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To predict the limit cycle oscillations of thermo-acoustic systems, a frequency-domain,
low-order system model with explicit modal coupling is developed. To this purpose, a model
for the nonlinear heat source dynamics is obtained from unsteady computational fluid dy-
namics in combination with feed-forward neural network identification. From the neural
network, an equivalent representation for the input-output relation in Volterra series form
is derived, where Volterra kernels are computed in terms of the weights of the neural net-
work. Then the kernels are transformed into the frequency domain to obtain the higher
order transfer functions, through which the modes are coupled. In this way nonlinear en-
ergy exchange among the modes can be described explicitly. Comparison with a Galerkin
time domain simulation shows that deviations from purely sinusoidal behaviour in the limit
cycle are captured correctly, while the computational cost is drastically reduced.

1 Introduction

In thermoacoustic systems, nonlinear effects limit the growth of unstable modes of oscillation and lead
to steady state, periodic, nonlinear oscillations, which are called ”limit cycle”. As it is not always possible
to avoid thermo-acoustic instabilities altogether, it is important to predict and analyze the oscillations
in the limit cycle, since the detrimental effects of instabilities on combustor lifetime and noise emis-
sions depend on the limit cycle amplitude.

Accurate predictions of the stability limits and limit cycle amplitudes require an adequate heat source
model valid in the nonlinear regime as well as a suitable system model. CFD computations of the full
thermo-acoustic system could model the limit cycle. These computations generally demand huge com-
putational resources and time, since thermo-acoustic instabilities involve various physical phenom-
ena covering a wide range of length and time scales [28, 36], and they depend in an sensitive manner
on combustor operating conditions. For practical design purposes, a full CFD modeling approach for
thermo-acoustic limit cycles is not feasible.

However, if the heat source is the dominant nonlinear element in the system – which is often the
case – then it is possible to combine a linear model for the acoustics with a nonlinear model for the
heat source. For example, from linearized thermo-fluid-dynamics equations the inhomogeneous wave
equation for pressure fluctuations with a source term, which represents the heat release rate from com-
bustion [22,25], can be derived and solved with a Finite Element or Finite Volume method. Approximate
solutions of the inhomogeneous wave equation can also be obtained with the Galerkin method [5,6,39].
In the Galerkin method, acoustic velocity and pressure are expressed in terms of basis functions, which
satisfy the boundary conditions and constitute a complete set of basis. The computations will often be
cheaper than the former approach. Both the inhomogeneous wave equation and the Galerkin method



F. Selimefendigil, W. Polifke

can predict the limit cycle amplitudes, if combined with a nonlinear model for the heat source. How-
ever, if the dynamic model of the heat source has many delay terms, a delay differential equation (DDE)
results in the Galerkin time domain equations. Numerical integration of this delay differential system is
computationally expensive.

Frequency domain system models are an attractive alternative, since they require to solve only a com-
paratively small set of algebraic equations instead of partial differential equations. Linear frequency
domain ”network models” of thermo-acoustic system have been developed by several researchers, see
e.g. [7, 9, 10, 18]. In this approach, individual elements of thermo-acoustic network are described by
their transfer functions/matrices which could be derived analytically, measured from the experiments
or computed from the numerical simulations. Polifke and co-workers have used linear system identifi-
cation method as an effective tool to construct transfer functions/matrices using input-output data set
generated from unsteady CFD computations [15, 16, 29, 35].

Linear network models can predict the frequency and the growth rate of unstable modes, but are in-
capable of predicting limit cycle amplitudes. Fortunately, the models can be extended to the nonlinear
regime with the ”describing function” method [8, 23]. The (sinusoidal) describing function of a nonlin-
ear element is an amplitude dependent frequency response sinusoid input [8,14,23]. In thermoacoustic
systems, the heat source is often considered to be the dominant nonlinear element. If a sinusoidal input
is applied, the nonlinear heat source produces higher harmonics at multiple integers of the fundamen-
tal harmonic. When the system acoustic filters these higher harmonics, or if the flame response is very
weak at the corresponding frequencies, a one-mode approximation for the limit cycle behaviour is ob-
tained. Moreover, sub-critical bifurcations can be predicted with this method [23].

The describing function approach neglects the effect of coupling terms, since it is a one mode (si-
nusoid) approximation. The aim of the present study is to develop a frequency domain system model
with explicit modal coupling. Acoustic velocity and pressure fluctuations at large amplitudes are thus
expressed as a superposition of several modes. The nonlinearity in the heat source is expressed in terms
of higher order transfer functions through which the modes are coupled. A schematic representation of
the approach is shown in Fig. 1: from a CFD model for the heat source dynamics, higher order transfer
functions are determined via an extension of the neural network identification method to the frequency
domain. Combined with a frequency domain model for the system acoustics with modal coupling, limit
cycle amplitudes can be predicted. Note that Fig. 1 indicates also how the CFD time series data can be
used to identify a nonlinear heat source model for a time domain Galerkin model in terms of a neural
network. This alternative is used in the present paper for cross-validation purposes.

