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A Flame Describing Function (FDF) framework recently developed to assess the stability
of an unconfined premixed combustor is here used to examine the dynamics of a generic
system including a feeding manifold a multipoint injector and a flame tube confining the
combustion zone. The feeding manifold has a variable length which is used as a bifurcation
parameter in the instability analysis of this system. Self-sustained oscillations are charac-
terized at their limit cycle for different sizes of the feeding manifold. Using the FDF frame-
work, frequencies and limit cycles are predicted and compared with experimental values
measured on the combustor. It is shown that limit cycles are well predicted by taking into
account the nonlinear response of the flame. This is also used to explain nonlinear mode
triggering observed in certain ranges of the feeding manifold length.

1 Introduction

The possibility of a resonant coupling between combustion and acoustics was recognized more than a
hundred years ago [1]. The problem has since been encountered in a variety of combustion applications
leading to numerous investigations of these instabilities (see for example classical monographies [2, 3]
and [4–8] for more recent reviews). Much progress has been made in the understanding and control of
combustion dynamics but research is still needed to develop predictive tools and design systems with
augmented stability margins. One difficult aspect is to account for the nonlinear flame dynamics which
is manifested in practice.

In many studies the flame response to incoming perturbations is represented in a linear fashion.
This is well illustrated in the sensitive time lag model [2] where this response is formulated in terms of
an interaction index n and a time delay τ. This has been generalized by introducing the Flame Transfer
Function (FTF), which is now commonly used to predict stability maps of laminar or turbulent config-
urations [9–12]. The FTF accounts for the frequency dependent response which approaches a quasi-
steady behavior at low frequencies and filters out higher frequencies. The FTF relates heat release rate
fluctuations to incident flow perturbations and is easily included in linear stability analysis to estimate
instability ranges of combustion systems [10, 12–14].

It is however known, that many features observed during unstable oscillations cannot be anticipated
from the FTF. This is illustrated in [12] where the linear stability analysis provides resonant frequen-
cies which are close to, but do not quite match, experimentally observed frequencies. It is shown that
the flame shape is strongly modified when perturbation amplitudes increase [15, 16]. Saturation effects
have been identified for many flame geometries and shown to occur through different mechanisms
and it is now clear that the input level must be considered to represent the flame response to incoming
flow perturbations [7, 15, 17–20]. This has already been shown for swirled flames featuring saturation
phenomena and nonlinear dynamics [21]. Besides, many studies reveals that the flame front geometry
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Figure 1: Experimental setup used to characterize self-sustained instabilities.

plays a major role on the nonlinear response between the heat release rate fluctuations and the pertur-
bations [14–16, 20]. To improve the quality of the stability maps, a nonlinear analysis is clearly needed.

It is possible to include saturation as illustrated in an analysis of the stability of a ducted “V"-flame
[17] by using different expressions for the FTF depending on the amplitude level of velocity fluctuation
at the flame anchor point. When the level is below a certain threshold an analytical model for the FTF
is used. When the threshold is exceeded heat release rate fluctuations are assumed to saturate to a con-
stant value. This can be generalized by making use of the Flame Describing Function (FDF) framework
devised more recently by [22]. The FDF, formed by a family of transfer functions corresponding to a
range of input levels, depends on frequency and amplitude. When this is used in combination with a
linear acoustics description of the other elements in the system, one can obtain a nonlinear dispersion
relation which yields amplitude dependent growth rates and resonant frequencies. Application to an
unconfined multiple injection configuration provides amplitude levels at the limit cycles, and allows
predictions of mode switching, triggering and hysteresis [22].

The present study extends this development by considering a multipoint injection combustor where
a collection of laminar conical flames are anchored on a perforated plate placed in a flame tube. The
system presented in section 2 has a generic geometry which typifies that of many practical devices. The
FDF framework is applied to this configuration to validate the methodology with respect to experimen-
tal data (sections 3 and 4). Frequency shifting during transients, instability triggering, hysteresis and
mode switching phenomena are specifically considered (section 5). These features which could not be
anticipated from linear stability analysis are here obtained from the FDF framework.

