
n3l - Int’l Summer School and Workshop on Non-Normal and Nonlinear
Effects in Aero- and Thermoacoustics, May 17-21, 2010, Munich

ASSESSING NON-NORMAL EFFECTS IN

THERMOACOUSTIC SYSTEMS WITH NON ZERO

BASELINE FLOW

K. Wieczorek1, C. Sensiau2, W. Polifke3, F. Nicoud∗4

1 CFD-Team, CERFACS, 42 Ave Coriolis, 31057 Toulouse, France
2 SNECMA Villaroche, France

3 Lehrstuhl für Thermodynamik, TU Munich, 85747 Garching, Germany
4 I3M, University Montpellier 2, CC51, 34057 Montpellier Cedex 5, France

∗ Corresponding author: franck.nicoud@univ-montp2.fr

In this paper, the theory of non-normal interaction is applied to eigenmodes of a ther-
moacoustic system that include mean flow effects. When the mean flow is taken into ac-
count, the energy associated to the eigenmodes contains not only contributions of the
acoustic field, but also those of convected entropy and vorticity modes. The notion of max-
imum transient energy growth is therefore extended from an energy expression based on
the classical acoustic energy to a form based on the generalized disturbance energy.
The approach is applied to a 1D configuration that consists in a duct including a 1D flame
followed by a choked isentropic nozzle. It is shown that for such a case it is essential to
include the contribution of entropy perturbations in the calculation of the optimal initial
perturbation and the maximum transient energy growth.

1 Introduction

Over the last decades, thermoacoustic instabilities have been the subject of intense research activity
with the aim to better understand and eventually predict/avoid them at the design level. Except when
the equations are solved in the time domain (e.g. when Large Eddy Simulation is used), the analysis
most often relies on a modal approach, where the first eigenmodes/eigenfrequencies of the thermoa-
coustic system are sought for. Since these modes are not orthogonal in general because of boundary
conditions and/or flame coupling [17], the associated frequencies only provide information about the
long term evolution of the system, which is linearly stable if and only if all its modes are damped. How-
ever, if non-normality is present, linear modes may interact and transient energy growth can be ob-
served even for stable systems. This effect was demonstrated theoretically by Balasubramanian & Su-
jith [2] who translated ideas initially developed for classical fluid mechanics [13, 22, 26].
The maximum energy growth that can appear depends only on the thermoacoustic system of interest.
Calling U the state vector (typically the components of U are the fields of acoustic density, pressure and
velocity), the relevant equations for describing the time evolution of the perturbations read formally:

∂U

∂t
+A (U ) = 0, (1)

where A is a differential operator which is linear when linear thermoacoustics is considered. Eq. (1) is
nothing but a set of partial differential equations which can be reduced to a set of ordinary differential
equations when an appropriate discretization method is used. The thermoacoustic system of interest is
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then represented by a first order dynamical system which reads:

du

d t
+Au = 0, (2)

where u is the discretized counterpart of U . If Eq. (2) is obtained from Eq. (1) using a Galerkin tech-
nique, i.e. by expanding the fluctuating quantities as series of orthogonal basis functions [5], the vector
u contains the weights of those basis functions. On the other hand, if a finite difference/finite volume
technique is used, u contains the nodal values of the state vector U . Of course, the square matrix A de-
pends on the discretization technique, both in its size and structure. Typically, a Galerkin method pro-
duces a dense matrix of small size, as the expansion requires usually only few basis functions (e.g.: [16]).
In difference to that, a finite volume approach produces a large but sparse matrix (e.g.: [19]).
In any case, some of the characteristics of the thermoacoustic system can be studied by analyzing the
matrix A instead of the differential operator A . Notably, the maximum transient energy growth at time
t , G(t ), is related to the largest singular value of the exponential matrix exp(−At ) [22]. This property
was used in several recent studies in order to quantify the non-normal effects in simple thermoacoustic
systems such as the Rijke tube [2] or a laminar diffusion flame [1]. This allowed assessing the maximum
transient growth Gmax = max[G(t )], the maximum value being taken over all the possible values of t .
Unfortunately, we believe that this approach based on a Singular Value Decomposition (SVD) of the
matrix A is not very suitable for complex systems for two main reasons:

1. time delay: In practical cases, the flame response to upstream acoustic perturbations is time
lagged, the time delay τ being potentially related to several fluid mechanics and/or chemical pro-
cesses relevant to the flame unsteadiness. In thermo-acoustic simulations based on linearized
equations this time lag behaviour has to be included explicitely in the system of equations via the
flame model. As a consequence, the system cannot be described by Eq. (1), but an expression of
the form

∂U

∂t
+A (U (t ))+B (U (t −τ)) = 0, (3)

must be used instead. Unfortunately, generalizing the SVD approach described above to Eq. (3) is
not straightforward and may involve additional simplifications like assuming the time delay τ to
be small compared to the first mode’s period [16].

