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Abstract— This paper presents new methods for the recogni-
tion and categorization of object properties such as surface tex-
ture, weight, and compliance using a multi-modal artificial skin
mounted on both arms of a humanoid. In addition, it introduces
two novel feature descriptors, which are useful for providing
high-level information to learning algorithms. The artificial skin
has built-in 3-axis accelerometer, normal force, proximity, and
temperature sensors. To explore different surface textures and
weights, objects were left sliding between the NAO humanoid’s
arms. The caused vibration was detected by accelerometers.
Surface texture and weight recognition models were learned
from the extracted features of the vibration signals thanks to
two learning algorithms, namely the support vector machine
(SVM) and the Expectation Maximization (EM). In order to
recognize objects having different compliances, SVM and EM
took into account total amount of forces applied by the arms
to hold the object firmly. The experimental results show that
the humanoid can distinguish between different objects having
different surface textures and weights with a recognition rate
of 100%. Furthermore, it can categorize objects with hard and
soft surfaces and classify objects having similar compliance with
100% and 70% accuracy rates respectively.

I. INTRODUCTION AND RELATED WORKS
Developing technological expectations are changing the

face of robotics. If humanoids are meant to interact with the
environment and real world objects, they need to be equipped
with cognitive skills such as perception and learning [1]. To
meet this prerequisite, humanoids need to be provided with
different sensing modalities and learning techniques. In this
study, the perception medium used is a multi-modal artificial
skin and can be used to assess the contact parameters such
as texture surface, compliance, and weight of manipulated
objects. The aim of this study is to investigate the robust
feature descriptors in order to select and decipher relevant
tactile features and to provide optimum strategy for data
fusion. The further goal is to construct object patterns
that humanoids could learn while manipulating the objects.
In previous studies, many researchers employed different
customized tools or end effectors equipped with uni-modal
tactile sensors such as force sensors or accelerometers to
execute a single or multiple exploratory action/s such as
scratching [2], [3], rubbing and pushing [4], tapping and
squeezing [5], [6], and knocking [7] on objects in order
to recognize their fundamental properties, such as surface
texture, compliance, and weight. Since the experimental
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Fig. 1. Exploring objects properties by NAO. While object is within its
arms it detects the stiffness of the object via output of the force sensors
and during sliding, it distinguishes different surface texture and classifies
objects having various weights via accelerometer feedback.

objects were placed on a surface such as a table while
executing exploratory action/s, the measured tactile infor-
mation might have been affected by the properties of that
surface, resulting in a biased collection of data. In these
experiments, the velocity of the tools/end effectors used
to perform the exploratory actions, as well as the applied
normal force on the objects remained constant. Moreover,
they used the Fourier transform technique [2], [3], [8]–[11],
intensity, variance, skewness, and kurtosis of the signals
[12]–[14] for interpreting the tactile information in frequency
or time domains. However, the Fourier transform method is
not appropriate for analyzing non-stationary signals, and the
magnitude of the signals is highly sensitive to noise. In this
respect, the short time Fourier transform (STFT) or wavelet
transform may be more useful techniques [11], [15]–[17] for
analyzing non-stationary signals [18], [19]. These techniques
analyze the signal locally by windowing in the time domain.
However, these methods deal with a large number of data
points, thereby causing difficulties during the classification
step. More features require more training samples, which
result in an increased computational complexity as well as
the risk of over-fitting. To overcome the problems mentioned
above, we propose the use of a multi-modal skin coupled
with robust feature extraction methods and adapted learning
algorithms. The robot can execute non-sliding exploratory
behaviors and sliding exploratory behaviors (see section
(III-A)) to identify useful characteristics of the objects.
In this study, we introduce two novel feature descriptors,
which represent statistical properties of the signal in the
time domain to extract informative and abstract high level
information for the learning algorithms. Since the calculation



of our proposed feature descriptors is based on variance
and correlation coefficient of signals, the computational cost
of this method is extremely low. This makes it appropriate
descriptors for the real-time task.