2 Experimental setup and combustion regimes

The experimental setup is sketched in Fig. 1. The three main elements of the burner are the feeding
manifold, a perforated plate which delivers the premixed streams and anchors the flames and the quartz
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Figure 2: Stable and unstable combustion regimes at 750 Hz for an equivalence ratio φ=1.03.

confinement tube. The combustion zone is confined by this quartz tube. The reactants are premixed in
the piston before they are injected into the enclosing manifold. The piston also allows changes in the
length of the feeding manifold. The perforated plate, which is confined within a quartz tube at the top of
the feeding manifold, anchors an ensemble of small laminar conical flames. It has a thickness of l=3 mm
and a diameter of 2R=70 mm. It is made of stainless steel and comprises N =420 holes of diameter 2rp =2
mm placed on a 3 mm square mesh, resulting in a global porosity P = Nπr 2

p /πR2 of 0.34. Four quanti-
ties are measured in this experiment. The fluid velocity in the feeding manifold is determined with a hot
wire probe located at a distance of 3 cm below the perforated plate. A photomultiplier equipped with an
OH∗ filter (λ=308 nm) views the flames from outside the confinement tube and provides a signal which
is nearly proportional to the heat release rate [23, 24]. Pressure fluctuations are measured inside the
feeding manifold with the microphone M2 placed in a waveguide in front of the hot wire and another
microphone M1 outside the confinement tube 24.5 cm away from the burner axis detects the radiated
sound pressure level. The length of the feeding manifold, as measured between the upstream side of the
perforated plate and the head of the piston, can be varied in discrete steps all the way from L1=0.15 m
to 0.54 m. The piston head is designed to offer a quasi-perfect reflecting boundary for acoustic waves. A
confinement tube of L2=0.1 m enclose the combustion zone. The flow rate of the methane/air mixture
is ṁ=4.71×10−3 kg/s with an equivalence ratio φ=1.03, providing a thermal power of 13.3 kW.

Combustion is first initiated with the piston placed at L1 = 0.15 m from the perforated plate and the
signals from the different sensors are recorded at this location. The piston is then moved to a new lo-
cation and experiments are repeated for a larger manifold size by increments of one centimeter until
L1=0.54 m is reached. In a second set of experiments, combustion is initiated for L1 = 0.54 m and ex-
periments are carried out by moving the piston in the reverse direction. Under stable operation, flames
have a conical steady shape (top of Fig. 2). Under unstable conditions, the flames move in a synchro-
nized fashion with a periodic shedding and subsequent collapse of small pockets of fresh gases formed
(bottom of Fig. 2). This yields a noise level exceeding 110 dB (ref 2 × 10−5 Pa) at microphone M1. Os-
cillation amplitudes and frequencies can be extracted from the different signals and are analyzed as a
function of the feeding manifold cavity size L1 and the direction of the piston motion. Another set of
experiments is conducted to get the response of the flame ensemble to velocity fluctuations and to de-
termine the FDF [22]. Heat release rate fluctuations are determined with fluctuations of the OH∗ radical
emission recorded by a photomultiplier (PM). Velocity fluctuations used to determine the FDF are ob-
tained from LDV (Laser Doppler Velocimetry) measurements inside one flame 0.7 mm above the hole.
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Figure 3: Frequency and pressure level evolution with the L2=0.1 m confinement tube, swept from 0.15
m to 0.54 m (o) and from 0.54 m to 0.15 m (x) of feeding manifold. The acoustic eigenmodes
without combustion are plotted with dashed lines.

3 Experimental results

Figure 3 illustrates the evolution of frequency and pressure for different lengths of feeding manifold (L1)
and a confinement tube of L2=0.1 m. The dashed lines represent the acoustic eigenmodes evolution
for a variable feeding manifold length L1. The system features self-sustained oscillations for all cavity
lengths L1 except between 0.24 and 0.26 m where combustion is stable. Results obtained by increasing
the manifold length indicate that the oscillation frequency lies around the first acoustic mode when
L1 ranges from 0.15 m to 0.23 m, then the oscillation vanishes in the band L1=0.24 m to 0.26 m. The
peak frequency then evolves around the second acoustic mode for longer cavity depths (L1=0.27 m to
0.54 m). The corresponding pressure level at M2 lies around 142 dB when the system is unstable and
is roughly independent of L1. When the piston is moved in the reverse direction, the peak oscillation
frequency remains locked to the second mode from L1=0.54 m to 0.26 m and the oscillation level is
about equal to that found in the previous case. The oscillation then vanishes in the stable band, but
from L1=0.22 m to 0.18 m the frequency is still locked on the second acoustic mode with a moderate
amplitude level. The peak frequency finally switches to the first acoustic mode for the shortest cavity
sizes L1=0.17 m to 0.15 m with an oscillation level equal to that found in the first set of experiments. The
system clearly features an hysteresis for the range of feeding manifold lengths comprised between 0.18
and 0.22 m where the oscillation frequency and level depend on the history of the piston motion. Such
features cannot be anticipated from a linear stability analysis and they constitute a good benchmark for
validation of the FDF nonlinear methodology.
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Figure 4: Burner and symbol convention used for the analytical model.

