
Incremental Kinesthetic Teaching of End-Effector and Null-Space
Motion Primitives

Matteo Saveriano, Sang-ik An and Dongheui Lee

Abstract— In this paper, we propose a unified approach to
teach and iteratively refine both end-effector and null-space
movements. Hence, the robot can be taught to make use of
all its degrees-of-freedom (DoF) to adapt its behavior to new
dynamic scenarios. In order to achieve this goal we propose an
incremental learning approach in a framework of kinesthetic
teaching based on a multi-priority kinematic controller, the so-
called Task Transition Control (TTC). The learning algorithm
is responsible for skill acquisition and their incremental update.
On the real-time level, end-effector and null-space motion
primitives, as well as the physical guidance are considered as
prioritized tasks. The transitions among these tasks and their
insertion and removal are managed by the TTC according to
the specified transition parameters. This allows to introduce
a customized task which guarantees a proper and smooth
response to the applied external forces during the kinesthetic
teaching. Experimental results on a 7 DoF KUKA lightweight
manipulator show the effectiveness of the proposed approach.

I. INTRODUCTION

In real applications, the robot is required to execute com-
plex tasks and to adapt its behavior to dynamic environments.
Skills acquisition and their compact representation as motion
primitives, as well as on-line adaptation of those skills to new
scenarios, are of importance in everyday scenarios. The skills
acquisition procedure has to be simple, natural and intuitive.
In this way, new skills can be easily learned and also non-
expert users can teach the robot how to accomplish a task.

A natural and intuitive way that humans use to teach
new skills is kinesthetic teaching, i.e. manual guiding of
the partner (robot) during the task execution. This is a well
established concept in the Programming by Demonstration
(PbD) literature [1]. Several approaches have been proposed
to represent the skill in a compact form reducing the amount
of data to store, for example, stochastic regression based
approaches [2], [3] and attractor based ones [4].

In dynamic environments, the possibility of modifying
the learned motion primitives is also required. Incremental
refinement of the learned motion has been investigated in
[5], [6]. In particular, in [5], the problem is handled of how
motion primitives can be incrementally refined by physical
coaching. The key idea in this work is to physically coach the
robot during the execution. In this way, natural coordinated
movements can be learned.

Nevertheless, when the robot is redundant, i.e. the robot
has more DoF than the required DoF for task accomplish-
ment, one should consider how the redundant DoF can be
used in a fruitful manner. As known from the robot control

Authors are with Chair of Automatic Control Engineering, Technis-
che Universität München, Munich, Germany. {matteo.saveriano,
sangik.an, dhlee}@tum.de

literature, in fact, redundant DoF can be used to execute mul-
tiple tasks at the same time. Null-space projection techniques
are usually adopted to avoid that lower priority tasks affect
the execution of the higher priority ones [7], [8], [9].

The tasks to execute can be learned by PbD. In [10],
a recurrent neural network is used to learn the inverse
kinematic mapping and null-space constraints from recorded
end-effector positions and joint angles. Training data are
collected in two steps. Firstly, the user guides the robot
towards the task execution. Then, with the end-effector fixed
in the desired goal pose, the user teaches some local null-
space configurations. End-effector and null-space tasks are
then executed using a multi-priority controller. In [11], null-
space policies are learned from observations considering the
first priority task as a set of constraints on the null-space
policy. The null-space policy is then estimated by solving an
optimization problem, trying to minimize the inconsistency
among the observations. However, these approaches do not
allow the online adaptation of null-space motion primitives.

We propose a new method to incrementally learn end-
effector and null-space motions via kinesthetic teaching. New
training sequences are acquired during the motion execution
by physically coaching the robot. Hence, the user can decide
where the motion primitive has to be refined, leaving the rest
of the motion unchanged. Our main contribution consists
in combining incremental learning algorithms with a cus-
tomized multi-priority kinematic controller that guarantees a
smooth human-robot interaction. The proposed approach has
the following advantages.

• The user can refine multiple motion primitives (e.g.,
end-effector and elbow motions) naturally and intu-
itively.

• Null-space motions can be learned without modifying
the end-effector task execution by using a kinematic
controller with varying task priorities.

• Being the teaching executed while the robot moves,
the user can figure out if the desired null-space space
motion is compatible with the end-effector task. He/she
simply has to check if the end-effector deviates from
the desired path.