II. SYSTEM DESCRIPTION

A. Skin Patches on a Humanoid’s Arms

In our daily life, we use our arms even our upper part
of the body to grasp, lift, and hold unknown large objects.
In this case, a large area of skin will be used for the object
properties exploration. Having no prior information of object
properties, such as weight, surface texture, and softness
or hardness, makes object manipulation not only difficult
but also almost impossible, especially when there is no vi-
sual feedback available. Knowledge about object properties,
therefore, is crucial for humans and also humanoids, in order
to be able to interact with real world objects precisely. In our
current study, we aim to provide humanoids with the ability
of human like tactile sensing (biological inspired skills) in
order to interact with unknown large objects.

B. Multi-Modal Artificial Skin

The artificial skin used in the experiment is designed and
manufactured in our lab. It is a hexagonal shaped multi-
modal sensory cell, called Hex-o-Skin [20]. Each skin cell
has a micro controller on the back side and a set of multi-
modal tactile sensors on the front side, which includes a
3-axis accelerometer for object surface texture and weight
classification; three normal-force sensors to estimate the
required force to hold an object between the humanoid’s
hands; a proximity sensor and a temperature sensor which
are not used in this current study.

C. Humanoid Robot

We employed an existing autonomous humanoid robot
from Aldebaran Robotics which is called NAO. With respect
to the sensing device, we covered NAO’s arms with a thin
layer of flexible and stretchable foam. Then we mounted one
skin patch on each arm of the robot (Fig.1), which included
7 skin cells. Thus, each arm had 7 three-axis accelerometer
sensors, 21 normal-force sensors, and 7 proximity sensors.

D. Properties Of Experimental Objects

Taking into account NAO’s size and weight, we selected
10 large objects having the same dimension from two dif-
ferent classes of weight (w ∈W ). This means that one half
of the objects belonged to a class of 1500 g and the second
half belonged to a class of 500 g. Five common everyday
materials were deliberately chosen for both classes of weight,
such as card box/paper, glass, bubble plastic, sponge, and
rough texture/sand paper (t ∈ T ) as shown in Fig.(2). It is
noteworthy to mention that the sponge and rough textures
are irregular and non-uniform textures.

Fig. 2. Objects having the same size and two different weights (w∈W ) are
covered with five most common surface textures, Rough Texture or Sand
Paper, Glass, Spong, Paper or Card box, and Bubble Plastic (t ∈ T ).

III. TACTILE PERCEPTION

A. Exploratory Behaviors
In this work, in order to provide more descriptive, realistic,

and human-like exploratory behaviors during data collection,
we present a new exploratory interactions (Fig.1). In our
approach, NAO collects tactile data while an unknown object
is sliding or non-sliding between its arms which were already
covered with multi-modal artificial skin. NAO uses sliding
behavior to classify weight and surface texture and non-
sliding behavior to detect stiffness of an object. Moreover,
using the non-sliding behavior, NAO can estimate the re-
quired amount of force in order to keep an unknown object
from sliding between its arms and skin cells. Contrary to
previous works, sliding behavior depends in our study only
on the intrinsic object properties, for instance that a heavy
object slides faster than a lighter one. Since NAO uses its
arms to interact with objects, the collected data will not be
affected by any other surrounding object properties.

B. Data Collection
Each of the 2 behavioral interactions (b ∈ B), sliding

and non-sliding was performed 15 times on each of the 10
selected objects placed between NAO’s arms, resulting in a
total of 2×15×10 = 300 trials.

1) Sliding Behavioral Interaction: In this interaction ap-
proach, NAO’s arms were kept fixed. They were straight and
parallel to each other and were able to open and close only
in the horizontal direction. While collecting the exploratory
data, during each ith trial, an object was placed between
NAO’s arms, which were close enough for NAO to firmly
grasp the object. However, the orientation of the object while
grasping varied across trials. As the experiment proceeded,
NAO slowly opened its arms until the object started to
slide between them. During the process, tactile information
was recorded via multi-modal artificial skin mounted on its
arms that involved acceleration and force data used to detect
object properties. However, the sensory data from each tactile
sensor was recorded for 1000 ms or 250 data points (since
data were recorded at 250 Hz). The recording time started
slightly before the object started to slide and continued until
the object completely left NAO’s arms.



