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We describe the spontaneous onset of pressure oscillations in a burner for lean, sub-
sonic, premix combustion as the result of a feedback between perturbations of heat
release at the flame and of chemical composition at the fuel inlet. A Feigenbaum-
like limit cycle describes oscillations near the onset. Markstein’s kinematic equation
describes the evolution of the flame surface in time. A suitably rewritten Rayleigh’s
criterion of stability in thermo-acoustics dictates the shape of the flame at marginal
stability. We write down analytical formulae for both amplitude and frequency. These
formulae involve few, dimensionless, geometry-dependent constant quantities. The am-
plitude of pressure oscillations increases with increasing Mach number and decreasing
fuel content.

1 The problem

A simplified description of the pressure oscillations in a burner for lean premix combustion burner
is presented. Starting from first principles, we derive analytical formulas for both frequency and
amplitude of the oscillations. We solve the equations of motion assuming a thin, axisymmetric, lean
premixed flame. We deal with a mixture of just two components, air and fuel, with Mach number
Ma � 1. Combustion occurs at the flame only. The total unperturbed pressure has the same
value everywhere; we take also a given value for the pressure of the fuel at the inlet. We assume no
fixed, flat flame; we allow the flame to move in agreement with the equations of motion, and take
into account its motion explicitly. We focus our attention on the onset of oscillations. A suitably
reformulated version of Rayleigh’s criterion of stability [1] allows the unperturbed, oscillation-
free flame to be stable. A perturbation of the amount of heat released by combustion induces an
acoustic oscillation which leaves the flame and arrives at the inlet of the air-fuel mixture. Since
the pressure of the fuel at the inlet is a constant, the acoustic perturbation at the inlet affects
the air pressure only. The stoichiometry of the mixture is therefore also affected. The resulting
perturbation of stoichiometry is carried by the fluid towards the flame, and affects the value of the
flame velocity there. In turn, this change of flame velocity affects the heat released by combustion.
A feedback mechanism is established. When this feedback is destabilized, oscillations occur [3].
We include the time evolution of the flame surface with the help of Markstein equation [7], in
order to take into account the non-negligible flame curvature in Ansaldo burners. We describe
the oscillation with the help of a limit cycle [4]. Here we investigate no perturbations of vorticity,
no acoustic interactions among many flames and no longitudinal jump of velocity (in contrast
with [11]). We do not discuss the experimentally observed discontinuities of the frequency as the
air mass flow varies. Furthermore, steady, oversimplified flow patterns between the fuel inlet and
the flame are assigned as a starting guess, so we cannot deal with acoustic excitation of Kelvin-
Helmholz instability at the inlet. Our results stand as a proof-of concept only. However, we invoke
no ad hoc transfer function and ‘describing function’. It turns out that lean combustion at high
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power is the most unstable. A flame becomes more unstable with the increase of the Mach number
– see [10].

2 The basic equations

We assume that no net mass source exists, so that the balance of mass reads

dρ

dt
+ ρ∇.v = 0 (1)

everywhere. We neglect viscosity, so that the balance of momentum reads

ρ
dv
dt

+∇p = 0. (2)

We neglect radiation and heat conduction, so that the energy balance reads

ρT
ds

dt
= ρ

du

dt
+ p∇.v (3)

Energy and entropy are additive quantities, i.e. both are the sum of a contribution of the flame and
a contribution of the fluid outside the flame: ρdu/dt = (ρdu/dt)fluid + (ρdu/dt)flame, ρTds/dt =
(ρTds/dt)fluid + (ρTds/dt)flame:(

ρT
ds

dt

)
flame

=
(
ρ
du

dt

)
flame

+ q∗;
(
ρT

ds

dt

)
flame

= qcomb (4)(
ρT

ds

dt

)
fluid

=
(
ρ
du

dt

)
fluid

+ p∇.v − q∗;
(
ρT

ds

dt

)
fluid

= 0. (5)

Here qcomb, v, T , s, u = p/ (ρ (γ − 1)), p, ρ, γ, and q∗ are the combustion power density (> 0
inside the flame, = 0 elsewhere), the velocity, the temperature (supposed to be the same for all
species), the entropy per unit mass, the internal energy per unit mass, the total pressure, the total
mass density, the specific heat ratio (supposed to be the same for all species), and the density of
mechanical power supplied by the flame to the fluid. In the following, we write a(t) = a0 + εa1(t),
ε� 1 for the generic quantity a(t).

