
The MALTASE Framework For
Usage-Aware Software Evolution

Tobias Röhm

INSTITUT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I

Angewandte Softwaretechnik

The MALTASE Framework For
Usage-Aware Software Evolution

Tobias Markus Röhm

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Johann Schlichter

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph.D.

2. Univ.-Prof. Dr. Barbara Paech,
Ruprecht-Karls-Universität Heidelberg

Die Dissertation wurde am 23.02.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 01.06.2015 angenommen.

Abstract

Software developers need to know how their software is used to improve it and adjust
it to user needs. Helpful usage information includes failure reproduction steps,
user skill levels, and deviations of actual usage from expected usage. However,
this information is rarely available to developers because of communication gaps
between users and developers. Therefore, developers are often unaware of failures
and problems users are facing, make potentially wrong assumptions about software
usage, and cannot reflect the user perspective in their decisions.

This dissertation investigates the acquisition of usage information by monitoring
and analyzing user interactions. It describes the Maltase framework which mon-
itors high-level user interactions and analyzes them to acquire usage information
which is helpful for developers during software evolution tasks.

In a problem case study, we found that developers need the following usage infor-
mation during software evolution: use cases and user behavior, user goals and user
needs, failure reproduction steps, and application domain concepts. We demonstrate
the applicability of Maltase by implementing three ways of exploiting monitored,
high-level user interactions: provision of failure reproduction steps, classification of
users according to their skills, and detection of deviations between user behavior and
use case steps. To investigate the impact of Maltase, we conducted a controlled ex-
periment and an evaluation case study. The controlled experiment compared failure
reproduction with interaction traces to failure reproduction with textual bug reports.
It found that developers can reproduce failures based on interaction traces and that
inexperienced developers are enabled to reproduce failures they cannot reproduce
with textual bug reports alone. The evaluation case study learned skill classifiers
from interaction traces of participants with differing skill levels. It found that skill
classifiers are able to reliably discriminate between novice and expert users of a
specific application (86–93% accuracy) but not between domain skill levels (64–71%
accuracy). In a simulation and a user study, we found that Maltase introduces an
overhead of 5 % execution time and that users tolerate this overhead. Overall, our
evaluation showed that Maltase narrows communication gaps between users and
developers by automatically acquiring usage information.

3

Kurzfassung

Um eine Softwareanwendung zu verbessern und an Nutzerbedürfnisse anzupassen,
benötigen Softwareentwickler Informationen über Softwarenutzung. Hilfreich sind
dabei unter anderem Informationen über Fehlerreproduktionsschritte, Nutzerfähig-
keiten, und Abweichungen zwischen tatsächlichem und erwartetem Nutzerverhalten.
Allerdings verfügen Entwickler aufgrund von mangelhafter Kommunikation zwischen
Entwicklern und Nutzern selten über diese Informationen. Deshalb sind Nutzer-
probleme und Softwarefehler Entwicklern häufig unbekannt, sie treffen möglicher-
weise falsche Annahmen über Softwarenutzung und können die Nutzerperspektive
in ihren Entscheidungen nicht berücksichtigen.

Diese Dissertation untersucht die Gewinnung von Nutzungsinformationen durch
Aufzeichnung und Analyse von Nutzerinteraktionen. Sie beschreibt das Maltase
Framework, welches Nutzerinteraktionen mit einem hohen Abstraktionsgrad auf-
zeichnet und analysiert. Dadurch gewinnt es Nutzungsinformationen, die für Ent-
wickler während der Softwareevolution hilfreich sind.

In einer Problemfallstudie haben wir herausgefunden, dass Entwickler während der
Softwareevolution folgende Arten von Nutzungsinformationen benötigen: Anwen-
dungsfälle und allgemeines Nutzerverhalten, Ziele der Nutzer sowie deren Bedürfnisse,
Fehlerreproduktionsschritte und Konzepte der Anwendungsdomäne. Wir verdeut-
lichen die Anwendbarkeit von Maltase durch die Implementierung dreier Möglich-
keiten zur Verwendung von aufgezeichneten Nutzerinteraktionen: der Gewinnung
von Fehlerreproduktionsschritten, der Klassifizierung von Nutzern aufgrund ihrer
Fähigkeiten und der Erkennung von Abweichungen zwischen Nutzerinteraktionen
und Anwendungsfall-Schritten. Wir haben ein kontrolliertes Experiment und eine
Evaluationsfallstudie durchgeführt, um die Auswirkung von Maltase zu unter-
suchen. Das kontrollierte Experiment hat Fehlerreproduktion basierend auf Inter-
aktionsprotokollen mit Fehlerreproduktion basierend auf textuellen Fehlerberichten
verglichen. Es ergab, dass Entwickler mit Hilfe von Interaktionsprotokollen Fehler
reproduzieren können und dass unerfahrene Entwickler dadurch Fehler reproduzieren
können, die sie mit textuellen Fehlerberichten allein nicht reproduzieren können. In
der Evaluationsfallstudie haben wir Klassifikatoren für Nutzerfähigkeiten aus In-
teraktionsprotokollen von Teilnehmer mit verschiedenen Fähigkeitsstufen gelernt.
Die Fallstudie ergab, dass die Klassifikatoren zuverlässig zwischen Anfängern und
Experten einer spezifischen Anwendung unterscheiden können (86-93 % Genau-
igkeit), aber nicht zwischen Fähigkeitsstufen bezüglich der Aufgabendomäne (64-71
% Genauigkeit). Eine Simulation und eine Nutzerstudie ergaben, dass Maltase die
Ausführungszeit einer Softwareanwendung um 5 % erhöht und dass dies von Nutzern
toleriert wird. Zusammenfassend hat unsere Evaluation gezeigt, dass Maltase
durch die automatische Gewinnung von Nutzungsinformationen einen Informations-
austausch zwischen Entwicklern und Nutzern ermöglicht.

5

Acknowledgements

S. D. G.

Many people influenced this dissertation and encouraged me during my disser-
tation research. Hence, I want to gratefully thank them and acknowledge their
support.

I am very grateful to Bernd Bruegge for creating an environment of opportunities
and growth, for supporting me in all my ideas and plans, and lots of feedback and
discussions. Furthermore, I want to thank Barbara Paech for accompanying my
dissertation research, for encouraging discussions, and for her feedback.

I am very grateful to all members of the Chair for Applied Software Engineering
for all discussions, feedback, encouragement, and fun. In particular, I want to thank
Walid Maalej for recruiting me, for hands-on research teaching, and for the research
visit in Hamburg. Similarly, I want to thank Dennis Pagano for all encouragement,
for wise and calm answers to my impatient questions, and for all the fun. Fur-
thermore, I want to thank Barbara Reichart, Damir Ismailović, Emitzá Guzmán,
Florian Schneider, Helma Schneider, Helmut Naughton, Hoda Naguib, Julian Suß-
mann, Martin Glas, Michaela Gluchow, Monika Markl, Nitesh Narayan, Uta Weber,
Yang Li, and the chair administrators.

I am grateful to all study participants for their time, patience, and feedback as
well as to Barbara Reichart, Dennis Pagano, and Rebecca Tiarks for proof-reading
parts of this dissertation. Furthermore, I want to thank all my students, collabora-
tors, and co-authors. In particular, collaborators in the research projects FastFix,
Punga, ReproFit and URES: Alessandra Bagnato, Alexandra Lungu, Amel Mah-
muzic, Barbara Paech, Benoit Gaudin, Bernd Bruegge, Christophe Joubert, Daniel
de los Reyes, Dennis Pagano, Emitzá Guzmán, Javier Cano, João Coelho Gar-
cia, Miguel Juan, Miriam Schmidberger, Patrick Bürgin, Rainer Koschke, Rebecca
Tiarks, Sergio Szamarripa, Stefan Nosović, Tom-Michael Hesse, Walid Maalej, and
Zardosht Hodaie. Similarly, the students Iulia Gaina, Martin Stoll, Nadeem Ahmed,
Nigar Gurbanova, and Stefan Theiner.

In addition, I want to thank Alexander Lehmann, Sebastian Vogl, and Sergej
Trushin for lunch and encouragement. Last but not least I want to thank my family
- Hans, Rose, Stefan, and Johannes - and my girlfriend Kerstin for their support
and status enquiries.

7

Contents

1 Introduction 13
1.1 Problem Statement . 14
1.2 Research Approach . 15
1.3 Scope . 17
1.4 Structure . 18

2 Foundations 19
2.1 Terminology . 19
2.2 Background . 21

2.2.1 Differences and Gaps Between Developers and Users 21
2.2.2 User Involvement in Software Evolution 24
2.2.3 User Interfaces of Software Applications 26
2.2.4 Nature of User Interactions 27
2.2.5 Processing of User Interactions 29
2.2.6 Software Analytics . 32

3 Problem Case Study 33
3.1 Design . 34

3.1.1 Research Questions . 34
3.1.2 Case and Participant Selection 34
3.1.3 Data Collection Procedures 35
3.1.4 Analysis Procedures . 38
3.1.5 Reliability and Validity Measures 39
3.1.6 Threats to Validity . 39

3.2 Results . 40
3.2.1 Information Needs of Developers Regarding Software Usage . . 41
3.2.2 Developers in the Role of Users 44

3.3 Related Work . 48
3.4 Discussion . 50

3.4.1 Conclusions . 50
3.4.2 Implications And Future Work 51

3.5 Chapter Summary . 52

4 The MALTASE Framework 55
4.1 Framework Overview . 55
4.2 Requirements . 56

4.2.1 Functional Requirements . 57
4.2.2 Use Cases . 58
4.2.3 Non-Functional Requirements 60

9

Contents

4.3 MALTASE Model . 61
4.3.1 Model of User Interactions . 62
4.3.2 Model of Users, Events, Applications, and Usage Contexts . . 63

4.4 MALTASE Architecture . 67
4.4.1 Monitoring & Information Extraction Layer 71
4.4.2 Storage & Transfer Layer . 76
4.4.3 Processing & Analysis Layer 79
4.4.4 Presentation & Integration Layer 82

