
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Computing Refactorings of State Machines

Alexander Pretschner1, Wolfgang Prenninger2

1 Information Security, ETH Z�urich, 8092 Z�urich, Switzerland
2 BMW Group, 80788 M�unchen, Germany

Received: date / Revised version: date

Abstract For behavior models expressed in statechart-
like formalisms, we show how to compute semantically
equivalent yet structurally di�erent models. These refac-
torings are de�ned by user-provided logical predicates
that partition the system's state space and that charac-
terize coherent parts|modes or control states|of the
behavior. We embed the refactorings into an incremen-
tal development process that uses a combination of both
tables and graphically represented state machines for de-
scribing systems.

1 Introduction

The use of explicit models is enjoying an increasing pop-
ularity in the development of complex systems. Modeling
languages have matured to a point where they are useful
for many developers. Consequently, there is a plethora of
tools that enable one to specify systems with these lan-
guages. Behavior models are then used to generate sim-
ulation and production code [ESB01,BOJ04,FGG+05]
or test cases [FHP02,PPS+03,BLLP04,PPW+05]. They
are also subjected to formal veri�cation technology such
as model checking [CAB+98,DBCHP03] or automated
deductive theorem proving [BBFM99,BKTW05]. While
there is no �t to all needs yet, the respective technology
is impressive, and systems of considerable complexity
can be handled, as witnessed by the systems described
in the|here necessarily incompletely|cited literature.

The increasing complexity of these systems neces-
sitates the study of the evolution of the models itself.
The context of this paper is the incremental develop-
ment of models that represent state machines: models
described by means of sequence diagrams, activity dia-
grams, Petri nets, temporal logics, or process algebras
are not in the scope. We study one particular develop-
ment step, namely refactoring [Fow99,MDD+03,MT04].

Refactoring denotes structural transformations of a soft-
ware system that do not change its externally visible be-
havior, except maybe for memory allocation or required
processor cycles (and we hence exclude hard real-time
systems from our treatise). The main goal of refactor-
ings is to improve a certain quality characteristic of the
model (or source code), for example by removing redun-
dancy, reducing complexity, and increasing comprehen-
sibility or reusability. Code-based examples for refactor-
ings include the de�nition of a function or introduction
of a common super class to avoid duplicate code.

We consider refactorings of �nite state machines with
I/O capabilities and access to an extra data state. This is
an add-on to the transitions between the control states in
�nite state machines that are usually depicted as arrows
and circles. For each transition, the guard and the assign-
ments to the data space are speci�ed in a well-de�ned
action language. Our work builds on experience with the
CASE tool AutoFocus [HSE97] that we used to model
industry-size systems to the end of test case generation
[PPW+05,PPS+03,PSAK04]. Building a model re
ects
the process of understanding the requirements. The use
of state machines forces one to de�ne the control states
of this machine early in the development. Sometimes this
decision turns out to be inadequate, and di�erent or ad-
ditional control states have to be de�ned. In the worst
case, with current tools, the complete state machine has
to be redrawn, a tedious and error-prone task.

Control states can be interpreted as names of predi-
cates over the state space. Given a state machine and a
set of such predicates, we show how to compute the tran-
sitions (arrows) between the corresponding new control
states. Consider a state machine that models a stack
(Figure 1 in Section 2.3): one control state with at least
three looping transitions, push, pop, and get. Given two
predicates that specify that the stack is empty (p) or
not empty (q), we show how to compute the transitions
between p and q (Figure 3 in Section 4.3). Our main
motivation for refactorings of the said kind is the insight
that the control states of a behavior model were inad-

2 Alexander Pretschner, Wolfgang Prenninger

equately chosen. A further motivation is the desire for
complementary views on the system [Lam95]. We do not
discuss how to pick p and q. The approach is prototyp-
ically implemented; yet, the seamless integration into a
CASE tool is the subject of future work.

We present our ideas on the grounds of the simple ex-
ample of a stack. As a proof of concept, we show how our
techniques were applied in a case study concerned with
testing an automotive network controller [PPW+05]. We
concentrate on one single
at state machine: parallel
composition and hierarchical states are not in the scope.

Our work is based on a development process that
uses tables (see Table 1 in Section 2.3 for an exam-
ple) like those in the Software Cost Reduction (SCR)
approach [Hen80,PM95,HJL96]. Unless they grow too
large, tables are easy to understand, and one of their im-
portant advantages is that they are comparably easy to
manipulate. Tool support for manipulating and checking
consistency or completeness of di�erent
avors of tables
has been around for some time [PP99,HJL96]. On the
other hand, tables are not always utterly convincing to
customers who sometimes prefer equivalent graphically
displayed executable state machines. We also found that
converting tables into a di�erent representation, namely
that of equivalent state transition diagrams, is a valuable
aid in reviewing the models. In sum, we believe that both
tables and graphically represented state machines are
valuable in the development process of models. This is
consistent with the �ndings of Parnas and his colleagues
that there is a need for more than one kind of tables
[SZP96,Par92]. In this paper, we show how several dif-
ferent state transition diagrams can be computed from
one table, and we use the same technology to compute
refactorings of a given state transition diagram.

To summarize, we tackle the following problem. In
the context of incremental development, assume a state
machine or a table, and a logical characterization of the
di�erent parts of the state space, to be given. How can
we compute an equivalent state machine with a set of
control states characterized by the logical predicates?
The solution is the formal de�nition of the transforma-
tion and its prototypical implementation. Our contribu-
tion is, to our knowledge, the �rst formal treatment of
refactorings of state machines on the grounds of parti-
tionings of the state space. Our approach generalizes to
other formalisms as well. Statecharts, for instance, can
access any data de�nitions of a UML model. By translat-
ing the statechart into the (standard) formalism given in
this paper, we can directly apply our approach, provided
that only direct assignments and output are allowed in
the action part of a transition.

The remainder of this article is organized as follows.
Section 2 introduces some formalism and de�nes the no-
tions of rule systems, state machines, state transition
diagrams, and tables. Section 3 considers the develop-
ment steps in incremental development processes of be-
havior models, using both tables and state transition

diagrams. Given a logical characterization of the state
space, Section 4 shows how to compute refactorings. Im-
plementation issues are considered in Section 5. Section 6
presents the application of the approach in an industrial
case study. Sections 7 and 8 present related work and
conclude.

2 Modeling Constructs

In this section, we de�ne the notion of rule systems.
Roughly, rule systems are programs in a language of
guarded commands [Dij75]. Tables are textual repre-
sentations of rule systems. State machines are a spe-
cial kind of rule systems with state transition diagrams
as their graphical representation. The usefulness of and
need for these di�erent representations will become ap-
parent later. Before precisely formulating our refactoring
steps, we have to introduce some formalism. It borrows
from Breitling and Philipps [BP00].

2.1 Preliminaries

Let V denote a �nite set of typed variables. A valuation
� maps a variable to a term of its type. AV is the set of
all valuations for a set of variables, V . Let free(�) denote
the set of free variables in a logical formula �. In case
an assertion � evaluates to true when all v 2 free(�) are
replaced by �(v), we write � j= �.

Variable names also occur in primed form (the intu-
ition is given in the next paragraph 2.2 on rule systems).
For instance, if v is a variable, then priming yields a new
variable, v0. Natural extensions apply (1) to sets of vari-
ables: V 0 = fv0jv 2 V g, (2) to valuations: for � 2 AV ,
we have �0 2 AV 0 with �0(v0) = �(v) for all v 2 V , and
(3) to assertions: if � is an assertion, then �0 is the as-
sertion that results from priming all variables in free(�).
Unprimed valuations assign values to unprimed variables
only, and primed valuations assign values to primed vari-
ables only. If an assertion � contains both primed and
unprimed variables, two valuations are needed for eval-
uations. We write �;
0 j= � in case � evaluates to true
when all unprimed variables v in free(�) are replaced by
�(v), and all primed variables v0 are replaced by
0(v0).

Two valuations �;
 2 AV coincide on a subset W �

V , denoted �
W
=
, if 8v 2 W � �(v) =
(v). Extensions

naturally apply to sequences of valuations|�1�2 : : :
W
=

1
2 : : : denotes �k
W
=
k for all k|and to sets of se-

quences: for two sets of sequences of valuations Y1 and

Y2, Y1
W
= Y2 is shorthand for 8y1 2 Y19y2 2 Y2 � y1

W
= y2

and 8y2 2 Y29y1 2 Y1 � y2
W
= y1.

T (�;X) denotes the set of terms over a signature �
and a set X of variables. We assume a �xed signature
to be given. It de�nes types, names of functions and
data constructors in the action language that is used in
guards and assignments of transitions in rule systems

Computing Refactorings of State Machines 3

(Section 2.2). The type of a term t is denoted by type(t).
Two terms are uni�able (l �= r) i� 9� 2 AVl[Vr � �(l) =
�(r), where Vl and Vr are the sets of variables in l and
r, respectively, and Vl \ Vr = ;.

Given a predicate p, p[fw=w]w2W denotes the re-
placement of all variables w in W by terms fw of the
same type. p0[fw=w

0]w2W applies the same notion to re-
placing primed variables. Finally, function composition
is denoted by �, 8x � (f � g)(x) = f(g(x)). The identity
mapping is called id.

2.2 Rule Systems

A rule system is a tuple R = (V; S; T), consisting of
variables V , initial states S, and a transition relation T .

V consists of disjoint sets of typed variables, I;O; L.
They denote input, output, and local variables, respec-
tively. I and O form the interface of the rule system,
and are also called input and output ports.

A state ofR is a valuation � 2 AV that type-correctly
maps all variables in V to terms that do not contain
variables nor function symbols. � 2 AL is called a data
state of R.

S is an assertion with free(S) � V . It describes the
initial state(s), and we require S to be satis�able: 9� 2
AV � � j= S.

T is a set of transitions. Each t 2 T is an assertion
with free(t) � V [V 0. It relates states to successor states.
Unprimed variables are evaluated in the current state,
and primed variables are evaluated in the successor state.

