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Abstract—We study an outage constrained beamformer design
in the multi-user vector downlink. The transmitter’s statistical
information about the fading channels is subject to an additive
and a multiplicative random channel error. We split the outage
probabilities and the optimization into two parts for the two
types of channel errors. An inner problem takes the additive
channel errors into account, assuming prior information of
the multiplicative errors, and is solved in terms of convex
conservative approximations. The outer optimization considers
the multiplicative channel errors and adjusts the information for
the inner problem. For the outer search, we compare an equal
design with a locally optimal iterative search.

Index Terms—chance-constrained optimization; beamformer
design; rate balancing; outage constraints; SatCom channel

I. INTRODUCTION

Rate maximization under outage probability constraints has
recently become a key problem for physical layer designs [1],
[2] with only imperfect knowledge of the fading channels.
We consider linear beamforming in the downlink of a multi-
antenna multi-user setup in this context. The common channel
for the intended and the interfering signals to a user results
in correlations of the intended useful received signal power
and the experienced interference power, when only a statistical
channel model can be acquired at the transmitter.1

Due to this correlation, the outage probability computation
for an additive Gaussian channel estimation error requires a
numerical integration (e.g., [4]) and the direct beamformer op-
timizations with probabilistic constraints becomes intractable.
The literature focuses on conservative approximations of the
chance constraints to optimize the beamformers [1], [5]–
[8] and maximize the reliably achievable rates. All these
approximations assume that the additive channel error is small.

Similarly, we focused on a balancing formulation in [9], i.e.,
the minimum of the reliably achievable rates is maximized,
which is also the optimization task for this work. Therein, we
assumed a multiplicative random factor for the vector chan-
nels, which leads to familiar optimizations. This multiplicative
channel error model may serve as an approximation of the
additive error model [10], when the channel covariance matrix
is close to rank-one or the channel error is only minor.

The contribution of this work is the combination of both
channel error models, that is, we consider an additive error
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1In contrast, for the probabilistically constrained uplink equalizer design,
the SINR’s nominator and denominator are statistically independent [3].

for the known channel estimate and a multiplicative error.
The motivation stems from mobile satellite communications
(SatCom), where the channel model is based on Rician fading,
which is distorted by the beam gains and rain attenuation
(shadow fading) [11]. The attenuation is essentially an uncer-
tainty about the noise power in the downlink (see Section V).

Under the assumption that these two types of errors are
statistically independent, we propose to maximize a lower
bound on the outage constrained achievable rates in the
downlink. The idea is to virtually split the probability of outage
into the outage probabilities due to the multiplicative error and
the additive error. Therewith, we can make assumptions on the
multiplicative error and apply known conservative approaches
to approximate the problem with additive errors. How to
choose this splitting becomes a new degree of freedom for
the rate maximization. An equal and an iterative optimization
for this probability split are proposed in Section V and a
comparison of these optimizations is given in Section VI.

II. SYSTEM MODEL

We consider a Gaussian vector downlink model, where K
receivers are served in the same frequency band by an N -
antenna transmitter and are subject to additive Gaussian noise
nk ∼ NC(0, σ2

k). The transmitter applies linear beamforming
on the modulated i.i.d. Gaussian data signals and transmits the
superimposed outcome over the frequency flat fading channels
hH
k ∈ C1×N , k = 1, . . . ,K, to the K mobiles. If tk, k =

1, . . . ,K, denote the beamforming vectors, the achievable rate
for receiver k in this system reads as

rk = log2(1 + SINRk) (1)

with the signal-to-interference-plus-noise-ratio (SINR)

SINRk =
|hH
k tk|2

σ2
k +

∑
i 6=k |hH

k ti|2
. (2)

The transmit performance is limited by the convex (conic)
set of feasible beamformers t = [tT1 , . . . , t

T
K ]T ∈ Q, where

Q =
{
t ∈ CKN×1

∣∣∣ K∑
k=1

tHkA`tk ≤ P`, ` = 1, . . . , L
}
. (3)

For per-antenna constraints, which were used for the simula-
tions in this work, A` has only a one at the `-th diagonal entry
and zeros elsewhere. The constraint set is then formed by

K∑
k=1

|[tk]`|2 ≤ P`, ` = 1, . . . , N (4)



where [tk]` denotes the `-th entry of the vector tk.

