �le �family� un-
der �R-3.1.0/src/library/stats/src� in the decompressed folder). For other source
code in di�erent packages or package bundles we can �nd the code under �Package-
Name/src/� or �BundleName/PackageName/src/�.

Therefore, we can de�ne the logit link function in a binomial regression model through:

(i) linkfun: η = g(µ) = ln
(

µ
1−µ

)
(ii) linkinv: µ = g−1(η) = F (η) = exp{η}

1+exp{η}

(iii) mu.eta: dµ
dη

(F (η)) = exp{η}
(1+exp{η})2

(iv) valideta: 1{η∈R} = TRUE

http://ftp5.gwdg.de/pub/misc/cran/src/base/R-3/R-3.1.0.tar.gz
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Example 3.42 (Binomial family (link = �probit�))
In R the probit link is de�ned through:

make.link("probit")

## $linkfun

## function (mu)

## qnorm(mu)

## <environment: namespace:stats>

##

## $linkinv

## function (eta)

## {

## thresh <- -qnorm(.Machine$double.eps)

## eta <- pmin(pmax(eta, -thresh), thresh)

## pnorm(eta)

## }

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## pmax(dnorm(eta), .Machine$double.eps)

## <environment: namespace:stats>

##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>

##

## $name

## [1] "probit"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the probit link function in a binomial regression model is de�ned through:

(i) linkfun: η = g(µ) = qnorm(µ)
quantile function

= Φ−1(µ)

(ii) linkinv: µ = g−1(η) = F (η) = pnorm(η)
distr. func. see

=
Rem. A.3

Φ(η)

(iii) mu.eta: dµ
dη

(F (η)) = dnorm(η)
density see

=
Rem. A.3

f(η | 0, 1) := ϕ(η)

(iv) valideta: 1{η∈R} = TRUE
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3.3.3 Poisson family

As explained in Fahrmeir and Tutz (2001)(p. 36) we can use the Poisson distribution to
model count data (i.e. the number of events occurring in a �xed time period). Hence, we
have a discrete and non-negative response with values in N0. We expect E [Y ] = λ = µ > 0
(see Remark A.7). In R the default link is the log link. Two other possible links are the
identity link (i.e. g(µ) = µ) and the sqrt link (i.e. g(µ) =

√
µ) (see Figure 3.1).

De�nition 3.43 (Poisson regression model)
We want to refer to the following setting using the term Poisson regression model. Assume
we want to model count data and take the Poisson family with the log link. Then, we
have:

ηi = x>i β = g(µi) = ln(µ)

µi = F (ηi) = exp{ηi}

Remark 3.44
� the mean of the Poisson distribution ful�lls µ = λ ∈ R+. Hence, we have G = R+.

� since we take the log link we have η ∈ R (the domain of exp(·) is R) and consequently
we have H = R. This is also the restriction encoded through valideta in the link
function.

Example 3.45 (Poisson family (link = �log�))
In R the log link is de�ned through:

make.link("log")

## $linkfun

## function (mu)

## log(mu)

## <environment: namespace:stats>

##

## $linkinv

## function (eta)

## pmax(exp(eta), .Machine$double.eps)

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## pmax(exp(eta), .Machine$double.eps)

## <environment: namespace:stats>

##

## $valideta

## function (eta)

## TRUE

## <environment: namespace:stats>

##
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## $name

## [1] "log"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the log link function in a Poisson regression model is de�ned through:

(i) linkfun: η = g(µ) = ln(µ)

(ii) linkinv: µ = g−1(η) = F (η) = exp{η}

(iii) mu.eta: dµ
dη

(F (η)) = exp{η}

(iv) valideta: 1{η∈R} = TRUE

3.3.4 Gamma family

As described in Fahrmeir and Tutz (2001)(p. 23) we can use the gamma distribution for
continuous and non-negative responses. Hence, we expect E [Y ] = µ > 0 and thus the
shape parameter ν is positive (i.e. ν > 0). This can also be derived from Remark A.8.
For instance, data sets about insurance claims or the amount of rainfall would �t in the
setting of a gamma regression. In R the default link is the inverse link. Also the log link
(i.e. g(µ) = ln(µ)) and the identity link (i.e. g(µ) = µ) are allowed (see Figure 3.1).

De�nition 3.46 (Gamma regression model)
We want to refer to the following setting using the term gamma regression model. Assume
we model a continuous and non-negative response taking the gamma family with the
inverse link. Then, we have:

µi = F (ηi) =
1

ηi

⇒ ηi = x>i β = g(µi) =
1

µi

Remark 3.47
� the expectation of the gamma distribution is positive (i.e. µ ∈ R+). Therefore, we
choose G = R+.

� since the link is the reciprocal we have η 6= 0 as restriction. Hence, we have H =
R \ {0}. This is also the restriction encoded through valideta in the link function.
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Example 3.48 (Gamma family (link = �inverse�))
In R the inverse link is de�ned through:

make.link("inverse")

## $linkfun

## function (mu)

## 1/mu

## <environment: namespace:stats>

##

## $linkinv

## function (eta)

## 1/eta

## <environment: namespace:stats>

##

## $mu.eta

## function (eta)

## -1/(eta^2)

## <environment: namespace:stats>

##

## $valideta

## function (eta)

## all(is.finite(eta)) && all(eta != 0)

## <environment: namespace:stats>

##

## $name

## [1] "inverse"

##

## attr(,"class")

## [1] "link-glm"

Therefore, the inverse link function in a gamma regression model is de�ned through:

(i) linkfun: η = g(µ) = 1
µ

(ii) linkinv: µ = g−1(η) = F (η) = 1
η

(iii) mu.eta: dµ
dη

(F (η)) = − 1
η2

(iv) valideta: 1{{η∈R}∩{η 6=0}}

3.4 Goodness of �t of a generalized linear model

Assume we have chosen a family with a suitable link function in a generalized linear
model for our response. Now we would like to assess how good the GLM of choice �ts to
the given data. We will follow McCullagh and Nelder (1983)(p. 24�.), to introduce the
deviance as a measure for the goodness of �t.
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De�nition 3.49 (Fitted mean)
For one observation (i ∈ {1, . . . , n}) we are able to estimate the mean µi of Yi by (using
Equation (3.3) and the link function g as de�ned in Equation (3.4)):

µ̂i = g−1(x>i β̂)

If our model is good, we would expect, that ‖µ̂− y‖2 is small (i.e. there is not much
discrepancy and the vector of the �tted means µ̂ is close to the vector of observations y).
In the following we want to derive a method to measure this discrepancy. Therefore we
introduce a notation to describe how many parameters or covariates, respectively (since
p = k+1) our model should contain:

De�nition 3.50 (Null model and saturated model)
We have to decide how many parameters our model should contain. Given n observations
y1, . . . , yn, we could �t models containing between 1 and n parameters (i.e. p ∈ {1, . . . , n}).
Therefore, we will have two extreme models:

� the null model
the null model is the simplest model. It does not contain any covariates at all and
it consists of only one parameter: β0. Using Equation (2.4) we obtain:

µi = E [Yi] = β0

Therefore, this model implies that the responses Y1, . . . , Yn have a common mean.

� the saturated model
the saturated model (also called full or maximal model) is the largest well de�ned
model for n responses. In this model n parameters are included (one for each
observation). We have k = n− 1 covariates and with Equation (2.4) we get:

µ̂i = E [Yi] = β0 + β1xi1 + β2xi2 + · · ·+ βkxik
Eq. (2.1)

= yi (3.25)

Therefore, the mean �ts perfectly on the data (i.e. no discrepancy).

Remark 3.51 (Reasonable GLMs)
Any informative and acceptable GLM will range between the null model and the saturated
model. The null model is considered being too simple while the saturated model only
repeats information about the given data.

Since we derived the log likelihood for GLMs in Equation (3.10), we can use it to assess
the goodness of �t for a model with p parameters. We rewrite the log likelihood in terms
of the mean vector µ instead of the vector of canonical parameters θ := (θ1, . . . , θn)>.

De�nition 3.52 (Mean parameterization of the log likelihood)
We can rewrite the log likelihood function in terms of the mean vector µ.

l(β, φ | y) =
n∑
i=1

(
θiyi − b(θi)

a(φ)
+ c(yi, φ)

)
see Eq. (3.7)

=
n∑
i=1

(
h(µi)yi − b(h(µi))

a(φ)
+ c(yi, φ)

)
:= l(µ, φ | y)

This is called the mean parameterization of the log likelihood.



34 3 THE GENERALIZED LINEAR MODELS

De�nition 3.53 (Scaled deviance Ds(µ̂, y, φ))
Let us denote by µ̂ := (µ̂1, . . . , µ̂n)> the vector of �tted means. Further we will denote by

l(β̂max, φ | y) the maximized log likelihood of the saturated model while l(β̂, φ | y) denotes
the maximized log likelihood for the model of interest. According to Wood (2006)(p. 70)
the scaled deviance Ds(µ̂,y, φ) is then given by:

Ds(µ̂,y, φ) :=2
[
l(β̂max, φ | y)− l(β̂, φ | y)

]
see Eq. (3.25)

= 2[ l(y, φ | y)− l(µ̂, φ | y)︸ ︷︷ ︸
Def. 3.52

=
∑n
i=1

(
h(yi)yi−b(h(yi))

a(φ)
+c(yi,φ)−h(µ̂i)yi−b(h(µ̂i))

a(φ)
−c(yi,φ)

)]

= 2
n∑
i=1

(
h(yi)yi − b(h(yi))− h(µ̂i)yi + b(h(µ̂i))

a(φ)

)

= 2
n∑
i=1

(

:=θ̃i︷ ︸︸ ︷
h(yi)−

:=θ̂i︷ ︸︸ ︷
h(µ̂i))yi − b(h(yi)) + b(h(µ̂i))

a(φ)


= 2

n∑
i=1

(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)

a(φ)
(3.26)

Assuming that a(φ) = φ
ω
(see Equation (3.2)), we can rewrite Equation (3.26) in an

unscaled version. Often one refers to the unscaled deviance using the term deviance.

De�nition 3.54 ((Unscaled) deviance D(µ̂, y))
Let the scaled deviance be de�ned as in Equation (3.26):

Ds(µ̂,y, φ) := 2
n∑
i=1

(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)

a(φ)
= 2

n∑
i=1

wi
(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)

φ

Then, according to McCullagh and Nelder (1983)(p. 24) and Wood (2006)(p. 70), the
(unscaled) deviance D(µ̂,y) is given by:

D(µ̂,y) := φDs(µ̂,y, φ) = 2
n∑
i=1

wi

[
(θ̃i − θ̂i)yi − b(θ̃i) + b(θ̂i)

]
The unscaled deviance is independent of φ.

Remark 3.55 (Distribution of the deviance)
� distribution of the scaled deviance:
According to Wood (2006)(p. 70) we will have

Ds(µ̂,y, φ) ∼ χ2
n−p

if the model is good (i.e. if it describes the data in a good way).
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� distribution of the unscaled deviance:
Following Fahrmeir and Tutz (2001)(p. 50f.), we can assume for a su�ciently large
number of observations that:

D(µ̂,y, φ) ∼ φχ2
n−p

Remark 3.56
All in all we want to take the GLM delivering the minimal deviance, i.e. the minimal
discrepancy between the �tted means µ̂i and the observations of the response yi.

Remark 3.57 (Calculation of the deviance)
The deviance of the distributions used throughout this thesis can be found in McCullagh
and Nelder (1983)(p. 25). In R the unscaled deviance is calculated as the value for the
deviance according to the common formulas (see also Czado et al. (2013)(p. 41f. and p.
49) and Wood (2006)(p. 61 and p. 70)). In Section A.3 we verify the calculation of the
deviance for two examples of the Gaussian regression.

3.5 Overview and comments

The sections before lead to the following table:

Gaussian Binomial Binomial Poisson Gamma
Component Notation Identity Logit Probit Log Inverse

linkfun g(µ) µ ln
(

µ
1−µ

)
Φ−1(µ) ln(µ) 1

µ

linkinverse F (η) η exp{η}
1+exp{η} Φ(η) exp{η} 1

η

mu.eta dµ
dη

(F (η)) 1 exp{η}
(1+exp{η})2 ϕ(η) exp{η} − 1

η2

valideta 1{res. to η} 1{η∈R} 1{η∈R} 1{η∈R} 1{η∈R} 1{{η∈R}∩{η 6=0}}

Table 3.3: Overview: common link functions with their components in R.

Remark 3.58
Further interesting tables are given in Hardin and Hilbe (2007)(Appendix A p. 356�.).

De�nition 3.59 (Canonical link function)
According to Fahrmeir and Tutz (2001)(p. 20), a link function g(·) = g(µi) = g(E [Yi]) is
called canonical or natural if the following holds:

θ = θ(µi) = ηi = x>i β

⇒ g(E [Yi]) = g(µi) = θi = θ(µi) ∀ i ∈ {1, . . . , n}

Remark 3.60
De�nition 3.59 is a restriction to the function g(·) since ηi = g(µi) = g(b′(θi)) (see Equation
(3.4) and Theorem 3.6).
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Example 3.61 (Canonical links)
According to McCullagh and Nelder (1983)(p. 24) we have:

� for the Gaussian regression model the identity link (i.e. g(µ) = µ) is canonical.

� for the binomial regression model the logit link
(
i.e. g(µ) = ln

(
µ

1−µ

))
is canonical.

� for the Poisson regression model the log link (i.e. g(µ) = ln (µ)) is canonical.

� for the gamma regression model the inverse link
(
i.e. g(µ) = 1

µ

)
is canonical.

As mentioned in Remark 3.5 we can derive restrictions for the expectation µ (i.e.
µ ∈ G) and restrictions for the linear predictor η (i.e. η ∈ H). These restrictions are
summarized in the following table:

Distr. of Res. for Linkinverse Res. for
error µi (by G) F(η) ηi (by H)

Normal G = R F(η) = η H = R
Scaled G = (0, 1) F(η) = exp{η}

1+exp{η} H = R
binomial F(η) = Φ(η) H = R
Poisson G = R+ F(η) = exp {η} H = R
Gamma G = R+ F(η) = 1

η
H = R \ {0}

Table 3.4: Summary: restrictions for the common link functions.
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4 Data sets

In this chapter we introduce the data sets, which we will examine throughout this thesis.
Five of them were also studied in Czado (2007) (namely: pcb.ex, beetle.ex, bys.ex,
rotifier.ex and mining.ex). We also provide an example of the gamma regression
model by presenting data about the Canadian automobile experience as given in the data
set carinsur.ex. This example can be found in Bailey and Simon (1960). Sometimes it
is necessary to transform the covariates or the response to obtain a linear relationship.

4.1 Gaussian family

Example 4.1 (PCB concentration in lake trouts)
As in Bates and Watts (2007)(see p. 3 and p. 267), we examine the data gathered
about 28 lake trouts of the Cayuga Lake in New York. The �rst column (i.e. pcb) in
Table 4.1 contains the observed concentrations of PCB (= polychlorinated biphenyl) in
the trouts in parts per million. We also have information about the age of the trouts as
given in the third column age. The authors recommend using a simple linear regression
model (i.e. family = �gaussian�, link = �identity�) with response yi = ln(pcb[i]) as given
in the second column log.pcb. The covariate will be the centered age as given in the
fourth column age.cen (i.e. x1i = xi = age[i] − mean(age)). Figure 4.1 illustrates the
linear interaction between the centered age (covariate) and the logarithm of the PCB
concentration (response).

pcb log.pcb age age.cen
0.6 -0.511 1 -4.536
1.6 0.470 1 -4.536
0.5 -0.693 1 -4.536
1.2 0.182 1 -4.536
2.0 0.693 2 -3.536
1.3 0.262 2 -3.536
2.5 0.916 2 -3.536
2.2 0.788 3 -2.536
2.4 0.875 3 -2.536
1.2 0.182 3 -2.536
3.5 1.253 4 -1.536
4.1 1.411 4 -1.536
5.1 1.629 4 -1.536
5.7 1.740 5 -0.536

pcb log.pcb age age.cen
3.4 1.224 6 0.464
9.7 2.272 6 0.464
8.6 2.152 6 0.464
4.0 1.386 7 1.464
5.5 1.705 7 1.464
10.5 2.351 7 1.464
17.5 2.862 8 2.464
13.4 2.595 8 2.464
4.5 1.504 8 2.464
30.4 3.414 9 3.464
12.4 2.518 11 5.464
13.4 2.595 12 6.464
26.2 3.266 12 6.464
7.4 2.001 12 6.464

Table 4.1: Concentration of PCB in lake trouts as given in the data frame pcb.ex.

In Example 5.1 the output of the ordinary glm function on this data set will be
presented (using family = �gaussian�, link = �identity�). We will also examine this data
set using a user-de�ned link function. In Example 6.11 we will demonstrate the e�ect of
a right tail modi�cation using the glm function in R. The parameter for this modi�cation
is derived in Example 7.1 by using the glmProfile function.
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4.2 Binomial family

Example 4.2 (Beetle mortality)
Bliss (1935)(see p. 154) reports two data series about beetles being exposed to the harmful
gas CS2 (= carbon disulphide, measured in mg

l
) for �ve hours. Table 4.2 summarizes the

two given data series in eight observations.

yi ni log10(CS2
mg
l

) dose.cen
6 59 1.6907 -0.1027
13 60 1.7242 -0.0692
18 62 1.7552 -0.0382
28 56 1.7842 -0.0092

yi ni log10(CS2
mg
l

) dose.cen
52 63 1.8113 0.0179
53 59 1.8369 0.0435
61 62 1.8610 0.0676
60 60 1.8839 0.0905

Table 4.2: Mortality of beetles being exposed to CS2 as given in the data frame beetle.ex.

The number of beetles being found dead after the exposure are given by yi in the
�rst column. The second column gives the total number of insects ni being exposed to
the gas in this observation. The third column (i.e. log10(CS2

mg
l

)) contains the logarithm
(to the base ten) of the di�erent concentrations of CS2. Centering the covariate (i.e.
log10(CS2

mg
l

)) yields to dose.cen as given in the fourth column.
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Figure 4.1: Plot of the covariate age.cen
against the response log.pcb for the data
given in pcb.ex.
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Figure 4.2: Plot of the covariate dose.cen
against the response ratio yi

ni
for the data

given in beetle.ex.

The number of dead beetles yi correspond to the binomial family. In each observation
(i ∈ {1, . . . , 8}) each single beetle can be either dead or still alive after the exposure.
Hence, the state of a single beetle corresponds to a Bernoulli distribution. Examining
the state of ni independent beetles yields to a binomial distribution. Considering the
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distribution of yi
ni

for each observation corresponds to a scaled binomial distribution.
Therefore, the response is yi

ni
, i.e. the ratio of dead beetles and the number of observed

beetles in the speci�c observation (= # of dead beetles in observation i
# beetles in observation i

). Figure 4.2 shows the
dependence between the response ratio and the centered dose of CS2. We can see a linear
interaction as indicated by the straight line.

In Example 5.2 the output of the ordinary glm function on this data set will be
presented (using family = �binomial�, link = �logit�). In addition we examine this data
set using a user-de�ned link function. In Example 6.18 we will demonstrate the e�ect of
a left tail modi�cation using the glm function in R. The parameter for this modi�cation
is derived in Example 7.2 by using the glmProfile function.

Example 4.3 (Byssinosis among cotton workers)
The following data is about the medical conditions of cotton textile workers and was
reported by Higgins and Koch (1977). The data was gathered in a large cross-sectional
occupational health survey. Higgins and Koch (1977) focused on the relationship between
the complaints of the workers of byssinosis and the variables sex, race, length of employ-
ment (employment years), smoking habit (smoking) and the dustiness of the work area
(type of workplace). Following Czado (2007), we can use the scheme given in Table 4.3 to
group our sample (5419 workers) by these factors. The incidence of byssinosis is re�ected
by a binary response on whether or not the workers su�er from symptoms related to this
respiratory ailment.

factor factor level -1 =̂ 0 =̂ 1 =̂

type of workplace factor most dusty less dusty least dusty
employment years description < 10 yrs. 10 - 19 yrs. > 19 yrs.
smoking nonsmoker smoker in last 5 yrs.
sex female male
race others white

byssinosis no complaint complaint

Table 4.3: Classi�cation of cotton textile workers in health survey.

Czado (2007) and Higgins and Koch (1977) identi�ed three covariates of particular
importance. They are employment years, smoking and workplace. Thus, the data used in
our further analysis will not include the other covariates and can be found in Table 4.4.

Employment Smoking Workplace
years most dusty less dusty least dusty

< 10 yes 30/233 3/403 11/951
no 7/126 5/283 7/733

10− 19 yes 16/67 2/94 3/320
no 3/20 1/51 1/160

> 19 yes 41/155 4/237 15/733
no 8/72 3/232 5/553

Table 4.4: Data gathered about cotton textile workers.
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Using the factor levels as described in Table 4.3 and resorting the data set w.r.t. the
covariate workplace (abbreviated by work) yields to Table 4.5. All in all, the data frame
bys.ex consist of 18 observations.

yi ni work smoking employ
30 233 -1 1 -1
7 126 -1 0 -1
16 67 -1 1 0
3 20 -1 0 0
41 151 -1 1 1
8 72 -1 0 1
3 403 0 1 -1
5 283 0 0 -1
2 94 0 1 0

yi ni work smoking employ
1 51 0 0 0
4 237 0 1 1
3 232 0 0 1
11 951 1 1 -1
7 733 1 0 -1
3 320 1 1 0
1 160 1 0 0
15 733 1 1 1
5 553 1 0 1

Table 4.5: Incidence of byssinosis among cotton workers as given in bys.ex.

The �rst column (i.e. yi) contains the number of workers complaining about symp-
toms of byssinosis. The second column gives the total number ni of workers falling in
this group (i.e.