3 The model

Linearisation of eqns (1), (2) and (5) gives [2](
D2

Dt2
− c2s0∆

)
p1 = (γ − 1)

Dq∗1
Dt

, (6)

where D/Dt ≡ ∂/∂t + v0.∇ and cs0 ≡ (γp0/ρ0)1/2 is the speed of sound; here ∇p0 = 0, and
both ∇v0 and ∇cs0 have been neglected for simplicity (as for ∇v0, this assumption is dropped

below). If the flame is a thin region of area Af ≡
∫
flame

d2x and constant thickness d0 = d(p0),

the solution of eqn (6) – which we obtain with the method of Green’s function for an assigned
burner geometry – gives the perturbation of the total pressure at the fuel inlet

pin 1

∣∣∣
t+tac

= ζN (γ − 1)
Qexch 1

4(cs0 − v0)Af

∣∣∣∣∣
t

, (7)
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where v0 = Macs0 and Qexch ≡
∫
flame

q∗dx; moreover ζN and tac are a geometry-dependent,

dimensionless quantity and a time delay required by acoustic perturbations to reach the fuel inlet
starting from the flame (by ‘geometry’ we mean here both the geometry of the burner and the
flame shape described below). Below, we compute both Qexch and Af explicitly. To this purpose,
we perform integration of eqn (4) on the flame volume:

Qexch

∣∣∣
t

= Qcomb

∣∣∣
t
− p0d0

γ − 1
dAf
dt

∣∣∣∣∣
t

, (8)

where Qcomb ≡
∫
flame

qcombdx is the power produced by combustion, we neglect relative changes
of pressure in comparison with relative changes in Af (this choice will be justified below) and
write d[

∫
adx]/dt =

∫
ρ[d(a/ρ)/dt]dx. In turn, the latter relationship follows from eqn (1) and

the identity [
∫

Ω
dx a]/dt =

∫
Ω
dx [∂a/∂t + ∇.(av)] [9]. As for steady states, (dAf/dt)0 = 0 – i.e.

dAf/dt = (dAf/dt)1 – and Qexch 0 = Qcomb 0. Generally speaking, Qexch = Qcomb at all times
for fixed flames only (dAf/dt = 0). Below, we provide an explicit expression for each term on
the R.H.S. of eqn (8). As for Qcomb, we assume that combustion involves two species: the fuel
(with molar density nfuel, partial pressure pfuel = nfuelRT , R perfect gas constant, and molar
mass mfuel) and the air (with molar density nair, partial pressure pair = nairRT and molar mass
mair). We introduce two dimensionless quantities: the air molar fraction z ≡ nair/(nfuel + nair)
(0 ≤ z ≤ 1) and the mass fraction of fuel Y ≡ nfuelmfuel/ρ. No chemical reaction occurs between
the flame and the fuel inlet, hence Dalton’s law of partial pressures gives p = pfuel+pair; moreover,
ρ = nfuelmfuel + nairmair and the fact that air and fuel have the same (input) temperature Tin
at the inlet gives

ρY =
mfuel pfuel in

RTin
, (9)

where pfuel in is the (input) fuel partial pressure at the fuel inlet. In lean combustion z ≈ 1 and
all the injected fuel is burnt at the flame. We write [7] Qcomb =

∫
flame

d2xn.vf HρY , where H,
n and vf = nvf are the heat produced per unit mass of fuel, the unit normal vector to the flame
and the flame velocity respectively. Eqn (9) links HρY , pfuel in and Tin, and vf may depend on
T and z. We assume that z = zflame and T = Tflame everywhere on the flame, so that

Qcomb

∣∣∣
t

= Af vf HρY
∣∣∣
t
. (10)