The rest of the paper is organized as follows. In Section II
we present an overview of the proposed approach. Section III
describes how motion primitives are learned and incremen-
tally refined. In Section IV the proposed interaction control
for incremental learning approach is presented. Section V
presents the experimental results. Section VI states the con-
clusions and the future work.



II. OVERVIEW OF THE PROPOSED APPROACH

In this section we give an overview about the integration
of human-robot interaction, incremental learning and multi-
priority control in our system. The complete procedure is
shown in Fig. 1. As a first step, motion primitives are learned
in batch mode from human demonstrations. We decided
to collect these demonstrations using kinesthetic teaching.
Other techniques can also be used.

In case the learned motion primitive has to be refined
online, new training data are collected during the motion
execution. While a customized impedance controller was
proposed for kinesthetic teaching in [5], in this paper we
adopt a control method by varying priorities between the
multiple tasks and by allowing smooth task transitions. This
choice gives us the possibility to kinesthetically teach null-
space tasks without affecting the end-effector task execution.

The motion refinement proceeds in this way. A multi-
priority kinematic controller, namely the Task Transition
Controller (TTC), starts to execute a motion primitive. If
the user wants to modify this motion primitive (s)he starts
to physically guide the robot. This occurrence is detected
by using an estimation of the forces applied on the robot
(Sec. IV). Then, a new task is generated by transforming
interaction forces into desired velocities ẋic.

The interaction task is initially inserted with the lowest
priority. Hence, the robot tries to execute this task using only
its redundant DoF, accurately executing the end-effector task.
If both the tasks can be executed at the same time, the learned
behavior, i.e. the desired velocity of the contact point, can
be considered as a null-space motion primitive.

The priority of the interaction task can be increased when
it is not correctly executed. To decide when tasks priorities
has to be changed, we follow this simple idea. If the user
perceives that the robot is not accomplishing its guidance,
then he simply increases the applied force. Hence, a threshold
on the external force is used to decide the tasks priority. This
is the case of the end-effector motion primitives refinement.
When the user guides the robot touching the end-effector,
one between the interaction task and the end-effector motion
primitive cannot be executed. At the beginning, the robot
keeps following its original motion. Then, the user increases
the contact force, the tasks are smoothly switched and the
robot can accomplish the physical guidance and refine its
behavior. The proposed switching mechanism is also useful
to understand if the tasks are in conflict. The user has to
simply check if the end-effector is significantly deviating
from the desired path during the interaction.

III. INCREMENTAL LEARNING OF MOTION PRIMITIVES

In this section, we describe the main features of the
adopted Hidden Markov Models (HMM) incremental learn-
ing approach and refer to [5] for further details.

A. Motion Learning and Generation

An HMM represents a Markov chain in which L states
are hidden and it is described by the set of parameters
λ = {π,A, c,µ,Σ}, where π is the initial state probability,

Fig. 1. System overview.

A is the state transition probability matrix. The mixture
coefficients c, the means µ and the covariance matrices Σ
represent the continuous observation probability distribution
as a mixture of M Gaussians [12]. HMM parameters λ are
usually learned from a time series of spatial data (Cartesian
trajectories in this work) sO = {so(t)}, using the EM
algorithm [13].

To generate a smooth motion sequence from an HMM,
a normalized time variable, linearly varying from 0 to 1,
is introduced for each state. Firstly, the correlation between
temporal and spatial data (tµ, ttΣ and tsΣ) is learned from
the motion sO and the optimal Q? state sequences [13].

Then, a state sequence is generated deterministically,
considering as initial state q(1) = argmaxi π. For each
state i, the expected duration to stay at i is calculated as
d = 1/(1− aij), where aij is the probability to transit from
state i to j 6= i. After staying in state i for d steps, the next
state is chosen as q(t+ 1) = argmaxj aq(t)j .

From the generated state sequenceQ, the relative temporal
sequence tO is calculated. For this temporal sequence, the
responsibility γi(t) for each state i is calculated by using the
HMM forward and backward variables [13] for the temporal
sequence.

A sequence of spatial data is then calculated from Q
and tO, considering for each time step t a mixture of K
Gaussians in the state i = q(t). Finally, a smooth trajectory
so(t) is generated using GMR [12].

B. Incremental Motion Refinement

The goal of incremental learning of motion primitives is to
update the previous knowledge of motion primitives as new
demonstrations are provided, without keeping all the training
data in the dataset. To avoid that the learning algorithm
becomes insensitive to new data when the data set becomes
large a forgetting factor is used.