4.5 MALTASE Usage Scenarios . 84
4.6 Related Work . 85
4.7 Chapter Summary . 91

5 Framework Applications 93
5.1 MALTASE-based Failure Reproduction 93

5.1.1 Motivation . 93
5.1.2 Approach . 94
5.1.3 Related Work . 97

5.2 MALTASE-based Skill Detection . 98
5.2.1 Motivation . 98
5.2.2 Approach . 99
5.2.3 Related Work . 101

5.3 MALTASE-based Use Case Testing 102
5.3.1 Motivation . 102
5.3.2 Approach . 103
5.3.3 Related Work . 106

5.4 Chapter Summary . 107

6 Evaluation 109
6.1 Evaluation Overview . 109

6.1.1 Goals . 109
6.1.2 Methodology . 110
6.1.3 CASE Tool MOSKitt . 111
6.1.4 Integration of MALTASE Framework and MOSKitt 111

6.2 Evaluation of MALTASE Monitoring 113
6.2.1 Design . 113
6.2.2 Results . 115
6.2.3 Limitations and Threats to Validity 117

6.3 Evaluation of MALTASE-based Failure Reproduction 117
6.3.1 Design . 117
6.3.2 Results . 121
6.3.3 Limitations and Threats to Validity 123

6.4 Evaluation of MALTASE-based Skill Detection 123
6.4.1 Design . 124
6.4.2 Results . 130
6.4.3 Limitations and Threats to Validity 133

6.5 Discussion . 134
6.6 Chapter Summary . 137

10

Contents

7 Conclusion 139
7.1 Contributions . 139
7.2 General Discussion and Future Work 141

Bibliography 144

List of Figures 163

List of Tables 165

A Evaluation Material 167
A.1 Material for Evaluation of MALTASE-based Failure Reproduction . . 167
A.2 Material for Evaluation of MALTASE-based Skill Detection 171

11

Chapter 1

Introduction

”Pay attention to what users do, not what they say. Self-reported claims
are unreliable, as are user speculations about future behavior.”
Nielsen [128]

Interactive software applications are developed by software developers for end users.
Hence, interactive applications usually have at least two stakeholders, one user and
one developer. The notion of software user has changed a lot in the last decades:
while batch processing systems had no users or only a few expert users, smartphone
apps are used today by almost everybody. Software users have become a heteroge-
nous group of people with differing usage purposes, differing skills, and differing
usage contexts. For example, Microsoft Excel is used for spreadsheet calculations,
role-playing games1, or drawing Japanese art2.

Users have not only become more heterogenous but also more powerful stakehold-
ers. Users can harm the reputation of a software application using modern commu-
nication channels such as social media, forums, or app store feedback. For example,
web pages like ihatelotusnotes.com3 or dreckstool.de4 collect negative user feedback.
Also, users can unite and campaign against a software vendor using modern com-
munication channels. For example, editors and film makers launched a successful
campaign for reinstating Final Cut Studio 3 and continue support of the older ver-
sion after Apple released a new version with paradigm-shifting changes5. Finally,
users as consumers have a high market power in competitive software markets. For
example, modern app stores offer users a variety of apps. In case of several similar
apps, users buy the app which is most appealing to them.

This change of software users is reflected in different perceptions of users and user
involvement among software developers and researchers. Two contrasting quotes
highlight this aspect: Dijkstra states that “the notion of ’user’ cannot be precisely
defined, and therefore has no place in computer science or software engineering” [39],
indicating that users should be ignored by developers. In contrast, Begel and Zim-
mermann [15] found in an empirical study that the question “How do users typically
use my application?” is the most important question of developers, indicating that

1http://gizmodo.com/5992533/awesome-accountant-made-an-rpg-inside-microsoft-excel
(Accessed Feb 2015)

2http://kotaku.com/old-japanese-man-creates-amazing-art-using-excel-wait-499616608
(Accessed Feb 2015)

3http://www.ihatelotusnotes.com/ (Accessed Feb 2015)
4http://www.dreckstool.de (Accessed Feb 2015)
5http://www.petitiononline.com/finalcut/petition.html (Accessed Nov 2014)

13

Chapter 1 Introduction

information about users and software usage is an important piece of information
for developers. The increased power of users calls for emphasizing the user per-
spective [19] and user involvement in software engineering. User involvement aims
at eliciting user needs and continuous exchange of information between developers
and users and in order to develop successful software applications. Studies show a
positive correlation between user involvement and system success [4, 70].

Several techniques to involve users have been developed in the requirements
engineering field: interviews [140], workshops [140], focus groups [140], observa-
tions [140], questionnaires [140], and user studies with prototypes [23] are used to
elicit information about users and user needs and to test initial application de-
signs; personas [59], scenarios [140], use cases [140], and user stories [32] are used
to document the information gained. Furthermore, users or user representatives
are actively involved in software development methodologies such as user-centered
design [59]. Also, users of deployed applications can provide feedback to developers
via e-mails [136], bug reports [203], app store feedback [138], or integrated feedback
mechanisms [136]. The big number and heterogeneity of software users poses chal-
lenges to existing user involvement methods: Interviews, workshops, focus groups,
or observations are difficult to scale to a large number of users because of the re-
quired effort. Users in interviews speculate about future needs and future behavior
and those speculations might be wrong [128]. The representation of users by a sin-
gle product owner or few personas might not be representative when the user group
is heterogenous. The vast number of potential usage contexts makes it difficult
to anticipate and test all usage contexts in which a software application might be
used [131]. In addition, many user involvement methods are usually employed dur-
ing the design or development phase of an application but not during the evolution
and operation phase. User feedback mechanisms often require users to proactively
share feedback and describe their feedback manually.

An approach which complements existing user involvement methods and addresses
these challenges has to fulfill the following requirements: It should consider real users
and their behavior to avoid speculations about future behavior and avoid loosing
information by representing a heterogenous user group by few representatives. It
should be automated to scale to a large number of users and user groups. It should be
employed during the evolution and operation phase to supply developers with usage
information. And finally it should capture user behavior and context automatically
to relieve users from manually describing such information.

This dissertation investigates an approach which complements existing user in-
volvement methods and fulfills these requirements. It follows Nielsen’s advice to
“pay attention to what users do, not what they say” [128] by monitoring interac-
tions of users with an application. Then it analyzes monitored interactions to extract
usage knowledge which is helpful for developers during software evolution. The next
section pinpoints the problem addressed in this dissertation.

1.1 Problem Statement

Recent empirical studies identified a strong interest of developers in information
about software usage: Begel and Zimmermann [15] found that information about

14

1.2 Research Approach

“how users typically use an application” and “the parts of a software product most
used and/ or loved by customers” are the two most important questions of software
developers for data analysts. Buse and Zimmermann [26] describe a decision scenario
“understanding customers” which “leverages information about customer behavior
when making decisions”. In an observation study, we found that developers are
interested in “they way end users use an application” but rarely have access to this
information [154].

Several communication gaps between developers and users hinder the acquisition
of usage information by developers. Developers are usually not present when users
employ an application. Therefore they have no first-hand information about soft-
ware usage and have to acquire usage information indirectly. Maalej et al. [115]
identify communication gaps between developers and users as reason for missing
information of developers about software usage. Abelein and Paech [3] found the
following reasons for communication gaps: lack of motivation of developers or users,
lack of common language between business and IT, and lack of appreciation between
business and IT. Schinzel [159] found that computer science students lose their user-
centric perspective during their education and adopt a developer-centric perspective,
creating a cultural difference between developers and users. Mann [119] identified
nine gaps between developers and users, among them a communication gap, a cul-
tural gap, and a relationship gap. Besides these gaps in the direct communication
between developers and users, the current practices of indirect communication, i.e.
collection of user feedback, are inefficient [136]. These communication gaps and feed-
back collection practices lead to the situation that software developers are interested
in information about software usage but rarely have such information.

Missing usage information has negative effects for developers as they are unaware
of failures and problems users are facing, make potentially wrong assumptions about
software usage, and do not reflect the users’ perspective in their decisions. For ex-
ample, failure reproduction and bug fixing are so hard and time-consuming because
of missing usage information [117].

Summarizing, the problem statement of this dissertation is the following:

Problem Statement
Software developers are interested in information about end user software
usage but rarely have such information because of communication gaps
between developers and users.

1.2 Research Approach

This dissertation addresses the problem of missing usage information by monitoring
and analyzing user interactions. Our main hypothesis is the following:

Main Hypothesis
High-level user interactions provide semantic information which helps
software developers to understand how their software is used and to
evolve their software according to user needs.
Monitoring high-level user interactions represents a way to automatically
inform software developers about software usage.

15

Chapter 1 Introduction

“High-level user interactions” denote user interactions on a high level of abstraction
like user commands or manipulations of work artifacts. They contrast with low-level
user interactions like keyboard or mouse actions. We hypothesize that high-level user
interactions carry semantic information and allow developers to understand user
behavior. Moreover, we hypothesize that an understanding of software usage helps
developers in their evolution tasks. For example, information about reproduction
steps enables developers to reproduce and fix bugs.

To study our main hypothesis, an infrastructure for capturing, storing, mining,
and presenting high-level user interactions is necessary. For this purpose, we devel-
oped the Maltase framework. Maltase is a shorthand for “Monitoring, Analysis
and ExpLoiTation of User InterActions in Software Evolution”. The purpose of
the Maltase framework is to monitor high-level user interactions, automatically
analyze monitored interactions, and provide developers with usage information and
support them in software evolution tasks.
Maltase fulfills the requirements described above: it considers the real user be-
havior and therefore addresses user speculations about future usage of the target
application, it is automated and therefore scalable to a large number of users, it can
be employed during software evolution, and it automatically captures user behavior
and therefore relieves users from manually describing it. Furthermore, Maltase fol-
lows Nielsens’ advice to ”pay attention to what users do, not what they say. ” [128],
considers user input as a first-order concern as advocated by Maalej et al. [115], and
builds on the general framework for user involvement in software evolution suggested
by Maalej and Pagano [116].

To study our main hypothesis, we investigate the following research questions in
this dissertation:

Research Question RQ1:
What are information needs regarding software usage of developers dur-
ing software evolution?

To investigate RQ 1, we conducted an exploratory case study and analyzed ob-
servation protocols and interview minutes of 21 developers during program compre-
hension tasks.

Research Question RQ2:
How can high-level user interactions be monitored with acceptable per-
formance overhead?

To investigate RQ 2, we implemented the Maltase framework and investigated
its performance overhead by a simulation and a user study. We simulated user inter-
actions with an instrumented and an uninstrumented target application to measure
the performance overhead introduced. Furthermore, we had five users work with an
instrumented version of a target application and report their experiences.

Research Question RQ3:
What is the impact of Maltase in software evolution?
More specifically, can Maltase be employed to acquire failure reproduc-
tion steps, user skill levels, and deviations from expected user behavior?

