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Flame transfer functions are now commonly used to predict stability maps of various
types of systems. Such linear analyses provide a rough estimate of the system stability,
but do not give access to many phenomena observed in practice, e.g. amplitudes and fre-
quencies of limit cycles, instability triggering or hysteresis. To account for these observa-
tions one has to represent the nonlinear response of the flame. One possibility which has
been explored more recently consists in using experimentally determined Flame Describ-
ing Functions (FDFs). The method was validated in a generic multipoint injection system
composed of an adjustable resonant upstream manifold and different quartz tubes to con-
fine the flame. In general, predictions are in good agreement with measurements when
the limit cycle features an essentially constant amplitude. Nevertheless, it is found that in
certain parameter ranges many of the limit cycles feature a time variable amplitude. The
present article encompasses all the limit cycles, with constant or time variable amplitude,
characterized on the multiple flame combustor. For time-varying amplitude, the describing
function does not generally provide correct estimates and cannot be used to represent the
unsteadiness in limit cycle level, but this methodology allows to identify conditions giving
rise to such phenomena and it yields bounds on the amplitude levels and frequencies for
some cases.

1 Introduction

The Flame Describing Function (FDF) framework has been devised to fill the gap between observa-
tions carried-out at limit cycles and predictions of thermoacoustic instabilities. The describing function
method originates from nonlinear control theory (see for example [1]). In general approach is applica-
ble when there is a single nonlinear element (in the present case, this component is the flame) and that
the other units in the system filter out higher order harmonics so that the system stability is essentially
governed by the fundamental frequency component. The describing function is constituted by a family
of transfer functions measured or calculated for a set of amplitudes.

One objective of the FDF method has been to encompass the definition of instability regions, obtain
instability characteristics and estimate limit cycle amplitudes and frequencies. Another objective is to
interpret the many nonlinear features manifested in practical systems such as mode switching, nonlin-
ear triggering, frequency shifting. The describing function methodology is dedicated to the modeling
the combustion dynamics in burners where the flame response to flow perturbations is nonlinear, but
the resulting acoustic perturbations within the system remain in the linear range. This corresponds to
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situations where the higher order harmonics are filtered out by the combustor acoustics, so that the
system stability is essentially governed by the fundamental frequency component.

The application of the describing function concept to nonlinear flame dynamics were attempted in
some recent studies. One possible saturation mechanism giving rise to limit cycles is envisaged in [2]
to represent the motion of a ducted flame stabilized on a bluff-body [3]. In this analysis based on the
describing function (DF) methodology borrowed from control theory, the flame gain saturates when
the flow at the bluff-body is reversed. A more advanced model of the flame motion [4] analyzed in the
DF framework yields predictions of the unstable amplitude and frequency. The nonlinear transfer func-
tion concept is also used in [5] to analyze the dynamics of a combustor submitted to equivalence ratio
fluctuations. The transfer function was calibrated by making use of experimental data and suitable es-
timates of limit cycles were obtained by considering the mean air-fuel ratio as a bifurcation parameter.

A unified framework combining a measured flame describing function with an acoustic network was
developed to examine the stability of a burner with an unconfined flame [6] and reproduce the non-
linear features observed in the experiments. This was later extended to deal with generic burner with
a confined flame [7, 8]. Systems including turbulent premixed swirled flames were also recently inves-
tigated using the same methodology [9, 10]. By taking into account the nonlinear dependence of the
flame response with respect to the input level, it was possible to reproduce the limit cycles observed
in experiments. In addition, this nonlinear treatment gives access in many cases to the nonlinear fea-
tures observed in practice, e.g. hysteresis or triggering [6, 8]. In a recent theoretical analysis [11], the
authors examined the nonlinear stability of a Rijke tube comprising a diffusion flame by using different
techniques. The results indicate that the FDF methodology enabled to find the expected limit cycles. In
many situations, the FDF is measured experimentally to obtain the correct flame frequency response
when the perturbation amplitude is varied.

One interesting feature with the multipoint injection system investigated by [12] is the variety of non-
linear dynamical phenomena observed. The present study is aimed at testing the FDF methodology
when the flame tube length is varied giving rise to many distinct situations. Experiments and calcula-
tions have already been reported in [7, 8] for short flames tubes. It was found that limit cycles, hystere-
sis, triggering and mode switching observed by changing the feeding manifold length were fairly well
retrieved by calculations. The FDF framework was however less successful in predicting the unstable
behavior observed with the longer confinement tube [7].

Even if an overall agreement was found between measurements and predictions for most of the ge-
ometries, further analysis revealed unusual cases where the limit cycle features a time-varying ampli-
tude typified by more complex oscillations. For example, cyclic oscillations were found for a short flame
tube in [13], while more chaotic oscillations were reported in [14]. In a recent investigation, [15] also de-
scribes observations of nonstandard types of oscillations in a multiple flame combustor equipped with
a perforated plate comprising a small number of holes. The flame tube size is used as a bifurcation
parameter providing access to a variety of limit cycles. Their investigation through nonlinear time se-
ries analysis allows to delineate the different dynamical phenomena. The objective of the present study
is to explore the limitations of the FDF methodology by investigating the various types of limit cycles
observed in the generic configuration considered by Boudy [12].

This article begins with a short description of the test rig and instrumentation. The FDF analysis is
reported next with a brief presentation of typical results. Then, the different types of limit cycles ob-
served in the setup are analyzed. FDF calculations are then used to delineate the subtending processes
and sort out the different mechanisms contributing to the observed time-varying amplitudes.