Landau’s jump conditions at the flame [6] link Tflame 0 and Tin. As for Af and dAf/dt, equation
g(x, t) = 0 describes a thin flame. Markstein’s equation [7] ∂g/∂t+ v.∇g − vf .g = 0 describes its
evolution. For an axisymmetric flame, g(X,Z, t) = Z − f(X, t), where Z and X are the axial and
the radial coordinate respectively (0 ≤ X ≤ Rmax) in a cylindrical coordinate system, and the
flame at time t is generated by the rotation of the curve f(X, t) (the ‘flame shape’) in the plane
{X,Z} around the X = 0 axis. Then, the definition of Af and Markstein’s equation give

Af

∣∣∣
t

= 2π
∫
dX X

√
1 +

(
df

dX

)2
∣∣∣∣∣
t

(11)

(
dAf
dt

)
1

∣∣∣∣∣
t

= zflame 1
dvf

dzflame
I
∣∣∣
t

I
∣∣∣
t
≡ 2π

∫
dX X

1

1 +
(
df

dX

)2

(
df

dX

)2
d2f

dX2

∣∣∣
t


(12)

respectively. According to eqn (12), |dvf/dzflame| may be large even if |zflame 1| � 1, as z ≈ 1:
this justifies our previous choice of allowing large relative variations of Af . Moreover, flat flames
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(df/dX = 0) are also fixed (dAf/dt = 0). Finally, if we increase the relative content of fuel
(zflame 1 < 0) we obtain zflame 1(dvf/dzflame) > 0 as dvf/dzflame < 0 in lean combustion, i.e.
we increase vf . In convex flames (d2f/dX2 < 0), therefore, eqn (12) leads to dAf/dt < 0, i.e. to
a decrease in Af . Intuitively, the flame as a whole approaches therefore the fuel inlet, where p is
likely to have a node; Rayleigh’s criterion of stability [8] predicts therefore stability, in agreement
with the well-known, experimentally observed flame stabilisation through fuel enrichment. In the
unperturbed state the computations of the integrals in eqns (11-12) requires explicit knowledge
of the unperturbed flame shape f0(X). We obtain the latter invoking Ma� 1 between the flame
and the fuel inlet (so that we may introduce the stream function ψ for the incompressible flow in
this region) and with the help of the variational principle discussed in [1]

∫
K
df0

dX
dψ = max. with fixed Af0 = 2π

∫
dX X

√
1 +

(
df0

dX

)2

(13)

where K ≡ d2f0/dX
2

(1 + (df0/dX)2)3/2
, incompressibility dictates the value of Af0:

vf0Af0 = πR2
maxv0, (14)

and a suitable guess is to be provided for ψ(X,Z). Physically, eqn (13) selects possible stable
steady flame shapes in agreement with Rayleigh’s criterion; since we are interested in the onset
of oscillations i.e. on the loss of stability of steady states, it is only natural to invoke eqn (13) to
describing the physical state we start from in our analysis. The proof of [1] invokes the well-known
jump conditions of [6] at the flame, so no longitudinal jump of velocity is considered. In contrast
with [1], here we investigate no quasi-flat flames. We allow our guess for ψ to include vortices;
admittedly, this is in contrast with the assumption of negligible ∇v0 invoked in the proof of eqn
(6), but leads to more realistic results. Numerical solutions of eqn (13) show that our guess vortices
are associated to convex flame shapes, in agreement with both CFD and our discussion above. This
point deserves further discussion, which is definitely outside the limit of the present work. Here we
look for solutions of eqn (13) in a simple convex shape, i.e. the parabola f0(X) = c− a(X − b)2.
Here eqn (13) dictates the dependence on vf0 of the quantities a, b, c, Af0, I0, [dAf/d(vf/v0)]0
and the distance ∆X ≡ 2

√
c/a between the two intersections of the parabola with the Z = 0 axis.

