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The influence of system parameters such as heater power and heater location on
the hysteresis characteristics of a horizontal Rijke tube is studied in this paper. It is
observed that the hysteresis zone is present for all the mass flow rates considered in
the present study. The nature of transition to instability in a horizontal Rijke tube is
found to be subcritical, in the range that we tested. A decrease in instability amplitude
along with a reduction in the width of the hysteresis zone is observed in the presence
of external noise. Period-2 oscillations are found when heater location is chosen as the
control parameter.
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1 Introduction

Thermoacoustic instability hampers the development of gas turbine engines, solid rocket motors,
industrial burners and various other engineering systems where the primary source of energy is
derived from combustion [1]. The instability occurs when the pressure fluctuations inherently
present in a confinement are in phase with the heat release rate fluctuations of a heat source
present in the same confinement [2]. The physical reasons of the origin of this instability need to be
understood in order to implement effective control strategies. The systems which are susceptible to
thermoacoustic instability are often too intricate to conduct a detailed investigation. This creates
the need for a prototypical system which is simple enough to investigate, yet retains the essential
dynamical features of the original system. A horizontal Rijke tube with a mesh type electrical
heater is often chosen as a model system in literature [3–8].
In order to avoid the harmful oscillations, the stability boundaries need to be identified. Tradi-

tionally this is done by calculating the eigenvalues of the system. The system is said to be unstable
when the real part of one of the eigenvalues becomes positive. Linear stability analysis will provide
critical values of the system parameters beyond which any small perturbation will grow and make
the system unstable. When the amplitude of acoustic oscillations increases and eventually gets
saturated, the system is said to exhibit limit cycle oscillations [3–7].
In the case of a horizontal Rijke tube, it can be seen from earlier literature that after a critical

value of the system parameter, the system changes its behavior qualitatively from a stable state
to an unstable state. Sudden change in the qualitative behavior of a system for an infinitesimal
change in a system parameter is termed as a bifurcation in the dynamical system literature [9].
If an existing steady state of the system becomes unstable as a result of a bifurcation, then
that bifurcation is termed a primary bifurcation. Primary bifurcations can be classified into two
categories, namely static and dynamic. The classification depends upon the manner in which the
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existing steady state loses stability. Stability of an asymptotic state can be determined by knowing
the eigenvalues.
The steady state becomes unstable when the eigenvalues in the left half of the complex plane

cross the imaginary axis and reach the right half of the complex plane. If this cross over happens
through the origin, the bifurcation is termed as static and it will not introduce any oscillatory
behavior. Dynamic bifurcation will be the result when the cross over happens not through origin.
The resulting state will have eigenvalues with non-zero imaginary parts. The real part of an
eigenvalue represents the growth or decay of the time dependent solution and the imaginary part
represents the oscillating component of the solution. So a non-zero imaginary part of an eigenvalue
indicates that the solution is oscillatory in nature and has an associated frequency. A new frequency
will be introduced as a result of dynamic bifurcation. If the dynamic bifurcation results in the birth
of limit cycle oscillations in the asymptotic limit, it is called as Hopf bifurcation [10].
Hopf bifurcation can be classified in to two categories (i) supercritical and (ii) subcritical based

on the stability of the resulting periodic solutions. Supercritical bifurcation happens when the
nonlinearity has a stabilizing influence and it is characterized by the birth of low amplitude stable
limit cycles when the system becomes linearly unstable. The asymptotic state of the system is
independent of the initial conditions in the case of supercritical bifurcation. If the nonlinearity
destabilizes the system, then a subcritical bifurcation results. Small amplitude unstable limit
cycles are born when the system is close to the linear stability boundary. The unstable limit cycles
will grow in amplitude as we move away from linear stability boundary. As the system parameters
reach some critical value, unstable limit cycles get stabilized through a fold bifurcation away from
the linear stability boundary [9,11]. In the case of a Rijke tube, the asymptotic state of the system
is dependent on initial conditions [6, 8]. In short, if the transition is subcritical then the system
can be made unstable even when it is linearly stable, if appropriate initial conditions are provided,
such that the system is stable to perturbations of small amplitude but becomes unstable when a
disturbance of finite amplitude is provided.This phenomenon where the system is made unstable
by providing suitable initial conditions is called triggering [12]. Triggering was observed in earlier
experiments and numerical studies conducted on horizontal Rijke tubes [4, 6, 7, 13–15].
Linear stability analysis cannot predict the limit cycle characteristics and the linear stability