∑18
i=1 ni = 5419). The factor levels of the covariate workplace are con-

tained in the third column (i.e. work). The fourth column shows the factor levels of
the covariate smoking. In the last column (i.e. employ) the factor levels of the covariate
employment years are presented. Again we can see that the number of workers, su�ering
from byssinosis (i.e. yi) corresponds to the binomial distribution. Therefore, considering
the distribution of yi

ni
yields to a scaled binomial distribution. Thus, we consider the ratio

yi
ni
as the response in our model, i.e. the ratio of workers su�ering from byssinosis and the

number of workers falling in this speci�c group (= workers suffering from byssinosis in group i
workers falling in group i

).
In Example 5.3 the output of the ordinary glm function on this data set will be

presented (using family = �binomial�, link = �logit�). We will also examine this data
set using a user-de�ned link function. In Example 6.20 we will demonstrate the e�ect of
a left tail modi�cation using the glm function in R. The parameter for this modi�cation
can be found in the analysis of the bys.ex data frame in Czado (2007).

Example 4.4 (Rotifer suspension)
The following example can be found in Collett (1999)(see p. 217). Two species of ro-
tifer were investigated: the Polyarthra major (denoted by species = 1) and the Keratella
cochlearis (denoted by species = 0). It was examined how many rotifers remained in
suspension (i.e. yi) after having introduced a certain number ni into 40 tubes contain-
ing di�erent relative densities of Ficoll. Thus, the data frame rotifer.ex contains 40
observations (i.e. i ∈ {1, . . . , 40}) as we can see in Table 4.6.
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yi ni density species den.cen
11 58 1.019 1 -2.565
7 86 1.020 1 -2.465
10 76 1.021 1 -2.365
19 83 1.030 1 -1.465
9 56 1.030 1 -1.465
21 73 1.030 1 -1.465
13 29 1.031 1 -1.365
34 44 1.040 1 -0.465
10 31 1.040 1 -0.465
36 56 1.041 1 -0.365
20 27 1.048 1 0.335
54 59 1.049 1 0.435
20 22 1.050 1 0.535
9 14 1.050 1 0.535
14 17 1.060 1 1.535
10 22 1.061 1 1.635
64 66 1.063 1 1.835
68 86 1.070 1 2.535
488 492 1.070 1 2.535
88 89 1.070 1 2.535

yi ni density species den.cen
13 161 1.019 0 -2.565
14 248 1.020 0 -2.465
30 234 1.021 0 -2.365
10 283 1.030 0 -1.465
14 129 1.030 0 -1.465
35 161 1.030 0 -1.465
26 167 1.031 0 -1.365
32 286 1.040 0 -0.465
22 117 1.040 0 -0.465
23 162 1.041 0 -0.365
7 42 1.048 0 0.335
22 48 1.049 0 0.435
9 49 1.050 0 0.535
34 160 1.050 0 0.535
71 74 1.060 0 1.535
25 45 1.061 0 1.635
94 101 1.063 0 1.835
63 68 1.070 0 2.535
178 190 1.070 0 2.535
154 154 1.070 0 2.535

Table 4.6: Data about rotifers in suspension as given in rotifer.ex.

The �rst column (i.e. yi) contains the number of rotifers remaining in suspension in
tube i (for i ∈ {1, . . . , 40}). The number ni of rotifers, which were introduced in the
very same suspension are contained in the second column. The suspensions in the tubes
contained di�erent relative densities of Ficoll as speci�ed by density in the third column.
The column species gives information about what species of rotifer (1 =̂ Polyarthra major,
0 =̂ Keratella cochlearis) was examined. The centered density is given by den.cen in
the last column. As before we consider the response yi

ni
, i.e. the ratio of the rotifers

remaining in suspension and the number of rotifers being introduced in this suspension
(= # number of rotifers remaining in suspension

# number of rotifers introduced in this suspension
). Again the distribution of yi

ni
corresponds

to a scaled binomial distribution.
In Example 5.4 the output of the ordinary glm function on this data set will be

presented (using family = �binomial�, link = �probit�). In addition we examine this
data set using a user-de�ned link function. In Example 6.27 we will demonstrate the
e�ect of a both tail modi�cation using the glm function in R. The parameter for this
modi�cation can be found in the analysis of the rotifer.ex data frame in Czado (2007).

4.3 Poisson family

Example 4.5 (Coal mining fractures)
The following example is reported in Myers (1990) and consists of the observations made
from 44 coal mines in the coal �elds of the Appalachian region in western Virginia. It
contains the number of miners being either injured or having a fracture denoted by yi.
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Moreover, we have information about the inner burden thickness (= INB, in ft., i.e. the
shortest distance between seam �oor and lower seam), the amount of previously mined
seam in percent, i.e. the percentage of extraction (= EX ) and the time in years that the
mine has been opened (= T ). The data set mining.ex is given in Table 4.7:

yi INB EX T INB.cen EX.cen
2 50 70 1.0 -119.23 -5.93
1 230 65 6.0 60.77 -10.93
0 125 70 1.0 -44.23 -5.93
4 75 65 0.5 -94.23 -10.93
1 70 65 0.5 -99.23 -10.93
2 65 70 3.0 -104.23 -5.93
0 65 60 1.0 -104.23 -15.93
0 350 60 0.5 180.77 -15.93
4 350 90 0.5 180.77 14.07
4 160 80 0.0 -9.23 4.07
1 145 65 10.0 -24.23 -10.93
4 145 85 0.0 -24.23 9.07
1 180 70 2.0 10.77 -5.93
5 43 80 0.0 -126.23 4.07
2 42 85 12.0 -127.23 9.07
5 42 85 0.0 -127.23 9.07
5 45 85 0.0 -124.23 9.07
5 83 85 10.0 -86.23 9.07
0 300 65 10.0 130.77 -10.93
5 190 90 6.0 20.77 14.07
1 145 90 12.0 -24.23 14.07
1 510 80 10.0 340.77 4.07

yi INB EX T INB.cen EX.cen
3 65 75 5.0 -104.23 -0.93
3 470 90 9.0 300.77 14.07
2 300 80 9.0 130.77 4.07
2 275 90 4.0 105.77 14.07
0 420 50 17.0 250.77 -25.93
1 65 80 15.0 -104.23 4.07
5 40 75 15.0 -129.23 -0.93
2 900 90 35.0 730.77 14.07
3 95 88 20.0 -74.23 12.07
3 40 85 10.0 -129.23 9.07
3 140 90 7.0 -29.23 14.07
0 150 50 5.0 -19.23 -25.93
0 80 60 5.0 -89.23 -15.93
2 80 85 5.0 -89.23 9.07
0 145 65 9.0 -24.23 -10.93
0 100 65 9.0 -69.23 -10.93
3 150 80 3.0 -19.23 4.07
2 150 80 0.0 -19.23 4.07
3 210 75 2.0 40.77 -0.93
5 11 75 0.0 -158.23 -0.93
0 100 65 25.0 -69.23 -10.93
3 50 88 20.0 -119.23 12.07

Table 4.7: Data about injuries and fractures of miners as given in mining.ex.

The �rst column (i.e. yi) contains the number of miners being either injured or having
a fracture. The second column (i.e. INB) contains the data about the inner burden
thickness in this mine. The third column (i.e. EX ) gives the percentage of extraction.
The third covariate (i.e. T ) is the time that the mine has been opened and it is given in
the fourth column. In our further analysis we do only consider the covariates INB and
EX, since they have a linear in�uence, while the covariate T has no e�ect on our response
yi. Centered versions of these two covariates are given in INB.cen and EX.cen in the
last two columns. As explained in Subsection 3.3.3 we can use the Poisson distribution
to model the number of accidents in a �xed time period. Hence, we choose a Poisson
regression model for our response yi (i.e. the number of injured or fractured miners).

In Example 5.5 the output of the ordinary glm function on this data set will be
presented (using family = �poisson�, link = �log�). This data set will also be examined
using a user-de�ned link function. In Example 6.34 we will demonstrate the e�ect of a
right tail modi�cation using the glm function in R. The parameter for this modi�cation
is derived in Example 7.3 by using the glmProfile function.
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4.4 Gamma family

Example 4.6 (Canadian automobile insurance)
The data presented in the following is about the Canadian automobile experience and
was analyzed in Bailey and Simon (1960). It re�ects the policy years 1957 and 1958 (as of
June 30, 1959) for private passenger automobile liability for non farmers (for all of Canada
excluding Saskatchewan). It includes the experience of almost all insurance companies
operating in Canada and was collected by the Statistical Agency (Statistical Department
of the Canadian Underwriters' Association) acting under instructions from the Superin-
tendent of Insurance. Table 4.8 shows the factors and de�nitions of the variables Merit
and Class.

Merit Description Original de�nition

3 licensed and accident free three or more years A
2 licensed and accident free two years X
1 licensed and accident free one year Y
0 all others B

Class Description

1 pleasure, no male operator under 25
2 pleasure, non-principal male operator under 25
3 business use
4 unmarried owner or principal operator under 25
5 married owner or principal operator under 25

Table 4.8: Merit rating de�nition and class de�nitions.

The data frame given in Table 4.9 contains 20 observations on groups of Canadian
private passenger automobile insurance holders. The insurance holders were classi�ed
using a multiple classi�cation system. The column Merit gives information about the
accidental behavior of several classes of car insurance holders. The merit rating plan is a
classi�cation according to previous accidents and conviction records. The second column
Class represents the so-called class plan. It is a collective of the variables age, sex, use and
occupation. Also we are given information about the earned car years, which is contained
in the column Insured. Of further importance is the variable Premium containing the
earned premiums at present given in thousand dollars. The premiums were adjusted to
what they would have been if all the cars had been written at 1B rates. The �fth column
Claims presents the number of claims incurred as given in Bailey and Simon (1959)(Table
1, p. 162). The last column Cost contains the losses incurred given in thousand dollars.
The data will be primarily grouped by the merit rating and then by the class plan as in
Bailey and Simon (1960). We can use the gamma distribution to model data sets about
insurance claims (see Subsection 3.3.4). In our further work we will focus on the ratio
Cost
Claims

, which will be our response. We choose a gamma regression model with the inverse
link. Finally we include weights given by the covariate Claims (i.e. weights = �Claims�).
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Merit Class Insured Premium Claims Cost
3 1 2757520 159108 217151 63191
3 2 130535 7175 14506 4598
3 3 247424 15663 31964 9589
3 4 156871 7694 22884 7964
3 5 64130 3241 6560 1752
2 1 130706 7910 13792 4055
2 2 7233 431 1001 380
2 3 15868 1080 2695 701
2 4 17707 888 3054 983
2 5 4039 209 487 114
1 1 163544 9862 19346 5552
1 2 9726 572 1430 439
1 3 20369 1382 3546 1011
1 4 21089 1052 3618 1281
1 5 4869 250 613 178
0 1 273944 17226 37730 11809
0 2 21504 1207 3421 1088
0 3 37666 2502 7565 2383
0 4 56730 2756 11345 3971
0 5 8601 461 1291 382

Table 4.9: Data about Canadian automobile insurance claims contained in carinsur.ex.

In Example 5.6 the output of the ordinary glm function on this data set will be pre-
sented (using family = �Gamma�, link = �inverse� and weights = �Claims�). We will
also examine this data set using a user-de�ned link function. In Example 6.41 we will
demonstrate the e�ect of a left tail modi�cation using the glm function in R. The param-
eter for this modi�cation is derived in Example 7.4 by using the glmProfile function.
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5 Examples: the ordinary glm function in R

In this section we want to apply the R function glm (see help(glm)). It is already
implemented in R and requires the following input:

(i) formula: is an expression of the form: response ∼ covariate1 + · · · + covariatek
and for every data set we have to decide which covariates we will include in our
model.

(ii) family: one of the families introduced in Section 3.3 (e.g. family = �binomial�).

(iii) data: data set containing n rows of observations of both the response and the
covariates.

(iv) ... further things could be speci�ed (e.g. weights, method (IWLS by default),
intercept (is of type logical), start (is a vector of starting values for the parameters
in the linear predictor), ...)

5.1 Gaussian family

Example 5.1 (PCB concentration in lake trouts)
Now we want to give an example of the Gaussian regression (see Subsection 3.3.1). For
this we call the glm function with family = �gaussian� and the identity link. The data
set we will examine is pcb.ex as described in Example 4.1.

pcb_glm<- glm(formula = log.pcb~age.cen,

family = gaussian(link="identity"),

data = pcb.ex)

summary(pcb_glm)

##

## Call:

## glm(formula = log.pcb ~ age.cen, family = gaussian(link = "identity"),

## data = pcb.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1395 -0.3879 0.0957 0.4327 1.0508

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.4659 0.1072 13.68 2.2e-13 ***

## age.cen 0.2591 0.0308 8.41 6.8e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 0.3215)

##



46 5 EXAMPLES: THE ORDINARY GLM FUNCTION IN R

## Null deviance: 31.120 on 27 degrees of freedom

## Residual deviance: 8.359 on 26 degrees of freedom

## AIC: 51.61

##

## Number of Fisher Scoring iterations: 2

We are especially interested in:

summary(pcb_glm)$deviance

## [1] 8.359

5.2 Binomial family

In Subsection 3.3.2 we introduced two common types of the binomial regression. For
both we want to give examples. In the following we will present the output of the glm

function on the three data sets presented in Section 4.2. First we will exemplify the
logistic regression in two examples and afterwards we will present an example of the
probit regression.

5.2.1 Logistic regression

Example 5.2 (Beetle mortality)
Now we want to give the �rst example of the logistic regression (see De�nition 3.35). For
this we call the glm function with family = �binomial� and the logit link. The data set
we will examine is beetle.ex as described in Example 4.2.

beetle_glm<- glm(formula = cbind(y, n-y)~ dose.cen,

family = binomial(link="logit"),

data = beetle.ex)

summary(beetle_glm)

##

## Call:

## glm(formula = cbind(y, n - y) ~ dose.cen,

## family = binomial(link = "logit"),

## data = beetle.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.594 -0.394 0.833 1.259 1.594

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.744 0.138 5.4 6.8e-08 ***
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## dose.cen 34.270 2.912 11.8 < 2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 284.202 on 7 degrees of freedom

## Residual deviance: 11.232 on 6 degrees of freedom

## AIC: 41.43

##

## Number of Fisher Scoring iterations: 4

We are especially interested in:

summary(beetle_glm)$deviance

## [1] 11.23

Example 5.3 (Byssinosis among cotton workers)
We illustrate the logistic regression (see De�nition 3.35) with a second example. Again
we call the glm function with family = �binomial� and the logit link. The data set we
will examine is bys.ex as described in Example 4.3.

bys_glm<- glm(formula = cbind(y, n-y)~ workplace+smoking+employment,

family = binomial(link="logit"),

data = bys.ex)

summary(bys_glm)

##

## Call:

## glm(formula = cbind(y, n - y) ~ workplace + smoking + employment,

## family = binomial(link = "logit"), data = bys.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -3.336 -0.482 0.162 1.160 2.105

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -3.7626 0.1652 -22.78 < 2e-16 ***

## workplace -1.4657 0.1058 -13.86 < 2e-16 ***

## smoking 0.6778 0.1887 3.59 0.00033 ***

## employment 0.3331 0.0886 3.76 0.00017 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 290.739 on 17 degrees of freedom

## Residual deviance: 40.774 on 14 degrees of freedom

## AIC: 112.1

##

## Number of Fisher Scoring iterations: 5

We are especially interested in:

summary(bys_glm)$deviance

## [1] 40.77

5.2.2 Probit regression

Example 5.4 (Rotifer suspension)
In Subsection 3.3.2 we de�ned another important regression model. This was the probit
regression (see De�nition 3.36). In the following example we call the glm function with
family = �binomial� and the probit link examining the data set rotifer.ex as described
in Example 4.4.

rotifer_glm<- glm(formula = cbind(y, n-y)~species

+density.cen

+species*density.cen,

family = binomial(link="probit"),

data = rotifer.ex)

summary(rotifer_glm)

##

## Call:

## glm(formula = cbind(y, n - y) ~ species + density.cen + species *

## density.cen, family = binomial(link = "probit"), data = rotifer.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.836 -2.319 0.369 2.412 6.423

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.3939 0.0297 -13.26 <2e-16 ***

## species 0.7379 0.0531 13.90 <2e-16 ***

## density.cen 0.6085 0.0195 31.13 <2e-16 ***

## species:density.cen -0.0135 0.0315 -0.43 0.67
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3180.99 on 39 degrees of freedom

## Residual deviance: 471.25 on 36 degrees of freedom

## AIC: 633.8

##

## Number of Fisher Scoring iterations: 6

We are especially interested in:

summary(rotifer_glm)$deviance

## [1] 471.3

5.3 Poisson family

Example 5.5 (Coal mining fractures)
Now we want to give an example of the Poisson regression (see Subsection 3.3.3). For this
we call the glm function with family = �poisson� and the log link. The data set we will
analyze is mining.ex as described in Example 4.5.

mining_glm<- glm(formula = y~inb.cen+extrp.cen,

family = poisson(link="log"),

data = mining.ex)

summary(mining_glm)

##

## Call:

## glm(formula = y ~ inb.cen + extrp.cen, family = poisson(link = "log"),

## data = mining.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.926 -0.948 -0.188 0.534 2.092

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.599236 0.123749 4.84 1.3e-06 ***

## inb.cen -0.001708 0.000747 -2.29 0.022 *

## extrp.cen 0.058420 0.011811 4.95 7.6e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## (Dispersion parameter for poisson family taken to be 1)

##

## Null deviance: 74.984 on 43 degrees of freedom

## Residual deviance: 42.094 on 41 degrees of freedom

## AIC: 144.4

##

## Number of Fisher Scoring iterations: 5

We are especially interested in:

summary(mining_glm)$deviance

## [1] 42.09

5.4 Gamma family

Example 5.6 (Canadian automobile insurance)
The last example we will present in this chapter is for the gamma regression (see Subsec-
tion 3.3.4). For this we call the glm function with family = �Gamma� and the inverse
link. We will examine the data set carinsur.ex as described in Example 4.6.

carinsur_glm<-glm(formula = Cost/Claims~Merit+Class,

weights = Claims,

family = Gamma(link="inverse"),

data = carinsur.ex)

summary(carinsur_glm)

##

## Call:

## glm(formula = Cost/Claims ~ Merit + Class,

## family = Gamma(link = "inverse"),

## data = carinsur.ex, weights = Claims)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.012 -1.889 -0.335 2.192 6.388

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.2466 0.0510 63.72 < 2e-16 ***

## Merit1 0.2153 0.0888 2.42 0.0321 *

## Merit2 0.2237 0.0994 2.25 0.0440 *

## Merit3 0.1773 0.0534 3.32 0.0061 **

## Class2 -0.2678 0.0859 -3.12 0.0089 **
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## Class3 -0.0539 0.0635 -0.85 0.4122

## Class4 -0.4984 0.0594 -8.39 2.3e-06 ***

## Class5 0.2874 0.1486 1.93 0.0770 .

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for Gamma family taken to be 14.15)

##

## Null deviance: 1556.01 on 19 degrees of freedom

## Residual deviance: 167.43 on 12 degrees of freedom

## AIC: -2972929

##

## Number of Fisher Scoring iterations: 4

We are especially interested in:

summary(carinsur_glm)$deviance

## [1] 167.4
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6 Generalized linear models with parametric link

There are many cases in which we obtain a misspeci�cation of the link function. The
reason is simple: we have to choose the link function before having su�cient information
about the choice of the link. Thus, we would like to describe a way to improve the
goodness of �t of the GLMs by reducing the deviance (see Section 3.4). It will turn
out, that one elegant way to improve the models is to allow link functions coming from
the parametric link families speci�ed in Czado (2007). This advantageous parametric
class of link transformations was developed by Czado (1992). The general h(·) - power
transformation functions are the key elements for modifying the tails of a graph. We
will introduce them in Section 6.1. We then will be able to de�ne the parametric link
families in Section 6.2. Further it will be demonstrated, how the use of a parametric link
reduces the deviance of the GLMs presented in Chapter 5. In Section 6.3 we will describe
the glmProfile function. It helps to �nd the optimal parameter for the parametric link
functions and thus it will be applied on the data sets in Chapter 7.

6.1 General h(·) - power transformations

In the following we want to investigate the behavior of the h(·) - power transformation
functions for speci�c values of ψ. Therefore we have to pass the function a start value
η0 ∈ R and either ψ1 or ψ2 ∈ R for a single tail modi�cation or the values of the vector
ψ ∈ R2 for a both tail modi�cation. For a left tail modi�cation every point < η0 will be
modi�ed whereas for a right tail modi�cation every point ≥ η0 is. A both tail modi�cation
modi�es both tails (i.e. all points < η0 and ≥ η0 are modi�ed).

Remark 6.1 (Remarks on the choice of the parameter ψ)
� by setting the parameters to 1 we obtain no modi�cation (i.e. a straight line).

� if we set one parameter to 1 in the both tail modi�cation, we get a single tail
modi�cation (e.g. ψ = (1, ψ2) modi�es the left tail).

� in a right tail modi�cation a parameter ψ1 < 1 decreases the slope, while setting
ψ1 > 1 increases it. In the left tail modi�cation it is the other way round for ψ2.

� in the cases ψ1 ∨ ψ2 = 0 we had to look at e.g.:

lim
ψ1→0

(η − η0 + 1)ψ1 − 1

ψ1

L′Hospital
= lim

ψ1→0

ln (η − η0 + 1)(η − η0 + 1)ψ1

1

= ln (η − η0 + 1) lim
ψ1→0

(η − η0 + 1)ψ1︸ ︷︷ ︸
=1

= ln (η − η0 + 1)

The other cases can be shown analogously.