4 Nonlinear analysis

A nonlinear stability analysis based on the FDF is now carried out. In the following analysis, fluctuat-
ing quantities are written as a sum of a mean quantity and a fluctuation : a = ā + a′. The analysis is
performed in the frequency domain and each fluctuating quantity takes the form : a′ = |a′|e−iωt where
ω=ωr + iωi , ωr corresponding to the angular frequency (2π f ) and ωi denoting the growth rate. A per-
turbation grows for positive values of ωi while it decays for negative ones. The analytical development
follows that devised previously [25]. Given the low unstable frequencies observed in the experiments,
the wavelengths are long compared to the dimensions of the system and one may safely consider that
acoustic propagation only involves longitudinal waves. The flame region is also very small compared to
the wavelength and one may consider that it is compact. The different elements of the system are mod-
eled with an acoustic network. The influence of the flames is taken into account in the matching con-
dition between the feeding manifold and the confinement tube through the expansion of gases. This
method is often used to analyze thermo-acoustic coupling phenomena (see for example [11, 26–28]).
The burner is modeled as illustrated in Fig. 4. In each tube section, temperature, density, velocity and
pressure are all subscripted with their respective numbers and mean quantities (T̄ , ρ̄) are considered
uniform. The pressure and the velocity fluctuations are written as follows for the nth tube :

u′
n,zn

= 1

ρncn

(
A+

n e i kn zn − A−
n e−i kn zn

)
p ′

n,zn
= A+

n e i kn zn + A−
n e−i kn zn

(1)

where zn stands for the position, kn the wave number (kn = ω/cn) and cn the speed of sound which
differs in the premixer c1=340 m/s and the flame tube c2=850 m/s. These relations are completed by
matching and boundary conditions. The head of the piston offers a quasi-perfect reflecting boundary
condition which gives u′

1,0 = 0. At the combustor outlet the pressure fluctuation vanishes and yields p ′
2,L2

= 0. In this model, no end correction is taken into account. This would be easy to include as all it does is
to augment the length of the confinement tube by a factor of 0.85 times the radius. The perforated plate
is considered with bulk oscillations of velocity in the apertures. Based on Melling’s work [29], Noiray
et al. [22] used a relation that links the pressure between the upstream and downstream sides of the
perforated plate :

p ′
p,l −p ′

p,0 = i ωρ1l
(
1+ lν

rp
(1+ i )

)
u′

p (2)

where lν = (2ν/ω)1/2 stands for the viscous acoustic boundary layer thickness and ν the kinematic vis-
cosity. Each side of the perforated plate is linked with the upstream or the dowstream cavity where the
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following relations are satisfied :

p ′
p,0 = p ′

1,L1
, p ′

p,l = p ′
2,0 , S1u′

1,L1
= N Sp u′

p (3)

In these expressions S1 is the surface area of the feeding manifold section, Sp the surface area of one
aperture and N the number of holes. Combining Eq. (2) and Eq. (3) it is possible to find the acoustic
pressure jump condition between the upstream and downstream cavities :

p ′
2,0 −p ′

1,L1
= i ωρ1l

(
1+ lν

rp
(1+ i )

) u′
1,L1

P
(4)

As the perforated plate is thin with a high porosity, one expects that its influence on the acoustic field
will be weak. The acoustic volume flow rate experiences a jump through the flame region :

S2u′
2,0 −N Sp u′

p = γ−1

ρ1c2
1

Q̇ ′ (5)

where S2 represents the confinement section surface area, γ is the heat capacity ratio and Q̇ ′ the heat
release rate fluctuation. The right hand side term of Eq. (5) can be expressed by taking into account the
response of the flame to velocity fluctuations with a Flame Describing Function (FDF). This quantity
is obtained with a setup described in Durox et al. [15]. The conical flames are subjected to harmonic
oscillation of increasing fluctuation levels up to 51 % for a range of frequencies up to 1600 Hz. FDF
measurements are plotted in Fig. 5 in terms of gain G and phase ϕ defined as :