boundaries become less useful if the system can be triggered to instability in the bistable region.
The type of bifurcation, i.e., whether the bifurcation is supercritical or subcritical, needs to be
understood to implement effective control strategies. Since a subcritical bifurcation is characterized
by the presence of large amplitude oscillations at the onset of instability, it is difficult to deal with.
Furthermore, in the case of a subcritical transition, the system cannot be brought back to stable
state even if the system parameter is reduced just below the critical value. The value of the system
parameter has to be reduced much below the critical value to make the system stable again, due
to hysteresis associated with subcritical bifurcation [9,11]. So determining the type of bifurcation
which the system undergoes during instability becomes all the more important.
The presence of a hysteresis zone is an important characteristic of subcritical transitions, where

the system can remain in more than one state. Within the hysteresis zone, the system can either
remain in a state of no-oscillations or it can remain in an oscillatory state. In the hysteresis zone,
the system is said to ‘bistable’ as it can either remain stable or can become unstable depending
upon the initial conditions. The width of the hysteresis zone, which represents the parameter range
where the system is bistable, can be used as an indicator to identify the nature of bifurcation. The
presence of hysteresis zone confirms that the transition to instability is subcritical [9, 16]. Study
of variation in the width of hysteresis zone becomes significant in this context.
The earlier experiments conducted on horizontal Rijke tubes were aimed at understanding the

effect of heater power on stability characteristics of the system. Matveev [3] performed experiments
in a horizontal Rijke tube and established the stability boundaries for different mass flow rates
when heater power was selected as the control parameter. Presence of a hysteresis zone and the
phenomenon of triggering were reported by Matveev [3]. Further he found that the width of the
hysteresis zone decreased with decrease in mass flow rate.
During instability, the system was found to exhibit limit cycle oscillations. Later, Mariappan [7]

experimentally determined the triggering amplitude and reported reduction in the width of the
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hysteresis zone for a decrease in mass flow rate in a horizontal Rijke tube. The transition to
instability was found to be subcritical and limit cycle oscillations were observed. Both Matveev [3]
and Mariappan [7] used heater power as the control parameter.

Balasubramanian & Sujith [4] proposed a model for the horizontal Rijke tube which captured
many of the experimentally observed features and the model showed that the transition to insta-
bility is subcritical. The bifurcation characteristics of this model for various system parameters
such as heater power, heater location, damping rate coefficient and time lag were studied by Sub-
ramanian et al. [6] using numerical continuation method.Subramanian et al. [6] found that the
transition to instability happened always through a subcritical Hopf bifurcation for variation in
any of the system parameters. Juniper [14] showed that the transition to instability is subcritical
when heater power is chosen as the control parameter and found out the most dangerous initial
condition using adjoint optimization. In summary, the experimental and numerical investigations
conducted on horizontal Rijke tubes indicate that the transition from non-oscillatory to oscillatory
state is subcritical in nature [3, 4, 6, 7]. Nonetheless experimental studies on horizontal Rijke tube
where system parameters other than heater power are varied are not present in the literature.1

The studies discussed till now were conducted in the absence of noise. Then again, noise is
invariably present in all real time systems. External noise can stabilize the system or it can lead to
various noise-induced transitions [19]. Zinn & Lieuwen [20] reported that thermoacoustic systems
are prone to triggering, where even small amplitude perturbations of the order of background
noise can trigger a linearly stable system to instability. Waugh et al. [21] analyzed the behavior
of the Rijke tube model of Balasubramanian & Sujith [4] with stochastic forcing and found that
triggering is dependent on noise strength as well as heat release rate. They reported that the
state of the system can change from a stable periodic solution to a state of no oscillations if the
noise strength is high enough. Wuagh & Juniper [15] conducted numerical studies on a hot wire
Rijke tube model and obtained stochastic stability maps. Jegadeesan & Sujith [18] showed that
for a ducted non-premixed flame, noise-induced transitions to instability are possible. They also
obtained the deterministic and stochastic stability boundaries. In the absence of external noise, a
finite amplitude disturbance which corresponds to the frequency of first eigenmode, was used to
trigger the system. The amplitude of the disturbance which triggered the system to instability was
termed as the ’triggering amplitude’. In the presence of external noise, transition to instability
was reported even when the noise level is much below the ’triggering amplitude’. A reduction
in oscillatory amplitude in the presence of noise was also observed by Jegadeesan & Sujith [18]
and was attributed to the decrease in correlation between pressure oscillations and heat release
rate fluctuations in the presence of external noise. Experimental and numerical studies conducted
in the presence of external noise show that noise affects the system dynamics but the effect
of noise on the bifurcation characteristics of the system need to be understood with the help of
further investigation. In particular, we are interested in seeing how noise affects the bistable region.
Furthermore, experimental results on the effect of external noise on the dynamics of horizontal
Rijke tube are not available to the best of authors’ knowledge.