2 Experimental setup and typical combustion regimes

The experimental setup is sketched in Fig. 1. The burner can be divided into three parts. A feeding
manifold of radius R; = 0.035 m terminated by a perforated plate which delivers a premixed stream.
The perforated plate anchors a collection of small laminar conical flames. The third element is an open
ended quartz tube of radius R, = 0.065 m, enclosing the combustion zone. A piston is used to easily
modify the length of the feeding manifold during experiments. This length L; measured between the
upstream side of the perforated plate and the head of the piston was varied in discrete steps all the way
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Figure 1: Experimental setup used to characterize self-sustained combustion oscillations and associ-
ated diagnostics. Three microphones are used to measure the pressure fluctuations. Micro-
phone M; is located 0.25 m away from the burner axis while microphones M, and M3 are con-
nected to 25 m waveguides. A hot wire probe measures the velocity fluctuations in the feeding
manifold. A photomultiplier equipped with an OH* filter gathers light radiated by the flame
through the quartz tube and measures the OH* light intensity fluctuations.

from L; = 0.11 m to 0.55 m. By using an additional tube, it is possible to sweep the feeding manifold
length from L; = 0.11 m to 0.77 m. The head of the piston is designed to offer a nearly perfect reflecting
boundary for acoustic waves. It is machined with a small peripheral shoulder with six holes on the
periphery to allow flow of the premixed reactants to be injected in the cavity. The flame tube of size L,
can also be changed. Four quartz tubes of different lengths are used ranging from L, =0.10 m to Ly =
0.40 m by steps of 0.10 m. The perforated plate located at the top of the feeding manifold and confined
within the quartz tube, anchors a collection of small laminar conical flames. It has a thickness [ = 3 mm
or [ = 15 mm and a diameter 2R = 70 mm. It is made of stainless steel and comprises N =421 holes of
diameter 2r), =2 mm arranged on a 3 mm square mesh, resulting in a global porosity & = Nz rf,/ nR? of
0.34. Experiments are carried out with a methane/air mixture of flow rate iz = 4.7 g.s! at an equivalence
ratio ¢ = 1.03, providing a thermal power of P = 13.3 kW for different geometrical configurations by
modifying L, or L.

The setup is equipped with different probes allowing measurements of velocity, pressure and heat
release rate fluctuations. Figure 1 shows the burner and associated diagnostics and sensors. Five quan-
tities are measured in this experiment. Velocity fluctuations are determined by means of a hot wire
probe 3 cm below the perforated plate. Three microphones are used to record pressure fluctuations
at different locations on the burner. Microphone M; records the sound radiated at 0.25 m away from
the burner axis. Pressure fluctuations inside the burner are measured by two microphones connected
to waveguides terminated by a 25 m channel. These channels are sufficiently long to avoid wave re-
flection. Microphone M is connected to the feeding manifold while M3 is plugged on the waveguide
connected to the flame plane. Different plugs are located along the feeding manifold length L;. They
are separated by 5 cm from each other and microphone M, is plugged on the first one facing a hot wire.
A photomultiplier equipped with an OH™ filter (1=308 nm) records the radical emission from the flame,
which is proportional to the heat release rate [16,17]. Measurements are processed with LabVIEW® and
Matlab®.

The experimental investigation begins by setting a confinement tube L, with the head of the piston
L, close to the perforated plate. Then, the system is ignited and the piston is moved from minimum to
maximum extension with a predefined step. Once the maximum extension has been reached, another
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Figure 2: Stable (L; = 0.25 m) and unstable (L; = 0.29 m) combustion regimes. These records illustrate
typical flame dynamics observed in the burner. L, = 0.10 m, thin perforated plate / = 3 mm.
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Figure 3: Pressure signal from microphone M, (left vertical axis) and OH* radicals light intensity (right
vertical axis) under self-sustained oscillations. The burner is equipped with a thin perforated
plate [ = 3 mm. The feeding manifold is adjusted to L; = 0.51 m with a flame tube Ly = 0.20 m.

sweep is undertaken in the reverse direction (maximum to minimum). Depending on the piston posi-
tion L; and the confinement tube L, selected, combustion is either stable or unstable. In a stable case,
flames have a steady conical shape with a low level of noise reaching about 100 dB at microphone M,
(reference pressure 2 x 1072 Pa). This is illustrated in Fig. 2. In this case, L; =0.25 m, L, = 0.10 m and the
burner is equipped with a thin perforated plate / =3 mm.

In a typical unstable case, all the flames move in a synchronized fashion with formation and collapse
of fresh reactant pockets as illustrated in Fig. 2. In this latter case, the feeding manifold length is set to
Ly =0.29 m. This oscillation is typified by a well defined frequency f = 750 Hz and a constant amplitude
with a high noise level in excess of 140 dB at microphone M. For longer flame tubes, higher oscillation
levels may be reached during unstable operation and the flame motion is often more complex.

Typical pressure and heat release rate fluctuations recorded in the system are plotted in Fig. 3 for a
different flame tube L,. The pressure signal remains sinusoidal whereas the OH* radicals light intensity
signal, corresponding to the heat release rate, shows asymmetrical oscillations, revealing the nonlin-
earity of the flame response. In these experiments, the pressure is essentially harmonic, indicating that
the acoustic field remains in the linear range. Unstable regimes are therefore examined with the FDF
framework in the next section.
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Figure 4: Burner and definitions used for in the thermo-acoustic analysis.
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Figure 5: Left : Reflection coefficient of the piston head measured for a nominal flow rate of 4.7 g s~!.
Right : Reflection coefficient Ry (L,) of the confinement tube outlet. The temperature is fixed
to T» =900 K.

3 Nonlinear approach and FDF analysis

The combustor features low frequency unstable modes and one may thus consider that the wave mo-
tion is longitudinal and takes place in the axial direction z. The pressure oscillations detected remain
relatively weak compared to the mean pressure (p'/ p =~ 1 %) and the analysis is carried out by assuming
that acoustic disturbances are linear. Moreover, the system operates at a low Mach flow number (M <
0.01) so that flow effects can be neglected in the analysis of acoustic propagation. The system is mod-
eled by a set of compact acoustic elements represented schematically in Fig. 4. The model comprises
two cylindrical cavities, a flame zone with a ring cavity between these two elements, and two boundary
conditions at the system inlet and exhaust. The mean temperature T,, and density 7, are considered to
be uniform in each cavity n. The piston head reflection coefficient R; (0) was determined experimentally
(Fig. 5-1eft). The reflection coefficient of the outlet Ry(Ly) is represented by taking into account sound
radiation from an unflanged open pipe [18, 19] (Fig. 5-right). Dissipation in the perforated plate used
as a flame holder is modeled with a relation due to Melling [20]. The contribution from the ring cavity
surrounding the flame is also taken into account in the network [12].