2) Non-Sliding Behavioral Interaction: In this interac-
tion approach, the initial position of NAO’s arms was similar
to the situation of the sliding behavioral approach. For each
trial, an object was placed between NAO’s arms, and the
arms were brought closer until the humanoid was able to
grasp the object between its arms with a minimum amount
of force required to prevent sliding. In this position, NAO
then started to record each tactile sensory data for 1000 ms.

IV. PROPOSED ROBUST FEATURE
DESCRIPTORS

In earlier works, researchers used the Fourier transform
technique [11], [15]–[17] in the frequency domain and
magnitude of tactile signals in the time domain for inter-
preting tactile information such as surface texture. How-
ever, the Fourier transform method is not appropriate for
analyzing non-stationary signals, particularly in the case of
surface texture detection where texture is irregular and non-
uniform. The Fourier transform presents the relative power
of each frequency and calculates frequency responses based
on specific time. In addition, the magnitude of the signal
is highly sensitive to noise. Wavelet transform may be the
best technique [18], [19] for analyzing non-stationary signals.
However, this method deals with a large number of data
points, thereby causing difficulties at the classification step.
More features require more training samples which will
result in increased computational complexity as well as the
risk of over-fitting. To overcome these issues, we propose
novel feature extraction techniques, inspired by the Hjorth
parameters.

A. Hjorth Parameters

Hjorth [21] presented a set of parameters for real-time
biological signal analyses (Electroencephalography) which
represented statistical properties of the signal in the time
domain. These parameters are called Activity, Mobility, and
Complexity. Although these parameters are defined in the
time domain they can be interpreted in the frequency domain
as well. The first parameter (Eq.(1)) is the total power of
a signal. It is also the surface of the power spectrum in
the frequency domain (Parseval’s relation). The Mobility
parameter, defined in Eq.(2), is determined as the square
root of the ratio of the variance of the first derivative of the
signal to that of the signal. This parameter has a proportion of
standard deviation of the power spectrum. It is an estimate of
the mean frequency [22]. The last parameter (Eq.(3)) gives an
estimate of the bandwidth of the signal, which indicates how
the shape of the signal is similar to a pure sine wave. If the
shape of the signal becomes more similar to a pure sine wave,
the value of complexity converges to one [23]. Equation (2)
and equation (3) are specified by means of the first and
second derivatives of variance, so they called normalized
slope descriptors [23]. Since the calculation of the Hjorth
parameters is based on variance, the computational cost of
this method is extremely low, which makes it appropriate
descriptors for the real-time task.

Activity =Var(s(t)) =
1
N

N

∑
i=1

(Si− S̄)2 (1)

Mobility =

√
Var( ds(t)

dt )

Var(s(t))
(2)

Complexity =
mobility( ds(t)

dt )

mobility(s(t))
(3)

B. The Proposed Feature Extraction Techniques

We proposed two feature methods, essentially inspired by
Hjorth parameters, to get higher level and abstract infor-
mation from tactile signals, called Inter-Hybrid and Intra-
Hybrid feature descriptors (Tab.I).

1) Inter-Hybrid Feature Descriptor: An object sliding
between NAO’s arms generates vibration on NAO’s skin. The
caused vibration was measured by each 3-axis accelerometer
sensor existing in every skin cell. Since the three accelerom-
eter components are highly correlated during the measure-
ment, our first proposed feature includes the correlation
coefficient between each of the two axes of the accelerometer
(Eq.4), namely corr(ax,ay), corr(ax,az), and corr(ay,az). The
feature also includes the Activity, Mobility, or Complexity
parameter related to each of the three acceleration signal
components (see Tab.I). The feature dimensionality was re-
duced to six parameters for each accelerometer output instead
of 3× 250 = 750 data points (# of accelerometer axis)×(#
data sample recorded from each axis in 1000 ms) = 750).
For instance [Complexity,Correlation] is equal to [comp(ax),
comp(ay), comp(az), corr(ax,ay), corr(ax,az), corr(ay,az)]

corr(ax,ay) =
∑

n
i=1 (axi − āx).(ayi − āy)√

σ(ax).σ(ay)
(4)

2) Intra-Hybrid Feature Descriptor: Our second pro-
posed feature includes the composition of each of the two
computed Hjorth parameters from each of the three accel-
eration signals. The feature dimensionality is then similar
to that of the Inter-Hybrid Feature. In addition, the super
composition of all three computed Hjorth parameters from
acceleration data was considered as another alternative fea-
ture descriptor. The dimensionality of this feature is therefore
nine instead of 3×250 = 750 data points.