2. boundary conditions: if the Galerkin method is used to degrade Eq. (1) into Eq. (2), the knowl-
edge of an orthogonal set of basis functions which meet the actual boundary conditions of the
thermoacoustic problem is required. Because they convey useful information about the config-
uration, the acoustic eigenmodes are good candidates (e.g.: [5]) for this purpose. Unfortunately,
they are not orthogonal as soon as the boundary conditions correspond to a finite, complex val-
ued impedance [17], a situation which is not rare. If a finite difference/finite volume type of ap-
proach is used instead for degrading Eq. (1), the size of the discretized problem, Eq. (2), is large
(typical finite volume grids contain 105 −106 elements) so that performing a SVD in order to as-
sess G(t ) may be CPU demanding. Thus, maximizing G(t ) over all the values of time t to obtain
Gmax might not be affordable in practice.

Recently, Selimefendigil et al. [23] proposed a method to handle delayed systems and overcome the first
issue mentioned. In their view, Eq. (3) is recast into an equivalent non-delayed problem for which the
pseudospectra can be computed. The concept of pseudospectra (first mentioned by Landau [11]) was
introduced by Trefethen [25] in order to quantify the sensitivity of eigenvalues to uncertainties/ per-
turbations in the data or discretization. The property exploited by Selimefendigil et al. [23] is that the
geometry of pseudospectra can be used to obtain a lower bound of Gmax (Kreiss theorem). Still, comput-
ing pseudospectra becomes very CPU demanding when the size of the problem increases so that this
approach does not address the second issue mentioned. Besides, as far as the authors know, analyzing
the pseudospectra can only give information about the maximum transient growth and not about the
shape of the optimal perturbation.
The first objective of this paper is to assess a strategy which is potentially suitable for assessing non-
normal effects in 3D complex configurations and not CPU demanding. It relies heavily on the knowl-

2



K. Wieczorek, C. Sensiau, W. Polifke, F. Nicoud

edge of the first few thermoacoustic eigenmodes of the system of interest. Indeed, even if non-normality
is present and eigenmodes only provide information about the long term evolution, they convey rele-
vant information about the system. For example, their individual stability dictates the overall stability
of the system if non-linear effects are not considered. Numerical strategies have been proposed in the
past in order to compute such modes by solving an Helmholtz type of equation with a forcing term
representing the flame [9, 17, 24]. The view considered in this paper was initially proposed by Schmid &
Henningson [22] for investigating classical fluid mechanics configurations. It consists in looking for the
optimal perturbation (the one which generates the largest transient growth) in the linear space spanned
by the thermoacoustics modes. In other words, assessing the non-normality effect appears as a post-
processing of the results of the classical modal characterization of the configuration. As we will demon-
strate, this is virtually done at no additional cost. Of course, since only a finite number of eigenmodes
are considered, all the possible perturbations cannot be generated by combining these modes and only
a lower bound of Gmax can be obtained. However, since the eigenmodes convey a lot of information
regarding the system of interest, it is expected that keeping only a few of them is sufficient to obtain a
reasonable assessment of the maximum transient growth. The same idea justifies the Galerkin methods
where often only a few (of order 10 say) basis functions are necessary to reach good accuracy. How-
ever, contrary to the Galerkin method, the orthogonality of the modes is not required in the present
approach so that the method is also suitable for complex 3D configurations with finite valued bound-
ary impedance.

All the previous studies dealing with non-normal effects in thermoacoustic systems relied on the zero
mean flow assumption although the effect of the approximation M ' 0 is not well understood [6] and
the neglected convective terms may introduce additional non-normality [7]. In the case of a premixed
1D flame, only a moderate non-normal effect was found in the literature [2], the maximum transient
energy growth (Gmax) being close to 7. The second objective of this paper is then to investigate if larger
values of Gmax can be observed when the baseline flow is not assumed at rest. In this case, the evolution
of the perturbations are described by the Linearized Euler Equations instead of a simple Helmholtz
equation for the acoustic pressure. Also, the state vector contains one more component (the density or
entropy say) on top of the acoustic pressure and velocity fields. Thus this situation is quite different from
what has been considered so far in the literature and the presented analysis also serves as an illustration
of the flexibility of the method and its ability to handle complex situations.

The formalism of the method is detailed in sections 2.2 and 2.3 in the case of a generic 3D thermoa-
coustic system written under the zero Mach number assumption and described in section 2.1. In this
case, the state vector contains only the acoustic pressure and velocity fields and non-trivial boundary
conditions (finite, complex valued impedance) can be considered. The formalism is then extended in
section 2.4 to the case where the perturbations are obtained from the LEE and the state vector contains
one more component. The method is then illustrated by analyzing the simple case of a 1D flame sta-
bilized within a straight duct. Note however that this situation is more complex than several previous
studies since a) a time delayed n-τ type of model is used for describing the acoustic-flame coupling
and b) complex boundary conditions are applied at the boundaries of the duct. The corresponding re-
sults are discussed in section 3 where the maximum transient growth related to two types of energies is
considered, i.e. the classical acoustic energy and the energy of the fluctuations.