III. CHANNEL ERROR MODEL

While the receiver is implicitely assumed to have perfect
access to the channel states in this rate expression, the trans-
mitter only knows the statistics of the fading channel, e.g.,
it can obtain some characteristic estimate h̄k. Furthermore, it
knows that the (estimation) contains two errors, an additive
error ek ∼ NC(0,Ck), and a multiplicative error ξk, i.e.,

hk = (1 + ξk)(h̄k + ek), k ∈ {1, . . . ,K}. (5)

The inverse multiplicative factor (1 + ξk)−1 models the atten-
uation, with a log-normal distributed value in decibel (dB) for
the simulations. We remark that we consider the errors ξk and
ek to be mutually independent and also for indices i 6= k.

Above channel error model stems from SatCom (e.g.,
see [11]), where the strong channel mean is due to the line-of-
sight (LoS) component of the channel that is estimated in the
return link. The unknown additive error results from scattering,
receiver mobility, and estimation errors in the training phase
of the return link—from the mobile to the satellite. The multi-
plicative error is due to changing shadowing and atmospheric
attenuation effects on the path from the satellite to the earth.

Alternatively, the satellites CSI could be based on feedback
information from the mobiles. However, even though a suffi-
ciently accurate channel estimation at the receivers is possible
in the SatCom forward link, e.g., via pilot aided channel
estimation, the feedback to the gateway is limited and subject
to delays [12], which also results in imperfect transmitter CSI.

For the considered multi-spotbeam mobile SatCom scenario
in the simulations, we used an S-band (2–4 GHz) channel
model (e.g., see [13] and [11]). The basis is Rician fading
and can be written as

zk =

√
κ

κ+ 1
z̄k +

√
1

κ+ 1
z̃k (6)

with factor κ, line-of-sight component z̄ = 1N and complex
random z̃k. Since scatterers are mainly around the receivers
and far from the transmitting satellite, we assumed a fully
correlated random vector z̃k = wkz̄k with wk ∼ NC(0, σ2

wk
)

in [14]. Such a restriction is not imposed in this work.
The random vector z̃k ∼ NC(0,Cz) may have a full rank
covariance matrix, e.g., Cz = IN , in the worst case.

The Rician fading vector in (6) is distorted by the beam
gain characteristic Gk = diag(g1,k, . . . , gN,k) of the horn
antennas at the satellite. This characteristic depends on the
relative position of the receivers to the spotbeam centers. Here,
gi,k = |gi,k| e− jψi,k contains the tapered-aperture antenna
gain [15] from antenna i to user k with

|gi,k|2 =
(
J1(ui,k)

2ui,k
+ 36

J3(ui,k)

u3
i,k

)2

,

where J1(·) and J3(·) are the first kind Bessel functions of
order one and three, respectively, of ui,k = 2.07123

sin(θi,k)
sin(θ3dB) .

The angle θi,k is between beamcenter i and user k as seen from
the satellite and θ3dB is the one-sided half-power beamwidth.

For an approximation of the small phase shifts ψi,k, we
assumed that the antennas are in a plane.

With above beam gain characteristic Gk, the channel to
receiver k is written as (cf. [11])

hk = gFSL,kζkGkzk (7)

where gFSL,k = λ
4π
√
dk

is the free space loss (FSL) coefficient
with wavelength λ and altitude dk. The multiplicative factor
ζk stems from a log-normally distributed attenuation that
comprises the losses due to the rain-fading, i.e., arain,k = ζ−2

k

in dB is distributed as ln(a
(dB)
rain,k) ∼ N (mrain,k, σ

2
rain,k).