The major outcomes from the previous studies conducted on horizontal Rijke tube can be
summarized as follows. The stability boundaries were experimentally determined for various values
of heater power. Numerical studies have provided globally stable, globally unstable and bistable
regions for various system parameters such as heater power, heater location, damping coefficient
rate and time lag. The nature of transition observed in both experimental and numerical studies
was subcritical Hopf bifurcation. Triggering was reported in experiments and in numerical studies.
Noise-induced transitions were seen in studies involving Rijke tube models as well as in experiments
performed on vertical Rijke tube.

Experimental studies detailing the effects of heater location, damping and mass flow rate are
not reported in literature. The subcritical nature of transition observed in the case of Rijke tube
model are not yet confirmed by experimental observations for system parameters such as heater
location and damping rate coefficient.

1However experimental investigations that vary flame location are available in the case of vertical Rijke tubes
which use premixed and non-premixed flames as the heat source. [17, 18]
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Although some experimental studies allude to the reduction in the width of the hysteresis zone
with decrease in mass flow rate [3,7], further investigations were not performed. Width of hysteresis
zone plays an important role in identifying the type of bifurcation. Determination of the criticality
of bifurcation, i.e., whether the transition is subcritical or supercritical is important as it will help
to device better control strategies. It is essential to analyze the influence of system parameters on
the presence of bistable region in the context of a horizontal Rijke tube in order to get a clear idea
about nature of transition.
The present work aims at bridging the gap that exists in the experimental investigations of

bifurcations in horizontal Rijke tube. Dynamical characteristics of the system for various parame-
ters such as heater power and heater location are investigated. The effect of external noise on the
stability of the system is also explored. An attempt is made to understand the nature of critical-
ity of bifurcations by investigating the influence of system parameters and external noise on the
hysteresis characteristics of the horizontal Rijke tube.
The rest of the paper is arranged as follows. Section 2 describes experimental setup and ex-

perimental procedure used for the present study. Section 3 highlights the results obtained. Major
conclusions and significant findings are explained in Section 4.

2 Experimental setup

The experimental setup consists of a horizontal Rijke tube with a mesh type electric heater. The
Rijke tube is 1 m long with a cross-sectional area of 93 x 93 mm2. It is made of aluminum plates of
7 mm thickness. The mean flow is established with the help of a blower (1 HP, Continental Airflow
Systems, Type CLP-2-1-650) which works in the suction mode. The flow rate is measured with
the help of a compact-orifice mass-flow meter (Rosemount 3051 SFC) which is located upstream of
the blower. The flow meter can measure a maximum mass flow rate of 5 g/s with an uncertainty
of ±2.1%.To eliminate the interaction between the acoustics of the blower and the Rijke tube, a
decoupler (120 x 45 x 45 cm3) is provided in between at the outlet end of the Rijke tube.
A programmable DC power supply (TDK -Lambda, GEN8-400, 0-8 V , 0-400 A) is used to

power the mesh type heater. The mesh type electrical heater used in the present study is similar
to the one used by Matveev [3] and Mariappan [7]. The uncertainty associated with heater power
measurement, happens to be 1-2 W , which includes the uncertainty in the measurement of voltage
and uncertainty in the measurement of current. The advantage of the mesh type heater is that it
can provide high amount of electric power (∼ kW ) for a fairly long duration of time (∼ 6 hours)
without losing its integrity. A mesh-type heater also ensures uniform heating when compared to a
coil type heater. In order to avoid electrical contact with the walls of the tube and also to prevent
heat loss to the walls of the tube, a ceramic housing is provided. A traversing mechanism with a
least count of 1 mm is used to change the heater location.
The experimental setup used for the present work is similar to the one used by Mariappan [7].

A pressure transducer (PCB 103B02) mounted at 30 cm (from the left end) is used to measure the
acoustic pressure. The sensitivity of the pressure transducer happens to be 217.5 mV/kPa and the
uncertainty involved in the pressure measurement is 0.2 Pa. An acoustic driver unit (Ahuja AU
60) mounted at 62.5 cm (from the left end) is used to apply the external noise. Data is acquired
with the help of a National Instruments make PCI 6221 data acquisition card. The data is acquired
at a sampling frequency of 10,000 Hz. Thirty thousand data points are taken in each sample. The
bin size used for obtaining the frequency spectra is 0.3 Hz.
In order to assure uniform ambient conditions, the relative humidity level in the laboratory, from

