
Software-Based Protection against Changeware

Sebastian Banescu
Alexander Pretschner

Technische Universität München, Germany
{banescu,pretschn}@cs.tum.edu

Dominic Battré, Stéfano Cazzulani
Robert Shield, Greg Thompson

Google Inc.
{battre,stefanoc,robertshield,grt}@google.com

ABSTRACT
We call changeware software that surreptitiously modifies
resources of software applications, e.g., configuration files.
Changeware is developed by malicious entities which gain
profit if their changeware is executed by large numbers of
end-users of the targeted software. Browser hijacking mal-
ware is one popular example that aims at changing web-
browser settings such as the default search engine or the
home page. Changeware tends to provoke end-user dissat-
isfaction with the target application, e.g. due to repeated
failure of persisting the desired configuration. We describe
a solution to counter changeware, to be employed by ven-
dors of software targeted by changeware. It combines several
protection mechanisms: white-box cryptography to hide a
cryptographic key, software diversity to counter automated
key retrieval attacks, and run-time process memory integrity
checking to avoid illegitimate calls of the developed API.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Invasive software

Keywords
Software protection; Malware defense; Integrity protection;
White-box cryptography; Obfuscation; Software Diversity

1. INTRODUCTION
Some malware surreptitiously attacks the integrity of spe-

cific software assets, not their confidentiality or availability.
An attack is successful if malware is able to automatically
change specific assets of a target software in accordance with
the attacker’s wishes, when executed on a large number of
victims’ devices. We call this type of malware changeware
throughout the remainder of this paper. The typical change-
ware attack scenario involves three types of participants: (1)
The software vendor and distributor of a software called X
that consists of both read-only binaries (signed by the OS
vendor) and editable assets (e.g., configuration files) that

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
CODASPY’15, March 2–4, 2015, San Antonio, Texas, USA.
ACM 978-1-4503-3191-3/15/03.
http://dx.doi.org/10.1145/2699026.2699099 .

must be modifiable by X ; (2) end-users of X (victims of
changeware) who we assume numerous (thousands to hun-
dreds of millions) and who download X from the Internet;
and (3) changeware developers who gain a monetary or other
advantage proportional to the number of remote systems of
legitimate X end-users they successfully attack.

The goal of the changeware developer is to attack a large
number of legitimate end-users of X by: (1) creating an au-
tomated attack in the form of a computer program (i.e.,
changeware) and (2) tricking end-users into executing it.
Changeware is less complex than other types of malware,
because it does not contain exploits to gain root privileges.
This is because it does not need such privileges for a suc-
cessful attack. Therefore, we assume that changeware does
not have root privileges during its execution.

If an end-user executes changeware, all editable software
resources (assets) associated with X , i.e., not protected by
the underlying operating system (OS) code signature veri-
fication mechanism, are subject to unsolicited modification
because changeware has the same privileges as the currently
authenticated OS user. Note that modification of non-edit-
able software assets such as application binaries signed by
the OS vendor are detected and signaled to the end-user
by the OS. However, applications generally also need ed-
itable resources (e.g. configuration files), which are prone to
unsolicited modification attacks. One popular example is
browser-hijacking if X is a web-browser.

These attacks have become popular nowadays because
of the possibility of bundling changeware with benign soft-
ware into the same executable installer. The end-user (vic-
tim) is tricked into installing a seemingly legitimate software
(i.e., digitally signed by a trusted vendor) which also installs
changeware transparently for the victim. The high success-
rate of this social-engineering step of the attack is appealing
to changeware developers since it eliminates the task of by-
passing network and operating-system security mechanisms
(e.g. firewalls, authentication).

Unfortunately, changeware is not detected by most com-
mercial anti-virus software, as a consequence of its seemingly
legitimate behavior. Changeware modifies software assets
belonging to the same OS user under whose privileges the
attacked software is also running. Since access control in
OSs like Microsoft Windows, Linux, Mac OS, etc. is user-
centric and not application-centric, changeware has the right
to edit assets that belong to other applications.

Changeware can also write the memory of any other pro-
cess running under the same OS user privileges. Several OSs
(see Section 3.4.1) even offer the possibility to start a thread

231

inside a process, which executes code that was previously
written to (injected into) the process memory by change-
ware. To make things more difficult, on Windows OSs, code
injection, in the form of dynamic-link library (DLL) injec-
tion, is also executed by benign software (e.g. anti-virus ap-
plications) and therefore not considered malicious.

Leveraging a trusted entity such as additional hardware
(e.g. the Trusted Platform Module[30], smart-cards), to pro-
tect the integrity of software assets is possible. Such trusted
entities contain a hardware protected secret-key which can
be used to compute a message authentication code of soft-
ware asset values. However, such a trusted entity implies
additional costs for end-users, usage or setup inconvenience
and possibly privacy concerns. Another approach for de-
fending against changeware would be to re-authenticate the
end-user via the OS password prompt, whenever changes to
software assets occur. This way, writing to software assets
is done by the OS kernel, which only performs the changes
if the user confirms the changes via re-authentication. How-
ever, this would negatively impact user experience and may
become too tedious for practical use. Therefore, a solution
which is transparent to the end-user is preferable.

This paper addresses the problem of how to protect ed-
itable software assets and makes the following contributions:

1. A novel software-only solution against changeware that
(a) can be directly employed by the targeted software
vendor; (b) is transparent to the end-user; and (c)
does not require communication with trusted entities.
The solution leverages three distinct protection mech-
anisms: white-box cryptography [5], software diversity
[13], and run-time process memory invariant checking.

2. A set of data obfuscation transformations at the level
of source code. These hide the position of white-box
cryptographic ciphers inside the data segment of an
executable binary.

3. An inter-process run-time checking mechanism via code
injection. This verifies that synchronous function calls
are the ones intended by the software vendor. Veri-
fication is performed against a white-list of fixed-size
precomputed OS version-dependent signatures of the
call-stack of the calling thread and its associated code.

4. An implementation and evaluation of our solution in
the form of a case-study on protecting the Chromium
web-browser user preference against browser hijacking.

The remainder of this paper is structured as follows. Af-
ter briefly presenting related work (Section 2), we describe
our solution in Section 3, the core of this paper. We eval-
uate and discuss guarantees and limitations in Sections 4
and 5. Finally, conclusions and directions for future work
are presented in Section 6.

2. RELATED WORK
Since our candidate solution encompasses white-box cryp-

tographic primitives, software diversity and run-time integri-
ty checking, we structure related work accordingly.

2.1 White-Box Cryptography
White-box cryptography (WBC) was pioneered by Chow

et al. [6, 5], who proposed the first white-box DES, respec-
tively white-box AES (WB-AES) ciphers in 2002. The goal

of white-box cryptography is the secure storage of secret
keys (used by cryptographic ciphers), in software, without
hardware keys or trusted entities. Instead of storing the se-
cret key of a cryptographic cipher separately from the actual
cipher logic, white-box cryptography embeds the key inside
the cipher logic. For instance, for AES ciphers, the key can
be embedded by multiplication with the T-boxes of each en-
cryption round [12]. However, simply embedding the key in
the T-boxes of AES is prone to key extraction attacks since
the specification of AES is publicly known. Therefore, WB-
AES implementations use complex techniques to prevent key
extraction attacks, e.g., wide linear encodings [32], pertur-
bations to the cipher equations [2] and dual-ciphers [21].