The flame response to flow perturbations is included in the model by using the FDF determined ex-
perimentally in a separate set of experiments [7, 8]. This describing function is determined for forcing
frequencies ranging from 0 to 1600 Hz and different perturbation amplitudes. This is accomplished by
subjecting the flame sheet to harmonic fluctuations by means of a loudspeaker [21]. It should be noted
that measurements of the FDF were carried out with and without flame tube to ensure that there was
no significant change between these configurations. Measurements without flame tubes are easier as
the confinement tube promotes self-sustained combustion oscillations, hindering any control from the
loudspeaker both in frequency and amplitude. These measurements are not presented here for con-
ciseness, but can be found in [12]. It was found that the flame response does not depend on the flame
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Figure 6: Top : FDF measurements as a function of the forcing frequency for different perturbation am-
plitudes, where u; ;s corresponds to the rms value of the fluctuation amplitude and U}, the
mean flow velocity within one perforation of the flame holder. The perforated plate thickness
is set to [ = 15 mm with a short flame tube L, = 0.10 m. A gray scale shows the increasing level
of fluctuations. (a) FDF gain G, (b) FDF phase lag ¢. Bottom : Interpolated and extrapolated
FDF used in the calculations. Measurements are shown by small spherical symbols.

tube. It must be stressed that the configuration explored comprises a collection of small laminar con-
ical flames embedded in a confinement tube having a larger diameter. One might not infer the same
conclusions for other flame configurations. For example, the flame response studied in [22] is modified
when the flame tube diameter is decreased, which leads to interactions between the flame and the cold
wall. The flame response is also modified when the burnt gases cannot fully expand as demonstrated
in a recent analysis [23]. FDF measurements were carried out over a frequency and amplitude ranges
which are bounded by the loudspeaker efficiency at high amplitude and high frequency. In the missing
areas, high amplitude self-sustained combustion oscillations were used for interpolation and extrapo-
lation of the flame response. These data are presented in Fig. 6 for a plate of thickness / = 15 mm and a
flame tube L, = 0.10 m. The gain G is drawn in Fig. 6(a) and the phase lag ¢ appears in Fig. 6(b).

When the amplitude increases, the gain G drops and phase lag ¢ is shifted to higher values, confirm-
ing the nonlinear flame behavior. The flame also acts as a low pass filter with a significant overshoot at
higher frequencies and low fluctuation amplitudes. It is worth noting that the phase lag ¢ evolves in a
quasi linear fashion with frequency and is sensitive to the fluctuation level.

4 Comparison between calculations and measurements

The elements described in the previous section are combined to compute the stability map of the
burner for different geometries. Calculations and comparison with measurements at the limit cycle are



Frédéric Boudy, Thierry Schuller, Daniel Durox and Sébastien Candel

v
A

(@) (b)
1.5

Urms!Up

0.5

150

1000

f (Hz)

500

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
L; (m) Ly (m)

Figure 7: Comparison between measurements and predictions for the short flame tube L, =0.10 m. The
feeding manifold length L, is swept from L; = 0.11 m to 0.55 m (a) and in the reverse direc-
tion L; = 0.55 m to 0.11 m (b). The bold lines indicate limit cycle predictions. Amplitudes and
frequencies observed in the experiment are indicated by m square symbols (o). Open symbols
pertain to limit cycles with a stable oscillation level. The gray symbols reveal situations with
unstable amplitude and frequency. In this latter case, the main frequency peak of the pressure
spectrum is shown in the diagram. The dashed lines correspond to the acoustic eigenmodes
calculated without unsteady combustion.

here illustrated for a single flame tube length L, = 0.10 m. The reader is referred to references [7, 12] for
details on the nonlinear stability analysis and determination of the limit cycle amplitudes and frequen-
cies when the feeding manifold length L; is swept between 0.11 m and 0.55 m in both ways. Limit cycle
frequencies f and fluctuation levels u, s/ U found in calculations are compared to measurements in
Fig. 7 as a function of the feeding manifold length L;.

Results for the first exploration direction (L; = 0.11 m to 0.55 m) are drawn on the left, while the
reverse direction results appear on the right hand side. Calculations of limit cycle amplitudes and fre-
quencies show that predictions agree with measurements for many configurations. These calculations
also capture the system hysteresis confirming what was found in previous studies [6, 8].

Measurements at limit cycles however indicate that for certain lengths of the feeding manifold L;,
the oscillation amplitude is not stabilized at a fixed level. In these cases the signal was processed band-
pass filtered around the fundamental frequency of the pressure spectrum. Then, the amplitude and
frequency of this signal were used for comparison with calculations leading to a lesser degree of agree-
ment. The experimental level is generally lower than the predicted value. Calculations carried out for
the other flame tubes under similar conditions are not presented here for conciseness, but they exhibit
the same type of features.