where the blower is sucking air, was maintained at a range of 40% - 50% during all experiments. The
initial temperature was maintained at 190 C. Similarly the experiments were conducted only when
the cold flow decay rate ’α’ was -18.5±5% s−1 for the fundamental frequency. The cold flow decay
rate is measured by exciting the system using a loud speaker; at the first eigenmode frequency
for a short duration of time. Once the loud speaker is switched off, the acoustic pressure decays
down. By taking the Hilbert transform of the pressure signal and by calculating the logarithmic
decay the cold flow decay rate ‘α’ is found [7].
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In all the experiments, a bifurcation parameter is varied in fine steps till the system attains its
oscillatory state from a state of no oscillations and then decreasing the bifurcation parameter to
bring the system back to a non-oscillatory state. When a particular parameter, say heater power,
is chosen as the bifurcation parameter, the other parameters, say heater location, mass flow rate
and cold flow decay rate are kept constant during a single experiment. Heater power (K) and
heater location (xf ) are chosen as the bifurcation parameters in the current set of experiments.
Bifurcation experiments performed by varying the value of heater power are obtained for different
mass flow rates (ṁ) namely 1.25 g/s, 1.41 g/s, 1.56 g/s, 1.88 g/s, 2.03 g/s, 2.19 g/s, 2.34 g/s
and 2.50 g/s. Heater location is varied continuously for eight different mass flow rates, i.e., for
1.25 g/s, 1.41 g/s, 1.56 g/s, 1.88 g/s, 2.03 g/s, 2.19 g/s,2.34 g/s and 2.97 g/s. Heater location is
measured from the inlet of the duct. For the experiments involving excitation with external noise,
Gaussian white noise created using LabVIEW SignalExpress was applied to the system. This is
done with the help of a loud speaker driven by a noise signal which is generated using LabVIEW
SignalExpress. This experiment is performed for different values of noise amplitude.

3 Results

3.1 Effect of heater power

Here the effect of changing the heater power on the system dynamics is explained. The experi-
ments are performed by slowly varying the power supplied to the electrical heater. The system is
preheated for 20 minutes and the median value of acoustic pressure amplitude (P ) and the value
of heater power (K) are noted down after preheating. The preheating is done in order to lessen
the variations in temperature as the heater power is increased [3]. Thereafter the heater power
is increased in a quasi-steady manner. Input voltage to the electrical heater is increased in steps
of 0.01 V which corresponds to an increase in electrical power of 2-3 W . If the heater power is
increased rapidly, it can cause nonlinear triggering of instability. To avoid this nonlinear trigger-
ing of instabilities a settling time of 2 minutes is imposed between the power increments [3, 7].
During this time the system achieves steady state which is confirmed by the steady temperature
noted by the thermocouple. Power increment used in the current investigation is 2-3 W , which is
comparable to power increment used by Matveev [3]. However when the heater power is varied in
a fine manner, power increment happens to be 0.5 W .

Figure 1: Bifurcation diagram displaying the values of acoustic pressure at x = 30 cm versus the
power supplied to heater. The heater is located at xf = L/4. Mass flow rate ṁ = 2.34
g/s. N-Increasing K,▽-Decreasing K

Figure 1 shows the bifurcation diagram obtained by varying the heater power (K). The median
amplitude of acoustic pressure (P ) is plotted against the heater power (K). During the forward
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path, i.e., while K is increased, the system is stable till the point C which corresponds to a heater
power of 337 W . Further increase in heater power takes the system to a stable limit cycle (point
D). From D to E, the amplitude of the limit cycle oscillations increases with increase in heater
power. Once the system has reached point E, the heater power is decreased in steps of 2-3 W. The
asymptotic state achieved by the system during the decrease of heater power is termed as return
path. The system continues in the state of stable limit cycle oscillations up to point F during
the return path. When the heater power is reduced below 308 W , the system reverts back to the
non-oscillatory state. In the forward path, the system is globally stable for low values of K (line
AB). Region BC is termed as bistable where the system can be triggered to instability. Beyond
the point C, the system is globally unstable. The difference observed between the forward path
(ABCDE) and the return path (EDFBA) establishes the hysteresis zone and similar results are
reported in literature [3, 7].
The asymptotic state of the system can be understood by reconstructing the phase space from

the acquired time series.Phase space of a dynamical system is the one which represents all possible
states of the system. In general, the phase space will be an ’n’ dimensional vector space constructed
using ’n’ state variables. The state variables can be identified from the governing equations of the
system. If the governing equations are not known, the phase space can be constructed using indi-
rect methods [22]. One of them happens to be the method of using time-delayed vectors. These
time-delayed vectors are constructed using Takens’ embedding theorem, from time series data of
one of the physical variables [23]. Time delayed vectors are constructed by calculating the opti-
mum time delay. The dimension of the reconstructed phase space will be determined by knowing
the embedding dimension. The technique of reconstruction of phase space from experimentally
obtained time series data is explained by [17] in the context of ducted laminar premixed flame.

Figure 2: (a) Frequency spectra of pressure signal and (b) Reconstructed phase portrait from
measured pressure time series for heater power K=339 W . Heater is located at xf =
L/4. Mass flow rate is ṁ = 2.34 g/s.