2 Formalism

2.1 The thermoacoustic model

The phenomenon of thermoacoustic instability results from a coupling between combustion processes
and the acoustic eigenmodes of the configuration (among many others: [12]). Assuming vanishing
Mach number for the mean flow, this coupling can be modeled in the linear regime by the following
wave equation :

1

γ(x)p0

∂2p ′(x, t )

∂t 2 +∇· 1

ρ0(x)
~∇p ′(x, t ) = γ(x)−1

γ(x)p0

∂q ′(x, t )

∂t
, (4)
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where p ′(x, t ) stands for the acoustic pressure at position x and time t ; γ(x) and ρ0(x) are the time aver-
aged isentropic coefficient and density of the fluid; p0 is the homogeneous background pressure.
Eq. (4) states that heat release fluctuations q ′(x, t ) may influence the acoustics in the domain. It is com-
mon practice to model the feedback effect, viz. the influence of acoustic fluctuations on combustion,
via an n −τ type of model [3, 4, 21]. This model assumes that the heat release fluctuations are propor-
tional to the time-lagged velocity fluctuations at a reference point located upstream of the flame:

q ′(~x, t ) = qtot

ubulk
Hq (x) u′(xr e f , t −τ) ·nr e f , (5)

where Hq (x) is the amplitude of the flame response and can be related to the parameter n of n − τ-
models [19], τ(x) is the time delay and nr e f is a unit vector. Assuming time-harmonic perturbations of
pulsation ω, one may write p ′(x, t ) = ℜ(

p̂(x)e−iωt
)

and q ′(~x, t ) = ℜ(
q̂(x)e−iωt

)
. The acoustic field can

then be expressed in terms of eigenmodes that are solution of a Helmholtz equation written for the
complex amplitude of pressure p̂:

γ(x)p0∇·
(

1

ρ0(x)
~∇p̂(x)

)
+ω2p̂(x) = qtot

iωρr e f ubulk
Hq (x) e iωτ(x) ~∇p̂(xr e f ) ·nr e f (6)

As the problem has been written in frequency domain, the reflection of low frequency waves at the
boundaries can be handled easily with a complex valued impedance at the boundary, noted Z . The
appropriate boundary condition to impose to p̂ takes the following form:

~∇p̂(x) ·nBC − i
ω

c0(x)Z (ω)
p̂(x) = 0, (7)

where nBC is a unit vector normal to the boundary and c0(x) is the speed of sound. Solving the eigen-
problem given by Eq. (6) and Eq. (7) allows to determine the thermoacoustic pressure eigenmodes p̂(x),
and their corresponding eigenfrequencies ω. The velocity eigenmodes û(x) can then be deduced using
the linearised Euler equation written in the frequency domain for time harmonic fluctuations:

iωρ0 û(x) =~∇p̂(x). (8)

2.2 Non-orthogonality of the eigenfunction

Non-normality arises from the fact that the thermoacoustic eigenmodes are not orthogonal. Thus, it is
important to specify how orthogonality is defined or, equivalently, what is the appropriate inner prod-
uct. The formalism used throughout this paper is therefore stated in the following.
An acoustic perturbation is defined as a vector composed of pressure and velocity fluctuations p ′ and
u′ that are assumed to be harmonic in time. This allows to write:

v ′(x, t ) =
[

p ′(x, t )
u′(x, t )

]
=

[ ℜ(p̂(x)e−iωt )
ℜ(û(x)e−iωt )

]
=ℜ(v̂(x)e−iωt ) (9)

where the vector v̂(x) contains the complex amplitudes of pressure and velocity fluctuations, this latter
being composed of three components û(x) = (ûx (x), ûy (x), ûz (x)) and ω = ωr + iωi is a complex fre-
quency.
The following considerations are set in the complex space, i.e. the return to a real valued vector is
dropped. The solutions of the thermoacoustic system are considered in the form of complex valued
vectors

v(x, t ) = v̂(x)e−iωt = v̂(x)e−iωr t eωi t with v̂(x) =
[

p̂(x)
û(x)

]
=


p̂(x)

ûx (x)
ûy (x)
ûz (x)

 (10)

a complex eigenvector.
Considering v1(x, t ) and v2(x, t ) two complex vectors that are solution of Eqs. (6), (7) and (8), a weighted
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inner product can be defined as follows:〈
v1(x, t )

∣∣∣v2(x, t )
〉

W
=

∫
V

(
v1(x, t )H W v2(x, t )

)
dV (11)

with v1(x, t )H = v̂(x)H e iωr t eωi t the conjugate transpose of v1(x, t ), V the volume of the domain that is
considered and W a weight matrix.
If W is the identity matrix I , the inner product defined in Eq. (11) applied to an eigenvector v̂(x) yields
simply its L2-norm: 〈

v̂(x)
∣∣∣v̂(x)