The two channel models in (5) and (7) are equivalent to
each other if we substitute ξk = ζk − 1 and

h̄k = gFSL,k

√
κ

κ+ 1
Gkz̄k,

Ck =
g2

FSL,k

κ+ 1
GkG

H
k .

(8)

This equivalence is the basis for our SatCom simulations, even
though the generic model in (5) reflects other scenarios as
well. For example, the multiplicative error may be seen as an
effective noise uncertainty (see Section IV).

IV. OUTAGE BASED MAX-MIN RATE OPTIMIZATION

Max-min (rate) optimizations for perfect CSI (e.g., see [16],
[17]) can be solved very efficiently, but lead to many outages
when based only on the channel estimates. Here, we restrict
the outage probabilities to lie below εk when takeing the
fading into account. Thereby, the resulting chance-constrained
problem reads as

max
ρ0,t∈Q

ρ0 s. t. Pr(rk ≥ ρ0ρk) ≥ 1− εk, k = 1, . . . ,K (9)

for balancing the reliably achievable rates ρ0ρk, where the
ρk ∈ R+ weight the receivers based on their importance.

The difficulty of solving (9) lies in the probabilistic require-
ment which we can rewrite as

Pr(rk ≥ ρ0ρk) = Pr
(
hH
kBkhk ≥ σ2

k

)
≥ 1− εk (10)

where Bk = 1
2ρ0ρk−1tkt

H
k −

∑
i 6=k tit

H
i is indefinite with at

most one positive eigenvalue. The probability computation of
this indefinite quadratic form in hk requires a nested numerical
integration for the additive Gaussian errors [4], [18] and the
multiplicative errors (cf. Appendix).

To find a conservative approximation of the probabilistic
constraints, we first insert (5) into (10), i.e.,

Pr
(
bk(t, ek) ≥ σ2

k

|1 + ξk|2
)
≥ 1− εk (11)

where we substituted the indefinite quadratic form in the
Gaussian channel errors as

bk(t, ek) = (h̄k + ek)HBk(h̄k + ek). (12)

In (11), we separated the optimization variables and the
additive error ek from the multiplicative channel variable ξk,
which forms the effective random noise power σ̃2

k =
σ2
k

|1+ξk|2 .



Hence, if we were aware of ek, the probability in (11) would
be the CDF of σ̃2

k evaluated at bk(t, ek). Vice versa, if we
were aware of σ̃2

k, the randomness in the stochastic constraint
would only be due to the additive error ek.

In this work, we follow the second idea and introduce an
allowed uncertainty area for the effective noise power, i.e.,
σ̃2
k ≤ ak with Pr(σ̃2

k ≤ ak) = Fσ̃2
k
(ak) = αk. The inverse

CDF for σ̃2
k may be analytically available or easy to compute

to obtain the bound ak(αk) = F−1
σ̃k

(αk) as a function of αk ∈
[1 − εk, 1]. With this uncertainty bound, we approximate the
left-hand-side of the chance-constraint in (11) as

Pr
(
bk(t, ek) ≥ σ̃2

k

)
> Pr

(
bk(t, ek) ≥ ak(αk)

∣∣ak(αk) ≥ σ̃2
k

)
αk.

(13)

The approximation in (13) is conservative, but provides the
additional degree of freedom to choose αk. Therefore, we add
an optimization over α = [α1, . . . , αK ]T if we use (13) instead
of the original constraints (10) for the beamformer design, i.e.,

max
α,ρ0,t∈Q

ρ0 s. t. 1− ε ≤ α ≤ 1 (14)

Pr
(
bk(t, ek)≥ak

∣∣ak ≥ σ̃2
k

)
≥ 1−εk

αk
, k = 1, . . . ,K

where the vector inequalities for α are elementwise.

V. CONSERVATIVE LOWER BOUND MAXIMIZATION

In what follows, we divide the joint optimization in (14)
into an inner optimization w.r.t. the beamformers t for fixed
prior probabilities and an outer optimization w.r.t. the prior
probabilities α. Therewith, we maximize a lower bound on
the reliably achievable rates.

