
Schedule Integration Framework for Time-Triggered
Automotive Architectures

Florian Sagstetter, Sidharta Andalam,
Peter Waszecki, Martin Lukasiewycz

TUM CREATE, Singapore
florian.sagstetter@tum-create.edu.sg

Hauke Stähle,
Samarjit Chakraborty, Alois Knoll

TU Munich, Germany
samarjit@tum.de

ABSTRACT
Automotive Electrical/Electronic (E/E)-architectures consist
of various components which are generally developed indepen-
dently. Due to the increasing size and complexity, compo-
nent integration is highly challenging and already slight mod-
ifications to components or subsystems often require expen-
sive re-testing and re-validation. As a remedy, we propose a
framework for modular architectures based on a data-centric
description and a fully time-triggered scheduling. This mod-
ular design approach is enabled by a novel methodology for
schedule integration where local schedules are defined inde-
pendently for subsystems before being integrated into a global
schedule. This divide-and-conquer approach significantly re-
duces the integration complexity while the system becomes
highly composable. Our experimental results give evidence of
the efficiency and versatility of the proposed approach, using
networks based on a time-triggered automotive Ethernet.

1. INTRODUCTION
Innovation in the automotive industry today is largely driven

by software. However, as novel functions are often devel-
oped by suppliers, they are commonly integrated as additional
(hardware) components. Hence, the actual software-based func-
tionality is already implemented on respective Electronic Con-
trol Units (ECUs) when provided to the car manufacturer.
During the integration phase, the different components are
then considered from a black-box perspective. Each compo-
nent is defined by its messages together with some semi-formal
description of its behavior and constraints. Intensive testing
and analysis is required to prevent unintentional feature in-
teraction and ensure correct functionality. Due to the rapidly
growing complexity of this integration process, the current de-
sign approach is reaching its limits [1]. At the same time,
the design paradigm in the automotive industry is currently
shifting from event-triggered to time-triggered systems, e.g.,
through the introduction of automotive Ethernet. Therefore,
a fundamental paradigm change in the design of automotive
Electrical/Electronic (E/E)-architectures is required.
Related work. The AUTomotive Open System ARchitec-
ture (AUTOSAR) partnership is one of the efforts undertaken
to define an open and uniform software platform to improve

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
DAC ’14 June 01 - 05 2014, San Francisco, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2730-5/14/06...$15.00.
http://dx.doi.org/10.1145/2593069.2593211.

the portability of software [2]. We assume such a homogeneous
software platform and extend it with a data-centric description
and a modular design process. In particular, here we focus on
a modular scheduling approach based on schedule integration.
In the area of hierarchical scheduling for component-based sys-
tems, the problem of integrating independent local schedulers
into a global scheduling through assigning runtime budgets is
studied [3][4]. Allowing to apply different scheduling strategies
like Earliest Deadline First (EDF) or Rate-Monotonic (RM)
scheduling for individual schedulers. However, component-
based scheduling is not applicable to automotive architectures
which implement distributed applications running on several
networked resources. In contrast, our paper considers a di-
rected acyclic graph model where each node represents a task
and the transitions represent the dependencies between tasks.
Our framework is based on a fully time-triggered system, pro-

viding the basis for temporal composablity [5][6] which is an
asset in the automotive domain. Time-triggered systems are
increasingly used in E/E-architectures, in particular, in the
form of FlexRay [7] and upcoming automotive Ethernet [8].
Scheduling of time-triggered systems is a challenging task and
various approaches have been proposed. In [9], an approach
using the model-checker SAL to determine a system schedule
is presented. An Satisfiability Modulo Theories (SMT)-based
approach to generate time-triggered schedules for TTEther-
net is presented in [10]. Finally, two Integer Linear Pro-
gramming (ILP)-based approaches have been presented for the
FlexRay bus in [7][11]. While [7] addresses the problem at job-
level, [11] applies the schedule optimization at task-level. Most
of these approaches perform well for small subsystem sched-
ules, but do not scale well for larger systems.
Contributions of the paper. We propose a framework for
scheduling modular time-triggered systems in the automotive
domain which is well suited for solving large and complex
scheduling problems. It is based on a data-centric descrip-
tion which allows to decouple the design process of individual
software components. A modular scheduling approach allows
to add or update applications and subsystems incrementally.
We present a schedule integration approach that combines in-
dependent subsystem schedules into a global schedule. While
this is of great importance in the automotive domain, schedule
integration has not been sufficiently studied in scientific litera-
ture. It was first addressed in [12] with a focus on FlexRay. In
the work at hand, we extend this approach with a concurrent
task and message scheduling and generalize it to support time-
triggered Ethernet. An extended conflict refinement allows to
adapt predefined subsystem schedules when required.