〉
I
=

∫
V

v̂ H (x)I v̂(x)dV = ||v̂(x)||22
By defining the matrix W in an appropriate way, the product of Eq. (11) can be linked to an equivalent
of the acoustic energy associated to the mode v(x) = v̂(x)e−iωt . For an eigenvector v̂(x) as defined in
Eq. (10), a weight matrix

Wac =



1
2γp0(x)

u0x

2c2
0

u0y

2c2
0

u0z

2c2
0

u0x

2c2
0

ρ0(x)
2 0 0

u0y

2c2
0

0 ρ0(x)
2 0

u0z

2c2
0

0 0 ρ0(x)
2

 (12)

allows to define an equivalent acoustic energy of the form:

Eac (t ) =
〈

v(x, t )
∣∣∣v(x, t )

〉
Wac

=
∫

V

(
v̂(x)H e iωr t eωi t Wac v̂(x)e−iωr t eωi t

)
dV

= e2ωi t
∫

V

(
1

2γp0(x)
|p̂(x)|2 + ρ0(x)

2
|û(x)|2 + |p̂(x)|

c0(x)2 |u0(x) · û(x)|
)

dV

(13)

The term Eac (t ) is a real valued energy that is defined based on complex quantities. It shares the same
coefficients as the classical acoustic energy. Still, it differs from the latter in the sense that the classical
acoustic energy is based on the real parts of the complex signals and will hence be noted Eac,ℜ(t ) in the
following:

Eac,ℜ(t ) =
∫

V

(
1

2γp0(x)
p ′(x, t )2 + ρ0(x)

2
u′(x, t )2 + p ′(x, t )

c0(x, t )2 u0(x) ·u′(x, t )

)
dV (14)

Please note that the energy terms of Eq. (13) and (14) do not follow the same temporal evolution. The
term of Eq. (13) is defined in a way as to describe the energy of a linear combination of several modes,
which inhibits time averaging over one period of oscillation. Complete equivalence between the terms
of Eq. (13) and (14) may be established by time averaging. However, in the present case the short term
transient behaviour is to be evaluated. Therefore, it does not make sense to introduce a time average.

The orthogonality of the eigenmodes can now be discussed using the inner product introduced in
Eq. (11) together with the weight matrix of Eq. (12). The projection of v̂1(x) onto v̂2(x) can be expressed
analytically and leads (after some algebra) to the following equation:

〈
v̂1

∣∣∣v̂2

〉
Wac

= 1

2

1

ω1 −ω∗
2

[∫
S

1

ρ0

(
p̂1

~∇p̂∗
2

ω∗
2

− p̂∗
2

~∇p̂1

ω1

)
dS + i

∫
V

γ−1

γp0

(
p̂1q̂∗

2 + p̂∗
2 q̂

)
dV

]
, (15)

where S and V denote the surface and the volume of the domain and ∗ stands for complex conjugates.
(The dependency of the complex variables on x is omitted for clarity, and the mean flow speed is ne-
glected.)
The expression of Eq. (15) is an extension of the result by Nicoud et al. [17], who were considering only
pressure fluctuations in their analysis of the eigenmodes’ orthogonality, instead of the complete mode
structure composed of pressure and velocity terms. Eq. (15) shows that two eigenmodes v̂1 and v̂2 are
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orthogonal when a) boundary impedances are trivial , i.e. they correspond to pressure or velocity nodes
with p̂ = 0 or ~∇p̂ = 0 respectively; and b) no heat release fluctuations occur (q̂ = 0). However the con-
ditions for orthogonality will most probably never be met in an actual experimental setup, so that non-
normality should be considered as the rule for practical thermoacoustic systems.
As a consequence, even if all the eigenmodes are found stable (ωi < 0) there is a possibility for the equiv-
alent acoustic energy of Eq. (13) to exhibit a transient growth before it eventually vanishes as predicted
by the linear modal analysis. The amplitude of the acoustic fluctuations may become significant during
this transient phase and the linear assumption is possibly not valid anymore. In particular, it has been
shown [20] that gain and phase of the flame transfer function may depend significantly on the ampli-
tude of the velocity fluctuations. This is the reason why non-normality is sometimes related to complex
effects such as non-linear triggering [2].
The focus of the present study is however limited to the assessment of non-normality effects in complex
configurations and non-linearity is not considered.

2.3 The maximum possible amplification

For complex time-dependant signals of pressure and velocity q(x, t ), a maximum possible amplification
Gac (t ) can be defined as

Gac (t ) = max
Eac (t )

Eac (0)
= max

q(x,0)6=0

〈
q(x, t )

∣∣∣q(x, t )
〉

Wac〈
q(x,0)

∣∣∣q(x,0)
〉

Wac

(16)

This quantity should be thought of as the upper bound of the envelop of the equivalent acoustic energy.
Starting from any perturbation with a unit energy norm, the equivalent acoustic energy term will always
remain smaller than or equal to this coefficient: Eac (t ) < Gac (t ), ∀t . Still, there is no reason why the
optimal perturbation, which maximizes Eac at time t1, should also maximize Eac at time t2 6= t1, thus
the envelop.
Schmidt & Henningson [22] provide a procedure to assess this maximum possible amplification for
complex signals q(x, t ) that can be expressed as a linear combination of m complex eigenmodes:

q(x, t ) =
m∑

j=1
k j v̂ j (x)e−iω j t (17)