F (ωr , |u′
p |) =

Q̇ ′
/

Q̇

u′
p /up

=G(ωr , |u′
p |)e iϕ(ωr ,|u′

p |) (6)

where Q̇ stands for the mean value of the heat release rate fluctuation and up the mean value of the
velocity in one hole. The FDF depends on both the frequency ωr and the fluctuation amplitude u′

p
as shown in Fig. 5. When the amplitude increases, the gain G drops and the phase ϕ evolution shifts
confirming the nonlinear behavior of the flame. This is the key point of the nonlinear stability analysis.
As shown in this figure, the FDF data are limited by the lack of efficiency from the loudspeaker at high
frequency and amplitude. The forcing root mean square velocity level u′

r ms is determined by a Fourier
transform and Ubulk stands for the mean value of the velocity profile measured 0.7 mm above one hole
by means of LDV. It is equal to Ubulk =3.1 m.s−1. The normalized ratio between the fluctuation of OH∗
radical light intensity and the velocity yields the gain G and the phase ϕ of the flame response. The
flame acts as a low pass filter with a significant overshoot for higher frequencies and low fluctuation
amplitudes. This behavior is also noted by other authors [15, 30, 31]. The phase evolves in a quasi linear
fashion with the frequency and is sensitive to the fluctuation level. With the aim of using these measures
for stability analysis, data are interpolated and extrapolated in missing areas. Considering the right hand
side of Eq. (5) and the FDF Eq. (6), one can write :

γ−1

ρ1c2
1

Q̇ ′ = γ−1

ρ1c2
1

Q̇ ′
/

Q̇

u′
p /up

u′
p /up

1
/

Q̇
(7)

In the present study, air and methane are considered to be ideal gases yielding, c1 =
√
γr T1, cp = γr /(γ−1),

Q̇ = ṁcp (T f −T1), ṁ = ρ1N Sp up , where r is the gas constant of the mixture, ṁ the mixture mass flow
rate in one hole, cp the specific heat at constant pressure, γ the heat capacity ratio and T f the adiabatic
flame temperature. Combining Eqs. (5) to (7), the velocity relation of Eq. (3) and the ideal gas relations,
one obtains an expression for the acoustic volume flow rate jump condition across the flame sheet de-
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Figure 5: Experimental measurements of the Gain G and Phase ϕ of the FDF. u′
r ms corresponds to the

rms value of the fluctuation amplitude and Ubulk the mean flow velocity within one hole.

pending on the FDF :

S2u′
2,0 −S1u′

1,L1
=Ge iϕS1

(
T f

T1
−1

)
u′

1,L1
(8)

The preceeding set of equations can be used to obtain the following linear system :
1 −1 0 0
0 0 e i k2L2 e−i k2L2

A1e i k1L1 A2e−i k1L1 −1 −1
Be i k1L1 −Be−i k1L1 −1 1




A+
1

A−
1

A+
2

A−
2

= 0 (9)

where the complex coefficients A1, A2 and B correspond to :

A1 = 1+ iωl

P c1

[
1+ lν

rp
(1+ i )

]
, A2 = 1− iωl

P c1

[
1+ lν

rp
(1+ i )

]
,

B = S1

S2

ρ2c2

ρ1c1

[
1+

(
T f

T1
−1

)
Ge iϕ

]
The determinant of this system must equal zero to obtain non-trivial solutions. This condition provides
the dispersion relation describing the dynamics of the system :

S1

S2

ρ2c2

ρ1c1

[
1+

(
T f

T1
−1

)
Ge iϕ

]
sin(k1L1)sin(k2L2)

−cos(k1L1)cos(k2L2)+ ωl

P c1

[
1+ lν

rp
(1+ i )

]
cos(k2L2)sin(k1L1) = 0

(10)

One then has to find the complex roots ω=ωr + iωi of this relation yielding oscillation frequencies f =
ωr /2π and growth rates ωi of perturbations as a function of the perturbation amplitude u’r ms /Ubulk .