Figure 1: Schematic of the proposed approach from the nonlinear identification of the heat source to
the simulation in time and frequency domain for the full thermo-acoustic system
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The paper is organized as follows: firstly, the CFD model of the heat source is reviewed briefly, details
can be found in [7, 29]. Secondly, system identification based on neural networks is discussed. Volterra
kernel extraction and the extension to the frequency domain to obtain the higher order transfer func-
tions are illustrated. Then the Galerkin time domain method for one dimensional acoustics is intro-
duced, since the limit cycle can be predicted with this method and our system model equations for the
frequency domain with the coupled modes have been derived from this method. Finally, the frequency
domain system model with coupled modes is described. When the input to the heat source is expressed
as superposition of the modes, then these will be coupled through the higher order transfer functions
(when the heat source nonlinearity is expressed in terms of higher order transfer functions). Simulation
results obtained with the Galerkin time domain method, the describing function method and the cou-
pled modes system model, respectively, are compared against each other. It is found that the frequency
domain model is computationally efficient compared to a time domain simulation and it does – unlike
the describing function model – capture correctly the non-sinusoidal shape of limit cycle oscillations.
Moreover, the energy exchange between the modes (from the fundamental to higher order modes and
vice versa) can be analyzed with this model. To conclude the analysis of results, the Rayleigh index in
the nonlinear regime and in particular the contributions of the individual modes to the Rayleigh index
are evaluated.

2 Numerical Simulation of the Heat Source in Pulsating Flow with
Unsteady CFD

A simple thermoacoustic device is the Rijke tube (Fig. 2), in which a hot wire gauze is located inside
a tube. A mean flow of gas is induced by free or forced convection, and heat is transferred from the
gauze to the gas. A CFD model representing one wire of the mesh as a cylinder in cross flow has been
constructed, see Fig. 3.
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Figure 2: Schematic of the Rijke tube with a con-
centrated heat source
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Figure 3: Geometry and boundary conditions for
CFD modeling of a single wire

Karman vortex streets downstream of a cylinder are observed at Re > 40. In the present case, the
Reynolds number Re = 15, such that Karman vortices are absent. The use of symmetry boundary con-
ditions at the top and bottom of the domain to reduce the size of the computational domain is thus
justified. The body-fitted mesh is composed of 16540 quadrilateral elements and is refined close to the
cylinder surface. Mesh independence of the solutions has been confirmed. The unsteady Navier-Stokes
equation along with the energy equation is solved using FLUENT 6.1 segregated solver (a general pur-
pose finite volume solver) [12]. In the CFD model, an appropriate perturbation signal (a chirp signal
of varying amplitude) for the nonlinear system identification is imposed on the steady state solution,
which is used as the initial condition for the unsteady calculation. The heat transfer rate is extracted as
the area-integral averaged values over the wire. More details about the model can be found in [13, 32].

3 Neural Network Identification

For highly nonlinear systems, black box identification can be used if little or no priori information about
the complex physics is available [17, 34]. Neural network identification methods belong to the class of
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parametric nonlinear black box identification procedures [21, 24, 27, 34]. They are promising to identify
any nonlinearity up to a specified degree of accuracy (universal function approximators).

For the present case of a wire in pulsating cross flow, nonlinear complex interactions take place in the
boundary layer once the pulsating flow velocity achieves high values. It is possible to obtain a dynamic
model (input-output relation) that is valid for a range of amplitudes and frequencies with nonlinear
black box identification from measured input and output time series data [32, 33]. Nonlinear dynamic
models of more advanced configurations of the heat source (e.g. turbulent combustion) can in princi-
ple also be obtained with this approach. Fig. 4 shows the neural network identification scheme for the
nonlinear heat source.