As for the flame velocity vf , we do not know it exactly, as only laminar flame models are available.
However vf has its maximum value vfM when the reaction is stoichiometric, i.e. zflame = zsto
(= 10/11 for methane in air). If there is either no air (zflame = 0) or no fuel (zflame = 1) then
Qcomb = 0. Then, we may reasonably write:

vf

∣∣∣
t

= vfM h(zflame
∣∣∣
t
), where 0 ≤ h ≤ 1, h(0) = h(1) = 0, and h(zsto) = 1. (15)

If there is just one maximum of h, then for zflame ≈ 1 (lean combustion) vf increases with de-
creasing zflame, i.e. increasing relative abundance of fuel. We write h in the form h = c3 z

1+c1
flame (1−

zflame)1+c2 where c1, c2 and c3 are dimensionless constants to be determined. Relationships
h(zsto) = 1 and (dh/dz)zsto = 0 allow us to compute vf unambiguously provided that two quan-
tities – say vfM and c2 – are known.

Accordingly,Qcomb
∣∣∣
t

in eqn (10) is known provided that zflame
∣∣∣
t

is known. Moreover, the absence
of chemical reactions between the fuel inlet and the flame implies:

zflame

∣∣∣
t

= zin

∣∣∣
t−tconv

, (16)

where tconv is the time delay required by perturbations of chemical composition – convected by
the fluid – to reach the flame starting from the fuel inlet. Finally, pfuel in = constant and Dalton’s
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law of partial pressures give:

pin 1

∣∣∣
t−tconv

=
pfuel in

(1− zin)1

∣∣∣∣∣
t−tconv

. (17)

Formally, eqns (7-17) link pin 1

∣∣∣
t+tac

and pin 1

∣∣∣
t−tconv

, or equivalently, the couple {zflame, Af}
∣∣∣
t+τ

and the couple {zflame, Af}
∣∣∣
t
, where τ ≡ tac + tconv.

4 The limit cycle

Our line of thought is as follows. In the particular case of flat flames, Af is constant and the
evolution of the system is described by a 1-dimensional differentiable mapping (‘return map’)
zn → zn+1 were zn ≡ zflame(t) and zn+1 ≡ zflame(t + τ). Since 0 ≤ zflame ≤ 1 and both zn = 0
and zn = 1 are mapped to zn+1 = 0 regardless of the actual value of τ , as no combustion occurs
if either air or fuel is absent, the mapping has at least one maximum in the range 0 ≤ zflame ≤ 1.
Then the results of [4] apply, and a transition (‘bifurcation’) from a stable steady state to a stably
oscillating state (‘limit cycle’) may occur; zflame oscillates in the latter state between an upper
bound zmax and a lower bound zmin. We derive a formula for the amplitude zmax − zmin of
the oscillation near the bifurcation, where zmax − zmin ∝ |zflame 1| ∝ |(dAf/dt)1| ∝ O(ε). The
introduction of time-dependent Af requires cumbersome algebra in the general case. However, we
take advantage of the stability of the limit cycle against small perturbations. An example of such
small perturbation is just the contribution of dAf/dt near the bifurcation, and a perturbative
approach in dealing with dAf/dt is therefore justified. All the same, it is precisely this term which
allows us to compute the (so far unspecified) oscillation frequency ≈ |(dAf/dt)1/Af1|. In detail,
eqns (7), (10), (15) and (17) give:

qexch 1

∣∣∣
t−τ

=
1

(1− zin)1

∣∣∣∣∣
t−tconv

, (18)

where we have defined α ≡ ρY H vfM Af , ξ ≡ α ζ/pfuel in, ζ = ζN (γ − 1)/[4Af (cs0 − v0)],
qexch ≡ ξ Qexch/α and we have neglected terms ∝ O(ε2). Let us write da = a1 for the generic
quantity a. The boundary condition qexch = 0 for zin = 0 (i.e. no combustion without air) allows
straightforward integration of eqn (18):

qexch

∣∣∣
t−τ

= −1 +
1

(1− zin)1

∣∣∣∣∣
t−tconv

(19)