This expansion of q(x, t ) as a linear combination of eigenmodes can be rewritten in a compact matrix
notation as

q(x, t ) = V̂ (x)e−iΩt k (18)

where the j th column of the matrix V̂ (x) contains the complex valued eigenvector v̂ j (x), the diagonal
matrix Ω = diag(ω1,ω2, ...,ωm) contains the complex frequencies of the m eigenvectors used for the
expansion and the vector k stores the coefficients k j of the linear combination Eq. (17).
Introducing Eq. (18) into the definition of the equivalent acoustic energy of Eq. (13), one obtains:

E m
ac (t ) =

〈
q(x, t )

∣∣∣q(x, t )
〉

Wac

=
∫

V
q(x, t )H Wac q(x, t )dV

=
∫

V

(
e−iΩt k

)H V̂ (x)H Wac V̂ (x)e−iΩt kdV

= (
e−iΩt k

)H Mac
(
e−iΩt k

)
(19)

where the matrix M contains the inner products of the m selected eigenvectors:

Mac =
∫

V

(
V̂ (x)H Wac V̂ (x)

)
dV =

〈
V̂ (x)

∣∣∣V̂ (x)
〉

Wac
(20)
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The element kl of this matrix reads:

M kl
ac =

∫
V

(
v̂k (x)H Wac v̂l (x)

)
dV (21)

Since
〈
·
∣∣∣ ·〉

Wac
is an inner product, Mac is a positive Hermitian matrix so that its Cholesky decomposi-

tion exists and yields the square matrix Fac of size m such that F H
ac Fac = Mac . Introducing the decom-

position of Mac into the acoustic energy term of Eq. (19) one obtains:

E m
ac (t ) = (

Fac e−iΩt k
)H (

Fac e−iΩt k
)

(22)

This equation shows that Eac (t ) is nothing but the L2-norm of the vector Fac e−iΩt k. Note that in differ-
ence to the energy term defined for one single mode (Eq. (13)), the equivalent acoustic energy term for
a superposition of several modes is function not only of ωi , but also of ωr (via the matrixΩ).
Finally, noting that the Cholesky factor Fac is not singular, the maximum possible amplification at time
t takes the following form:

Gm
ac (t ) = max

E m
ac (t )

E m
ac (0)

= max
‖Fac e−iΩt k‖2

2

‖Fac k‖2
2

= max
Fac k

‖Fac e−iΩt F−1
ac Fac k‖2

2

‖Fac k‖2
2

(23)

By definition, this quantity is the L2-norm of the operator Fac e−iΩt F−1
ac . In other words, the maximum

amplification at time t is given by the largest singular value of Fac e−iΩt F−1
ac . The optimal initial pertur-

bation is given by the corresponding right singular vector of Fac e−iΩt F−1
ac .

On the LHS of Eq. (23), the superscript m indicates that this expression gives the maximum energy
amplification at time t for all the perturbations which can be obtained by combining the m selected
eigenvectors (this notation is sufficient if one assumes that the m vectors selected correspond to the m
lowest eigenfrequencies). In the same way, the maximum transient growth, which can be obtained by
combining these m eigenvectors, can be obtained by maximizing Gm

ac (t ) over time and shall be noted:

Gm
max,ac = max

t
Gm

ac (t ). (24)

In the case where the eigenmodes are orthogonal and all damped, the matrices Mac and Fac are
both diagonal. Then, Eq. (23) shows that the maximum growth rate equals unity (because Fac e−iΩt F−1

ac
reduces to e−iΩt ) as it is expected when non-normality is not present. As a last comment, we stress the
fact that the singular value decomposition is performed on a matrix of size m (which is the number of
eigenmodes used to generate the signal), making the above approach computationally inexpensive.

2.4 Extension to non isentropic modes

When the LEE equations are solved instead of the Helmholtz equation for pressure only, the thermoa-
coustic modes contain one more component, in the presented case the fluctuating entropy. Any mode
can thus be represented with the following compact notation :

v(x, t ) = v̂(x)e−iωt = v̂(x)e−iωr t eωi t with v̂(x) =
 p̂(x)

û(x)
ŝ(x)

=


p̂(x)

ûx (x)
ûy (x)
ûz (x)
ŝ(x)

 (25)

To describe the energy contained in this kind of modes, the corollary for disturbance energy derived
by Myers [15] and extended by Karimi et al. [10] is appropriate. Thus, instead of the classical acoustic
energy of Eq. (14), the following term should be used to determine the total energy of the disturbances:

Etot ,ℜ =
∫

V

(
1

2γ(x)p0
p ′(x, t )2 + ρ0(x)

2
u′(x, t )2 + ρ0(x)T0(x)

2Cp (x)
s′(x, t )2 +ρ′(x, t )u0(x) ·u′(x, t )