FFT of the pressure time series signal along with corresponding phase plot is shown in Figure 2
for various values of heater power. It can be seen that a peak appears when the power is increased
to 339 W (Fig. 2a). The corresponding reconstructed phase space shows an isolated closed orbit
which is a limit cycle (Fig. 2b).
Presence of the hysteresis zone (Fig. 1) and the limit cycle in the reconstructed phase space

(Fig. 2b) confirm that the bifurcation is subcritical Hopf bifurcation. In order to understand the
effect of mass flow rate on the dynamics of the system, the experiment is performed for different
mass flow rates. When the bifurcation plots for low and high mass flow rates are compared, it can
be seen that the hysteresis zone is clearly visible in the case of high mass flow rates whereas it
becomes unobservable for low mass flow rates (Fig. 3). It appears as if for low mass flow rates, the
forward and reverse paths appear to merge together (Fig. 3a). Even though the hysteresis zone is
not observable, a discrete jump in acoustic pressure can be seen during the transition for low mass
flow rate (Fig. 3a). The sudden jump observed in the acoustic pressure confirms that the transition
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is subcritical even for low mass flow rates [9]. Since subcritical transitions are characterized by

Figure 3: Bifurcation diagram displaying the values of acoustic pressure at x = 30 cm versus the
power supplied to heater. The heater is located at xf = L/4. Mass flow rate is (a) ṁ
= 1.25 g/s.(b) ṁ =1.25 g/s with step size of 0.5 W . (c) ṁ =2.34 g/s.N-Increasing
K,▽-Decreasing K

the presence of a hysteresis zone, we performed the experiments with fine variation in control
parameter, to detect the hysteresis zone present near the transition point. The heater power is
varied in a quasi-steady manner with a step size of 0.5 W . Bifurcation diagram with fine variation
in heater power is depicted in Fig. 3b. It can be seen that in the case of finer variation in control
parameter the hysteresis zone is clearly observable.
Similar set of experiments were performed for mass flow rates 1.41 g/s and 1.56 g/s. For all

these three mass flow rates, i.e, for 1.25 g/s, 1.41 g/s and 1.56 g/s the hysteresis zone is not
detectable when the heater power is varied in a coarse manner with a step size of 2 W . However
there exists a definite jump in the value of acoustic pressure near the transition. When the step
size is reduced to 0.5W the hysteresis zone became clearly observable for all the three mass flow
rates. The variation in non-dimensional hysteresis width with mass flow rate is shown in Fig. 4.
The width of the hysteresis zone is calculated by noting down the difference between the heater
power at the Hopf point (KH) and the heater power at the fold point (Kf ). Hysteresis width, (KH

– Kf), is non-dimensionailized by dividing it with Kf . The width of the hysteresis decreases as
the mass flow rate is reduced. Nevertheless the width of the hysteresis zone reaches an asymptotic
value with reduction in mass flow rates (Fig. 4). A finite value of hysteresis width along with
a discrete jump in acoustic pressure near the transition point, even when the mass flow rate is
low, show that the transition is definitely subcritical for the mass flow rates considered [9]. The
presence of hysteresis zone indicates that the system has a bistable regime and that the system
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Figure 4: Variation of non-dimensional hysteresis width with mass flow rate when the heater power
K is chosen as the control parameter. The heater is located at xf = L/4.

can be triggered to instability by providing appropriate initial conditions.

When heater power is selected as a control parameter, the nature of transition is subcritical.
The thermoacoustic system always has a bistable region, in the entire range of parameters that we
covered, where the system is linearly stable but can be driven to instability by providing suitable
initial conditions.

3.2 Effect of heater location

The effect of heater location on the hysteresis characteristics of a horizontal Rijke tube is discussed
here. Experiments were conducted by varying the heater location in a quasi-steady manner. System
is preheated for 20 minutes to reduce the variation in temperature along the duct. The heater is
located at the inlet end before the start of the experiment. The median value of the acoustic
pressure amplitude (P ) and the value of heater location (xf ) were recorded after preheating.
Heater location is changed in steps of 1 cm and a settling time of one minute is chosen. The heater
location is measured from the inlet. When the heater is located at the inlet end xf is considered
as zero. The variation in acoustic pressure with variation in heater location is shown in Fig. 5.