� for numerical reasons, we had to weaken the statement ψ1∨ψ2 = 0 to |ψ1|∨|ψ2| < ε,
where in our case the tiny number ε = 1e-14 =̂ 1 · 10−14.
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De�nition 6.2 (Right tail modi�cation)

hη0(η,ψ = ψ1) =


η0 + ln(η − η0 + 1) if η ≥ η0 and ψ1 = 0

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0 and ψ1 6= 0

η otherwise (i.e. if η < η0)
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Figure 6.1: Right tail modi�cation for di�erent values of ψ1 as implemented in the function
hpsi1 (η0 = 0 as indicated by the dotted vertical line).
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De�nition 6.3 (Left tail modi�cation)

hη0(η,ψ = ψ2) =


η if η ≥ η0

η0 − ln(−η + η0 + 1) if η < η0 and ψ2 = 0

η0 − (−η+η0+1)ψ2−1
ψ2

otherwise (i.e. if η < η0 and ψ2 6= 0)
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Figure 6.2: Left tail modi�cation for di�erent values of ψ2 as implemented in the function
hpsi2 (η0 = 0 as indicated by the dotted vertical line).
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De�nition 6.4 (Both tail modi�cation)

hη0(η,ψ = (ψ1, ψ2)) =


η0 + ln (η − η0 + 1) if η ≥ η0 and ψ1 = 0

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0 and ψ1 6= 0

η0 − ln (−η + η0 + 1) if η < η0 and ψ2 = 0

η0 − (−η+η0+1)ψ2−1
ψ2

otherwise (i.e. if η < η0 and ψ2 6= 0)
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Figure 6.3: Both tail modi�cation for di�erent values of ψ as implemented in the function
hpsi12. Arbitrary combinations of the parameters ψ1 and ψ2 can be made to transform
the tail. Again η0 = 0 as indicated by the dotted vertical line.
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Remark 6.5 (More about the general h(·) - power transformations)
The implementation of the single hpsi functions can be found in Section A.2. Further
we present related mathematical quantities including the domains of the hpsi functions,
the inverses, the partial derivatives w.r.t. η and the partial derivatives w.r.t. ψ. I.e. we
calculated the derivative w.r.t. ψ1 in the case of a right tail modi�cation (w.r.t. ψ2 in
the case of a left tail modi�cation) and for the both tail modi�cation we calculated both
partial derivatives w.r.t. ψ1 and ψ2. In addition we present the limits as |η| → ∞ (i.e.
lim|η|→∞) for the single tail modi�cations.

6.2 Parametric link families

Now we want to improve the GLMs presented in Chapter 5 using user-de�ned link func-
tions. Therefore, we modify the link functions introduced in Section 3.3. The topic of this
chapter will be how such link functions can be implemented in R and what speci�c link
functions we will use for the di�erent families. We will proceed with the implementation
of the methods and functions described in Czado (2007), modifying them slightly where
it is needed. The following table gives an overview of parametric link families using the
general h(·) - power transformations we have introduced in Section 6.1. If we take a link
function from these parametric link families, we speak of a tail modi�ed GLM since we
use a tail modi�ed link function. We restricted ourselves to the most common families in
GLMs and speci�ed the allowable modi�cations as it can be seen in Table 6.1.

Error Linkinv. Link family Allow.
distr. F (η) F = {F (·,ψ) | ψ ∈ Ψ} modif.

Normal F(η) = η F (η,ψ) = hη0(η,ψ) all

Scaled F(η) = exp{η}
1+exp{η} F (η,ψ) =

exp{hη0 (η,ψ)}
1+exp{hη0 (η,ψ)} all

binomial F(η) = Φ(η) F (η,ψ) = Φ(hη0(η,ψ)) all
Poisson F(η) = exp {η} F (η,ψ) = exp {hη0(η,ψ)} right
Gamma F(η) = 1

η
F (η,ψ) = 1

hη0 (η,ψ)
left

Table 6.1: Overview of the link families using η0-standardized tail modi�cations.

To implement the parametric link families we have to create user-de�ned link functions.
One way to de�ne a user-de�ned link function in R is to specify all of the following
components: linkfun, linkinv, mu.eta, valideta and name in an object of class �link-
glm� (see also help(make.link) and Section 3.3).

6.2.1 Gaussian family with tail modi�ed identity link

In the following we want to derive the tail modi�ed identity link function for all possible
modi�cations (i.e. �right�, �left� and �both�).

Remark 6.6 (Gaussian family with identity link)
In Subsection 3.3.1 we de�ned the ordinary identity link function through the following
speci�cations:

(i) linkfun: η = g(µ) = µ
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(ii) linkinv: µ = g−1(η) = F (η) = η

(iii) mu.eta: dµ
dη

(F (η)) = 1

(iv) valideta: 1{η∈R} = TRUE

We can de�ne the tail modi�ed Gaussian regression by modifying the linkinverse in
the ordinary Gaussian regression as follows.

De�nition 6.7 (Tail modi�ed Gaussian regression)
Let hη0(η,ψ) be a tail modi�cation as de�ned in Section 6.1 (see De�nitions 6.2, 6.3
and 6.4). Then, the tail modi�ed Gaussian regression has an inverse link function of the
following form:

F (η,ψ) = hη0(η,ψ) (6.1)

De�nition 6.8 (Tail modi�ed identity link)
Using Equation (6.1), we can de�ne the tail modi�ed identity link through the following
speci�cations:

(i) linkfun: g(µ,ψ):
We had η = g(µ) = µ for the identity link function. Hence, now we have:

hη0(η,ψ) = µ

⇔ η = (hη0(η,ψ))−1 (µ)

⇒ g(µ,ψ) = (hη0(η,ψ))−1 (µ)

(ii) linkinv: F (η,ψ) = hη0(η,ψ)

(iii) mu.eta: ∂µ
∂η

= ∂
∂η
F (η,ψ):

∂

∂η
F (η,ψ) =

∂

∂η
(hη0(η,ψ))

(iv) valideta: TRUE, if η is in the domain of F (η,ψ).

(v) name: �psi1GAUSS� for the right tail modi�cation, �psi2GAUSS� for the left tail
modi�cation and �psi12GAUSS� for the both tail modi�cation.

Remark 6.9
If we use a right tail modi�cation hη0(η,ψ = ψ1) as de�ned in De�nition 6.2 (a left tail
modi�cation hη0(η,ψ = ψ2) as de�ned in De�nition 6.3) for hη0(η,ψ), we speak of a
right tail modi�ed Gaussian regression (left tail modi�ed Gaussian regression). If we use
hη0(η,ψ = (ψ1, ψ2)) as de�ned in De�nition 6.4 for hη0(η,ψ), we speak of a both tail
modi�ed Gaussian regression.
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Example 6.10 (Right tail modi�ed Gaussian regression)
Let the right tail modi�cation hη0(η,ψ = ψ1) be given as in De�nition 6.2, then the
inverse of it is given as calculated in Equation (A.2) and the partial derivative w.r.t. η is
given as calculated in Equation (A.3). We determine the values, which are in the domain
of F (η,ψ). As we derived above we have:

F (η,ψ) = hη0(η,ψ)

Therefore, the domain of F (η,ψ) is the domain of the corresponding hpsi function
hη0(η,ψ) as given in Equation (A.1) (and in Equations A.4 and A.7). We derived the
following implementation of the right tail modi�ed identity link called �psi1GAUSS�.

psi1GAUSS<-function(psi1 = 1, eta0 = 0)

{linkfun <- function(mu) {hpsi1INV(psi1, mu, eta0)}

linkinv <- function(eta){hpsi1(psi1, eta, eta0)}

mu.eta <- function(eta) {hpsi1DERIV(psi1, eta, eta0)}

valideta<-function(eta) {h <- 1:length(eta)

for (i in 1:length(eta) ) {

if (is.finite(linkinv(eta[i]))) {h[i] <- TRUE}

else {h[i] <- FALSE}

}

h

}

link <- paste("psi1GAUSS(", psi1, " , " , eta0, ")")

structure(list(linkfun = linkfun,

linkinv = linkinv,

mu.eta = mu.eta,

valideta = valideta,

name = link),

class = "link-glm")

}

Example 6.11 (PCB concentration in lake trouts)
Now we present the output of a right tail modi�ed Gaussian regression with two di�erent
parameters. As in Example 5.1 our analysis is based on the data frame pcb.ex (see Ex-
ample 4.1). The �rst parameter is chosen in a way that decreases the deviance drastically
(for further information see Example 7.1). For the other parameter we choose the value
ψ1 = 1. This yields to an ordinary GLM with family = �gaussian� and link = �identity�.

pcb_glm_right<- glm(formula = log.pcb~age.cen,

family = gaussian(link=psi1GAUSS(psi1=0.18,eta0=0)),

data = pcb.ex)

summary(pcb_glm_right)

##

## Call:
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## glm(formula = log.pcb ~ age.cen,

## family = gaussian(link = psi1GAUSS(psi1 = 0.18, eta0 = 0)),

## data = pcb.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.798 -0.334 0.020 0.348 1.034

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 3.477 0.343 10.1 1.6e-10 ***

## age.cen 0.801 0.088 9.1 1.4e-09 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for gaussian family taken to be 0.2433)

##

## Null deviance: 31.1196 on 27 degrees of freedom

## Residual deviance: 6.3253 on 26 degrees of freedom

## AIC: 43.81

##

## Number of Fisher Scoring iterations: 5

summary(pcb_glm_right)$deviance

## [1] 6.325

Remark 6.12 (No transformation for ψ1 = 1)
pcb_glm_right2<- glm(formula = log.pcb~age.cen,

family = gaussian(link=psi1GAUSS(psi1=1,eta0=0)),

data = pcb.ex)

summary(pcb_glm_right2)$deviance

## [1] 8.359

Setting the link parameter ψ1 to 1 yields to no transformation (see Remark 6.1).
Hence, the summary of pcb_glm_right2 yields to the same output as in Example 5.1. In
particular, the deviance is the same, as can be seen above.
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6.2.2 Binomial family with tail modi�ed logit link

In the following we want to derive the tail modi�ed logit link function for all possible
modi�cations (i.e. �right�, �left� and �both�).

Remark 6.13 (Binomial family with logit link)
In Subsection 3.3.2 we de�ned the ordinary logit link function through the following
speci�cations:

(i) linkfun: η = g(µ) = ln
(

µ
1−µ

)
(ii) linkinv: µ = g−1(η) = F (η) = exp{η}

1+exp{η}

(iii) mu.eta: dµ
dη

(F (η)) = exp{η}
(1+exp{η})2

(iv) valideta: 1{η∈R} = TRUE

We can de�ne the tail modi�ed logistic regression by modifying the linkinverse in the
ordinary logistic regression as follows.

De�nition 6.14 (Tail modi�ed logistic regression)
Let hη0(η,ψ) be a tail modi�cation as de�ned in Section 6.1 (see De�nitions 6.2, 6.3
and 6.4). Then, the tail modi�ed logistic regression has an inverse link function of the
following form:

F (η,ψ) =
exp {hη0(η,ψ)}

1 + exp {hη0(η,ψ)}
(6.2)

De�nition 6.15 (Tail modi�ed logit link)
Using Equation (6.2) we can de�ne the tail modi�ed logit link through the following
speci�cations:

(i) linkfun: g(µ,ψ):

We had η = g(µ) = ln
(

µ
1−µ

)
for the logit link function. Hence, now we have:

hη0(η,ψ) = ln

(
µ

1− µ

)
⇔ η = (hη0(η,ψ))−1

(
ln

(
µ

1− µ

))
⇒ g(µ,ψ) = (hη0(η,ψ))−1

(
ln

(
µ

1− µ

))
(ii) linkinv: F (η,ψ):

F (η,ψ) =
exp {hη0(η,ψ)}

1 + exp {hη0(η,ψ)}

=
1 + exp {hη0(η,ψ)}
1 + exp {hη0(η,ψ)}︸ ︷︷ ︸

=1

− 1

1 + exp {hη0(η,ψ)}

= 1− 1

1 + exp {hη0(η,ψ)}
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(iii) mu.eta: ∂µ
∂η

= ∂
∂η
F (η,ψ):

∂

∂η
F (η,ψ) =

∂

∂η

(
exp {hη0(η,ψ)}

1 + exp {hη0(η,ψ)}

)

=

(
∂
∂η
hη0(η,ψ)

)
exp {hη0(η,ψ)} (1 + exp {hη0(η,ψ)})

(1 + exp {hη0(η,ψ)})2

−
exp {hη0(η,ψ)}

(
∂
∂η
hη0(η,ψ)

)
exp {hη0(η,ψ)}

(1 + exp {hη0(η,ψ)})2

=

(
∂
∂η
hη0(η,ψ)

)
exp {hη0(η,ψ)}

(1 + exp {hη0(η,ψ)})2
=

(
∂

∂η
hη0(η,ψ)

)
F (η,ψ) (1− F (η,ψ))

(iv) valideta: TRUE, if η is in the domain of F (η,ψ).

(v) name: �psi1LOGIT� for the right tail modi�cation, �psi2LOGIT� for the left tail
modi�cation and �psi12LOGIT� for the both tail modi�cation.

Remark 6.16
If we use a right tail modi�cation hη0(η,ψ = ψ1) as de�ned in De�nition 6.2 (a left
tail modi�cation hη0(η,ψ = ψ2) as de�ned in De�nition 6.3) for hη0(η,ψ), we speak of
a right tail modi�ed logistic regression (left tail modi�ed logistic regression). If we use
hη0(η,ψ = (ψ1, ψ2)) as de�ned in De�nition 6.4 for hη0(η,ψ), we speak of a both tail
modi�ed logistic regression.

Example 6.17 (Left tail modi�ed logistic regression)
Let the left tail modi�cation hη0(η,ψ = ψ2) be given as in De�nition 6.3, then the inverse
of it is given as calculated in Equation (A.5) and the partial derivative w.r.t. η is given
as calculated in Equation (A.6). We determine the values, which are in the domain of
F (η,ψ). As we derived above we have:

F (η,ψ) = 1− 1

1 + exp {hη0(η,ψ)}

The domain of exp{·} is the real line and exp{·} is non-negative. Therefore, η has to be in
the domain of the hpsi functions hη0(η,ψ) as given in Equation (A.4) (and in Equations
A.1 and A.7). We derived the following implementation of the left tail modi�ed logit link
called �psi2LOGIT�.

psi2LOGIT<-function(psi2 = 1, eta0 = 0)

{linkfun <- function(mu) hpsi2INV(psi2, log(mu/(1 - mu)), eta0)

linkinv <- function(eta) 1 - (1/(1 + exp(hpsi2(psi2, eta, eta0))))

mu.eta <- function(eta){

(hpsi2DERIV(psi2, eta, eta0)

*(1 - (1/(1 + exp(hpsi2(psi2, eta, eta0))))))/

(1 + exp(hpsi2(psi2, eta, eta0)))
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}

valideta<-function(eta){h <- 1:length(eta)

for (i in 1:length(eta) ) {

if (is.finite(linkinv(eta[i]))) {h[i] <- TRUE}

else {h[i] <- FALSE}

}

h

}

link <- paste("psi2LOGIT(", psi2, " , " , eta0, ")")

structure(list(linkfun = linkfun,

linkinv = linkinv,

mu.eta = mu.eta,

valideta = valideta,

name = link),

class = "link-glm")

}

Example 6.18 (Beetle mortality)
Now we present the output of a left tail modi�ed logistic regression with two di�erent
parameters. As in Example 5.2 our analysis is based on the data frame beetle.ex (see
Example 4.2). The �rst parameter is chosen in a way that decreases the deviance dras-
tically (for further information see Example 7.2). For the other parameter we choose
ψ2 = 1. This yields to an ordinary GLM with family = �binomial� and link = �logit�.

beetle_glm_left<- glm(formula = cbind(y, n-y)~dose.cen,

family = binomial(link=psi2LOGIT(psi2=0.16,eta0=0)),

data = beetle.ex)

summary(beetle_glm_left)

##

## Call:

## glm(formula = cbind(y, n - y) ~ dose.cen,

## family = binomial(link = psi2LOGIT(psi2 = 0.16, eta0 = 0)),

## data = beetle.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -0.967 -0.323 0.198 0.569 0.945

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 0.514 0.173 2.97 0.0029 **

## dose.cen 48.454 5.457 8.88 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 284.2024 on 7 degrees of freedom

## Residual deviance: 3.0445 on 6 degrees of freedom

## AIC: 33.24

##

## Number of Fisher Scoring iterations: 4

summary(beetle_glm_left)$deviance

## [1] 3.045

Remark 6.19 (No transformation for ψ2 = 1)
beetle_glm_left2<- glm(formula = cbind(y, n-y)~dose.cen,

family = binomial(link=psi2LOGIT(psi2=1,eta0=0)),

data = beetle.ex)

summary(beetle_glm_left2)$deviance

## [1] 11.23

Setting the link parameter ψ2 to 1 yields to no transformation (see Remark 6.1).
Hence, the summary of beetle_glm_left2 yields to the same output as in Example 5.2.
In particular, the deviance is the same, as can be seen above.

Example 6.20 (Byssinosis among cotton workers)
Again we present the output of a left tail modi�ed logistic regression with two di�erent
parameters. As in Example 5.3 our analysis is based on the data frame bys.ex (see Ex-
ample 4.3). The �rst parameter is chosen in a way that decreases the deviance drastically
(for further information see Czado (2007)(pp. 15-18)). For the other parameter we choose
ψ2 = 1, which yields to an ordinary GLM with family = �binomial� and link = �logit�.

bys_glm_left<- glm(formula = cbind(y, n-y)~workplace+smoking+employment,

family = binomial(link=psi2LOGIT(psi2=-1.9626,

eta0=-3.912)),

start = c(-3.8, -1.5, 0.6, 0.3),

data = bys.ex)

summary(bys_glm_left)

##

## Call:

## glm(formula = cbind(y, n - y) ~ workplace + smoking + employment,

## family = binomial(link = psi2LOGIT(psi2 = -1.9626, eta0 = -3.912)),

## data = bys.ex, start = c(-3.8, -1.5, 0.6, 0.3))
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##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.133 -0.462 -0.103 0.492 1.854

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -5.506 0.826 -6.66 2.7e-11 ***

## workplace -3.139 0.789 -3.98 7.0e-05 ***

## smoking 0.966 0.275 3.51 0.00045 ***

## employment 0.446 0.117 3.80 0.00015 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 290.7386 on 17 degrees of freedom

## Residual deviance: 9.2599 on 14 degrees of freedom

## AIC: 80.63

##

## Number of Fisher Scoring iterations: 7

summary(bys_glm_left)$deviance

## [1] 9.26

Remark 6.21 (No transformation for ψ2 = 1)
bys_glm_left2<- glm(formula = cbind(y, n-y)~workplace+smoking+employment,

family = binomial(link=psi2LOGIT(psi2=1,

eta0=-3.912)),

start = c(-3.8, -1.5, 0.6, 0.3),

data = bys.ex)

summary(bys_glm_left2)$deviance

## [1] 40.77

Setting the link parameter ψ2 to 1 yields to no transformation (see Remark 6.1).
Hence, the summary of bys_glm_left2 yields to the same output as in Example 5.3. In
particular, the deviance is the same, as can be seen above.
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6.2.3 Binomial family with tail modi�ed probit link

In the following we want to derive the tail modi�ed probit link function for all possible
modi�cations (i.e. �right�, �left� and �both�).

Remark 6.22 (Binomial family with probit link)
In Subsection 3.3.2 we de�ned the ordinary probit link function through the following
speci�cations:

(i) linkfun: η = g(µ) = qnorm(µ)
quantile function

= Φ−1(µ)

(ii) linkinv: µ = g−1(η) = F (η) = pnorm(η) = Φ(η)

(iii) mu.eta: dµ
dη

(F (η)) = dnorm(η) = ϕ(η)

(iv) valideta: 1{η∈R} = TRUE

We can de�ne the tail modi�ed probit regression by modifying the linkinverse in the
ordinary probit regression as follows.

De�nition 6.23 (Tail modi�ed probit regression)
Let hη0(η,ψ) be a tail modi�cation as de�ned in Section 6.1 (see De�nitions 6.2, 6.3 and
6.4). Then, the tail modi�ed probit regression has an inverse link function of the following
form:

F (η,ψ) = Φ(hη0(η,ψ)) (6.3)

De�nition 6.24 (Tail modi�ed probit link)
Using Equation (6.3) we can de�ne the tail modi�ed probit link through the following
speci�cations:

(i) linkfun: g(µ,ψ):
We had η = g(µ) = qnorm(µ) = Φ−1(µ) for the probit link function. Hence, now
we have:

hη0(η,ψ) = Φ−1(µ)

⇔ η = (hη0(η,ψ))−1 (Φ−1(µ)
)

⇒ g(µ,ψ) = (hη0(η,ψ))−1 (Φ−1(µ)
)

(ii) linkinv: F (η,ψ) = Φ(hη0(η,ψ))

(iii) mu.eta: ∂µ
∂η

= ∂
∂η
F (η,ψ):

∂

∂η
F (η,ψ) =

∂

∂η
(Φ(hη0(η,ψ))

=

(
∂

∂η
hη0(η,ψ)

)
ϕ(hη0(η,ψ))

(iv) valideta: TRUE, if η is in the domain of F (η,ψ).
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(v) name: �psi1PROBIT� for the right tail modi�cation, �psi2PROBIT� for the left tail
modi�cation and �psi12PROBIT� for the both tail modi�cation.

Remark 6.25
If we use a right tail modi�cation hη0(η,ψ = ψ1) as de�ned in De�nition 6.2 (a left
tail modi�cation hη0(η,ψ = ψ2) as de�ned in De�nition 6.3) for hη0(η,ψ), we speak
of a right tail modi�ed probit regression (left tail modi�ed probit regression). If we use
hη0(η,ψ = (ψ1, ψ2)) as de�ned in De�nition 6.4 for hη0(η,ψ), we speak of a both tail
modi�ed probit regression.