5 Theoretical and experimental comparison

The nonlinear analysis described in the previous section is now used to investigate the stability of the
system. It is interesting to compare the experimental results from the self-sustained instabilities de-
scribed in section 3 with the theoretical predictions of the oscillation frequencies and amplitudes at the
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Figure 6: Positive values of the growth rate (in s−1) for a L2=0.1 m flame tube as function of the length
L1 of the feeding manifold and the rate of fluctuation amplitude u’r ms /Ubulk .

limit cycle. Therefore, the FDF is used to calculate roots of the dispersion relation (10) for each driving
amplitude. This yields ωr and ωi couples for each burner geometry and driving amplitude. For the dif-
ferents lengths of feeding manifold and the L2=0.1 m confinement tube, calculations give the growth
rate evolutions of the three first oscillation modes. Results are displayed in Fig. 6. This figure represents
positive values of growth rate. Negative ones correspond to the white zone. Each color is dedicated to
an oscillation mode; the first mode is drawn in yellow, the second in blue, and the third in red. Red
dashed lines indicate the limit cycle corresponding to vanishing values of the growth rate. (One should
in fact consider that the limit cycle is obtained when the growth rate equals the damping rate in the sys-
tem but in the present experiment, this damping rate is small and it is admissible to just look for locus
corresponding to a vanishing growth rate).

From the different growth rate trajectories, it is possible to find, for each geometry, the evolution
of the oscillation frequency of an instability up to the limit cycle. As presented in Fig. 6, the growth
rates reveal three types of evolution. The first type of trajectory (for example dashed line “A” L1=0.15
m) is positive for a small level of perturbation (u′

r ms /Ubulk =0.1) and vanishes for a finite amplitude
(u′

r ms /Ubulk =0.6), and, as such, defines the limit cycle of the system. In this case, the system is linearly
unstable. For the second type (for example dashed line “B” L1=0.2 m), the growth rate of the first mode
(yellow zone) is negative for small perturbation amplitudes but becomes positive at an amplitude of
u′

r ms /Ubulk =0.3 and finally vanishes for a higher amplitude (u′
r ms /Ubulk =0.65). This yields a limit cycle

that can be triggered by a finite level of perturbation. Indeed, a small level of perturbation cannot cre-
ate an instability whereas a high oscillation level can. These limit cycles are nonlinearly unstable and
linearly stable. For this length, the second mode (blue zone) depicts a first type trajectory as described
herein. The saturation level of this mode, around u′

r ms /Ubulk =0.3, is able to trigger the nonlinearly un-
stable first mode. This case is exemplified in Fig. 7. Combustion is initiated in the stable zone and the
piston is retracted until reaching L1=0.18 m. The system oscillates around the second mode at f =1290
Hz. At t=0.08 s an artificial perturbation is created by blowing on the flame and the instability switches
to the first mode at f =449 Hz. It is worth noting that the experiment has been carried out for a feed-
ing manifold length L1=0.18 m while the case presented in Fig. 6 corresponds to L1=0.2 m. This small
discrepancy is due to the accuracy of the theoretical prediction. The last type of trajectory (for example
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Figure 7: Nonlinear mode triggering for a feeding manifold length L1=0.18 m.

dashed line “C” L1=0.25 m) yields negative values of growth rate for all perturbation levels. In this case,
the system is unconditionally stable. Moreover, it can be deemed as both linearly and nonlinearly sta-
ble. In summary, it is found that the calculations show three types of growth rate evolution. By analyzing
the growth rate for each length of feeding manifold L1 it is possible to find the limit cycle obtained when
ωi =0 and extract at the same time the oscillation frequency using the angular frequency ωr . The limit
cycle is reached when the growth rate is equal to zero. The acoustic damping δ is not taken into account
in these calculations. For systems featuring large damping, limit cycles are reached when ωi −δ=0. In
the present case, the influence of δ is weak because growth rates take high values typically about 500 s−1

whereas δ in this system was estimated to be around 10 to 50 s−1 and does not significantly influence
the results.

