
44 September  2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

 



COMMUNICATIONS OF THE ACM September  2006/Vol. 49, No. 9 39

omputer systems play an increasingly prominent role in our daily
lives. Interacting with these systems often involves disclosing personal
data—data that can be traced back to particular individuals, collected
in different contexts. For example, healthcare providers, insurance
companies, and tax offices collect personal data explicitly. The use of
credit or loyalty cards, as well as Internet shopping, leave implicitly
created digital footprints. So does the use of mobile phones (traffic
data) and the coming generation of motor vehicles (location data and
sensed driving behavior). Moreover, public security concerns have led
to increased monitoring of public spaces where personal data (images

and contexts) is gathered without direct interaction with computerized
services. The looming reality of ubiquitous computing will further

increase the amount of personal data collected, and enhanced network capabilities give rise to
potentially uncontrolled distribution. 

DISTRIBUTED USAGE
CONTROL

C
By ALEXANDER PRETSCHNER, 

MANUEL HILTY, and DAVID BASIN

d

d

Using a server-side architecture to connect specialized enforcement mechanisms
with usage control requirements and policies. 



40 September  2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

These technologies improve, for the most part, the
quality of our lives. Still, the question arises how all this
potentially sensitive data can be protected. Two of the
main technical challenges involve controlling data
access and usage. While the fundamentals of access
control appear to be well understood, this is not the
case for usage control. Promising research has been car-
ried out in the areas of both usage control specification
[1, 8] and enforcement mechanisms [6, 9]. Missing,
however, is a conceptual framework that encompasses
both specification and enforcement. In this article, we
close this gap. 

To this end, we assume personal and other kinds of
sensitive data are stored at trustworthy places called data
providers. Third parties, called data consumers, request
access to the data. Assuming that some form of access
control is in place, our concern is what happens to the
data once it has been released to the data consumer:
how the data consumer may, must, and must not use it.
Clearly, the scope of this problem extends beyond pri-
vacy concerns about personal data and is also related to

the management of intellectual property rights. 
In this article, we describe the fundamentals of usage

control, in particular, the notions of provisions, obliga-
tions, and compensations in the context of controlla-
bility and observability. This takes into account
possible enforcement mechanisms like those provided
by rights management mechanisms. However, many
requirements on the consumer’s behavior cannot be
directly enforced. We therefore present a transforma-
tion-based approach to tackling this problem whereby
non-enforceable requirements are transformed into
requirements whose satisfaction can at least be
observed. We describe a two-level policy language that
is rich enough to express all these concepts and present
a generic server-side architecture for implementing
usage control. This architecture is compatible with dif-
ferent client-side enforcement mechanisms, such as
dedicated client-side software architectures, trusted
platform technologies, and other digital rights manage-
ment (DRM) mechanisms. We view this server-side
architecture as providing the missing link between spe-
cialized enforcement mechanisms on one side and
usage control requirements and policies on the other. 

ABSTRACT SYSTEM MODEL

We consider a distributed system consisting of a set of
actors. An actor is an information system or informa-
tion processing device, and each actor has an owner
that is responsible for the actor’s behavior. Actors can
take actions including: 

• Operations on data such as storage, distribution, dif-
ferent forms of read access (including playing music
or videos), modification of payload and metadata,
and processing such as the computation of statistics;
and 

• Communication, which is the sending and receiving
of messages that are not subject to usage control, for
example, requests for data or notifications of some
kind. 

Actors also have encapsulated states, that is, they
cannot observe the states and operations of each
other. Actors can assume different roles. One actor
can send (a copy of) data to another actor. In this

case, the former is the data
provider and the latter the data
consumer. These roles can change
dynamically. Each data item has a
data owner who possesses the
rights to the data. 

An example of dynamically
changing roles is found in mobile
computing and is depicted in Fig-
ure 1. Consider a location-based
service with location information
d coming from a GPS receiver in a
mobile phone. To provide the ser-

vice, the network infrastructure requests location data
from the mobile phone. In this transaction, the mobile
phone is the data provider and the network infrastruc-
ture is the data consumer. Then d is sent to a service
provider, possibly with other data d’, for further pro-
cessing. Now the network infrastructure is the data
provider and the service provider is the data consumer. 