We require all transitions t 2 T to be of the form
in^g^a^out . in and out read input values and compute
and write output values, respectively. g is a guard; it
de�nes conditions on the input and the current values of
the variables in L. a assigns new values to the variables
in L.

More precisely, in is a statement of the form
V
i2I i

�=
�i where �i is a pattern that may contain free transition-
local variables, Ht, with Ht \ V = ;. We assume �i 2
T (�;Ht) and type(�i) = type(i). The idea is that these
variables are bound at runtime, and the values can be
used in the computation of guards, output values, and
assignments. We naturally extend the notions of states
by stipulating that states be elements of AV [HR

where
HR =

S
t2T Ht. The guard g is a conjunction of pred-

icates over T (�;Ht [L) with type(g) = Bool . The as-
signment a �

V
l2L l

0 = fl type-correctly assigns val-
ues to the variables in L0, and it may do so by re-
ferring to the variables in L [Ht: fl 2 T (�;L [Ht)
with type(fl) = type(l). Finally, out �

V
o2O o

0 = fo
assigns values to the output variables, O0. It may re-
fer to the variables in L [Ht: fo 2 T (�;L [Ht) with
type(fo) = type(o).

" denotes the absence of signals both for input and
output ports; types are lifted correspondingly.

Without loss of generality, we will assume that the
action language for guards and assignments is a simple

�rst-order functional language without explicit quanti-
�ers, i.e., all variables are free. The reason for this choice
is that this is the language supported by the CASE tool
AutoFocus which was used in our studies.

A trace of a rule system is an in�nite sequence of
states, �1�2 : : : with �i 2 AV [HR

. The set of all traces,
i.e., the semantics of a rule system, R, is denoted by
[[R]]. We require �1 j= S and 8o 2 O ��1(o) = "|output
can only be produced after or during the �rst transi-
tion. Subsequent valuations of a trace, �n and �n+1, are
related by a transition in T : 8n � �n; �

0

n+1 j=
W
t2T t.

Clearly, there is room for many classical constraints such
as causality [BS01], input enabledness [LT87], fairness,
etc. Rule systems need not be total nor deterministic,
and consequently, the models that we consider need not
be either.

2.3 State Machines, Tables, and State Transition
Diagrams

A state machine is a rule system with a dedicated vari-
able state of a �nite type. It speci�es the control state or
mode of the state machine. We require an initial control
state to be determined in the initial assertion S, each
guard to contain a statement state = src, and each as-
signment to contain a statement state 0 = dst where src
and dst are the source and destination control states
of the transition, respectively. By convention, we will
use overlines for the names of control states. State ma-
chines are graphically represented by state transition
diagrams (STDs)|circles (control states) and arrows
(transitions). Two examples of STDs are given in Fig-
ures 1 and 3. The black dot denotes the initial state, and
only the labels of transitions are provided.

Fig. 1 STD of the stack

Each state machine is a rule system, but not every
rule system is a state machine. However, there are many
ways of transforming a rule system into a state machine.
The simplest one is as follows: we add state of type fsg
to L, add the conjunct state = s to the guard of each
transition, and add the conjunct state 0 = s to the assign-
ment of each transition (assuming state 62 L; otherwise
we rename the old variable state before introducing the
new one). Di�erent ways of computing state machines
from rule systems are the topic of this paper.

A table is the textual representation of a rule system
in some tabular form. Parnas has devoted considerable

4 Alexander Pretschner, Wolfgang Prenninger

Name Guard Input Output Assignment

pushItem true e�= push(DATA) a'=" st'=list(DATA,st)

getItem not(isE(st)) e�= get a'=ft(st) st'=st

popItem not(isE(st)) e�= pop a'=" st'=rt(st)

idle true e�= " a'=" st'=st

Table 1 Tabular speci�cation of a stack

work to the classi�cation of tables [Par92]. For us, any
tabular representation will do. An example of a table is
given in Table 1.

2.3.1 Example Consider the speci�cation of a stack of
integers. We assume a component with one input port
I = feg with type(e) = fpush(Int); get ; pop; "g, and one
output port, O = fag with type(a) = Int [f"g. There is
one local variable, L = fstg. Using functional notation,
its type is recursively de�ned by data d st = empty |

list(Int, d st). Three functions are de�ned:
isE(X) = (X == empty), ft(list(X,Y)) = X, and �-
nally rt(list(X,Y)) = Y. Adding a further local vari-
able state of type(state) = fwait4Inputg to the set L
of local variables generates a state machine from the
rule system if trivial statements state = wait4Input and
state 0 = wait4Input are simultaneously added to guard
and assignment of each row of Table 1. Note the use of
one transition-local variable, namely DATA in transition
pushItem. Figure 1 shows the STD that corresponds to
the state machine of the stack example.

3 Incremental Development

Increments denote di�erent development stages of a sys-
tem, or model, respectively. To be as
exible as possible,
we do not impose any constraints|such as the require-
ment that the set of all traces becomes smaller with each
step as in stepwise re�nement|on these steps.

3.1 Development Process

Our experience with building large models boils down to
the following process. Existing (informal) requirements
speci�cations are read: a �rst understanding of the sys-
tem's behavior is gained. One is capable of writing down
statement such as \if a certain input occurs under certain
conditions, then the system's state changes as follows, by
outputting certain values". These rules are preliminary
in that they are likely to be corrected later on. Reading
the requirements documents also tends to lead to a �rst
natural partitioning of the state space; for instance, one
might �nd it natural to have a partitioning into on and
o� states in the model of an embedded system.

We found it expedient not to exclusively use the
graphical STDs in these early stages of development.
Instead, tables turned out to be tremendously useful.

The reason is that we felt editing tables was easier than
editing STDs. For instance, when adding transitions, ar-
rows and labels have to be placed so they do not overlap
too much with other states or transitions (contrast this
with adding a row to a table). As a second example,
when identical guards of several transitions have to be
changed, the respective windows have �rst to be opened
in the CASE tool (contrast this with directly pointing
to the column or cells that contain the guards). As a
third example, when several guards had to be checked
for mutual exclusion, the respective windows had to be
opened in the CASE tool (contrast this with having
the respective guards automatically aligned). We are of
course aware that this assessment is subjective, and that
it also depends on the GUI of the CASE tool.

Nonetheless, there is no doubt that STDs are highly
useful. Debugging is sometimes easier with executable
STDs than with tables. For demonstration purposes with
customers and domain experts, we found STDs to yield a
good basis for discussion. In addition, the graphical lay-
out helps one to identify symmetries, or missing symme-
tries which lead to corrections of the model (Section 6).

3.2 Modi�cations and Refactorings

Development steps can alter interfaces, or they alter the
behavior. We do not consider architectural modi�cations
such as the addition of components here [BS01,PR97,
PR99]. Interface modi�cations add or delete input or
output ports from a system. If, before deletion, the name
of a port does not occur in a system's transitions, its
removal does not change the system's behavior, and nei-
ther does the introduction of a new port. Behavior mod-
i�cations consist of removals and additions of traces of a
model. Syntactically, this is achieved by inserting, mod-
ifying, or deleting transitions in T , possibly by taking
into account modi�cations of L.

An increment ~R of a rule system R with [[R]]
I[O
= [[~R]]

is called a refactoring of R. This assumes that R and
~R de�ne the same external interface I = ~I and O = ~O:
refactorings do not modify the interface of a component.
An increment that is no refactoring is called a modi�-
cation. In our incremental development process that re-
lies on both tables (rule systems) and STDs (state ma-
chines), there are hence four di�erent kinds of develop-
ment steps that complement architectural and interface
modi�cations:

Computing Refactorings of State Machines 5

R

τ, τ−1

τ, τ−1

τ, τ−1 ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

ρ
S

δ

δ

δ

δ δ

δ

ρ ρ ρ

ρ ρρ

ρ ρ ρ

RRR

R RR

R R

Fig. 2 Incremental Development

1. refactorings of state machines,

�S 2 f� j [[R]]
I[O
= [[�(R)]] and R is a state machineg,

2. refactorings of rule systems,

�R 2 f� j [[R]]
I[O
= [[�(R)]] and R is a rule systemg,

3. modi�cations of rule systems, and
4. modi�cations of state machines. Modi�cations mod-

ify, add, or delete transitions, possibly with alter-
ations of L.

Let � and ��1 denote behavior-preserving transfor-
mations from rule systems into state machines, and vice
versa. Figure 2 illustrates the relationship between the
development steps (modi�cations denoted by �). As de-
velopment progresses from top to bottom, modi�cations
take place. Within each row, di�erent refactorings of
both tables and STDs are considered, and the former
can be transformed into the latter, and vice versa. The
case study presented in Section 6 illustrates how this
abstract process model is instantiated in practice.

In the next section, we will describe how to compute
refactorings of rule systems, �R. Since state machines
are rule systems, this also caters for refactorings of state
machines, and STDs, respectively. However, for reasons
that we will be able to explain only after refactorings
have been made precise, it is not always desirable to let
�S = �R (Section 5.3).

Refactorings of rule systems that are not state ma-
chines appear to be of moderate value: they remain tex-
tual, and we have discussed the bene�ts of graphical rep-
resentations in Section 1. Methodologically, one would
prefer to get a state machine (in fact, an STD) from
a refactored rule system (in fact, a table) in one step.
Consequently, we will focus on combinations of (1) refac-
torings of rule systems (tables) and (2) transformations
from rule systems (tables) into state machines (STDs).
As we will see in the next section, it is su�cient to
consider refactorings of state machines de�ned by �S =

� � �R � �
�1. The only reason for having included refac-

torings of rule systems into the left part of Figure 2 is
precisely that we compute refactorings of state machines
by relying on these �R.

4 Refactorings

This section constitutes the core of the article. We �rst
discuss methodological considerations of model refactor-
ings, and then present our approach to actually com-
puting refactorings. We do not discuss the practically
utterly relevant topic of co-evolution of models and code
here [MT04, Section 3.4].