The main idea is to use just two demonstrations (sOd, d =
1, 2): one is the new demonstration provided by the user, the
other is the smooth trajectory generated from the current
motion primitive. For the new demonstration the weighting
term wd = η, where η is the forgetting factor, is given. For
the generated motion trajectory is wd = 1 − η. The new



HMM parameters λ̂ are updated using the old ones λ and
the demonstrations.

IV. HUMAN-ROBOT INTERACTION CONTROL

In order to realize the incremental motion refinement by
physical contact, we propose a new kinesthetic teaching
control framework, based on the so-called task transition
control (TTC).

A. Task transition control

A task T of a robot can be defined by a tuple (ẋ, ẋd)
in the velocity level where ẋ , J(q)q̇ is the task variable,
ẋd(q, t) is the desired trajectory of ẋ, q is the generalized
coordinate of the robot, and J(q) is the Jacobian of the
forward kinematics, then the inverse kinematics is to find q̇
that minimizes the task error ‖ė‖ , ‖ẋd−ẋ‖. In general, the
definition of the task is not fixed for whole operation time
and multiple tasks T1, · · · , Tk can exist at the same time. For
the clearness of the discussion, we introduce a mathematical
convention of a set of tasks, such that (Ti, Tj), i, j =
1, . . . , k, i 6= j represents an unprioritized accumulation of
two tasks and [Ti, Tj ] represents a prioritized accumulation
in which Ti has priority.

Given a set of accumulated tasks [T 1, . . . , T l], the inverse
kinematic solution q̇i for each task T i is calculated inde-
pendently [9] and the resulting joint trajectories q̇i are di-
rectly interpolated by using the barycentric coordinate. When
the task definitions need to be changed during operations,
smooth transitions of the barycentric coordinates guarantee
tasks switch without jumps in the desired joint trajectory.

Definition 1 (Barycentric Coordinates). The barycentric
coordinates of q̇ with respect to Q , {q̇1, · · · , q̇l} is defined
as any set of real coefficients w1, · · · , wl depending on (q, t),
such that all the following properties hold:

• Nonnegativity: wi ≥ 0,
• Linearity: q̇ =

∑l
i=1 w

iq̇i with
∑l

i=1 w
i = 1, and

• Smoothness: wi ∈ Cs(q, t)

where s ∈ N≥0 depends on the degree of smoothness needed.

Theorem 1 (Task Transition Control). The TTC given by (1)
∼ (5) provides smooth and arbitrary task transitions within
T = {T 1, · · · , T l}, as well as bounds the inverse solutions
such that ‖q̇‖ ≤ max{‖q̇1‖, · · · , ‖q̇l‖}

q̇ = qw (1)

w(s+1) = −
s∑

j=1

kjw
(j) + k0(wd −w) (2)

wd(q, t) ∈ {ê1, · · · , êl} ⊂ Rl (3)

w(ti) ∈ {a ∈ Rn : 1Ta = 1, a ≥ 0} (4)

w(j)(ti) = 0, ∀j ∈ N≤k (5)

where q , [q̇1 · · · q̇l] ∈ Rn×l, w , [w1 · · · wl]T ∈ Rl,
w(j) , djw/dtj , s ∈ N≥0, 1 , [1 · · · 1]T ∈ Rl,
{ê1, · · · , êl} is a set of the standard basis in Rl, and
{k0, · · · , kk} ⊂ R are stabilizing control gains that don’t
generate overshoot of the (s+ 1)-th order linear system.

The proof of theorem 1, as well as further details on the
TTC, can be found in [14].

B. Tasks definition

The robot is required to execute the motion primitives
and, at the same time, to be compliant in case of physical
interaction. We define two different tasks: 1) end-effector
task Tee and 2) interaction control task Tic. Given Tee and
Tic, the required task can be changed in each time by the
strength of the human intervention (the norm of the external
force f = ‖fe‖):

• T 1 = Tee: If there is not human intervention (f < fi),
only Tee exists.

• T 2 = [Tee, Tic]: If there is weak human intervention
(fi ≤ f < fs), both tasks exist and Tee has priority.

• T 3 = [Tic, Tee]: If there is strong human intervention
(fs ≤ f ), both tasks exist and Tic has priority.

The threshold fi is used to decide to insert the interaction
control task as the lower priority task, generating extra null-
space motions. Another threshold fs is used to switch priority
between two tasks as shown in Tab. I. In other words, the
robot firstly tries to project Tic in its null-space. If the human
perceives that the task is not correctly executed, (s)he simply
applies a bigger force until Tic becomes the first priority task.