The subscriber, who is the owner of the mobile
phone, might want to restrict what happens to this data
once it is given to the network infrastructure. The
respective requirements can either be specified globally
(via a subscriber agreement) or on a per-transaction
basis. If the subscriber requires the service provider to
delete the data after processing it, then the network
infrastructure must stipulate this requirement when
giving the location data to the service provider. 

USAGE CONTROL REQUIREMENTS

In order to control how data is used, the owner of a
data provider must define a usage control policy that

UC-basin fig 1 (8/06)

Figure 1. Roles of actors.

NetworkData Consumer

Data Consumer

d,d'd

Data Provider

Data ProviderMobile Phone Service Provider

Figure 1. Roles of 
actors.



specifies the requirements that must be satisfied by a
data consumer who receives a copy of the provider’s
data. The requirements expressed in the policy can
come from four different kinds of sources: the data
provider’s (owner’s) own interests; the data owner’s pref-
erences; governing laws and regulations; or from an
agreement with another actor that has previously sent
the data.

Provisions and Obligations. We distinguish two
basic classes of usage control requirements [2, 3]: pro-
visions and obligations. Provisions are concerned with
the past and present and, as such, represent access con-
trol requirements only. In contrast, obligations are con-
cerned with requirements on the future that the data
consumer must adhere to. The specification and
enforcement of provisions is fairly well studied and
understood in the access control community, and
hence we focus on obligations. 

Examples of obligations are “data d must not be
stored for more than 30 days,” “data d must not be fur-
ther distributed,” and “data d must not be processed for
purposes other than p.” Obligations impose constraints
on operations on data, which can relate to: 

• Time, for example, data may have to be stored at
least, or at most, 30 days; 

• Cardinality, limitations such as data may be copied
at most three times; 

• The occurrence of certain events, for example, data
may be used until its owner explicitly states other-
wise; 

• Actions to be taken by the data consumer, such as
notifying the data owner each time the data is used; 

• The purpose for which the data may be used, for
example, for scientific purposes only; 

• Technical or governance restrictions, such as
encrypted storage or adherence to governance stan-
dards; or 

• The necessity of updates, because the freshness and
correctness of personal data is often required by data
protection regulations. 

For both requirements and policies, we define
notions of enforceability and violation. A requirement
is enforceable if mechanisms can be employed such
that all executions of the system satisfy the require-
ment. A requirement is enforced in a system when
these mechanisms are actually employed. A policy is
enforceable if all its requirements are enforceable, and
enforced if all its requirements are enforced. A require-
ment is violated with respect to a system execution if
the execution does not satisfy it. A policy is violated
with respect to a system execution if at least one of its
requirements is violated. 

Controllability and Observability. Enforceability is
tightly bound to the notions of controllability and
observability. Controllable obligations are obligations
for which the data provider can ensure that the data
consumer executes respective operations only under the
specified restrictions. Controllability only exists with
respect to a given set of mechanisms. Trusted platform
technology can be used as a mechanism to control cer-
tain obligations as, for example, within DRM, where
such technologies are already in use. Alternatively, the
data provider can use trusted systems in a more general
sense, namely systems for which the data provider is
certain they will behave in predefined ways. This is, for
example, the case for dedicated software infrastructures
in trustworthy environments. In such environments,
the main concern is often to prevent unintentional,
rather than deliberate, violations of obligations. 

In many cases, full controllability is not achievable.
Therefore, we also introduce the notion of observabil-
ity, which is a weaker notion than controllability. In
some cases, the data provider can observe whether
obligations are adhered to. We call such obligations
observable obligations. Recall that actors cannot
observe each other’s states and local actions. However,
by receiving messages that describe parts of what is oth-
erwise unobservable, they can acquire partial knowl-
edge about the states and actions of other actors.
Mechanisms for observing the fulfillment of obligations
range from non-technical mechanisms like audits to
technical mechanisms like the use of trusted systems
that inform data providers about actions taken by data
consumers (such as trusted logging mechanisms or the
use of watermarks to identify the source of illegal
copies). If an obligation is not observable, there may be
an approximation of it that can be observed. For
instance, it is difficult to see if data is actually deleted,
but there may be technical means to show that the
respective commands have been executed. Obviously,
there also is a similar notion of approximation for con-
trollability, but for the sake of simplicity, we do not
address it here. 