To synthesize the main results, the FDF framework enables to predict the unstable regimes observed

in the setup when the feeding manifold or the flame tube length are varied. One obtains suitable es-
timates of the oscillation amplitude occurring in the system. Nevertheless, the method is valid when



Frédéric Boudy, Thierry Schuller, Daniel Durox and Sébastien Candel

(@) (b)

50
= g3
& *
- 0 % 2
=50 1
0 0.02 0.04 0 0.02 0.04
t(s) t(s)
L1 s 1
£ 1077 =
=10 £
=0 O 107
210 § =
= 10”
LI 1 Ilis
0 500 1000 1500 0 500 1000 1500

f (Hz) f (Hz)

Figure 8: Pressure signal recorded by microphone M, and OH* light emission for L; = 0.40 m and L,
= 0.10 m. Corresponding spectral densities are shown below the signals. The window under
the pressure spectrum on the left shows the acoustic modal frequencies as vertical solid lines
calculated without combustion.

the oscillation level and frequency of the limit cycle remain constant in time. In the broad experimen-
tal range of the present investigation, some geometries are typified by new kinds of limit cycles where
amplitude and frequency evolve as a function of time. This variety is sometimes described in the lit-
erature [15]. In these cases, the spectral analysis shows multiple frequency peaks and the FDF model
predictions do not necessarily with experimental data as shown in Fig. 7. These limit cycles are typified
by perturbed sound signatures which differ from the more standard single frequency cases. It is then
logical to examine these cases in a systematic fashion to sort out the various types of limit cycles with
time-varying amplitudes. It is still useful to examine results of the FDF methodology to try to predict
domains where such situations prevail.

5 Analysis of time-dependent limit cycles

5.1 Interaction with acoustic boundary

It has already been shown that nonlinear interactions taking place at the combustor extremities are able
to change a limit cycle [24]. In the configuration explored herein, it is shown that destabilization of the
limit cycle can also take place due to a purely linear interaction with one of the acoustic boundary con-
dition. This type of phenomenon appears for the instabilities observed with the short flame tube L, =
0.10 m at two feeding manifold lengths L; = 0.40 m and 0.41 m. In these cases, the pressure spectral
density show multiple peaks with high amplitudes. This is illustrated in Fig. 8 for the pressure and PM
signals when L; = 0.40 m. These signals exhibit modulations because oscillation frequencies are close.
The flame spectrum is typified by a series of concentrated peaks around the main instability frequency.
One can easily distinguish three main components with a peak at 604 Hz, a lower peak at 570 Hz and a
third component at 638 Hz. These three frequencies lie around the second acoustic mode of the system
calculated without unsteady combustion. The pressure signal is further analyzed by using the contin-
uous wavelet transform with a complex Morlet mother wavelet to characterize the frequency evolution
with time. The resulting analysis presented in Fig. 9 indicates that the instability frequency oscillates
around a mean value and that the oscillation frequency reaches a maximum when the pressure oscilla-
tion reaches a minimum and conversely.

Measurements are now compared to FDF calculations in Fig. 10, where the growth rate and frequency
trajectories are plotted as a function of the perturbation amplitude u, s/ Up. Calculations indicate that
the second eigenmode of the system is unstable. Results reveal an overall agreement between calcula-
tions and experiments with a few differences. The oscillation state is well captured with for the max-
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Figure 9: Top : Pressure signal from microphone M for L; = 0.40 m and the short flame tube L, = 0.10
m. Bottom row : Evolution of frequency with time as the amplitude increases or decreases.
Two symbols indicate the minimum and maximum amplitudes reached with their respective
frequency.

imum amplitude indicated by the upward-pointing triangle symbol (red), but the minimum ampli-
tude shows less agreement with the trajectories as indicated by the downward-pointing triangle symbol
(blue).

It is now interesting to examine the origin of this regular modulation. To this purpose, the frequency
range of this phenomenon is superimposed on the reflection coefficient of the piston head presented
before and plotted in Fig. 11. It is striking to see that this frequency range corresponds to a situation
where the reflection coefficient modulus features a “V” cusp between 580 Hz and 620 Hz. An almost
equal modulus |R; (0)is found for these two frequencies without phase shift at 580 Hz and a small one
at 620 Hz. This defines a band where small frequency variations are correlated to large changes in the
reflection coefficient. One possible scenario is that at high amplitude, low frequency sound waves are
damped to a lesser extent than at high frequency. The oscillation amplitude increases but the frequency
also, as shown by the FDF calculations in Fig. 10 for high perturbation amplitudes. Between u;,,s/ U, =
1 and 1.3, the slope of the frequency trajectory is positive. Thus, after an initial growth with a frequency
decrease, it increases and the amplitude falls down. Then, growth rate becomes positive and the oscil-
lation level grows again and so on. This sustains a modulation of the limit cycle both in amplitude and
frequency. By examining the reflection coefficient, the same “V” cusps are identified for other frequency
bands where the modulus features this singularity.

Analysis of this first type of time-dependent limit cycle reveals that the FDF framework can be used to
determine the unstable state of the burner, even if the amplitude and frequency are not well stabilized.
One is still able to deduce the general evolution of amplitude and frequency of oscillation from the FDF
calculations by examining the frequency and growth rate trajectories as a function of the amplitude
Urms! Up. It is also possible to show that modulation of the limit cycle amplitude and frequency result
from interactions of acoustic waves with a singularity in the response of the acoustic boundary at the
combustor inlet. In practical systems, it is not rare to have a complex acoustic response of elements
upstream or downstream of the combustor, an original mechanism which may be at the origin of time
modulations of limit cycle characteristics.

5.2 Interactions between multiple modes

Interactions between multiple modes are known to lead to combustion instabilities with multiple fre-
quencies as explored theoretically by [25] or [26] where it is shown that this can happen if two modes
exist of which one is stable and the other is unstable. This is illustrated here in a situation where a lin-
early unstable mode triggers a nonlinearly unstable mode at a different frequency. In many situations
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Figure 10: Growth rate w; and frequency f evolution as a function of the relative fluctuation ampli-
tude u, s/ Up. The limit cycle found by analyzing the growth rate trajectory is marked as a
gray square symbol. Results from the time frequency analysis in Fig. 9 are indicated by the
downward-pointing triangle symbol (blue) for the minimum oscillation amplitude and by
the upward-pointing triangle symbol (red) for the maximum amplitude.
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Figure 11: Reflection coefficient of the piston head R; (0). The colored regions correspond to frequency
bands where the modulus features a singularity and influences the acoustic wave interacting
with the piston. The downward-pointing (blue) and upward-pointing (red) triangle symbols
indicate the frequencies measured in Fig. 9.
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Figure 12: Pressure signal recorded by microphone M, (top) for L, = 0.10 m and L; = 0.58 m. The spec-
trum (left) and phase space reconstruction (right) are displayed in the bottom row. Acoustic
eigenmodes calculated without unsteady flame but by assuming different temperatures in
each cavity are plotted as vertical lines below the pressure spectrum (77 = 300 Kand 7> =900
K.

typified by the existence of a linearly and a nonlinearly unstable modes, the linearly unstable mode
vanishes as the instability amplitude increases and the system switches to a well defined limit cycle
at a higher amplitude at the frequency of the nonlinearly unstable mode [6, 8]. There are other cases
where the first mode does not vanish and both modes may be observed in the time traces [27]. A simple
criterion based on the FDF calculations is suggested here to sort out situations with single or multiple
frequency oscillation states [13].