Figure 5: Bifurcation diagram displaying the values of acoustic pressure at x = 30 cm versus the
location of the heater xf . The variation of acoustic pressure with heater location near
the first Hopf point is shown in the inset. The heater power is K = 423 W . Mass flow
rate ṁ =2.34 g/s.N- Increasing xf , ▽- Decreasing xf
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During the forward path, when xf is increased, the system is stable until xf becomes 19 cm.
The system undergoes a Hopf bifurcation at xf = 19 cm. Thereafter the amplitude of pressure
oscillations increases and reaches a maximum at xf = 33 cm. Further increase in xf causes a
decrease in the pressure amplitude and system goes back abruptly to the non-oscillatory state
when xf = 36 cm. While in the reverse path, when xf is decreased, the system remains stable till
xf = 29 cm. When the heater is located at 29 cm away from the inlet, the system undergoes a Hopf
bifurcation and reaches a state of stable limit cycle oscillations. As the heater is moved towards
the inlet, xf is decreased; the amplitude of oscillations decreases and the system reverts to the
non-oscillatory state when the heater is located at 18 cm away from the inlet. A clear hysteresis
zone is present near the second Hopf point (29 cm). The hysteresis zone is not observable near
the first Hopf point (19 cm) for coarse variation in heater location. However with fine variation in
heater location the hysteresis zone near the first Hopf point also becomes detectable as shown in
the inset of Fig. 5. It can also be seen from the inset of Fig. 5 that there exist a definite jump in
the value of acoustic pressure near the point of transition. Figure 6 shows the frequency spectra

Figure 6: (a) Frequency spectra of pressure signal and (b) reconstructed phase portrait from pres-
sure time series when heater is located at xf = 19 cm. Heater power is K = 423 W .
Mass flow rate is ṁ = 2.34 g/s.

and phase plot of the system when the heater is located at 19 cm, i.e. at first Hopf point. The
frequency profile shows a prominent frequency and the phase plot is a limit cycle. So it can be
concluded that the bifurcation happens at xf = 19 cm is Hopf bifurcation. The frequency spectra

Figure 7: (a) Frequency spectra of pressure signal and (b) Reconstructed phase portrait from
pressure time series when heater is located at xf = 29 cm. Heater power is K = 423 W .
Mass flow rate is ṁ = 2.34 g/s.

and phase plot at xf = 29 cm during the return path also show a prominent frequency and
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limit cycle respectively (Fig. 7). It again indicates that the system undergoes Hopf bifurcation
when the heater is located at 29 cm during the return path. The presence of the hysteresis zone
along with the presence of discrete jump in the value of acoustic pressure near the transition
point ensures that the transition is subcritical for both first and second Hopf points (19 cm and
29 cm). The experiments were performed for different values of mass flow rate. A comparison is
shown in Fig. 8 between the bifurcation diagrams obtained for 1.25 g/s (Fig. 8a) and for 2.34 g/s
(Fig. 8b). When the mass flow rate is decreased the hysteresis zone near the second Hopf point
becomes undetectable and the forward and reverse paths appear to merge together. Even when the
hysteresis zone becomes undetectable, the amplitude of acoustic pressure is sufficiently above the
noise floor during transition. This jump observed in the amplitude of acoustic pressure confirms
that the transition is subcritical [9]. The variation in the control parameter, heater location, is
made finer to detect the hysteresis zone as in the case of heater power. As the heater location
is varied in a finer manner, with a step size of 1 mm, near the Hopf point, the hysteresis zone
becomes observable for the case of 1.25 g/s. The bifurcation diagrams with fine variation in

Figure 8: Bifurcation diagram displaying the values of acoustic pressure (P ) at x = 30 cm versus
the location of the heater (xf ). The heater power is K = 423 W . Mass flow rate is (a)ṁ
=1.25 g/s. (b) ṁ =2.34 g/s.N- Increasing xf ; ▽- Decreasing xf .

Figure 9: Bifurcation diagram displaying the values of acoustic pressure at x = 30 cm versus the
location of the heater.(a) Near the first Hopf point.(b) Near the second Hopf point. The
heater power is K = 423 W . Mass flow rate =1.25 g/s. N- Increasing xf ; ▽- Decreasing
xf .

control parameter are shown in Fig. 9. It is observed that the hysteresis zone is detectable for
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a fine variation of the control parameter. Since the width of the hysteresis zone is much smaller
than the overall range in which the control parameter is varied, only the portion of the hysteresis
zone near the Hopf point is shown in Fig. 9. Even for a low mass flow rate of 1.25 g/s, it can be
concluded that the transition to instability is clearly subcritical when heater location is chosen
as the control parameter. The subcritical nature of transition to instability is confirmed by the
presence of hysteresis zone and a discrete jump in the values of acoustic pressure during transition
(Fig. 9a & Fig. 9b) [9]. The experiment is performed for different mass flow rates by varying the
heater location in a fine manner.2 It is found that there exists a hysteresis zone of definite width
even for very low mass flow rates. However, for the case of low mass flow rates, the hysteresis
zone becomes perceptible only when the parameter variation is made finer. Variation in the non-
dimensionailized width of the hysteresis zone with mass flow rate is depicted in Fig. 10. The width
of the hysteresis zone is obtained by noting down the difference between the values of heater
location at the Hopf point and heater location at the fold point. The non-dimensional hysteresis
width is obtained by dividing the width of the hysteresis zone with value of heater location at
fold point. The width of the hysteresis zone decreases and asymptotically tends to a constant
value. The presence of a hysteresis zone confirms that the transition is subcritical for all the mass
flow rates considered in the present study. However, the width of the hysteresis zone achieves a
constant value after a particular mass flow rate. The asymptotic nature of the hysteresis width
indicates that the transition is always subcritical irrespective of the values of the mass flow rate
in all the experiments that we have performed. The experiment is performed for a mass flow rate