TABLE I
PROPOSED FEATURE DESCRIPTOR

[ Activity , Correlation ]
Inter-Hybrid Features [Mobility , Correlation]

[Complexity , Correlation]
[Activity , Mobility ]

Intra-Hybrid Features [Activity , Complexity]
[Mobility , Complexity]

[Activity , Mobility , Complexity]



V. LEARNING METHODOLOGY
A. Texture Recognition Methodology

The primary task of NAO was to classify the five selected
objects having different surface textures (t ∈ T ). The first
algorithm that was evaluated was Support Vector Machine
(SVM) [24], which is a discriminating classifier formally
defined by a separating hyper-plane. In other words, given
labeled training data (supervised learning), the algorithm
outputs an optimal hyper-plane which categorizes new ex-
amples.

B. Weight Classification Methodology
The other task of NAO was to recognize different weights

(w∈W ) of an object having the same surface texture (t ∈ T )
using pure mobility, and the proposed [mobility, complexity]
and [mobility, correlation] features, while employing sliding
exploratory behavior. NAO used these features and SVM to
learn a recognition model which is then evaluated on a new
test data in order to predict the correct weight class.

C. Weight Categorization Methodology
In addition to weight classification, an important task

for NAO was to qualitatively differentiate between varying
categories of weight. This means that objects having the
same surface texture and almost similar weights tend to be
in the same cluster or category. Therefore, in this scenario,
NAO clustered the two unlabeled categories of weight using
Expectation Maximization (EM) algorithm [25] which is an
unsupervised learning approach. So that, when a test data
is presented in a real time environment whose weight does
not need to be exactly similar to the two categories, it gets
assigned to one of the two clusters. For example, in our
experiment, NAO clustered the two categories of weights,
i.e. 500 g and 1500 g, so that when an unknown test data,
say 700 g is presented to NAO, it can give an estimate of its
weight via nearest neighbor measure and assign it to one of
the clusters, which in this case would be the class of 500 g.

D. Hardness/Softness Detection Methodology
In addition to the previous tasks, NAO was asked to

differentiate hard and soft objects having different textures
(t ∈ T ) from non-sliding behaviour. In order to do this, the
SVM classifier was trained with obtained force data to build
a learning model. Moreover, NAO used the EM algorihthm
to categorize the objects (t ∈ T ) having similar harness and
softness. In this scenario, NAO added all obtained force
information over contact positions to get the total force
applied to an object.

VI. RESULTS
A. Texture Recognition Results

The robot learning was evaluated by randomly partitioning
the collected data set into 70% and 30% for training and
testing respectively. However, to find the optimal radial basis
kernel parameter (γ) and regularizer value (C) for SVM,
10-fold cross validation (CV) was used. In this respect, the
data set was randomly split into 10 folds and during each