Example 6.26 (Both tail modi�ed probit regression)
Let the both tail modi�cation hη0(η,ψ = (ψ1, ψ2)) be given as in De�nition 6.4, then the
inverse of it is given as calculated in Equation (A.8) and the partial derivative w.r.t. η is
given as calculated in Equation (A.9). We determine the values, which are in the domain
of F (η,ψ). As we derived above we have:

F (η,ψ) = Φ(hη0(η,ψ))

The domain of Φ(·) is the real line. Therefore, η has to be in the domain of the hpsi

functions hη0(η,ψ) as given in Equation (A.7) (and in Equations A.1 and A.4). We derived
the following implementation of the both tail modi�ed probit link called �psi12PROBIT�.

psi12PROBIT<-function(psi1 = 1, psi2 = 1, eta0 = 0)

{linkfun <- function(mu) {hpsi12INV(psi1, psi2, qnorm(mu), eta0)}

linkinv <- function(eta){pnorm(hpsi12(psi1, psi2, eta, eta0))}

mu.eta <- function(eta) {hpsi12DERIV(psi1, psi2, eta, eta0)*

dnorm(hpsi12(psi1, psi2, eta, eta0))}

valideta<-function(eta) {h <- 1:length(eta)

for (i in 1:length(eta) ) {

if (is.finite(linkinv(eta[i]))) {h[i] <- TRUE}

else {h[i] <- FALSE}

}

h

}

link <- paste("psi12PROBIT(", psi1, "," , psi2, " , " , eta0, ")")

structure(list(linkfun = linkfun,

linkinv = linkinv,

mu.eta = mu.eta,

valideta = valideta,

name = link),

class = "link-glm")

}
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Example 6.27 (Rotifer suspension)
Now we present the output of a both tail modi�ed probit regression with two di�erent
parameters. As in Example 5.4 our analysis is based on the data frame rotifer.ex

(see Example 4.4). The �rst parameter is chosen in a way that decreases the deviance
drastically (for further information see Czado (2007)(pp. 18-22)). The other parameter
vector is chosen to be (1,1) (i.e. ψ = (1, 1)), which yields to an ordinary GLM as in
Example 5.4 with family = �binomial� and link = �probit� (see also Remark 6.1).

rotifer_glm_both<- glm(formula = cbind(y, n-y)~species

+density.cen

+species*density.cen,

family = binomial(link=psi12PROBIT(psi1=0,

psi2=-0.5,

eta0=0)),

data = rotifer.ex)

summary(rotifer_glm_both)

##

## Call:

## glm(formula = cbind(y, n - y) ~ species + density.cen + species *

## density.cen, family = binomial(link = psi12PROBIT(psi1 = 0,

## psi2 = -0.5, eta0 = 0)), data = rotifer.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -5.896 -1.392 -0.065 1.740 4.450

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.606 0.264 -9.87 < 2e-16 ***

## species 3.510 0.290 12.09 < 2e-16 ***

## density.cen 2.729 0.197 13.82 < 2e-16 ***

## species:density.cen -1.230 0.232 -5.29 1.2e-07 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 3180.99 on 39 degrees of freedom

## Residual deviance: 253.58 on 36 degrees of freedom

## AIC: 416.1

##

## Number of Fisher Scoring iterations: 7

summary(rotifer_glm_both)$deviance

## [1] 253.6
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Remark 6.28 (No transformation for ψ = (1, 1))
rotifer_glm_both2<- glm(formula = cbind(y, n-y)~species

+density.cen

+species*density.cen,

family = binomial(link=psi12PROBIT(psi1=1,

psi2=1,

eta0=0)),

data = rotifer.ex)

summary(rotifer_glm_both2)$deviance

## [1] 471.3

Setting the link parameter ψ to (1,1) yields to no transformation (see Remark 6.1).
Hence, the summary of rotifer_glm_both2 yields to the same output as in Example 5.4.
In particular, the deviance is the same, as can be seen above.

6.2.4 Poisson family with right tail modi�ed log link

In the following we want to derive the right tail modi�ed log link function. In a Poisson
regression model with log link no modi�cation other than the right tail modi�cation is
allowed.

Remark 6.29 (Poisson family with log link)
In Subsection 3.3.3 we de�ned the ordinary log link function through the following spec-
i�cations:

(i) linkfun: η = g(µ) = ln(µ)

(ii) linkinv: µ = g−1(η) = F (η) = exp{η}

(iii) mu.eta: dµ
dη

(F (η)) = exp{η}

(iv) valideta: 1{η∈R} = TRUE

We can de�ne the right tail modi�ed Poisson regression by modifying the linkinverse
in the ordinary Poisson regression as follows.

De�nition 6.30 (Right tail modi�ed Poisson regression)
Let hη0(η,ψ = ψ1) be the right tail modi�cation as de�ned in De�nition 6.2. Then, the
right tail modi�ed Poisson regression has an inverse link function of the following form:

F (η,ψ = ψ1) = exp {hη0(η,ψ = ψ1)} (6.4)
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De�nition 6.31 (Right tail modi�ed log link)
Using Equation (6.4) we can de�ne the right tail modi�ed log link through the following
speci�cations:

(i) linkfun: g(µ,ψ = ψ1):
We had η = g(µ) = ln(µ) for the log link function. Hence, now we have:

hη0(η,ψ = ψ1) = ln(µ)

⇔ η = (hη0(η,ψ = ψ1))−1 (ln(µ))

⇒ g(µ,ψ = ψ1) = (hη0(η,ψ = ψ1))−1 (ln(µ))

(ii) linkinv: F (η,ψ = ψ1) = exp {hη0(η,ψ = ψ1)}

(iii) mu.eta: ∂µ
∂η

= ∂
∂η
F (η,ψ = ψ1):

∂

∂η
F (η,ψ = ψ1) =

∂

∂η
(exp {hη0(η,ψ = ψ1)})

=

(
∂

∂η
hη0(η,ψ = ψ1)

)
exp {hη0(η,ψ = ψ1)}

(iv) valideta: TRUE, if η is in the domain of F (η,ψ = ψ1).

(v) name: �psi1POISS� for the right tail modi�cation.

Remark 6.32
In the setting given above we speak of a right tail modi�ed Poisson regression.

Example 6.33 (Right tail modi�ed Poisson regression)
Let the right tail modi�cation hη0(η,ψ = ψ1) be given as in De�nition 6.2, then the
inverse of it is given as calculated in Equation (A.2) and the partial derivative w.r.t. η is
given as calculated in Equation (A.3). We determine the values, which are in the domain
of F (η,ψ = ψ1). As we derived above we have:

F (η,ψ = ψ1) = exp {hη0(η,ψ = ψ1)}

The domain of exp{·} is the real line. Therefore, η has to be in the domain of the
hpsi function hη0(η,ψ = ψ1) as given in Equation (A.1). We derived the following
implementation of the right tail modi�ed log link called �psi1POISS�.

psi1POISS<-function(psi1 = 1, eta0 = 0)

{linkfun<-function(mu){hpsi1INV(psi1, log(mu), eta0)}

linkinv<-function(eta){exp(hpsi1(psi1, eta, eta0))}

mu.eta<-function(eta) {exp(hpsi1(psi1, eta, eta0))*

hpsi1DERIV(psi1, eta, eta0)}

valideta<-function(eta) {h <- 1:length(eta)

for (i in 1:length(eta) ) {

if (is.finite(linkinv(eta[i]))) {h[i] <- TRUE}
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else {h[i] <- FALSE}

}

h

}

link <- paste("psi1POISS(", psi1, " , " , eta0, ")")

structure(list(linkfun = linkfun,

linkinv = linkinv,

mu.eta = mu.eta,

valideta = valideta,

name = link),

class = "link-glm")

}

Example 6.34 (Coal mining fractures)
Now we present the output of the right tail modi�ed Poisson regression with two di�er-
ent parameters. As in Example 5.5 our analysis is based on the data frame mining.ex

(see Example 4.5). The �rst parameter is chosen in a way that decreases the deviance
drastically (for further information see Example 7.3). For the other parameter we choose
ψ1 = 1. This yields to an ordinary GLM with family = �poisson� and link = �log�.

mining_glm_right<- glm(formula = y~inb.cen+extrp.cen,

family = poisson(link=psi1POISS(psi1=-0.57,

eta0=0)),

data = mining.ex)

summary(mining_glm_right)

##

## Call:

## glm(formula = y ~ inb.cen + extrp.cen,

## family = poisson(link = psi1POISS(psi1 = -0.57, eta0 = 0)),

## data = mining.ex)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.999 -0.633 -0.171 0.419 2.103

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) 3.09432 1.02158 3.03 0.0025 **

## inb.cen -0.01018 0.00403 -2.53 0.0115 *

## extrp.cen 0.35944 0.11124 3.23 0.0012 **

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for poisson family taken to be 1)
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##

## Null deviance: 74.984 on 43 degrees of freedom

## Residual deviance: 30.757 on 41 degrees of freedom

## AIC: 133

##

## Number of Fisher Scoring iterations: 17

summary(mining_glm_right)$deviance

## [1] 30.76

Remark 6.35 (No transformation for ψ1 = 1)
mining_glm_right2<- glm(formula = y~inb.cen+extrp.cen,

family = poisson(link=psi1POISS(psi1=1,

eta0=0)),

data = mining.ex)

summary(mining_glm_right2)$deviance

## [1] 42.09

Setting the link parameter ψ1 to 1 yields to no transformation (see Remark 6.1).
Hence, the summary of mining_glm_right2 yields to the same output as in Example 5.5.
In particular, the deviance is the same, as can be seen above.

6.2.5 Gamma family with left tail modi�ed inverse link

In the following we want to derive the left tail modi�ed inverse link function. In a gamma
regression model with inverse link no modi�cation other than the left tail modi�cation is
allowed.

Remark 6.36 (Gamma family with inverse link)
In Subsection 3.3.4 we de�ned the ordinary inverse link function through the following
speci�cations:

(i) linkfun: η = g(µ) = 1
µ

(ii) linkinv: µ = g−1(η) = F (η) = 1
η

(iii) mu.eta: dµ
dη

(F (η)) = − 1
η2

(iv) valideta: 1{{η∈R}∩{η 6=0}}

We can de�ne the left tail modi�ed gamma regression by modifying the linkinverse in
the ordinary gamma regression as follows.
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De�nition 6.37 (Left tail modi�ed gamma regression)
Let hη0(η,ψ = ψ2) be the left tail modi�cation as de�ned in De�nition 6.3. Then, the left
tail modi�ed gamma regression has an inverse link function of the following form:

F (η,ψ = ψ2) =
1

hη0(η,ψ = ψ2)
(6.5)

De�nition 6.38 (Left tail modi�ed inverse link)
Using Equation (6.5) we can de�ne the left tail modi�ed inverse link through the following
speci�cations:

(i) linkfun: g(µ,ψ = ψ2):
We had η = g(µ) = 1

µ
for the inverse link function. Hence, now we have:

hη0(η,ψ = ψ2) =
1

µ

⇔ η = (hη0(η,ψ = ψ2))−1

(
1

µ

)
⇒ g(µ,ψ = ψ2) = (hη0(η,ψ = ψ2))−1

(
1

µ

)
(ii) linkinv: F (η,ψ = ψ2) = 1

hη0 (η,ψ=ψ2)

(iii) mu.eta: ∂µ
∂η

= ∂
∂η
F (η,ψ = ψ2):

∂

∂η
F (η,ψ = ψ2) =

∂

∂η

1

hη0(η,ψ = ψ2)

= −
(
∂

∂η
hη0(η,ψ = ψ2)

)
1

(hη0(η,ψ = ψ2))2

(iv) valideta: TRUE, if η is in the domain of F (η,ψ = ψ2).

(v) name: �psi2GAMMA� for the left tail modi�cation.

Remark 6.39
In the setting given above we speak of a left tail modi�ed gamma regression.

Example 6.40 (Left tail modi�ed gamma regression)
Let the left tail modi�cation hη0(η,ψ = ψ2) be given as in De�nition 6.3, then the inverse
of it is given as calculated in Equation (A.5) and the partial derivative w.r.t. η is given
as calculated in Equation (A.6). We determine the values, which are in the domain of
F (η,ψ = ψ2). As we derived above we have:

F (η,ψ = ψ2) =
1

hη0(η,ψ = ψ2)

Therefore, the domain of F (η,ψ = ψ2) is the domain of the hη0(η,ψ = ψ2) except for the
values of η, where hη0(η,ψ = ψ2) = 0. The domain of the corresponding hpsi function is
given in Equation (A.4). We derived the following implementation of the left tail modi�ed
inverse link called �psi2GAMMA�.
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psi2GAMMA<-function(psi2 = 1, eta0 = 0)

{linkfun <- function(mu) hpsi2INV(psi2, (1/mu), eta0)

linkinv <- function(eta) 1/hpsi2(psi2, eta, eta0)

mu.eta <- function(eta) {

hpsi2DERIV(psi2, eta, eta0)*(- (1/hpsi2(psi2, eta, eta0))^2)

}

valideta<-function(eta) {h <- 1:length(eta)

for (i in 1:length(eta) ) {

if (is.finite(linkinv(eta[i]))) {h[i] <- TRUE}

else {h[i] <- FALSE}

}

h

}

link <- paste("psi2GAMMA(", psi2, " , " , eta0, ")")

structure(list(linkfun = linkfun,

linkinv = linkinv,

mu.eta = mu.eta,

valideta = valideta,

name = link),

class = "link-glm")

}

Example 6.41 (Canadian automobile insurance)
Now we present the output of the left tail modi�ed gamma regression with two di�erent
parameters. As in Example 5.6 our analysis is based on the data frame carinsur.ex

(see Example 4.6). The �rst parameter is chosen in a way that decreases the deviance
drastically (for further information see Example 7.4). For the other parameter we choose
ψ2 = 1, which yields to an ordinary GLM with family = �Gamma� and link = �inverse�.

carinsur_glm_left<- glm(formula = (Cost/Claims)~Merit+Class,

family = Gamma(link=psi2GAMMA(psi2=-1.39,

eta0=3.6)),

weights = Claims,

start = c(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),

data = carinsur.ex)

summary(carinsur_glm_left)

##

## Call:

## glm(formula = (Cost/Claims) ~ Merit + Class,

## family = Gamma(link = psi2GAMMA(psi2 = -1.39, eta0 = 3.6)),

## data = carinsur.ex,

## weights = Claims,

## start = c(3.2, 0, 0, 0, -0.3, -0.1, -0.5, 0.25))

##
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## Deviance Residuals:

## Min 1Q Median 3Q Max

## -6.108 -1.337 0.000 0.956 5.753

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 2.81e+00 2.68e+00 1.05 0.32

## Merit1 6.57e-01 3.02e+00 0.22 0.83

## Merit2 6.35e-01 3.18e+00 0.20 0.84

## Merit3 5.79e-01 2.72e+00 0.21 0.83

## Class2 -9.12e-01 6.34e+00 -0.14 0.89

## Class3 -9.16e-02 1.50e+00 -0.06 0.95

## Class4 -2.37e+04 5.07e+08 0.00 1.00

## Class5 3.56e-01 1.96e+00 0.18 0.86

##

## (Dispersion parameter for Gamma family taken to be 2050)

##

## Null deviance: 1556.01 on 19 degrees of freedom

## Residual deviance: 122.19 on 12 degrees of freedom

## AIC: -3100206

##

## Number of Fisher Scoring iterations: 15

summary(carinsur_glm_left)$deviance

## [1] 122.2

Remark 6.42 (No transformation for ψ2 = 1)
carinsur_glm_left2<- glm(formula = Cost/Claims~Merit+Class,

family = Gamma(link=psi2GAMMA(psi2=1,

eta0=3.6)),

weights = Claims,

start = c(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),

data = carinsur.ex)

summary(carinsur_glm_left2)$deviance

## [1] 167.4

Setting the link parameter ψ2 to 1 yields to no transformation (see Remark 6.1). Thus,
the summary of carinsur_glm_left2 yields to the same output as in Example 5.6. In
particular, the deviance is the same, as can be seen above.
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6.3 The glmProfile function

In the following we will de�ne a function called �glmPro�le�. It was also presented in
Czado (2007) and can be seen as an extension to the ordinary glm function in R.

Remark 6.43 (Motivation of the glmProfile function)
For every single, appropriate value of ψ we can (given a value for η0) de�ne a user-de�ned
link function. For each of these user-de�ned link functions we can run the glm function
(see examples in Section 6.2). For each value of ψ speci�ed through the arguments psi1
and psi2, we calculate the deviance using a glm function with our user-de�ned link.
Now we want to investigate, which value we should take for the parameter ψ in order to
receive the best-�tting model (w.r.t. the deviance). Therefore, we would like to take the
parameter of ψ corresponding to the model with the minimal deviance. The parameter
we should take can be determined with the glmProfile function, which we will de�ne
now. We can also see a plot describing the decrease of the deviance graphically.

De�nition 6.44 (De�nition of the glmProfile function)
The glmProfile function requires the following input:

(i) formula: is an expression of the form: response ∼ covariate1 + · · ·+ covariatek (as
in the ordinary glm function). For every data set we have to decide which covariates
we want to take in our model.

(ii) values for the parameter ψ:

� for a single tail modi�cation we have to specify either ψ1 (for a right tail
modi�cation) or ψ2 (for a left tail modi�cation). For the single right tail
modi�cation (single left tail modi�cation) a grid of ψ1 values (ψ2 values) has to
be speci�ed in the vector psi1 (vector psi2) which we pass to the glmProfile
function. The default values for both psi1 and psi2 are 1, which yields to no
transformation.

� for a both tail modi�cation we have to specify both ψ1 and ψ2 in the corre-
sponding vectors psi1 and psi2. This gives a grid of ψ = (ψ1, ψ2) values.

(iii) value for η0: for every kind of modi�cation we have to declare a value for η0 in
the variable eta0. If no value is given in the command line, then η0 is set to 0 by
default.

(iv) family: we can specify one of the families introduced in Section 3.3. Since we
modi�ed both the logistic regression and the probit regression, we have to make little
changes stating the family. One of the following families is possible (in the brackets
we give the numbers corresponding to this family in the procedure of glmProfile):

� family = "gaussian" (internally handled with familyinteger = 1). This
family is set to be the default family as in the ordinary glm function in R.

� family = "poisson" (internally handled with familyinteger = 2).

� family = "logit" (internally handled with familyinteger = 3). This state-
ment is slightly di�erent from the speci�cation in the ordinary glm function
(there it would have been family = binomial(link = "logit")).



76 6 GENERALIZED LINEAR MODELS WITH PARAMETRIC LINK

� family = "probit" (internally handled with familyinteger = 4).

� family = "Gamma" (internally handled with familyinteger = 5).

(v) tail: we have to specify what tail transformation we like to perform. Table 6.1 gives
an overview of allowed tail modi�cations. The following speci�cations are possible
(again we give the internal numbers corresponding to this transformation):

� tail = "left" (internally handled with tailinteger = 1) corresponding to
Def. 6.3. This modi�cation is as default (i.e. when no speci�cation of tail is
assigned).

� tail = "right" (internally handled with tailinteger = 2) corresponding to
Def. 6.2.

� tail = "both" (internally handled with tailinteger = 3) corresponding to
Def. 6.4.

(vi) weights: optional statement with default value NULL. It contains the �prior weights�
to be used in the �tting process as in the ordinary glm function in R (see help(glm)).

(vii) start: optional statement with default value NULL. It contains starting values
for the parameters in the linear predictor as in the ordinary glm function in R
(see help(glm)). Thus, we have to specify a vector of length p = k+1 (since η is
depending on β ∈ Rp, see Equation (3.5)). We will specify a vector, which is close
to the estimates of the regression parameters in the ordinary GLM (see Chapter 5).

(viii) data: data set containing n rows of observations of both the response and the
covariates as for the ordinary glm function.

If we specify all of the required arguments of the glmProfile function we get the
following output:

(i) plot:

� for a single tail modi�cation: a deviance pro�le plot for the link parameter.
Therefore we plot the link parameter (either ψ1 or ψ2) versus the corresponding
deviance for these values. We also include an approximate 95% con�dence
interval for the link parameter (printed with dotted lines).

� for a both tail modi�cation: a deviance pro�le contour plot for the link pa-
rameters. Therefore we plot the link parameter ψ1 on the x-axis and ψ2 and
the y-axis together with the deviance surface for the grid of (ψ1, ψ2) values.
In addition we include an approximate 95% joint con�dence region for the link
parameters (ψ1, ψ2) (printed with dotted lines).