The instabilities investigated correspond to the gray square symbols presented in Fig. 7 between L; =
0.51 m and 0.55 m. Measurements were also carried out for larger cavity depths up to L; = 0.77 m, where
the same kind of oscillations are observed. A typical time trace is presented in Fig. 12 together with the
corresponding spectral distribution and phase space reconstruction at L; = 0.58 m. Welch’s method of
averaging combined with a Hanning windowing is used to estimate the power spectral densities. The
phase space is reconstructed using the methods presented in [28].

The pressure oscillates at a frequency corresponding to the third mode f,;3 = 690 Hz. Its amplitude
is modulated with a period which is equal to three times that corresponding to the fundamental fre-
quency fc = f3. The spectrum reveals the presence of modes 2 and 3. One also finds a low frequency
at 234 Hz which corresponds to the difference Af = f;,;3 — fi2. In the present case this gives rise to a
period tripling phenomenon observed in the pressure record where one finds that three fundamental
periods are necessary to recover the same signal value. Phase space reconstruction is obtained with the
methodology described previously. One obtains an embedding dimension d, = 4 while the optimal time
delay 7 corresponds to six periods of the sampling frequency f, i.e. 25.3 % of the f;;;3 frequency period.
A three-dimensional space is used and the reconstruction exhibits three circular patterns correspond-
ing to three amplitude levels induced by the period tripling characterizing this case. The phase space
reconstruction allows to confirm a different behavior in comparison to the one analyzed in the previous
section with L; = 0.40 m. When L; = 0.58 m, the circular patterns are not in the same plane. This reveals
that the frequency changes largely with the amplitude compared to the previous case where an inter-
action with the acoustic boundary takes place. This analysis is especially useful for the other lengths
L, where the spectrum is not always as clear as the one presented here. It allows to delineate different
circular patterns and helps to clarify the system dynamics.

To predict the occurrence of multi-mode oscillations, it is natural to examine growth rate trajectories
within the FDF methodology. First, it is found that dual mode oscillations appear when there is a modal
overlap, i.e. when the regions of positive growth rates of two modes intersect. A detailed examination
reveals two types of overlap. The first type corresponds to two linearly unstable modes which character-
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Figure 13: Growth rate trajectories calculated with the FDE The dashed line (- -) shows the second mode
growth rate, while the bold line (-) corresponds to the third mode. (a) pertains to calculations
from [8] for L; = 0.54 m and L, = 0.10 m. In this case, the trajectory cross leading to mode
switching during the growth of oscillation. (b) is obtained from the present investigation for
Ly =0.52 m and L, = 0.10 m. Experiments reveal oscillations sustained by two modes. The
first trajectory crossing w; = 0 is indicated by means of a vertical line. Gray arrows at this
point represent the tangent lines and provide the signs of the slopes for the two modes.

izes the range between L; = 0.43 m and 0.48 m (see Fig. 7). In this case, the second mode dominates over
the whole amplitude range. This problem was examined theoretically by [25] where it is found that the
dominant mode is not always reached at limit cycle. Nervertheless, by reading the bifurcation diagram,
one expects that the oscillation will be locked on the mode which has the highest growth rate. This is
well observed experimentally and in the corresponding range the second mode of oscillation prevails
with an amplitude which closely matches that determined from the FDF calculation. It is well verified
in this case that the third mode does not arise in the power spectrum. This kind of modal overlap has
already been considered in previous calculations and experiments [7] which all confirm that the mode
with the highest growth rate values is dominant.

The second type of modal overlap is found in the present experiments when L; >0.48 m, in the range
where the second mode becomes nonlinearly unstable while the third mode is linearly unstable. In
these cases, the two modes are sustained. The existence of linearly and nonlinearly unstable modes is
a necessary condition for a dual mode of oscillation but this is not sufficient. Indeed, previous experi-
ments indicate that when this condition is verified the two modes do not always persist simultaneously.
In the unconfined geometry discussed in [6] and in the confined configuration explored in [8] it was
found that the oscillation begins at the third mode frequency and that as the amplitude increases mode
switching takes place and the second mode prevails. The final outcome is a limit cycle corresponding
to a vanishing growth rate of the nonlinearly unstable mode (w; = 0 s7!). It is then necessary to find the
additional condition which distinguishes situations where a single mode takes over from that where the
two modes are sustained. This is accomplished by examining the growth rate trajectories obtained by
plotting this quantity with respect to the amplitude of oscillation.

An example is given in Fig. 13. Two configurations are shown where the trajectory of a linearly un-
stable mode (LUM) crosses that of a nonlinearly unstable mode (NLUM). The first case examined in
Fig. 13(a) corresponds to experiments reported previously [8] in which mode switching was observed
and predicted for different operating conditions. The second case, shown in Fig. 13(b), pertains to the
present investigation for L; = 0.52 m. The amplitude level where the linearly unstable mode (LUM) tra-
jectory crosses the horizontal axis w; = 0 is plotted as a vertical bold line in these two diagrams. Two
arrows denote the tangent lines to the growth rate trajectories at this particular amplitude level desig-
nated as ap. In the case shown in Fig. 13(a) which gives rise to mode switching, the slope of the third
mode (LUM) growth rate is negative while the slope of the second mode (NLUM) growth rate is positive

(dwz/da)a, <0and (dwir/da)q, >0 1)
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Figure 14: Instability frequency evolution as a function of the feeding manifold length L;. (a) and (b)
are respectively linked to experiments carried out with L, = 0.20 m and 0.30 m flame tubes.
Dashed lines correspond to the acoustic eigenmodes calculated in the absence of combus-
tion. (o) symbols represent the peak frequency of the pressure spectrum measured by micro-
phone M, for stable limit cycles. (¢) symbols indicate the main frequency appearing in the
spectrum of GLCs.