The idea behind the white-box approach in [5] is to encode
the internal AES cipher logic (functions) inside lookup ta-
bles (LUTs). One extreme and impractical instance of this
idea is to encode all plaintext-ciphertext pairs correspond-
ing to an AES cipher with a 128-bit key, as a LUT with 2128

entries, where each entry consists of 128-bits. Such a LUT
would leak no information about the secret-key but exceed
the storage capacity of currently available devices. How-
ever, this LUT-based approach also works for transforming
internal AES functions (e.g. XOR functions, AddRoundKey,
SubBytes and MixColumns [12]) to table lookups, which can
be divided such that they have a smaller input and output
size. Moreover, LUTs can also be used to encode random
invertible bijective functions, which are used to further ob-
fuscate the LUTs representing internal AES functions. This
leads to an implementation which is much more compact in
terms of storage, in the order of megabytes. However, it
is also less resilient to cryptanalysis attacks than the single
huge LUT instance mentioned before. Nonetheless, such a
white-box cryptographic cipher still requires a higher work-
factor (i.e. ≤ 222 [24]), relative to attacks on systems which
store the encryption key separately from the cipher logic [27].

The last decade has seen many new and improved white-
box cipher proposals [2, 25, 32, 21]. Several research efforts
have also been focused on key extraction of proposed white-
box ciphers via cryptanalysis [1, 31, 26, 10, 9]. However,
these attacks assume that the location and structure of the
LUTs used by the white-box ciphers is known or can be
easily recovered from its binary file. Changeware writers
must create software, which executed with no administra-
tor privileges can: (1) automatically extract the secret keys
from a large number of white-box cipher instances one of
which is deployed on any victim’s machine; and (2) use the
corresponding secret keys to change the values of assets on
the corresponding machines. In order to counter such au-
tomated attacks against white-box ciphers, we employ soft-
ware diversity, presented in Section 2.2.

2.2 Software Diversity
The intuition behind software diversity stems from biol-

ogy where biodiversity implicitly serves as a species survival
mechanism against disease and viruses [33]. Similarly, it
has been shown that software diversity is able to neutral-
ize attacks tailored for a particular software instance, when
applied to diverse software instances [13].

Software diversity comes in different flavors, e.g. N-version
programming [4], system configuration diversity [17], auto-
mated software transformations [14], etc. In our work we
use automated software transformations, because they of-
fer a good trade-off between the effectiveness against auto-

232

mated secret key extraction attacks against white-box cryp-
tographic ciphers and the cost of generating diverse cipher
instances (e.g. N-version programming of white-box crypto-
graphic ciphers would have much higher costs).

The seminal work of Forrest et al. [13] shows how soft-
ware diversity can protect against some stack-based attacks
(e.g. code-injection). Modern operating systems implement
a variant of the ideas introduced in [13], called address space
layout randomization (ASLR), which diversifies the base ad-
dresses of large program objects (e.g. code segment, data
segment). However, ASLR cannot counter changeware, whi-
ch directly changes user editable software assets and uses
legitimate OS APIs to inject code into the target software
process. Section 3.3 presents the software transformations
we employed to generate diverse WB-AES cipher instances,
in order to withstand changeware attacks.

2.3 Run-time Integrity Checking
Software self-checking augments code so that it can pro-

tect itself against unauthorized modifications. This protec-
tion is useful for software which includes functionality that
an illegal user may want to circumvent, e.g. license check-
ing. Self-checking is performed by guards [3] or testers [18].
As the program executes code guards/testers read a range of
instructions from memory and compare their hash against
a precomputed value. Such techniques are effective against
attacks which hot-patch the target software, however they
are not effective against changeware which injects code into
a process and starts a remote thread.

Jacobson et al. [19] define conformant program execution
as a set of run-time checks on program states, where a
state represents elements of a machine that are affected
by program execution (e.g. registers and memory). The
two elements which characterize the program state are the
program counter (PC) and the call stack (currently active
stack frames). They dynamically construct a call multi-
graph (CMG) for a target binary, where nodes represent
procedures and arcs represent procedure calls. The CMG is
constructed at load time via disassembly, afterwards the pro-
gram’s execution is monitored. At every system-call, their
run-time monitor checks for inconsistencies: (1) between the
call stack and the CMG and (2) between the PC and the
valid program instructions, which are recovered during dis-
assembly. If the procedure call sequence on the stack is not
a path in the CMG or if the PC does not point to a valid
instruction, then the program execution is non-conformant
and it is terminated to prevent code-reuse attacks such as
return- and jump-oriented programming.

In contrast, our technique does not construct a CMG
for the target binary at load-time. Instead, a subgraph
of the CMG is constructed by the vendor before instal-
lation on the end-user system. The CMG subgraph can
hence be constructed directly from source code, which elim-
inates the problem of incomplete or incorrect x86 disassem-
bly [11, Chapter 1]. This CMG subgraph only involves the
paths which end with procedures that modify software as-
sets. During execution of the target program our checks do
not require code disassembly, because they operate directly
on the binary. Hence, we do not check if each PC points
to a valid program instruction, but instead we compute a
single hash of all code segments where each PC points to,
and compare this to a value pre-computed by the vendor.
Our run-time integrity check arguably has a lower impact

on program performance because it is only executed when
changes are made to software assets.

3. APPROACH
The scenario in the introduction assumes X to be used

by huge numbers of end-users and targeted by changeware
developers. In the following we assume that X has in the
order of 100 MBs or more of read-only binaries, and that X
needs to modify its editable assets at most once per second.
We further assume that the code for the modification of
the editable assets consists of a fixed set of non-recursive
call sequences, i.e. there are no unpredictable call sequences
that modify assets. This assumption will be crucial for our
authentication approach presented in Section 3.4.2.

Our goal is to protect the integrity of a set of software
assets associated with an application targeted by change-
ware. One straightforward solution is to use a (secret) key
to compute a message authentication code (MAC) of the
software asset values on the end-user system, whenever they
are changed by the target application. This requires embed-
ding the key inside the application binary which is shipped to
the end-user. Because cryptographic keys are small chunks
of high-entropy data (e.g., an AES key has 128 bits) and ap-
plication code has lower entropy, the keys can be extracted
automatically in linear time with respect to the size of the
binary file of the target application [27].

3.1 Protect Key with White-Box AES
To counter entropy-based key extraction attacks, we use

the WB-AES technique of Chow et al. [5], which embeds
the key into a network of LUTs (Section 2.1). This key
is used to compute message authentication codes (MACs)
for integrity checking, and to compute encrypted assets for
restoration purposes (Section 3.4).

MAC verification requires that the secret key of the WB-
AES cipher be persisted between shut-down and start-up of
X . This is the case when using WB-AES with an embedded
key. Unfortunately, the WB-AES cipher which is stored in
a binary located on the end-user system is prone to auto-
mated key-extraction attacks [1, 24]. However, these attacks
assume that the location and structure of the LUTs of the
WB-AES cipher inside the target binary are known. This
is a fair assumption given that WB-AES LUTs are large in
size and have a high entropy. Nevertheless, a LUT based
WB-AES instance consists of thousands of LUTs with dif-
ferent structures and high entropy, which are each used at a
specific point (round) of the cipher operation. Therefore, a
practical attack would also require identifying which LUTs
from the target binary have which function in the white-box
cipher [29]. To increase the work-factor for WB-AES LUT
identification, in Section 3.2 we present how several syntac-
tically different and semantically equivalent binary instances
of X can be automatically generated using software diversity
through randomized obfuscation transformations.

3.2 Prevent Automated Attacks with Diversity
Software diversity can be used to generate a different bi-

nary instance for each end-user or generate different in-
stances for groups of end-users (see below). Since the change-
ware developer does not know which end-user has which
binary, s/he must develop an attack effective against all di-
verse instances of X . We argue that such a universally ef-
fective changeware must take a trial-and-error approach to-

233

wards extracting the WB-AES key from a binary, due to the
randomized obfuscation transformations applied to every di-
verse binary instance. Therefore, even if the changeware
developer is fully aware of the obfuscation transformation
types which are applied, due to randomness of transforma-
tion parameters s/he has to search through several possible
WB-AES LUT configurations and run a cryptanalysis at-
tack [1, 24] on each configuration. The correctness of every
key extracted by a cryptanalysis attack must be checked by
using it to encrypt the legitimate settings with a plain AES
cipher and verifying that the the ciphertext matches the one
computed by the WB-AES cipher.