(ii) computed values: the glmProfile function returns a list containing the values of
ψ which we can access by $psi for a single tail modi�cation (returning either the
values of ψ1 for a right tail modi�cation or those of ψ2 for a left tail modi�cation)
and by $psi1 and $psi2 for a both tail modi�cation. The list also contains the
deviance for the values of ψ which we can access by $dev.
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(iii) summarizing statement: furthermore the glmProfile function gives the minimum
deviance and the value of ψ for which it was attained.

glmProfile<-function(formula = formula(data),

psi1 = 1, psi2 = 1, eta0 = 0,

family = "gaussian",

tail = "left",

weights = NULL,

start = NULL,

data = stop("data missing")){

w <- weights

if(any(w < 0)){stop("negative weights not allowed")}

familyinteger <- charmatch(family, c("gaussian",

"poisson",

"logit",

"probit",

"Gamma"))

tailinteger <- charmatch(tail, c("left",

"right",

"both"))

##############################################################

# Gaussian: all modifications allowed #######################

##############################################################

if(tailinteger == 1 & familyinteger == 1){

psi <- psi2

linkset <- psi2GAUSS

familyname<<-gaussian

}

else if(tailinteger == 2 & familyinteger == 1){

psi <- psi1

linkset <- psi1GAUSS

familyname<<-gaussian

}

else if(tailinteger == 3 & familyinteger == 1){

linkset <- psi12GAUSS

familyname<<-gaussian

}

##############################################################

# Poisson: only right modification allowed ##################

##############################################################

else if(tailinteger == 2 & familyinteger == 2){

psi <- psi1

linkset <- psi1POISS
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familyname<<-poisson

}

##############################################################

# Logit: all modifications allowed ##########################

##############################################################

else if(tailinteger == 1 & familyinteger == 3){

psi <- psi2

linkset <- psi2LOGIT

familyname<<-binomial

}

else if(tailinteger == 2 & familyinteger == 3){

psi <- psi1

linkset <- psi1LOGIT

familyname<<-binomial

}

else if(tailinteger == 3 & familyinteger == 3){

linkset <- psi12LOGIT

familyname<<-binomial

}

##############################################################

# Probit: all modifications allowed #########################

##############################################################

else if(tailinteger == 1 & familyinteger == 4){

psi <- psi2

linkset <- psi2PROBIT

familyname<<-binomial

}

else if(tailinteger == 2 & familyinteger == 4){

psi <- psi1

linkset <- psi1PROBIT

familyname<<-binomial

}

else if(tailinteger == 3 & familyinteger == 4){

linkset <- psi12PROBIT

familyname<<-binomial

}

##############################################################

# Gamma: only left modification allowed #####################

##############################################################

else if(tailinteger == 1 & familyinteger == 5){

psi <- psi2

linkset <- psi2GAMMA
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familyname<<-Gamma

}

else{stop(paste(tail, "tail modification is not available for the",

family, "family"))}

Weights <<- w

###########################################

# BOTH TAIL MODIFICATIONS #

###########################################

if(tailinteger == 3){

psi1 <- sort(psi1)

psi2 <- sort(psi2)

r <- matrix(0, nrow = length(psi1), ncol = length(psi2))

for(j in 1:length(psi1)){

for(k in 1:length(psi2)){

r[j, k] <- glm(formula,

family = familyname(link = linkset(psi1[j],

psi2[k],

eta0)),

weights = Weights, start=start,

data = data)$deviance

}

}

dimnames(r) <- list(as.character(psi1), as.character(psi2))

out <- list(psi1 = psi1, psi2 = psi2, dev = r)

rpsi1 <- range(psi1)

rpsi2 <- range(psi2)

par(oma = c(2, 0, 0, 0))

contour(psi1, psi2, r, xlim = rpsi1, ylim = rpsi2,

xlab = "psi1", ylab = "psi2")

title(main = "Deviance Profile Contour Plot for the Link Parameters",

sub = paste(family, "GLM with",

tail, "tails modified with 95% confidence region"))

sortr <- sort.list(r)[1]

sortpsi2 <- floor(sortr/length(psi1))

temp <- sortr - sortpsi2 * length(psi1)

if(temp == 0) {sortpsi2 <- sortpsi2 - 1}

sortpsi1 <- sortr - sortpsi2 * length(psi1)

sortpsi2 <- ceiling(sortr/length(psi1))

cat(paste("\nminimum deviance=", min(r), "attained for",

"psi1=", psi1[sortpsi1], ",psi2=", psi2[sortpsi2],".\n\n"))

conlvl <- min(r) + qchisq(0.95, 2)

if(conlvl < max(r)) {

par(new = T)
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contour(psi1, psi2, r, xlim = rpsi1, ylim = rpsi2,

levels = conlvl, lty = 2)

par(new = T)

plot(psi1[sortpsi1],

psi2[sortpsi2],

xlim = rpsi1, ylim = rpsi2)

}

}

###########################################

# SINGLE TAIL MODIFICATIONS #

###########################################

else {

psi <- sort(psi)

r <- rep(0, length(psi))

for(j in 1:length(psi)){

r[j] <- glm(formula,

family = familyname(link = linkset(psi[j], eta0)),

weights = Weights, start=start,

data = data)$deviance

}

out <- list(psi = psi, dev = r)

ry <- range(r, min(r) - (max(r) - min(r)) * 0.05)

plot(psi, r, ylim = ry, ylab = "deviance", xlab = "psi", type = "l",

main = "Deviance Profile Plot for the Link Parameter",

sub = paste(family, "GLM with",

tail, "tail modified with 95% confidence interval"))

abline(h = min(r) + 2, lty = 2)

devcon <- min(r) + 2

rlow <- r[psi < psi[sort.list(r)[1]]] - devcon

rhigh <- r[psi > psi[sort.list(r)[1]]] - devcon

if(max(rlow) > 0) {

psilow <- sort.list(abs(rlow))[1]

segments(psi[psilow], ry[1], psi[psilow], devcon, lty = 2)

}

if(max(rhigh) > 0) {

psihigh <- sort.list(abs(rhigh))[1]

segments(psi[psihigh + sort.list(r)[1]], ry[1], psi[

psihigh + sort.list(r)[1]], devcon, lty = 2)

}

cat(paste("\nminimum deviance=", min(r),

"attained for", psi[sort.list(r)[1]], ".\n\n"))

}

out

}
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Remark 6.45 (Interpretation of the 95% - con�dence interval)
The 95% - con�dence interval allows us to assess whether the link modi�cation is necessary.
We saw when setting ψ1, ψ2 = 1 or ψ = (1, 1) we obtain no transformation (see Remark
6.1) and thus we use the same link function as in the ordinary GLM. If consequently these
values (i.e. ψ = (1, 1) or ψ1, ψ2 = 1) lie within the con�dence interval (or con�dence
region, respectively) no tail modi�cation would have been necessary, i.e. the analysis of
the ordinary glm function su�ces. In these cases the decrease of the deviance is only
weak. Whenever ψ1 = 1 is not contained in the con�dence interval given in the deviance
pro�le plot a right tail modi�cation seems appropriate. Analogously if ψ2 = 1 is not
contained in the con�dence interval, then a left tail modi�cation yields to an improved �t
of the model. The same results can be adopted for the both tail modi�cations.

Remark 6.46 (Starting value for η0)
According to Czado (2007) the following choices for the starting value η0 are reasonable:

� it is advisable to choose η0 = β0 using centered covariates, varying around their
center β0.

� if in a binary regression the data sets show symmetric proportions around 0.5 one
can take η0 = 0.

� if the proportions are not symmetric one has to estimate the success probability p0.
This can be done via the observed proportions for discrete random variables. For
continuous random variables one should group the data primarily.

In Chapter 7 we will present the output of the glmProfile function. We restrict
ourselves to apply the glmProfile function only on the examples for the single tail mod-
i�cations with the default link functions. All in all we will derive the parameters for the
parametric link by applying the glmProfile function on the following data sets and link
functions:

Family Link Data set As seen in Ordinary GLM

Gaussian identity pcb.ex Example 4.1 Example 5.1
Binomial logit beetle.ex Example 4.2 Example 5.2
Poisson log mining.ex Example 4.5 Example 5.5
Gamma inverse carinsur.ex Example 4.6 Example 5.6

Table 6.2: Overview: data sets on which glmProfile will be applied.

Remark 6.47 (Further examples)
Two other examples were discussed extensively in Czado (2007). From this technical
report we took the optimal values for the corresponding parameters for the tail modifying
link functions (see Example 6.20 and Example 6.27).



82 7 EXAMPLES: THE GLMPROFILE FUNCTION

7 Examples: the glmProfile function

7.1 Modi�ed Gaussian regression

Example 7.1 (Applying glmProfile on PCB data)
Now we derive the optimal value for the parameter ψ1 we have used in the right tail
modi�ed Gaussian regression (see Example 6.11). Therefore we apply the glmProfile

function on the data frame pcb.ex with the following speci�cations:

glmProfile(formula = log.pcb~age.cen,

psi1 = seq(-0.3, 1.3, by=0.015),

family = "gaussian",

tail = "right",

data = pcb.ex)
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##

## minimum deviance= 6.32526546684224 attained for 0.18 .

## $psi

## [1] -0.300 -0.285 -0.270 -0.255 -0.240 -0.225 -0.210 -0.195 -0.180

## [10] -0.165 -0.150 -0.135 -0.120 -0.105 -0.090 -0.075 -0.060 -0.045

## [19] -0.030 -0.015 0.000 0.015 0.030 0.045 0.060 0.075 0.090

## [28] 0.105 0.120 0.135 0.150 0.165 0.180 0.195 0.210 0.225

## [37] 0.240 0.255 0.270 0.285 0.300 0.315 0.330 0.345 0.360

## [46] 0.375 0.390 0.405 0.420 0.435 0.450 0.465 0.480 0.495

## [55] 0.510 0.525 0.540 0.555 0.570 0.585 0.600 0.615 0.630

## [64] 0.645 0.660 0.675 0.690 0.705 0.720 0.735 0.750 0.765

## [73] 0.780 0.795 0.810 0.825 0.840 0.855 0.870 0.885 0.900

## [82] 0.915 0.930 0.945 0.960 0.975 0.990 1.005 1.020 1.035

## [91] 1.050 1.065 1.080 1.095 1.110 1.125 1.140 1.155 1.170

## [100] 1.185 1.200 1.215 1.230 1.245 1.260 1.275 1.290

##

## $dev

## [1] 10.124 9.852 9.592 9.343 9.106 8.879 8.665 8.461 8.268

## [10] 8.086 7.915 7.754 7.603 7.462 7.332 7.210 7.098 6.995

## [19] 6.900 6.814 6.736 6.666 6.603 6.548 6.500 6.458 6.422

## [28] 6.393 6.369 6.350 6.337 6.329 6.325 6.326 6.331 6.339

## [37] 6.351 6.367 6.385 6.407 6.431 6.458 6.487 6.519 6.552

## [46] 6.587 6.624 6.662 6.701 6.742 6.784 6.827 6.870 6.914

## [55] 6.959 7.004 7.049 7.095 7.141 7.187 7.233 7.279 7.326

## [64] 7.371 7.417 7.463 7.508 7.553 7.598 7.643 7.687 7.731

## [73] 7.774 7.817 7.860 7.902 7.943 7.985 8.025 8.066 8.106

## [82] 8.145 8.184 8.222 8.260 8.298 8.335 8.371 8.407 8.443

## [91] 8.478 8.512 8.547 8.580 8.614 8.646 8.679 8.711 8.742

## [100] 8.773 8.804 8.834 8.864 8.893 8.922 8.951 8.979
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7.2 Modi�ed logistic regression

Example 7.2 (Applying glmProfile on beetle data)
Now we derive the optimal value for the parameter ψ2 we have used in the left tail modi�ed
logistic regression (see Example 6.18). Therefore we apply the glmProfile function on
the data frame beetle.ex with the following speci�cations:

glmProfile(formula = cbind(y, n-y)~dose.cen,

psi2 = seq(-0.4, 0.8, by=0.01), eta0=0,

family = "logit",

tail = "left",

data = beetle.ex)
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##

## minimum deviance= 3.04454405636305 attained for 0.16 .

## $psi

## [1] -0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31

## [11] -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21

## [21] -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11

## [31] -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01

## [41] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

## [51] 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

## [61] 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29

## [71] 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39

## [81] 0.40 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49

## [91] 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59

## [101] 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69

## [111] 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79

## [121] 0.80

##

## $dev

## [1] 8.291 8.121 7.953 7.787 7.623 7.461 7.302 7.144 6.989 6.836

## [11] 6.686 6.538 6.392 6.249 6.109 5.971 5.836 5.703 5.574 5.447

## [21] 5.323 5.202 5.084 4.969 4.857 4.748 4.643 4.540 4.441 4.344

## [31] 4.252 4.162 4.076 3.993 3.913 3.837 3.765 3.695 3.630 3.568

## [41] 3.509 3.454 3.402 3.354 3.309 3.268 3.230 3.196 3.165 3.138

## [51] 3.115 3.094 3.078 3.064 3.054 3.048 3.045 3.045 3.048 3.055

## [61] 3.065 3.078 3.094 3.114 3.136 3.162 3.191 3.222 3.257 3.295

## [71] 3.335 3.378 3.425 3.474 3.525 3.580 3.637 3.696 3.759 3.823

## [81] 3.891 3.960 4.033 4.107 4.184 4.263 4.345 4.428 4.514 4.602

## [91] 4.693 4.785 4.879 4.976 5.074 5.174 5.277 5.381 5.487 5.595

## [101] 5.704 5.815 5.928 6.043 6.160 6.278 6.397 6.519 6.641 6.766

## [111] 6.891 7.019 7.147 7.277 7.409 7.542 7.676 7.811 7.948 8.086

## [121] 8.225
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7.3 Modi�ed Poisson regression

Example 7.3 (Applying glmProfile on mining data)
Now we derive the optimal value for the parameter ψ1 we have used in the right tail
modi�ed Poisson regression (see Example 6.34). Therefore we apply the glmProfile

function on the data frame mining.ex with the following speci�cations:

glmProfile(formula = y~inb.cen+extrp.cen,

psi1 = seq(-1, 0.2, by=0.01), eta0=0,

family = "poisson",

tail = "right",

data = mining.ex)
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##

## minimum deviance= 30.7566766282853 attained for -0.57 .

## $psi

## [1] -1.00 -0.99 -0.98 -0.97 -0.96 -0.95 -0.94 -0.93 -0.92 -0.91

## [11] -0.90 -0.89 -0.88 -0.87 -0.86 -0.85 -0.84 -0.83 -0.82 -0.81

## [21] -0.80 -0.79 -0.78 -0.77 -0.76 -0.75 -0.74 -0.73 -0.72 -0.71

## [31] -0.70 -0.69 -0.68 -0.67 -0.66 -0.65 -0.64 -0.63 -0.62 -0.61

## [41] -0.60 -0.59 -0.58 -0.57 -0.56 -0.55 -0.54 -0.53 -0.52 -0.51

## [51] -0.50 -0.49 -0.48 -0.47 -0.46 -0.45 -0.44 -0.43 -0.42 -0.41

## [61] -0.40 -0.39 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31

## [71] -0.30 -0.29 -0.28 -0.27 -0.26 -0.25 -0.24 -0.23 -0.22 -0.21

## [81] -0.20 -0.19 -0.18 -0.17 -0.16 -0.15 -0.14 -0.13 -0.12 -0.11

## [91] -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01

## [101] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

## [111] 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

## [121] 0.20

##

## $dev

## [1] 36.08 35.89 35.71 35.53 35.35 35.18 35.01 34.85 34.69 34.53

## [11] 34.37 34.25 34.04 33.84 33.64 33.44 33.25 33.06 32.89 32.71

## [21] 32.55 32.39 32.23 32.09 31.95 31.82 31.70 31.58 31.48 31.38

## [31] 31.29 31.20 31.13 31.06 31.00 30.94 30.90 30.86 30.82 30.80

## [41] 30.78 30.76 30.76 30.76 30.76 30.77 30.79 30.81 30.83 30.86

## [51] 30.89 30.93 30.97 31.01 31.06 31.11 31.17 31.22 31.28 31.34

## [61] 31.41 31.48 31.54 31.61 31.69 31.76 31.84 31.91 31.99 32.07

## [71] 32.15 32.24 32.32 32.40 32.49 32.57 32.66 32.75 32.84 32.92

## [81] 33.01 33.10 33.19 33.28 33.37 33.47 33.56 33.65 33.74 33.83

## [91] 33.92 34.02 34.11 34.20 34.29 34.39 34.48 34.57 34.66 34.76

## [101] 34.85 34.94 35.03 35.12 35.21 35.30 35.40 35.49 35.58 35.67

## [111] 35.76 35.84 35.93 36.02 36.11 36.20 36.29 36.37 36.46 36.55

## [121] 36.63
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7.4 Modi�ed gamma regression

Example 7.4 (Applying glmProfile on car insurance data)
Now we derive the optimal value for the parameter ψ2 we have used in the left tail modi�ed
gamma regression (see Example 6.41). Therefore we apply the glmProfile function on
the data frame carinsur.ex with the following speci�cations:

glmProfile(formula = (Cost/Claims)~Merit+Class,

psi2 = seq(-1.55, -0.3, by=0.01), eta0=3.6,

family = "Gamma",

tail = "left",

weights = Claims,

start = c(3.2,0,0,0,-0.3,-0.1,-0.5,0.25),

data = carinsur.ex)
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##

## minimum deviance= 122.186293700013 attained for -1.39 .

## $psi

## [1] -1.55 -1.54 -1.53 -1.52 -1.51 -1.50 -1.49 -1.48 -1.47 -1.46

## [11] -1.45 -1.44 -1.43 -1.42 -1.41 -1.40 -1.39 -1.38 -1.37 -1.36

## [21] -1.35 -1.34 -1.33 -1.32 -1.31 -1.30 -1.29 -1.28 -1.27 -1.26

## [31] -1.25 -1.24 -1.23 -1.22 -1.21 -1.20 -1.19 -1.18 -1.17 -1.16

## [41] -1.15 -1.14 -1.13 -1.12 -1.11 -1.10 -1.09 -1.08 -1.07 -1.06

## [51] -1.05 -1.04 -1.03 -1.02 -1.01 -1.00 -0.99 -0.98 -0.97 -0.96

## [61] -0.95 -0.94 -0.93 -0.92 -0.91 -0.90 -0.89 -0.88 -0.87 -0.86

## [71] -0.85 -0.84 -0.83 -0.82 -0.81 -0.80 -0.79 -0.78 -0.77 -0.76

## [81] -0.75 -0.74 -0.73 -0.72 -0.71 -0.70 -0.69 -0.68 -0.67 -0.66

## [91] -0.65 -0.64 -0.63 -0.62 -0.61 -0.60 -0.59 -0.58 -0.57 -0.56

## [101] -0.55 -0.54 -0.53 -0.52 -0.51 -0.50 -0.49 -0.48 -0.47 -0.46

## [111] -0.45 -0.44 -0.43 -0.42 -0.41 -0.40 -0.39 -0.38 -0.37 -0.36

## [121] -0.35 -0.34 -0.33 -0.32 -0.31 -0.30

##

## $dev

## [1] 148.5 145.6 142.8 140.2 137.7 135.4 133.2 131.2 129.4 127.8

## [11] 126.3 125.1 124.0 123.2 122.6 122.3 122.2 122.2 122.2 122.2

## [21] 122.2 122.3 122.3 122.3 122.2 122.2 122.2 122.2 122.2 122.2

## [31] 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2 122.2

## [41] 122.3 122.3 122.3 122.3 122.3 122.4 122.4 122.4 122.5 122.5

## [51] 122.5 122.6 122.6 122.7 122.7 122.8 122.9 122.9 123.0 123.1

## [61] 123.1 123.2 123.3 123.4 123.4 123.5 123.6 123.7 123.8 123.9

## [71] 124.0 124.1 124.2 124.3 124.5 124.6 124.7 124.8 125.0 125.1

## [81] 125.2 125.4 125.5 125.6 125.8 125.9 126.1 126.2 126.4 126.5

## [91] 126.7 126.9 127.0 127.2 127.4 127.6 127.7 127.9 128.1 128.3

## [101] 128.5 128.6 128.8 129.0 129.2 129.4 129.6 129.8 130.0 130.2

## [111] 130.4 130.6 130.8 131.0 131.3 131.5 131.7 131.9 132.1 132.4

## [121] 132.6 132.8 133.0 133.3 133.5 133.7
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8 Comparison

Table 8.1 sums up the key quantities we have derived in our work in the previous chap-
ters. To clarify the improvement of the tail modi�ed GLMs (using user-de�ned links) we
calculated the improvement (abbreviated by �impr.�) of the deviance with the following
formula:

improvement in % =

(
deviance in improved model

deviance in ordinary model
− 1

)
· 100%

Remark 8.1 (Origin of the values)
The single values can be taken from the sections where we derived them. The values were
rounded to an accuracy of two digits.

Family Gaussian Binomial Poisson Gamma

Data sets
name pcb.ex beetle.ex bys.ex rotifer.ex mining.ex carinsur.ex
as seen in Ex. 4.1 Ex. 4.2 Ex. 4.3 Ex. 4.4 Ex. 4.5 Ex. 4.6
link identity logit logit probit log inverse
# obs. 28 8 18 40 44 20
# covar. 1 1 3 3 2 7
p = k+1 2 2 4 4 3 8
dof 26 6 14 36 41 12
Ordinary GLMs
as seen in Ex. 5.1 Ex. 5.2 Ex. 5.3 Ex. 5.4 Ex. 5.5 Ex. 5.6
deviance 8.36 11.23 40.77 471.25 42.09 167.43
Tail modi�ed GLMs
tail right, ψ1 left, ψ2 left, ψ2 both, ψ right, ψ1 left, ψ2

opt. value 0.18 0.16 −1.96 (0,−0.5) −0.57 −1.39
see Ex. 6.11 Ex. 6.18 Ex. 6.20 Ex. 6.27 Ex. 6.34 Ex. 6.41
and Ex. 7.1 Ex. 7.2 Czado (2007) Ex. 7.3 Ex. 7.4
deviance 6.33 3.04 9.26 253.58 30.76 122.19

Comparison of the ordinary GLM with the tail modi�ed GLM
impr. in % 24.28 72.93 77.29 46.19 26.92 27.02

Table 8.1: Summary: improvement due to tail modi�cations.

Remark 8.2 (Degrees of freedom)
The di�erence between the number of observations and the number of parameters we have
to estimate in our model is called the number of degrees of freedom of the model (often
abbreviated by �dof�). Hence, we have dof = n - p (where p = k+1).

With Table 8.1 we have the possibility to compare the ordinary GLMs with the im-
proved ones. We can see that in all of the examples we were able to reduce the deviance
drastically. I.e. all of the improved GLMs have optimal ψ - values being far from (1, 1).
This indicates that the goodness of �t of the ordinary GLMs could be optimized by using
user-de�ned link functions in all of our examples.
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9 Conclusion and outlook

This thesis addressed the implementation of parametric link families in R to �t generalized
linear models. Czado (2007) described generalized linear models with parametric links and
their implementation in the statistical environment of S. A crucial point was the de�nition
of the general h(·) - power transformations as given in Section 6.1. We were able to de�ne
parametric link functions being either one- or two-parametric extensions of the ordinary
link functions in R (see Section 6.2). The glm function, which is already implemented in
R, can be called using a parametric link instead of an ordinary link function. This way
we were able to decrease the deviance drastically in all of our examples (see Chapter 8).
In Chapter 7 we determined the corresponding parameters for the tail modifying links.
The function being used to determine the parameters is called glmProfile. It was one
of the functions which were presented in Czado (2007) to �t these improved GLMs using
user-de�ned link functions. There were also other interesting extensions given for several
purposes. Now we want to provide an outlook on the theory and functions we described
in this thesis by describing these extensions brie�y.