4.1 Methodological Aspects of Model Refactorings

4.1.1 Refactorings of models and code Refactorings for
code tend to be motivated by a need for cleaning it up.
Exactly in line with the process schematically depicted
in Figure 2, incremental code development proceeds by
interleaving phases of adding functionality and cleaning
up the code [Fow99, p.54]. In other words, when ap-
plied continuously, refactorings predominantly serve as
a preparatory step for modi�cations. This is the case for
both code and models, as exempli�ed in Section 6. How-
ever, code refactorings are mainly motivated by the no-
tion of \code smells", i.e., \ugly" or redundant code por-
tions. While we clearly acknowledge the need for refac-
torings when introducing hierarchical states, for instance,
we have not encountered a comparable phenomenon of
\model smells" with STDs. Instead, when we felt a need
for refactorings, this was motivated by inadequate or
\unnatural" control state structures, a result of an in-
creasing understanding of the requirements. One reason
for this di�erence possibly is the strongly restricted syn-
tax, or conceptual simplicity, of STDs (without the ac-
tion language) when compared to that of object-oriented

6 Alexander Pretschner, Wolfgang Prenninger

code|there only is a restricted number of ways that
STDs can look \ugly".

4.1.2 Patterns Likely a consequence of the restricted
syntax, too, there do not seem to be many refactoring
patterns [Fow99] for the circle-and-arrow part of STDs.
One obvious reason is that our notion of refactoring
always requires application-speci�c, or model-speci�c,
knowledge as expressed in the predicates that de�ne
the transformation (Section 4.2). This, by de�nition, is
somewhat contrary to the very idea of patterns. Still,
even though the predicates have to be de�ned manually,
one recurring situation is the desire to split one control
state into several substates, which is comparable to mak-
ing the state hierarchical (but for the sake of simplicity,
our formalisms do not contain constructs for expressing
hierarchies). In the case study in Section 6, all but one
refactoring steps fall into this category. A dual situa-
tion occurs if one wants to merge several states into just
one, and hence to get rid of hierarchy. The observation
that these are the most frequent refactorings is interest-
ing from an implementation perspective: in the splitting
scenario, refactorings are \local" in that only those tran-
sitions of the original model need to be considered that
lead to or emanate from the state to be split. Similarly,
in the merging situation, only those transitions need to
be considered that lead to or emanate from one of those
states that are to be merged.

4.1.3 Reviews Finally, it is precisely the restricted graph-
ical syntax of STDs that makes them amenable to a cer-
tain kind of reviews. Symmetries, or more often a lack of
symmetry of transitions between certain control states,
can provide hints at incorrect or missing transitions (for
instance, in non-hierarchical STDs, a missing transition
from all states to the initial state that switches o� a de-
vice). While \clean" code clearly facilitates reviews, the
simple circle-and-arrow nature of STDs makes symme-
try considerations particularly appealing. An example
for this use of refactorings is provided in Section 6.8.

4.2 Intuition: Refactoring via Predicates

We are now ready to show how refactorings can be com-
puted. In our stack example, one might want to trans-
form the speci�cation into an equivalent one with two
control states: one speci�es that the stack is empty, and
the other one speci�es that it is not. The problem then
consists of computing the transitions between these two
control states.

In this article, the idea of refactoring state machines
or rule systems is to de�ne a set of predicates that cover
or even partition the data space (the case of predicates
that do not form a covering is discussed in Section 4.5,
and covering predicates that do not form a partitioning
are handled in Section 4.6). In general, whether a set

of predicates forms a partitioning or covering is unde-
cidable. In our concrete case studies, however, we could
easily see whether or not this was the case. Each of the
predicates corresponds to one control state of the refac-
tored model: control states are projections of the data
space (de�ned as the set of all possible valuations of
all variables). Once the covering predicates have been
de�ned, one must compute the transitions between the
corresponding states.

To get an intuition of this computation, consider a
set of predicates, P , that cover the data space, and that
do not constrain input nor output values. The elements
of P will form the control states of the refactored model.
Let p; q 2 P . Transitions (arrows in the graphical rep-
resentation) from p to q for each pair p; q are computed
as follows. For each guard g of a row in the table, we
compute the intersection between p and g, i.e., p ^ g.
We also need to make sure that q is compatible with the
assignment a �

V
l2L l

0 = fl of the transition, i.e., that q
holds if the assignment has been computed. Overall, the
predicate g^p^q0[fl=l

0]l2L has to be satis�able. With jP j
new control states and t transitions, the transformation
requires the computation of t � jP j2 new transitions.

4.3 Example

In the stack example, suppose we want to derive a state
machine with two control states characterized by the
predicates p � isE (st) and q � not(isE (st)). Clearly, p
and q partition the data space. Table 2 shows the result
of the refactoring where empty output (a0 = ") and triv-
ial assignments (st 0 = st) are, for brevity's sake, omitted.
Unsatis�able transitions are canceled out.

For each transition of the original speci�cation, four
new transitions are computed: from p to p, from p to q,
from q to p, and from q to q. For instance, the �rst row
in the table corresponds to a transition from p to p that
is de�ned by the old transition pushItem. isE (st) checks
if the source control state, p, is compatible with the old
guard, true. isE (list(DATA; st)) checks if the destination
control state, p, is compatible with the old assignment,
st 0 = list(DATA; st). The conjunction of the two terms
is unsatis�able; the transition is canceled out.

Fig. 3 STD of the refactored stack

As a second example, the tenth row of Table 2, marked
by yy, is the transition from p to q w.r.t. the old transi-

Computing Refactorings of State Machines 7

Name Guard in: e�= out: a'= assgmt. st'=

pushItem isE(st) ^ isE(list(DATA,st)) push(DATA) list(DATA,st)

pushItem isE(st) ^ not(isE(list(DATA,st))) push(DATA) list(DATA,st)

pushItem not(isE(st)) ^ isE(list(DATA,st)) push(DATA) list(DATA,st)

pushItem not(isE(st)) ^ not(isE(list(DATA,st))) push(DATA) list(DATA,st)

getItem not(isE(st)) ^ isE(st) ^ isE(st) get ft(st)

getItem not(isE(st)) ^ isE(st) ^ not(isE(st)) get ft(st)

getItem not(isE(st)) ^ not(isE(st) ^ isE(st)) get ft(st)

getItem not(isE(st)) ^ not(isE(st)) ^ not(isE(st)) get ft(st)

popItem not(isE(st)) ^ isE(st) ^ isE(rt(st)) pop rt(st)

yypopItem not(isE(st)) ^ isE(st) ^ not(isE(rt(st))) pop rt(st)

popItem not(isE(st)) ^ not(isE(st)) ^ isE(rt(st)) pop rt(st)

popItem not(isE(st)) ^ not(isE(st)) ^ not(isE(rt(st))) pop rt(st)

idle isE(st) ^ isE(st) "

idle isE(st) ^ not(isE(st)) "

idle not(isE(st)) ^ isE(st) "

idle not(isE(st)) ^ not(isE(st)) "

Table 2 Refactored behavior

tion popItem. not(isE (st)) ^ isE (st) checks the compati-
bility of the old guard, g, with the source control state, p.
not(isE (rt(st))) checks if the destination control state,
q, is compatible with the old assignment. p ^ g are not
satis�able; this transition is also canceled out.

Figure 3 shows the STD of the stack as de�ned by
Table 2 that we assume to be extended by the respective
assignments to state and state'. Transitions are abbrevi-
ated. isFilled is the control state de�ned by not(isE (st)).

4.4 Formalization

We will now make the refactoring step precise. Let P
denote a �nite set of predicates over L, i.e., 8p 2 P �p 2
T (�̂; L) for some extension �̂ of �. P is required to
cover the data space L of a rule system R = (V; S; T)
with V = I [O [L de�ned as above. P covers AL

i� for all states �, we have � j=
W
p2P p. For conve-

nience, we also require that all predicates in P be satis-
�able. Refactoring a rule system R = (V; S; T) w.r.t.
a covering P of the data space yields a rule system
�R(R) = ~R = (V; S; ~T) with ~T being de�ned by equa-
tion 1 (Figure 4, top). The proof that this transforma-

tion is indeed a refactoring, i.e., [[R]]
I[O
= [[~R]], is given in

Appendix A.
If one wants to perform the refactoring and generate

a state machine in one step (Section 3), then the fol-
lowing construction can be used. With a new variable
state of type(state) =

S
p2P fpg we de�ne � � �R((I [

O [L; S; T)) = (I [O [L [fstateg; ~S; ~T) with ~S =
S ^ state = s for some s 2 P with S) s, and ~T being
de�ned by equation 2 (Figure 4, bottom).

4.5 Re�nement

The reason for requiring the set of predicates to form a
covering is as follows. Consider the stack example again,

and assume a function size to be given. It computes
the number of elements currently on the stack, size(st).
For some constant c, the predicates _P = fsize(st) < c;
size(st) = cg do not form a covering of the stack's state
space: the stack is bounded by a maximum number of
c elements now. Computing a transformed stack on the
grounds of equation (1) w.r.t. _P then excludes transi-
tions from and to states characterized by size(st) > c.
In this sense, a re�nement is computed: the set of traces
of the original model is reduced, and the transformation
is hence no refactoring.

In the general case, let Q denote a predicate (or set
of predicates that are combined into one large disjunc-
tion) that describes the entire state space. Let U be any
predicate (possibly a disjunction of predicates) that does
not cover the state space. The \missing parts" of Q can
then be described by a predicateM with :(M^U), such
that we have (U _M) , Q. Computing equation (1)
w.r.t. U rather than the covering predicate Qmeans that
the transformed system does not contain any transitions
from or to the states represented by M . The transfor-
mation is a re�nement rather than a refactoring.