However, software diversity raises the following concerns:

• Storage and distribution costs increase proportionally
with the number of diverse release builds of X .

• Differential updates are harder to generate and push
to end-users, because different instances require differ-
ent update patches. Moreover, these updates become
larger in size, because diverse instances contain many
differences relative to each other.

• Crash analysis servers run by the software vendor must
store the debugging symbols of every existing version
of X . Upon receiving a crash report containing a snap-
shot of X ’s memory, the crash analysis servers must
map this report to the corresponding debugging sym-
bols, to perform a correct analysis.

• Time-stamping binary signatures is necessary to pre-
serve the validity of the signature for X , even after
the signing certificate expires [16]. However, time-
stamping requires use of a limited rate Internet ser-
vice offered by the OS vendor, which is the main bot-
tleneck in case thousands of instances of X require
time-stamping their digital signatures.

To address these concerns, we propose to separate the
WB-AES cipher code from the source code of X . There-
fore, X runs in a separate process from the WB-AES cipher,
which will be referred to as WBCrypto throughout the re-
mainder of this paper. It can be signed by the vendor of X
rather than the vendor of the OS, and it acts as a gateway to
any legitimate persistent modifications of assets associated
with X , i.e., all asset change requests will be delegated to
WBCrypto. We call WBCrypto proxy the functions of X
which delegate the asset change requests to WBCrypto, i.e.,
the functions which call the WBCrypto API directly and
pass it a string command indicating what changes should be
made to which assets.

Yet, even though we now have overcome the above con-
cerns, remember that we assumed X to have huge numbers
of users. Generating one WBCrypto instance per user then
is prohibitive because of time, storage and electric energy
requirements. And even if generating different binaries for
such a huge user-base was feasible, it would raise privacy
concerns because each end-user could now be uniquely iden-
tified by the vendor of X . An improvement of this approach
is to generate a smaller number (m) of diverse instances
(e.g. several thousands) each being indexed from 0 to m−1.
A WBCrypto instance with index i ∈ {0, ...,m − 1} is dis-
tributed to an end-user if the unique system identifier (id) of
his machine (e.g. file-system UUID [23], Windows SID [15])
satisfies the following relation: id mod m = i . This leads
to m groups of thousands of end-users having the same bi-
nary, which offers anonymity of an end-user in the group of

Figure 1: Server-side work-flow

users which have the same key [28] and still raises the bar
for changeware.

The life-cycle of WBCrypto can be described in two stages.
The first stage occurs before WBCrypto is distributed to
end-users. It consists of generating diverse WBCrypto in-
stances and occurs on trusted build-servers owned by the
software vendor. The second stage occurs after WBCrypto
is distributed to end-users. It consists of the operation of
WBCrypto on a local system of an end-user.

3.3 Server-Side Generation of WBCrypto
We have implemented a C++ code generator which we

call the WB Generator. It is hosted on trusted-build servers
of the software vendor and can produce white-box AES ci-
pher instances using the LUT-based technique introduced
by Chow et al. [5]. The WB generator employs both key-
diversity and software-diversity. Key-diversity implies gen-
erating different random keys, to mitigate the impact of suc-
cessful key extraction from one application instance. Specif-
ically, if an attacker extracts the key embedded in his/her
WB-AES instance, s/he will not be able to use the same key
to manipulate software assets of all other end-users of X
(or, if keys are created for groups of users, to manipulate as-
sets in different groups). Software-diversity is employed via
data and control-flow obfuscation transformations which in-
crease the attacker’s effort for extracting the position and
structure of the WB-AES LUTs from any binary instance.
Specifically, if an attacker is able to reverse engineer his own
copy of WBCrypto and extracts the offset values of the WB-
AES LUTs, s/he will not be able to use the same offsets to
extract the LUTs from (all) other instances of WBCrypto.

Our current WB generator implementation is limited to
the AES cipher with various key sizes (128, 192, 256 bits).
In future work we plan to incorporate different block ciphers
(e.g. DES, Blowfish) and other WBC techniques [2, 25, 32,
21]. The WB Generator is OS independent and can be used
to generate diverse WB-AES ciphers.

Figure 1 shows the work-flow for generating a WBCrypto
module on the server-side. The upper part shows the WB
generator, which takes as input the key size of the AES
cipher. The WB generator first generates a random key
and subsequently the LUTs of the WB-AES cipher for the
corresponding key. Finally, the WB generator writes the
LUTs and instructions for WB-AES en-/de-cryption to a
C++ source file. Remember that there is one key, and hence
one WBCrypto instance, per group of users.

In order to prevent automatic retrieval of LUTs and thus
automatic extraction of the secret key, a second step is to ob-
fuscate the source code using the transformations presented

234

in the following paragraphs. The output of the WB gener-
ator is a C++ source file which must be compiled together
with asset management code and caller authentication code
(see Section 3.4). The outputs of the server-side work-flow
from Figure 1 are diverse WBCrypto binaries which are
shipped to random groups of end-users.

Randomization of Unused Nibbles.
WBCrypto instances contain over a thousand LUTs which

represent randomly encoded versions of the XOR function,
which have an 8-bit input and a 4-bit output. For effi-
ciency reasons, the possible output values are stored in 1
byte chunks instead of packing two 4-bit values inside of
one byte. This means that such lookup tables may be eas-
ily identified in the data segment of the WBCrypto binary
because they contain values of the form 0x0?, i.e. only the
lowest nibble is used. An attacker could use this pattern to
automatically identify the position of the XOR tables in a
WBCrypto binary, with high probability of success. There-
fore, we obfuscate the representation of these LUTs by trans-
forming their high-nibble from zeros to random values.

Interleave LUTs with Random Data.
In the C++ output of the WB generator, a WB-AES LUT

is represented by a statically initialized multi-dimensional
array. This means that the bytes corresponding to LUTs are
placed in the data segment of the compiled binary. There-
fore, they are not affected by ASLR. Hence the LUTs will
always be loaded at the same virtual address, relative to the
base address of WBCrypto’s process memory. An attacker
who finds these offsets can use them to extract the LUTs
from any WBCrypto binary instance.

We employ an obfuscation technique that adds randomly
sized statically initialized arrays containing garbage data in
between the initialization of the LUTs used by the WB-AES
cipher. Due to the high entropy of the LUTs used by the
WB-AES cipher, the added garbage arrays cannot be dis-
tinguished from the WB-AES LUTs using entropy analysis.
This obfuscation technique enlarges the search space of the
attacker directly proportional to the number and size of the
garbage arrays. This leads to a trade-off between the size
of the WBCrypto binary and the size of the search space of
the attacker, which we discuss in Section 4.

Control-Flow Obfuscation.
For the purpose of control-flow obfuscation we employ in-

struction substitution [7], opaque predicate insertion [8] and
control-flow flattening [22] techniques. These techniques
are implemented by the open-source compile-time obfus-
cation engine Obfuscator-LLVM [20] (lower green-rounded-
rectangle in Figure 1). These obfuscation transformations
change the form of references to the WB-AES LUTs in-
side the code segment of WBCrypto. We also employ anti-
disassembly techniques [11, Chapter 21], to prevent change-
ware from disassembling the WBCrypto binary and extract-
ing the address of the WB-AES LUTs from assembly code.