TABLE I
TASK TRANSITION RULE

f < fi fi ≤ f < fs fs ≤ f

Tee [Tee, Tic] [Tic, Tee]

The interaction task is an admittance control that trans-
forms the external Cartesian force in a desired velocity using
the relationship:

ẋic = cfe , (6)

where ẋic is the interaction task desired velocity, fe is the
applied external force and c is a tunable gain.

Hence, an estimation of the external Cartesian force ap-
plied to the robot is needed. The estimation of the external
force requires two steps. Firstly, the external torque τ e,
applied in each joint, must be estimated. Secondly, given
the contact point C, the external force fe is computed by
inverting the well-known equation τ e = JT

Cfe, where JC

is Jacobian of the contact point.
Approaches have been developed to estimate the external

torque and the link where the contact occurs. For example,
in [15], a momentum based disturbance observer is used for
collision detection and reaction. For robots that do not have
torque sensors in each joint, external torque can be estimated
using only the encoders, as proposed in [16]. For the KUKA
LWR manipulator, an estimation of the external joint torque
is provided up to 1 KHz through the Fast Research Interface
[17]. Being the provided torque ideally zero for all the joints
located after the contact point, the touched link can be easily
found using a thresholding method.



Precise contact point estimation becomes a challenging
problem without the usage of an exteroceptive sensor (e.g.,
cameras). Since the estimation of the contact point is beyond
the scopes of this work, we simply assume that the contact
always occurs at the end of the contact link.

V. EXPERIMENTAL RESULTS

A. Pick-and-Place learning and refinement

In this section we show how end-effector and null-space
motion primitives are incrementally refined in our frame-
work. The end-effector task is the pick-and-place (point-to-
point) motion in Fig. 2, originally learned in batch mode
(Sec. III-A) from 5 demonstrations. The number of hidden
states in the HMM1, as well as the number of Gaussians in
each state, are empirically chosen to 7 and 1 respectively. The
end-effector orientation is kept constant during the execution.

Grasping and release positions are also learned from
physical interaction. If the grasping position is not set yet,
the robot waits until its end-effector is touched. Then, the
current position is saved as grasping position and the motion
primitive executed. A similar approach is used for the release
position2. The gain c = 0.005 m/Ns is used to transform
the external forces fe into velocities (6).

Fig. 2. Batch learning of the pick-and-place motion primitive using an
HMM with 7 states and 1 Gaussian for each state. Five demonstrations
(black dashed line) are used. The blue ellipses represents the learned
Gaussian in each state. The red solid line is the retrieved smooth trajectory
(Sec. III-A).

1) End-effector motion refinement: In this experiment, the
original target position, located at p = [−0.6 0.14 0.027],
is incrementally refined to reach the new target p̄ =
[−0.5 0.006 0.027]. During the execution, the user corrects
the trajectory by physically guiding the robot toward the new
goal.

1In this paper we always use left-to-rigth HHM [13], being this structure
the most suitable for representing point-to-point motions.

2A video with the experiments is included.

At the beginning of the execution, the end-effector motion
is the unique task in the stack. When the user starts to interact
with the robot (‖fe‖ > 5 N ), the TTC generates the new
task [Tee, Tic]. Being the tasks [Tee] and [Tee, Tic] in conflict,
the robot cannot accomplish the physical guidance. Hence,
the user applies a bigger force and the tasks priorities are
smoothly switched (‖fe‖ > 15 N ). After three repetitions,
the robot is able to reach the new target position p̄, as
shown in Fig. 3. The interaction starts at about 3 seconds
after starting the execution. Hence, the first 3 seconds of the
motion primitive (before the interaction) are left unchanged.

Fig. 3. Incremental motion refinement results. The robot is able to reach
the new goal position p̄ = [−0.5 0.006 0.027] after three demonstrations.
The motion in the z direction is not showed because it is not updated during
the kinestethic teaching.