The focus of this paper is not to obtain a globally optimal
schedule, but rather to integrate locally optimized application
configurations according to their specific requirements. The

This publication is made possible by the Singapore National Research
Foundation under its Campus for Research Excellence And Technolog-
ical Enterprise (CREATE) programme.

M

M

Application
Design

Establish
Links

Signal Packing/
Routing

Schedule
Application

Schedule
Integration

D
es
ig
n
F
lo
w

Section 4

Section 3

Figure 1: Design flow of our framework from a data-
centric application definition to a fully configured system,
including a global schedule.

presented schedule integration does not only enable the de-
sign of highly composable architectures, it also significantly
improves the runtime of concurrent task and message schedul-
ing compared to existing work.
Paper outline. Section 2 introduces our framework. Section
3 presents the data-centric design flow to generate independent
schedules for subsystems. Section 4 then presents our schedule
integration approach to integrate subsystem schedules into a
global schedule. Finally, Section 5 presents test cases and a
case study for architectures based on time-triggered automo-
tive Ethernet, before Section 6 concludes the paper.

2. FRAMEWORK
The proposed framework is illustrated in Figure 1. It is

based on a data-centric design and a fully time-triggered ar-
chitecture. (1) The application developer implements software
components independently of the hardware platform of deploy-
ment. Interfaces to other applications are defined by topics,
clearly specifying the required or provided data. (2) To inte-
grate a data-centric application, links between publishers (e.g.
sensor task) and subscribers (e.g. computation task) are es-
tablished, obtaining the final task graphs. (3) Based on an
implicitly defined task mapping, a signal packing and rout-
ing is defined, introducing messages for task communication
in distributed applications. (4) A schedule is created, specify-
ing the exact starting times for all tasks and messages. (5) We
apply our schedule integration approach to integrate the indi-
vidual subsystem schedules into a global schedule. It is based
on a fully time-triggered system where all tasks and messages
are scheduled by a global clock. For time-triggered systems,
properties like worst-case execution time and maximal end-to-
end delay are commonly taken into account during the design
phase. Hence, the testing and analysis required to validate
correct system behavior is significantly reduced. On the other
hand, the design complexity for time-triggered systems typ-
ically grows exponentially if a system schedule is generated
from the scratch, see [9][11]. As a remedy, our schedule inte-

pα

pβ

pc

pm

pγ

pδ

M

sensor actuatorapplication

Figure 2: Task graph for a data-centric steer-by-wire ap-
plication. The application subscribes to two sensor topics

(,) to calculate the steering angle published to the
actuator topic (M). An indicator topic () allows indi-
cating errors. The application tasks pc and pm only have
data but no hardware dependencies.

gration exploits the predictability of time-triggered systems.
It allows to add or update application or subsystem schedules
in an iterative process, measurably reducing the integration
efforts. Furthermore, it allows to optimize a subsystem con-
figuration according to its individual requirements, improving
the application performance. The only requirements are a ho-
mogeneous software platform like an AUTOSAR based oper-
ating system, and a time-triggered architecture as supported
by automotive Ethernet used in next-generation vehicles.

3. SUBSYSTEM DESIGN
This section illustrates the design process from an applica-

tion developed according to data-centric design principles to a
configured subsystem accessing hardware resources.

3.1 Data-Centric Design
In a data-centric system, the supported and required proper-

ties of each software component are described explicitly. This
includes intrinsic properties like the processing time, memory
footprint, execution period, and security level as well as extrin-
sic properties like the required and provided data with quality-
of-service descriptions or end-to-end delay requirements. Ei-
ther a design tool or an appropriate middleware is responsible
to find a suitable matching between the different property sets
and to calculate a configuration for the whole system, includ-
ing schedules and routing of messages. The benefit of this
approach is that developers can focus on the properties of lo-
cal software components and do not have to consider the global
interaction between them.