� glm.mle: �nds the maximum likelihood estimate of the joint vector (β,ψ) ∈ Rp+2.
For the single tail modi�cations we would expect that the joint vector is (β, ψ1) (right
tail modi�cation) or (β, ψ2) (left tail modi�cation) both being ∈ Rp+1. Nevertheless,
also for single tail modi�cations we have to specify the vector ψ (setting ψ1 = 1
for left tail modi�cations and ψ2 = 1 for right tail modi�cations) in the glm.mle

function. Either way we have to �nd the MLE of the joint vector (β,ψ) ∈ Rp+2.
This can be seen as an extension to our theory since we have only estimated the
regression parameter β ∈ Rp. We pretended that somebody gave us the �correct�
value of ψ to run the glm function with a parametric link. Hence, we did not derive
estimates for ψ but rather we took the values delivering the minimum deviance by
running the glmProfile function.

� glm.inf: a distortion coming from our approach is that the standard errors of the
regression estimates are thus calculated as if the value of ψ was �xed. Therefore it
would be useful to have a function providing the standard errors for the regression
parameter (β,ψ) ∈ Rp+2 when estimating them jointly. This is exactly what the
function glm.inf does. It calculates the standard errors for both the model with
�xed ψ only estimating β and the model estimating (β,ψ). This function also com-
pares both standard errors and illustrates the variance in�ation due to additional
estimation. Moreover, the glm.inf function gives the link parameter ψ with its
standard error and an estimated matrix containing correlations between the inter-
cept, the covariates and the link parameters. This is an extension to our approach
since we can only determine the standard errors of the regression parameters (i.e. of
β̂i for i ∈ {1, . . . , n}) by using Remark 3.28. This way we have no information about
the estimation of ψ. If we consider the estimation of ψ an equivalent theory about
maximizing the joint likelihood of (β,ψ) would arise (i.e. maxβ,ψ l(β,ψ | y)). For
the optimization also joint versions of the score equations and the �sher information
matrix would appear. And as in Remark 3.28 the asymptotic distribution of (̂β,ψ)
would be of interest.
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� glm.fitted: serves to compare the improved tail modi�ed models with the ordi-
nary generalized linear models. It plots the estimated linear predictors versus the
observed and the �tted means for the ordinary GLM and the GLM using a para-
metric link function.

We could also think out of the box and enlarge the topics presented in this thesis
following the upcoming motivation. We did not use methods telling us that a linear re-
gression model �ts best to the data, i.e. yields to the most convincing predicted values.
Thus, for speci�c data one could also compare the results of a GLM with the results of a
non-linear model. Analysis of non-linear regression models is also needed in applications
and described in the literature (e.g. Bates and Watts (2007)). Even if a linear regres-
sion model is appropriate we have to decide whether it makes sense to transform the
response or the covariates. This is a mutual process alternating in model selection and
data transformation. Another point is the choice of the covariates. In many data sets we
could take a wide range of the available covariates. Often this is unrewarding. Therefore,
it is necessary to penalize the complexity of the model if the improvement of the �t is
not su�cient. The selection criteria uses the theory of testing hypothesis to assess the
adequacy of a bigger model against the adequacy of a more compact one (see Fahrmeir
and Tutz (2001)(Chapter 4)).

All in all we can conclude that the theory of generalized linear models is very interesting
and wide-ranging. There are a lot of remarkable results and extensions. It is therefore not
surprising that GLMs are essential models in both the theory about statistical analysis
and the practical applications. One can reliably use the generalized linear models in
applications due to a variety of well-developed and numerically stable routines for many
statistical environments (like R for instance). The progress of delivering new packages
and functions is not stagnating. Hence, the theory and applications of generalized linear
models and its extensions will be a suspenseful subject also in the near future.
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A Appendix

A.1 Members of the exponential family

A.1.1 Normal distribution

The normal distribution N (µ, σ2) has the following density:

f(x | µ, σ2) =
1

σ
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2π
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2
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We want to rewrite the density in the form of Equation (3.1):
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2 − 2xµ+ µ2

2σ2
− 1

2
ln
(
σ22π

)}
= exp

{
−x2 + 2xµ− µ2

2σ2
− 1

2
ln
(
σ22π

)}
= exp

{−1
2
x2 + xµ− 1

2
µ2

σ2
− 1

2
ln
(
σ22π

)}
= exp

{
xµ− 1

2
µ2

σ2
−

1
2
x2

σ2
− 1

2
ln
(
σ22π

)}

= exp


x

:=θ(µ)︷︸︸︷
µ −

:=b(θ)︷︸︸︷
1

2
µ2

σ2︸︷︷︸
:=a(φ)

+

[
−1

2

(
x2

σ2
+ ln

(
σ22π

))]
︸ ︷︷ ︸

:=c(x,φ)


2

Hence, we can take φ = σ2 ((σ may be unknown)) and ω = 1 and therefore, a(φ) = σ2

1
=

σ2 = φ, θ(µ) = µ and b(θ) = 1
2
µ2 = θ2

2
. And

c(x, φ) = −1

2

(
x2

σ2
+ ln

(
σ22π

))
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= −1

2

x2

φ
− 1

2
ln (φ2π)

= − ln
(√

φ2π
)
− x2

2φ

Remark A.1 (Origin of the name generalized linear model)
Only by ensuring that the normal distribution is a distribution of the exponential family
are we able to derive the generalized linear models from the linear regression model.

Remark A.2
We are aware of the following properties for X ∼ N (µ, σ2):

� parameters: µ ∈ R and σ2 > 0

� E [X] = µ

� Var [X] = σ2

Remark A.3 (The standard normal distribution)
It is common to denote the density of the standard normal distribution by ϕ and the
distribution function by Φ. Hence, we use the following notation:

f(x | 0, 1) := ϕ(x)

F (x) := Φ(x)

A.1.2 Scaled binomial distribution

By the expression scaled binomial distribution we refer to the following situation. For
Y ∼ Bin(n, p) we say Y ∗ := Y

n
∼ ScaledBin(n, p) follows a scaled binomial distribution.

The ordinary binomial distribution has the following probability mass function:

P (Y = k) =

(
n

k

)
pk(1− p)n−k k ∈ {0, 1, . . . , n}

Hence, the probability mass function of the Y ∗ ∼ ScaledBin(n, p) is given by (since
k∗ := k

n
has another domain, i.e. k∗ ∈ {0, 1

n
, 2
n
, . . . , n−1

n
, 1}):

P

(
Y ∗ =

Y

n
= k∗

)
= P (Y = nk∗) =

(
n

nk∗

)
pnk

∗
(1− p)n−(nk∗)

Now we want to rewrite the probability mass function in the form of Equation (3.1):

P

(
Y

n
= k∗

)
=

(
n

nk∗

)
pnk

∗
(1− p)n−(nk∗)

= exp

{
ln

((
n

nk∗

)
pnk

∗
(1− p)n−(nk∗)

)}
= exp

{
ln

((
n

nk∗

))
+ (nk∗) ln (p) + (n− (nk∗)) ln (1− p)

}
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= exp

{
ln

((
n

nk∗

))
+ (nk∗) (ln (p)− ln (1− p)) + n ln (1− p)

}
= exp

{
ln

((
n

nk∗

))
+ (nk∗) ln

(
p

1− p

)
+ n ln (1− p)

}
= exp

{
n ·
(
k∗ ln

(
p

1− p

)
+ ln (1− p)

)
+ ln

((
n

nk∗

))}
= exp

{
1
1
n

·
(
k∗ ln

(
p

1− p

)
+ ln (1− p)

)
+ ln

((
n

nk∗

))}

= exp


k∗

:=θ(µ)=θ(p)︷ ︸︸ ︷
ln

(
p

1− p

)
+

 b(θ)
!
=− ln(1−p)︷ ︸︸ ︷

ln (1− p)

1

n︸︷︷︸
:=a(φ)

+ ln

((
n

nk∗

))
︸ ︷︷ ︸

:=c(k∗,φ))


2

Hence, we can take φ = 1 and ω = n and therefore, a(φ) = 1
n
, θ = θ(p) = ln

(
p

1−p

)
and

b(θ)
!

= − ln (1− p) = ln

(
1

1− p

)
i.e.

1

1− p
=

p

1− p
+ 1 = exp{θ}+ 1

⇒ b(θ) = ln (1 + exp{θ})

Remark A.4
We are aware of the following properties for Y ∼ Bin(n, p):

� parameters: n ∈ N and p ∈ (0, 1)

� E [Y ] = np

� Var [Y ] = np(1− p)

Remark A.5
By Remark A.4 we can derive properties for Y ∗ = Y

n
∼ ScaledBin(n, p):

� parameters: n ∈ N and p ∈ (0, 1)

� E [Y ∗] = p

� Var [Y ∗] = p(1−p)
n

Remark A.6 (Degenerated cases)
p = 0 and p = 1 are degenerated cases which will not be regarded in this thesis.
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A.1.3 Poisson distribution

The Poisson distribution has the following probability mass function (for k ∈ N0):

P (X = n) = exp{−λ}λ
n

n!

Now we want to rewrite the probability mass function in the form of Equation (3.1):

P (X = n) = exp{−λ}λ
n

n!
= exp

{
ln

(
exp{−λ}λ

n

n!

)}
= exp {ln (exp{−λ}) + ln (λn)− ln (n!)}
= exp {−λ+ n ln (λ)− ln (n!)}

= exp


n

θ︷ ︸︸ ︷
ln (λ)−

b(θ)︷︸︸︷
λ

1

1︸︷︷︸
:=a(φ)

+ (− ln (n!))︸ ︷︷ ︸
:=c(n,φ))


2

Hence, we can take φ = 1 and ω = 1 and therefore, a(φ) = φ
ω

= 1
1

= 1, θ = θ(λ) = ln (λ)
and b(θ) = exp{θ} = λ

Remark A.7
We are aware of the following properties for X ∼ Pois(λ):

� parameter: λ > 0

� E [X] = λ

� Var [X] = λ

A.1.4 Gamma distribution

The gamma distribution Γ(µ, ν) has the following density:

f(x | µ, ν) =
νν

µνΓ(ν)
xν−1 exp

{
−ν
µ
x

}
1(0,∞)(x)

=
1

Γ(ν)

(
ν

µ

)ν
xν−1 exp

{
−ν
µ
x

}
1(0,∞)(x)

We want to rewrite the density in the form of Equation (3.1):

f(x | µ, ν) =
1

Γ(ν)

(
ν

µ

)ν
xν−1 exp

{
−ν
µ
x

}
= exp

{
ln

(
1

Γ(ν)

(
ν

µ

)ν
xν−1

)
− ν

µ
x

}
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= exp

{
− ln (Γ(ν)) + ν (ln (ν)− ln (µ)) + (ν − 1) ln (x)− ν

µ
x

}
= exp

{
− ln (Γ(ν)) + ν (ln (ν)− ln (µ)) + ν ln (x)− ln (x)− ν

µ
x

}
= exp

{
ν

(
ln (ν)− ln (µ) + ln (x)− 1

µ
x

)
− ln (Γ(ν))− ln (x)

}
= exp

{
ν

(
− ln (µ)− 1

µ
x

)
+ ν (ln (ν) + ln (x))− ln (Γ(ν))− ln (x)

}

= exp


x

:=θ︷ ︸︸ ︷(
− 1

µ

)
−

:=b(θ)︷ ︸︸ ︷
ln (µ)

1

ν︸︷︷︸
:=a(φ)

+ [ν (ln (ν) + ln (x))− ln (Γ(ν))− ln (x)]︸ ︷︷ ︸
:=c(x,φ)


2

Hence, we can take φ = 1
ν
(ν may be unknown) and ω = 1 and therefore, a(φ) = φ

ω
= 1

ν
=

φ, θ = θ(µ) = − 1
µ
.

b(θ) = b

(
− 1

µ

)
!

= ln(µ)

i.e. θ = − 1

µ
⇔ −θ =

1

µ

⇔ µ = −1

θ

⇒ b(θ) = ln(µ) = ln

(
−1

θ

)
= ln

(
1

−θ

)
⇒ b(θ) = − ln (−θ)

and

c(x, φ) = ν (ln (ν) + ln (x))− ln (Γ(ν))− ln (x)

=
1

φ

(
ln

(
1

φ

)
+ ln (x)

)
− ln

(
Γ

(
1

φ

))
− ln (x)

= −1

φ
ln(φ) +

1

φ
ln (x)− ln

(
Γ

(
1

φ

))
− ln (x)

=

(
1

φ
− 1

)
ln (x)− ln(φ)

φ
− ln

(
Γ

(
1

φ

))
=

(
1− φ
φ

)
ln (x)− ln(φ)

φ
− ln

(
Γ

(
1

φ

))
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Remark A.8
We are aware of the following properties for X ∼ Γ(µ, ν):

� parameters: µ > 0 and ν > 0

� gamma - function: Γ(x) =
∫∞

0
tx−1e−tdt

� E [X] = µ

� Var [X] = µ2

ν

Remark A.9 (Parametrization of the gamma distribution)
Many di�erent parametrizations of the gamma distribution can be found. We will use the
parametrization as given in Fahrmeir and Tutz (2001)(p. 23).

A.2 More about the general h(·) - power transformations

A.2.1 Right tail modi�cation

Recall that we de�ned the right tail modi�cation in De�nition 6.2. In the following we
want to derive certain functions corresponding to hη0(η,ψ = ψ1). We also present their
implementation in R.

hη0(η,ψ = ψ1) =


η0 + ln(η − η0 + 1) if η ≥ η0 and ψ1 = 0

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0 and ψ1 6= 0

η otherwise (i.e. if η < η0)

hpsi1 <- function(psi1 = stop("Argument 'psi1' is missing"),

eta = stop("Argument 'eta' is missing"), eta0 = 0)

{h <- 1:length(eta)

h[eta < eta0] <- eta[eta < eta0]

if (any(psi1 > -1e-14 && psi1 < 1e-14)) {

h[eta >= eta0] <- eta0 + log(eta[eta >= eta0] - eta0 + 1)

}

else {

h[eta >= eta0] <- ((eta[eta >= eta0] - eta0 + 1)^psi1 - 1)/psi1

h[eta >= eta0] <- h[eta >= eta0] + eta0

}

h

}

Domain of hη0(η,ψ = ψ1)

For given ψ = ψ1 ∈ R the domain of hη0(η,ψ = ψ1) can be expressed as a function of η:

domain(hη0(η,ψ = ψ1)) = 1{η∈Ψ} =


1{η>η0−1} if η ≥ η0 and ψ1 = 0
many cases if η ≥ η0 and ψ1 6= 0
1{η∈R} otherwise (i.e. if η < η0)

take easier implementation
=

is.finite is an R intern function
1{is.finite(hη0 (η,ψ=ψ1))} (A.1)
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Since:

for the �rst case: η ≥ η0 and ψ1 = 0:

η − η0 + 1
!
> 0 domain of ln(·)

⇔ η > η0 − 1

for the second case: η ≥ η0 and ψ1 6= 0:
This case requires a lot of analysis of di�erent cases. The domain of the function for the
second case is de�ned by the domain of (η−η0+1)ψ1−1

ψ1
for a speci�c value of ψ1. For this

value we di�erentiate the following cases:

� ψ1 = 1: the domain is the real line

� ψ1 = −1: the domain are the values for which η − η0 + 1 6= 0, i.e. R \ {η0 − 1}

� ψ1 6= 1 ∧ ψ1 6= −1

� ψ1 > 0

* ψ1 is not integer: the domain are the values for which η−η0 + 1 is positive
(Example: ψ1 = 0.5, η0 is arbitrary ⇒ we have

√
η−η0+1−1

0.5
)

* ψ1 is an integer:

· ψ1 odd: the domain is the real line (Example: ψ1 = 3, η0 is arbitrary
⇒ we have (η−η0+1)3−1

3
)

· ψ1 even: the domain is the real line (Example: ψ1 = 2, η0 is arbitrary
⇒ we have (η−η0+1)2−1

2
)

� ψ1 < 0

* ψ1 is not integer: the domain are the values for which η−η0 + 1 is positive

(Example: ψ1 = −0.5, η0 is arbitrary ⇒ we have −
1√

η−η0+1
−1

0.5
)

* ψ1 is an integer:

· ψ1 odd: the domain are the values for which η − η0 + 1 6= 0, i.e.

R\{η0−1} (Example: ψ1 = −3, η0 is arbitrary⇒ we have−
1

(η−η0+1)3
−1

3
)

· ψ1 even: the domain are the values for which η − η0 + 1 6= 0, i.e.

R\{η0−1} (Example: ψ1 = −2, η0 is arbitrary⇒ we have−
1

(η−η0+1)2
−1

2
)

for the third case: η < η0:
η ∈ R
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Inverse of hη0(η,ψ = ψ1) w.r.t. η

We get:

η = (hη0(η,ψ = ψ1))−1 (y)

=


exp{y − η0}+ η0 − 1 if η ≥ η0 and ψ1 = 0

(ψ1(y − η0) + 1)
1
ψ1 + η0 − 1 if η ≥ η0 and ψ1 6= 0

y otherwise (i.e. if η < η0)
(A.2)

Since:

for the �rst case: η ≥ η0 and ψ1 = 0:

y = η0 + ln(η − η0 + 1)

⇔ y − η0 = ln(η − η0 + 1)

⇔ exp{y − η0} = η − η0 + 1

⇔ η = exp{y − η0}+ η0 − 1

for the second case: η ≥ η0 and ψ1 6= 0:

y = η0 +
(η − η0 + 1)ψ1 − 1

ψ1

⇔ y − η0 =
(η − η0 + 1)ψ1 − 1

ψ1

⇔ (y − η0)ψ1 = (η − η0 + 1)ψ1 − 1

⇔ (y − η0)ψ1 + 1 = (η − η0 + 1)ψ1

⇔ ((y − η0)ψ1 + 1)
1
ψ1 = η − η0 + 1

⇔ η = ((y − η0)ψ1 + 1)
1
ψ1 + η0 − 1

for the third case: η < η0:

y = η

hpsi1INV<-function(psi1, y, eta0 = 0)

{h <- 1:length(y)

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[y >= eta0] <- eta0 - 1 + exp(y[y >= eta0] - eta0)

}

else {

h[y >= eta0] <- eta0 - 1

+ ((1 + (psi1 * (-eta0 + y[y >= eta0])))^(1/psi1))

}

h[y < eta0] <- y[y < eta0]

h

}
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Derivative of hη0(η,ψ = ψ1) w.r.t. η

Now we want to calculate:

∂

∂η
hη0(η,ψ = ψ1) =


∂
∂η

(η0 + ln(η − η0 + 1)) if η ≥ η0 and ψ1 = 0
∂
∂η

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 6= 0

∂
∂η

(η) otherwise (i.e. if η < η0)

=


1

η−η0+1
if η ≥ η0 and ψ1 = 0

(η − η0 + 1)(ψ1−1) if η ≥ η0 and ψ1 6= 0
1 otherwise (i.e. if η < η0)

(A.3)

hpsi1DERIV<-function(psi1, eta, eta0 = 0)

{h <- 1:length(eta)

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[eta >= eta0] <- 1/(eta[eta >= eta0] - eta0 + 1)

}

else {

h[eta >= eta0] <- (1 - eta0 + eta[eta >= eta0])^(psi1 - 1)

}

h[eta < eta0] <- 1

h

}

Derivative of hη0(η,ψ = ψ1) w.r.t. ψ1

Now we want to calculate:

∂

∂ψ1

hη0(η,ψ = ψ1)

=


∂
∂ψ1

(η0 + ln(η − η0 + 1)) if η ≥ η0 and ψ1 = 0
∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 6= 0

∂
∂ψ1

(η) otherwise (i.e. if η < η0)

=


lim
ψ1→0

∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 = 0

ln(η−η0+1)(η−η0+1)ψ1ψ1−((η−η0+1)ψ1−1)
ψ2
1

if η ≥ η0 and ψ1 6= 0

0 otherwise (i.e. if η < η0)

=


lim
ψ1→0

∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 = 0

ln(η−η0+1)(η−η0+1)ψ1ψ1−(η−η0+1)ψ1+1

ψ2
1

if η ≥ η0 and ψ1 6= 0

0 otherwise (i.e. if η < η0)
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Remark A.10
The limit lim

ψ1→0

∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
can by calculated by:

lim
ψ1→0

∂

∂ψ1

(
η0 +

(η − η0 + 1)ψ1 − 1

ψ1

)
= lim

ψ1→0

[
ln(η − η0 + 1)(η − η0 + 1)ψ1ψ1 − (η − η0 + 1)ψ1 + 1

ψ2
1

]
L′Hospital

= lim
ψ1→0

[
ln(η − η0 + 1)

(
ln(η − η0 + 1)(η − η0 + 1)ψ1ψ1 + (η − η0 + 1)ψ1

)
2ψ1

−
(
ln(η − η0 + 1)(η − η0 + 1)ψ1

)
2ψ1

]

= lim
ψ1→0

[
ln(η − η0 + 1)2(η − η0 + 1)ψ1ψ1

2ψ1

]
L′Hospital

= lim
ψ1→0

[
ln(η − η0 + 1)2

(
ln(η − η0 + 1)(η − η0 + 1)ψ1ψ1 + (η − η0 + 1)ψ1

)
2

]

=

(
ln(η − η0 + 1)2

2

)
lim
ψ1→0

ln(η − η0 + 1) (η − η0 + 1)ψ1︸ ︷︷ ︸
→1

ψ1︸︷︷︸
→0

+ (η − η0 + 1)ψ1︸ ︷︷ ︸
→1


=

ln(η − η0 + 1)2

2

All in all we get:

∂

∂ψ1

hη0(η,ψ = ψ1) =


ln(η−η0+1)2

2
if η ≥ η0 and ψ1 = 0

ln(η−η0+1)(η−η0+1)ψ1ψ1−(η−η0+1)ψ1+1

ψ2
1

if η ≥ η0 and ψ1 6= 0

0 otherwise (i.e. if η < η0)

hpsi1DERIV1<-function(psi1, eta, eta0 = 0)

{h <- eta

temp <- eta

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[eta >= eta0] <- ((log(eta[eta >= eta0] - eta0 + 1))^2)/2