evaluation, 9 of those were used for training and one was
used for testing. This process was repeated 10 times to obtain
an average performance on the evaluation sets. This entire
process was repeated 50 times using different values for
kernel parameter and regularizer in order to find the one
with the lowest CV error. The SVM with optimal parameters
was then re-trained on the entire training data set to obtain
classification models. These classification models were used
by NAO to predict the surface textures for the test data.
The prediction results are reported in terms of recognition
accuracy. The results shows the surface texture recognition
rates corresponding to each of the feature descriptors for
the multi-class classification problem. However, NAO was
able to achieve recognition accuracy substantially better
than chance, using all proposed feature descriptors. The
classification of five different surface textures resulted in a
recognition accuracy of 86% and 91% using mobility and
complexity features respectively. By employing [mobility,
complexity] as well as [activity, mobility, complexity] from
the proposed Intra-Hybrid features, NAO was able to reach
100% surface texture classification accuracy. Although NAO
achieved the same result, the former was preferred since
it has a lower number of features compared to the latter.
This is because a lower dimensionality of the feature vector
implies a lower computational complexity while computing
the kernel in SVM. NAO was also able to reach surface tex-
ture recognition accuracy of 100% employing the proposed
[mobility, correlation] Inter-Hybrid feature. Thus, the results
of surface texture recognition show that our both sets of
proposed feature descriptors have improved the recognition
accuracy in comparison to using pure Hjorth parameters. We
attribute this to the fact that our proposed features provide
more discriminative and informative data for the classifier.
Since the activity parameter is not informative enough, its
composition with the other two pure Hjorth parameters as
well as with correlation did not improve the recognition
accuracy.

TABLE II
TEXTURE CLASSIFICATION RESULTS.THE BEST REGULARIZER VALUE

THAT WAS FOUND BY CV FOR ALL EXPERIMENTS IS C = 0.001

γ Acc
Activity 0.1 30 %

Hjorth Mobility 0.4 86 %
Parameters Complexity 0.7 91 %

[Activity,Correlation] 0.3 86 %
Inter-Hybrid [Mobility,Correlation] 0.3 100 %

Features [Complexity,Correlation] 0.7 96 %
[Activity,Mobility] 0.4 86 %

Intra-Hybrid [Activity,Complexity] 0.7 92 %
Features [Mobility,Complexity] 0.4 100 %

[Activity,Mobility,Complexity] 0.4 100 %

B. Weight Classification Results
NAO used the binary SVM with radial basis kernel method

to learn a weight classification model. The optimal kernel
parameter and the regularizer were obtained from 10-fold-
cross validation, the detailed procedure of which has been



explained above. In order to evaluate the classification model,
the collected data set was randomly split into 80% and
20% for training and testing respectively. The SVM classifier
along with the optimal kernel parameters was then trained
using the entire training data set. Finally, this trained model
was used by NAO in order to recognize the weight of a new
test data. The recognition accuracy of weights corresponding
to each of the five different textures are presented in Tab.(III).

TABLE III
WEIGHT CLASSIFICATION USING SVM. THE BEST REGULARIZER

VALUE THAT WAS FOUND BY CV FOR ALL EXPERIMENTS IS C = 0.001

γ Acc
Glass 0.2 100 %

[Mobility , Correlation] Sponge 0.3 100 %
Paper 0.3 100 %

(Inter-Hybrid Features ) Rough Texture 0.3 100 %
Bubble Plastic 0.5 100 %

Glass 0.3 100 %
[Mobility , Complexity] Sponge 0.4 84 %

Paper 0.3 84 %
(Intra-Hybrid Features) Rough Texture 0.5 100 %

Bubble Plastic 0.8 100 %

The results shows that the NAO is able to classify weights
perfectly using the [mobility, correlation] feature. It also
shows that [mobility, correlation] feature clearly outperforms
the [mobility, complexity] feature. In the case of Sponge and
Paper, using the [mobility, complexity] feature is still better
than a chance.

C. Weight Categorization Results
In this experiment, NAO employed EM as a probabilistic

learning approach to generate two weight categories. In
order to do this, EM was trained with the entire unsuper-
vised data set. A class to clustering approach was used
to evaluate how well NAO can recognize the correct cat-
egory of a novel test data. In this approach, classes were
assigned to the categories, based on the majority value of
the class attribute within each category. Later on, these
assignments were employed to compute the classification
performance. Fig.(VI-D) shows the results of this experi-
ment where [Activity,Mobility], [Activity,Complexity], and
[Activity,Correlation] were used as hybrid features. From
the results, it is clear that NAO managed to recognize the
categories of weights with an accuracy significantly higher
than chance. It was able to categorize weights of objects
having glass and paper texture perfectly. In the case of
interacting with an object having more distinct weight values
than 500 g and 1500 g, humanoids could achieve a better
clustering accuracy rate.