3.4 Client-Side Operation of WBCrypto
WBCrypto computes and stores a MAC and possibly the

ciphertext of software assets upon installation and whenever
these values are written by X . On start-up, or more gener-
ally, whenever the asset is read, WBCrypto computes a new
MAC for comparison purposes. For restoration purposes,

it may also compute the ciphertext of the current values of
X ’s software assets. If the MACs differ, then changes were
made to its assets while X was offline or, more generally,
in-between the last read and write operations on assets, and
the end-user is notified. If the end-user does not agree with
the changes, then s/he can restore the previous version of
the assets by decrypting the last good known version. If
changeware repeatedly changes the assets, each modifica-
tion will lead to a notification, which is likely to quickly
annoy the user. Therefore, the replacement with the known
good value can also be done automatically. If there is only
a MAC but no known good version, then default settings
can be restored. It is also possible to retrieve any last good
known version of the assets if a backup copy of that version
of the encrypted software assets has been stored on cloud
storage by the end-user. Because they are encrypted, asset
values are not disclosed to the cloud service provider. Such
a backup also ensures that software assets can be restored
even if changeware deletes the ciphertext from local storage.

Remember that having WBCrypto as a self standing soft-
ware module has several advantages compared to integrating
the WB-AES code inside X ’s binary. WBCrypto is rela-
tively small in size (a few MBs) compared to X and can
therefore be built, shipped and updated separately. The
crash analysis process is unaffected since only WBCrypto
is diversified, not X itself. Since WBCrypto is only used
by X , its authenticity can be ensured by a digital certifi-
cate signed by the vendor of X and not by the OS ven-
dor. The WBCrypto code verification key—which is not the
secret-key embedded in WBCrypto—can therefore be hard-
coded inside X ’s binary, which eliminates the need for time-
stamping the binary signature of all the diverse instances of
WBCrypto by the service of the OS vendor which is a po-
tential bottleneck. We may thus assume that X is able to
verify the integrity of the WBCrypto binary.

3.4.1 Malicious Calls to WBCrypto
However, separating the WB-AES cipher and X into dis-

tinct binaries also has disadvantages. Most importantly, it
opens up another attack vector. The interface of WBCrypto,
which previously was only internally accessible to X , is now
accessible by changeware. To prevent calls performed by
changeware to the WBCrypto interface, we need a run-time
checking mechanism which can discriminate between calls
intended by the software vendor (benign calls) and other
calls which we consider to be malicious calls.

One approach towards authenticating the caller of the
WBCrypto interface is to simply check if the calling process
has several characteristics of X , e.g. the loaded library mod-
ules are those which are supposed to be loaded by X . How-
ever, not all calls originating from a particular process are
necessarily benign. Consider a simple defense mechanism
which merely checks whether or not the calling process is in
a set of benign processes. On Microsoft Windows OSs, such
a defense mechanism is vulnerable to the attack illustrated
in Figure 2, where a malicious process (M) injects code into
the benign process (e.g. X) and then starts a remote thread
which surreptitiously calls WBCrypto proxy functions. In
this case the call will appear to come from a benign process,
however it should not be executed by WBCrypto, because
it is not the behavior intended by the vendor of X .

Code injection and remote thread creation do not require
exploiting a vulnerability in X , because the Windows API

235

Figure 2: Malicious Call-Path and Caller Authentication

offers functions which can perform such actions on any pro-
cess running under the same OS user, i.e. WriteProcess-

Memory and CreateRemoteThread.1

3.4.2 Caller Authentication
A skillful attacker could develop changeware such that it

has the same call-stack structure as X , i.e. the return ad-
dresses on the call-stack of changeware point to the same
code offsets as the return addresses on the call-stack of X .
On the other hand, an attacker could also develop change-
ware such that its code pages would contain the code pages
of X , yet its call-stack structure would be different. How-
ever, if both the code and the call-stack structure of change-
ware are the same as in X , then the changeware can be
considered equivalent to X , hence benign software. More-
over, we do not exclude changeware which tampers with
the code of X after it is loaded in process memory if that
code page is writable. Therefore, we compare precomputed
known good values with both (1) the call-stack structure and
(2) the code to where the return addresses on the call-stack
point to. This allows us to effectively detect malicious calls
to the WBCrypto API as described in Section 3.4.1.

We define a call-path as a chain of (synchronous, blocking)
function calls (possibly across thread or process boundaries)
such that the last function in this chain is a WBCrypto
proxy function. A call-path is uniquely identified by a fixed
size hash value computed from the concatenation of all the
relative return addresses on the call-stacks of the execution
threads which performed the function calls, and the memory
pages to which the return addresses on the stacks point to.

The set of all benign call-paths, representing the intended
behavior of X , is fixed by its vendor before deployment on
the end-user systems. This set is distributed as a read-only
white-list signed by the software vendor, created by:

1. Generate the call-graph of X , e.g., by using the Call-
grind tool of Valgrind (http://valgrind.org/);

1This kind of attack is also possible on current Debian Linux
and was also possible on Ubuntu Linux before August 2011,
via the ptrace system call, which is generally used by debug-
gers. Current Ubuntu Linux versions use a system flag called
ptrace_scope, which by default allows a non-root process
to attach via ptrace only to its child processes or children
of the debugger, see https://wiki.ubuntu.com/Security/
Features#ptrace. Nonetheless, this default setting is often
changed by a root user to enable operation of some applica-
tions, e.g. Mono applications, Qt Creator, GNU Debugger,
etc. Moreover, we do not exclude buffer overflow exploits for
X , which aim at changing the control flow of X such that it
calls the WBCrypto API in order to surreptitiously change
the values of software assets.

2. Select the paths in the call-graph which end in a call to
the WBCrypto API, i.e. WBCrypto proxy functions;

3. Compute and store hash values of invariants of all se-
lected paths (see below).

Any call-path hash value not included in this white-list is
considered to be a malicious call-path.

At runtime, the caller authentication code of WBCrypto
(mid-right blue-oval in Figure 1), computes the call-path
hash for every API call it gets from a process P , to the
function which sets the value of a software asset. If the call-
path hash value is in the white-list, then WBCrypto executes
the API call it received from P , otherwise it discards it. This
guarantees that all of the attacks presented in Section 3.4.1
will be unsuccessful in surreptitiously changing the values of
the software assets.

The caller authentication implementation consists of 3
phases, executed whenever any process (denoted P) makes a
call to the WBCrypto API, sending it a string command v ,
which indicates persistent changes to software assets should
be made. Fighting fire with fire, in the first phase WBCrypto
injects an integrity check routine into the calling process X ,
using the API of the trusted OS, i.e. step 4 in Figure 2. In
the second phase, the previously injected code is executed
in a dedicated execution thread (T1) inside P . This thread
performs the following steps:

1. To compute the hash value of the current call path,
which we will later compare to the precomputed legal
paths, we first need to identify the thread (T2) in-
side the process memory of P which called any known
WBCrypto proxy function, from software X ’s binary.
This is done by traversing the stack of each thread
in P , searching for a return address pointing inside
any WBCrypto proxy function (denoted S), having a
pointer to the string command v on the same stack
frame as the return address to S . This guarantees
that T2 ends with a synchronous call to the WBCrypto
proxy function with argument v (i.e. S(v)), correspond-
ing to the command received by WBCrypto, which
triggered caller authentication. If T2 is found, we con-
tinue with step 2, otherwise if T2 is not found, caller
authentication stops and denies the authentication.

2. If T2 is identified, then this is the thread which made
the call to the WBCrypto API for persistent asset
changes. We extract the absolute return addresses
from each stack frame by iterating over T2’s stack one
word at a time, starting from the stack base address.
On each stack frame we will find the value of the previ-
ous frame pointer (EBPs), which we recognize because
it points to lower memory addresses on the same stack.
The value of the absolute return addresses is the first
double-word under the EBP.