)
dV (26)
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The weight matrix Wtot that relates the inner product of Eq. (11) to a complex based equivalent of the
total disturbance energy of Eq. (26) reads

Wtot =



1
2γp0

u0x

2c2
0

u0y

2c2
0

u0z

2c2
0

0
u0x

2c2
0

ρ0
2 0 0 −ρ0u0x

2Cp
u0y

2c2
0

0 ρ0
2 0 −ρ0u0y

2Cp
u0z

2c2
0

0 0 ρ0
2 −ρ0u0z

2Cp

0 −ρ0u0x
2Cp

−ρ0u0y

2Cp
−ρ0u0z

2Cp

ρ0T0
2Cp


(27)

The resulting energy term reads then

Etot (t ) =
〈

v(x, t )
∣∣∣v(x, t )

〉
Wtot

= e2ωi t
∫

V

(
1

2γp0
|p̂|2 + ρ0

2
|û|2 + ρ0T0

2Cp
|ŝ|2 +

(
p̂

c2
0

− ρ0

Cp
ŝ

)
|u0 · û|

)
dV

(28)

where the dependencies on x were omitted for clarity.
The energy term based on complex quantities (Eq. (28)) is formally equivalent to the one based on real
valued quantities (Eq. (26)), as the last term of the RHS integral can be rewritten using the linearized
state equation

ρ̂ = p̂

c2
0

− ρ0

Cp
ŝ.

It can be shown [8] that the matrix Wtot defined in Eq. (27) is definite positive as long as the local mean
flow Mach number is smaller than a critical value, more precisely if M a =p

u0 ·u0/c0 < 1/γ. Since this
condition is well satisfied for practical combustion systems, the following integral:〈

v̂1(x)
∣∣∣v̂2(x)

〉
Wtot

=
∫

V

(
v̂1(x)H Wtot v̂2(x)

)
dV (29)

defines an inner product. Thus, the analytical development described in section 2.3 remains valid in
the non-isentropic case and the maximum growth at time t can be written as:

Gm
tot (t ) = max

E m
tot (t )

E m
tot (0)

= max
Ftot k

‖Ftot e−iΩt F−1
tot Ftot k‖2

2

‖Ftot k‖2
2

= ‖Ftot e−iΩt F−1
tot‖2

2 (30)

where the Cholesky factorisation of the matrix

Mtot =
∫

V

(
V̂ (x)H Wtot V̂ (x)

)
dV = F H

tot Ftot

has been introduced. This decomposition obviously exists when Wtot is symmetric positive definite,
i.e. when M a < 1/γ [8]. It might also exist even if the latter condition is not met locally, in a chocked
nozzle say, where the local mean Mach number is obviously greater than the critical value. This is due to
the volume integral in the definition of Mtot , which allows some compensation between low and large
Mach number regions. Similarly to the isentropic case of section 2.3, the maximum energy at time t is
given by the largest singular value of Ftot e−iΩt F−1

tot and the corresponding initial perturbation is given
by the right principal singular vector. Besides, the maximum transient growth which can be obtained
by combining m eigenvectors is:

Gm
max,tot = max

t
Gm

tot (t ). (31)

As in the isentropic case of section 2.3, we may remark that :

• Eq. (30) produces Gm
max,tot = 1 when the eigenmodes are orthogonal and damped,

• the requested SVD is still to be made on a matrix of size m, thus not very CPU-demanding

8
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The theoretical results established in sections 2.3 and 2.4 are now used to study an academic configu-
ration where Mach number effects are present.

3 Results

3.1 Configuration

Figure 1: The numerical setup to assess non-normality with non-zero mean flow (from Nicoud and
Wieczorek [19]).

L (m) Lc (m) xthroat (m) x f (m) δ f (m) γ r (S.I)
1.1 1.0 1.0863 0.5 0.15 1.4 287

p in
0 (Pa) T in

0 = Tu (K) Tb (K) M in
0 M out

0 xref (m)
101325 300 1200 0.05 1.5 0.42

Table 1: Main physical parameters used for configuration of Fig. 1.

The numerical setup consists in a constant cross section duct of length Lc with a 1D flame of charac-
teristic thickness δ f located at x = x f and connected to a nozzle of length L −Lc (see Fig. 1). The mean
flow is assumed isentropic except in the flame region and is constructed from analytical expressions
of the temperature profile in the combustion chamber and the Mach number distribution in the isen-
tropic nozzle (see Eqs. (4.3) and (4.1) in [19]). The mean flow is then entirely determined by the choice
of three independent inlet quantities (for example p in

0 , T in
0 , M in

0 ), the outlet Mach number M out
0 and

relevant geometrical parameters δ f , x f , Lc , xthroat and L.
The mean profiles depicted in Fig. 2 correspond to the numerical values gathered in Table 1 and used
throughout the course of this study. Tu and Tb are the temperature of unburnt and burnt gas respec-
tively. Note that in the presented case, the gain of the flame transfer function Hq of Eq. (5) is set to zero,
i.e. unsteady heat release is not considered. However, there is still interaction of the acoustic field with
the heat source, as acoustic perturbations generate entropy waves in the flame zone, which are then
convected downstream and may in turn create acoustic waves in the nozzle.