In case M is known (which implies knowing that
U _ M forms a covering), this can hence methodolog-
ically be exploited for computing re�nements. In case
M is not known (which implies not knowing whether
or not U forms a covering), a computation w.r.t. equa-
tion (1) means that inadvertently a re�nement rather
than a refactoring may be computed.

4.6 Internal Nondeterminism

The proof that the construction of a new set of transi-
tions de�ned by equation (1) leads to a refactored rule
system only requires P to cover but not to partition
the state space. In addition to covering the state space,
the predicates in a partitioning predicate set P must be

8 Alexander Pretschner, Wolfgang Prenninger

~T =
n
in ^ g ^ p ^ q0[fl=l

0]l2L ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo

��� (in ^ g ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo) 2 T ^ p; q 2 P
o

(1)

~T =
n
in ^ g ^ p ^ q0[fl=l

0]l2L ^ state = p ^ state 0 = q ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo

���

(in ^ g ^
^
l2L

l0 = fl ^
^
o2O

o0 = fo) 2 T ^ p; q 2 P
o (2)

Fig. 4 Refactored transition relations

pairwise disjoint, i.e., 8p; q 2 P � p 6, q) :(p ^ q).
Choosing P to be a partitioning ensures that no internal
nondeterminism is introduced.

Consider refactoring the stack w.r.t. three predicates
p1 � size(st) = 0 , p2 � size(st) 2 f1; : : : ; cg, and p3 �
size(st) � c � 2 for some constant c > 2. The state
space is clearly covered, but p2 and p3 overlap in that
p2 ^ p3 is satis�able. Consider the respective state ma-
chine with control states p1, p2, and p3, and a partial exe-
cution with the system being in p2 with size(st) = c � 1 .
A push command can make the system either remain in
state p2, or transfer control to p3. The proof ensures that
the externally visible behaviors remains identical (it does
not take into account the explicit state variable). This
situation is exemplary for a choice of predicates that
cover yet do not partition the state space. As shown in
Appendix B, our transformation does not introduce this
kind of nondeterminism whenever actual partitionings
are taken as a basis for the refactoring step.

5 Implementation

As far as we know, there is no model-based CASE tool
that integrates tables and STDs. We have used Excel
and AutoFocus with ad-hoc translations between the
two. While not yet integrated into the tool, the com-
putation of refactorings is automated and includes (a)
the|trivial|computation of refactored transitions (set
~T), and (b) their|non-trivial|simpli�cation, possibly
to false, which we will describe below. Step (b) is par-
ticularly important because the computed transitions
should be readable by humans, and, as the example of
Section 4.3 shows, there is a great potential for the re-
moval of redundant parts.

The subject of this section is simpli�cation. We de-
scribe a simpli�cation algorithm that includes a simple
satis�ability checker (Section 5.1) and implements the
rules of Boolean algebra (Section 5.2). The former is
used to remove unsatis�able disjuncts for formulas in dis-
junctive normal form. When computing refactored STDs
from tables, the construction of Section 4.4 introduces a
new state variable for each such refactoring step. As it
turns out, many of these variables and references to them
can be deleted, which is explained in Section 5.3.

5.1 Satis�ability Checking

Because of potentially in�nite data structures, the satis-
�ability problem is generally undecidable, but one could
argue that (a) the cut-o� of in�nite data structure that
can often be justi�ed by domain knowledge, and (b) the
simplicity of the involved functions|e.g., there is usu-
ally no mutual recursion, and most recursions turn out
to be primitive, i.e., terminating|make manual deci-
sions possible. Because our action language for guards
and assignments is a functional language, we have im-
plemented the simpli�er in the functional logic language
Curry [Cur06]. Curry's operational semantics relies on
narrowing [Han94] which explains why it lends itself to
satis�ability checking.

The complexity of a satis�ability check obviously de-
pends on how contrived the involved functions and state
characterizations are. With a restriction of all lists to a
maximum length of 5, the examples in Section 6 are com-
puted in negligible time (the problem is exponential in
the length of the involved lists), and all stack examples
are computed in negligible time without depth restric-
tions. We have not implemented a plugin that also takes
into account automatic layouting of computed STDs.

We will assume that a system has n input ports
ci1 : : : cin , m output ports co1 : : : com , and w local vari-
ables l1 : : : lw. Every transition t given by

n̂

j=1

ci j �= ij ^ g ^
ŵ

j=1

l 0j = flj ^
m̂

j=1

co0j = foj (3)

directly translates into a Curry function step de�ned by

step t (l1 ; : : : ; lw) (i1 ; : : : ; in) j g =
�
(fo1 ; : : : ; fom); (fl1 ; : : : ; flw)

�
;

(4)

with the intuitive semantics that whenever actual pa-
rameters match the formal parameters expressed by the
patterns t, li, and ij , and in addition, guard g evaluates
to true, then the function returns a pair that consists of
output values and updated local variables.

The functional-logic, lazy-evaluation and higher-order
nature of Curry enables one to check if a transition from

Computing Refactorings of State Machines 9

p to q (with p; q 2 P being predicates that character-
ize the new control states) is compatible with a previ-
ously existing transition t by simple function application.
Compatibility here means satis�ability of an item of the
set ~T as de�ned by equation (1), and it is checked by the
simple program

sat p q t = p L && (q (snd (step t L I)))

where L,I free
(5)

where p and q are the programs that characterize source
and destination states, t ranges over all possible transi-
tions, L denotes the vector of all local variables, and I is
the input. L and I are computed automatically by the
Curry runtime system. snd computes the second element
of a pair.

Since L is a vector of variables, or their valuations,
repectively, one can relate L and predicates p by means
of the satisfaction relation, j=. Program 5 returns a so-
lution only if L j= p. This is achieved by applying the
function p to L. Furthermore, by calling the step func-
tion, it indirectly ensures L j= g because the guard is
evaluated there, and also L0 j= q0 because this is what is
encoded in the second element of the return value of the
step function.

5.1.1 Example Consider the stack example again. We
will implement the stack by means of a list (de�ned by
constructors [] and :, and with accessor functions ft for
the �rst element and rt for the everything but the �rst
element). Empty output is denoted by oeps. Without
going into the syntactic details of Curry (nV -> F de-
notes lambda abstraction �v:f , findall enumerates all
solutions of a given equation, and <- denotes list compre-
hension), the following program is enough to compute all
those transitions between the empty and the non-empty
states that are satis�able. This is done by simply exe-
cuting function checkall de�ned below.

step getT st getI | False=:=isE st =

(o (ft st), st)

step pushT st (pushI N) = (oeps, N:st)

step popT st popI | False=:=isE st =

(oeps, rt st)

isE [] = True

isE (_:_) = False

p = isE

q = not isE

allstates = [p,q]

sat p q T = p L && q (snd (step T L I))

where L,I free

feasible start stop =

findall ((\T -> (sat start stop T)=:=True)))

checkall = [(start,stop,feasible start stop) |

start<-allstates, stop<-allstates]

5.2 Simpli�cation

For more complex problems, however, this is too sim-
ple to work. We have also implemented a simpli�er that

takes care of simplifying propositional formulae w.r.t.
the standard laws of Boolean algebra (among others, for
instance, a^:a is simpli�ed to false, etc.). Because these
laws are standard, and the implementation of such a
simpli�er is standard as well, we do not show the imple-
mentation. One remark, however, is in order. To avoid
unnecessary computations, the above de�nition of the
sat function does contain calls to the simpli�er. How-
ever, one cannot simply de�ne

sat p q T = simplify (p L && q (snd (step T L I)))

where L,I free,

which contains such a reference. This is because simplify
would then have to operate on (partially) applied func-
tions that are created during the computation. However,
access to such functions is di�cult to achieve, because
the formal parameters of function de�nitions have to be
constructor terms and must not contain function sym-
bols (constructors are uninterpreted symbols, such as
oeps in the above example, and function symbols are
interpreted by the right hand side of the de�ning func-
tions, such as isE). For instance, to implement the equal-
ity ::a = a, one cannot simply de�ne simp (not (not

a)) a = a because function symbols like not as patterns
are not allowed. Our solution to this problem consists of
�rst generating pure constructor terms, i.e., terms with-
out function symbols, by replacing all function symbols
with dedicated constructors. Simpli�cation is then per-
formed on these constructor terms, and after simpli�-
cation, the constructor terms are re-translated into the
respective function symbols.

5.3 Removing the state variable

Assume an iterative process where a state machine, or
an STD, is generated, modi�ed, re-transformed into a
table which is subsequently modi�ed, etc. Adding a new
state variable for each transformation from a rule system
to a state machine (equation (2) in Section 4.4) is likely
to clutter the model or, more precisely, the guards and
assignments of transitions. This is the only reason for
not letting ��1 = id (Section 3). It is not a conceptual
but rather a practical problem: we would like the rule
systems to be readable by humans, and thus contain as
little redundancy as possible.

It turns out that many modi�cations are of a nature
that makes it possible to remove previously introduced
state variables. We will now identify those development
steps that, when applied in-between two refactorings,
allow one to delete references to the state variable intro-
duced in the last refactoring step. As explained in Sec-
tion 3, we focus on behavior modi�cations and ignore
interface modi�cations.

Recall that the computation of a refactoring and a
state machine in one step, de�ned in equation (2) in
Section 4.4, is done for each transition with assignmentV
l2L l

0 = fl and each pair of predicates, p and q. By con-
struction, we have state = p if p holds. Conversely, we

10 Alexander Pretschner, Wolfgang Prenninger

have state 0 = q if q0[fl=l
0]l2L evaluates to true. In other

words, the information on the explicit state variable is re-
dundant; it can be synthesized from p or q0[fl=l

0]l2L, re-
spectively. At this stage it is only used to decide whether
or not to draw a transition arrow between two control
states of the respective STD.