}

else {

temp[eta >= eta0] <- (1 - eta0 + eta[eta >= eta0])^psi1

h[eta >= eta0] <- ((temp[eta >= eta0] *

log(eta[eta >= eta0] - eta0 + 1) * psi1)

- (temp[eta >= eta0] - 1)) /(psi1^2)

}

h[eta < eta0] <- 0

h

}
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Limit limη→∞ hη0(η,ψ = ψ1) (for ψ1 �xed)

Now we want to consider the limit limη→∞ hη0(η,ψ = ψ1) for �xed values of ψ1. In the
right tail modi�cation the limit limη→−∞ is of no interest since hη0(η,ψ = ψ1) is the
identity for η < η0.

lim
η→∞

hη0(η,ψ = ψ1) = lim
η→∞


η0 + ln(η − η0 + 1) if η ≥ η0 and ψ1 = 0

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0 and ψ1 6= 0

η otherwise (i.e. if η < η0)

=

 lim
η→∞

(η0 + ln(η − η0 + 1)) if ψ1 = 0

lim
η→∞

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if ψ1 6= 0

=

η0 + lim
η→∞

ln(η − η0 + 1) if ψ1 = 0

η0 − 1
ψ1

+ 1
ψ1

lim
η→∞

(η − η0 + 1)ψ1 if ψ1 6= 0

=


∞ if ψ1 = 0{
∞ if ψ1 > 0

η0 − 1
ψ1

if ψ1 < 0
if ψ1 6= 0

0 5 10 15 20 25

−2

0

2

4

6

8

right tail limits

η

hp
si

1

values of ψ1

0.5
0
−0.5
−1
−3

Figure A.1: Limit: limη→∞ hη0(η,ψ = ψ1) for di�erent values of ψ1 and η0 = 0. The grey
dotted horizontal lines indicate the behavior as η →∞ in case of a �nite limit.
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A.2.2 Left tail modi�cation

Recall that we de�ned the left tail modi�cation in De�nition 6.3. In the following we
want to derive certain functions corresponding to hη0(η,ψ = ψ2). We also present their
implementation in R.

hη0(η,ψ = ψ2) =


η if η ≥ η0

η0 − ln(−η + η0 + 1) if η < η0 and ψ2 = 0

η0 − (−η+η0+1)ψ2−1
ψ2

otherwise (i.e. if η < η0 and ψ2 6= 0)

hpsi2 <- function (psi2 = stop("Argument 'psi2' is missing"),

eta = stop("Argument 'eta' is missing"), eta0 = 0)

{h <- 1:length(eta)

h[eta >= eta0] <- eta[eta >= eta0]

if (any(psi2 > -1e-14 && psi2 < 1e-14)) {

h[eta < eta0] <- eta0 - log(-(eta[eta < eta0]) + eta0 + 1)

}

else {

h[eta < eta0] <- -((- eta[eta < eta0] + eta0 + 1)^psi2 - 1)/psi2

h[eta < eta0] <- h[eta < eta0] + eta0

}

h

}

Domain of hη0(η,ψ = ψ2)

For given ψ = ψ2 ∈ R the domain of hη0(η,ψ = ψ2) can be expressed as a function of η:

domain(hη0(η,ψ = ψ2)) = 1{η∈Ψ} =


1{η∈R} if η ≥ η0

1{η<η0+1} if η < η0 and ψ2 = 0
many cases otherwise (i.e. if η < η0 and ψ2 6= 0)

take easier implementation
=

is.finite is an R intern function
1{is.finite(hη0 (η,ψ=ψ2))} (A.4)

Since:

for the �rst case: η ≥ η0

η ∈ R

for the second case: η < η0 and ψ2 = 0

− η + η0 + 1
!
> 0 domain of ln(·)

⇔ η < η0 + 1
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for the third case: η < η0 and ψ2 6= 0
This case requires a lot of analysis of di�erent cases. The domain of the function for the
third cases is de�ned by the domain of − (−η+η0+1)ψ2−1

ψ2
for a speci�c value of ψ2. For this

value we di�erentiate the following cases:

� ψ2 = 1: the domain is the real line

� ψ2 = −1: the domain are the values for which −η + η0 + 1 6= 0, i.e. R \ {η0 + 1}

� ψ2 6= 1 ∧ ψ2 6= −1

� ψ2 > 0

* ψ2 is not integer: the domain are the values for which −η+η0+1 is positive
(Example: ψ2 = 0.5, η0 is arbitrary ⇒ we have −

√
−η+η0+1−1

0.5
)

* ψ2 is an integer:

· ψ2 odd: the domain is the real line (Example: ψ2 = 3, η0 is arbitrary
⇒ we have − (−η+η0+1)3−1

3
)

· ψ2 even: the domain is the real line (Example: ψ2 = 2, η0 is arbitrary
⇒ we have − (−η+η0+1)2−1

2
)

� ψ2 < 0

* ψ2 is not integer: the domain are the values for which −η+η0+1 is positive

(Example: ψ2 = −0.5, η0 is arbitrary ⇒ we have
1√

−η+η0+1
−1

0.5
)

* ψ2 is an integer:

· ψ2 odd: the domain are the values for which −η + η0 + 1 6= 0, i.e.

R\{η0+1} (Example: ψ2 = −3, η0 is arbitrary⇒ we have
1

(−η+η0+1)3
−1

3
)

· ψ2 even: the domain are the values for which −η + η0 + 1 6= 0, i.e.

R\{η0 +1} (Example: ψ2 = −2, η0 is arbitrary⇒ we have
1

(η−η0+1)2
−1

2
)

Inverse of hη0(η,ψ = ψ2) w.r.t. η

We get:

η = (hη0(η,ψ = ψ2))−1 (y)

=


y if η ≥ η0

η0 + 1− exp{η0 − y} if η < η0 and ψ2 = 0

η0 + 1− (ψ2(η0 − y) + 1)
1
ψ2 otherwise (i.e. if η < η0 and ψ2 6= 0)

(A.5)

Since:

for the �rst case: η ≥ η0

y = η
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for the second case: η < η0 and ψ2 = 0

y = η0 − ln(−η + η0 + 1)

⇔ η0 − y = ln(−η + η0 + 1)

⇔ exp{η0 − y} = −η + η0 + 1

⇔ η = η0 + 1− exp{η0 − y}

for the third case: η < η0 and ψ2 6= 0

y = η0 −
(−η + η0 + 1)ψ2 − 1

ψ2

⇔ η0 − y =
(−η + η0 + 1)ψ2 − 1

ψ2

⇔ (η0 − y)ψ2 = (−η + η0 + 1)ψ2 − 1

⇔ ((η0 − y)ψ2 + 1)
1
ψ2 = −η + η0 + 1

⇔ η = η0 + 1− ((η0 − y)ψ2 + 1)
1
ψ2

hpsi2INV<-function(psi2, y, eta0 = 0)

{h <- 1:length(y)

h[y >= eta0] <- y[y >= eta0]

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[y < eta0] <- eta0 + 1 - exp(eta0 - y[y < eta0])

}

else {

h[y < eta0] <- eta0 + 1 - ((1 - (psi2 * (y[y < eta0] - eta0)))^(1/psi2))

}

h

}

Derivative of hη0(η,ψ = ψ2) w.r.t. η

Now we want to calculate:

∂

∂η
hη0(η,ψ = ψ2) =


∂
∂η

(η) if η ≥ η0
∂
∂η

(η0 − ln(−η + η0 + 1)) if η < η0 and ψ2 = 0
∂
∂η

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
otherwise (i.e. if η < η0 and ψ2 6= 0)

=


1 if η ≥ η0

− 1
−η+η0+1

(−1) if η < η0 and ψ2 = 0

−(−η + η0 + 1)(ψ2−1)(−1) otherwise (i.e. if η < η0 and ψ2 6= 0)
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=


1 if η ≥ η0

1
−η+η0+1

if η < η0 and ψ2 = 0

(−η + η0 + 1)(ψ2−1) otherwise (i.e. if η < η0 and ψ2 6= 0)
(A.6)

hpsi2DERIV<-function(psi2, eta, eta0 = 0)

{h <- 1:length(eta)

h[eta >= eta0] <- 1

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[eta < eta0] <- 1/(eta0 + 1 - eta[eta < eta0])

}

else{

h[eta < eta0] <- (eta0 + 1 - eta[eta < eta0])^(psi2 - 1)

}

h

}

Derivative of hη0(η,ψ = ψ2) w.r.t. ψ2

Now we want to calculate:

∂

∂ψ2

hη0(η,ψ = ψ2)

=


∂
∂ψ2

(η) if η ≥ η0
∂
∂ψ2

(η0 − ln(−η + η0 + 1)) if η < η0 and ψ2 = 0
∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
otherwise (i.e. if η < η0 and ψ2 6= 0)

=


0 if η ≥ η0

lim
ψ2→0

∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
if η < η0 and ψ2 = 0

−(ln(−η+η0+1)(−η+η0+1)ψ2)ψ2−((−η+η0+1)ψ2−1)
ψ2
2

otherwise (i.e. if η < η0 and ψ2 6= 0)

=


0 if η ≥ η0

lim
ψ2→0

∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
if η < η0 and ψ2 = 0

(−η+η0+1)ψ2−1−ln(−η+η0+1)(−η+η0+1)ψ2ψ2

ψ2
2

otherwise (i.e. if η < η0 and ψ2 6= 0)
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Remark A.11
The limit lim

ψ2→0

∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
can be calculated by:

lim
ψ2→0

∂

∂ψ2

(
η0 −

(−η + η0 + 1)ψ2 − 1

ψ2

)
= lim

ψ2→0

[
(−η + η0 + 1)ψ2 − 1− ln(−η + η0 + 1)(−η + η0 + 1)ψ2ψ2

ψ2
2

]
L′Hospital

= lim
ψ2→0

[
ln(−η + η0 + 1)(−η + η0 + 1)ψ2

2ψ2

−
(
ln(−η + η0 + 1)2(−η + η0 + 1)ψ2ψ2 + ln(−η + η0 + 1)(−η + η0 + 1)ψ2

)
2ψ2

]

= lim
ψ2→0

[
− ln(−η + η0 + 1)2(−η + η0 + 1)ψ2ψ2

2ψ2

]
L′Hospital

= lim
ψ2→0

[
−

ln(−η + η0 + 1)2
(
ln(−η + η0 + 1)(−η + η0 + 1)ψ2ψ2 + (−η + η0 + 1)ψ2

)
2

]

=

(
− ln(−η + η0 + 1)2

2

)
lim
ψ2→0

ln(−η + η0 + 1) (−η + η0 + 1)ψ2︸ ︷︷ ︸
→1

ψ2︸︷︷︸
→0

+ (−η + η0 + 1)ψ2︸ ︷︷ ︸
→1


=− ln(−η + η0 + 1)2

2
All in all we get:

∂

∂ψ2

hη0(η,ψ = ψ2)

=


0 if η ≥ η0

− ln(−η+η0+1)2

2
if η < η0 and ψ2 = 0

(−η+η0+1)ψ2−1−ln(−η+η0+1)(−η+η0+1)ψ2ψ2

ψ2
2

otherwise (i.e. if η < η0 and ψ2 6= 0)

hpsi2DERIV2<-function(psi2, eta, eta0 = 0)

{h <- eta

temp <- eta

h[eta >= eta0] <- 0

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[eta < eta0] <- - ((log(1 + eta0 - eta[eta < eta0]))^2)/2

}

else {

temp[eta < eta0] <- (1 + eta0 - eta[eta < eta0])^psi2

h[eta < eta0] <- - ((temp[eta < eta0] *

log( - eta[eta < eta0] + eta0 + 1) * psi2)

- (temp[eta < eta0] - 1))/(psi2^2)

}

h

}
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Limit limη→−∞ hη0(η,ψ = ψ2) (for ψ2 �xed)

Now we want to consider the limit limη→−∞ hη0(η,ψ = ψ2) for �xed values of ψ2. In the
left tail modi�cation the limit limη→∞ is of no interest since hη0(η,ψ = ψ2) is the identity
for η ≥ η0.

lim
η→−∞

hη0(η,ψ = ψ2) = lim
η→−∞


η if η ≥ η0

η0 − ln(−η + η0 + 1) if η < η0 and ψ2 = 0

η0 − (−η+η0+1)ψ2−1
ψ2

otherwise i.e. η < η0 and ψ2 6= 0

=

 lim
η→−∞

(η0 − ln(−η + η0 + 1)) ψ2 = 0

lim
η→−∞

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
ψ2 6= 0

=

η0 − lim
η→−∞

ln(−η + η0 + 1) ψ2 = 0

η0 + 1
ψ2
− 1

ψ2
lim

η→−∞
(−η + η0 + 1)ψ2 ψ2 6= 0

=


−∞ if ψ2 = 0{
−∞ if ψ2 > 0

η0 + 1
ψ2

if ψ2 < 0
if ψ2 6= 0

−25 −20 −15 −10 −5 0
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−4

−2

0

2

left tail limits

η

hp
si
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−3
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Figure A.2: Limit: lim
η→−∞

hη0(η,ψ = ψ2) for di�erent values of ψ2 and η0 = 0. The grey

dotted horizontal lines indicate the behavior as η → −∞ in case of a �nite limit.
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A.2.3 Both tail modi�cation

Recall that we de�ned the both tail modi�cation in De�nition 6.4. In the following we
want to derive certain functions corresponding to hη0(η,ψ = (ψ1, ψ2)). We also present
their implementation in R.

hη0(η,ψ = (ψ1, ψ2)) =


η0 + ln (η − η0 + 1) if η ≥ η0 and ψ1 = 0

η0 + (η−η0+1)ψ1−1
ψ1

if η ≥ η0 and ψ1 6= 0

η0 − ln (−η + η0 + 1) if η < η0 and ψ2 = 0

η0 − (−η+η0+1)ψ2−1
ψ2

otherwise (i.e. if η < η0 and ψ2 6= 0)

hpsi12 <- function (psi1 = stop("Argument 'psi1' is missing"),

psi2 = stop("Argument 'psi2' is missing"),

eta = stop("Argument 'eta' is missing"), eta0 = 0)

{h <- 1:length(eta)

if (any(psi1 > -1e-14 && psi1 < 1e-14)) {

h[eta >= eta0] <- eta0 + log(eta[eta >= eta0] - eta0 + 1)

}

else {

h[eta >= eta0] <- ((eta[eta >= eta0] - eta0 + 1)^psi1 - 1)/psi1

h[eta >= eta0] <- h[eta >= eta0] + eta0

}

if (any(psi2 > -1e-14 && psi2 < 1e-14)) {

h[eta < eta0] <- eta0 - log(-(eta[eta < eta0]) + eta0 + 1)

}

else {

h[eta < eta0] <- -((- eta[eta < eta0] + eta0 + 1)^psi2 - 1)/psi2

h[eta < eta0] <- h[eta < eta0] + eta0

}

h

}

Domain of hη0(η,ψ = (ψ1, ψ2))

For given ψ = (ψ1, ψ2) ∈ R2 the domain of hη0(η,ψ = (ψ1, ψ2)) can be expressed as a
function of η:

domain(hη0(η,ψ = (ψ1, ψ2))) =


1{η>η0−1} if η ≥ η0 and ψ1 = 0
many cases if η ≥ η0 and ψ1 6= 0
1{η<η0+1} if η < η0 and ψ2 = 0
many cases otherwise (i.e. if η < η0 and ψ2 6= 0)

take easier implementation
=

is.finite is an R intern function
1{is.finite(hη0 (η,ψ=(ψ1,ψ2)))} (A.7)

Remark A.12
The analysis of the di�erent cases is the same as for the single tail modi�cations.
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Inverse of hη0(η,ψ = (ψ1, ψ2)) w.r.t. η

We get:

η =
(
hη0(η,ψ = (ψ1, ψ2)))−1 (y)

=


exp{y − η0}+ η0 − 1 if η ≥ η0 and ψ1 = 0

((y − η0)ψ1 + 1)
1
ψ1 + η0 − 1 if η ≥ η0 and ψ1 6= 0

η0 + 1− exp{η0 − y} if η < η0 and ψ2 = 0

η0 + 1− (1 + (η0 − y)ψ2)
1
ψ2 otherwise (i.e. if η < η0 and ψ2 6= 0)

(A.8)

Since:

for the �rst case: η ≥ η0 and ψ1 = 0

y = η0 + ln (η − η0 + 1)

⇔ y − η0 = ln (η − η0 + 1)

⇔ exp{y − η0} = η − η0 + 1

⇔ η = exp{y − η0}+ η0 − 1

for the second case: η ≥ η0 and ψ1 6= 0

y = η0 +
(η − η0 + 1)ψ1 − 1

ψ1

⇔ y − η0 =
(η − η0 + 1)ψ1 − 1

ψ1

⇔ (y − η0)ψ1 = (η − η0 + 1)ψ1 − 1

⇔ (y − η0)ψ1 + 1 = (η − η0 + 1)ψ1

⇔ ((y − η0)ψ1 + 1)
1
ψ1 = η − η0 + 1

⇔ η = ((y − η0)ψ1 + 1)
1
ψ1 + η0 − 1

for the third case: η < η0 and ψ2 = 0

y = η0 − ln (−η + η0 + 1)

⇔ η0 − y = ln (−η + η0 + 1)

⇔ exp{η0 − y} = −η + η0 + 1

⇔ η = η0 + 1− exp{η0 − y}

for the fourth case: η < η0 and ψ2 6= 0

y = η0 −
(−η + η0 + 1)ψ2 − 1

ψ2

⇔ η0 − y =
(−η + η0 + 1)ψ2 − 1

ψ2

⇔ (η0 − y)ψ2 = (−η + η0 + 1)ψ2 − 1
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⇔ (η0 − y)ψ2 + 1 = (−η + η0 + 1)ψ2

⇔ ((η0 − y)ψ2 + 1)
1
ψ2 = −η + η0 + 1

⇔ η = η0 + 1− ((η0 − y)ψ2 + 1)
1
ψ2

hpsi12INV<-function(psi1, psi2, y, eta0 = 0)

{h <- 1:length(y)

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[y >= eta0] <- eta0 - 1 + exp(y[y >= eta0] - eta0)

}

else {

h[y >= eta0] <- eta0 - 1 +

((1 + (psi1 * (y[y >= eta0] - eta0)))^(1/psi1))

}

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[y < eta0] <- eta0 + 1 - exp(eta0 - y[y < eta0])

}

else {

h[y < eta0] <- eta0 + 1 -

((1 - (psi2 * (y[y < eta0] - eta0)))^(1/psi2))

}

h

}

Derivative of hη0(η,ψ = (ψ1, ψ2)) w.r.t. η

Now we want to calculate:

∂

∂η
hη0(η,ψ = (ψ1, ψ2)) =



∂
∂η

(η0 + ln (η − η0 + 1)) if η ≥ η0 and ψ1 = 0
∂
∂η

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 6= 0

∂
∂η

(η0 − ln (−η + η0 + 1)) if η < η0 and ψ2 = 0
∂
∂η

(
η0 − (−η+η0+1)ψ2−1

ψ2
otherwise (i.e. if η < η0 and ψ2 6= 0)

=


1

η−η0+1
if η ≥ η0 and ψ1 = 0

(η − η0 + 1)(ψ1−1) if η ≥ η0 and ψ1 6= 0
− 1
−η+η0+1

(−1) if η < η0 and ψ2 = 0

− (−η + η0 + 1)(ψ2−1) (−1) otherwise (i.e. if η < η0 and ψ2 6= 0)

=


1

η−η0+1
if η ≥ η0 and ψ1 = 0

(η − η0 + 1)(ψ1−1) if η ≥ η0 and ψ1 6= 0
1

−η+η0+1
if η < η0 and ψ2 = 0

(−η + η0 + 1)(ψ2−1) otherwise (i.e. if η < η0 and ψ2 6= 0)
(A.9)
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hpsi12DERIV<-function(psi1, psi2, eta, eta0 = 0)

{h <- 1:length(eta)

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[eta >= eta0] <- 1/(eta[eta >= eta0]- eta0 + 1)

}

else {

h[eta >= eta0] <- (1 - eta0 + eta[eta >= eta0])^(psi1 - 1)

}

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[eta < eta0] <- 1/(eta0 + 1 - eta[eta < eta0])

}

else{

h[eta < eta0] <- (1 + eta0 - eta[eta < eta0])^(psi2 - 1)

}

h

}

Derivative of hη0(η,ψ = (ψ1, ψ2)) w.r.t. ψ1

Now we want to calculate (compare to the calculation for the right tail modi�cation):

∂

∂ψ1

hη0(η,ψ = (ψ1, ψ2))

=



∂
∂ψ1

(η0 + ln (η − η0 + 1)) if η ≥ η0 and ψ1 = 0
∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 6= 0

∂
∂ψ1

(η0 − ln (−η + η0 + 1)) if η < η0 and ψ2 = 0
∂
∂ψ1

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
otherwise (i.e. if η < η0 and ψ2 6= 0)

=


lim
ψ1→0

∂
∂ψ1

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 = 0

ln(η−η0+1)(η−η0+1)ψ1ψ1−((η−η0+1)ψ1−1)
ψ2
1

if η ≥ η0 and ψ1 6= 0

0 if η < η0 and ψ2 = 0
0 otherwise (i.e. if η < η0 and ψ2 6= 0)

=


ln(η−η0+1)2

2
if η ≥ η0 and ψ1 = 0

ln(η−η0+1)(η−η0+1)ψ1ψ1−(η−η0+1)ψ1+1

ψ2
1

if η ≥ η0 and ψ1 6= 0

0 if η < η0 and ψ2 = 0
0 otherwise (i.e. if η < η0 and ψ2 6= 0)

Remark A.13
Here we calculated the corresponding limit as in Remark A.10. Hence, we have:

lim
ψ1→0

∂

∂ψ1

(
η0 +

(η − η0 + 1)ψ1 − 1

ψ1

)
=

ln(η − η0 + 1)2

2
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hpsi12DERIV1<-function(psi1, psi2, eta, eta0 = 0)

{h <- eta

temp <- eta

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[eta >= eta0] <- ((log(eta[eta >= eta0] - eta0 + 1))^2)/2