16

1.3 Scope

To investigate RQ 3, we describe three applications of the Maltase framework
in software evolution. These framework applications refine our main hypothesis and
target one specific type of usage knowledge. First, Maltase-based failure reproduc-
tion presents monitored user interactions preceding software failures to developers
during bug fixing. We hypothesize that developers can reproduce failures and fix
bugs based on monitored user interactions. Second, Maltase-based skill detection
detects user skill levels based on monitored user interactions. We hypothesize that
that information about user skill helps developers to evolve the application and help
system according to user needs and enables an intelligent application to adapt to
the current user. Third, Maltase-based use case testing compares monitored user
interactions with use case steps. We hypothesize that differences between both help
developers to identify software improvements and use case updates.
We evaluated Maltase-based failure reproduction and Maltase-based skill de-
tection. More specifically, we evaluated Maltase-based failure reproduction in a
controlled experiment by comparing failure reproduction with monitored user inter-
actions to failure reproduction with textual bug reports. Moreover, we evaluated
Maltase-based skill detection in a case study by learning skill classifiers from mon-
itored user interactions of users with different skill levels.

1.3 Scope

Monitoring, analyzing, and exploiting user interactions in software evolution is a
broad topic which can be investigated from many different perspectives. Hence, this
section narrows the focus of this dissertation.

This dissertation focuses on a single, interactive software application. We imple-
mented and evaluated Maltase for desktop applications which exhibit a WIMP
GUI. We hypothesize that Maltase is applicable to other kinds of interactive soft-
ware, but investigation of this hypothesis is out of scope of this dissertation.

Software engineering consists of different activities and phases. This dissertation
focuses on the software evolution phase after the initial deployment of an applica-
tion. We hypothesize that Maltase can be employed during software testing and
prototype-based software development, too, but investigation of this hypothesis is
out of scope of this dissertation.

This dissertation focuses on a software development context where developers
and users are different people, excluding contexts such as end user development and
developers building software for their own use. Only in this context the communica-
tion gap between developers and users exists and developers have missing knowledge
about software usage.

As Maltase monitors user interactions, privacy concerns arise because of the
sensitivity of usage data. We argue that it suffices for Maltase to monitor user
interactions anonymously (“user did X”) without personal information like user iden-
tity (“user Tobias did X”). Further treatment of privacy concerns is out of scope of
this dissertation. But future work should study privacy concerns regarding user
interaction monitoring.

Researchers and practitioners test the usability of applications or new interaction
mechanisms by monitoring and analyzing user interactions. In contrast, this dis-

17

Chapter 1 Introduction

sertation focuses on the exploitation of user interactions in software evolution to
address the problem of missing usage information. We hypothesize that user in-
teractions monitored by Maltase can be exploited for usability analysis purposes,
too, but investigation of this hypothesis is out of scope of this dissertation.

1.4 Structure

Chapter 2 defines terminology and presents relevant background information from
the fields of human-computer interaction and software engineering.

Chapter 3 presents an exploratory case study about information needs of develop-
ers during software evolution with a focus on usage information. Furthermore, the
case study investigates when and why developers put themselves in the role of users
by interacting with the user interface [154]. Chapter 3 describes the case study de-
sign, summarizes results regarding usage information needs and developer behavior,
relates findings to related work, and discusses conclusions and future work.

Chapter 4 describes the Maltase framework in detail. It presents use cases
and requirements and describes a model of user interactions, users, applications,
and usage contexts. Furthermore, it presents the architecture of the Maltase
framework consisting of four layers: Monitoring & Information Extraction layer,
Data Storage & Transfer layer, Processing & Analysis layer, and Presentation &
Integration layer. Then, it discusses the usage of the Maltase framework in three
usage scenarios which are software evolution, software testing, and prototype-based
software development. Finally, it describes related approaches and tools to monitor,
analyze, and exploit user interactions.

Chapter 5 illustrates the applicability of Maltase by describing three framework
applications, i.e. ways to exploit monitored, high-level user interactions in software
evolution: the extraction of reproduction steps for software failures (Maltase-based
failure reproduction), the classification of user skill levels (Maltase-based user skill
classification), and the comparison of monitored user interactions to use case steps
(Maltase-based use case testing). Chapter 5 motivates each framework application,
describes its implementation, and discusses related work.

Chapter 6 presents an empirical evaluation of the Maltase framework. It de-
scribes a simulation and a user study to investigate the performance overhead and
user acceptance of Maltase monitoring. To investigate the impact of Maltase,
it describes the evaluation of two framework applications: a controlled experiment
evaluating Maltase-based failure reproduction as well as an evaluation case study
evaluating Maltase-based skill detection. Finally, it discusses important findings
and implications.

Chapter 7 concludes the dissertation. It summarizes the contributions of this
dissertation, discusses general issues, and sketches future work.

18

Chapter 2

Foundations
This chapter presents relevant background knowledge for this dissertation. It pro-
vides definitions for important terms (Section 2.1) and introduces relevant con-
cepts from the fields of human-computer interaction and software engineering (Sec-
tion 2.2).

2.1 Terminology

The following terms are used in this dissertation:

Bug “The mechanical or algorithmic cause of an error.” [23]

Case Study “An empirical method aimed at investigating contemporary phenom-
ena in their context.” [157]. Easterbrook et al. [42] identify two types of case
studies: “Exploratory case studies are used as initial investigations of some
phenomena to derive new hypotheses and build theories” and “confirmatory
case studies are used to test existing theories”.

Controlled Experiment “An investigation of a testable hypothesis where one or
more independent variables are manipulated to measure their effect on one or
more dependent variables.” [42]

Developer “Developers create a software application.” [146] (Slightly adapted).
Developers are one type of stakeholder for a software application.

Dynamic Analysis “The analysis of data gathered from a running software appli-
cation.” [33] (Slightly adapted).

End User see User

Error “State of the software application such that further processing will lead to a
failure.“ [23] (Slightly adapted)

Failure “Deviation of the observed behavior from the specified behavior.” [23]

Interactive Application A software application which exhibits a user interface
and is driven by user interactions. There are different types of interactive
applications such as desktop GUI applications, web applications, and smart-
phone apps. This type of software is also called “event-driven software” [74].
This dissertation focuses on desktop GUI applications.

19

Chapter 2 Foundations

Program Comprehension “The activity of understanding how a software applica-
tion or a part of it works.” [117] (Slightly adapted)

Reproduction Steps “The steps necessary to create the failure.” [201] (Slightly
adapted). While reproduction steps can target different sources of non de-
terminism (Zeller [201]), this dissertation focuses on user interactions as
reproduction steps, i.e. user interactions triggering a failure.

Skill “The ability to do something well; expertise”1. Nielsen [127] differentiates
between three types of skill: computing skill (skill regarding computing in
general), (software) application skill (skill regarding a particular software ap-
plication), and domain skill (skill regarding a particular knowledge domain).

Stakeholder “Stakeholders affect or are affected by the software application.” [146]
(Slightly adapted)

Software Analytics “Software analytics is analytics on software data for managers
and software engineers with the aim of empowering software development in-
dividuals and teams to gain and share insight from their data to make better
decisions.” [121]

Software Developer see Developer

Software Evolution “The continual change of a software application.” [50] (Slightly
adapted) or “The application of software maintenance activities and processes
that generate a new operational software version with a changed customer-
experienced functionality or properties from a prior operational version” [28].

Software Maintenance “The modification of a software product after delivery to
correct faults, to improve performance or other attributes, or to adapt the
product to a modified environment.” [1]

Software Usage Analytics One type of software analytics which analyses usage
information of a software application. Similar to dynamic analysis (see
discussion below). This dissertation investigates software usage analytics.

Software User see User

Usage Information Runtime data gathered from the interaction of real, human
users with a software application.

Use Case “A general sequence of interactions between one or more actors and the
software application.” [23] (Slightly adapted)

User “The people who (will) use the delivered software application.” [23] (Slightly
adapted) Users are one type of stakeholder for a software application.

User Interaction “Communication between user and software application” [40] where
a user provides user input to a software application via the user interface.

1http://www.oxforddictionaries.com/ (Accessed Feb 2015)

20

2.2 Background

User Interface “A way for humans to interact with a software application”2

Graphical User Interface (GUI) “A human-computer interface that uses windows,
icons and menus and which can be manipulated by a mouse (and often to a
limited extent by a keyboard as well).”3 (Slightly adapted) We use the term
GUI and WIMP (“windows, icons, menus and pointers”) interchangeably. GUIs
are one type of user interface.

User Involvement “A systematic exchange of information between (prospective)
users and developers with the common goal to maximize application usefulness
in a specific context.” [135] (Slightly adapted)

2.2 Background

This section discusses relevant concepts and theories from human-computer inter-
action and software engineering.

2.2.1 Differences and Gaps Between Developers and Users

Differences and gaps between software developers and software users have been
identified and described by several researchers.

Different Conceptual Models of Developers and Users

Figure 2.1 depicts conceptual models of users and developers as described by Nor-
man [129]. Each developer forms a conceptual model of an existing or future software
application, i.e. the developer’s conception of the look, feel, and operation of the
application. Afterwards, the developer implements the application according to his
or her conceptual model. Because users usually cannot communicate to developers
while using an application, they have to build an own conceptual model of the appli-
cation. To accomplish this, the user interacts with the application and analyzes the
application image, i.e. user manuals, tutorials, online information, and other forms
of documentation. As developers and users usually cannot communicate directly,
the whole communication is burdened on the application image. According to Nor-
man, a developer implicitly assumes that the user’s conceptual model is identical to
the developer’s conceptual model.
This situation illustrates the importance of developer-user communication and user
feedback: It allows the developer to test whether the user’s conceptual model is
identical to the developers’, to test whether developer assumptions are correct, and
to ensure that the application is understandable and usable. The user’s conceptual
model may change over time because of changes in usage context or user needs.
While hardware products cannot react to these changes, software can and has to
adapt to them [23]. Hence, continuous developer-user communication and contin-
uous user feedback are important during software evolution to detect changes in
usage context and user needs.