(no such condition applies for zin = 1, as limzin→1Y = 0 and qexch ∝ 1/Y →∞). Equations (16)
and (19) give

zn+1 = 1− 1
1 + qexchn

(20)

where an ≡ a(t), an+1 ≡ a(t+ τ) and we dropped the pedix ‘flame’. As for qexchn, eqns (8), (10)
and (15) give:

qexchn = ξ h(zn)− ζN p0d0

4pfuel in(cs0 − v0)
dAf/dt

Af
. (21)

In turn, equations (11), (12) and (15) give straightforwardly

dAf/dt

Af
= −4

zn+1 − zn
∆X

vfM
dh

dzn
, (22)

5
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for a parabolic flame shape in the realistic limit of long, thin flames (ac → ∞). Here we have
assumed zn+1 − zn ≈ zn1. This is justified for small amplitude |zn+1 − zn| ≈ |zmax − zmin|.
Equations (20-22) give

zn+1 = 1− 1
1 + ξ h(zn) + (dh/dzn)(zn+1 − zn) δ

, (23)

where δ ≡ ζN p0d0 vfM/ [pfuel in ∆X (cs0 − v0)] � 1 for thin flames, as δ ∝ d0. Equation (23) is
the fundamental result of our work. Note that it contains neither tac nor tconv. Firstly, we discuss
the flat flame limit δ → 0, then we Taylor-expand the R.H.S. of eqn (23) in the small parameter
(zn+1 − zn)δ.

5 Fixed, flat flame

If δ → 0 then eqn (23) reduces to

zn+1 = 1− 1
1 + ξ h(zn)

, (24)

which is just what we would have derived from eqns (18-22), had we postulated dAf/dt ≡ 0
from the beginning. Equation (24) is the return map we referred to above. It involves ξ and c2
(through h). In lean combustion z ≈ 1, hence dzn+1/dzn < 0. Bifurcation occurs [4] at the solutions
zcr(c2, δ = 0), ξcr(c2, δ = 0) of

zn+1 = zn; F (ξ, zn, δ = 0) = 0, (25)

where F ≡ 1 + dzn+1/dzn. Oscillations are triggered when ξ > ξcr,δ=0 = 0, i.e. when Ma becomes
too large. We compute the amplitude of the oscillation as follows. Our choice for h allows us to
show that the function zn+2(zn)−zn behaves like a cubic function of zn near the bifurcation. It has
just one zero for ξ < ξcr,δ=0 = 0 and three zeros, namely zmin, zcr,δ=0 and zmax for ξ > ξcr,δ=0 = 0.
The computation reduces therefore to an investigation of these zeros. It turns out that:

|zmax − zmin| = 0 for ξ < ξcr,δ=0; |zmax − zmin| = k4

√
ξ − ξcr,δ=0 for ξ > ξcr,δ=0; (26)

where k4 is a dimensionless function of the derivatives of the return map (see below). In spite of
eqn (26), the flat flame limit is not sufficient for practical purposes, for three reasons. Firstly, no
information concerning c2 is obtained. Secondly, eqn (24) provides us with no information about
oscillation frequency, as dAf/dt is irrelevant for δ → 0. Finally, zcr,δ=0 is an output of eqn (25); in
contrast, in real life we want to know at which value of Ma oscillations start for a given chemical
composition zin. In order to overcome these obstacles, we come back to eqn (23).

6 Moving, curved flame

For thin flames, δ is small. Then, we make a small error if we take δ constant in the Taylor
expansion after solving eqn (13) for ∆X = ∆X(vf0(zin)), etc. Physically, this means that the
bifurcation we are investigating occurs at the chemical composition assigned by the user, and that
just before the onset of oscillation the flame is stable according to Rayleigh’s criterion. Neglecting
higher-order terms, eqn (23) generalises eqn (24):

zn+1 = 1− 1
1 + ξ h(zn)

+ δ
dh

dzn

[
1− zn

(1 + ξh(zn))2 −
1

(1 + ξh(zn))3

]
. (27)

6
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Again, F ≡ 1 + dzn+1/dzn, and bifurcation occurs at zn = zin and ξcr(c2, δ) such that

zn+1 = zn; F (ξ, zn, δ) = 0. (28)