Each application can have a set of publishers for sending
data and a set of subscribers for receiving data. Each pub-
lisher/subscriber is associated with a certain topic which ex-
actly defines the type of data and a name, e.g., {Steering Wheel

Angle} () might have the type {degree [rad]}. The sys-
tem designer abstracts any hardware-specific functionality, like
reading sensor data through an interface defined by an explicit
topic. This has the major advantage that hardware compo-
nents or applications can easily be replaced. Figure 2 shows
the resulting task graph for a steer-by-wire application after
the links between application and sensor and actuator tasks
have been established. As tasks abstracting hardware periph-
erals are explicitly bound to a particular hardware resource,
an implicit task mapping is given. For applications distributed
over several network nodes, additional messages are introduced
if required. Figure 3(a) illustrates the final task graph ΠF of
the application F after signal packing and message routing.

3.2 Generate Subsystem Schedules
To generate a subsystem schedule, for each task or message

p a start time sp has to be determined. The data-centric de-
scription of each application F defines the processing time ep

pα

pβ

pc

pm

pγ

pδ

m1

m2

m3

m4

p3

p4

p5

m6p1

p2

m5

app1
app2steer-by-wire

r1 r2 r3 r4

r5 (bus)

pα p1 pβ p2 pm pc pδ p3 pγ p4 p5

r1

r2

r5

r3

r4

hpα

epγ

spα

(a) Application task graphs and their mapping to the architecture (b) Schedule defining start times of each process

pα

pβ

pc

pm

pγ

pδ

m1m2 m3m4

p3

p4 p5

m6

p1

p2

m5

pα

pβ

pc

pm

pγ

pδ

m1m2 m3m4

pα

pβ

pc

pm

pγ

pδ

m1m2 m3m4

Figure 3: (a) Task graphs of three applications are mapped to four ECUs connected by a communication bus. If the
tasks of an application are distributed over different resources, additional messages are introduced for communication.

The dark shaded task graph () represents the application from Figure 2 after signal packing and routing. (b) Potential
schedule, defining start times sp for each task or message.

and period hp for each p ∈ F . Furthermore, after signaling
and routing, for each process p a mapping to an ECU or bus
r is defined. Based on these parameters, a system schedule is
determined. Figure 3 illustrates the task mapping of three ap-
plications to an architecture and a potential schedule for each
application. The scheduling algorithm determines a feasible
schedule, such that only one process p utilizes the resource r
at each point in time. To determine whether p utilizes r for a
specific point in time t, we define the following function:

r(p, t) =

{
1 ∀t : sp + n · hp ≤ t ≤ sp + n · hp + ep, n ∈ N0

0 otherwise

(1)
Without loss of generality, we assume non-preemptive time-

triggered scheduling such that a resource r always completes
the execution of one process before another process is started.
We denote the set of processes on a specific resource r as Pr.
To create a feasible schedule, two processes p, p̃ ∈ Pr must not
use r at the same point in time t:
∀r ∈ R, t ∈ R+, p, p̃ ∈ Pr, p 6= p̃ :

r(p, t) + r(p̃, t) ≤ 1 (2)

To determine the sub system schedules, we use an SMT ap-
proach which performs a concurrent task and message sched-
uling, based on a previously presented ILP approach. As the
focus here lies on schedule integration, please refer to [11] for
the ILP formulation to determine a feasible schedule. Depend-
ing on the application requirements, an optimization objective
might be defined for a minimal end-to-end delay [7], the control
performance [13], or the extensibility to ease later schedule in-
tegration [14]. The determined subsystem or cluster schedules
might then be combined to a global schedule by our schedule
integration approach.

4. INTEGRATION
The schedule integration approach presented in this section

forms the basis for a highly flexible integration process. First,
we describe the schedule integration, defining a feasible offset
for each cluster schedule. Second, a conflict refinement allow-
ing to adapt incompatible cluster schedules is presented. For
the sake of simplicity, we refer to both tasks and messages as
process p, and to any subsystem as cluster in the following.

