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Introduction

This report explains our approach for calibrating the omni-directional cam-
eras. The omni-directional cameras are normally subject to error such as
mirror deflection and image distortion. Therefore, mapping the acquired im-
age coordinates of the objects to the real-world coordinates is not straight-
forward. In this approach, we employ a machine learning algorithm [1] to
obtain two hypotheses that map with high accuracy the image coordinates
to the real-world coordinates. We specifically implemented our algorithm
for the Marxbots. More information about this robot is available in [2].

Preliminaries

We need first to acquire a set of training data. To this end, we use multiple
colorful marks which are in two colors. We arrange them on the floor in a
special grid pattern as shown in the Fig. 1.

Then, we use the image processing algorithm (already developed at
IRIDIA) to detect the marks in different color channels, which here are red
and green. The binary image of the marks detected by the omni-directional
camera is illustrated in Fig. 2. We obtain the coordinates of 128 marks in
the image that by are by default available in the polar coordinate system.
The data of each mark corresponds to one observation.

The set of training data is defined as

s ={00,00.70,00); ie 1. My} (1)
where M is the number of observations, rﬁ,? and 07(7? are the input values
(i.e., polar components in the image coordinate system), and 7’1@ and 91@
are the target values (i.e., polar components in the real-world coordinate
system), all for the ith observation.

Association

In this section, we associate each mark in the image to the corresponding
one in the real-world. In general, we need to define an appropriate index
function, and then by employing an optimization algorithm associate M
points in the image space to the M points in the real-world space. This index
function must be defined in a way that its global minimum corresponds to
the correct association. Defining such a function for the unidentified marks
are difficult. Fortunately, for the chosen resolution and configuration (in
two different channels), we can exploit the continuity of two spaces and
apply a geometric association. We first cluster the marks into 13 groups
based on the value of their z-coordinates and their color. These groups are
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Figure 1: Configuration of 128 marks around a Marxbot.
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Figure 2: Output of image processing detected by omni-directional camera
in a binary image.

distinguishable in the real-world and image as members of each group posses
z-coordinates in a fixed interval and have similar colors. Note that these
groups have different sizes.

Then, we associate each member in the each group to the corresponding
one in the real-world based on their y-coordinates by moving from one di-
rection. The center of mass of marks in the two channels and the association
are depicted in the Fig. 3 and Fig. 4 respectively.

Deriving the hypotheses

In this section, we use a supervised machine learning algorithm to obtain
the calibration hypotheses. The hypotheses are functions h; : X — Y7 and
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Figure 3: Center of masses of the marks in 2 channels.
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Figure 4: Association of marks in the image to the corresponding one in the
real-world (here shown by overlapping them).

ho : X — Yo where X is the input space, and Y7 and Y5 are the target
spaces.

The domain of theses hypotheses is image coordinates, and their range
is real-world coordinates. The desired coordinate system for our application
is Cartesian, and the polar coordinate system that our observations are
expressed in it is not appropriate because it causes a discontinuity in the
hypotheses at +.

We express the training data in the Cartesian coordinate system (these



coordinates are also used for the association as mentioned earlier)

y) = risin(65), (2)
xri) = TT(,i)COS(QT.i)),
40 = r9sin(o)
where ¢ € {1,..., M}. Thus, the new set of training data is written as
S’ = {(:r,ﬁ?, ORORTONE z‘e{l,...,M}} (3)

Let us define eight features as the following
T1 = Tm, T2 = ffgn, xr3 = $§na T4 = :L‘;lrw
5 = Ym, Te = y?na Ty = y?na rg = y;lna
L9 = TmlYm, L10 = :c?nym, I11 = $myfn (4)
where z,,, and ¥, are x- and y-coordinates in the image.
The target variables are the real-world coordinates
Y1 =%r, Y2 =19yr (5)
where z,, and y, are x- and y-coordinates in the real-world.
We assume that the maps are polynomial functions of degree four. There-
fore, we can write the hypotheses as
hi =010+ 01,171 + 01222 + 01 373 + 01 424 + 01 525 + 01 676
+ 01727 + 01878 + 01,979 + 0110710 + O1,11211 + 01 12712 (6)

ha = 820 + 02171 + 02222 + 02373 + 02 424 + 02 575 + 02 66
+ b2 727 + 02878 + 2979 + 02 10710 + 0211211 + 02 12712 (7)

where 61 ; and 6y, i € {0,...,10} are the unknown parameters.
Let us define two index functions as the following

PRI PURNOY ®)
1 om 4 1 Y1

1 G0 (e
Jy = om ;(hz — Y ) (9)

where hgi) and hg) are the hypotheses calculated for the ith observation.
Our goal is to obtain the optimal gains which minimize the index functions
respectively, that is ©; and Os.

©1=1010611 612013014615 016017018619 61,10 01,11 01,12]
O2 = 020 621 22 023 024 O35 026 O27 028 029 0210 O2.11 O212]  (10)



In order to obtain the optimal gains, we need to solve the following
equations iteratively and simultaneously for all observations

repeat until convergence {
01, =01, Ji (11)

}

9
“o0,

repeat until convergence {

J2 (12)

}

0
027]' = 92’]' — 0480727]‘

where « is the learning coefficient.

Evaluation

In this section, we implement the algorithm, and obtain the optimal gains
of the hypotheses. We evaluated the equations 11 and 12 for a set of obser-
vations acquired by a Marxbot. The index functions as the functions of the
iterations are illustrated in the Fig. 5 and Fig. 6. As it is seen, these func-
tions converge to minimal values after some iterations. These minimums
correspond to the optimal gains.
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Figure 5: Index function J; versus iterations.
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Figure 6: Index function Jy versus iterations.

The optimal gains associated to our observations are

©1 = [0.0139, 1.0940, 0.03977, 0.3657, 0.0011, 0.0008, —0.0141,
0.0008, —0.00655, 0.0061, 0.00248, 0.1339]

©92 = [0.0120, —0.0128, —0.0049, —0.0021, —0.0010, 1.0923,
—0.0025, 0.3664, —0.0060, 0.0200, 0.1307, —0.0008] (13)
Now, we evaluate the predictions of the hypotheses for a new value as
an input. The location of the mark, as shown in the Fig. 7, is
x, = 42.50 cm
yr = 36.00 cm (14)

The predictions of the hypotheses are

h1 = 46.06 cm
hs = 38.83 cm (15)

We refer to e; and ey as the errors of the first and second hypotheses,
and define them as

—h
e = ML 100 = 8.38%
Ly

—h
er =2 100 = 7.76% (16)
Yr
We can also express the location of test mark in the polar coordinate

system

r» = 55.70 cm
0, = 40.27 deg (17)



The predictions in the polar coordinate system are

h, = 60.24 cm
ho = 40.13 deg

Finally, the errors in the polar coordinate system are

_ !

e = I - ML 100 = 8.16%
0, — I

eg = ———2 % 100 = 0.34%

6,

Figure 7: Test mark.

(18)

These estimates are satisfactory for our applications. However, one can
get better result by introducing more marks in the sample set while using

the same approach.
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