D. Hardness/Softness Estimation Results
In this experiment, the entire data set including normal

force information was randomly split into 5 folds and at
each evaluation, 4 of those were used for training and one
for testing. The entire process was repeated 100 times using
C = 0.001 and γ = 0.4. In this case the overall recognition

Fig. 3. Weight Categorization Result Using EM and three of proposed
feature descriptors.

accuracy was 70%. Therefore, it was worth investigating
the type of recognition error that NAO made. Table (IV)
shows the confusion matrix obtained from the classification
procedure. The confusion matrix indicates how often a given
surface (t ∈ T ) was mis-classified as another surface. A
perfect classification would result in a diagonally-filled table.
However, table (IV) shows that most errors involve textures
having similar compliance. The sponge and glass have the
least errors and the highest accuracy. This is to be expected,
however, as the sponge is the softest and glass is the hardest
of all selected textures. The bubble plastic is often confused
with sponge, paper, and rough texture which shows that it is
not definitely hard but almost close to soft class. The rough
texture is confused with three different textures but mostly
with the sponge which means that it is almost close to objects
in the soft class. Overall, the confusion matrix shows that
the errors of the NAO’s learning model were not random in
nature. Instead, whenever an error was made the predicted
texture was often somewhat similar to the actual one in terms
of material and/or texture. This suggests that the learning
model could be used to estimate a measure of similarity
between hard and soft surfaces based on force information.
In this part of the experiment, the EM algorithm was used to
evaluate how well NAO can recognize the correct categories
of objects having different soft or hard textures (t ∈ T ). To do
this, NAO used unlabeled data set to cluster each two surface
texture. Table (V) shows that NAO could perfectly categorize
both sponge and glass with 100% accuracy. Moreover, it
could successfully cluster each of paper, rough texture, and
bubble plastic from glass texture, which means that they
are pretty far from category of hard texture. Furthermore,
imperfection clustering between sponge and each of paper,
rough texture, and bubble plastic texture is due to existing
similarities between them. In this situation NAO considered
bubble plastic and specially paper and rough texture more
closer to soft categories. Finally, the result of clustering
between rough texture and bubble plastic shows that these
two textures are very similar to each other in terms of
stiffness.



TABLE IV
CONFUSION MATRIX FOR STIFFNESS CLASSIFICATION WITH SVM

(THE RESULTS ARE NORMALIZED BETWEEN [0,1])

Class Sponge Glass Paper Bubble Plastic Rough
Sponge 0.87 0 0.13 0 0
Glass 0 0.87 0.13 0 0
Paper 0.26 0.2 0.54 0 0

Bubble Plastic 0.06 0 0.06 0.82 0.06
Rough 0.26 0 0.13 0.13 0.48

Class to Cluster Acc
Glass & Sponge 100 %
Paper & Sponge 74 %

Rough Texture & Sponge 74 %
Bubble Plastic & Sponge 90 %

Paper & Glass 94.3 %
Rough Texture & Glass 94.3 %
Bubble Plastic & Glass 94.3 %
Bubble Plastic & Paper 90 %
Rough Texture & Paper 74 %

Bubble Plastic & Rough Texture 56 %

TABLE V
HARDNESS/SOFNESS CLUSTERING RESULTS

VII. CONCLUSION

In order to recognize objects from their physical prop-
erties by a humanoid and via multi-modal artificial skin,
we propose two groups of biologically inspired and robust
feature descriptors. These universal descriptors provide the
learners with high informative and very abstract informa-
tion. By employing them, there is no need to reduce the
dimensionality of data with further data processing (i.e.
using Principal Component Analysis, PCA). Therefore, they
are appropriate for the real-time task. Moreover, these fea-
ture extractors can provide robust information from non-
stationary tactile signals where an object has a non-uniform
or irregular texture which other methods like the Fourier
transform fail to identify. The experiments conducted on the
NAO humanoid adopting sliding and non-sliding exploratory
behaviors showed promising results. Actually the robot was
able to distinguish unknown objects having five different
everyday surface textures and two different weights, both
with 100% accuracy. In addition it could classify and cluster
unseen objects of various compliance successfully.
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