Observability can be exploited for enforcement pur-
poses [2]: the data provider can observe whether an
(approximation of an) obligation is violated and take a
compensating action when this is the case. The com-
pensating action can rectify the violation, it can be a
penalty such as lowering a trust or credibility rating of
the data consumer, or it can be some form of legal
action. This is similar to enforcing a law that prohibits
driving through a red traffic light. It is not possible to
prevent car drivers from driving through red lights, but
by installing cameras, the police can fine those who do
so. We call a requirement of the form “if a violation of
obligation o is detected, then the compensating action

COMMUNICATIONS OF THE ACM September  2006/Vol. 49, No. 9 41



a must be triggered” a compensation. Compensations
are enforceable. Because full controllability is not
achievable in general, we suggest a hybrid approach
employing two mechanisms: one for controllability,
and the other for observability, when controllability
cannot be achieved. 

Obligations that are neither controllable nor trans-
formable into observable ones can only be trusted to be
adhered to by the data consumer. The best the data
provider can do here is to get a commitment to the
obligation from the data consumer, and perhaps
remind the data consumer of its duties later. 

POLICIES

We have three types of enforceable requirements: pro-
visions, controllable obligations, and compensations.
To reflect the fact that some obligations are not
enforceable, we define two policy levels. The intuition
behind these two levels is as follows. A high-level pol-
icy is about what ideally should be enforced, and it
directly reflects applicable laws, regulations, and agree-
ments. It may thus contain requirements that are not
enforceable. A low-level policy is a policy that can actu-
ally be enforced; it contains both references to what is
stipulated by the high-level policy (including non-con-
trollable obligations) and what will actually be enforced
(including compensations). Note that for observable
obligations, we enforce the compensation associated
with the obligation and not the obligation itself.

High-Level Policies. A high-level policy specifies
obligations as well as provisions, which encompass
access control requirements and provisional actions.
Provisional actions [5] are actions the requester is
required to take in the time span between access
request and data release, for example, obtain the data
owner’s consent or sign an agreement.

From High-Level to Low-Level Policies. We now
describe the process of transforming a high-level policy
into a low-level policy. In doing so, we derive the struc-
ture of a low-level policy language. As this structure is
more complex than that of high-level policies, we also
sketch a simplified metamodel of low-level policies. A
prerequisite for this transformation is a description of
the available enforcement and observation mechanisms
and their capabilities. Such descriptions are provided in
dedicated vocabularies. The transformation then con-
sists of four steps. 

1. Obligations are partitioned into controllable and
non-controllable obligations. This is done with respect to
a set of available control mechanisms such as the use of
trusted systems as defined earlier. This requires that the
available mechanisms are known and well understood.
Controllable obligations are annotated with the applic-
able mechanisms. For obligations that are not fully

controllable, a mechanism is specified as well, but the
obligation is still considered in the next steps. This
results in a combination of control and observation
mechanisms. 

2. Non-controllable obligations are partitioned into
observable and non-observable obligations. 

3. As many remaining obligations as possible are trans-
formed into observable obligations by weakening them as
much as necessary, as the previous example of data dele-
tion shows. A minimum requirement here is that the
violation of a newly created observable obligation
implies the violation of the respective non-observable
obligation. 

4. Each observable obligation is annotated with an
applicable observation mechanism capable of observing a
violation of the obligation, and associated with compen-
sating actions. In this way, compensations are specified.

The fulfillment of remaining non-observable and
non-controllable obligations must be trusted. This
trust must be established outside the policies and
before access is granted. 

Low-Level Policies. Here, we introduce the struc-
ture of low-level policies. Figure 2 shows the simplified
metamodel of this policy language. A policy consists of
a set of rules. In this article, we take a simplistic
approach to combining rules: a request is permitted if
at least one of the rules applies, and is denied other-
wise. This restriction could be liberalized by employ-
ing different rule combination algorithms such as in
XACML [7]. 