(a) Mach number (b) Static pressure (Pa) (c) Static temperature (K)

Figure 2: Mean flow fields for the configuration of Fig. 1.

The first eigenmodes of the configuration are computed following the procedure described in [19]
where the Linearized Euler Equations written in the frequency space are discretized on a staggered

9
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mesh. The first three modes are displayed in Fig. 3 where the modulus of the complex amplitudes of
pressure, velocity and entropy are plotted.

(a) Mode 1 at 59.−8.3i Hz (b) Mode 2 at 169.6−9.4i Hz (c) Mode 3 at 231.7−4.3i Hz

Figure 3: The first 3 modes in the configuration of Fig. 1. : |p̂(x)|; : |û(x)|; : |ŝ(x)|.
The fluctuating quantities are scaled by γp0, c0 and 10×Cv respectively.

3.2 Transient Energy Growth & Optimal Initial Perturbation

Based on the first six eigenmodes obtained from solving the Linearized Euler Equations, the optimal
initial perturbation and the transient energy growth that it may cause are then determined. These quan-
tities are calculated using the two approaches introduced in section 2, i.e. the transient energy growth
based on the classical acoustic energy Gm

ac (t ) as noted in Eq. (23), and the transient energy growth based
on the total disturbance energy Gm

tot (t ) as in Eq. (30).
As the configuration allows for the presence of entropy fluctuations, the optimal initial perturbation
may include acoustic and entropy fluctuations in both cases (see Fig. 5). The difference between Gm

ac (t )
and Gm

tot (t ) consists in the fact that the contribution of entropy fluctuations to the energy term are con-
sidered negligible in the former approach, whereas they are taken into account in the latter.

The temporal evolution of the terms G6
ac (t ) and G6

tot (t ) is shown in Fig. 4. In this plot, the time is
scaled by the period of the first eigenmode which has a frequency of f1 = 59.−8.3i Hz (cf. Fig. 3(a)); the
possible transient energy growth is plotted using a log-scale.
It is obvious that the two quantities behave very differently, their maximal values being G6

max,ac ≈ 6000
and G6

max,tot ≈ 6. In both cases, however, the maximum possible amplification is reached at a reduced
time of t ′max ≈ 0.5, i.e. after half a period of the first mode. It should also be noted that the two ap-
proaches lead to similar results at very low Mach numbers, with values of Gm

max,tot ≈Gm
max,ac ≈ 1.

0 1 2 3 4 510!2
10!1
100
101
102
103
104

t′ = t/T1

Figure 4: Temporal evolution of the maximum possible amplification as obtained from the first six
eigenmodes. G6

ac (t ); G6
tot (t ). Time is scaled by the period of the first eigenmode

t ′ = t
T1

with f1 = 59.−8.3i Hz.
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0 0.2 0.4 0.6 0.8 1 1.2
!1.5

!1

!0.5

0

0.5

1

1.5

 x

(a) optimal perturbation for G6
ac(0)

0 0.2 0.4 0.6 0.8 1 1.2
!1.5

!1

!0.5

0

0.5

1

1.5

 x

(b) optimal perturbation for G6
tot(0)

Figure 5: Spatial distribution of the optimal initial perturbation at t = 0: p ′(x, t ); u′(x, t );
s′(x, t ). The fluctuating quantities are scaled by γp0, c0 and Cv respectively.

0 0.2 0.4 0.6 0.8 1 1.2
!0.5

!0.4

!0.3

!0.2

!0.1

0

0.1

0.2

0.3

 x

(a) optimal perturbation for G6
ac(tmax )

0 0.2 0.4 0.6 0.8 1 1.2
!1.5

!1

!0.5

0

0.5

1

1.5

 x

(b) optimal perturbation for G6
tot(tmax )

Figure 6: Spatial distribution of the optimal perturbation at t = tmax . p ′(x, t ); u′(x, t );
s′(x, t ). The fluctuating quantities are scaled by γp0, c0 and Cv respectively.

The optimal initial perturbations that allow to obtain the maximum possible amplifications G6
ac (t ) and

G6
tot (t ) are shown in Fig. 5 for t = 0. Figure 6 shows the same perturbations at the moment of maximum

possible amplification, i.e. at t = tmax .
In the optimal initial perturbation obtained using the total energy approach (see Fig. 5(b)), fluctuations
of entropy, pressure and velocity are equally present. At the time of maximum growth t = tmax, the en-
tropy contribution to the disturbance energy term Etot has increased significantly, although the acous-
tic mode persists (see Fig. 6(b)). The situation is rather different for the optimal perturbation computed
based on the acoustic energy only. At the initial time, the optimal perturbation contains mainly en-
tropy fluctuations, the acoustic contribution being virtually zero (see Fig. 5(a)). However, at t = tmax the
entropy fluctuations have decreased, while the acoustic part has increased significantly (see Fig. 6(a)).
This means that energy has been transferred from entropy towards acoustic fluctuations. However, as
entropy fluctuations were not taken into account in the computation of the energy term, this also means
that energy term Eac appears to be enormously amplified as it passes from an initial value close to zero
to a non-zero value at t = tmax .
This observation is consistent with the fact that a large value of G6

max,ac is observed in Fig. 4, while the
value of G6

max,tot is a lot smaller.