In contrast, when the two modes are simultaneously sustained, the growth rate slopes are both negative
as illustrated in Fig. 13(b) :

(dw;z/da)a, <0and (dwir/da)q, <0 2)

The present experiments indicate that when there is a modal overlap involving a linearly unstable mode
(LUM) and a nonlinearly unstable mode (NLUM) and when condition eqn (2) is satisfied the oscillation
takes place at the two frequencies. On the other hand, when condition eqn (1) is satisfied, mode switch-
ing takes place and the nonlinearly unstable mode prevails.

By applying the previous criterion it is possible to delineate the region of feeding manifold lengths L,
where one expects oscillations at two modal frequencies [13]. Conditions on the two types of trajectories
and the slopes of growth rates are satisfied for 0.50 < L; < 0.61 m and one expects to find a double mode
oscillation. The boundaries of this range nearly match those found in the experiment which is located
between 0.52 m and 0.64 m. The small differences may be attributed to difficulties in determining the
FDF precisely for large fluctuation amplitudes.

In summary, it is more difficult to capture the correct oscillation frequency and amplitude through
the FDF framework in regions of double mode oscillations (see Fig. 7). Nevertheless, this framework
allows to determine whether mode switching or double mode oscillations prevail. It appears that double
mode oscillations can be expected when a linearly and a nonlinearly unstable modes overlap and when
in addition condition (2) on the rates of change of the growth rates is satisfied.

5.3 Galloping limit cycles

A third class of limit cycle is observed with long flame tubes L, = 0.20 m, 0.30 m and 0.40 m. In this
group, the amplitude is more perturbed than the ones examined previously. The system features oscil-
lations characterized by multiple frequencies, amplitude modulation and irregular bursts which can be
designated by “galloping” limit cycles or GLC. These limit cycles have been studied in [14] and the main
results are presented in what follows.

Self-sustained combustion oscillation regimes are examined once more when the feeding manifold
length is varied. Results are presented in Fig. 14 for L, = 0.20 m and 0.30 m. Combustion is initiated for
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Figure 15: Pressure signal recoded by microphone M, (top) for L, = 0.20 m and L; = 0.21 m. The corre-
sponding spectrum is displayed below on the left and the phase plane is shown on the right.
The acoustic eigenmodes calculated without unsteady flame, but with 300 K in the feeding
manifold and 1100 K in the flame tube are drawn below the pressure spectrum.

Ly =0.11 m and the feeding manifold length L, is increased by steps of 1 cm until L; = 0.55 m.

Stable limit cycles are indicated in Fig. 14 as open circle symbols (o). One can see that the frequency
lies close to the first acoustic mode of the combustor when L; is located between 0.11 m and 0.14 m.
This appears for both flame tubes L, = 0.20 and 0.30 m. For sizes greater than L; = 0.14 m, the oscillation
frequency is shifted with respect to the acoustic eigenmode. It is interesting to note that this frequency
shift may reach 100 Hz. It clearly shows that linear stability analyses only yield a rough estimate of the
frequencies which may develop in the system. One can see in Fig. 14(a) that the oscillation frequency is
shifted, but the limit cycle remains stable until L; = 0.20 m for the L, = 0.20 m flame tube. In Fig. 14(b), L;
= 0.22 m represents the last stable limit cycle when L, = 0.30 m. By doing the experiments, the auditive
signature and the time trace indicate less organized motions of the oscillation. Thus one would qualify
these oscillations as chaotic. Nevertheless, it is important to take a deeper look at the signals to confirm
this point.

Phase space reconstruction and spectral analysis give insight on the periodicity and chaotic behavior
of the system dynamics. As explained in [29] the “grassy appearance” of a pressure spectrum and the
non periodic character of the autocorrelation function reveal the chaotic nature of the oscillation. The
phase space reconstruction enables to follow trajectories and reveals possible periodic patterns or a
less organized chaotic motion. It might be worth using system dynamics theoretical tools to define the
attractor type and the route to chaos by calculating Lyapunov exponents or fractal dimension [15] but
this will not be pursued here because the aim is to interpret the dynamical behavior of GLCs in terms of
FDF calculations.

Figure 15 presents the time trace recorded for L; = 0.21 m and L, = 0.20 m. This unstable operating
condition observed at the beginning of the GLCs band is characterized by a pressure oscillation between
0 and 100 Pa. The instability starts and stops randomly. By analyzing the pressure spectrum, one ob-
serves a wide peak base stretching over approximately 200 Hz. To characterize this limit cycle one uses
the time series analysis presented in the previous section. The false nearest neighbors method reveals
an embedding dimension of d, = 4. The optimal time delay 7 takes six periods of the sampling frequency
7 = 6/ fs. In such a case it is standard to examine a three-dimensional phase space. It should be noted
that the embedding dimension, determined for the other GLCs appearing between L; = 0.22 m and 0.25
m, is also d, = 4. One can see in Fig. 15 that the phase space reconstruction fills a region of the em-
bedding space without any regular structure. The oscillation travels randomly in a three-dimensional
volume indicating that its behavior is chaotic in nature. The same type of result was found for the whole
range of lengths L; where GLCs prevail.