In the following, we assume that a CASE tool main-
tains some representation of a given state machine and
is able to display both representations, table and STD.
Each row of the table corresponds to one arrow in the
STD. Modi�cations can take place both at the level of
the table and the level of the STD. We will now take a
look at possible development steps between two refactor-
ings (i.e., introductions of state variables), and how these
relate to the necessity of keeping references to earlier
introduced state variables in the generated transitions.
These steps are removal, insertion, and modi�cation of
a transition, addition and removal of control states, and
addition or removal of local variables. The following list
is to be read as follows. If the modi�cations between two
refactorings are all described by items that mention that
the state variable introduced in the �rst refactoring step
carries redundant information only, then all references to
it can be removed directly before the second refactoring
step.

1. Removing transitions from the STD or corresponding
rows from the table after a refactoring from a rule
system into a state machine is not problematic: the
state variable from the �rst refactoring step carries
nothing but redundant information.

2. Adding a new transition in an STD from an existing
control state p to an existing control state q boils
down to two di�erent situations. Assume that the
new transition's assignment is

V
l2L l

0 = fl, and that
the set L of local variables was not changed.
{ The state variable introduced in the �rst refac-
toring step carries redundant information only if
q0[fl=l

0]l2L is satis�able: no inconsistency with the
logical characterization of the destination state
q is introduced. The CASE tool simply has to
add state = p ^ p ^ q0[fl=l

0]l2L to the guard and
state 0 = q to the assignment of the table's row
that corresponds to the new transition. In the se-
quel, it can be treated like any other transition;
the state variable carries redundant information
only.

{ On the other hand, if q0[fl=l
0]l2L is not satis�able,

then the new transition violates the logical char-
acterization of q. In this case, the state variable
introduced in the �rst refactoring step carries ac-
tual information and cannot be deleted before the
second refactoring step. An example of this situ-
ation is given in the case study in Section 6.5.2.

Adding a new row to the table is independent of any
information associated with the state variable, un-
less, of course, it explicitly references this variable.

3. Modifying a transition can be seen as the process of
removing a transition and then adding a new one.
This case is hence covered by items 1 and 2 above.

4. Adding a new control state r (and hence extending
the type of variable state by r) in itself is obviously
not problematic. However, if there is no logical char-
acterization of r, and new transitions from or to r are
added, then the state variable in the tabular repre-
sentation of this new transition does not carry redun-
dant information alone. It cannot be deleted before
the second refactoring step (even though it might be
the case that it is relevant only for transitions from
or to r).

5. Removal of control states usually entails the deletion
of all incoming or outgoing transitions. In case there
are such transitions, this is covered by item 1 above.
If there are no such transitions, then no transition
in the model contains references to the state that is
to be deleted: the state variable contains redundant
information only.

6. Finally, modi�cations of L � fstateg can be either
removals or additions of variables. The addition of
variables in itself obviously is not problematic. The
removal of variables requires a modi�cation of the
logical characterization of the control states as well as
of guards, assignments, and output statements: these
must not contain any references to the removed vari-
able. For each transition in the model, it is also nec-
essary to perform an analysis as described in step 2
above.

In other words, if the CASE tool implements the
checks as described above, and if it can be decided that
for a particular set of subsequent development steps, a
previously introduced state variable carries nothing but
redundant information, then it can be removed in a sub-
sequent refactoring step, which leads to simpli�ed rules.

6 Example: MOST NetworkMaster

This section illustrates the methodological bene�ts of
our approach when applied to the behavior model of a
network controller for automotive infotainment systems,
the MOST NetworkMaster (NM) [MOS02]. The model
was the basis for applying and assessing model-based
testing technology in an NM implementation [PPW+05].

The functionality of the infotainment network is di-
vided into function blocks which reside on the network's
devices. Examples include starting the CD player, or dis-
playing a video stream on one of the displays. The NM
is a special function block responsible for network man-
agement. In this article, we consider only the model of
the NM's main service: setting up and maintaining the
central registry. The central registry contains all function
blocks and their associated network addresses currently
available in the network.

Computing Refactorings of State Machines 11

Name Guard in: (net,i)�= out: o'= Assignment

NetOn isE(al) NetOn(N); " " al'=init(N) ^ reg'=empty ^

wa'=empty

NetO� not(isE(al)) NetO�; " " al'=empty ^ reg'=empty ^

wa'=empty

sndFBGet not(isE(al))
^ isE(wa) ^

not(allReq(al))

"; " FBGet(nxtAddr(al)) al'=setReq(nxtAddr(al); al)
^ wa'=nxtAddr(al)

recFBStatus not(isE(al)) ^

wa=[ADDR] ^
not(allReq(al))

";FBStatus(ADDR; FBL) " reg'=store(ADDR, FBL; reg)
^ wa'=empty

recFBStatus
SndOK

not(isE(al)) ^

wa=[ADDR] ^
allReq(al)

";FBStatus(ADDR; FBL) CfgStatusOk reg'=store(ADDR, FBL; reg)
^ wa'=empty

Table 3 First increment of the NM model

In the following, we apply our refactoring techniques
to the incremental development of a slightly simpli�ed
NM model.

6.1 Overview

We start by de�ning the syntactic interface of the system
in Section 6.2. Section 6.3 describes the initial increment,
the startup phase of the controller. In Section 6.4, we
apply an intuitive refactoring into the states on and o�.
The next increment, de�ned by the handling of prob-
lematic devices during the startup phase, is described
in Section 6.5. This step consists of two substeps, one
preparatory refactoring step, and the actual increment.
Section 6.6 suggests a further refactoring that appears
expedient, and that is a result of insights from earlier
steps. Section 6.7 describes the �nal model, and Sec-
tion 6.8 demonstrates the usefulness of refactorings when
used for reviews. It also contains an example of a refac-
toring where it is not the case that two states are merged
into one new state, or where one state is split into two
new states (cf. Section 4.1).

Fig. 5 Interface of the NM model

6.2 Black-Box View

Initially, the interface of the model of the NM consists of
the input ports I = fnet ; ig and output port O = fog.

net carries signals for switching on and o� the network,
and i carries signals for incoming network messages. o
carries outgoing network messages (Figure 5).

6.3 Step 1: Startup

We start by modeling the startup behavior of the NM.
Whenever the network is switched on, the NM requests
the function blocks of each device in the network, and
stores them in the central registry. Afterwards, the NM
sets the network to normal operation by broadcasting a
message indicating that the network's con�guration sta-
tus is okay. This means that the devices in the network
are allowed to freely communicate and use each other's
function blocks.

For the �rst modeling step, we make use of three local
variables al, wa, and reg.

{ al stores the list of network addresses of the devices in
the network, and attaches to each address a
ag that
indicates whether or not that address has already
been contacted during startup. The NM asks each of
these addresses to return their function blocks.

{ wa stores the network address from which the NM ex-
pects an answer to its last request. It is implemented
as a list that contains at most one element.

{ reg holds the actual central registry.

All variables are initialized by their default value
empty. Table 3 shows the �rst increment of the NM
model with �ve rules.

1. Via rule NetOn, the network is switched on, and the
address list al is initialized to the number N of de-
vices in the network.

2. Via rule NetO�, the network is switched o�, and all
local variables are set to their default values.

3. Rule sndFBGet encodes the request of function blocks
from the next network address. If there are further
addresses to request (predicate not(allReq(al))) and
the NM does currently not wait for an answer (predi-
cate isE(wa)), then the next address is requested and
this address is recorded (assignment of variable al).

12 Alexander Pretschner, Wolfgang Prenninger

Fig. 6 Two variants of the �rst increment

Name Guard in: (net,i)�= Assignment

NetOn isE(al) ^ not(isE(init(N))) ^ not(allReq(init(N)))
^ state=o�

NetOn(N); " al'=init(N) ^ reg'=empty ^

wa'=empty ^ state'=init

NetO� not(isE(al)) ^ (not(allReq(al)) _ not(isE(wa))) ^
state=init

NetO�; " al'=empty ^ reg'=empty ^

wa'=empty ^ state'=o�

NetO� not(isE(al)) ^ allReq(al) ^ isE(wa) ^

state=cfgOk
NetO�; " al'=empty ^ reg'=empty ^

wa'=empty ^ state'=o�

sndFBGet not(isE(al)) ^ isE(wa) ^ not(allReq(al))
^ not(isE(setReq(nxtAddr(al),al))) ^

(not(allReq(setReq(nxtAddr(al),al))) _

not(isE(nxtAddr(al)))) ^ state=init

"; " al'=setReq(nxtAddr(al),al) ^

wa'=nxtAddr(al) ^ state'=init

sndFBGet not(isE(al)) ^ isE(wa) ^ not(allReq(al))
^ not(isE(setReq(nxtAddr(al),al)))
^ allReq(setReq(nxtAddr(al),al)) ^

isE(nxtAddr(al)) ^ state=init

"; " al'=setReq(nxtAddr(al),al) ^

wa'=nxtAddr(al) ^ state'=cfgOk

recFBStatus not(isE(al)) ^ wa=[ADDR] ^ not(allReq(al)) ^
state=init

";FBStatus(
ADDR; FBL)

reg'=store(ADDR,FBL,reg) ^

wa'=empty ^ state'=init

recFBStatus
SndOK

not(isE(al)) ^ wa=[ADDR] ^ allReq(al) ^

state=init
";FBStatus(
ADDR; FBL)

reg'=store(ADDR,FBL,reg) ^

wa'=empty ^ state'=cfgOk

Table 4 Refactoring of the �rst increment of the NM model (cf. Figure 6, right)

4. Rule recFBStatus models the reception of an answer.
This answer is stored in the central registry (assign-
ment of variable reg).

5. Finally, rule recFBStatusSndOk models the reception
of the last answer and broadcasting a message that
the con�guration procedure is done (message CfgSta-
tusOk). The NM thus sets the network to normal op-
eration; all devices are allowed to communicate freely.

6.4 Step 2: Refactoring

It appears intuitive to partition the state space by means
of the predicates on � not(isE (al)) and o� � isE (al),
and perform a respective refactoring. The transforma-
tion of Table 3 then results in the state machine depicted
in Figure 6, left.