2Linux Information Project, http://www.linfo.org/gui.html (Accessed Feb 2015)
3Linux Information Project, http://www.linfo.org/gui.html (Accessed Feb 2015)

21

Chapter 2 Foundations

!"#$%&'()*"&+,-./%0)1"2,0()

3,4,0"-,#'()
*"&+,-./%0)1"2,0)

5(,#'())
*"&+,-./%0)1"2,0)

6$%7,)"8))
9":;%#,)<--0=+%>"&)

Figure 2.1: Conceptual Models of Developers and Users (Adapted from [129])

Different Domains of Developers and Users

Developers and users are usually knowledgeable in different domains: While users are
familiar with the application domain of a software application, developers are famil-
iar with the solution domain. The application domain “represents all aspects of the
user’s problem, including the physical environment, the users, and their work pro-
cesses” [23], while the solution domain is “the space of all possible applications” [23]
and addresses design and implementation details. Usually, users do not have knowl-
edge about the solution domain and developers have limited knowledge about the
application domain. Baster et al. ([11] as cited by [188]) call this mismatch the
“business-technology gap”: “technology specialists lack domain expertise while busi-
ness users lack technology skills”. As described by Tuffley [187], the fact that de-
velopers and users are knowledgeable in different domains leads to “a fundamental
difference in mindset”: While developers “naturally have a tendency towards a tech-
nical perspective” and their “view of the world derives from a technological perspec-
tive”, users “typically will have a non-technical view of the world” [187]. Abelein
and Paech [3] describe the “lack of common language between Business and IT” as
a factor for communication gaps between users and developers. Tesch et al. [183]
found that shared knowledge between developers and users - knowledge of users
about development and knowledge of developers about the application domain - has
a significant impact on the success of information system development projects.
Because of knowledge in different domains, users cannot give feedback or discuss so-
lution domain phenomena because they are usually not knowledgeable about them.
Furthermore, developers should be knowledgeable in the application domain to un-
derstand user needs and usage context. Therefore, developers have to communicate
wit users to elicit application domain knowledge.

Cultural Differences Between Developers and Users

Developers and users are not only knowledgeable in different domains, the culture
of both groups is also different. Grudin [66] dicusses that physical distance as well
as barriers of class, culture, or language separates both groups. Grindley ([65] as
cited by [188]) explains that “the culture gap is manifested by differing approaches
to motivation, goals, language, and problem-solving”. Similarly, Tuffley [187] de-
scribes that “software developers have their own culture with their own priorities,
preoccupations, and ways of doing things”. Taylor-Cummings and Feeny ([181] as
cited by [188]) define the cultural gap as “diverse interests, conflict, and power”. Fur-

22

2.2 Background

thermore, they recognize and discuss “organizational culture”, i.e. the sub-culture
within a broader organizational culture and its influence on the cultural gap. Mann
([119] as cited by [188]) observed that “IT personnel have different personality traits
than the general population”. Schinzel [159] found that computer science students
gradually adopt a developer perspective: While they look at software from a user
perspective at the beginning of their studies, their perspective changes to a devel-
oper perspective during the course of their studies. Abelein and Paech [3] found
that “lack of appreciation between Business and IT” is a factor for communication
gaps between users and developers.
The cultural gap between developers and users has serious consequences: In two
surveys, half of the participating IS directors mentioned the cultural gap as their
biggest challenge ([65, 181] as cited by [188]). Taylor-Cummings and Feeny ([181]
as cited by [188]) blame the cultural gap as one reason for failing IT projects.

Gaps Because of Organizational Structure or Development Process

The organization of a software development entity and the development process can
create additional gaps between developers and users. Grudin [66] identifies three
different categories of software development as contexts for user involvement: con-
tract development, product development, and in-house/ customized development.
Because users are identified late during product development, developers cannot
communicate with them in the early development phase. Furthermore, Grudin [66]
discusses that the use of specification documents imposes a wall between developers
and users and that software companies might shield developers from users. Bjarna-
son et al. [18] found that development work is distributed among many people and
roles which vary over the lifetime of a development project. Hence, it is hard to
achieve common knowledge among developers in different roles, especially at han-
dover points when work is passed to another role. Abelein and Paech [2] describe a
communication gap in large IT projects: Because of high project and software com-
plexity as well as traditional project management and software engineering methods,
development cycles are very long. Those long development cycles induce long wait-
ing periods for business users, i.e. time periods where they do not get feedback
about the status of the IT project.

Classification of Developer-User Gaps

According to Mann [119], gaps between developers and users can be categorized in
nine ways:

• Perspective Gap: “When the viewpoint of one group is incomplete. For exam-
ple, IT sometimes forgets that systems must provide value to the business or
users sometimes forget that IT is only a tool and not a cure-all.” [119]

• Ownership Gap:
“Often IT feels ownership over the infrastructure and users feel ownership over
business processes. This can lead to territorial conflicts.” [119]

23

Chapter 2 Foundations

• Cultural Gap: “When the different groups have different traits, values, work-
ing behaviors, and/ or priorities because each group attracts certain kinds of
individuals.” [119]

• Foresight Gap: “When one group is better able to see the future but cannot
convince the other group. For example, IT may foresee that a user solution will
not work from a technical standpoint or users may determine that a system
will not be accepted.” [119]

• Communication Gap: “When one group fails to understand what the other
means. For example, users might feel that IT speaks jargon or IT fails to
translate user needs into useful systems because they don’t fully understand
business processes.” [119]

• Expectation Gap: “When end-users have unrealistic expectations of what IT
can do or IT promises more that it can deliver.” [119]

• Credibility Gap: “When track record of IT side is poor, e.g. because of failed
previous development projects.” [119]

• Appreciation Gap: “When one group feels the other group does not recognize
their value. For example, IT may feel that their hard work and contributions
go unnoticed.” [119]

• Relationship Gap: “When the two groups do not interact frequently and effec-
tively enough. Each group’s pre-judgements of the other group never become
resolved and the relationship becomes ’us’ versus ’them’.” [119]

These findings about differences and gaps between developers and users illustrate
a dilemma: On the one hand, user involvement and developer-user communication
is necessary to bridge different conceptual models, to learn about the application do-
main, and to ensure that a software application meets user needs. It has been shown
that good developer-user communication is a critical success factor for software de-
velopment projects [82] and that user involvement during software development has
a positive effect on system success [4]. On the other hand, gaps between developers
and users complicate this communication process, often leading to poor communi-
cation and therefore failed IT projects or bad software quality [187].
During software evolution, the developer-user gap is worsened by the fact that devel-
opers are not present during software usage [129] and therefore have only limited and
indirect information about it. But software applications must evolve with changing
user needs to remain useful [23] which requires information about software usage
and changing user needs.

2.2.2 User Involvement in Software Evolution

User involvement, the “systematic exchange of information between (prospective)
users and developers” [135], has been studied during software development [136]
with a focus on early or late development phases [2]. Techniques have been designed

24

2.2 Background

to elicit user needs and requirements and to test whether software applications
fulfills them. Furthermore, users have been actively involved in software development
processes by approaches such as participatory design or user-centered design. It has
been shown that user involvement has a positive effect on software success, but the
relationship between both is not always positive and depends on many factors [4, 10].
But little is known how users can be involved during software evolution and how
developers can leverage post-deployment user feedback [136].

Empirical Studies About User Involvement in Software Evolution

Pagano and Bruegge [136] report on a case study about user involvement in small
and middle-sized companies. They found that “users and developers are disconnected
due to communication gaps in user feedback channels”, “users are not systematically
involved during software evolution”, and that “apart from error reports there is no
commonly agreed practice for user feedback in software evolution”. Furthermore,
they found that “developers need real-world data from user environments to com-
plement tests and to align development efforts with feature importance” and that
“user feedback [...] serves as real-world usage data”. While highlighting the impor-
tance of real-world usage data for developers, the use of feedback submitted by users
reveals a limitation: Because of the problems with user feedback such as poor qual-
ity and missing context, the information reaching developers remains incomplete
and might be influenced by the reporting user. This problem can be addressed by
collecting real-world usage data automatically which is the idea of Maltase.
Heiskari and Lehtola [73] report on a case study about user involvement in a soft-
ware company. They report that ”customers are often seen as the most important
stakeholders as they are paying for the system” and that “the biggest challenges are
that there is too little user information available, the information is not accessible
nor utilized efficiently, and there is not enough interaction with the end users in
general”. Additionally, they observed that different departments collect different
types of user feedback which requires knowledge exchange between departments:
“Support provides user feedback from already shipped products and customer in-
volvement provides feedback from products in their beta phase”.
Ko et al. [98] report on a case study of a development team handling post-deployment
user feedback which requires changes of the application. They identified two dimen-
sions of change requests: First, the scope of developer assumptions behind code,
i.e. “how much code would have to be changed to modify an assumption”. Chang-
ing a local assumption requires modification of a local part of the code base while
changing a global assumption requires modification of a significant part. Second,
the expected user support of a change request, i.e. “the extent to which a user ex-
pectation (change request) was believed to be shared”. A particular change request
can be supported by the majority of all users or only by a minority of users. When
a particular change request is only backed by a minority, it might be that another
minority group has a different change request and that the change requests of both
groups conflict. Ko et al. [98] found that all types of changes besides changes regard-
ing a local assumption and backed by the majority of users are difficult to address
for a development team.

25

Chapter 2 Foundations

User Feedback in Software Evolution

Collecting and analyzing user feedback has been studied by several researchers. Sev-
eral researchers, e.g. [7, 115, 116, 134, 135, 200], propose to involve users and collect
user feedback by integrating a user feedback mechanism into a software application,
i.e. a mechanism which allows users to give feedback within an application. The
integration into the software application makes it easier for users to provide feedback
and allows to automatically capture the context of user feedback [115].

Similarly, user feedback can be collected by feedback collection systems which
are independent and not integrated into a particular application. We distinguish
between the bug and issue reporting infrastructure of an application on the one side
and dedicated feedback systems on the other side. If the bug and issue reporting
infrastructure of an application is accessible for users, they can provide feedback by
creating tickets. In this situation, the issue and bug reporting infrastructure usually
serves the dual purpose of collecting user feedback and organizing the work of de-
velopers or support personnel. Zimmermann et al. [203] studied such bug reporting
practices in open source software development.
Dedicated, application-independent feedback collection systems using mobile devices
have been proposed [142, 161, 162, 163, 198]. Users can give feedback by entering
text or taking pictures using a feedback app. Then, this user feedback is sent to
developers. Such an approach is not limited to collect feedback about an existing
version of the application and users can also report information about the usage
context or requirements in general. Hence, such approaches enable continuous re-
quirements engineering driven by users [162].

Aforementioned techniques collect feedback directly from individual users. Be-
cause of the widespread use of app stores, social media, and online communities,
users express their opinion about and experiences with an application in app store
reviews, blog posts, tweets, or forum posts. Several researchers proposed mining
approaches to analyze such online resources and extract user feedback and require-
ments from them [57, 68, 86, 87, 130, 138].