}

else {

temp[eta >= eta0] <- (1 - eta0 + eta[eta >= eta0])^psi1

h[eta >= eta0] <- ((temp[eta >= eta0] *

log(eta[eta >= eta0] - eta0 + 1)

* psi1) - (temp[eta >= eta0] - 1))/(psi1^2)

}

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[eta < eta0] <- 0

}

else {

h[eta < eta0] <- 0

}

h

}

Derivative of hη0(η,ψ = (ψ1, ψ2)) w.r.t. ψ2

Now we want to calculate (compare to the calculation for the left tail modi�cation):

∂

∂ψ2

hη0(η,ψ = (ψ1, ψ2))

=



∂
∂ψ2

(η0 + ln (η − η0 + 1)) if η ≥ η0 and ψ1 = 0
∂
∂ψ2

(
η0 + (η−η0+1)ψ1−1

ψ1

)
if η ≥ η0 and ψ1 6= 0

∂
∂ψ2

(η0 − ln (−η + η0 + 1)) if η < η0 and ψ2 = 0
∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
otherwise (i.e. if η < η0 and ψ2 6= 0)

=


0 if η ≥ η0 and ψ1 = 0
0 if η ≥ η0 and ψ1 6= 0

lim
ψ2→0

∂
∂ψ2

(
η0 − (−η+η0+1)ψ2−1

ψ2

)
if η < η0 and ψ2 = 0

− ln(−η+η0+1)(−η+η0+1)ψ2ψ2−((−η+η0+1)ψ2−1)
ψ2
2

otherwise (i.e. if η < η0 and ψ2 6= 0)

=


0 if η ≥ η0 and ψ1 = 0
0 if η ≥ η0 and ψ1 6= 0

− ln(−η+η0+1)2

2
if η < η0 and ψ2 = 0

(−η+η0+1)ψ2−1−ln(−η+η0+1)(−η+η0+1)ψ2ψ2

ψ2
2

otherwise (i.e. if η < η0 and ψ2 6= 0)
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Remark A.14
Here we calculated the corresponding limit as in Remark A.11. Hence, we have:

lim
ψ2→0

∂

∂ψ2

(
η0 −

(−η + η0 + 1)ψ2 − 1

ψ2

)
= − ln(−η + η0 + 1)2

2

hpsi12DERIV2<-function(psi1, psi2, eta, eta0)

{h <- eta

temp <- eta

if (any(psi1 > -1e-14 && psi1 < 1e-14)){

h[eta >= eta0] <- 0

}

else {

h[eta >= eta0] <- 0

}

if (any(psi2 > -1e-14 && psi2 < 1e-14)){

h[eta < eta0] <- - ((log(1 + eta0 - eta[eta < eta0]))^2)/2

}

else {

temp[eta < eta0] <- (1 + eta0 - eta[eta < eta0])^psi2

h[eta < eta0] <- - ((temp[eta < eta0] *

log( - eta[eta < eta0] + eta0 + 1)

* psi2) - (temp[eta < eta0] - 1))/(psi2^2)

}

h

}

Remark A.15 (Limits lim|η|→∞ hη0(η, ψ = (ψ1, ψ2)) (for ψ �xed))
In the sections before we studied limη→∞ hη0(η,ψ = ψ1) and limη→−∞ hη0(η,ψ = ψ2) (see
Subsection A.2.1 and Subsection A.2.2). For the both tail modi�cation we can adopt the
same results as derived for the single tail modi�cations in the corresponding cases.

Remark A.16 (Implementation of the domain)
In the implementation of the domain of the general h(·) - power transformations we used
the R function is.finite. Also some of the common link functions in R use this function
to describe the domain in the speci�cation of valideta (see make.link("inverse") and
make.link("sqrt")).
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A.3 Calculation of the deviance in R

Consider again the Gaussian regression model as in Subsection 3.3.1. In Example 5.1 we
saw the output of an ordinary Gaussian regression and in Example 6.10 the output of
a right tail modi�ed Gaussian regression was presented. In both examples the data set
pcb.ex was used (see Example 4.1). In the following we will use the common formula to
calculate the (unscaled) deviance in the case of a normal distribution (see McCullagh and
Nelder (1983)(p. 25)):

D(µ̂,y) =
n∑
i=1

(yi − µ̂i)2 (A.10)

Example A.17 (Veri�cation for the ordinary Gaussian regression)
For the ordinary Gaussian regression the value of the deviance was:

ordi_gauss_reg <- glm(formula = log.pcb~age.cen,

family = gaussian(link="identity"),

data = pcb.ex)

summary(ordi_gauss_reg)$deviance

## [1] 8.359

If we verify this value by the formula given in Equation (A.10) we get:

# vector of regression coefficients beta

beta <- summary(ordi_gauss_reg)$coefficients[,1]

# need g_inv for the fitted means

g_inv <- make.link("identity")$linkinv

# get the design matrix

X_design <- model.matrix(object=log.pcb~age.cen, data=pcb.ex)

# calculation of the linear predictor in vector form

eta <- X_design%*%beta

# calculation of the vector of fitted means

mu_hat <- g_inv(eta)

# get the values of the response

response <- log.pcb

# auxiliary calculation

auxiliary_calc <- (response-mu_hat)^2

# calculation of the deviance

Deviance_PCB_ord <- sum(auxiliary_calc)

# value of the deviance

Deviance_PCB_ord

## [1] 8.359
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Example A.18 (Veri�cation for the right tail modi�ed Gaussian regression)
For the right tail modi�ed Gaussian regression the value of the deviance was:

tamo_gauss_reg <- glm(formula = log.pcb~age.cen,

family = gaussian(link=psi1GAUSS(psi1=0.2,eta0=0)),

data = pcb.ex)

summary(tamo_gauss_reg)$deviance

## [1] 6.327

If we verify this value by the formula given in Equation (A.10) we get:

# vector of regression coefficients beta

beta <- summary(tamo_gauss_reg)$coefficients[,1]

# need g_inv for the fitted means

g_inv <- psi1GAUSS(psi1=0.2,eta0=0)$linkinv

# get the design matrix

X_design <- model.matrix(object=log.pcb~age.cen, data=pcb.ex)

# calculation of the linear predictor in vector form

eta <- X_design%*%beta

# calculation of the vector of fitted means

mu_hat <- g_inv(eta)

# get the values of the response

response <- log.pcb

# auxiliary calculation

auxiliary_calc <- (response-mu_hat)^2

# calculation of the deviance

Deviance_PCB_tm <- sum(auxiliary_calc)

# value of the deviance

Deviance_PCB_tm

## [1] 6.327

A.4 Calculations for the logistic regression model

Example A.19 (Scaled quantities for the logistic regression model)
In Section 3.2 we derived unscaled quantities like De�nition 3.15 or De�nition 3.16. In the
case of a ScaledBinom(n,p) distribution we have a(φi) = 1

ni
. I.e. the dispersion function

depends on the observations (for i ∈ {1, . . . , n}) and hence we won't succeed in �nding
unscaled quantities. Thus, we follow Czado et al. (2013)(Sections 4.3 and 4.4) to de�ne
scaled versions of these de�nitions for the logistic regression model.

De�nition A.20 (Log-likelihood for the logistic regression)
Like in Equation (3.10) we calculate the log likelihood, using the quantities we derived in
Subsection A.1.2.

l(β, φ | k∗) :=
n∑
i=1

(
θik
∗
i − b(θi)
a(φ)

+ c(k∗i , φ)

)
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Rem. A.21
=

n∑
i=1

(
ni
[
k∗ix

>
i β − ln

(
1 + exp{x>i β}

)]
+ ln

((
n

nk∗

)))
=

n∑
i=1

ni
[
k∗ix

>
i β − ln

(
1 + exp{x>i β}

)]
+

n∑
i=1

ln

((
n

nk∗

))
︸ ︷︷ ︸

:= const. C indep. of β

=
n∑
i=1

ni
[
k∗ix

>
i β − ln

(
1 + exp{x>i β}

)]
+ C (A.11)

Remark A.21 (Auxiliary calculation)
The quantities in De�nition A.20 can be calculated by:

a(φ)
see Sec. A.1.2

:=
1

ni
; θi

see Sec. A.1.2
:= ln

(
pi

1− pi

)
;

pi
see Def. 3.35

=
exp{x>i β}

1 + exp{x>i β}
;

⇒θi = ln

 exp{x>i β}
1+exp{x>i β}

1− exp{x>i β}
1+exp{x>i β}

 = ln

 exp{x>i β}
1+exp{x>i β}

1
1+exp{x>i β}

 = ln
(
exp{x>i β}

)
= x>i β

⇒b(θi) = ln
(
1 + exp{x>i β}

)
De�nition A.22 (Scaled score equations for logistic regression)
For j ∈ {1, . . . , p} we de�ne

∂l(β | k∗)
∂βj

see Eq. (A.11)
=

n∑
i=1

nixij

[
k∗i −

exp{x>i β}
1 + exp{x>i β}

]
pi=

exp{x>i β}
1+exp{x>

i
β}

=
n∑
i=1

nixij [k∗i − pi] =
n∑
i=1

nixij

[
k∗i − E

[
Yi
ni

]]
Remark A.23 (Partial derivative w.r.t. βj)
De�nition A.22 is the partial derivative of l(β | k∗) w.r.t βj, since:

∂l(β | k∗)
∂βj

see Eq. (A.11)
=

∂

∂βj

(
n∑
i=1

ni
[
k∗ix

>
i β − ln

(
1 + exp{x>i β}

)])

=
n∑
i=1

ni


∂

∂βj

(
k∗ix

>
i β
)

︸ ︷︷ ︸
=xijk∗i

− ∂

∂βj
ln
(
1 + exp{x>i β}

)
︸ ︷︷ ︸

= 1

1+exp{x>
i
β}

exp{x>i β}xij


=

n∑
i=1

nixij

[
k∗i −

exp{x>i β}
1 + exp{x>i β}

]
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Remark A.24 (Calculation of elements of the Hessian matrix)
The (i,j) - th element of the scaled Hessian matrix is given by:

∂2l(β | k∗)
∂βi∂βj

see Def. A.22
=

∂

∂βi

(
n∑
z=1

nzxzj

[
k∗z −

exp{x>z β}
1 + exp{x>z β}

])

=
n∑
z=1

(
nzxzj

∂

∂βi

[
k∗z −

exp{x>z β}
1 + exp{x>z β}

])

Now the partial derivative ∂
∂βi

[
exp{x>z β}

1+exp{x>z β}

]
is given by:

∂

∂βi

[
exp{x>z β}

1 + exp{x>z β}

]
=

exp{x>z β}xzi(1 + exp{x>z β})− (exp{x>z β})2xzi

(1 + exp{x>z β})
2

=
exp{x>z β}xzi

(1 + exp{x>z β})
2

Therefore, we get:

∂2l(β | k∗)
∂βi∂βj

=
n∑
z=1

(
nzxzj

∂

∂βi

[
k∗z −

exp{x>z β}
1 + exp{x>z β}

])
=

n∑
z=1

(
nzxzj

[
− ∂

∂βi

(
exp{x>z β}

1 + exp{x>z β}

)])
=

n∑
z=1

(
nzxzj

[
− exp{x>z β}xzi

(1 + exp{x>z β})
2

])
= −

n∑
z=1

nzxzjxzi
exp{x>z β}

(1 + exp{x>z β})
2

exp{x>z β}

(1+exp{x>z β})
2 =pz(1−pz)

= −
n∑
z=1

nzpz(1− pz)xzixzj

With di := nipi(1− pi) we can de�ne

D(β) := diag(d1, . . . , dn) =



d1

d2 0
. . .

0 dn−1

dn

 ∈ Rn×n (A.12)
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Using this notation we can express the scaled Hessian matrix through, where X> is given
as in Remark 3.19 and xi de�ned as in Equation (3.6):

H(β) = ∇2(β) :=

(
∂2l(β | k∗)
∂βi∂βj

)
i,j∈{1,...,p}

= −X>D(β)X (A.13)

Let us denote by µ the vector (µ1, . . . , µn)>
∼ScaledBinom

= (p1, . . . , pn)> and ∇(β) :=
∂l(β|k∗)

∂β
= (∂l(β|k

∗)
∂β1

, . . . , ∂l(β|k
∗)

∂βp
). Consequently, we can rewrite De�nition A.22 in the

following way:

∇(β) = X>



n1

n2 0
. . .

0 nn−1

nn


︸ ︷︷ ︸

:=Dn

(k∗ − µ)︸ ︷︷ ︸
:=ε∗

= X>Dnε
∗

Example A.25 (Ordinary logistic regression model)
Recall that we had for the logistic regression model:

g(µi) = ln

(
µi

1− µi

)
= ln

(
pi

1− pi

)
= x>i β = ηi(β) = ηi (A.14)

Therefore, we get:

∂ηi
∂µi

=
∂

∂µi
g(µi) =

∂

∂µi
ln

(
µi

1− µi

)
=

1
µi

1−µi

1 · (1− µi)− (µi · (−1))

(1− µi)2
=

1− µi
µi

1

(1− µi)2

=
1

µi(1− µi)
µi=pi see Def. 3.35

=
1

pi(1− pi)
(A.15)

For the adjusted dependent variable Zβi we get:

Zβi = ηi + (Y ∗i − µi)
(
∂ηi
∂µi

)
see Eq. (A.14)

=
Def. 3.35 and Eq. (A.15)

x>i β + (Y ∗i − pi)
1

pi(1− pi)
(A.16)

= ηi +
Yi − nipi
nipi(1− pi)

Also Collett (1999)(p. 342�., see in particular p. 346) describes this results for the logistic
regression model.

Remark A.26
According to the remark in Remark 3.25 Zβi is the new response (and not Yi or Y ∗i
respectively) and the maximum likelihood estimates are calculated iteratively as weighted
least squares estimates of the new response (see De�nition 3.26).
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In matrix-vector notation Equation (A.16) equals:

Zβ
Eq. (3.5)

= Xβ +



1
p1(1−p1)

1
p2(1−p2)

0
. . .

0 1
pn−1(1−pn−1)

1
pn(1−pn)



Y ∗ −


p1

p2
...

pn−1

pn





Def. 3.38
= Xβ +



1
p1(1−p1)

1
p2(1−p2)

0
. . .

0 1
pn−1(1−pn−1)

1
pn(1−pn)






Y1
n1
Y2
n2
...

Yn−1

nn−1
Yn
nn

−


p1

p2
...

pn−1

pn





= Xβ +



1
p1(1−p1)

1
p2(1−p2)

0
. . .

0 1
pn−1(1−pn−1)

1
pn(1−pn)




1
n1

1
n2

0
. . .

0 1
nn−1

1
nn






Y1

Y2
...

Yn−1

Yn

−


n1p1

n2p2
...

nn−1pn−1

nnpn





= Xβ +



1
n1p1(1−p1)

1
n2p2(1−p2)

0
. . .

0 1
nn−1pn−1(1−pn−1)

1
nnpn(1−pn)


︸ ︷︷ ︸

Eq. (A.12)
= D−1(β)

Y −


n1p1

n2p2
...

nn−1pn−1

nnpn




︸ ︷︷ ︸

:=ε

= Xβ +D−1(β)ε︸ ︷︷ ︸
:=εadj

(A.17)

Remark A.27 (Unscaled and centered around mean)
Notice that ε (in Equation (A.17)) represents the unscaled and mean centered responses.

Remark A.28 (Derivation of the weights)
We brought the response Zβ in the form of De�nition 3.26 (with error term εadj). Hence,
we need to determine the expectation and the variance-covariance matrix W to know
what the proper weights are. We obtain:
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E [ε] = E

Y −


n1p1

n2p2
...

nn−1pn−1

nnpn



 = µ
Yi ∼Bin(ni,pi)

=


n1p1 − n1p1

n2p2 − n2p2
...

nn−1pn−1 − nn−1pn−1

nnpn − nnpn

 =


0
0
...
0
0

 = 0 ∈ Rn

W = (Cov[εi, εj])i,j∈{1,...,n}
E[ε]=0

= (E [εiεj])i,j∈{1,...,n} = (E [(Yi − nipi) (Yj − njpj)])i,j∈{1,...,n}
= (E [YiYj − njpjYi − nipiYj + nipinjpj])i,j∈{1,...,n}

=

E [YiYj]−njpj E [Yi]︸ ︷︷ ︸
=nipi

−nipiE [Yj]︸ ︷︷ ︸
=njpj

+nipinjpj

︸ ︷︷ ︸
=−nipinjpj


i,j∈{1,...,n}

= (E [YiYj]− nipinjpj)i,j∈{1,...,n}

=

{
E [Yi]E [Yj]− nipinjpj if i 6= j, since Yi and Yj are indep.

E [Y 2
i ]− (nipi)

2 if i = j

=


0 if i 6= j, since Yi and Yj are indep. Var [Yi]︸ ︷︷ ︸

Rem. A.4
= nipi(1−pi)

+ E [Yi]
2︸ ︷︷ ︸

Rem. A.4
= (nipi)2

− (nipi)
2 if i = j

=

{
0 if i 6= j, since Yi and Yj are indep.

nipi(1− pi) if i = j

⇒ W =



n1p1(1− p1)

n2p2(1− p2) 0
. . .

0 nn−1pn−1(1− pn−1)
nnpn(1− pn)


Eq. (A.12)

= D(β)

Remark A.29
The components on the diagonal of W are the variances of Yi for i ∈ {1, . . . , n}.

Remark A.30 (Variance-covariance matrix of εadj)
With the calculation above we can derive the variance-covariance matrix of εadj by:

Wadj = Cov[εadj] = Cov[D−1(β)ε] = D−1(β)Cov[ε]︸ ︷︷ ︸
=D(β)

(
D−1(β)

)>
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D−1(β) sym.
= D−1(β)D(β)︸ ︷︷ ︸

=In

D−1(β) = D−1(β)

We used Cov[Az] = ACov[z]A> for A ∈ Rn×n and z ∈ Rn (see Seber (1977)(p. 11)).

Remark A.31 (Iterative values of MLE β̂)
Given we have calculated the value βs, then, by Remark 3.25, we get the value βs+1 in
the (s+1)-th iteration by (using above's formulas):

βs+1 = (X>W−1
adjX)−1X>W−1

adjZ
βs

= (X>D(βs)X)−1X>D(βs)Zβ
s

Therefore, the �nal maximum likelihood estimates β̂ ful�ll:

β̂ = (X>D(β̂)X)−1X>D(β̂)Z β̂

Example A.32 (Tail modi�ed logistic regression model)
Recall that we had for the tail modi�ed logistic regression (see Remark 6.15):

g(µi,ψ) = (hη0(ηi,ψ))−1

(
ln

(
µi

1− µi

))
= ηi

Therefore, we get:

∂ηi
∂µi

=
∂

∂µi
g(µi) =

∂

∂µi

[
(hη0(ηi,ψ))−1

(
ln

(
µi

1− µi

))]
=

1(
∂
∂ηi
hη0

) [
(hη0(ηi,ψ))−1

(
ln
(

µi
1−µi

))] ∂

∂µi

(
ln

(
µi

1− µi

))
︸ ︷︷ ︸

see Eq. (A.15)
= 1

pi(1−pi)

(A.18)

We also have that (see Table 3.2):

b′′(θi) =
1

(1 + exp{θi})2
= b′(θi)(1− b′(θi)) = pi(1− pi)

For the adjusted dependent variable Zβi we get:

Zβi = ηi + (Y ∗i − µi)
(
∂ηi
∂µi

)
Def. 3.4

=
Def. 3.35 Eq. (A.18)

x>i β + (Y ∗i − pi)
1(

∂
∂ηi
hη0

) [
(hη0(ηi,ψ))−1

(
ln
(

µi
1−µi

))] 1

pi(1− pi)
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The weights are given by (see De�nition 3.27):

Wβ
i =


=b′′(θi)︷ ︸︸ ︷

pi(1− pi)

=
(
∂ηi
∂µi

)2︷ ︸︸ ︷ 1(
∂
∂ηi
hη0

) [
(hη0(ηi,ψ))−1

(
ln
(

µi
1−µi

))] 1

pi(1− pi)

2



−1

=

 1

pi(1− pi)
1((

∂
∂ηi
hη0

) [
(hη0(ηi,ψ))−1

(
ln
(

µi
1−µi

))])2


−1

= pi(1− pi)
((

∂

∂ηi
hη0

)[
(hη0(ηi,ψ))−1

(
ln

(
µi

1− µi

))])2

Remark A.33 (Partial derivatives w.r.t. ηi)
The derivatives ∂

∂ηi
hη0 are calculated in Section A.2.
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A.5 Abbreviations and Notation

A.5.1 Abbreviations

The abbreviations in the following table are commonly used:

Symbol Abbreviation Explanation
f pmf probability mass function

(for discrete distributions)
f pdf probability distribution function

(for continuous distributions)
F cdf cumulative distribution function

GLM generalized linear model
GLMs generalized linear models
MLE maximum likelihood estimator or estimate
IWLS Iterative weighted least squares
i.i.d. independent and identically distributed
w.r.t. with respect to
w.l.o.g. without loss of generality
Res. or res. restriction
s.t. such that or so that

A.5.2 Notation

Throughout the thesis we used the following notation:

Symbol Explanation Represents
A capital letter a matrix, i.e. A ∈ Rm×n (m,n ∈ N)
Y (majuscule) depending on the context Y can also describe

a random variable
x small letter a real value, i.e. x ∈ R
y (minuscule ) depending on the context y can also describe

a realization of a random variable, i.e. Y = y
means that the random variable Y takes the
value y in this speci�c case

x small letter a vector of real numbers,
in bold print i.e. x = (x1, x2, . . . , xn−1, xn) ∈ Rn

Y capital letter a vector of random variables,
in bold print i.e. Y = (Y1, Y2, . . . , Yn−1, Yn) ∈ Rn

β̂ hat over letter in
bold print

depending on the context β̂ can represent a
random vector (referred to as estimator) or
a speci�c outcome of the estimator regarding
certain data (referred to as estimates)
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