4.1 Schedule Integration
During schedule integration, independently create cluster

schedules are combined to a global schedule. We define an
offset oD for each cluster schedule D ∈ D which allows to
shift the whole cluster schedule by a constant time. This off-
set maintains the general structure of the cluster schedule and

does not affect the subsystem behavior, as the start times of all
processes within the cluster are adapted concurrently and the
cluster schedule is executed periodically. Figure 3(b) shows a
global schedule after integrating three subsystem schedules. In

accordance with Constraint (2), two clusters D and D̃ can be
integrated in a global schedule, if the following equation holds:

∀r ∈ R, t ∈ R+, p ∈ D, p̃ ∈ D̃ :

r(p, t + oD) + r(p̃, t + oD̃) ≤ 1 (3)

Hence, oD and oD̃ must be selected such that no two pro-

cesses p ∈ D, p̃ ∈ D̃ intersect when scheduled on the same
resource. As the cluster schedule is executed with the period
hD = lcm

p∈D
(hp)

1 , oD might have any value between 0 and hD.

To determine offsets for each cluster, we use a two step ap-
proach: First, we compute feasible intervals for the relative

offset for each cluster pair D, D̃ ∈ D. The relative offset is
defined as oD − oD̃, hence it defines the relation between the
two offsets. Second, the final offsets for the whole set are de-
termined with an SMT. Based on Equation (3), the intervals
defining all feasible offsets for a single resource r are computed
as follows:

∆(r,D, D̃) = {x|x = oD − oD̃,oD ∈ [0, hD],oD̃ ∈ [0, hD̃],

p ∈ D, p̃ ∈ D̃,∃t : r(p, t + oD) + r(p̃, t + oD̃) ≤ 1}
(4)

Since a cluster is commonly distributed across multiple re-
sources, we need to consider all shared resources in order to
compute the relative cluster offset. With RD defining the set
of resources used by cluster D, we determine ID,D̃, defining all

feasible intervals λD,D̃ = [λmin, λmax] for the relative cluster

offset for D, D̃:

ID,D̃ =
⋂

r∈RD∩RD̃

∆(r,D, D̃) (5)

Based on these intevals, we apply the following SMT formula-
tion to determine the cluster offsets oD:
∀D ∈ D :

0 ≤ oD < hD (6)

∀D, D̃ ∈ D, D 6= D̃, λD,D̃ ∈ ID,D̃:

λmin ≤ oD − oD̃ ≤ λmax (7)

Constraint (6) defines the boundaries for oD, while Constraint
(7) ensures that all determined oD lie in the previously deter-
mined intervals. Updating the process start-times for each
cluster with the obtained offsets leads to the global system
schedule.

1Defines least common multiple of all process periods in cluster D.

requirements

determine in-
tervals ID,D̃

SMT: deter-
mine offsets oD

Determine all IIS

SMT: Resolve all IIS

conflict refinement

schedule

problem infeasible

∀D ∈ D

∀ID,D̃

∀x : x � CD oD, ∀D ∈ D

∀x : x 2 CD

∀D ∈ D{IIS}

∀D ∈ D
merge

{IIS}

∀x : x 2 CD{IIS}

refine

D{IIS}

Figure 4: Schedule Integration flow. If no solution exists
for the schedule integration (∀x : x 2 CD) a conflict refine-
ment is applied to resolve infeasibilities in conflicting clus-
ters. In case the conflict refinement fails (∀x : x 2 CD{IIS}),

it provides information to refine the system configuration.

4.2 Conflict Refinement
The schedule integration approach adapts the start times

sp of all processes p ∈ D for a cluster D collectively with the
offset oD. However, as the general structure for each cluster
D ∈ D is fixed, no feasible schedule x might exist such that
all constraints CD, defining the offset boundaries, are satisfied
(∀x : x � CD). In case no feasible solution exists for the ini-
tial set of clusters, a conflict refinement is required. It adapts
the individual process start times without affecting the end-to-
end timing delay defined in the cluster schedule. Hence, during
conflict refinement the start-times of intermediate tasks within
a task graph might be adapted such that the end-to-end timing
delay defined during cluster schedule generation is not affected.
For source or sink processes we assume that a decreasing end-
to-end delay has no negative impact on the functionality, hence
our algorithm might reduce the end-to-end delay but not in-
crease it. Therefore, while the conflict refinement modifies
the timing behavior of cluster schedules, all previously defined
constrains are still valid. Figure 4 illustrates the schedule inte-
gration module of our framework. If no feasible solution exists
(∀x : x 2 CD), we first determine D{IIS}. It represents the set
of all disjunct Irreducible Inconsistent Sets (IISs), represent-
ing subsets of clusters causing the schedule integration to be
infeasible. Secondly, we apply an SMT approach to resolve all
infeasibilities of D{IIS} through adapting individual process
start times. Finally, the adapted clusters are merged into a
single cluster (∀D ∈ D

merge
{IIS}) to guarantee termination.