Figure 8 displays the evolution of the predicted oscillation frequencies and the experimental mea-
surements. In these figures, the acoustic eigenmodes, without flame (G=0 in the dispersion relation),
are drawn as thin dashed lines. The frequencies predicted at the limit cycle using the nonlinear anal-
ysis are represented by bold lines and the experimental measurements are plotted as diamond signs.
For each length of feeding manifold, (L1), the frequency is extracted from the oscillations of the pres-
sure signal (M2). As presented in Fig. 3, there are two types of frequency evolutions. When the manifold
length is increased (min to max) (Fig. 8a), the oscillation frequency evolves around the first eigenmode
with a change around the second eigenmode after the stable zone between L1=0.24 m and 0.26 m. In
the reverse movement (max to min) (Fig. 8b), the frequency lies close to the second eigenmode until it
becomes stable at L1=0.26 m, but resumes around the second eigenmode for L1=0.23 m to 0.18 m before
it finally switches to the first mode for the last three lengths L1=0.17 m to 0.15 m. This behavior, typical
of hysteresis, is well described by the growth rate analysis (see Fig. 6). When the piston is moved in the
reverse direction (L1 decreasing), the oscillation vanishes for three lengths of feeding manifold L1=0.26,
0.25 and 0.24 m. After the stable zone, linearly unstable trajectories for the second mode yield a weak
limit cycle between L1=0.23 m and 0.18 m (blue zone). For shorter lengths L1 < 0.18 m, the system is
unstable on the first mode (yellow zone) as presented in Fig. 8b. At the beginning, when the manifold
cavity was increased from L1=0.15 m to 0.54 m, the system oscillates at high amplitudes for the first
lengths L1=0.15 m to 0.17 m. In this case, the instability stays on the first mode even if the growth rate
trajectories of this mode become nonlinearly unstable between L1=0.18 m and 0.23 m. The nonlinear
perturbation, needed to trigger the first mode, comes from the high oscillation amplitude reached at the
previous length. The origin of this hysteresis is linked to the nonlinear behavior of the flame. Indeed, it
is possible to predict the hysteresis by analyzing the FDF phase at the acoustic eigenmodes frequencies
around the stable zone. If the phase of the FDF is comprised between π and 2π modulo 2π, the insta-
bility may develop [25,32]. When the instability evolves on the first mode at high amplitude (increasing
L1) the phase lies in the right band between π and 2π (see Fig. 5) at L1=0.23 m where f =400 Hz whereas
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Figure 8: Experimental and predicted oscillation frequencies and amplitudes of self-sustained instabil-
ities for the L2=0.1 m confinement tube for increasing (a) and decreasing (b) length L1 of the
feeding manifold.

this is not the case for the second mode f=1100 Hz. When the cavity length L1 decreases, as the system
leaves the stable zone at L1=0.23 m, the phase for low oscillation amplitude lies in the right band for the
high frequency f =1100 Hz of the second mode. This is the reason why the instability takes on second
mode frequency values.

One advantage of the FDF methodology, is that, in addition to providing the limit cycle frequency, the
growth rate analysis also predicts the amplitude. For each length of feeding manifold L1, it is possible to
find the oscillation amplitude when the instability oscillation is established. These results are presented
in Fig. 8. The predictions are plotted as dashed lines and the experimental values, obtained by the hot
wire probe, appear as diamond signs. Fig. 8a represents the evolution of the amplitude when L1 is in-
creased. The oscillation evolves at high amplitude for L1 comprised between 0.15 m and 0.23 m. After
the stable zone L1=0.24, 0.25 and 0.26 m, the oscillation grows from a level around 0.19 to 0.7 for longer
feeding manifold lengths. By decreasing L1, the oscillation evolves in the same way until the stable zone
at L1=0.26, 0.25 and 0.24 m. Then, the amplitude switches to a very low level around 0.1, or nearly close
to zero for the hot wire values at L1=0.23 m and 0.22 m. After L1=0.18 m, the level increases abruptly to
0.7. The dashed line, which represents the results of calculations, is in good agreement with the levels
measured in the experiments.

6 Conclusions

This work presents results of calculations of limit cycles based on the Flame Describing Function (FDF)
framework for combustion instability analysis. The system studied herein is close to a real configura-
tion in the sense that it features a feeding manifold that is used to feed a multipoint injector and fea-
tures a combustion region in a confined environment. The FDF, determined experimentally, exhibits
nonlinearities of the flame response. This is used to derive a nonlinear dispersion relation providing
predictions of the stable or unstable behavior of the combustor as a function of amplitude. Compari-
son with systematic experiments were carried out by changing the feeding manifold length. The FDF
analysis provides a suitable account of limit cycle amplitudes, hysteresis and mode switching observed
in practice. Finally, it should be noted that linear analysis cannot provide reliable stability ranges of a
system, because nonlinear triggering is possible in which a high amplitude disturbance exceeding a

10



Frédéric Boudy, Daniel Durox, Thierry Schuller and Sébastien Candel

threshold may induce self sustained oscillations. This phenomenon is well retrieved from the growth
rate trajectories determined from the FDF framework.
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