6.5 Step 3: Missing devices

In the next development step, we model the situation
where some of the devices do not respond to the NM's
request at the �rst time. The NM requests these pending
devices after it has set the network to normal operation.

6.5.1 Preparation: Refactoring Before we model this be-
havior, it is expedient to prepare the model for this de-
velopment step by splitting state on � not(isE(al)) into
two states, namely init � not(isE(al)) ^ (not(allReq(al))
_ not(isE(wa))) and cfgOk � not(isE(al)) ^ allReq(al)
^ isE(wa). Obviously, on , init _ cfgOk holds. Appli-
cation of the splitting transformation described in Sec-
tion 4.1.2 yields the state machine depicted in Figure 6,
right. By doing so, we have refactored the model into
a state machine where the status network has reached
normal operation is explicit in the model. The resulting
state machine is described in Table 4 (with output state-
ments omitted, for the sake of brevity; cf. Table 3). Note
that in this table, the explicit state variable is redun-
dant and could be deleted without changing the seman-
tics. The second sndFBGet transition, from state init to
state cfgOk is never enabled, a consequence of the fact
that the function de�nitions entail not(allReg(al)))
not(isE (nxtAddr(al))). The unsatis�ability of all those
transitions that are omitted from the table directly fol-
lows from the laws of Boolean algebra and intuitively
true statements such as isE(empty).

6.5.2 Increment Now we are ready to model the new
behavior described above. We start by adding a further

ag to the list of addresses, al. This
ag is set when the

Computing Refactorings of State Machines 13

Fig. 7 Two variants of the second increment

Name Guard in: (net,i)�= out: o'= Assignment

recFBStatus not(isE(al)) ^ wa=[ADDR] ^

not(allReq(al)) ^ state=init
", FBSta-
tus(ADDR,
FBL)

" al'=setAns(ADDR,al) ^

reg'=store(ADDR,FBL,reg) ^

wa'=empty ^ state'=init

recFBStatus
SndOK

not(isE(al)) ^ wa=[ADDR] ^ all-
Req(al) ^ state=init

", FBSta-
tus(ADDR,
FBL)

CfgStatusOk al'=setAns(ADDR,al) ^

reg'=store(ADDR,FBL,reg) ^

wa'=empty ^ state'=cfgOk

swDelay not(isE(al)) ^ isE(wa) ^ all-
Req(al) ^ state=cfgOk

"; " " al=setReq2NotReq(al) ^

state=cfgOk

sndFBGet not(isE(al)) ^ isE(wa) ^

not(allReq(al)) ^ state=cfgOk
"; " FBGet(nxt-

Addr(al))
al'=setReq(nxtAddr(al),al)
^ wa'=nxtAddr(al) ^

state'=cfgOk

: : : : : : : : : : : : : : :

Table 5 Incomplete second increment (cf. Figure 7, left)

respective devices have answered. This is implemented
by a function setAns, as shown in Table 5. This table
does not repeat the rules of Table 4, and for the sake of
brevity, not all transitions that are shown in the STD of
Figure 7, left, are listed in the table. Modi�cations are
typeset in boldface.

When the system is in state cfgOk and all requests
have been issued, then it is necessary to take care of
those addresses that have not answered yet. This is done
by remaining in this control state, while setting the \re-
quested"
ag of all those addresses that have not yet
answered to \not requested", thus ensuring that they
will be asked once more (rule named swDelay).

However, by doing so, the logical characterization of
cfgOk is violated. Among other constraints, cfgOk is de-
�ned by allReq(al) (Section 6.5.1). This is an example
of the situation described in Section 5.3, second bullet
of item 2. Once this rule|or transition in the respective
STD|has been added, one cannot simply remove the
state variable introduced by an earlier refactoring step.
The reason is that the de�nition of rule swDelay now
depends on explicit information about the control state,
namely cfgOk, and this information is not equivalent to
the logical characterization of cfgOk, as we have seen.

A second consequence of this development step is
that the developer needs to reconsider rules that were
de�ned earlier. For instance, it is now necessary to add
a rule that, while being in state cfgOk, sends requests to

addresses from which no answer has been obtained yet.
This is done by rule sndFBGet shown in Table 5.

The remaining functionality is implemented in the
transitions that emanate from state cfgOk. While not all
transitions are shown in the table, the complete state
machine is depicted in Figure 7, left.

6.6 Step 4: Refactoring

After completion of the incremental development step,
we can once more apply the mechanism from Section 4.1.2
in order to split states and separate a state called delayed
from state cfgOk. The idea is that there are two modes,
one indicating that all nodes have answered (state cfg-
OkIdle � state=cfgOk ^ allReq(al) ^ isE(wa)), and the
other one indicating that some nodes have not yet been
requested once more (state delayed � state=cfgOk ^
(not(allReq(al)) _ not(isE(wa)))). Note that the earlier
introduced variable state is referenced. Figure 7, right,
shows the respective STD; the table is omitted for the
sake of brevity.

6.7 Completion

We do not show any further modeling details here. Dur-
ing modeling we identi�ed �ve main modes of the NM
which result in a variable called mode: in mode o� the
NM is switched o�; in mode init the NM performs a

14 Alexander Pretschner, Wolfgang Prenninger

Fig. 8 Two variants of the last increment (via P1: left; via P2: right)

system con�guration check during startup|all devices
are asked for their function blocks; in mode cfgOk the
NM has set up the network to normal operation, i.e., all
devices are allowed to communicate freely; in mode ncd
the NM performs a system con�guration check after a
network change, i.e., a device has left or jumped in the
network; and in mode delayed the NM requests period-
ically devices which have not answered to any request
yet. In an advanced modeling stage the NM's service
is speci�ed by a table with 17 rows where most guards
contain four or �ve atoms.

6.8 Refactorings for Reviews

We transformed this table into di�erent state machines
for a review of the model. We chose the partitioning
P1 which divides the state space according to the �ve
modes of the NM (Section 6.7). This is done by us-
ing an explicit mode variable. Figure 8, left, depicts the
respective state machine. In addition, we chose a sec-
ond partitioning P2 which distinguishes between the fol-
lowing states: (1) requestingDevices � wa = empty ^
mode 2 finit ;ncd ; delayedg where the NM requests de-
vices, (2) waitForFBStatus � wa 6= empty ^ mode 2
finit ;ncd ; delayedg where the NM waits for an answer,
(3) o� and (4) cfgOk where the NM is in modes o� or
cfgOk. Figure 8, right, depicts the state machine w.r.t.
partitioning P2 where \req.Devices" corresponds to pred-
icate requestingDevices, and \wait4FBStat" to predicate
waitForFBStatus. While the other refactorings of this
chapter all deal with splitting one state into several new
ones or vice versa, the refactoring w.r.t. P2 shows how
three states (init, ncd, delayed) are refactored into two
states (requestingDevices, waitForFBStatus). Neither re-
questingDevices nor waitForFBStatus are pure mergers
of two states de�ned by P1.

P1 allows us to study symmetries w.r.t. mode switch-
ing. For example, upon each network reset, the NM re-
turns to mode init (transitions with names ending in
NotOk). We would have detected an error in the model

if one of these transitions had been missing. By means of
P2, we can observe that the NM can enter state request-
ingDevices from state cfgOk only if a network change
occurs (transitions beginning with NCD) or if there are
devices which have not answered yet (transition swDe-
lay). There would be an error if there were further tran-
sitions. This example demonstrates that speci�c sym-
metries can be found and analyzed by building di�erent
abstract views of rule systems. By reviewing this kind of
abstractions, the model can be analyzed easily if some
transitions must or must not exist for symmetry con-
siderations. The abstract view reveals relations in the
model which would likely have stayed hidden in the de-
tailed view of tables.

7 Related work

Related work can be structured into other approaches to
refactoring, the use of tables, incremental development
processes, and logical characterizations of state spaces.
A preliminary version of this article appeared as a con-
ference contribution [PP05].

Refactorings: Suny�e et al. consider the refactoring of
statecharts on the grounds of hierarchical states [SPLJ01].
Roughly, sets of states are merged, and the new transi-
tions are computed. This di�ers from our work in that
they do not consider arbitrary new de�nitions of states
(our sets P that cover the state space); merging states
is just one refactoring (Section 4.1.2).

In the context of inductive veri�cation, Cheng con-
siders refactoring a parameterized process into a set of
constant processes [Che02]. In our context, this would
amount to refactoring one state machine into more than
one state machine, which is not the focus of this paper.

Van Gorp et al. propose extensions to the UML meta
model such that pre- and postconditions for behavior-
preserving transformations can be expressed [vSMD03].
This work is not concerned with refactorings of state ma-
chines. Similarly, Correa and Werner discuss refactorings
of OCL expressions and class structures, without explic-
itly taking into account state machines [CW04].

Computing Refactorings of State Machines 15

Philipps and Rumpe present a set of transformation
rules for data
ow networks and formally show that the
transformed system is a re�nement of the original one
[PR99]. Their work di�ers from ours in that we actually
compute the refactoring of a behavior model.

At �rst sight, one may be tempted to see similarities
between our work on refactorings and the ideas of pred-
icate abstraction [GS97]. The commonality is that both
approaches rely on predicates that de�ne the states of
a transformed system. The di�erence is that our trans-
formation does not induce any loss of information, or
abstraction, in the transformed system. This is the rea-
son why we can|modulo simpli�cation|compute the
transitions of the transformed system by syntactic re-
placements only, which is in general not the case for
the computation of abstract transitions in the context
of predicate abstraction.

Tables: Shen et al. [SZP96] are concerned with trans-
formations of tabular speci�cations of a system. They
concentrate on transformations between di�erent kinds
of tables [Par92] rather than transforming tables into
graphical representations in the form of extended state
machines. Their transformations are refactorings in their
own right.