It is now interesting to examine these results within the FDF framework to understand the observed

14



Frédéric Boudy, Thierry Schuller, Daniel Durox and Sébastien Candel

wi, mode 1 (s71) ¢ -
0 1250 2500
2 2

(a) (b)

1.6f

1.2

0.8

0.4

0.1 02 03 ol 02 03
Feeding Manifold Ly (m)  Feeding Manifold L, (m)

Figure 16: Growth rate evolution for the two flame tubes (a) L, =0.20 m and (b) L, = 0.30 m. Experiments
are depicted by means of symbols. Open circle symbols (c) indicate stable limit cycles. Filled
circle symbols (e) represent the peak amplitude of galloping limit cycles.

limit cycles and attempt predictions. Results are presented for the first acoustic eigenmode correspond-
ing to the oscillations characterized experimentally. Calculations indicate that in this range of manifold
length L,, positive growth rates exist only for the first mode and this is true for both flame tube lengths
Ly. Results for the growth rate w; are first examined in Fig. 16. This figure shows positive growth rate
values in the range of lengths L, investigated for the two flame tubes L, = 0.20 m and 0.30 m explored. It
is assumed here that the limit cycle is reached when the growth rate vanishes w; = 0. Figure 16(a) repre-
sents calculations for the L, = 0.20 m flame tube and Fig. 16(b) shows results for the second flame tube
L, = 0.30 m. Measurements are depicted with the convention used in Fig. 14. Open circle symbols (o) in-
dicate the oscillation amplitude of stable limit cycles. For the GLCs, the main frequency of the pressure
spectrum is considered. By passing the modulated signal in a Butterworth bandpass filter one extracts
the amplitude which is represented by dark circle symbols (e).

The limit cycles with stable amplitude are well predicted by calculation, but the amplitude for the
GLGCs is overestimated. This result is expected as the system is typified by oscillations of unstable am-
plitudes which may not reach the predicted level. The dark circle symbols indicate that the amplitude
is mainly located around the low values. It is also possible to compare the predicted frequencies. The
results are not presented here for conciseness, but they are in very good agreement with the experi-
ments. Differences arise only in the GLC range as the amplitude calculated for w; = 0 is not attained in
the experiments.

It is now interesting to analyze results found with the FDF model to assess the origins of the GLCs.
The continuation methodology employed to solve the nonlinear dispersion relation is used to track
the roots of this equation as a function of amplitude u;,s/ U} and for each length of feeding manifold
L,. This reveals some distinct features of the roots giving rise to GLC type oscillations around the first
mode. For unstable operating conditions characterized by positive growth rates w; > 0, the solution
of the dispersion relation normally features one or sometimes two modes with positive growth rates
for each feeding manifold length L; and small disturbance amplitude levels u; s/ Uj. By solving the
dispersion relation for increasing amplitudes, the solutions generally feature an imaginary component
w; dropping to zero and defining the limit cycle. There are however cases where multiple solutions arise
with nearly equal angular frequencies w,. It is then more difficult to track the roots in the complex plane
as a function of amplitude. Multiple solutions may feature positive and negative ranges of growth rates
;. These multiple solutions are now examined and it is shown that they are present when one observes
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Figure 17: Growth rate and frequency evolutions for the two solutions of the first mode calculated at L; =
0.23mand L, =0.20 m. (a) represents the growth rates w;. (b) corresponds to the frequencies.
Dashed lines are linked to the negative growth rate solution while the bold line corresponds
to the positive one.

a chaotic limit cycle.

The evolution of the instability frequency and growth rate are here examined as a function of ampli-
tude. Multiple solutions with positive and negative growth rates can be ignored when their oscillation
frequencies differ. When the oscillation frequency w, of two solutions coincide or nearly coincide, one
has to consider that the oscillation can grow (w; > 0) or decay (w; < 0). Calculations reveal two different
evolution types. The first is characterized by roots featuring a negative and a positive growth rate evolv-
ing at nearly the same frequency for all perturbation amplitudes. In the second type, the roots feature a
positive and a negative growth rate with coinciding frequencies in a finite range of amplitudes. The first
type of solutions is depicted in Fig. 17.

The overlap of the oscillation frequency in the amplitude interval for the two solutions correspond-
ing to mode one is presented in Fig. 17 for a case where L, = 0.20 m and L; = 0.23 m. Analysis of the
growth rates plotted in Fig. 17(a) shows that even if the negative contribution is of the same order as the
positive one at low amplitude, it becomes more important when the perturbation level increases. This
indicates a higher damping rate than a growth rate along the trajectory for u;,,s/Up > 1. The frequency
evolution plotted in Fig. 17(b) shows that the overlap is quasi-perfect for oscillation amplitudes lower
than u; s/ Up = 0.35. The largest difference between the two frequency trajectories reaches 87 Hz. This
type of multiple solutions with frequency match occurs for operating conditions between L; = 0.22 m
to 0.27 m which includes the stable band. In addition, it is also instructive to note that the dual solu-
tion band includes the chaotic limit cycles spanning between L; = 0.21 m and 0.25 m. Considering the
overlap in oscillation frequency for the whole amplitude range, one expects that velocity disturbances
will grow from u; s/ Up, = 0 to the limit cycle. However perturbations do not reach a constant amplitude
limit cycle, because there is another modal solution at the same frequency characterized by a negative
growth rate. A possible scenario is that of an energy transfer taking place between these modes, the
growth rate becoming negative and the amplitude of the limit cycle dropping down.

For the second flame tube L, = 0.30 m, the predicted dual solution frequencies only overlap over
a certain range of amplitudes. One first notes that the calculated overlap of frequency trajectories with
dual solutions occurs between L; =0.17 m and 0.31 m, while chaotic oscillations are found between L; =
0.23 mand 0.32 m. The scenario is that the oscillation amplitude of the unstable mode remains bounded
in a finite interval with a lower bound defined by the perturbation amplitude where the two modal
frequencies match. This scenario can be further analyzed by comparing the minimum and maximum
oscillation levels reached in the experiments and calculations for all the GLCs observed with the two
flame tubes.