Heat Source Model

Unsteady CFD 

Neural Network 

Approximator Model

Input

OutputCFD

OutputNeuralNet

Error

Adaptationof Neural Network Weights



−

Figure 4: Nonlinear identification using un-
steady CFD and Neural Network
approximation
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Figure 5: 1 hidden layer feed-forward neural
network structure along with regres-
sors with tangent hyperbolic activation
function f and the linear function F at
the output layer, M is the number of
units and L is the memory length of the
regressors

Network structures can be classified as feed-forward or recurrent [21, 27]. In a recurrent network
structure, the computed outputs from the network will be fed as the input to the layers. In this study
we use a feed-forward network structure and we only consider past inputs as the input to the neural
network (NFIR model). The network has only 1 hidden layer and tangent hyperbolic as the activation
function. A schematic of the neural network topology along with the regressors used as the input is
shown in Fig. 5. Let ϕ be the set of regressors with memory length of L, u as the input, y as the output

φ= [1 u(t −1) ....u(t −L)], (1)

and Z N be the set of the input-output data (training set) up to time N . Then the identification problem
will be formulated as the minimization of the error between the CFD model output and the output from
neural network as

VN (θ) = 1

N

N∑
t=1

[yCFD(t )− yNeuralNet(t )]2. (2)

This function will be minimized by some nonlinear iterative search algorithms and we use Levenberg-
Marquardt technique to find the minimum of the function and hence the weights of neural networks
which are denoted by θ . The output from the neural network will be written in terms of the weights of
the network as

yNeuralNet(t ) =
M∑

j=1
W j f (

L∑
l=1

wjlφl +wj0)+W0, (3)

where w and W ′s are the weights of the neural network for the input and output to the hidden layer and
f is the tangent hyperbolic activation function.

3.1 Extraction of Kernels in terms of Neural Network Weights

As mentioned before, a wide class of nonlinear systems can be represented in Volterra series form for
the input-output relation (extension of the Taylor series approximation for functionals [3, 4]). For an
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input-output data set (u(t ), y(t )) with memory length L, this relation will be written for a third order
nonlinearity in discrete form as

y(t ) = h0 +
L∑
τ=1

h1(τ)u(t −τ)+
L∑

τ1=1

L∑
τ2=1

h2(τ1,τ2)u(t −τ1)u(t −τ2)

+
L∑

τ1=1

L∑
τ2=1

L∑
τ3=1

h3(τ1,τ2,τ3)u(t −τ1)u(t −τ2)u(t −τ3). (4)

Different approaches exist in the literature to extract the kernels. A correlation based analysis with
broadband forcing has been developed by Schetzen et al. [31]. This method requires lengthy signals
and the number of the parameters (h coefficients) is huge. A orthogonalization of the above expression
using a Gram-Schmid algorithm has been purposed by Korenberg et al. [19]. This has the advantage
not to require a specific type of (like broadband) signal for the excitation of the system. Wray et al. [37]
have developed a strategy to get an improved accuracy of the nonlinear approximation in comparison
to Toeplitz matrix inversion proposed by Korenberg et al. [19]. In this study, we use the approach pro-
posed by Wray et al. [37]. The idea is to expand the neural network approximation output as in Eq. (3)
for the tangent hyperbolic function around the bias term. Taylor series approximation of the tangent
hyperbolic function around zero can be written as [37]

tanh(x) =
∞∑

n=1
(−1)n+1 Bn(24n −22n)x2n−1

(2n)!
, (5)

where Bn is the n th order Bernoulli number and is defined as

Bn = 2(2n)!

(2π)2n

∞∑
s=1

1

s2n . (6)

Expanding the activation function in Eq. (3), the neural network output will be written as

yNeuralNet(t ) =
M∑

j=1
W j


∞∑

k=1
(−1)k+1Bk (24k −22k )

(
L∑

l=1
wjlφl +wj0

)2k−1

(2k)!

+W0. (7)

Combining this representation with Volterra series of third order in the form as in Eq. (4), we will
express the kernels in terms of the weights of the neural network.

The zeroth order kernel:

h0 =
M∑

j=1
W j


∞∑

k=1
(−1)k+1Bk (24k −22k )C (2k −1,0)w2k−1

j0

(2k)!

+W0. (8)

The first order kernels:

h1(a) =
M∑

j=1
W j


∞∑

k=1
(−1)k+1Bk (24k −22k )C (2k −1,1)wjaw2k−2

j0

(2k)!

 , a = 1, . . . ,L. (9)
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and the definition of the nth order kernel can be given as

hn(a1, .., an) =
M∑

j=1
W j


∞∑

k=1
(−1)k+1Bk

(
24k −22k

)
C (2k −1,n) w j a1 ..w j an w j 0

2k−n−1

(2k)!

, (10)

with ai = 1, . . . ,L for i = 1, . . . ,L, while C is defined as

C (m,n) =
{ m!

n!(m−n)! for m ≥ n
0, otherwise.