A. Conservative Inner Optimization

The inner beamformer optimization with fixed prior proba-
bilities α is difficult to solve itself, i.e., the outage probability
is non-convex in t and its computation involves a numerical
integration [18]. Therefore, we restrain to one of the available
conservative (convex) approximations in [1], [5], [6]. For
example, we replace the chance constraints with deterministic
uncertainty constraints and apply a semidefinite relaxation
(SDR) approach for the resulting problem.

For this purpose, we additionally assume that the additive
channel error ek in (5) lies in a predefined set Sk, e.g., the
sphere Sk =

{
e ∈ CN

∣∣‖C− 1
2

k e‖22 ≤ dk
}

, with probability
βk = Pr(ek ∈ Sk) for the probabilistic constraint in (14).
This results in the probability lower bound approximation

Pr
(
bk(t, ek) ≥ ak

∣∣ak ≥ σ̃2
k

)
> Pr

(
bk(t, ek) ≥ ak

∣∣ak ≥ σ̃2
k, ek ∈ Sk

)
βk.

(15)

It must be larger than 1−εk
αk

to assure the probabilistic con-
straint in (14).

If we fix βk = 1−εk
αk

, then, the remaining conditional
probability in the second line of (15) must be equal to one. In
other words, the quadratic constraint bk(t, ek) ≥ ak has to be
fulfilled for all ek ∈ Sk. The corresponding sphere bound is

dk = F−1
χ2
2N

(βk)
/

2, (16)

which is the inverse CDF of the χ2-distributed random variable
2‖C−

1
2

k e‖22 that is of degree 2N and evaluated at βk.
Replacing all probabilistic terms by their conservative

worst-case counterparts, the beamformer design reads as

max
ρ0,t∈Q

ρ0 s. t. bk(t, ek)≥ak, (17)

∀ek : ‖C−
1
2

k ek‖22 ≤ dk, k = 1, . . . ,K.

One may apply an iterative alternating beamformer design
and worst-case channel search with local convergence for this
problem (e.g., [6]). However, we require a tractable (quasi-
convex) global solution approach for this inner problem in
order to optimize the priors in an outer search. Recently,
an approximation of the constraints in (17) with Lorentz
positive maps and the corresponding linear matrix inequality
reformulations were presented in [19]. This transformation to
Lorentz positive maps of the uncertainty constraints requires
an additional approximation of bk(t, ek), which would result
in an lower bound for the maximum balancing value in (17).
Therefore, we apply the common SDR from [1] instead.

Let Wk = tkt
H
k with rank{Wk} = 1, then the per-antenna

requirements simplify to the linear constraints
K∑
k=1

[Wk]`,` ≤ P`, ` = 1, . . . , L, (18)

where [Wk]`,` is the `-th diagonal entry of the matrix Wk. As
is shown in [1], the S-Lemma can be applied to reformulate the
uncertainty constraint in (17) to the semidefiniteness constraint

Ψk(ρ0,W , λk) � 0 (19)

where λk ≥ 0 and the matrix function is defined as

Ψk(ρ0,W , λk) =
[
C

1
2

k , h̄k
]H
Bk

[
C

1
2

k , h̄k
]

+ λk bdiag(IN ,−dk)− bdiag(0, ak),
(20)

where now Bk = 1
2ρ0ρk−1Wk −

∑
i 6=kWi and bdiag(·)

defines a block-diagonal matrix structure. Hence, the relaxed
formulation of (17) with dropped rank constraints reads as

max
ρ0,W∈W,λ≥0

ρ0 s. t. Ψk(ρ0,W ,λ) � 0, k = 1, . . . ,K. (21)

An alternative conservative formulation of (14) is obtained
by applying a Bernstein’s type inequality to bound the proba-
bility that the quadratic term in (12) deviates from its mean [1,
Lemma 1]. The resulting covex transmit covaraince optimiza-
tion problem reads as (cf. [1, Table 1])

max
ρ0,W∈W,y≥0,x

ρ0 s. t. (22)

tr
(
Ψk(ρ0,W , 0)

)
−
√

2 ln
(

1
1−βk

)
xk − ln(1− βk)yk ≥ 0,∥∥vec

(
C

H
2

k Bk

[
C

1
2

k ,
√

2h̄k
])∥∥

2
≤ xk,

ykI +C
H
2

k BkC
1
2

k � 0, k = 1, . . . ,K.