Incrementality: Prowell and Poore use incrementally
discovered equivalence classes on I/O sequences to spec-
ify the I/O behavior of a system [PP03]. One could
directly use such canonical sequences as states (we do
not provide a method for deriving (characterizations)
states but rather assume them to be given|note that
the interpretation of states as equivalence classes on in-
put histories is standard, as witnessed, for instance, by
Nerode's classical right congruence used to minimize �-
nite automata). Janicki and Sekerinski claim that this
leads to complex state machines even for small systems
[JS01]. In that latter paper, the trace assertion method
is revisited, and by directly catering for certain signal
interleavings, the authors propose to interpret certain
so-called step-traces as states. Both approaches do not
seem to see a need for refactorings at all, but they also
advocate the use of di�erent speci�cations.

Logical Characterization: The state invariants in timed
and hybrid automata [LV91,ACH+95] are obviously re-
lated to our logical characterization of refactorings. How-
ever, we are concerned with discrete systems, and we use
the invariants in a methodologically di�erent manner,
namely to the end of refactoring. Furthermore, state in-
variants in timed and hybrid systems need not cover the
state space.

Lamport uses TLA predicates|invariants|to char-
acterize control states [Lam95] in predicate-action dia-
grams. Except for the concrete language, this is similar
to what we do in this paper. However, Lamport is not
concerned with refactorings.

Finally, the predicates we use to characterize control
states relate to the \rea�rmed invariants" in the context
of the Stanford Temporal Prover [Man94], namely local

invariants PC = i) I (i) that describe properties I(i)
at program location i and that are de�ned on data vari-
ables only. These special invariants are dubbed \mode
invariants" in the SCR context [JH98].

8 Conclusions and Future Work

The starting point of our work is the observation that
current model-based CASE tools provide insu�cient sup-
port for the incremental development of STDs when it
comes to fundamental changes of the control states. These
might become necessary if a better understanding of the
systems suggests a di�erent, more adequate, perspective
on the state space. Refactorings of STDs are hence mo-
tivated by a better understanding of the system rather
than by a \model smell".

We have shown a way of computing refactorings of
state machines on the grounds of predicates that de-
scribe parts of the state space. Our incremental devel-
opment process is based on both tables and STDs. We
have argued that there is room for both representations,
and that it is bene�cial to use them in parallel: because
of their clear structure, tables are sometimes easier to
grasp and manipulate|and STDs help with identifying
symmetries and, possibly together with simulation traces
in the form of sequence diagrams, also with conveying
fundamental ideas behind the model. Refactoring tables
that do not represent state machines appears to be of
modest value. Bene�ts do become apparent when the
simultaneous transformation into STDs is considered.

Because the computed refactorings are meant to be
readable by humans, we have shown how refactoring
steps can be performed with both representations while
reducing to a minimum the number of conjuncts in guards
that are introduced by the computation of a refactoring.
We have described those development steps that allow
one to remove previously introduced redundant infor-
mation when a refactoring is done simultaneously with
a transformation into an STD.

There are some limitations to the applicability of our
approach. Firstly, because determining whether or not a
set of predicates forms a partitioning is in general an
undecidable problem, one might inadvertently compute
a re�nement rather than a refactoring (Section 4.5). In
our experience, however, the covering property of a set
of predicates could always be shown. Secondly, while the
computation of a refactoring as de�ned in Section 4.4 is
a purely syntactical transformation, the simpli�cation
of the resulting transitions|without, these computed
transitions quickly become unintelligible|requires rea-
soning. With su�ciently powerful action languages, this
in general also is an undecidable problem. Even in de-
cidable cases, the performance of respective satis�abil-
ity checkers such as the one described in Section 5 natu-
rally a�ects the practical utility of the approach. Thirdly,
the de�nition of covering predicates is a challenging task

16 Alexander Pretschner, Wolfgang Prenninger

that, in addition to intimate familiarity with the system
under consideration, requires knowledge of formal logics
that some modelers will have to gain before the compu-
tation of refactorings becomes as natural an activity as
adding or removing behavior.

Our experience with behavior models of embedded
systems that we built to the end of generating test cases
suggests that the cost of building and maintaining the
models is likely to turn out as a critical parameter. In
many cases, the potential of considerable reuse will drive
the decision for or against this or comparable technolo-
gies. CASE tool support for (1) quick and easy devel-
opment of new models and, in particular, (2) comfort-
able modi�cation of existing models then appears as an
indispensable prerequisite for cost-e�ectively handling
their development. Tool-supported refactorings of be-
havior models, like the work presented in this paper,
appear to be one step towards more comfortable and
cheaper model-based development processes.

Future work is bound (1) to extended implementa-
tions of the satis�ability checker that is needed for the
reduction of refactored transitions, (2) to the tight inte-
gration of our approach into a CASE tool that, in partic-
ular, must include the automatic layouting of computed
STDs, and (3) to an extension to other formalisms, e.g.,
statecharts with OCL. While we believe that working
with logical characterizations of control states is a viable
option to refactoring state machines, we need more ex-
perience to identify situations where which model refac-
torings are of considerable methodological value, where
not, and why.

References

ACH+95. R. Alur, C. Courcoubetis, N. Halbwachs, T.A.
Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic anal-
ysis of hybrid systems. Theoretical Computer
Science, 138(1):3{34, 1995.

BBFM99. P. Behm, P. Benoit, A. Faivre, and J.-M. Mey-
nadier. M�et�eor: A Successful Application of B
in a Large Project. In Proc. Formal Methods,
volume 1708 of Springer LNCS, pages 369{387,
1999.

BKTW05. D. Basin, H. Kuruma, K. Takaragi, and B. Wol�.
Veri�cation of a Signature Architecture with
HOL-Z. In Proc. Formal Methods, volume 3582
of Springer LNCS, pages 269{285, 2005.

BLLP04. E. Bernard, B. Legeard, X. Luck, and
F. Peureux. Generation of test sequences from
formal speci�cations: GSM 11.11 standard case-
study. SW Practice and Experience, 34(10):915
{ 948, 2004.

BOJ04. M. Beine, R. Otterbach, and M. Jungmann. De-
velopment of Safety-Critical Software Using Au-
tomatic Code Generation. In Proc. SAE World
Congress (publication SP-1852: In-Vehicle Net-
works and Software, Electrical Wiring Har-

nesses, and Electronics and Systems Reliability),
2004.

BP00. M. Breitling and J. Philipps. Step by step to
histories. In Proc. Algebraic Methodology And
Software Technology, volume 1816 of Springer
LNCS, pages 11{25, 2000.

BS01. M. Broy and K. St�len. Speci�cation and De-
velopment of Interactive Systems { Focus on
Streams, Interfaces, and Re�nement. Springer,
2001.

CAB+98. W. Chan, R. Anderson, P. Beame, S. Burns,
F. Modugno, D. Notkin, and J. Reese. Model
checking large software speci�cations. IEEE
TSE, 24(7):498{520, 1998.

Che02. Y.-P. Cheng. Refactoring design models for in-
ductive veri�cation. In Proc. Intl. Symposium on
Software Testing and Analysis, pages 164{168,
2002.

Cur06. Functional Logic Language Curry. Lan-
guage Homepage: www.informatik.uni-kiel.

de/~mh/curry/, 2006.
CW04. A. Correa and C. Werner. Applying Refactoring

Techniques to UML/OCL Models. In Proc. 7th
Intl. Conf. on the Uni�ed Modeling Language,
pages 173{187, 2004.

DBCHP03. S. Dajani-Brown, D. Cofer, G. Hartmann, and
S. Pratt. Formal Modeling and Analysis of an
Avionics Triplex Sensor Voter. In Proc. 10th
Intl. SPIN Workshop, volume 2648 of Springer
LNCS, pages 34{48, 2003.

Dij75. E. Dijkstra. Guarded commands, nondetermi-
nacy and formal derivation of programs. Com-
mun. ACM, 18(8):453{457, 1975.

ESB01. M. Eckrich, J. Sch�au�ele, and W. Baumgart-
ner. New Steering System{BMW on the road
to success with ASCET-SD, ES1000 and INCA.
RealTimes, 1:20{21, 2001. en.etasgroup.com/

downloads/rt/rt_2001_01_20_en.pdf.
FGG+05. A. Ferrari, G. Gaviani, G. Gentile, M. Stefano,

L. Romagnoli, and M. Beine. Automatic Code
Generation and Platform Based Design Method-
ology: An Engine Management System Design
Case Study. In Proc. SAE World Congress (pub-
lication SP-924: Software/Hardware Systems),
2005.

FHP02. E. Farchi, A. Hartman, and S. S. Pinter. Using a
model-based test generator to test for standard
conformance. IBM Systems Journal, 41(1):89{
110, 2002.

Fow99. M. Fowler. Refactoring|Improving the Design
of Existing Code. Addison Wesley, 1999.

GS97. S. Graf and H. Saidi. Construction of abstract
state graphs with PVS. In Proc. 9th Intl. Conf.
on Computer Aided Veri�cation, volume 1254 of
Springer LNCS, pages 72{83, 1997.

Han94. M. Hanus. The Integration of Functions into
Logic Programming: From Theory to Practice.
J. Logic Programming, 19,20:583{628, 1994.

Hen80. K. Heninger. Specifying Software Require-
ments for Complex Systems: New Techniques
and Their Application. IEEE TSE, SE-6(1):2{
13, 1980.

www.informatik.uni-kiel.de/~mh/curry/
www.informatik.uni-kiel.de/~mh/curry/
en.etasgroup.com/downloads/rt/rt_2001_01_20_en.pdf
en.etasgroup.com/downloads/rt/rt_2001_01_20_en.pdf

Computing Refactorings of State Machines 17

HJL96. C. Heitmeyer, R. Je�ords, and B. Labaw. Au-
tomated Consistency Checking of Requirements
Speci�cations. ACM Transactions on SW Engi-
neering and Methodology, 5(3):231{261, 1996.

HSE97. F. Huber, B. Sch�atz, and G. Einert. Consistent
Graphical Speci�cation of Distributed Systems.
In Proc. Formal Methods Europe, volume 1313
of Springer LNCS, pages 122{141, 1997.