As Maltase captures user interactions, it is related to the feedback collection
approaches which integrate into a software application and collect interactions as
context information for user feedback [115, 116, 135]. Maltase is complementary to
feedback collection mechanisms as it collects user interactions but not user feedback.

2.2.3 User Interfaces of Software Applications

User interfaces are the face of a software application. Users interact with the user
interface to provide input, to analyze the application’s reaction on their input, and
to control the application. The user interface is often the only part of a software
application which users see. Hence, users form their conceptual model as well as
their impression of a software application based on its user interface. Many different
types of user interfaces exist. Rogers et al. [155] distinguish between 20 different
types of user interfaces: command-based, WIMP/ GUI, multimedia, virtual reality,
information visualization, web, consumer electronics and appliances, mobile, speech,
pen, touch, air-based gesture, haptic, multimodal, shareable, tangible, augmented

26

2.2 Background

and mixed reality, wearable, robotic, and brain-computer. These categories describe
properties of a particular user interface and are not mutually exclusive. For example,
smart phones have a user interface which can be categorized as mobile and gesture.

The WIMP GUI

This dissertation focuses on target application with a WIMP (Windows, Icons,
Menus, Pointing device) GUI (graphical user interface). The WIMP GUI was in-
troduced with the Xerox Star computer ([171] as cited by [155]) and evolved to
the standard user interface for desktop applications. Rogers et al. [155] define the
following elements of a WIMP GUI: “Windows (that could be scrolled, stretched,
overlapped, opened, closed, and moved around the screen using the mouse), Icons
(to represent applications, objects, commands, and tools that were opened or ac-
tivated when clicking on), Menus (offering lists of options that could be scrolled
through and selected in the way a menu is used in a restaurant), Pointing device (a
mouse controlling the cursor as a point of entry to the windows, menus, and icons
on the screen), Docks (a row or column of available applications and icons of other
objects such as open files), and Rollovers (where text labels appear next to an icon
or part of the screen as the mouse is rolled over it).”

Figure 2.2 shows a screenshot of the CASE tool MOSKitt as an example of a
WIMP GUI. MOSKitt was used as target application in the evaluation of this dis-
sertation. MOSKitt exhibits a WIMP GUI which consists of a main window with
several sub-windows, a menu bar, a tool bar, a dock representing open files (below
the tool bar), context menus (not visible), and rollovers (not visible). Additionally,
MOSKitt features a palette to choose diagram elements (right) and a canvas to place
and manipulate diagram elements via drag and drop (center). MOSkitt is mainly
operated using a mouse. For example, users can select diagram elements from the
palette, add selected diagram elements to the diagram canvas, or manipulate prop-
erties of diagram elements.

2.2.4 Nature of User Interactions

This section discusses important aspects of user interactions which are monitored
and analyzed by the Maltase framework. Figure 2.3 illustrates a spectrum of
events according to their duration as described by Hilbert and Redmiles [79]. The
horizontal axis shows the event duration in seconds on a logarithmic scale. The
duration of an UI event is between 10 milliseconds and 1 sec. Event types with
a short duration such as UI events usually occur with a higher frequency and are
referred to as “high frequency band events”. Likewise, event types with a long
duration such as project events usually occur on a lower frequency and are referred
to as “low frequency band events”. Moreover, events of a particular frequency band
are often composed of several events from a higher frequency band. This spectrum
situates UI events in an overall spectrum of events.

User interactions can be considered at different levels of abstraction. Figure 2.4
provides an overview of different abstraction levels as described by Hilbert and
Redmiles [79]. Physical interactions of users with input devices form the lowest
abstraction level. The next abstraction level are the interrupts produced by input

27

Chapter 2 Foundations

Figure 2.2: MOSKitt User Interface

!"#$%&'()*+),-.)#/#0%1)

234) 24) 4) 43) 433) 45) 4335)435) 46) 436) 4336)

4)1#$) 4)(70) 4)8*'&) 4)9:;) 4)(*0%8) 4);#:&)

</#0%)
9'&:=*0)
70)1#$*091)
>?*@)1$:?#A)

B*C)D&#E'#0$;)F:09)</#0%1),7@8)D&#E'#0$;)F:09)</#0%1)

"&*G#$%)#/#0%1)

H.)#/#0%1)

(##=0@)#/#0%1)
%'&01)

/*$:?7I:=*01)

@#1%'J)(*=*01)
#;#)(*/#(#0%1)

Figure 2.3: Spectrum of HCI Events (Source: [79])

28

2.2 Background!"#$%&'()*+,-.-/#+)0+1#-%+2*$-%&'()*#+
!"#$%&'(")$*+,-*$#.*/&
3-4546+7/&'8*5+&*+)%9-%:+

0"+#12%&3#45,-*$#.*/+
3-4546+7%).898*5+&99%-##+8*0)%;&()*:+

6)4.(#7.&82.*(#79"2&:*;*$+
3-4546+7%).898*5+.&/<-#+8*+8*7<$+=-/9#:+

<8&=;*2.4+
3-4546+7%-##8*5+&+"<>)*6+#?8@#+8*+8*7<$+0)'<#6+A-B+-.-*$#:+

82>?.&0*;17*&=;*2.4+
3-4546+?&%9C&%-D5-*-%&$-9+A-B+)%+;)<#-+8*$-%%<7$#:+

'@A417#$&=;*2.4+
3-4546+=*5-%#+7%-##8*5+A-B#+)%+?&*9+;).8*5+;)<#-:+

Figure 2.4: Abstraction Levels of User Interactions (Source: [79])

devices as reaction to physical events. On the next abstraction level, UI events, input
device events are associated with windows or other elements of the GUI. Examples
of UI events are button presses, menu selections, focus events in input fields, and
window activations. The next level are abstract interaction events which are not
generated by the user interface and which usually consist of several UI events. For
example, entering text in a textfield consists of several key presses on the keyboard.
Finally, domain/ task-related and goal/ problem-related events indicate steps in a
user task or progress towards a user goal.

2.2.5 Processing of User Interactions

This section describes how user interactions are processed by computer systems. It
sketches a processing pipeline which consists of all hardware and software compo-
nents involved in processing a single user interaction such as a mouse click. Af-
terwards, it describes how user interactions are handled in an event-driven GUI
application using Eclipse SWT as example. This section provides background in-
formation for the Maltase framework which monitors user interactions and whose
sensors target SWT applications.

Processing Pipeline of User Interactions

We follow Tanenbaum [176] when discussing hardware and operating system com-
ponents involved in processing user interactions. This description is rather abstract
and implementation details might vary from system. Figure 2.5 shows a logic view of
the hardware and software components involved in processing a single user interac-
tion such as a mouse click. Each hardware device consists of a mechanical part and
an electronic part. The mechanical part is the device itself, e.g. a computer mouse
with buttons. The electronic part is the device controller. It consists of registers for
command and status information and memory blocks for data transfer to and from
the system. On the system side, there are four layers of software components in-

29

Chapter 2 Foundations

!"#$%"&$'(")"'("'*+),-*++
./++.)"-,0'1+232*"4+

5.62"+
(-$#"-+

7"38.,-(+
(-$#"-+

5$%+(-$#"-+

9'*"--6)*+
:,'(;"-+

9'*"--6)*+
:,'(;"-+

9'*"--6)*+
:,'(;"-+

5.62"+
<.'*-.;;"-+

7"38.,-(+
<.'*-.;;"-+

5$%+
<.'*-.;;"-+

=2"-+)-.1-,4+
User

space

Kernel
space

Hardware

Figure 2.5: Processing Pipeline of User Interactions (Logic view)
Adapted from Tanenbaum [176]
Device controllers and device drivers communicate via system buses

volved in processing user interactions using interrupt-driven I/O: interrupt handlers,
device drivers, the device-independent part of the operating system, and the user
program. Interrupt handlers manage the interrupts which control the communica-
tion between device controller and device driver. Device drivers are device-specific
code controlling a particular input device. They initialize the device at startup and
control read and write operations from and to the device. The device-independent
part of the operating system implements device-independent functionality such as
error handling or buffering. Finally, the device-independent part determines the tar-
get application of an interaction, generates GUI events representing the interaction,
and places those events in the event queue of the target application.

For example, a hardware sensor detects when a user clicks on the left button of his
or her mouse. The mouse device controller triggers issues an interrupt to inform the
system about the user interaction and sends a message with detail information. In
this example, the message consists of the three parameters �x, �x, and buttons. �x
and �y denote the relative movement of the mouse since the last report and buttons
the status of the mouse buttons. The responsible interrupt handler is determined
via the interrupt vector table and executed. It handles the interrupt by pausing the
active process, saving status information of the active process, reading the message
from the mouse controller, and unblocking the mouse device driver. The mouse
device driver processes the message from the device controller and passes it to the
device-independent part of the operating system. This component determines the
target application of the mouse click, creates a GUI event representing the click,
and places this GUI event in the event queue of the target application. Other types
of user input devices use similar mechanisms depending on supported interactions.

30

2.2 Background

Processing of User Interactions in SWT Applications

GUI applications are driven by interactions of users with the user interface. Each
user interaction is represented as an event which is processed by the application.
Hence, GUI software is also called event-driven software. In the following, we discuss
how GUI applications handle events. We use the Standard Widget Toolkit (SWT) as
example because applications using toolkit are studied during the evaluation of this
dissertation. Other GUI toolkits use similar mechanisms. The following discussion
is based on the Eclipse Programmers Guide4, the Eclipse SWT javadoc5, and the
book by Vogel [194].

The Standard Widget Toolkit (SWT)6 is a GUI toolkit for the Java platform
which is used by Eclipse and Eclipse-based applications. It is an alternative to other
Java GUI toolkits such as the Abstract Widget Toolkit AWT or the Swing toolkit.
SWT provides widgets such as buttons or text fields, layout managers to arrange
widgets, and the infrastructure which is necessary to operate a GUI. It supports
several platforms such as Windows, Linux, and Mac OS X.