(11)

3.2 Higher Order Transfer Functions

Once the kernels of various orders are calculated, these will then be extended into frequency domain
to obtain the higher order transfer functions. When the system experiences different frequencies, one
can see how the nonlinearity of the system effects these frequencies in order to produce sum of the fre-
quencies, differences between the frequencies which are typical for a nonlinear system. For a thermo-
acoustic system, these transfer functions allow us to see how different modes interact with each other
and transfer energy to higher order modes. The first order transfer function will be computed from z-
transform of the first order kernel as,

H1(ω) =
L∑

k=1
h1(k)e−iωk∆t . (12)

The third order transfer function will be computed from z-transform along the three frequency direc-
tions of the third order kernel and will be written as

H3(ω1,ω2,ω3) =
L∑

k=1

L∑
l=1

L∑
m=1

h3(k, l ,m)e−iωk∆t e−iωl∆t e−iωm∆t . (13)

Suppose that the system experiences a sinusoid input with amplitude U0 and frequency ω,

u(t ) =U0 sin(ωt ) =U0

(
e iωt −e−iωt

2i

)
. (14)

Then the corresponding output in the frequency domain in terms of the higher order transfer functions
will be computed as

Y (ω) =U0H1(ω)+ 3U0
3

4
H3(ω,ω,−ω). (15)

In this expression, the contribution of the nonlinearity is seen in the third order transfer function. The
advantage of this representation of the nonlinearity will be clearer when a frequency domain thermo-
acoustic system model is developed.

3.3 Nonlinear Identification of the Wire in Pulsating Flow from CFD and Neural
Network based Identification

As the input to the heat source, a chirp signal of varying amplitudes is used with Str ranges from 0.72
to 2.88. The perturbation amplitudes are A = 0.3,1,1.5 and 2. Non-dimensional amplitude and the fre-
quency of the forcing; velocity amplitude ratio (A) and Strouhal Number (Str) are defined as

A = u′

ū
, (16)

Str =ωdw

ū
, (17)
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kernels (Number of the regressors is 15)
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Figure 7: Third order kernels for values k3 = 1, . . . ,4
for the third dimension

for fluctuating velocity u′, forcing radial frequency ω, wire diameter dw and the mean velocity ū. The
chirp signal has linearly varying frequency component over time and is defined for one amplitude of
the forcing

u(t ) = ū + Aū sin
((
ωmax −

(ωmax −ωmin

M
k
))

k∆t
)

, k = 1,2, . . . , M , (18)

with maximum and minimum frequencies of ωmin, ωmax and amplitude A. M , ∆t denote the number
of the total samples used and time step, respectively. The memory length of the regressors is 15 and the
neural network is a structure with one hidden layer and 12 neurons, composed of tangent hyperbolic
functions and a linear output layer. The fits for the nonlinear approximations with the neural network
along with Volterra series approximation up to third order, to the CFD output is 86%. Next the kernels
of various orders are extracted with the procedure outlined in the previous section. Fig. 6 shows the
first and second order kernels. The value of the h0 is −0.00186. For a sinusoidal input, the output from
the heat source model will be calculated using Eq. (15) in terms of higher order transfer functions and
amplitude of the sinusoid. A comparison with the single sinusoidal response from CFD is shown for
A = 1.5,2 and for Str = 1.08,1.8,2.16,2.88 in Fig. 8 along with a linear transfer function. The maximum
deviation is observed at A = 1.5 and Str = 1.08, but this is less than 6%, and overall agreement between
the model output and CFD output is adequate for the considered range of amplitudes and the frequen-
cies.

4 Time Domain Simulation

4.1 Galerkin Method

In this modeling approach, acoustic velocity and pressure are expressed in terms of a set of basis func-
tions, which constitute a complete basis and satisfy the boundary conditions [1, 5, 6]. Using the orthog-
onality of the basis functions, partial differential equations are projected onto the basis functions and
one has to solve a set of ordinary differential equations instead of partial differential equations. Even
though, the method used here is for a simple geometry (Rijke tube), it can be applied to complex ge-
ometries of practical interest, as well. In this case (complex geometry case, including also more general
boundary conditions), the basis functions (mode shapes) could be obtained from a three dimensional
finite element simulation of the acoustics of the system [2]. Acoustic variables (pressure and velocity)

7
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are then written as the superposition of these mode shapes with the time dependent coefficients. In the
Galerkin method, acoustic velocity and pressure will be written in terms of the natural modes of the
duct [5, 6],

u′(x, t ) =
N∑

m=1
ηm(t )cos(mπx), p ′(x, t ) =−

N∑
m=1

γMa

mπ
η̇m(t )sin(mπx). (19)

Using the above expansions for the acoustic velocity and pressure in the governing equations and in-
tegration over the domain will result in a set of ordinary differential equations for the time dependent
coefficients of the expansion as,

d 2η j

d t 2 +2ξ jω j
dη j

dt
+ω j

2η j = 2(1−γ)

Mac0p0γ
jπsin( jπx f )Q ′, (20)

with ω j = jπ. The damping coefficients have been determined by Matveev experimentally and given
with the following relation [20]

ξ j = 1

2π

(
c1
ω j

ω1
+ c2

√
ω1

ω j

)
. (21)

A detailed derivation of the equations can be found in [1, 9]. In the above equations, the heat source
is written explicitly and in the case of a heat source model from linear/nonlinear system identification,
one has to solve a delay differential equation with multiple fixed delays. If the number of the fixed delays
is large, the computations may be time consuming.