Figure 10: Variation of the non-dimensional width of the hysteresis zone near the second Hopf
point with mass flow rate when heater location xf is chosen as the control parameter.
The heater power is K = 423 W .

of 2.97 g/s to understand the system dynamics at a higher mass flow rate. The power supplied
to the heater in the earlier experiments was found to be insufficient to make the system unstable
at a mass flow rate of 2.97 g/s. So the heater power is increased from its previous value of 423
W to 482 W . Since the heater power was changed, the results for the mass flow rate of 2.97 g/s is
presented separately. It can be observed that there are two distinct regimes of heater location for
which oscillations are present (Regions-1&2 in Fig. 11). The absence of oscillations near the open
end is due to the fact that the acoustic pressure becomes zero at the open end. Since the acoustic
velocity becomes zero at L/2, thermoacoustic instability does not occur as the heater is moved
near this point.
When the heater is located at 8 cm from the inlet, system undergoes a subcritical Hopf bifur-

cation. The subcritical nature of transition can be confirmed by the discrete jump in the value of

2In the current set of experiments, instability was not observed when the heater is located beyond 40 cm for all
the mass flow rates considered for a given heater power of 423 W . This motivated us to display the bifurcation
diagrams only for variations in xf up to 40 cm.
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Figure 11: Bifurcation diagram displaying the values of acoustic pressure (P ) at x= 30 cm versus
the location of the heater xf for a mass flow rate ṁ = 2.97 g/s. K = 482 W . N-
Increasing xf ; ▽- Decreasing xf .

acoustic pressure when xf is 8 cm (Region-1 in Fig. 11). Figure 12 shows the frequency spectra of
pressure time series and the corresponding reconstructed phase space when the heater is located
at 8 cm away from the inlet. The presence of a distinct frequency (Fig. 12a) and the presence
of a limit cycle in the reconstructed phase space (Fig. 12b) confirm that the system undergoes a
subcritical Hopf bifurcation. Further, when xf is varied from 8 cm to 12 cm period-2 oscillations

Figure 12: (a) Frequency spectra of pressure signal and (b) Reconstructed phase plot from pressure
time series when heater is located at xf = 8 cm. Heater power is K = 482 W . Mass
flow rate is ṁ = 2.97 g/s.

were observed. Period-2 oscillations appear when the heater is located at 10 cm. The presence of
period-2 orbit can be clearly seen from Figure 13. A new frequency of the oscillations gets intro-
duced as the heater is moved from 9.5 cm to 10 cm (Fig. 13a). The value of the new frequency
happens to be exactly half of the existing one. This marks the onset of period-2 oscillations. The
phase plot pertinent to the aforementioned heater location represents a double loop (Fig. 13b).
This also confirms the presence of period-2 oscillations. When period-2 oscillations occur, for each
value of the control parameter there should exist two distinct values of the local maxima. Figure
14 depicts the local maxima of the pressure time series with heater location. It can be observed
that the local maxima has a single value till xf = 9 cm. After that two branches are born. The
presence of two distinct branches is a characteristic feature of period-2 oscillations [9]. These two
branches represent the two distinct values of local maxima of pressure time series. Before the
onset of period-2 oscillations the acoustic pressure has single local maxima. Once the period-2
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Figure 13: (a) Frequency spectra of pressure signal and (b) Reconstructed phase plot from pressure
time series when heater is located at xf = 10 cm. Heater power is K = 482W . Mass
flow rate is ṁ = 2.97 g/s.

Figure 14: Bifurcation diagram displaying the variation of peak pressure (P ) at x = 30 cm versus
the location of the heater (xf ) during the forward path showing the presence of period-2
oscillations for a mass flow rate ṁ = 2.97 g/s. K = 482 W .

oscillations are set in the local maxima of pressure time series has 2 distinct values.