As described above, the operating system detects user interactions with hardware
devices, handles low-level processing, and places GUI events in an application’s event
queue. SWT uses an event loop to transfer GUI events from the underlying operating
system event queue to the SWT event system. This event loop runs continuously
during the execution of an SWT application, reads GUI events from the operating
system event queue, and dispatches these events, i.e. triggers routines which handle
them. SWT event handling is performed in the main thread of an SWT application.
When implementing an SWT application, developers have to take care to perform
long operations triggered by GUI events in a separate thread to allow the event
loop to return quickly and handle the next GUI event. Otherwise, the event loop is
blocked and the reaction of the application to user interactions is delayed.
SWT has a pre-defined set of SWT GUI events. For example, the MouseEvent
represents mouse related interactions. To get notified when certain SWT GUI events
occurr, developers can implement listeners and register them at specific widgets such
as buttons or at the SWT event queue. Listeners are defined via interfaces and have
to implement specific listener methods which are called when a corresponding SWT
GUI event is detected. For example, the MouseListener targets SWT GUI events
generated because of mouse interactions. It defines the methods mouseDoubleClick,
mouseDown, and mouseUp which represent user interactions of double clicking,
pressing a mouse button, or releasing a mouse button, respectively. When a listener
method is called, it can perform a specific action or log the event.

Some sensors of the MALTASE framework are implemented as listeners for par-
ticular SWT GUI events. When they get activated, they analyze the SWT GUI
event and concerned GUI widgets and log this information.

4http://help.eclipse.org (Accessed Feb 2015)
5http://www.eclipse.org/swt/javadoc.php (Accessed Feb 2015)
6www.eclipse.org/swt/ (Accessed Feb 2015)

31

Chapter 2 Foundations

2.2.6 Software Analytics

Developers produce and manipulate many artifacts during software engineering:
source code, requirements documents, models, e-mails, test cases, and many more.
Because of open source development, platforms like SourceForge7 or GitHub8, and
the Internet, many of those artifacts are available to researchers [121]. Driven by the
availability of these datasets as well as they availability of algorithms from the fields
of machine learning and data mining, the field of software analytics has emerged
over the last years [121]. Menzies and Zimmermann define software analytics as
“the analytics on software data for managers and software engineers with the aim of
empowering software development individuals and teams to gain and share insight
from their data to make better decisions.” [121]. They identified three important
success criteria: software analytics must be actionable, relevant, and real-time. Ac-
tionable denotes that developers can base their actions on software analytics results,
i.e. exploit them in their tasks or in their decisions. Relevant denotes that the result
of software analytics must be interesting and appropriate for developers as target
audience. And finally, real-time denotes that knowledge gained from analytics is
available when needed and that decisions are based on recent, not outdated, data.

This dissertation investigates the acquisition of usage knowledge by monitoring
and analyzing user interactions. Hence, it is part of software analytics as it applies
analysis algorithms to interaction traces.
Several datasets for software analytics have been made available to researchers in
the last years [121]. In contrast, few usage datasets are publicly available, probably
because of privacy concerns. For example, only one of 13 repositories of software
engineering data listed by Menzies and Zimmermann [121] do provide user input
data: Open Hub9 contains user reviews of hosted projects, i.e. textual user feedback
but no monitored usage data. This fact makes software analytics research on usage
data difficult because the unavailability of usage datasets usually requires researchers
to collect own datasets. An exception are web applications because web servers
usually keep a protocol of page requests in the web server log.

7http://sourceforge.net/
8https://github.com/
9https://www.openhub.net/

32

Chapter 3

Problem Case Study
Different types of information characterize software usage from the user’s perspec-
tive: the goals and tasks of the user, the interactions of the user with the user
interface to accomplish those tasks, the context in which the user employs an appli-
cation, as well as problems the user is facing. This information constitutes the user
perspective of an application, i.e. why and how users use an application. While the
user perspective is obviously known to users, developers might not be aware of it.

In this chapter, we present an exploratory case study about software usage. More
specifically, the study investigates information needs of developers regarding soft-
ware usage, whether usage information is available to developers, and how developers
exploit such information. The results of the study form the basis for this disserta-
tion, i.e. research efforts described in the dissertation aim to address information
needs identified during the study.
A case study is an empirical research method “investigating contemporary phenom-
ena in their context” (Runeson and Höst [157]) and we chose this research method
because our goal is to study the state of the practice, i.e. the situation of profes-
sional software developers in their work context.
The case study focuses on the activity of program comprehension because it is an
import sub-activity of many evolution tasks such as bug fixing or feature imple-
mentation. Software evolution - the activity of changing an existing application -
requires developers to understand the application before performing changes and
such an understanding is the goal of program comprehension.

We re-analyzed a dataset collected in the course of a general, exploratory case
study about program comprehension named “PUNGA” (cf. Roehm et al. [154] and
Maalej et al. [117]). The purpose of the PUNGA case study was to investigate de-
veloper strategies, information needs, and tool usage during program comprehension
in real world contexts. Two findings of the PUNGA case study are relevant for this
dissertation:

• “The way in which end users use an application is helpful context information
in program comprehension. In many cases this information is missing.”
Hypothesis 18 and 19 of Roehm et al. [154]

• “Developers interact with the user interface of the software to test if the appli-
cation behaves as expected and to find starting points for further inspection.”
Hypothesis 3 of Roehm et al. [154]

We investigate these two findings in more detail and focus on two aspects: First,
we study developer information needs regarding software usage. Second, we study

33

Chapter 3 Problem Case Study

comprehension strategies in which developers put themselves in the role of users by
interacting with the user interface.

This chapter is organized as follows: Section 3.1 describes the design of the case
study, Section 3.2 presents its results, Section 3.3 discusses related work, and finally
Section 3.4 concludes it. During the description of the case study, we follow the
guidelines of Runeson and Höst [157].

3.1 Design

In this section we describe research questions, participants, data collection proce-
dures, data analysis procedures, validity measures, and limitations of the case study.
As the case study investigates information needs of developers regarding software
usage, it is an exploratory case study.

3.1.1 Research Questions

The case study investigates the following research questions:

Research Question RQ4:
What are the information needs of developers during program compre-
hension regarding software usage?
For which of these information needs is the information available to de-
velopers?

Research Question RQ5:
When and why do developers put themselves in the role of a user by
interacting with the user interface during program comprehension?

RQ 4 aims to identify which types of information about software usage is inter-
esting for and relevant to developers during program comprehension. Further, it
investigates whether such information is usually available to developers. RQ 5 ex-
plores the finding that developers behave like end users in more detail. It aims to
identify situations when developers assume the user role and to discover the moti-
vation of developers for this behavior.

3.1.2 Case and Participant Selection

The case of this case study are software developers from industry companies during
program comprehension tasks. Hence, we used the following criteria to select par-
ticipants for this study: Researchers and students were excluded if they were not
simultaneously software developers working in software industry. Participants had
to work for a software company and had to spent at least part of their working time
on tasks involving reading or changing source code. Further, participants had to
work on applications with a user interface. This constraint was necessary because
we study information needs regarding software usage. We did not put any constrains

34

3.1 Design

on company size, team size, development methodology, role of participants, or pro-
gramming language used.
As we re-analyzed an existing dataset, we did not recruit participants but applied
these criteria to participants of the PUNGA study and checked if they are met.
We had to exclude seven participants of the PUNGA study as they worked on an
automotive software system without a user interface.

Table 3.1 provides an overview of the participants. We analyzed the data from
21 participants from six companies. Two companies were located in Spain and four
companies in Germany. The domain of developed applications varied and included
facility control, fleet management, event management, port management, computer
aided design, product management and content management. Most participants
had the role of a developer, i.e. mainly implementing new features, or a maintainer,
i.e. mainly fixing bugs. Few participants assumed simultaneous roles of developer
and manager. Programming languages used included Java, SQL, Delphi, Python,
C, VisualBasic, VisualBasic .NET, and C#. Most participants used an IDE such
as Eclipse, Netbeans, or VisualStudio. A few used only source code editors such
as vi. The development experience of the participants varied from 1.5 to 19 years.
We also collected the experience of participants with their current technology, i.e.
programming language or application development framework, which ranged from
0.3 to 18 years. During the observation, participants worked on self-selected tasks.
Task types included the implementation of a new feature or fixing a bug, familiariza-
tion with a new application, reviewing an application for documentation purposes,
or porting a feature from one customer-specific version of the application to another
version. The number of tasks participants completed within the observation time of
45 min varied: while some participants could not finish one task in this time, others
completed three tasks because of the varying complexity of the tasks.

3.1.3 Data Collection Procedures

The PUNGA study used a combination of observation and interview to collect data
because both research methods complement each other: An observation can reliably
reveal when and how developers exploit software usage information, e.g. how they
reproduce failures based on reproduction steps described in a bug report. But it
is not possible to elicit the motivation behind an observation or judge whether an
observation is representative for the normal behavior of participants. Such infor-
mation can be uncovered by a discussion between participant and observer during
an interview. Further, interviews allow participants to identify missing information
which cannot be observed easily.

Each observation took place for 45 minutes, immediately followed by an interview.
The interview lasted for another 45 min to keep the whole session at a length of 1,5
h. In each session, one researcher observed and interviewed one participant. Overall,
two researchers conducted the study sessions with the author being one of them.

35

Chapter 3 Problem Case Study

Table 3.1: Overview of Case Study Participants (Adapted From [154])

Id Company Role Application Domain Technology and Tools Used Dev.

Exp.

(y)

Tech.

Exp.

(y)

Task(s) During

Observation

P1 C1 (DE) Developer,

Maintainer

Facility control Java, Netbeans 4.5 4.5 Application

familiarization

P2 C2 (DE) Documenter Fleet management PL/ SQL, Oracle SQL

Developer

3 0.3 Documentation

P3 C3 (ES) Manager,

Developer

Event management Delphi, Delphi IDE (Client),

Java, Eclipse (Server)

8 6 Bug fixing

P4 C3 (ES) Manager,

Developer

Event management Delphi, Delphi IDE (Client),

Java, Eclipse (Server)

8 6 Feature impl.

P5 C4 (ES) Developer Port management Oracle DB, Java, Oracle

Toad, Eclipse, Tomcat

2 2 Bug fixing

Feature impl.

P6 C4 (ES) Maintainer Port management Oracle DB, Java, Oracle

Toad, Eclipse, Tomcat

1.5 1 Feature impl.

(2x)

P7 C4 (ES) Developer,

Maintainer

Port management Oracle DB, Java, Oracle

Toad, Eclipse

4.5 2.5 Porting feature

P8 C5 (DE) Developer Computer Aided

Design

Python, Eclipse 1.5 1.5 Feature impl.