2) Elbow motion refinement: In this experiment, an un-
foreseen obstacle is put along the trajectory of the robot
elbow (Fig. 5(a)). The end-effector motion is the pick-and-
place task in Fig. 2. During the task execution the user
perceives the robot is going too close to the obstacle and
he physically teaches a collision-free motion for the robot’s
elbow (Fig. 5(b)). After three iterations, the robot is able
to execute the end-effector task avoiding the collision with
the learned null-space motion (Fig. 5(c)). The results of the
incremental learning after three iterations are summarized
in Fig. 4. The interaction starts at about 5.4 seconds after
starting the execution. Hence, the first 5.4 seconds of the
motion primitive (before the interaction) are left unchanged.
The thresholds used to insert Tic and to switch the priority
are chosen as fi = 5 N and fs = 15 N respectively. Note
that, as for the end-effector, the learned null-space primitive
can be further refined in an online fashion.

To underline the role of fi and fs in the proposed teaching
approach, we perform three experiments varying the value of
the threshold fs used to switch the priority between the end-
effector task Tee and the interaction task Tic. The threshold
used to insert Tic is kept constant at fi = 5 N .

i) fi = fs = 5 N : With this choice the interaction task Tic
is directly inserted as the first priority task, as shown in Fig.
7(a). In this case the physical guidance is easier because the
robot can use more DoF to accomplish the task. Nevertheless,
if the tasks are in conflict, errors in the motion primitive
execution are accumulated. In this particular case Tee and



Fig. 4. Elbow motion learning using an HMM with 7 states and 1 Gaussian
for each state. Three demonstrations (black dashed line) are incrementally
provided. The blue ellipses represents the learned Gaussian in each state.
The red solid line is the retrieved smooth trajectory (Sec. III-A).

Tic are not in conflict, since the end-effector position tracking
error (Fig. 7(a)) is relatively small (less than 3 mm).

ii) fi = 5 N, fs = 30 N : With this choice Tic is always
executed in the null-space of Tee (Fig. 7(b)) using only the
redundant DoF. If the robot can accomplish the physical
guidance, then the task are not in conflict and the new motion
primitive can be effectively executed in the null-space of Tee.

iii) fi = 5 N, fs = 15 N : With this choice transitions
occur between Tic and Tee (Fig. 7(c)). This transitions are
needed, for example, to refine end-effector motion primitives,
being in this case Tee and Tic in conflict. An intermediate
value for fs is always suggested, since it is unknow a priori
if the physical guidance is in conflict with the end-effector
motion. During the kinesthetic teaching the user can figure
out if the end-effector deviates significantly from the desired
path and, if it happens, the user can reconsider the initial
order of priorities. The end-effector errors in Fig. 7 show
that the value of fs has no practical effects on the system if
Tic and Tee are not in conflict.

In all the previous cases the barycentric coordinates (Fig.
7) show several transitions between [Tee] and other tasks.
This is basically due to the way of teaching. The user, in
fact, moves the elbow far away from the obstacle a first
time. While the execution proceeds other corrections may
be needed, and so on until Tee is completed.

The interaction controller (Sec. IV) combines the tracking
performances of position controllers with an increased flexi-
bility. As an example, Fig. 6 shows the end-effector position
tracking errors for position and impedance control. The
position controller accurately tracks the motion also during
the interaction, but it makes impossible the teaching. On
the other hand, to allow physical guidance with impedance
control, one has to set low impedance gains3 penalizing the

3We choose the stiffness matrix as S = 200I and the damping matrix
as D = 2d

√
200I , where d = 0.7 to avoid overshoot.

(a) Collision

(b) Kinesthetic teaching

(c) Autonomous execution

Fig. 5. Snapshots of the elbow motion refinement procedure. (a) An
unforeseen obstacle is placed on the elbow trajectory. (b) To avoid collisions,
a collision-free elbow trajectory is learned by kinesthetic teaching. (c) After
three iterations, the robot is able to execute both the end-effector and null-
space tasks.

end-effector task execution also without contacts.

Impedance control error

time [s]

|e
rr
o
r|
[m

m
]

Position control error

|e
rr
o
r|
[m

m
]

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

50

100

150

0

0.5

1

1.5

2

Fig. 6. End-effector position tracking error with position and impedance
control. The interaction starts around 5 ms in both cases.

VI. CONCLUSION AND FUTURE WORK

We presented an approach for learning and incremen-
tal refinement of both end-effector and null-space motion
primitives, useful to adapt the robot behavior in unforeseen
scenarios. The entire procedure is natural and intuitive.
Firstly, a motion primitive for the end-effector is learned in
batch mode. Demonstration can be provided, as in this case,
by kinesthetic teaching, or by human imitation, as in [5].
Secondly, during the task execution, the user can modify
the learned primitives by physically guiding the robot. A



 

 

replacements

[Tic, Tee]

[Tee, Tic]

Tee

time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(a) fi = fs = 5 N

time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(b) fi = 5 N, fs = 30 N

time [s]

|e
rr
o
r|
[m

m
]

b
ar
y
ce
n
tr
ic

co
o
rd
.