Determine all IISs. While modern SMT solvers might pro-
vide the functionality to determine an IIS, these approaches
do not allow the use of domain knowledge and analyze each
constraint independently. Therefore, we propose an adapted
approach tailored to the schedule integration problem.

Instead of removing each constraint independently to isolate
the constraints leading to the infeasibility, we apply a group-
based approach where a whole cluster D including all affected
constraints CD is removed from D. To determine all IISs,
we first exploit the domain knowledge we obtained during the
interval calculation. If the calculated interval ID,D̃ is empty,
no feasible solution exists. Hence, in a first step, we initialize
D{IIS} with all pairs of clusters with an empty interval:

D{IIS} = {{D, D̃}|D, D̃ ∈ D, ID,D̃ = {}} (8)

After all initial pair-wise infeasibilities have been determined,
we apply an extended deletion filter. While a common deletion
filter only determines a single infeasibility, here we apply an it-

r1

r2

r5 (bus)

r3

r4

r
∈
R
{
I
I
S
}

r
/∈
R
{
I
I
S
}

pα

pβ pm

pc

pγ

pδ

m1m2 m3m4

p1

p2

m5

om5
+em5

op1

Figure 5: During conflict refinement we adapt the pro-
cess offsets individually. This is only illustrated for one
of the two applications here. Offset optimization is done
concurrently, ensuring that precedence constraints are not
violated (). Our algorithm only adapts the start times
of processes mapped to resources used by multiple cluster
in the unsatisfiable subsets (r ∈ R{IIS}).

erative approach until the remaining set of clusters is feasible.

Algorithm 1 describes an Iterative Deletion Filter extending

the IIS DIIS until the remaining subset D̂ is feasible.

1: D̂ = D \ D{IIS}
2: while ∀x : x 2 CD̂ do

3: for D ∈ D̂ do
4: if ∀x : x 2 CD̂ \ CD then

5: D̂ = D̂ \D
6: end if
7: end for
8: D{IIS} = D̂ ∪ D{IIS}
9: D̂ = D \ D{IIS}

10: end while

Algorithm 1 iteratively applies a deletion filter to the problem,
until the subset D̂ ⊂ D is feasible (lines 2-10). The deletion
filter removes the groups of constraints that affect one cluster
iteratively (lines 3-7). If the reduced set remains infeasible
(line 4), the cluster is removed from the infeasible set (line 5),
otherwise it remains part of it. After an IIS has been deter-
mined, it is then added to D{IIS} (line 8), and the process is

repeated for an updated D̂ (line 9).
Resolve all IISs. To cope with infeasible problems, we pro-
pose an SMT formulation to adapt the start times of indi-
vidual processes in addition to the cluster offset. To ensure
all constraints defined for the cluster schedule are not affected
by adapting process start-times, our approach ensures that the
previously defined end-to-end delay is not exceeded. The SMT
formulation is based on the following constraints:
• sp ∈ R - start time for each process p ∈ P as defined by

the subsystem schedule.
• fp = sp + ep - process finish time.
• wp,p̃ ∈ R - waiting time between two data-dependent

processes p, p̃. It is defined as the delay between the
finish time of p and start of p̃.
• Hr = lcm

p∈Pr
(hp) - is the hyper period of all processes

p ∈ Pr mapped to the resource r, where lcm defines the
least common multiple. It defines the period after which
the schedule for r repeats.
• F - set of processes of an application. F defines the set

of applications F .
• π = (p, p̃) - defines the precedence for p, p̃ ∈ F , defining

the execution order. ΠF denotes the set of all π for
application F .

Based on these constants our algorithm then determines a
feasible schedule for the following variables:

• oD: cluster offset for cluster D.
• op: process offset for process p.