4.2 Simulation with the CFD/SI Model of the Wire Heat Source

The dynamic model of the heat source (wire in pulsating flow) obtained from a neural network iden-
tification procedure has been used in time domain Galerkin simulation. Matlab DDE solver is used to
solve the delay differential equations with the delays resulting from the identification part. For the first
configuration, the heat source is located at 0.15L downstream of the tube inlet with the tube length L.
Total time of the simulation is set to 1000 non-dimensional time and a five mode approximation is uti-
lized. In the second configuration, the heat source location is set to 0.25L downstream of the tube inlet

8
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Figure 9: Limit cycle behaviour for duct length L = 5.65, damping coefficients c1 =0.0135, c2 =0.0015.
Top: Non-dimensional acoustic velocity and heat transfer rate vs. time. Bottom: Phase por-
trait of the acoustic pressure versus heat transfer rate. Left: Initial conditions η1(0) = 0.02, heat
source at x f = 0.15L. Right: η1(0) = 0.02, heat source at x f = 0.25L.

and the simulation time is 1500 (non-dimensional time).

Fig. 9 shows the normalized heat transfer rate (with respect to the steady state value) and acoustic
quantities u′ and p ′ in the limit cycle as time series and phase portraits, respectively. Two cases are
considered: heat source located at x f = 0.15L (left) and x f = 0.25L (right). These plots indicate how the
heat source acts as a nonlinear element. The computational time for these simulations varies between
10-13 hours on a 64-Bit processor with 2.8 GHz.

5 Frequency Domain System Model with Coupled Modes

In this system modeling approach, it is assumed that the main source of the nonlinearity is due to the
heat source for a thermo-acoustic system. A model of the heat source has been obtained from neural
network based nonlinear identification using input-output data set generated from the unsteady CFD
computations. A polynomial representation of the input-output is obtained after an approximation of
the expansion function (tangent hyperbolic) used in the units of the neural network with polynomi-
als. Extensions of the linear transfer function to higher dimensions, the so-called higher order transfer
functions are obtained in the frequency domain. Details of the procedure to compute the higher or-
der transfer functions have been described before in the previous chapter. This type of representation
of the nonlinearity has great advantages when used in a modal basis representation of the thermo-
acoustic system. It allows the input to the the heat source to be sum of the modes and accounts for the
interaction of the modes. An analysis of the energy balance (harmonic balance) of the modes (transfer
of energy from the fundamental mode to the higher order modes and contribution of the higher order
modes to the fundamental mode) is possible with this approach. Rayleigh index in the nonlinear regime
can be studied and the contribution of the higher order modes to this index can be found out. In the
current version, Galerkin time domain equations are used in which the system variables (acoustic ve-
locity and pressure) are expressed as sum of the modes, but linear network modeling approach can also
be used as well for an extension into the nonlinear regime with this nonlinear representation of the heat
source.

9



F. Selimefendigil, W. Polifke

5.1 Derivation

The evolution coefficient in front of the mth mode in the frequency domain can be written as

ηm(t ) = Am sin(ωm t )+Bm cos(ωm t ) =
(

Bm

2
+ Am

2i

)
e iωm t +

(
Bm

2
− Am

2i

)
e−iωm t . (22)

Let us denote the

Cm = Bm

2
+ Am

2i
, Dm = Bm

2
− Am

2i
. (23)

Then the time derivatives become

dηm(t )

dt
= iωmCme iωmt − iωmDme−iωmt , (24)

d 2ηm(t )

dt2 =−(ωm)2Cme iωmt − (ωm)2Dme−iωmt . (25)

Next, the heat source model will be obtained in terms of coupled modes. The input to the heat source
(acoustic velocity in the immediate vicinity) is assumed to be sum of the modes

u′(t ) =
N∑

m=1
ηm(t )cos(mπx) =

N∑
m=1

(
Cme iωmt +Dme−iωmt

)
cos(mπx f ). (26)

On substituting this for the input in the polynomial input-output representation and using the defini-
tions of the higher order transfer functions, the corresponding output will be obtained in terms of the
couped modes as

Q ′(t ) =
N∑

d1=1

(
Cd1 H1 (ωd1)e iωd1t +Dd1 H1 (−ωd1)e−iωd1t

)
cos(πd1x f )