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

0

1

2

3

0

0.5

1

(c) fi = 5 N, fs = 15 N

Fig. 7. Barycentric coordinates and end-effector position tracking error for
different values of fi and fs.

customized kinematic controller manages the tasks execution
and the human-robot interaction, in order to guarantee safe
and smooth responses of the manipulator. The controller is
able to dynamically switch multiple tasks priority. Hence we
can teach a robot motion, which consists of multiple tasks,
by adding a new task without disturbing the already learned
tasks much.

The threshold fi is used to insert the interaction task
and this value depends on the robot configuration when
the interaction starts and also on the touched link. As a
future work we will investigate the possibility of automatic

selecting the value of fi for different tasks and different
touched links. Moreover, we plan to realize a usability study
similar to [18] to better understand the advantages and
disadvantages of the proposed approach when non-expert
users are asked to teach the robot.

ACKNOWLEDGEMENTS

This work has been partially supported by the European
Community within the FP7 ICT-287513 SAPHARI project
and Technical University of Munich, Institute for Advanced
Study, funded by the German Excellence Initiative.

REFERENCES

[1] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot pro-
gramming by demonstration,” in Springer Handbook of Robotics,
B. Siciliano and O. Khatib, Eds., 2008, pp. 1371–1394.

[2] S. Calinon, F. Guenter, and A. Billard, “On learning, representing
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man and Cybernetics, vol. 37, no. 2, pp. 286–298, 2007.

[3] D. Lee and Y. Nakamura, “Mimesis model from partial observations
for a humanoid robot,” The International Journal of Robotics Re-
search, vol. 29, no. 1, pp. 60–80, 2010.

[4] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal,
“Dynamical Movement Primitives: learning attractor models for motor
behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, 2013.

[5] D. Lee and C. Ott, “Incremental kinesthetic teaching of motion
primitives using the motion refinement tube,” Autonomous Robots,
vol. 31, no. 2, pp. 115–131, 2011.

[6] S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–
765, 2014.

[7] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” International Journal of
Robotic Research, vol. 6, no. 2, 1987.

[8] S. Chiaverini, “Singularity-robust task-priority redundancy resolution
for real-time kinematic control of robot manipulators,” IEEE Transac-
tion on Robotics and Automation, vol. 13, no. 3, pp. 398–410, 1997.

[9] S. An and D. Lee, “Prioritized inverse kinematics using qr and
cholesky decompositions,” in IEEE International Conference on
Robotics and Automation, 2014.

[10] A. Nordmann, C. Emmerich, S. Rüther, A. Lemme, S. Wrede, and J. J.
Steil, “Teaching nullspace constraints in physical human-robot inter-
action using reservoir computing,” in IEEE International Conference
on Robotics and Automation, 2012, pp. 1868–1875.

[11] C. Towell, M. Howard, and S. Vijayakumar, “Learning nullspace
policies,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2010, pp. 241–248.

[12] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of Artificial Intelligence Research, vol. 4,
no. 1, pp. 129–145, 1996.

[13] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” in Proceedings of the IEEE, 1989,
pp. 257–286.

[14] S. An and D. Lee, “Prioritized inverse kinematics with multiple
task definitions,” in IEEE International Conference on Robotics and
Automation, 2015.

[15] S. Haddadin, A. Albu-Schäffer, A. De Luca, and G. Hirzinger, “Col-
lision detection and reaction: A contribution to safe physical human-
robot interaction,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2008, pp. 3356–3363.

[16] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano, “Task-space
control of robot manipulators with null-space compliance,” IEEE
Transactions on Robotics, vol. 30, no. 2, pp. 493–506, 2014.

[17] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface
for the kuka lightweight robot,” in Proc. of the IEEE ICRA Workshop
on Innovative Robot Control Architectures for Demanding (Research)
Applications, 2010, pp. 15–21.

[18] S. Wrede, C. Emmerich, R. Grnberg, A. Nordmann, A. Swadzba, and
J. Steil, “A user study on kinesthetic teaching of redundant robots in
task and configuration space,” Journal of Human-Robot Interaction,
vol. 2, no. 1, pp. 56–81, 2013.