Based on the precedence constraints defined in ΠF , op is
limited by the finish time of directly preceding processes p̌
and the starting time of all directly succeeding processes p̂;
(p̌, p)(p, p̂) ∈ ΠF . p might then be shifted up to the finish
time fp̌ of its closest predecessor and the start time of its
closest successor sp̂. Hence, the interval for op is defined by
the waiting time after the closest predecessor wp̌,p = sp − fp̌
and to its closest successor wp,p̂ = sp̂ − fp:

op ∈ [−wp̌,p, wp,p̂] (9)

If p is the source or the sink process in a task graph, we
assume that it might only be shifted in one direction, to de-
crease the end-to-end delay but not to increase it. This en-
sures that all previously defined deadlines are not affected.
Figure 5 illustrates the offsets for the three processes m5,
p1 and p2. (1) For process m5, the predecessor m̌5 = p1

and the successor m̂5 = p2 define the boundaries for om5 to
[−wp1,m5 +op1 , wm5,p2 +op2]. (2) To ensure all end-to-end de-
lays are not affected by this process, the source process p1 can
only be shifted in one direction, reducing but not increasing
the end-to-end delay (op1 ∈ [0, wp1,m5 + om5]). (3) Similarly,
for the sink process p2: op2 ∈ [−wm5,p2 + om5 , 0]. Adjust-
ing the subsystem structure using op in addition to the clus-
ter offset oD commonly resolves the determined infeasibilities,
without violating previously defined constraints for the sub-
system schedule. To improve the scalability of our algorithm,
we only introduce an offset op for processes on a shared re-
source r ∈ R{IIS}. The set R{IIS} defines all resources which
are used by more than one cluster of the IIS. Accordingly, the
process offset of predecessor or successor processes are only
considered if these processes are executed on a shared resource.
The following equations calculate feasible values op for each
process together with cluster offsets oD, allowing to integrate
all clusters:
∀D ∈ D{IIS} :

0 ≤ oD < hD (10)

∀r ∈ R{IIS}, D ∈ D{IIS}, p ∈ Dr :

op ≥

0 if @p̌ : (p̌, p) ∈ F
−wp̌,p + op̌ elseif p̌ ∈ Pr̃, r̃ ∈ R{IIS}
−wp̌,p otherwise

(11)

op ≤

0 if @p̂ : (p, p̂) ∈ F
wp,p̂ − op̂ elseif p̂ ∈ Pr̃, r̃ ∈ R{IIS}
wp,p̂ otherwise

(12)

∀r ∈ R{IIS} : D, D̃ ∈ D{IIS}, D 6= D̃,∀p ∈ Dr, ∀p̃ ∈ D̃r,
i = {0, .., 3·Hr

hp
− 1}, j = {0, .., 3·Hr

hp̃
− 1},

oD ∈ [0, hD[,oD̃ ∈ [0, hD̃[:
oD + op + i · hp + sp + ep ≤ j · hp̃ + sp̃ + op̃ + oD̃

⊕ oD + op̃ + j · hp̃ + sp̃ + ep̃ ≤ i · hp + sp + op + oD
(13)

Constraint (10) first defines the range for the cluster offset.
Constraints (11) and (12) then define the range for each pro-
cess. We distinguish three cases: (a) The process is a source or
a sink process and can only be shifted in right or left direction,
respectively, reducing the end-to-end delay but not increas-
ing it. (b) Predecessor or successor are part of R{IIS}, hence
the bound for op is variable and the offsets need to be opti-
mized concurrently. (c) Predecessor or successor are no part
of R{IIS}, leading to a fixed bound. Finally, Constraint (13)
ensures that two processes do not use a resource at the same
time instant. It concurrently determines a cluster offset and
a process offset. The SMT formulation assumes robust ap-
plications which benefit from a decreasing end-to-end delay.
However, as control functions might be designed for a specific
end-to-end delay, for these applications Constraints (11) and

timeout

10−1 100 101 102 103

10−1

100

101

102

Runtime of our SMT based Framework [s]

R
u

n
ti

m
e

o
f

IL
P

A
p

p
ro

a
ch

[s
]

Figure 6: Runtime comparison of our schedule integration
framework with existing ILP approach. For midsize and
large problems our framework is significantly faster than
the existing approach. The timeout was set to 15 minutes.

(12) might be adapted such that the position of the source
and the sink processes within the cluster are fixed and only
intermediate processes can be shifted. After a valid config-
uration was found, all clusters D ∈ D{IIS} are merged to a
single cluster D to prevent repeated optimization and ensure
termination of the algorithm.

5. EXPERIMENTAL RESULTS
This section presents the results, using test cases and a case

study to evaluate the effectiveness of the schedule integration
module of our framework. First, we present a scalability anal-
ysis to show the benefits of our approach. Secondly, we present
a realistic case study with a special focus on the conflict refine-
ment. All calculations have been carried out on an Intel Xeon
3.2 GHz Quad Core with 12GB RAM. We use Microsoft’s Z3
version 4.3.0 [15] as SMT solver. Note that the schedule is
obtained at design time such that runtimes of several minutes
are still acceptable.