+
N∑

d1=1

N∑
d2=1


Cd1Cd2 H2 (ωd1,ωd2)e iω(d1+d2)t

+Cd1 Dd2 H2 (ωd1,−ωd2)e iω(d1−d2)t

+Dd1Cd2 H2 (−ωd1,ωd2)e iω(−d1+d2)t

+Dd1 Dd2 H2 (−ωd1,−ωd2)e iω(−d1−d2)t

cos(πd1x f )cos(πd2x f )

+
N∑

d1=1

N∑
d2=1

N∑
d3=1



Cd1Cd2Cd3 H3 (ωd1,ωd2,ωd3)e iω(d1+d2+d3)t

+Cd1Cd2 Dd3 H3 (ωd1,ωd2,−ωd3)e iω(d1+d2−d3)t

+Dd1Cd2 Dd3 H3 (−ωd1,ωd2,−ωd3)e iω(−d1+d2−d3)t

+Dd1 Dd2Cd3 H3 (−ωd1,−ωd2,ωd3)e iω(−d1−d2+d3)t

+Cd1 Dd2Cd3 H3 (ωd1,−ωd2,ωd3)e iω(d1−d2+d3)t

+Dd1Cd2Cd3 H3 (−ωd1,ωd2,ωd3)e iω(−d1+d2+d3)t

+Cd1 Dd2 Dd3 H3 (ωd1,−ωd2,−ωd3)e iω(d1−d2−d3)t

+Dd1 Dd2 Dd3 H3 (−ωd1,−ωd2,−ωd3)e iω(−d1−d2−d3)t


3∏

i=1
cos(πdi x f ).

(27)

In this representation, the modes are coupled through the higher order transfer functions. After substi-
tution the time derivatives and heat source in terms of the higher order transfer functions in Eq. (20)
and harmonic balancing (equating the exponentials of the same order), the equation for mode number
m becomes

−ωm
2Cm +2iξmmπωmCm +m2π2Cm = 2

(
1−γ)

Mac0p0γ
mπsin(mπx f )Qm . (28)

Qm denotes the mth exponential term for the heat source model. Let us assume we use one mode (as
usually done in a sinusoidal describing function technique – one sinusoidal input to the heat source),
then the equation for this mode will be,

10
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−ω2C +2iξπωC +π2C = 2
(
1−γ)

Mac0p0γ
πsin(πx f )

(
C H1 (ω)cos(πx f )
+3C 2D H3(ω,ω,−ω)cos3(πx f )

)
. (29)

We make use of the symmetry of the kernels and the nonlinearity in the heat source can be seen through
the third order transfer function. Recall that C and D are complex conjugate numbers and are defined
as

C = B

2
− A

2
i , D = B

2
+ A

2
i , (30)

with the modal coefficient
η(t ) = A sin(ωt )+B cos(ωt ), (31)

where A and B are real numbers. The unknowns of the equation are A,B and ω. Two equations result

by equating the imaginary and the real part of the above expression (Eq. 29) to zero. Therefore, there is
a need for an extra equation. This problem will be handled by equating for example the real part of the
coefficient of the mode to be zero (B = 0). That means the phase of the mode is kept at a fixed value.

Let us write the set of equations in detail for a two mode approximation. The equation for the funda-
mental mode using Eq. 27 and Eq. 28 can be obtained as

−ω2C1 +2iξ1πωC1 +π2C1 =
2(1−γ)πsin(πx f )

Mac0p0γ


C1H1(ω)cos(πx f )
+2C2D1H2(2ω,−ω)cos(2πx f )cos(πx f )
+3C1

2D1H3(ω,ω,−ω)cos3(πx f )
+6C1C2D2H3(ω,2ω,−2ω)cos(πx f )cos2(2πx f )

 .

In the same manner, the equation for the second harmonic can be written as

−4ω2C2 +4iξ2πωC2 +4π2C2 =
4(1−γ)πsin(2πx f )

Mac0p0γ


C2H1(2ω)cos(2πx f )
+C1

2H2(ω,ω)cos2(πx f )
+6C1D1C2H3(ω,−ω,2ω)cos2(πx f )cos(2πx f )
+3C2

2D2H3(2ω,2ω,−2ω)cos3(2πx f )

 .

The unknowns of the problem are the complex conjugate coefficients C1/D1,C2/D2 and the (real-valued)
frequency ω. The number of unknowns are five (two for each of the coefficients and one for the fre-
quency). Four equations are obtained by equating the real and imaginary parts of the above two equa-
tions. Again one extra equation for the frequency component can be obtained by equating one of the
imaginary parts of the coefficients to zero, i.e. ℑ(C1) = 0.