This is synthesized in Fig. 18 where growth rates are plotted for the two flame tubes as in Fig. 16. One
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Figure 18: Growth rate evolution for the two flame tubes (a) L, = 0.20 m and (b) L, = 0.30 m. The bound-
ary amplitudes of the experimental galloping limit cycles are represented by symbols while
the boundary amplitudes where frequency trajectories overlap in calculations are shown as
bold and dashed lines. Open circle symbols (o) indicate the minimum amplitude reached in
the experiments. Filled circle symbols (e) show the maximum amplitude attained. The over-
lap of the frequency trajectories, found in calculations, occurs for all or a part of the ampli-
tude range. The predicted minimum amplitude is shown by a dashed line (- -) while the bold
line (-) shows the limit cycle amplitude expected at w; =0s~".

should note that only GLCs are considered in Fig. 18. Experiments are depicted by means of symbols.
Black circle symbols () pertain to the maximum amplitude reached. The minimum amplitudes appear
as open circle symbols (o). These amplitudes were determined by calculating the rms values of each
velocity time trace at the minimum and maximum reached during the modulation. Calculated values
from the model are plotted as bold and dashed lines. The minimum amplitude where frequency trajec-
tories overlap pertain to the dark dashed lines. The expected limit cycle where w; = 0 is shown by the
dark bold line. By examining the amplitudes reached, one can see that predictions and experimental
data roughly match. For the L, = 0.20 m flame tube, the frequency trajectories nearly overlap for all os-
cillation amplitudes and one expects that u,,,s/ U} will drop to about 0 because the negative damping
rate is always higher than the positive growth rate. This phenomenon is well retrieved experimentally
where the minimum oscillation amplitude vanishes. The same phenomenon highlighted for L, = 0.20
m is observed for L, = 0.30 m except that the minimum oscillation level now differs from 0. This mini-
mum is well retrieved by considering the parameter values where the frequency trajectories, associated
to negative and positive growth rates, overlap in a certain range of amplitudes.

The scenarios described previously may not give the full picture because at very high perturbation
levels, which prevail in these experiments, the flame evolves significantly giving rise to rapid departures
in its response. This might not be well accounted for in the FDF framework. It should be kept in mind
that the FDF description assumes that the flame is perturbed around a mean state defined by the steady
flow and that this may not quite reflect what is observed experimentally.

6 Conclusion
Thermoacoustic coupling was investigated in a generic combustion system featuring a feeding mani-

fold, a multipoint injector and different flame tube lengths to confine the combustion region. A detailed
model has been used by taking into account an improved description of the burner acoustic response
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to flow perturbations. On the other hand, the nonlinear combustion dynamics is considered with the
Flame Describing Function. First of all, results confirm that the FDF framework allows to predict self-
sustained combustion oscillations in various confined configurations, a result which confirm those ob-
tained in some recent investigations but for a simpler system (with no flame tube). The present burner
configuration allows to broaden the range of investigation by disclosing new types of limit cycle. Two
classes of limit cycle were identified. The first features a nearly stable oscillation amplitude, whereas the
second shows amplitude and frequency unsteadiness. The first category is well described by the FDF
methodology, while the second class needs a thorough examination of both experiments and calcula-
tions. It should be noted that this second category includes various oscillation states, even if the auditive
signature may be the same. Examination of the time traces with different tools of signal processing such
as classical spectral analysis, wavelet and nonlinear time series analysis were applied to highlight the
involved phenomena. The FDF framework was also used to examine these limit cycles and try predic-
tions or at least, understand the emergence of such states. It was possible to delineate the following
aspects : (1) A first type of unsteady limit cycle characterized by regular amplitude and frequency mod-
ulations was identified. It was found that these oscillations of the limit cycle are linked to an interaction
with the boundary condition. It was shown that these states are embedded in a region where the inlet
reflection coefficient features a singularity. By examining FDF calculations, it was possible to propose a
scenario to interpret such cases. (2) Another type of unsteadiness with periodic modulations was found
when two modes are simultaneously unstable. The limit cycle is regularly distorted due to frequency
heterodyning. This originates from the combination of the two modes input to the nonlinear oscillator
formed by the flame. It was shown that such a process can be anticipated by examining growth rate
evolution of the two modes with FDF calculations. A double mode oscillation is shown to occur when
two conditions are fulfilled. (3) The last type of unsteady limit cycles is typified by irregular variations
of the oscillation amplitude corresponding to irregular occurrence of starts and stops in the oscillation.
These “galloping” or chaotic limit cycles (GLCs) occur in the present experiments when the system res-
onates in the vicinity of its first mode for small sizes of the feeding manifold cavity L;. On the modeling
level, the interpretation of the GLCs is less easy but it was found that their range of occurrence cor-
responds to parameter values for which the nonlinear dispersion relation of the system features roots
which are closely matched in angular frequencies but have positive and negative growth rates. By de-
termining the parameter values for which such unstable and stable modes simultaneously exist with
nearly similar eigenfrequencies, it was possible to define ranges where one expects to find GLCs. This
was used to explain the galloping features observed. It was shown that the calculated ranges of geome-
try L nearly correspond to those identified experimentally. It was also shown that the FDF can be used
to obtain some estimates of the maximum and minimum levels in the signal envelope. In general, the
FDF framework can be used to analyze constant and time-varying amplitude limit cycles. For constant
amplitude limit cycles, FDF calculation provides quantitative estimate of the oscillation frequency and
amplitude. For the unstable oscillation levels, limit cycle is never attained, but the right unstable mode
is predicted and the amplitudes and frequencies, found with the growth rate and frequency trajectories,
lie close to the observations. Even though amplitude and frequency variations as a function of time are
not reproduced, the FDF framework helps to interpret the results, enables to derive selection criteria or
provides bounds of the oscillation amplitude. This framework uniquely provides informations on the
many nonlinear dynamical phenomena observed in a generic combustion system at a relatively low ex-
perimental and computational effort, provided that the FDF is well measured and that the combustor
acoustic response is well reproduced by the model.
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