To better understand the physical background of the difference between Gm
max,ac and Gm

max,tot , the
convergence of these quantities with respect to the number of eigenmodes m used for the analysis is
displayed in Fig. 7.
From Fig. 7(a) one may conclude that the maximum transient amplification is well predicted with only
5-6 modes, when the total energy of the disturbances is considered. Adding more modes to the analysis
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1 2 3 4 5 6 7 8 9 1010!1

100

101

102

103

104

105

m

(a) Evolution of the maximum possible ampli-
fication terms:
◦-symbols: Gm

max,tot ; ×-symbols: Gm
max,ac

1 2 3 4 5 6 7 8 9 1010!8
10!7
10!6
10!5
10!4
10!3
10!2
10!1
100

m

(b) Contribution of the acoustic energy to the
optimal initial perturbation for Gm

max,ac .
◦-symbols: σ(t = 0); ×-symbols: σ(t = tmax )

Figure 7: Convergence in terms of the number of eigenmodes m used for the analysis.

does not have a huge impact on the result for Gm
max,tot . By contrast, for the growth rate based on the

acoustic energy Gm
max,ac convergence is hardly reached when 10 modes are used. It seems as if the values

of Gm
max,ac can still increase for larger numbers of eigenmodes.

This observation is confirmed by Fig. 7(b), which shows the contribution of acoustic fluctuations to the
optimal initial perturbation for computations based on the acoustic energy (cf. Figs. 5(a) and 6(a)). For
this plot, the value σ(t ) has been defined as the ratio of acoustic energy to total disturbance energy:

σ(t ) = Eac (t )

Etot (t )
, (32)

where Eac (t ) and Etot (t ) are the terms defined in Eq. (13) and (28) respectively. Values of σ(t ) close to
one indicate hence preponderance of acoustic fluctuations and negligible influence of entropy fluctu-
ations, while values of σ(t ) near zero denote huge contributions of entropy fluctuations in the signal.
For the optimal perturbation corresponding to Gm

max,ac at t = 0, the contribution of the acoustic energy
to the total energy clearly tends to zero for increasing m (◦-symbols). At the same time, the contribution
of acoustic energy to the perturbation at t = tmax remains of the same order of magnitude (×-symbols).
The acoustic transient growth Gm

ac (t ) = maxEac (t )/Eac (0) is hence virtually unlimited for increasing val-
ues of m, as Eac (tmax ) does not decrease in the same way as Eac (0).
This behaviour is possible since the entropy mode of fluctuations can feed the acoustic mode when
the mean flow is accelerated [14]. Another path from entropy to acoustic was discussed by Nicoud and
Poinsot [18] in the case where the thermal diffusivity is not zero. The very large value of G6

max,ac dis-
played in Fig. 4 is just and only the consequence of these physical phenomena. In other words, non-
normality effects cannot be characterized by the acoustic transient growth when either mean flow or
thermal diffusivity are present; the total transient growth based on the complete energy of the fluctua-
tions should be used instead.

4 Conclusion

This article evaluates non-normal effects for a system that contains both a source of entropy fluctua-
tions and a zone of accelerated mean flow. Rather than using a singular value decomposition approach,
the determination of the maximum transient energy growth and the corresponding initial perturbation
are based on an expansion in eigenmodes. These modes are obtained by solving the Linearized Euler
Equations using a finite volume technique, a method that allows to take into account mean flow effects
and is at the same time suitable for complex geometries.
It is shown that the eigenmodes of thermo-acoustic configurations are, in general, not orthogonal,
which allows for a transient growth of disturbance energy. However, it is pointed out that for the analy-
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sis of non-normal effects of such a configuration the definition of the norm, or equivalently the proper
choice of the energy term, is crucial. Two approaches are presented in this paper, the first one being
based on an energy term that is equivalent to the classic acoustic energy; the second one being based
on the total disturbance energy and therefore including the contribution of entropy fluctuations. It is
shown that the use of the acoustic energy concept may cause misleading results in configurations that
include mean flow effects: When the energy of entropy fluctuations is neglected in the analysis, any en-
ergy transfer from entropy to acoustic fluctuations will lead to spurious values for transient (acoustic)
energy growth.
For the presented configuration, a linear combination of five to six eigenmodes is sufficient to deter-
mine the maximum possible amplification and the optimal initial perturbation. A maximum possible
amplification of G6

max,tot ≈ 6 is found for a case with a moderate mean flow speed and where unsteady
heat release is not taken into account.
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