5.2 Interpretation of Modal Coupling

Now, let us take a three mode approximation. In this case, we consider the harmonics −3ω,−2ω,−ω,ω,
2ω,3ω. Then the right hand side of the equation for the fundamental mode will have terms that are
coupled through the higher order transfer functions. In this case, the sum of the arguments for the
higher order transfer functions will be the fundamental harmonic. Let us write such terms and their
meanings in detail:
•C2D1H2 (2ω,−ω)cos(2πx f )cos(πx f ):
Second mode couples with the fundamental through the second order transfer function
•C3D2H2 (3ω,−2ω)cos(3πx f )cos(2πx f ):
Third mode couples with the second mode through the second order transfer function
•C3D1D1H3 (3ω,−ω,−ω)cos(3πx f )cos2(πx f ):
Third mode couples with the fundamental through the third order transfer function

In general, the contribution of the terms that result in the coupling between the k modes through the
nth order transfer function for the fundamental mode equation can be expressed as,

Sd1 . . .Sdr Hn (ωd1, . . . ,ωdr )︸ ︷︷ ︸
d1+...+dr =1

cos(πd1x f ) . . .cos(πdr x f ) for −k ≤ di ≤ k, i = 1. . .r, (32)

11
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where S is defined as

Sdi =
{

Cdi , if di > 0
D−di , if di < 0

(33)

The advantage of this type representation of the heat source is that it allows us to find the contribution
of the higher harmonics to the fundamental and that it takes various interactions between different
harmonics into account.

5.3 Comparison with Time Domain Simulation and Describing Function

Another advantage of the low order model in the frequency domain is that it requires solving a system of
nonlinear algebraic equations instead of solving ordinary differential equations with delay terms, which
makes a big difference for the computational time. The computational time with the coupled mode
frequency domain model has drastically reduced from 10-13 hours (with time domain) to 5-8 minutes.
In Fig. 10 above and below are shown the acoustic velocity when the limit cycle is reached obtained from
time domain simulation, describing function method and coupled modes frequency domain system
model for the heat source located at 0.15L and 0.25L downstream of the tube inlet, respectively. In the
above plot, the discrepancy between the describing function and time domain simulation is large. In
the second plot, the second mode instability is suppressed (no contribution from the second mode)
and describing function can approximate the amplitude of the limit cycle, but not the shape. In both
cases, the coupled modes frequency domain system model captures the amplitude and the shape of the
nonlinear oscillation.
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Figure 10: Top - Non-dimensional acoustic velocity at the limit cycle obtained from the time domain
simulation (Galerkin), frequency domain coupled modes and describing function method
for the initial condition η1(0) = 0.02, duct length L = 5.65, heat source location x f = 0.15,
damping coefficients c1 = 0.0135,c2 = 0.0015 Bottom - heat source location x f = 0.25

5.4 Rayleigh Index and Energy Balance in the Nonlinear Regime

The energy gained from the heat source will be equal to energy dissipated by the modes when the limit
cycle is reached. The energy gained from the local heat source can be directly related to the Rayleigh
index which is defined for one cycle of the oscillation as [11, 30],
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RI = 1

T

T∫
0

p ′Q ′d t . (34)

Next, we will show how much of the gained energy is distributed among the individual coupling
terms. Let us assume a three mode approximation. Substituting the modal representation of the pres-
sure and the nonlinear heat source in the definition of the Rayleigh index results in an expression with
21 terms. First 7 of these terms give the energy gained at the fundamental harmonic, second 7 terms
represent the energy gained at the second harmonic and so on.

Energy gained at the second harmonic:

RI2ω =ℜ


2iγMaω

π
sin(2πxf)



−D2C2H1 (2ω)cos(2πx f )
−2D2C1

2H2 (ω,ω)cos2(πx f )
−2D2C3D1H2 (3ω,−ω)cos(3πx f )cos(πx f )
−6D2C1C2D1H3 (ω,2ω,−ω)cos2(πx f )cos(2πx f )
−6D2

2C1C3H3 (ω,3ω,−2ω)cos(πx f )cos(2πx f )cos(3πx f )
−3D2

2C2
2H3 (2ω,2ω,−2ω)cos3(2πx f )

−3D2C2C3D3H3 (2ω,3ω,−3ω)cos(2πx f )cos2(3πx f )




. (35)

The representation of the heat source in terms of the higher order transfer functions makes it pos-
sible to find the effect of the coupling terms. First component of the Rayleigh index gives the energy
that is gained by the heat source at the fundamental harmonic. As can be seen for the second ele-
ment in the second component of the Rayleigh index, energy is driven to the higher harmonics with
the nonlinearity. If the system has low pass filter characteristics, the amplitude levels of the higher or-
der harmonics will be small and the coupling terms can be neglected. That is the case where describing
function method works. Heat source is generally a low pass filter, but the important is the nonlinearity
of the heat source at a specific frequency and amplitude. When only one sinusoid acts as an input to the
heat source, it produces higher harmonics and if these components are not suppressed by the system
acoustics, the coupling terms appearing in Rayleigh index cannot be neglected anymore. The individ-
ual elements of the Rayleigh index for the 21 terms (the terms from 8 to 14 are defined as the individual
terms of Eq. (35) for the second component of the Raleigh index) for the third component) are shown in
Fig. 11 at the top and bottom for the heat source located at 0.15L, 0.25L downstream of the tube inlet,
respectively for a three mode approximation. In the plots, it is also shown the contributions when only
one sinusoid acts as the input to the heat source (sinusoidal describing function).