3. The relative return address is obtained by subtracting
the base address of the dynamic library module where
the relative address points to, from the absolute re-
turn address. The relative return address is relevant
because it is invariant with regard to different execu-
tions of the target software on the same OS version.

4. We compute a hash: (a) of the code pages where each
absolute return address points to and (b) of the relative
return address values. This hash uniquely identifies

236

http://valgrind.org/
https://wiki.ubuntu.com/Security/Features#ptrace
https://wiki.ubuntu.com/Security/Features#ptrace

the stack structure with relative return addresses and
the code associated with T2’s stack.

5. Because call-paths may cross thread boundaries, we
recurse on step 1. This time, instead of searching for
a WBCrypto proxy function, we search for functions
which may have triggered the WBCrypto API call of
T2. These functions are known by the vendor of X
because they constitute the intended behavior of X . If
we did not consider call-paths which span over different
threads, an attacker could take advantage of this and
trigger a call to the WBCrypto API via a legitimate
thread T2, which would be seen as a benign call by
WBCrypto.

The output of this algorithm is a hash of the concatenated
hash values from all threads in one call-path.

In the third phase, WBCrypto waits for thread T1 to
finish and retrieves its return value, i.e. the call-path hash
value. It is subsequently compared to white-list entries.

3.4.3 Message Authentication
We have implemented caller authentication described in

Section 3.4.2 for the Chromium open-source web-browser,
where changeware attacks are represented by hijacking brow-
ser user preferences. Our implementation is specific to Mi-
crosoft Windows OSs, for which browser hijacking change-
ware often comes pre-packed with other software such as
toolbars and are therefore installed by mistake by end-users.

Our implementation detects if a malicious thread direct-
ly/synchronously calls the WBCrypto proxy functions in
Chromium. However, if changeware is able to asynchrono-
usly post a call to WBCrypto via a legitimate call-path, then
the caller authentication will consider this call benign and it
will execute it. This problem occurs for asynchronous (non-
blocking) function calls, which break a call-path in separate
synchronous parts. This causes every call before and includ-
ing the last asynchronous function call to be discarded from
the call-path, which is verified via caller authentication. We
call this problem message authentication, because the asyn-
chronous function calls may be seen as messages which are
sent/posted from callers to callees.

We envision an attack where a malicious thread can sur-
reptitiously change asset values by delegating this task to
a legitimate thread, via asynchronous message passing. In
the first step of this attack, changeware injects code into
the target process. Subsequently this injected code posts a
message to a legitimate thread, hence delegating a call to
the WBCrypto proxy functions.

We acknowledge that asynchronous inter-thread commu-
nication is frequently encountered in applications, because
such an architecture offers better performance and UI re-
sponsiveness. Therefore, we also implemented a proof-of-
concept mechanism for message authentication.

The motivation for message authentication is the need to
verify that only legitimate threads possibly asynchronously
posted the message which led to a WBCrypto API call. For
this purpose, legitimate threads are identified via application
internal IDs, instead of via OS assigned thread IDs. To
query if a legitimate thread sent a message which led to a
WBCrypto API call, we add a private data structure (Θx) to
the thread local storage of each browser thread (Tx). The
memory address of thread local storage is assumed to be
unknown by other threads, because it is randomly chosen by

the OS kernel. A malicious thread hence cannot locate and
modify Θx belonging to a legitimate thread Tx . Θx stores
only those messages (denoted θ) posted by this thread that
contain API calls to WBCrypto.

To notify WBCrypto about which Chromium thread made
the call, we modify the WBCrypto proxy functions to send
the internal ID indicated by the thread (Tx) which posted
the message. Note that this ID value can be spoofed by a
malicious thread, which does not have this ID such that a
message appears to have been posted by a benign thread.

Due to message asynchronicity each hash value in the
call-path white-list needs to be associated with a set of be-
nign threads, which are allowed to perform the correspond-
ing call-path. In our implementation we only allow the
Chromium main thread to post messages containing API
calls to WBCrypto. We ensure this by only including hashes
corresponding to legitimate call-paths in the white-list.

The last step enables WBCrypto to compute the call-path
hash value only if Tx is associated with any call-path in the
white-list. Using the previous modifications, the integrity
checking module in our caller-authentication thread inside
the Chromium process can post a message to Tx “asking”
if it sent θ. A malicious thread will never be “asked” any-
thing, because Chromium uses internal IDs (not OS assigned
thread IDs) to identify special browser threads such as the
main thread. Using a whitelist of internal thread IDs, we
can ensure that only threads which have an internal ID are
allowed to post messages which call WBCrypto proxy func-
tions. Tx receives the “question” from the integrity checking
module and replies affirmative only if θ is in its local Θx . If
Tx replies affirmative, then the integrity check thread con-
tinues to compute the call-path hash value as in the original
caller authentication algorithm, otherwise is returns an in-
valid hash value to WBCrypto.

4. EVALUATION

4.1 Performance Evaluation

4.1.1 WB Generator
We tested the WB generator on an average system with

2 CPU cores and 8 GB of RAM. We generated thousands
of WB-AES instances having distinct key sizes and different
numbers of random tables of various sizes added to them.
The maximum and median sizes of the C++ files and com-
piled WB-AES instances are shown in Table 1 as a func-
tion of the cipher key size. The sizes are larger than the
tens of kilo-bytes needed by a standard AES implementa-
tion. Compressing them would only negligibly reduce their
size, because of the LUTs’ high entropy. However, compared
to the total size of Chromium binaries, it is roughly 2.5%.
The size of the WB-AES instances in fact motivated our
respective general space assumption in Section 1.

The maximum and median times to generate and com-
pile the C++ WB-AES instances are shown in Table 2 as a
function of the key size. We believe it is possible to signifi-
cantly improve the median generation and compilation time
(ca. 1 min.) by a multi-threaded implementation of the WB
generator, which we leave to future work.

We also measured the run-time performance of all the gen-
erated WB-AES instances. The time needed to WB encrypt
a file grows linearly with the size of the plaintext. The aver-
age time needed to WB encrypt 1 mega-byte of data using

237

Max C++ Max bin Med C++ Med bin

AES-128 115 20 15 2.6
AES-192 164 27 18 4.5
AES-256 166 26 20 4.8

Table 1: Size (mega-bytes) of C++ and binary WB-AES
instances (Chromium binaries ≈100MBs)

Max Gen Max Cpl Med Gen Med Cpl

AES-128 475 154 40 12
AES-192 1075 326 37 16
AES-256 1049 239 32 22

Table 2: Time (seconds) to generate C++ WB-AES in-
stances

AES-128, AES-192 and AES-256 is 3.25 seconds, 3.56 sec-
onds, respectively 4.11 seconds. This average is significantly
slower than using the latest version of openssl to encrypt the
same file, which takes 25, 27, respectively 30 milliseconds.
This does not pose any problems if we use our approach
to check integrity breaches (compute and compare MACs),
but not necessarily repair them (compute and compare en-
crypted files), see Section 3.4. Moreover, this does not pose
serious problems under the assumption of Section 1 that
asset files are rarely written. Both clearly is the case for
our Chromium case-study where (1) we encrypt only a few
kilo-bytes, or even far less if we use our approach solely to
compute a MAC; and (2) settings files are changed rarely.

4.1.2 WBCrypto
Our PoC implementation only influences executions which

trigger a call to the WBCrypto API. Other executions are
not impacted, which keeps resource consumption minimal.