This approximative problem is expected to be less conservative
than the uncertainty approximation (21) for high transmit
power. Therefore, the solution of (22) is expected to outper-
form that of (21) and both are feasible for (14).



Note that the constraints in (21) and (22) are still non-
convex in ρ0, but convex in all the other variables. Therefore,
we can solve these problems via a bisection over ρ0, for
example. In each bisection step it is tested whether there
exists a feasible W , that satisfies the constraints for given
ρ′0. If a feasible W is found, e.g., with the disciplined convex
programming toolbox CVX [20], ρ′0 is a lower bound for the
optimal balancing factor and upper bound otherwise.

B. Outer Optimization of Priors

The remaining outer optimization is over the prior proba-
bilities. We denote this optimization as

max
α

ρ0(α) s. t. 1− ε ≤ α ≤ 1 (23)

where ρ0(α) denotes the optimum of either of the conserva-
tively approximated chance-constrained beamformer designs
with known priors. Since this optimization is non-convex w.r.t.
α, one may choose the priors to be equal, i.e.,

α = α01 (24)

and optimize over α0 with 1 − min{εk} ≤ α0 ≤ 1 instead.
The simplified prior optimization is solved via a line search
over α0, e.g., a golden section, as ρ0(α01) is quasiconcave in
α0 within its bounds. This equal prior optimization is expected
to provide only slight losses in the achievable rate compared
to the next detailed iterative outer optimization, when the
required outage probabilities, rate targets, and the channel’s
fading parameters are equal as well.

We compare above equal prior optimization with an alter-
nating optimization of the vector’s entries α. Therein, the αk’s
are sequentially updated for fixed αi, i 6= k, in each iteration.
In the k-th step of the i-th iteration, we find

ρ
(i,k)
0 = max

αk
ρ0

([
α

(i+1),T

¯
k , αk,α

(i),T

k̄

]T)
s. t. 1− εk ≤ αk ≤ 1

(25)

with the above mentioned golden section search, where α
¯
k =

[α1, . . . , αk−1]T and αk̄ = [αk+1, . . . , αK ]T.
The sequence {ρ(i,k)

0 }i,k is non-decreasing when start-
ing from an initial feasible α(0), e.g., the solution of the
equal prior optimization. Moreover, the sequence is bounded
above by the transmit power limitations and the approximated
chance-constraints. Hence, the proposed iteration converges
in the objective. Convergence in the priors is expected for
sufficiently small steps in α(i) as ρ0(α) is continuous.

C. Beamformer Reconstruction and Power Allocation

After the iterative prior optimization converged, the transmit
strategy design requires a beamformer reconstruction from the
computed transmit covariances. Since the rank-one condition
was dropped in favor of an efficiently solvable SDR formu-
lation, a lossless reconstruction according to Wk = tkt

H
k is

only possible if the obtained Wk’s have rank one.
So far known necessary requirements for obtaining rank-

one solutions from (21) (e.g., see [21], [22]), consider a sum
transmit power constraint. For per-antenna constraints, we only

Parameter Mobile Terminals
satellite configuration GEO; S-band
beamwidth θ3dB (in degree) 0.2
number of beams; frequency reuse 3; 1
max satellite/user antenna gain 52 dBi/3 dBi
approximate FSL 190 dB
base receive noise power −133 dBW
Rician fading factor κ 10, 15 dB
log-normal fading mrain,k/σ2

rain,k [11] −2.62/1.63, 3.26 dB
SNR P/σ2

k 0, . . . , 30 dB

Table I: Link budget parameters for the SatCom scenario

know that we likely obtain rank-one solutions if the transmit
power and dk are sufficiently small (cf. [23]).