At the top, the second and the fifth terms of the Rayleigh index (energy gained at the fundamen-
tal harmonic) have negative contributions (stabilizing effect on the nonlinear oscillations). The eighth
and ninth terms of the Rayleigh index (energy gained at second harmonic) have positive contributions
(destabilizing effect) and eleventh term has positive contribution. At the bottom, since the second mode
instability is suppressed, the fifth, ninth and eleventh terms of the Rayleigh index have no contribu-
tions. Energy gained at fundamental, second and third harmonic with the coupling terms via higher
order transfer functions included is equal to the energy dissipated by the first, second and the third
modes. RI and D represent the gained and damped energies, respectively. As it is shown in table 1, the
net energy contributions at the second and third harmonics are positive whereas for the first harmonic
it is negative when the heat source is located at x f = 0.15L. For the second configuration (x f = 0.25L),
the energy gained at the fundamental harmonic is positive.

For thermo-acoustic systems, it is generally assumed that the energy contribution of the higher order
modes can be neglected since the damping factors are large at the higher frequencies. What we have
observed is that the coupling terms of the higher order modes can have a stabilizing effect (a negative
contribution for the energy gain) or destabilizing effect (a positive contribution to the energy gain).
After considering these coupling terms along with the damping can then provide an accurate analysis
of the energy balance for the thermo-acoustic systems.
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Figure 11: Top: Individual elements of the Rayleigh index for a three mode approximation and describ-
ing function, for the duct length L = 5.65, heat source location x f = 0.15L, damping coeffi-
cients c1 = 0.0135,c2 = 0.0015. Bottom: heat source location x f = 0.25L

Table 1: Energy gained and damped at different harmonics

x f = 0.15 x f = 0.25
ω 2ω 3ω ω 2ω 3ω

RI 9.344 E−7 6.959 E−7 0.934 E−7 23.56 E−7 26.7 E−7 2.90 E−7
D 10.05 E−7 6.339 E−7 0.850 E−7 20.76 E−7 29.21 E−7 3.19 E−7

Net Contribution −0.706 E−7 0.62 E−7 0.084 E−7 2.8 E−7 −2.51 E−7 −0.29 E−7
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6 Conclusions and Outlook

In this study, a nonlinear, low order model for thermo-acoustic systems in the frequency domain has
been considered. An approach has been developed that can take into account the coupling of the modes
due to the nonlinearity. In this method, system variables (acoustic velocity and pressure) are expressed
as a superposition of the modes. Nonlinearity in the heat source is expressed in terms of higher or-
der transfer functions. The modes are then coupled through the higher order transfer functions. The
equations have been derived using Galerkin method, but an extension of the network models to the
nonlinear regime is also possible with this approach. Simulation results have shown one case where
the describing function approach fails to predict limit cycle, since the effect of the coupling terms of
higher order modes due to the nonlinearity could not be neglected. In this case, coupled modes system
model gives the amplitude and the shape of the nonlinear oscillation correctly. Moreover, a reduction
in the computational time is achieved from 10-13 hours to 5-8 minutes compared to the Galerkin time
domain simulation. An energy balancing of the modes in the limit cycle showed that the coupling terms
may give a positive or negative energy contributions. Therefore, an accurate analysis of the energy bal-
ance for the thermo-acoustic systems requires to consider the coupling terms along with the damping.
The approach has also some drawbacks since the higher order transfer functions are obtained using
polynomial type representation of the nonlinearity. The challenges in this approach are described in
the following cases:

• when the heat source introduces large delay terms,

• when a large range of frequencies are considered,

• when the approximation of the nonlinearity requires a higher order polynomial degree.

When the network models are extended to the nonlinear regime, then it is possible to add a jump con-
dition in the area/temperature and investigate their effects on the limit cycle amplitudes. A possible
coupling of the gas dynamics and the heat source nonlinearity can be investigated, since the system
equations have been derived from the Galerkin method, and nonlinear gas dynamics have been de-
rived using Galerkin for second and third order nonlinearities by Culick and co-workers [26, 38].
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