(3x)

P9 C5 (DE) Developer Computer Aided

Design

Python, Eclipse 19 3 Bug fixing

P10 C5 (DE) Developer Product management Python, SQLite, Toad 5 5 Code review

P11 C5 (DE) Developer Databases C, Python, XML, Vi 7.5 5 Feature impl.

Porting feature

P12 C6 (DE) Developer Content management C#, Visual Studio 3 3 Bug fixing

P13 C6 (DE) Developer Content management VB, VB .NET, Visual Studio 11 8 Bug fixing

P14 C6 (DE) Developer Content management VB .NET, C#, Visual Studio 11 8 Bug fixing

P15 C6 (DE) Developer Content management Java, Tomcat, NetBeans 16 11 Feature impl.

P16 C6 (DE) Developer Content management Java, NetBeans 0.5 1.5 Feature impl.

P17 C6 (DE) Developer Content management Java, Eclipse 11 11 Feature impl.

P18 C6 (DE) Developer Content management VB .NET, SQL Server,

Visual Studio

3 3 Bug fixing

P19 C6 (DE) Developer Content management VB, VB .NET, Visual Studio 18 18 Bug fixing

P20 C6 (DE) Developer Content management VB. NET, Visual Studio,

Editor

8 4 Bug fixing

P21 C6 (DE) Developer Content management VB .NET, Visual Studio 10 5 Bug fixing

36

3.1 Design

Table 3.2: Excerpt from Observation Protocol of Participant P5 (Source: [154])

Daytime Relative
time

Observation/ Quote Postponed
questions

...

10:19 00:27 Read Jira ticket

Comment: “this sounds like the ticket
from yesterday”

10:20 00:28 Refresh source code repository

10:24 00:32 Publish code to local Tomcat

10:26 00:34 Debug code in local Tomcat Why debugging?
10:28 00:36 Open web application in browser and

enter text in text fields

10:29 00:37 Change configuration in XML file

content.xml

Exclamation: “not this complicated xml
file again”

How known
what to change?

10:30 00:38 Publish changes to local Tomcat

10:31 00:39 Debug local Tomcat

...

Observation

The purpose of the observation was to answer questions about developer behavior
and information accesses such as “Which information do participants access during
program comprehension?” or “How do participants exploit certain types of infor-
mation?”. The observations were conducted with the think aloud method (Ericsson
and Simon [47]). At the beginning of an observation session, participants were in-
troduced to the goal and procedure of the study. Then, participants were asked
to work on their normal tasks but comment on what they are doing. This enables
the observing researcher to understand participant behavior in more detail. If a
participant stopped commenting, the researcher asked a question to re-trigger the
comments. Care was taken not to interrupt participants during their work and
questions which required discussion were deferred to the following interview. The
participants worked on self-chosen tasks from their normal task list. We put the
constraint on the task that it should require a minimal amount of program compre-
hension, i.e. to comprehend an existing piece of software.

Each observation session lasted for about 45 minutes and was conducted by one
researcher who observed one participant. The observation sessions were not recorded
because of confidentiality problems and to minimize the influence of being observed
on participant behavior. Instead, the observing researcher kept notes of important
events, quotes, and observations in an observation protocol. Table 3.2 shows an
excerpt of such an observation protocol. To document as much information as
possible, the observation protocol created during an observation session was revised
and extended by the observing researcher on the same day.

37

Chapter 3 Problem Case Study

Interview

The purpose of the interview was to clarify observations from the observation session,
to answer questions about the motivation behind observed behavior, and to collect
information about non-observable issues, e.g. “Why did you do X?” or “Which infor-
mation is usually missing?”. A semi-structured interview approach with two phases
was used: In the first phase, interesting but unclear observations from the observa-
tion session were discussed, e.g. “How did you know that the bug was in method
X?”. In the second phase, open questions about comprehension strategies and miss-
ing information during program comprehension were asked. If a participant gave
an interesting but unclear answer, it was discussed in more detail. A questionnaire1

with seven open questions helped the observing researcher stay focused. The ob-
serving researcher kept interview minutes and revised and extended them on the
same day.

Testing of Data Collection Procedures

The template for the observation protocol and the questionnaire was tested in a dry
run with a graduate student under study conditions. While the template for the
observation protocol proved usable, the questionnaire contained too many questions
for 45 minutes. Hence, some less important questions were removed and a couple of
similar questions were merged.

3.1.4 Analysis Procedures

We analyzed the observation protocols and interview minutes originating from study
sessions with 21 participants. The data was collected in the course of the PUNGA
study. Overall, the observation protocols contained 1.665 items such as events, ob-
servations, or quotes (79 items per participant on average). The interview minutes
contained 139 answers (7 per participant on average), excluding questions about par-
ticipants themselves. The analysis was performed by the author. In case of uncer-
tainties in protocols and minutes from sessions where the author did not participate,
the uncertainty was discussed with the researcher who conducted the session.

The analysis was performed in three phases. In the first phase, we established a
coding scheme. We read all observation protocols and interview minutes and created
lists for the following items: observed or reported information needs regarding soft-
ware usage and situations in which participants interacted with the user interface of
the application. We established a code for each item of these lists. For example, we
found different purposes why developers interact with the user interface: to repro-
duce a failure (code FAILURE REPRO), to find source code (code FIND CODE),
or to test a change (code UI TEST). In the second phase, we coded the data. We re-
analyzed all observation protocols and interview minutes and labeled all instances
of an item with its code. Finally we used the codes to establish the number of
participants, the number of companies, and the number of observers for each code.
In the third phase, we created textual descriptions to summarize all instances of a
particular code. These descriptions are presented in Section 3.2. Furthermore, we

1https://sites.google.com/site/pungaproject/templates (Accessed Jan 2015)

38

3.1 Design

condensed each description to a one-sentence finding which is presented together
with the textual description. Those findings summarize our results in form of a
catalogue of findings.

3.1.5 Reliability and Validity Measures

We used the following measures to ascertain the reliability and validity of results:

• Minimum Participant Support
All results reported have been observed or reported by at least two partic-
ipants. This ensures that the results have a “minimal generalizability” and
excludes results based on individual factors.

• Participant Checking (Creswell [35])
We sent the catalogue of findings to the participants and asked them whether
they agree with each finding using a five item Likert scale from “Strongly dis-
agree” to “Strongly agree”. Two participants responded to this call. Participant
P2 strongly agreed or agreed with 9 findings (F1-F2, F4-F7, F9-F10, F12), was
undecided for 5 findings (F8, F11, F13-F15), and disagreed with finding F3,
commenting that in his perspective information about user goals and user
needs was too high level to be used in program comprehension. Participant
P6 strongly agreed or agreed with 13 findings (F1-F13) and was undecided for
findings F14 and F15, commenting that it depends on the context.

• Data Triangulation (Creswell [35])
As we analyzed data which were collected in observations and interviews, we
triangulate between these data sources. A result that was both observed and
reported increased its validity.

• Independent Peer Observations (Rosnow and Rosenthal [156])
Sessions of the PUNGA study were conducted by two researchers at differ-
ent companies. Hence, we triangulate between observers to address observer
bias. A result that was observed or reported by two observers independently
increased its validity. We report for each result the number of supporting
observers. Most of the results are supported by two observers.

3.1.6 Threats to Validity

As every empirical study, the design of the case study has threats to validity which
we discuss in this section.

Data analysis was performed by a single researcher, the author. This introduces
the threat that results may be biased by assumptions and expectations of the re-
searcher. We took several measures to mitigate this threat: In case of uncertainties
about data from sessions which the author did not participate, those were discussed
with the researcher who conducted the corresponding session. Further, the other
researcher who conducted sessions during the PUNGA study read a draft of this
chapter and did not find mismatches with her experiences. Also, we performed
participant checking in which participants evaluated the correctness of the findings.

39

Chapter 3 Problem Case Study

And finally, we took care to only report results which did not require a lot of inter-
pretation, e.g. actions of participant clearly documented in the observation protocol
or information needs clearly reported in interview answers. Please note that the
case study was the first part of our dissertation research and inspired the Maltase
framework.

As there is no clear definition of the population of software developers, the repre-
sentativeness of the study sample is unknown and the generalizability of the study
results remains open. Because we studied 21 participants in different companies, in
different team, in different project roles, performing different comprehension tasks,
using different development methodologies, and using programming languages, we
argue that the study results have some of external validity but future work should
address the issue of generalizability.

Participants had to work with an application with a user interface. While this
is reasonable because we are studying software usage by users, it constraints the
applicability of the study results: They are applicable to applications with a user
interface, not to all types of applications.

As we analyzed an existing dataset, data was not collected with our specific re-
search questions in mind. Consequently, some observations or questions relevant to
our research questions might have been ignored by the observers and not appear in
the dataset. The focus of the PUNGA study was broad and explorative and this
case study investigates sub-aspects of the PUNGA study: comprehension strategies
involving information about software usage instead of comprehension strategies in
general and information needs regarding software usage instead of information needs
in general. Hence, we argue that the results are valid but might be incomplete.

As the observations of 45 minutes length covered only a fraction of participants’
work time, relevant observations might have been missed. We argue that extend-
ing the duration of observation sessions would not change the results dramatically
because the tasks were self-chosen and 21 participants in different contexts were
studied. Furthermore, this limitation concerns the completeness of the results but
not their correctness.

Some degree of subjectivity is involved when describing aggregated results and
phrasing findings. To cope with this limitation, we report many direct quotes and
observations which support a certain result. Nevertheless, care should be taken
when interpreting the results.

Half of the participants worked for company C6. Hence, the results may be skewed
towards this company. C6 is a large international software company that develops
enterprise information management systems. Study sessions were conducted in their
German office which has approx. 600 employees.

3.2 Results

Table 3.3 summarizes the results of the case study. This section describes the results
in detail and lists corresponding findings.

40

3.2 Results

Table 3.3: Overview of Case Study Results
Frequencies Indicate Number of Participants, Companies, and Observers.

Result #Part. #Co. #Obs.

Information Needs of Developers Regarding Software Usage (RQ 4)

(IN1) Use cases and user behavior 6 4 2

(IN2) User goals and user motivation 3 3 2

(IN3) Failure reproduction steps 2 2 2

(IN4) Application domain concepts 2 2 1

(IN5) UI-focused documentation style 2 1 1

(IN6) Availability of information about software usage (2) (1) (1)

Developers in the Role of Users (RQ 5)

(UR1) Developers interact with user interface to ...