5.1 Scheduling Result
We first compare our framework to an ILP approach [11].

Here, we apply an SMT-based scheduling derived from [11] to
each application independently to generate independent clus-
ter schedules. We then combine the cluster schedules by our
schedule integration approach, including conflict refinement.
The runtime of our framework is then compared to the ILP
approach being applied to the same problem. As ILP solver
we use CPLEX in version 12.2.

Our scalability analysis is based on 180 synthetic test cases
consisting of up to 16 ECUs connected by an Ethernet bus,
using up to 25 applications, with up to 100 tasks and 50 mes-
sages. Figure 6 illustrates the results of the runtime analy-
sis. The results show that the ILP approach might have a
slight runtime advantage of a few seconds for small and simple
problems which is due to the overhead introduced through the
iterative approach. However, with increasing size and com-
plexity, our framework clearly outperforms the ILP approach.
For 11.5% of the test cases, the ILP approach is unable to
determine a solution within 15 minutes while our framework
finds always feasible solutions in less than 100s.

5.2 Framework Case Study
In the following, we present a realistic case study for our

framework. The case study is based on a state-of-the-art au-

Table 1: Details of realistic case study

domain applications tasks messages ECUs1
application properties

periods deadline total execution2

body 3 15 10 7 10.0 − 20.0ms 10.0 − 15.0ms 5.9 − 12.1ms

chassis 4 26 11 8 5.0 − 10.0ms 5.0 − 10.0ms 2.5 − 11.4ms

information 3 13 10 5 20.0ms 11.0 − 20.0ms 7.9 − 13.9ms

electric 4 17 9 7 5.0 − 20.0ms 5.0 − 12.0ms 0.8 − 8.4ms

safety 6 27 16 10 5.0 − 20.0ms 4.0 − 10.0ms 1.4 − 5.9ms

telematics 1 6 6 6 20.0ms 13.0ms 10.1ms

1 ECUs might be shared between different domains.
2 Sum of execution time for all tasks and messages in application task graph. Might exceed deadline for parallel paths.

Table 2: Conflict refinement

iteration
number of

clusters in IIS

1 2

2 23

3 53

4 23

5 23

3 Includes merged cluster
from previous IIS.

C
lu
st
er

S
ch
ed
.

1s
t
S
ch
ed
.
In
t.

D
et

er
m

in
e
II
Ss

R
es

ol
ve

II
Ss

2n
d
S
ch
ed
.
In
t.

D
et

er
m

in
e
II
Ss

R
es

ol
ve

II
Ss

3r
d
S
ch
ed
.
In
t.

D
et

er
m

in
e
II
Ss

R
es

ol
ve

II
Ss

4t
h
S
ch
ed
.
In
t.

D
et

er
m

in
e
II
Ss

R
es

ol
ve

II
Ss

5t
h
S
ch
ed
.
In
t.

D
et

er
m

in
e
II
Ss

R
es

ol
ve

II
Ss

6t
h
S
ch
ed
.
In
t.

0

2

4

6

R
u

n
ti

m
e

[s
]

Figure 7: Runtime of the iterative steps during our con-
secutive schedule generation. After the independent clus-
ter schedules have been created, our framework requires
6 iterations to generate a valid schedule.

tomotive architecture consisting of 32 ECUs connected by an
Ethernet bus. Its functionality is implemented in 21 applica-
tions consisting of 104 tasks and 62 messages. The application
attributes are outlined in Table 1.

Our framework computes a valid configuration within 22.68s
while the ILP approach is unable to determine a solution within
24h. Figure 7 illustrates the runtime contribution of each step
of our framework, leading to the overall runtime. The results
show that both the generation of independent cluster sched-
ules as well as the iterative schedule integration require less
than a second each. The conflict refinement (Determine IISs
and Resolve IISs) in contrast, accounts for more than 90% of
the runtime. During conflict refinement, clusters with con-
flicting schedules (IISs) are adjusted and merged to a single
schedule. Hence, with each iteration the number of clusters
decreases while the former IISs form a larger and more com-
plex single cluster. Determining all IIS is an iterative process
and depends on both the runtime of the schedule integration
and the number of conflicting cluster sets in the IIS. Table 2
illustrates the number of clusters in the IISs for each iteration.
It shows that the runtime increase during the third iteration
is due to the larger set size. At the same time, the schedule
integration has an increased runtime compared to the previ-
ous iterations, further increasing the runtime for determining
all IISs. Similarly, the runtime for resolving all IIS increases
with each iteration step. This is due to the rising problem com-
plexity as all in the previous step resolved IISs are part of the
consecutive one. Hence, the number of processes to consider
increases with each step. However, as the runtime only in-
creases gradually, the proposed schedule integration approach
is well suited for scheduling large problems. Furthermore, it
shows the applicability of our schedule integration approach
as basis for a highly composable architecture in combination
with a data-centric description.