We have measured the time needed to perform both caller
authentication and message authentication on a machine
having an Intel Xeon E5645 CPU with 6 cores running at a
frequency of 2.4 GHz. The Microsoft Windows 7 OS load has
been set to an average value of 100 running processes con-
taining over 1000 threads in total. The results showed that
caller authentication execution time averages at 134 millisec-
onds after a few hundred runs, with a maximum time of 145
milliseconds. Computing the hash over the code pages to
where the return address points to is linear with respect to
the code size and takes about 48% of the total execution
time. Iterating over the portable executable (PE) reloca-
tion table and setting the indicated offsets to a constant fixed
value takes about 42% of the total execution time. This step
is necessary to ensure that hashes computed over the code
pages do not contain random addresses set by ASLR. The
remaining 10% of the execution time is required for finding
the thread which made the call to the WBCrypto API, and
iterating over its call-stack. The execution time difference
between message authentication and caller authentication
varies between 19 and 50 milliseconds.

Since user preference changes are an infrequent event in
every-day browser usage, even such a delay arguably does
not have negative impact on the end-user experience, be-
cause it does not freeze the browser UI and it is small enough
to pass until the user gets a chance to notice it.

4.2 Security Evaluation
The attack tree in Figure 3 shows the attack space for a

changeware developer. The root of the tree represents the
goal to persistently change the values of software assets with-
out being detected. Effective changeware may: (1) use the
secret key to re-compute asset MAC values after modifying

Figure 3: Attack Tree (dashed OR-edges, solid AND-edges)

them, (2) call the WBCrypto API such that it is not detected
by the integrity check of message authentication, (3) replace
the asset value and its MAC with an older value which fits
the attacker’s interest or (4) replace the WBCrypto binary
with a rogue or cracked version. The following sub-sections
present each of these attacks in detail.

4.2.1 LUT Search-Space Increase
Assume that a browser-hijacking changeware writer is able

to reverse-engineer the WBCrypto instance on his local sys-
tem such that s/he knows: (1) WBCrypto uses the WB-AES
cipher of Chow et al. [5] (2) the size and structure of the
useful LUTs and (3) the additional obfuscation transforma-
tions described in Section 3.3. Even with this knowledge the
changeware developer must, for each instance of WBCrypto,
implement a search algorithm to identify the memory offset
of the LUTs in the data segment of the WBCrypto binary
(node 1.1 in Figure 3). Let n be the total size of the added
garbage LUTs in bytes and let k be the number of useful
LUTs of the WB-AES cipher. On average, changeware has
to perform a key-extraction attack (n +k)!/2 times, because
the garbage LUTs are randomly interleaved with the useful
LUTs. Therefore, there is a trade-off between security and
size: increasing n will also increase the size of WBCrypto. In
our PoC implementation we group the 3008 WB-AES LUTs
together according to the 4 types of LUTs presented in [5].
Half of these LUTs are used for encryption, while the other
half are used for decryption. Therefore, the C++ output
by our WB Generator always contains k = 8 statically ini-
tialized arrays which group together all the WB-AES LUTs,
plus a random number of randomly sized garbage arrays.

Setting the total size of the garbage arrays to n = 100
bytes, an attacker has to execute the WB-AES cryptanaly-
sis attack of [24] for (100 + 8)!/2 different configurations of
the WB-AES LUTs. Even if a changeware search algorithm
would be improved such that it could locate the WB-AES
LUTs in logarithmic time, this would still require over 166
days on a 2,4 GHz CPU. For our experiment described in
Section 4.1.1 we have generated WB-AES instances with the
values of n up to 100 MBs, which would require hundreds
of thousands of years of execution time on the above CPU.

4.2.2 Malicious Calls to WBCrypto
If a changeware developer believes that the protection of-

fered by the obfuscation and diversity techniques are dif-
ficult to attack, s/he may attempt to develop changeware
that calls the WBCrypto API without this being detected
as coming from a malicious origin.

238

Changeware could be built such that it patches the WB-
Crypto binary to skip the message authentication integrity
check (node 2.1). This attack is detected by the signature
verification performed by X before it launches WBCrypto
as its child process. Remember that in Section 3.4 the
WBCrypto binary is signed by the vendor of X and the
signature verification key is embedded in X ’s binary.

Another attack would be to inject code inside of X ’s pro-
cess memory, which then calls the WBCrypto proxy func-
tions as described in Section 3.4 (node 2.2). This attack
is detected by our caller authentication algorithm (see Sec-
tion 3.4.2), because the hash of the malicious call-path will
not be in the white-list of WBCrypto. Moreover, any (a)
synchronous call originating directly from a malicious pro-
cess will also be detected, because the return value of the
integrity check will not be in the set of benign call-paths.
We have implemented the direct (synchronous) and indirect
(asynchronous) calls to WBCrypto as demonstrator change-
ware examples using the Windows native API. These sam-
ples are able to surreptitiously change Chromium user pref-
erences if caller authentication is not performed. They are
all detected by caller authentication, with the exception of
changeware which asynchronously posts a message to a legit-
imate thread of X (node 2.3). However, such changeware is
detected by message authentication (see Section 3.4.3) even
if it spoofs its internal thread ID (node 2.3.2).

Message authentication relies on the fact that attribute
values stored in the thread local storage of one thread are not
accessible by other threads. Therefore a malicious thread
cannot directly add a task to the locally stored task list of
a legitimate Chromium thread (node 2.3.3).

To overcome this mechanism, the changeware would need
to monitor the inter-thread communication inside the Chro-
mium browser process. One possible way of monitoring
would be at the OS kernel level (node 2.3.3.1). However,
that would require changeware to have root privileges, which
was excluded in Section 1. If changeware had root privileges
it could directly modify the Chromium binaries and disable
the OS code signature verification “alarms.” For instance,
changeware with root privileges could disable User Account
Control in the Microsoft Windows OS, which notifies the
user if a binary signature is valid.

Another possible attack is to hook the thread creation sys-
tem calls (e.g. BaseThreadInitThunk from kernel32.dll) and
insert functionality which would leak the desired information
(i.e. Θx ’s address) from the legitimate thread of X (node
2.3.3.2). However, the integrity check performed via caller
authentication would detect this hook, via the call-stack in-
spection of the legitimate thread, because this change would
return an invalid hash value to the WBCrypto module.

4.2.3 Replay Attacks
Usually, some asset values change more frequently than

others. We partition an asset file into a set {p0, p1, . . . , pn},
n ≥ 0 and compute a ciphertext for each part ci = εk (pi).
This partition can be as fine grained as needed by the ap-
plication. Replay attacks (node 3) in this context consist of
changeware installed on an end-user system: (1) recording
several asset values and their corresponding MAC values and
(2) eventually replacing a current asset value and its MAC
with a previously recorded value.

For instance if pi is set by the target software as a legiti-
mate asset value, then changeware interested in keeping this

value records its MAC (ci). Later if the end-user decides to
switch the asset value to p′

i , changeware can surreptitiously
change this asset value back to pi . To prevent such replay
attacks, we use the WB-AES cipher to compute one sin-
gle MAC value of the concatenation of: (1) all ciphertexts
and (2) the time-stamp when the asset file was last modified.
The MAC is computed as h = H (εk (c0 | c1 | . . . | cn | time)),
where H is a hash function such as SHA-256. Since change-
ware does not have root privileges it cannot tamper with the
modification time of a file, which is managed by the OS.