Comparison of eqns (25) and (28) gives two relationships between the three unknown quantities
ξcr, δ and c2:

zin = 1− 1
1 + ξcrh(zin)

+ δ

(
dh

dzn

)
zin

[
1− zin

(1 + ξcrh(zin))2 −
1

(1 + ξcrh(zin))3

]
(29)

(∂F/∂δ)∗ δ +
(
∂F

∂zn

)
∗

(zin − zcr(c2, δ = 0)) +
(
∂F

∂ξ

)
∗

(ξcr − ξcr(c2, δ = 0)) = 0, (30)

where the pedix ‘∗’ means ‘δ = 0, ξ = ξcr,δ=0, zn = zcr,δ=0’. We are left with the problem of
evaluating c2. To this purpose, we note that in order to trigger the oscillation, the power delivered
by the oscillating flame to the fluid should at least compensate the power carried away by the
fluid. Then, marginal stability (ξ = ξcr, zn = zin) reads [5]:

H(ρvf )0KJ =
1
2
ρ0cs0ω

2R2
max sin2

(
ωL

cs0

)
, (31)

where KJ = KJ(zin, Tflame(Tin)) ≈ constant as far as RTin � mfuelH; moreover, L is a typical
axial length and ω = cs0

√
(π/L)2 + (x0/Rmax)2 is a typical frequency, x0 = 2.405 being the first

zero of a Bessel function of zero-th order. The R.H.S. of eqn (31) is larger than the L.H.S. in stable
flames. First instability occurs (Rayleigh criterion) at the first occurrence of sin(ωL/cs0) = 1. In
the limit of large cs0 (i.e. Ma � 1), eqn (31) gives the looked-for, geometry-dependent, third
relationship between ξcr, δ and c2 for given zin and Tin:

8 ξcrKJ h(zin) = γ(γ − 1) ζN x2
0. (32)

Once ξcr and c2 are known from eqns (29), (30) and (32), eqn (14) gives vfM with vf0 =
vfM h(zin); eqn (26) gives the amplitude, as ξcr replaces ξcr,δ=0, and eqn (12) gives the frequency
|(dAf/dt)1/Af1|.

7 Final results: the flame speed

We apply our discussion to a system with total mass flow M ≡ πR2ρv0, pressure p0, unperturbed
air mass fraction zin and unperturbed temperature Tin at the inlet. We introduce the quantities

k1 ≡
πR2

max

Af
; k2 ≡

mfuelH(γ − 1)
RTin

; k3 ≡
ζN
4ξcr

;

k4 ≡ 4

∣∣∣∣∣∣∣∣∣
3
2

∂ (∂zn+1/∂zn)2
∗

∂ξ

2
(
∂3zn+1

∂z3
n

)
∗

+ 3
(
∂2zn+1

∂z2
n

)
∗

∣∣∣∣∣∣∣∣∣
1/2

; k5 ≡ 1 + h(zin) k1

(
d(lnAf )
d(vf/v0)

)
0

.

Since the values of k1, etc. are taken just at the bifurcation for a flame shape which solves eqn
(13), the results will be valid just near the onset of the oscillation. The definition of ξ, eqns (9)
and (14) give

v0 =
cs0

1 + k1 k2 k3 ξcr/ (ξ h(zin))
= v0(ξ),

7
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and, in the Ma� 1 limit, the maximum allowable value for the flame speed:

vfM =
cs0
k2 k3

ξ

ξcr
. (33)

Relationships h(zsto) = 1 and (dh/dz)zsto
= 0 give c1 and c3, so that the flame speed is

vf (zflame) = vfM h(zflame); c1 =
1 + c2

1/zsto − 1
;

h(zflame) =
[

zflame
(1 + c1)/(2 + c1 + c2)

]1+c1 [ (1− zflame)
1− (1 + c1)/(2 + c1 + c2)

]1+c2

.