6. CONCLUSION
This paper proposes a framework for modular time-triggered

systems. It is based on a data-centric design approach leading
to highly flexible and composable architectures. We present
a framework for integrating independent software components
or subsystems into a global system. It is based on a modular
scheduling approach capable of integrating subsystem sched-

ules independently. We first present an SMT approach to gen-
erate schedules for independent subsystems. Secondly, we pro-
pose a schedule integration approach which combines indepen-
dent subsystem schedules into a global scheduling. Finally, a
conflict refinement is presented which adapts individual sub-
system schedules if no feasible solution can be found. Our
test cases and case study give evidence of the clear runtime
advantage of our approach compared to existing schedule op-
timization techniques. Furthermore, our schedule integration
approach allows to incrementally add or update subsystem
schedules, enabling highly modular architectures. In future
work, we will extend our framework and address problems like
task and message distribution during component integration.

7. REFERENCES
[1] M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann.

Engineering automotive software. Proc. of the IEEE,
95(2):356–373, 2007.

[2] AUTOSAR. AUTOSAR 4.1, 2013.

[3] I. Shin and I. Lee. Compositional real-time scheduling
framework with periodic model. ACM Trans. in Embedded
Computing Systems, 7(3):30:1–30:39, 2008.

[4] R.I. Davis and A. Burns. Hierarchical fixed priority
pre-emptive scheduling. In Proc. of RTSS, pages 389–398,
2005.

[5] H. Kopetz and G. Bauer. The time-triggered architecture.
Proc. of the IEEE, 91(1):112–126, 2003.

[6] E. Armengaud, A. Tengg, M. Driussi, M. Karner, C. Steger,
and R. Weiss. Automotive software architecture: Migration
challenges from an event-triggered to a time-triggered
communication scheme. In Proc. of WISES, pages 95–103,
2009.

[7] H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and
A. Sangiovanni-Vincentelli. Scheduling the FlexRay bus using
optimization techniques. In Proc. of DAC, pages 874–877,
2009.

[8] H.T. Lim, L. Völker, and D. Herrscher. Challenges in a future
IP/ Ethernet-based in-car network for real-time applications.
In Proc. of DAC 2011, pages 7–12, 2011.

[9] S. Voss, M. Sorea, and K. Echtle. SAL-Based Symbolic
Scheduling in Time-Triggered Networks. In Integrated
Formal Methods, volume 5423, pages 200–214. Springer
Berlin Heidelberg, 2009.

[10] W. Steiner. An Evaluation of SMT-Based Schedule Synthesis
for Time-Triggered Multi-hop Networks. In Proc. of RTSS,
pages 375–384, 2010.

[11] M. Lukasiewycz, R. Schneider, D. Goswami, and
S. Chakraborty. Modular Scheduling of Distributed
Heterogeneous Time-Triggered Automotive Systems. In Proc.
of ASPDAC, pages 665–670, 2012.

[12] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty. Schedule
Integration for Time-Triggered Systems. In Proc. of
ASPDAC, pages 52–58, 2013.

[13] D. Goswami, M. Lukasiewycz, R. Schneider, and
S. Chakraborty. Time-triggered implementations of
mixed-criticality automotive software. In Proc. of DATE,
pages 1227–1232, 2012.

[14] Z. Wei, C. Jike, C. Pinello, S. Kanajan, and
A. Sangiovanni-Vincentelli. Extensible and scalable time
triggered scheduling. In Proc. of ACSD, pages 132–141, 2005.

[15] L. Moura and N. Bjørner. Z3: An Efficient SMT Solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, volume 4963, pages 337–340. Springer Berlin
Heidelberg, 2008.