A rule has an access control part that defines its
applicability, which essentially is a predicate over
requester attributes, object attributes, and environment
attributes. Further, a rule contains provisional actions
and contracts. The applicability part and the provi-
sional actions together cover all provisions as defined
previously. Contracts reflect obligations in the high-
level policy. They contain both the original obligation
(what the policymaker wants) and what actually is
enforced and how. In this sense, a controllable contract
contains a controllable obligation (both its logical rep-
resentation and a human-readable description) plus
information about the enforcement mechanism (or a
combination of mechanisms) and how it should be
configured. It can also contain a compensation to back
up the control mechanism. An observable contract
contains an observable obligation and the compensa-
tion that will be enforced. To describe the compensa-
tion, we must specify the formula to observe (which
can be the original obligation or an approximation
thereof), an observation mechanism and a compensat-
ing action. A trusted contract contains a non-control-
lable and non-observable obligation. 

42 September  2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM



The semantics of a rule is as fol-
lows. If the applicability part eval-
uates to true, then the entire set of
provisional actions and contracts
must be satisfied for the data to be
delivered. How the provisional
actions and contracts are processed
is explained in the architecture
description next. 

For the sake of brevity, our def-
inition of policies omits the
description of attributes, actions
(including provisional actions and
compensating actions), control
mechanisms, observation mecha-
nisms, and purposes. Purposes are
needed to specify obligations of
the form “this data may only be
used for purpose p.” Similar to
EPAL [1], such definitions are
contained in a vocabulary, which
we do not consider in more detail
in this article. 

ARCHITECTURE

We are now ready to sketch a generic architecture for
data providers. It encompasses access control, contract
negotiation, observation mechanisms, compensations,
and the configuration of data with regard to trusted sys-
tems on the client side (for example, the issuing of
rights objects for trusted platform technology, or
attaching policies that are comprehensible to the
trusted system). Since monitoring and enforcement are
difficult in the context of open infrastructures such as
the Internet, we envision first implementations in
more controlled infrastructures including mobile
phones or data servers of banks, supermarket chains,
military organizations, and national administrations.
On the one hand, this is because the information sys-
tems in these contexts are easier to control than sys-
tems in, say, public P2P networks. On the other hand,
for some of the actors in these contexts, it can be
assumed they unintentionally, rather than deliber-
ately, violate obligations. 

In order to understand the general layout of the
architecture, we start by considering a generic process
for obtaining data (see Figure 3a). 

Process. Initially, a potential data consumer C
requests data d. Upon receiving this request, the data
provider P performs traditional access control. This
involves evaluating the applicability part of each rule.
The result of this step is a set of rules that associate C
with d in the current state of the environment. If there
is more than one applicable rule, P must choose one

of them. P then sends the contracts and the descrip-
tions of provisional actions contained in this rule to C.
This guarantees access to d under the following con-
ditions:

• The attributes relevant for the applicability part
have not changed; 

• Evidence of having taken the provisional actions
is sent by C; 

• C commits to the obligations; and 
• C accepts possible compensations. 

If C agrees with the provisional actions as well as
the obligations and compensations as set forth in the
contracts, C performs the provisional actions and
gathers evidence for this. C sends this evidence to P,
together with a statement that C accepts the other ele-
ments of the contract, and requests d. Finally, P
checks whether the provisional actions have been per-
formed, if all access control requirements are still sat-
isfied, and if C has agreed with the contracts. If this is
the case, P starts monitoring possible violations of the
events that lead to compensating actions. For all con-
trollable obligations, P wraps d into a DRM container
or issues respective rights objects or policies for trusted
systems, and releases a copy of d. 

Structure. This procedure can be implemented
using a generic architecture for data providers, as
depicted in Figure 3b. Boxes represent functional units
and arrows represent the main data flows. The request
handler receives requests and forwards them to the rule
filter. The rule filter retrieves all rules for which the
respective access control conditions are met (which may
include consulting external attribute databases or the

COMMUNICATIONS OF THE ACM September  2006/Vol. 49, No. 9 43

UC-basin fig 2 (8/06)

Figure 2. Policy language metamodel.

11

1

1

1

1

1

1

1

0..1 0..1

0..1 0..1 0..1

0..1

0..1

0..1

0..1

0..1

0..1

1

1

1

1 1 1 1

1 1 1

11

1

1

1

1

11

1

1

1..*

1..*

1..*

1

* *

Control

Control
Mechanism

Configuration

Formula

Obligation

FormulaDescription Observation Compensating
Action

Compensation

Configuration

Formula

Provisional
ActionApplicability

Policy

Trusted
Contract

Contract

Rule

Observable
Contract

Controllable
Contract

Observation
Mechanism

Figure 2. Policy 
language metamodel.



environment), and returns a set of
provisional actions and contracts
for each rule, of which one set is
selected. This data is sent to the
consumer who, in turn, provides
the necessary information. In case
the request can be granted, a com-
pensation management compo-
nent is triggered to monitor
whether obligations are violated
and possibly take actions when
they are. In case controllable oblig-
ations are involved, the data object
is modified or augmented so that
trusted systems can handle the
respective requirements.