(34)

8 Final results: pressure oscillation amplitude

Equations (8) and (10) show that the fuel-related ( ∝ Y ) contribution to the source Qexch 1 of
acoustic oscillation is � the term ∝ dAf/dt for lean combustion ( Y → 0, i.e. nair � nfuel ).
The latter term is the only remaining term in Qexch 1 for Y = 0, and is basically due to air for
Y � 1. No measurement of pin 1 may distinguish between signals produced by particles of air and
particles of fuel; hence the sound produced by each particle of the flame is the same regardless of
its chemical nature. Accordingly, we write

Qcomb 1

nfuel
≈ p0d0

nair (γ − 1)

(
−dAf

dt

)
1

. (35)

Here eqns (9-10) give

Qcomb 1 = (Af vf )1H ρY = (Af vf )1H
mfuel

RTin
p0 (1− zin). (36)

Equations (35-36) give

p0d0

(γ − 1)

(
−dAf

dt

)
1

≈ (Af vf )1H
mfuel

RTin
p0 zin. (37)

Equations (8) and (37) give the source of the acoustic signal:

Qexch 1 = (Af vf )1H
mfuel

RTin
p0. (38)

Let us compute (Af vf )1. It does not vanish, as eqn (14) holds in steady state only. Moreover, we
may write vf1 = vfM (dh/dzn)zin

|zmax− zmin| and Af1 = (dAf/dvf )0vf1; thus, eqns (7), (26) and
(38) give the required formula for the amplitude (from the negative to the positive peak of p1) of
the oscillation of pressure at the inlet. The amplitude ∆p from zero to the positive peak of p1 is
half this value, i.e.

∆p = 0, Ma ≤Macr ≡ 1/ [1 + k1k2k3/h(zin)] ,

∆p =
1
2
p0 k4 k5 ξ

3/2
cr

∣∣∣∣dhdz
∣∣∣∣
z in

∣∣∣∣1/Macr − 1
1/Ma− 1

∣∣∣∣1/2 , Ma > Macr.
(39)

9 Final results: frequency

The oscillation of the flame area is |Af max−Af min| ≈ Af1 = (dAf/dvf )0 vf1. In a neighbourhood
of the bifurcation, eqn (15) leads to (dAf/dvf )0 = [dAf/d(vf/v0)]0 /v0(ξcr), where eqns (14) and
(33) give v0(ξcr) = cs0/|1/Macr−1|. Finally, eqn (12) gives (dAf/dt)1 = zflame 1 (dvf/dzflame) I ≈
vf1 I0. Accordingly, we write for the frequency of the oscillations near the bifurcation (if any such

8
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oscillation occurs, i.e. for Ma > Macr):∣∣∣∣ (dAf/dt)1

Af1

∣∣∣∣ =
cs0I0

|1/Macr − 1| (dAf/d (vf/v0))0

. (40)

10 Conclusions

Equations (34), (39) and (40) are our final results. They describe spontaneous oscillations in a
premixed lean burner which is not too far from a guess configuration which satisfies Rayleigh’s
criterion of stability. We have applied these equations to an Ansaldo burner. (This task required a
suitable choice of the stream function of the flow sustaining the flame in the combustion chamber, as
well as an estimate of the Green function for the acoustic equation in the Ansaldo burner geometry;
these points are not discussed here). According to eqn (34), the flame speed is always larger than
the laminar value: this is in agreement with the common practice of Ansaldo burners. According
to eqn (39), a lower threshold Macr on Mach number Ma exists for the occurrence of pressure
oscillations. The leaner the combustion, the lower Macr. Above threshold, the relative amplitude
of the oscillation increases with increasing Ma and with decreasing fuel content. This result agrees
with Ansaldo experience and – qualitatively at least – with [10]. Equation (40) links the oscillation
frequency and the sound speed. We encompass the relative amplitude ∆p/p0 of eqn (39) and the
frequency of eqn (40) in a single plot with the help of the Strouhal number defined as St =
Rmaxfrequency/v0 (Fig.1). Real-life applications show that many different configurations satisfy
Rayleigh’s criterion: our treatment deals with the perturbations of just one of them. Investigation
of such different configurations, as well as of the interactions among different flames will be the
subject of future work.

Figure 1: The relative amplitude ∆p/p0 vs. St according to eqns (39) and (40).
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