When non-rank-one transmit covariances were obtained, we
would use Gaussian randomization together with a subsequent
power allocation (cf. [23]). Let τk, k = 1, . . . ,K denote a
beamformer realization of the randomization procedure. Then,
we optimize the power allocations pk > 0, k = 1, . . . ,K
to obtain tk =

√
pkτk according to (21) or (22), where

we replace Wk with pkτkτ
H
k , k = 1, . . . ,K. Therewith, we

decrease ρ0 until the beamformers satisfies the constraints.
If we additionally allowed for an accurate numerical cal-

culation of the outage probabilities within the optimization,
we would be able to increase the balanced rates until the
outage requirements are met exactly [10]. However, this rate
refinement and power adaption is not in the scope of this work.

VI. NUMERICAL RESULTS

The numerical results are for a SatCom system with N =
K = 3 antennas and users, ρk = 1, εk = 0.1, per-antenna
constraints with P` = P/3, and the link parameters in Table I.

We realized 10 random positions of the users within the
beams and, therewith, 10 realizations of the beamgain matrices
Gk and FSLs gFSL,k according to the model in Section III. For
the Rician fading in SatCom, κ = 10, 15 dB are considered
as two typical values and we used σrain,k = 1.63, 3.26 dB
for the log-normally distributed multiplicative channel error
to differentiate between low and strong rain-fading, respec-
tively (e.g., see [11]). For the 10 randomly created setups, we
performed the proposed rate balancing optimization with equal
prior probabilities and for iteratively determined priors.

A. Results for Equal Priors

The achievable rate vs. the per-antenna transmit power is
presented in Fig. 1 in terms of averaging the results of the 10
channel realizations. As expected, the smaller κ and the larger
σ2

rain,k is, the stronger is the influence of the additive and the
multiplicative channel error, respectively, and the smaller is
the reliably achievable balanced rate.

We also observe from these simulations, that the Bernstein’s
inequality method (22) outperforms the bounded additive
channel error method (21) for the inner transmit covariance
optimization, which was expected from [1]. Only for stronger
rain and Rician fading parameters, i.e., σ2

rain,k = 3.26 dB and
κ = 10 dB, there is a slight loss from the Bernstein’s type
inequality to the bounded channel error method.
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Figure 1: maximum ρ0 vs. P for a N =K = 3 system with
equal targets ρk=1, requirements εk=0.1, and priors αk=α0
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Figure 2: maximizing α0 vs. P for a N =K=3 system with
equal targets ρk=1, requirements εk=0.1, and priors αk=α0

In Fig. 2, we sketched the rate maximizing α0 vs. P in
dB. For strong rain fading, i.e., σ2

rain,k = 3.26 dB, the optimal
prior α0 remains almost constant between 91 and 92 percent
if κ = 10 dB and increases only slightly with P from about
90.5% to about 92% if κ = 15 dB. For weak rain fading,
i.e., σ2

rain,k = 1.63 dB, the optimal common prior α0 is larger
than for strong rain fading. It increases from about 94% to
98% in the considered interval for P when κ = 15 dB. For
κ = 10 dB, only a slight increase is visible.

We remark that the larger the prior probability α0 is, the
smaller the posterior probabilities 1−εk

α0
will be, and therefore,

the uncertainty radii dk in (17) when bounding the channel
error by a sphere. Hence, the uncertainty radii dk become
smaller the larger the transmit power P is. In other words,
the method shifts some of the rate limiting influence of the
additive channel error to the multiplicative error in order to
maximize the achievable rate.

B. Comparison to Iteratively Computed Priors

To compare the optimized ρ0 and αk’s of the equal and the
iterative prior optimization (see Figure 3), we considered three
variations of the weak rain fading scenario.
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Figure 3: comparison of iterative and equal prior optimization
for a N=K=3 system with equal ρk=1 or equal εk=0.1
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Figure 4: actual outage probabilities for a N =K =3 system
with ρk=1, εk=0.1, σrain,k=1.63 dB, and equal priors

S.1 First, we varied the rate targets to ρ1 = ρ3 = 0.25 and
ρ2 = 2.5 (orange lines).