4.2.4 Replace WBCrypto Binary
Replacement of the WBCrypto binary with a rogue bi-

nary, which mimics the behavior of WBCrypto, is prevented
by the code signature of the vendor of X (see Section 3.4).
Nonetheless, an attacker could semi-automatically cryptan-
alyze the WBCrypto binary instance deployed on his own
machine and extract the secret key. Afterwards, he can build
changeware which replaces the WBCrypto of any end-user
of X , with his cracked version for which the secret key was
extracted. This attack is prevented due to WBCrypto bi-
nary binding to end-user devices via the unique identifier
(id) provided by the OS. As described in Section 3.2, the
WBCrypto module instances are indexed from 0 to m and
an instance is deployed only if its index i is congruent to
the end-users’ id modulo m. On startup, X first performs a
system call to retrieve the id and then checks whether the
signature of WBCrypto is valid for the hash of the current
WBCrypto binary concatenated with id mod m. Therefore,
the attacker can replace WBCrypto instances only on end-
user devices that have the same id . However, the WBCrypto
instances on devices with the same id are identical, hence
there is no benefit in replacing them. Moreover, an attacker
does not know which end-users have the same id as him.

5. DISCUSSION AND LIMITATIONS

5.1 Applicability of Results
Our solution does not aim to defend against changeware

which performs changes in the process memory of the target
software, i.e., against changeware that makes dynamic but
not persistent changes to software assets. However, we be-
lieve that caller authentication (see Section 3.4.2) and mes-
sage authentication (see Section 3.4.3) can be integrated into
the target software in order to protect against such non-
persistent changes to process memory.

One example of non-persistent changes to process mem-
ory, which can be detected by caller authentication, is an im-
port address table (IAT) patching attack which is frequently
employed by malware to portable executables on MS Win-
dows. IAT entries can be seen as pairs of function name
and pointer to function code. IAT patching replaces the le-
gitimate pointers to function code by pointers to injected
(malicious) code. It is detected by message authentication
because the hash of the call-path involving any patched func-
tion would not match the hash from the white-list.

One limitation of the caller authentication mechanism is
its dependency on the code of the libraries needed for be-
nign call-path hash computation. The benign call-path hash
values included in a white-list are specific to the version of
the libraries where functions on the call-path are defined.
Since a part of these libraries are provided by the OS ven-
dor and others by the vendor of the target software (X), the

239

white-list must be updated for each update of the OS or of
X , i.e. around twice per month. This means that there is
not one unique white-list for all end-users. Instead there is
a white-list specific to each compatible version of libraries
of the OS and the libraries of X . Whenever X starts up, it
checks if the library file versions associated with the white-
list have changed due to updates. If so it will request an
update of the white-list to the current library versions. The
white-list is a read-only asset and is signed by the vendor
of X and distributed/updated separately from WBCrypto.
Therefore, WBCrypto is not updated every time the white-
list is updated. WBCrypto simply checks if the white-list
was tampered with by verifying its signature using the pub-
lic verification key of vendor X , and then uses the contents
of the white-list during caller and message authentication.

5.2 Alternative Solutions
An alternative to our solution is implemented by modi-

fying the OS kernel. We avoided this approach because we
want our solution to function without changes to the un-
derlying infrastructure on which the target software runs.
However, if changing the OS kernel is possible, we argue
that WBC and software diversity are no longer needed, be-
cause the kernel can protect secret-keys under root privileges
such that they are not accessible to changeware.

In order to ensure that each application installed on the
OS has a different key, the kernel would generate a unique
random secret-key, which is persistently stored under root/
administrator privileges, i.e. not accessible to changeware
and is permanently associated only with this application.
An application does not directly get access to its unique
key, but instead the OS offers a cryptographic API (similar
to the one offered by WBCrypto), which an application has
to provide the data for which to compute a MAC value.
The OS verifies which binary was used to launch the process
calling this API and uses the secret-key associated with it
to compute the MAC. To prevent changeware attacks by
code injection and remote thread creation (as described in
Section 3.4), the OS kernel performs caller authentication
of any thread which calls this API. The white-list of benign
call-paths is safely hard-coded in the target software binary
signed by the OS vendor before distribution to end-users.

Another alternative solution is to augment the OS access-
control mechanism such that upon installation certain soft-
ware assets can be marked as editable only by a set of ap-
plications, i.e. not by any application running under the
same OS user. This kind of application-centric access con-
trol would also be able to prevent changeware from writing
to another process’ memory, i.e., code injection.

These solutions would eliminate the generation, storage
and distribution costs for the target software vendor. More-
over, the run-time performance would be improved by using
a classical cryptographic cipher implementation instead of a
diversified white-box version of the same cipher.

6. CONCLUSIONS AND FUTURE WORK
We have presented a novel software-based solution against

changeware, i.e. malware with no root/administrator priv-
ileges, which performs surreptitious persistent changes to
software assets which are not protected by the OS code sig-
nature verification mechanism. Our solution combines tech-
niques from the fields of software obfuscation, software diver-
sity and run-time checking. The solution can be applied by

the vendor of software targeted by changeware; its function
is transparent to end-users. This solution is effective under
the assumption that it is unfeasible for an attacker to man-
ually construct attacks for a large set of diverse instances
of the target software, i.e. for a large part of its user base.
Additionally we require the code for the modification of the
editable assets to be a fixed set of non-recursive routine call
sequences, i.e. there are no unpredictable call sequences that
modify assets.

Performance of the target software is slightly affected due
to additional time needed to perform caller authentication
and white-box encryption. However, this performance over-
head is in the order of a fifth of a second, which is ac-
ceptable assuming that persistent changes to software as-
sets occur rather infrequently. Moreover, our solution re-
quires non-negligible production and distribution resources
for WBCrypto, on the software vendor’s side. However, the
size of WBCrypto is under 5 MBs and poses a much smaller
overhead than re-distribution of the entire target application
which we assumed to be in the order of 100s of MBs. We
also assumed a huge user base because otherwise changeware
developers are unlikely to invest into an attack.

The software diversity and obfuscation transformations
offered by the WB Generator, used to generate WBCrypto
are application and OS independent. The caller authentica-
tion algorithm can be applied to any application if: (1) the
OS allows code injection and execution of this code in the
target’s process memory and (2) the target application per-
mits blocking function calls for the period needed to perform
caller authentication. Currently Microsoft Windows OSs al-
low code injection via system calls. This is not allowed on
all Linux distributions. The message authentication mech-
anism can be implemented for applications which mandate
that asset values should be changed only via special threads
which can be internally identified, without using the OS as-
signed thread ID.

Caller- and message-authentication were necessary because
the WBCrypto code could not be directly integrated in the
code of the target application due to technical and organiza-
tional concerns such as: storage and distributions costs, dif-
ferential updates, crash analysis and most importantly time-
stamping binary signatures. If we had taken a less specific
approach in our work, such concerns would not have been
considered, which means that integrating an obfuscated and
diversified WB-AES cipher into the target software would
have been a viable solution. Our work shows that such a
viable solution is not applicable in practice if it cannot be
easily integrated in the existing software engineering pro-
cesses of the target software. Therefore, we adapted the
solution such that it is practicable.

There are several possible future research directions for
the current work. The WB generator can be improved by
adding additional diversity dimensions, such as cipher diver-
sity, i.e. implementing additional block ciphers (e.g. DES,
Blowfish, etc.) and more WBC techniques [2, 25, 32, 21].
The performance overhead of caller authentication can be
improved by tuning the memory integrity checks or finding
cheaper substitutes for the most costly operations. The per-
formance of the WB Generator can be improved such that it
offers faster builds and smaller sized WBCrypto instances.
Finally, the most interesting problem we are currently work-
ing on is quantification of the attacker effort added by soft-
ware diversity and obfuscation in this context.

240

7. REFERENCES

[1] O. Billet, H. Gilbert, and C. Ech-Chatbi.
Cryptanalysis of a white box AES implementation. In
Selected Areas in Cryptography, number 3357 in
Lecture Notes in Computer Science, pages 227–240.
Springer Berlin Heidelberg, Jan. 2005.

[2] J. Bringer, H. Chabanne, and E. Dottax. White box
cryptography: Another attempt. located at, last visited
on Jul, 22(2011):14, 2006.