3.3 Effect of external noise

Noise is invariably present in all practical systems. The dynamics of a system can be greatly
influenced by the presence of external noise. Here an attempt is made to understand the influence of
external noise on the dynamics of Rijke tube. Figure 15 shows the comparison between bifurcation
plots obtained in the presence and absence of external noise when heater power is selected as
the control parameter. The noise amplitude is measured by locating the heater at a position
where instability is impossible. Then, the pressure amplitude is measured for each value of the
external noise applied. Thus the noise amplitude calibration is done. It can be observed that
the amplitude of pressure oscillations is reduced in the presence of external noise. The forward
path and the return path appear to merge together making the hysteresis zone unobservable.
Variation in the width of hysteresis zone with noise amplitude is depicted in Fig. 16a. As the
noise amplitude increases the width of the hysteresis zone decreases. Although the width of the
hysteresis zone reduces to a minimum value in the presence of external noise, still the transition
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Figure 15: Bifurcation diagram displaying the variation of acoustic pressure (P ) with heater power
(K) (a) In the absence of external noise (b) in the presence of external noise of amplitude
20 Pa. (c) Near the Hopf point in the presence of external noise of amplitude 20 Pa.
Heater is located at xf = L/4. The mass flow rate is ṁ = 2.34 g/s.N- Increasing K;
▽- Decreasing K.

Figure 16: Variation of hysteresis width with Noise amplitude (a) When heater power (K) is chosen
as the control parameter. The heater is located at xf = L/4. (b) When heater location
(xf ) is chosen as the control parameter. The heater power is K = 423 W . Mass flow
rate is ṁ = 2.34 g/s.

remains subcritical which is confirmed by a sudden jump in the value of acoustic pressure (Fig. 15).
Similar behavior is observed in the case where heater location is chosen as the control parameter
(Fig. 16b). In the case of heater location the hysteresis width becomes a constant after particular
noise amplitude. The constant value of hysteresis width shows that even in the presence of external
noise the transition remains subcritical when heater location is chosen as the control parameter.
The major features that are observable in the presence of external noise are (i) an early onset
of oscillations (Fig. 17a) (ii) a marked decrease in the oscillation amplitude (Fig. 17b) and (iii)
a significant reduction in the width of the hysteresis zone. The early onset of oscillations is due
to the phenomenon of noise induced transition which is reported in the literature [15,18,24]. The
transition to instability depends not only on the noise amplitude but also on the duration of time
window of noise application [18]. In the present experiment the settling time was chosen as one
minute.

The ability of external noise to lower the instability amplitude is already shown by Jegadeesan
& Sujith [18]. The reduction in the width of hysteresis zone has not yet been reported in the case
of thermoacoustic systems. However similar results are presented for geophysical systems and for
hydrodynamical systems undergoing laminar to turbulent transition [25]. It is suggested that the
width of the hysteresis zone can be used as a tool to measure the noise level in the system. The
width of the hysteresis zone can be calibrated to the noise level in the system [25].

Even in the presence of external noise the bifurcation remains subcritical when heater power
and heater location are used as the control parameters. The subcritical nature is confirmed by
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Figure 17: Variation of (a) heater power at the onset of instability (KH) and (b) acoustic pressure
at the onset on instability (PH) with noise amplitude. The heater is located at xf =
L/4. Mass flow rate is ṁ = 2.34 g/s.

the presence of a hysteresis zone and a significant jump in the value of acoustic pressure near the
transition point [9]. However if the noise levels are higher than that used in the present study,then
the subcritical nature of bifurcation need to be confirmed with the help of further experiments.

4 Conclusions

The heater power and the heater location were varied systematically, one at a time, in the presence
and in the absence of external noise in the present study. It is found that the width of the hysteresis
zone achieves an asymptotic value as the mass flow rate is decreased. The asymptotic nature of
the width of the hysteresis zone indicates that irrespective of the value of mass flow rate, there
exists a hysteresis zone of finite width in all the experiments we were performed. The presence
of the hysteresis zone along with a finite jump in the acoustic pressure near the transition point
confirms that the transition is subcritical. So for the system parameters such as heater power and
heater location, the nature of transition was always seen to be subcritical in all experiments. For
low mass flow rates, although the hysteresis zone was observed only when the control parameter
was varied in a fine manner, the finite jump in acoustic pressure near the transition point is always
present. Therefore, it is extremely important to ensure that the variation in the parameter is fine
enough before a bifurcation can be attributed as supercritical. It is conjectured that the reduction
in the width of the hysteresis zone for decreases in mass flow rate is due to reduction in the energy
available to drive the system into instability. It is also found that the width of the hysteresis zone
decreases in the presence of external noise. We also observed period-2 oscillations when heater
location is chosen as the control parameter. The appearance of period-2 oscillations opens up the
possibility of Rijke oscillations becoming chaotic through period doubling. Further experiments
need to be done in order to confirm this.
The authors would like to acknowledge ONR Global for the financial support (Contract Moni-
tor:Dr.Gabriel Roy). The authors gratefully acknowledge Vineeth Nair (IIT Madras) for discus-
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