S.2 Alternatively, we changed the outage requirements to
ε1 = ε3 = 0.05 and ε2 = 0.25 (green lines).

S.3 Finally, only receiver 2 experiences strong rain fading
with σrain,2 = 3.26 dB. Therefore, we allow for an outage
requirement ε2 = 0.20, while receivers 1 and 3 have low
rain fading and the requirements ε1 = ε3 = 0.10.

We see that the maximum ρ0 of the iterative prior opti-
mization does not significantly outperform that of the equal
prior optimization (see Fig. 3) for the Scenarios S.1 and S.2,
even though the iteratively obtained α2 lie about 3% below
α3 for these scenarios. In contrast, if we assume strong rain
fading and allow for more outages only for receiver 2, as in
Scenario S.3, the balanced rates benefit from an iterative prior
optimization (cf. Fig. 3). In this case, the difference between
the optimized α2 and α1, α3 is more than 10%, while the
equally optimization α0 is in the middle of these bounds.

Therefore, an adaptive prior optimization needs to be im-
plemented only if the statistics of the multiplicative channel
errors strongly differ for the served receivers. An equal prior
choice performs sufficiently well for channels with similar



multiplicative channel errors, even though the receivers have
different QoS requirements, i.e., rate or outages.

C. Actually Achieved Outage Probabilities
The actually achieved outage probabilities

p
(out)
k = Pr(rk ≤ ρ0ρk) (26)

can be computed for given beamformers in t as detailed in
the Appendix. The probability p

(out)
k of the proposed conser-

vative approach, with an equal outer prior restriction and an
inner conservative beamformer design, lies strictly below the
requirements εk. This is also seen in Fig. 4, where we plotted
the empirical CDF of the actually achieved outage probabilities
based on the simulations for Fig. 1.

In accordance with [1], the inner Bernstein’s type inequality
approach is slightly less conservative than the bounded channel
error approach. Moreover, we see that the smaller the Rician
factor κ is, the smaller the obtained outage probabilities are.
In other words, the inner optimizations are statistically more
conservative when the likelihood of a large additive channel
error increases. In contrast, changes in the rain fading parame-
ter σ2

rain,k do not influence the obtained outage probability. We
conclude therefore that the prior approximation approach takes
the multiplicative channel errors sufficiently into account.

VII. CONCLUSION

We studied the outage constrained downlink beamforming
problem with multiplicative and additive channel errors. We
used a conservative inner beamformer design to be robust
against the additive channel errors and take care about mul-
tiplicative channel errors with an outer prior optimization
strategy to determine the users’ effective noise levels. The
simulations showed that an equal effective noise adaption is
sufficient as long as the general fading parameters, i.e., the
Rician factor and the rain fading characteristic, differ only
slightly. However, there is still room for improving the inner
optimization in terms of computational complexity and the
degree of conservatism compared to the state-of-the-art error
bounding and Bernstein’s inequality approximation.

APPENDIX

The computation of the k’th user’s actual outage probability

p
(out)
k = 1− Pr

(
bk(t, ek) ≥ σ̃2

k

)
requires numerical integration for given ρ0 and t. To this end,
we rewrite above right-hand-side probability as

Pr
(
bk(t, ek) ≥ σ̃2

k

)
=∫ ∞

0

fz(z) Pr
(
bk(t, ek) ≥ σ2

k10
z
10

∣∣z)d z
(27)

with the log-normal probability density function (PDF)

fz(z) =
1

zσrain
√

2π
e
− (ln(z)−µrain)

2

2σ2rain (28)

for the rain attenuation in dB. The inner conditional probability
in (27) is computed with Imhof’s method [18] for all required
values z to numerically evaluate the outer integration, e.g.,
with a standard quadrature integration method.
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