[3] H. Chang and M. J. Atallah. Protecting software code
by guards. In Security and privacy in digital rights
management, pages 160–175. Springer, 2002.

[4] L. Chen and A. Avizienis. N-version programming: A
fault-tolerance approach to reliability of software
operation. In Proc. 8th IEEE Int. Symp. on
Fault-Tolerant Computing (FTCS-8), pages 3–9, 1978.

[5] S. Chow, P. Eisen, H. Johnson, and P. C. V. Oorschot.
White-box cryptography and an AES implementation.
In Selected Areas in Cryptography, number 2595 in
Lecture Notes in Computer Science, pages 250–270.
Springer Berlin Heidelberg, Jan. 2003.

[6] S. Chow, P. Eisen, H. Johnson, and P. C.
Van Oorschot. A white-box DES implementation for
DRM applications. In Digital Rights Management,
pages 1–15. Springer, 2003.

[7] F. B. Cohen. Operating system protection through
program evolution. Computers & Security,
12(6):565–584, Oct. 1993.

[8] C. Collberg, C. Thomborson, and D. Low. A
taxonomy of obfuscating transformations. Technical
report, Department of Computer Science, The
University of Auckland, New Zealand, 1997.

[9] Y. De Mulder, P. Roelse, and B. Preneel.
Cryptanalysis of the Xiao-Lai white-box AES
implementation. In Selected Areas in Cryptography,
pages 34–49, 2013.

[10] Y. De Mulder, B. Wyseur, and B. Preneel.
Cryptanalysis of a perturbated white-box AES
implementation. In G. Gong and K. C. Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010, number
6498 in Lecture Notes in Computer Science, pages
292–310. Springer Berlin Heidelberg, Jan. 2010.

[11] C. Eagle. The IDA pro book: the unofficial guide to
the world’s most popular disassembler. No Starch
Press, 2011.

[12] P. FIPS. 197: Advanced encryption standard (aes).
National Institute of Standards and Technology, 2001.

[13] S. Forrest, A. Somayaji, and D. Ackley. Building
diverse computer systems. In Operating Systems,
1997., The Sixth Workshop on Hot Topics in, pages
67–72, 1997.

[14] M. Franz. E unibus pluram: massive-scale software
diversity as a defense mechanism. In Proceedings of
the 2010 workshop on New security paradigms, NSPW
’10, pages 7–16, New York, NY, USA, 2010. ACM.

[15] S. Govindavajhala and A. W. Appel. Windows access
control demystified. Technical report, Department of
Computer Science, Princeton University, 2006.

[16] S. Haber and W. S. Stornetta. How to time-stamp a
digital document. In Proceedings of the 10th Annual
International Cryptology Conference on Advances in

Cryptology, CRYPTO ’90, pages 437–455, London,
UK, UK, 1991. Springer-Verlag.

[17] M. A. Hiltunen, R. D. Schlichting, C. A. Ugarte, and
G. T. Wong. Survivability through customization and
adaptability: The cactus approach. In DARPA
Information Survivability Conference and Exposition,
2000. DISCEX’00. Proceedings, volume 1, pages
294–307. IEEE, 2000.

[18] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan.
Dynamic self-checking techniques for improved tamper
resistance. In Security and privacy in digital rights
management, pages 141–159. Springer, 2002.

[19] E. R. Jacobson, A. R. Bernat, W. R. Williams, and
B. P. Miller. Detecting code reuse attacks with a
model of conformant program execution. In
International Symposium on Engineering Secure
Software and Systems (ESSoS), pages 1–18. Springer
Berlin Heidelberg, 2014.

[20] P. Junod, J. Rinaldini, and J. Wehrli.
Obfuscator-LLVM.
https://github.com/obfuscator-llvm/obfuscator,
2014. GitHub repository.

[21] M. Karroumi. Protecting white-box AES with dual
ciphers. In K.-H. Rhee and D. Nyang, editors,
Information Security and Cryptology - ICISC 2010,
number 6829 in Lecture Notes in Computer Science,
pages 278–291. Springer Berlin Heidelberg, Jan. 2011.

[22] T. László and Á. Kiss. Obfuscating c++ programs via
control flow flattening. Annales Universitatis
Scientarum Budapestinensis de Rolando Eötvös
Nominatae, Sectio Computatorica, 30:3–19, 2009.

[23] P. Leach, M. Mealling, and R. Salz. A Universally
Unique IDentifier (UUID) URN Namespace. RFC
4122 (Proposed Standard), July 2005.

[24] T. Lepoint, M. Rivain, Y. De Mulder, P. Roelse, and
B. Preneel. Two Attacks on a White-Box AES
Implementation. In Selected Areas in
Cryptography–SAC 2013, pages 265–285. Springer,
2014.

[25] W. Michiels and P. Gorissen. Mechanism for software
tamper resistance: an application of white-box
cryptography. In Proc. ACM workshop on Digital
Rights Management, pages 82–89, 2007.

[26] W. Michiels, P. Gorissen, and H. D. L. Hollmann.
Cryptanalysis of a generic class of white-box
implementations. In R. M. Avanzi, L. Keliher, and
F. Sica, editors, Selected Areas in Cryptography,
number 5381 in Lecture Notes in Computer Science,
pages 414–428. Springer Berlin Heidelberg, Jan. 2009.

[27] A. Shamir and N. Van Someren. Playing ’hide and
seek’ with stored keys. In Financial cryptography,
pages 118–124, 1999.

[28] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[29] SysK. Practical cracking of white-box
implementations. In Phrack Magazine. Phrack Inc.,
2012. Volume 0x0e, Issue 0x44, Phile #0x08 of 0x13.

[30] Trusted Computing Group. Trusted Platform Module
(TPM) Specifications. Online at https:

//www.trustedcomputinggroup.org/developers/

241

https://github.com/obfuscator-llvm/obfuscator
https://www.trustedcomputinggroup.org/developers/trusted_platform_module/specifications
https://www.trustedcomputinggroup.org/developers/trusted_platform_module/specifications

trusted_platform_module/specifications. Accessed
on: 14-07-2014.

[31] B. Wyseur, W. Michiels, P. Gorissen, and B. Preneel.
Cryptanalysis of white-box DES implementations with
arbitrary external encodings. In C. Adams, A. Miri,
and M. Wiener, editors, Selected Areas in
Cryptography, number 4876 in Lecture Notes in
Computer Science, pages 264–277. Springer Berlin
Heidelberg, Jan. 2007.

[32] Y. Xiao and X. Lai. A secure implementation of
white-box AES. In 2nd International Conference on
Computer Science and its Applications, 2009. CSA
’09, pages 1–6, 2009.

[33] S. Yachi and M. Loreau. Biodiversity and ecosystem
productivity in a fluctuating environment: the
insurance hypothesis. Proceedings of the National
Academy of Sciences, 96(4):1463–1468, 1999.

242

https://www.trustedcomputinggroup.org/developers/trusted_platform_module/specifications

	Introduction
	Related Work
	White-Box Cryptography
	Software Diversity
	Run-time Integrity Checking

	Approach
	Protect Key with White-Box AES
	Prevent Automated Attacks with Diversity
	Server-Side Generation of WBCrypto
	Client-Side Operation of WBCrypto
	Malicious Calls to WBCrypto
	Caller Authentication
	Message Authentication

	Evaluation
	Performance Evaluation
	WB Generator
	WBCrypto

	Security Evaluation
	LUT Search-Space Increase
	Malicious Calls to WBCrypto
	Replay Attacks
	Replace WBCrypto Binary

	Discussion and Limitations
	Applicability of Results
	Alternative Solutions

	Conclusions and Future Work
	References