PERSPECTIVE

With the ever-increasing availabil-
ity of digital personal data, we
firmly believe that usage control
will be an enabler of future tech-
nologies, particularly in the con-
text of mobile and ubiquitous
computing. We have described
here first steps toward a general
solution, focusing on the funda-
mentals of usage control. Of
course, any technical solution will
likely come in conjunction with
organizational, legal, and method-
ological support. 

There are a number of chal-
lenges remaining. To date, it is
unclear how to describe the gen-
eral capabilities of existing control
and observation mechanisms, and
there certainly is potential here for new technologies.
Because most privacy regulations incorporate the
notion of “purpose,” this must be allowed for in the
policy language, possibly based on dedicated ontologies
like those defined by ODRL [4] in the DRM context.
Heterogeneous systems pose particular problems; it is
unclear, for example, how an RFID tag can control the
usage of the signals it emits. 

While we believe there are no fundamental differ-
ences between usage control in the context of privacy
and intellectual property management, this claim
clearly needs to be substantiated. Other important
problems to address concern usability, the propagation
of rights, and controlling the ways that data can be
combined and distilled. Although it is likely some time
will pass before solutions are found, we believe solu-
tions are achievable. 

REFERENCES
1. Backes, M., Pfitzmann, B., and Schunter, M. A toolkit for managing enter-

prise privacy policies. In Proceedings of ESORICS (2003), 162–180. 
2. Bettini, C., Jajodia, S., Wang, X.S. and Wijesekera, D. Provisions and oblig-

ations in policy rule management. J. Network and System Mgmt. 11, 3
(2003), 351–372.

3. Hilty, M., Basin, D., and Pretschner, A. On obligations. In Proceedings of
ESORICS (2005), 98–117.

4. Ianelli, R., Ed. Open Digital Rights Language (ODRL); odrl.net. 
5. Jajodia, S., Kudo, M. and Subrahmanian, V. Provisional authorizations. In

E-Commerce Security and Privacy, Kluwer, 2001, 133–159. 
6. Liu, Q., Safavi-Naini, R. and Sheppard, N. Digital rights management for

content distribution. In Proceedings of the Australasian Information Security
Workshop (2003), 49–58.

7. OASIS. eXtensible Access Control Markup Language (XACML), 2005. V
2.0.

8. Park, J. and Sandhu, R. The UCON ABC usage control model. ACM
Transactions on Information and Systems Security 7 (2004), 128–174. .

9. Smith, S.W. Trusted Computing. Springer, 2005.

Alexander Pretschner (pretscha@inf.ethz.ch) is a senior
researcher at ETH Zurich in Switzerland. 
Manuel Hilty (hiltym@inf.ethz.ch) is a research assistant ETH
Zurich in Switzerland. 
David Basin (basin@inf.ethz.ch) is a professor at ETH Zurich in
Switzerland and head of the Information Security Group. 

© 2006 ACM 0001-0782/06/0900 $5.00

44 September  2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

UC-basin fig 3a (8/06)

Figure 3a. Request, provisional actions, and access.

accept
obligations,

perform
provisional

actions

adhere to
obligations

timegrant accessrequest access

UC-basin fig 3b (8/06)

Figure 3b. Data provider architecture.

Compensation
ManagementR

e
q
u
e
s
t

H
a
n
d
l
e
r

A
t
t
r
i
b
u
t
e
s

E
n
v
i
r
o
n
m
e
n
t

Obligation
Enforcement

Policies

Database

policies

data

environment
attributes

user/object
attributes

penalty

observationsstart
monitoring

decision
request

revoke

provisional
actions

contracts

protected
data

rights

data

possibly
protected data

contracts

evidence of
provisional

actions

requests

external compensation

Rule
Filter

Figure 3a. Request, 
provisional actions, and

access.
Figure 3b. Data provider

architecture. 

a.

b.