JH98. R. Je�ords and C. Heitmeyer. Automatic Gen-
eration of State Invariants from Requirements
Speci�cations. In Proc. 6th Intl. Symposium on
Foundations of SW Engineering, pages 56{69,
1998.

JS01. R. Janicki and E. Sekerinski. Foundations of
the Trace Assertion Method of Module Interface
Speci�cation. IEEE TSE, 27(7):577{598, 2001.

Lam95. L. Lamport. TLA in Pictures. IEEE TSE,
21(9):768{775, 1995.

LT87. N. Lynch and M. Tuttle. Hierarchical correct-
ness proofs for distributed algorithms. In Proc.
6th annual ACM Symposium on principles of
distributed computing, pages 137{151, 1987.

LV91. N. Lynch and F. Vaandrager. Forward and back-
ward simulations for timing-based systems. In
REX workshop, volume 600 of Springer LNCS,
pages 397{446, 1991.

Man94. Z. Manna et al. STeP: the Stanford Tempo-
ral Prover. Technical Report STAN-CS-TR-94-
1518, Department of Computer Science, Stan-
ford University, 1994.

MDD+03. T. Mens, S. Demeyer, B. Du Bois, H. Stenten,
and P. Van Gorp. Refactoring: Current Re-
search and Future Trends. ENTCS, 82(3):483{
499, 2003.

MOS02. MOST Cooperation. MOST Speci�cation,
Rev. 2.2. www.mostnet.de/downloads/

Specifications/, 2002.
MT04. T. Mens and T. Tourw�e. A Survey of Software

Refactoring. IEEE TSE, 30(2):126{139, 2004.
Par92. D. Parnas. Tabular Representations of Rela-

tions. Technical Report CRL-260, Telecommu-
nications Research Institute of Ontario, 1992.

PM95. D. Parnas and J. Madey. Functional Documents
for Computer Systems. Science of Computer
Programming, 1(25):41{61, October 1995.

PP99. D. Parnas and D. Peters. An Easily Extensible
Toolset for Tabular Mathematical Expressions.
In Proc. 5th Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems,
volume 1579 of Springer LNCS, pages 345{359,
1999.

PP03. S. Prowell and J. Poore. Foundations of
Sequence-Based Software Speci�cation. IEEE
TSE, 29(5):1{13, 2003.

PP05. A. Pretschner and W. Prenninger. Comput-
ing refactorings of behavior models. In Proc.
ACM/IEEE 8th Intl. Conf. on Model Driven En-
gineering Languages and Systems, volume 3713
of Springer LNCS, pages 126{141, 2005.

PPS+03. J. Philipps, A. Pretschner, O. Slotosch,
E. Aiglstorfer, S. Kriebel, and K. Scholl. Model-
based test case generation for smart cards.
ENTCS, 80:168{192, 2003.

PPW+05. A. Pretschner, W. Prenninger, S. Wag-
ner, C. K�uhnel, M. Baumgartner, R. Z�olch,
B. Sostawa, and T. Stauner. One evaluation
of model-based testing and its automation. In
Proc. 27th Intl. Conf. on Software Engineering,
pages 392{401, 2005.

PR97. J. Philipps and B. Rumpe. Re�nement of in-
formation
ow architectures. In Proc. 1st Intl.
Conf. on Formal Engineering Methods, pages
203{212, 1997.

PR99. J. Philipps and B. Rumpe. Re�nement of pipe
and �lter architectures. In Proc. World Congres
on Formal Methods, volume 1708 of Springer
LNCS, pages 96{115, 1999.

PSAK04. A. Pretschner, O. Slotosch, E. Aiglstorfer, and
S. Kriebel. Model Based Testing for Real|The
Inhouse Card Case Study. J. Software Tools for
Technology Transfer, 5(2{3):140{157, 2004.

SPLJ01. G. Suny�e, D. Pollet, Y. Le Traon, and J.-M.
J�ez�equel. Refactoring UML models. In Proc. 4th
Intl. Conf. on the Uni�ed Modeling Language,
volume 2185 of Springer LNCS, pages 134{148,
2001.

SZP96. H. Shen, J. Zucker, and D. Parnas. Table trans-
formation tools: Why and how. In Proc. 11th
Annual Conf. on Computer Assurance, pages 3{
11, 1996.

vSMD03. P. van Gorp, H. Stenten, T. Mens, and S. De-
meyer. Towards Automating Source-Consistent
UML Refactorings. In Proc. 6th Intl. Conf.
on The Uni�ed Modeling Language, Modeling
Languages and Applications, volume 2863 of
Springer LNCS, pages 144{158, 2003.

A Proof of Equivalence

We show that the transformation w.r.t. a covering P ,
given in equation (1) in Section 4.4, is indeed a refac-

toring, i.e., [[R]]
I[O
= [[~R]]. We prove the stronger claim,

[[R]] = [[~R]]. Restrictions to the I/O behavior are nec-
essary only if the set of local data state variables, L,
is modi�ed. We have moved modi�cations of this set|
more precisely, of state variable state|into the map-
pings � and ��1 that transform rule systems into state
machines, and vice versa. We need to show that for all
pairs of subsequent states, �
, of traces in R, there is
a transition ~t of ~R with �;
0 j= ~t, and vice versa. Both
directions are proved by induction.

\�". In order to show [[R]] � [[~R]], we �rst show that
the �rst state of a trace of the former also is the �rst state
of a trace of the latter. This follows directly because R
and ~R have the identical assertion S for initial states.

For the induction step, consider two subsequent states
� and
 of a trace of R, i.e., : : : �
 : : : 2 [[R]]. By de�-
nition, there must be a transition t 2 T with �;
0 j= t
where �;
 2 AV [Ht

. Let t � in ^g^a^out . We have to
show that there are p; q 2 P with �;
0 j= p^ q0[fl=l

0]l2L.
Since P covers the data space, AL, there must be

p; q 2 P s.t. � j= p and
 j= q, or equivalently,
0 j= q0.

www.mostnet.de/downloads/Specifications/
www.mostnet.de/downloads/Specifications/

18 Alexander Pretschner, Wolfgang Prenninger

By de�nition, a �
V
l2L l

0 = fl, and because t implies a,
it is the case that �;
0 j= t implies �;
0 j=

V
l2L l

0 = fl.
Hence �;
0 j= p ^ q0 ^

V
l2L l

0 = fl.

By de�nition, we have q0[fl=l
0]l2L � q0^

V
l2L l

0 = fl.
Consequently, �;
0 j= p ^ q0[fl=l

0]l2L. �;

0 j= t implies

�;
0 j= in ^ g ^ out . Altogether, this yields �;
0 j= in ^
g ^ p ^ q0[fl=l

0]l2L ^ a ^ out . This shows that if
 is
reachable from an initial state � in R, then this is also
the case in ~R.

\�". In order to show [[R]] � [[~R]], we already know
that the �rst state of a trace of ~R also is one of a trace
of R. Consider subsequent states � and
 of a trace of
~R. There is a ~t 2 ~T with �;
0 j= ~t. By construction of
~T , there also is a t 2 T with ~t) t and consequently,
�;
0 j= t.

B Proof of Preservation of Determinism

Proof A shows that the traces of a rule system and its
refactored counterpart are equivalent. However, this does
not prevent nondeterminism from being introduced, as
the example in Section 4.6 shows (it is irrelevant that
the example takes into account the explicit state vari-
able). The reason is that in the �rst direction of the
proof (\�"), we show that for each transition t taken
in the context of R, there must be a transition ~t in the
context of ~R. Now, the example shows that there can be
more than one, even though di�erent transitions may en-
tail the same traces. As it turns out, this kind of internal
nondeterminism is not introduced into deterministic sys-
tems if partitionings (and not just coverings) are used.
This is shown in the remainder of this appendix.

A rule system R = (V; S; T) with variables V = L [
I [O is called deterministic i�

1. the initial state is unique, i.e.,

8�;
 2 AV � � j= S ^
 j= S) �
L
=
; and (6)

2. in each state � 2 AV , at most one transition t 2 T
is enabled, i.e.,

8s; t 2 T 8�;
s;
t 2 AV �

�;
0s j= s ^ �;
0t j= t) s, t:
(7)

We now show that if the rule system R = (V; S; T)
is deterministic and transformed to ~R = (V; S; ~T) w.r.t.
a partitioning predicate set P , then ~R is deterministic.
We prove this claim by showing that equations (6) and
(7) hold for the transformed rule system ~R.

Equation (6) vacuously holds because R and ~R have
the identical initial condition S. For equation (7) con-
sider two transitions ~s; ~t 2 ~T and states �;
~s;
~t 2 AV

with

�;
0~s j= ~s and �;
0~t j=
~t: (8)

By construction of ~T , there are transitions u; v 2 T and
predicates p1; q1; p2; q2 2 P with

~s, p1 ^ u ^ q01[flu=l
0]l2L and ~t, p2 ^ v ^ q02[flv=l

0]l2L:
(9)

Obviously, we have ~s) u and ~t) v. Hence �;
0~s j= u
and �;
0~t j= v. Because R is deterministic, it follows that

u , v, which in turn ensures
0~s =
0~t and
�
flu
�
l2L

=�
flv
�
l2L

.

Using these equivalences and the de�nition of j= with
primed variables, equations (8) and (9) rewrite into � j=
p1^u^p2. P is a partitioning, i.e. (p1 6, p2)) :(p1^p2),
which entails p1 , p2. Analogously,

0

~s j= q01[flu=l
0]l2L

and
0~s j= q02[flu=l
0]l2L yield q1 , q2. Altogether, we

have ~s, ~t. ~R is deterministic.

	Introduction
	Modeling Constructs
	Incremental Development
	Refactorings
	Implementation
	Example: MOST NetworkMaster
	Related work
	Conclusions and Future Work
	Proof of Equivalence
	Proof of Preservation of Determinism