... reproduce a failure 9 2 2

... find relevant source code 5 3 2

... test an implemented change 5 2 1

... trigger the debugger 5 1 1

... familiarize with unknown part of application 3 3 2

(UR2) Developers conceptually map UI elements to ...

... source code 6 4 2

... data (data structure/ data flow) 2 2 2

... algorithms (algorithm steps/ control flow) 2 2 1

3.2.1 Information Needs of Developers Regarding Software

Usage

This section describes results regarding information about software usage as answers
to RQ 4. As such information is rarely available to developers, most results originate
from the interviews.

(IN1) Information about Use Cases and User Behavior

Six participants from four companies reported that information about use cases and
user behavior is necessary or helpful during program comprehension. Participant P2
reported that it is unclear for him “how a user uses the software” but he needs this
information. Similarly, participant P8 reported that he is “missing information about
use cases, i.e. how the users want to use a software product” and participant P11
commented that “not all use cases are documented”. Participant P10 mentioned that
information ”how the software is used” is helpful during program comprehension.

This result matches related work by Begel and Zimmermann [15] who found that
“How do users typically use my application?” is an important developer question.

Finding F1:
Information about use cases “performed” by users and user behavior is
helpful information for developers during program comprehension.

41

Chapter 3 Problem Case Study

Finding F2:
Information about use cases “performed” by users and user behavior is
rarely available to developers during program comprehension.

(IN2) Information about User Goals and User Needs

User goal and user need information is more abstract than use case and user behavior
information (cf. IN1). Information about goals and needs describes why a user
employs an application while information about use cases and behavior describes
how users employ the application. Hence, we distinguish between both types of
information.

Three participants from three companies reported that information about user
goals and user motivation is necessary or helpful during program comprehension.
Participant P2 used a self-established scheme to document software functionality
which consisted of 14 items. One item was “user goals” and the participant com-
mented that “’user goals’ describes goals that the user intends to achieve when ex-
ecuting this function”. He also mentioned that it is often unclear to him how users
employ the application to achieve a certain goal. Participant P3 reported that “the
purpose of an application (’Why is it developed?’)” and “needs that are supported
by the application” is important information to comprehend an application. Simi-
larly, participant P14 commented that “the business cases where customers describe
what they want to have and what they want to do with the application” is helpful
information during program comprehension.

This information need is reflected when developers document software require-
ments with user stories: Templates for user stories (e.g. “As a <type of user>, I
want <some goal> so that <some reason>” by Mike Cohn2) require developers to
document the type of user, the user goal, and the reason behind each user story.

Finding F3:
Information about user goals and user needs is helpful information for
developers during program comprehension.

(IN3) Information about Failure Reproduction Steps

Two participants from two companies reported that information about failure repro-
duction steps is necessary or helpful during program comprehension. We argue that
reproduction steps are one type of usage information because reproduction steps of
GUI applications usually consist of the user actions preceding a failure. Participant
P3 reported that “steps to reproduce the bug, i.e. what the user did” is necessary
information to fix bugs. Participant P21 reported that failure reproduction is a
difficult activity because “the steps are not described completely” .

This result matches studies by Zimmermann et al. [203] and Laukkanen et al. [105]
who found that reproduction steps are often missing or incomplete in bug reports
submitted by users, making failure reproduction difficult. Further, Maalej et al. [117]

2http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-
template (Accessed December 2014)

42

3.2 Results

found that 93 % of developers have difficulties to reproduce failures because of
missing information at least weekly.

Finding F4:
Information about failure reproduction steps is helpful information for
developers during program comprehension and bug fixing.

(IN4) Information about Application Domain Concepts

Two participants from two companies reported that information about the appli-
cation domain is necessary or helpful during program comprehension. Participant
P2 reported that “a description of the most important concepts of the application
domain” would be helpful. Currently he asks an expert working for the customer
to provide such information if necessary. Participant P3 reported that he is missing
information about “the business of the customer”.

This result matches related work by Shaft and Vessey [164] who found that knowl-
edge of application domain concepts plays an important role in program comprehen-
sion and that developers use different comprehension processes depending on their
familiarity with the application domain.

Finding F5:
Information about application domain concepts is helpful information
for developers during program comprehension.

(IN5) UI-focused Documentation Style

We observed an interesting style of documentation for two participants from the
same company. Participants P6 and P7 worked “UI-driven”, i.e. they used it as
starting point to locate errors or understand functionality. This UI-driven com-
prehension approach fits to the documentation style in their company: Software
functionality is documented in the form of use cases with screenshots, i.e. each use
case is documented by a set of screenshots of the UI views which are relevant for the
use case. Additionally, database tables and database fields related to the use case
are also documented.
This documentation style shows the importance of information about use cases dur-
ing program comprehension (see IN1) and illustrates a UI-driven comprehension
approach where developers interact with the user interface as starting point for
comprehension (see UR1).

(IN6) Availability of Information about Software Usage

In contrast to reports of developers about their information needs regarding soft-
ware usage, we did not observe any participant exploiting information about software
usage - besides the UI-focused documentation style described in IN5. Hence, we hy-
pothesize that information about software usage is rarely available to developers
during program comprehension.
This finding has one limitation: Ten participants worked on a bug fixing task and

43

Chapter 3 Problem Case Study

many of them examined a bug report. The dataset does not indicate if those bug re-
ports were submitted by users and contained reproduction steps. Hence, it might be
the case that some participants exploited information about software usage, namely
user actions preceding the failure. But this is unlikely as studies ([105, 203]) have
shown that information about reproduction steps is often missing in bug reports
submitted by users.

This result matches related work by Maalej et al [115] who found that commu-
nication gaps between developers and users lead to ignorance of developers about
software usage.

Finding F6:
Information about software usage from the user perspective, i.e. why
and how users employ an application, is rarely available to developers
during program comprehension.

3.2.2 Developers in the Role of Users

One goal of this case study is to investigate when developers interact with the
user interface of the application during program comprehension (RQ 5), putting
themselves in the role of a user. We present the results in this section. More
specifically, we describe five purposes why developers interact with the user interface,
three conceptual mappings developers perform between UI elements and software
internals, and two unexpected interactions of developers with the user interface.

Developers Interacting with UI to Reproduce Failures (UR1.1)

Nine participants from two companies interacted with the user interface to reproduce
a failure or reported to do so. Participant P3 described a three step strategy to fix a
bug: “Step 1: Try to reproduce bug, Step 2: Identify error on user interface, Step 3:
Find related code”. Participant P13 worked on a bug report which described a bug
in the logic of a report generator. His first action was to start the application and
trigger the report generation logic from the user interface to reproduce the failure.
Participant P21 tried to reproduce a bug caused by a certain configuration setup.
He repeatedly changed configuration parameters in the user interface and restarted
the application until he identified a specific, failure-inducing configuration. Another
approach for failure reproduction was reported by participant P4: He reported that
he “tries the application in different browsers to rule out the browser as the source
of a failure”.

Finding F7:
During program comprehension, developers of an application with a user
interface interact with the user interface to reproduce failures.

Developers Interacting with UI to Identify Relevant Source Code (UR1.2)

Five participants from three companies interacted with the user interface to locate
source code which is relevant for their current task or reported to do so. Participant

44

3.2 Results

P12 repeatedly changed the local language setting in the user interface to identify
which code method was triggered by this action. Participant P15 searched for the
code which is executed upon a button click. Participant P17 used text search to
search for text labels of GUI elements within source code.
This result matches with work by Ko et al. [97] who found that the first step during
program comprehension is to search for relevant code. While Ko et al. observed
manual code searches and code searches using search tools, we found a comple-
mentary strategy: interacting with the UI and mapping UI elements to code. The
behavior of participant P17 matches to the developer question “Where in the code
is the text in this error message or UI element?” identified by Sillito et al. [168].

Finding F8:
During program comprehension, developers of an application with a user
interface interact with the user interface to locate source code which is
relevant to their current task.

Developers Interacting with UI to Test an Implemented Change (UR1.3)

Five participants from two companies interacted with the user interface to test a
change they had implemented before or reported to do so. Participant P5 applied
the following working strategy: change code, recompile, deploy, start the applica-
tion, interact with the user interface to check whether the change is correct. He
repeated this strategy several times. Several participants fixed a bug and checked
the correctness of the fix by interacting with the user interface to ensure that the
failure did not occur anymore.

Finding F9:
During program comprehension, developers of an application with a user
interface interact with the user interface to test implemented changes.

Developers Interacting with UI to Trigger the Debugger (UR1.4)

Five participants from the same company interacted with the user interface as start-
ing point for debugging or reported to do so. Participant P21 worked on a bug which
occurred in a certain dialog window of the user interface. He set a breakpoint to the
code of this dialog, started the application in debug mode, and interacted with the
user interface to trigger the buggy dialog. Now the debugger was triggered and he
started step-by-step debugging. All five participants worked in a similar way: set
one or more breakpoints to code locations considered relevant, start the application
in debug mode, interact with the user interface until a breakpoint is reached and
the debugger becomes active, and debug the application.
Activating the debugger by interacting with the user interface is similar to inter-
acting with the user interface to find relevant code (cf. UR1.2). Debugging can be
considered as one possible approach to find relevant code which requires develop-
ers to make assumptions about relevant code by placing breakpoints. But relevant
source code can also be searched without debugging.

45

Chapter 3 Problem Case Study

Finding F10:
During program comprehension, developers of an application with a user
interface interact with the user interface to trigger the debugger, i.e. till
a breakpoint is reached and the debugger is activated for inspection of
application state or step-by-step debugging.

Developers Interacting with UI to Familiarize With Unknown Part of
Application (UR1.5)

Three participants from the three companies interacted with the user interface to
familiarize with an unknown application or unknown part of the application or re-
ported to do so. Participant P1 reported his strategy to familiarize with a new,
unknown application: “I start the application and examine what the user can do
or click. Then I look at the code which is called upon clicks on buttons.” Partici-
pant P2 had to familiarize with an unknown application which performed different
types of calculations and executed the application to inspect its functionality. He
entered parameter values in the user interface and ran the calculation with different
parameter values to understand the calculations performed.

Finding F11:
Developers of an application with a user interface interact with the user
interface to familiarize with an unknown part of the application.

UI Interaction Patterns of Developers

We described five purposes why developers interact with the user interface during
program comprehension. These interactions did not occur in isolation but also in
combination with each other. In particular, we identified two strategies for bug fixing
tasks. The first strategy contains of four steps: interact with the user interface to
reproduce the failure (step 1), interact with the user interface to start debugging
(step 2), change code identified during debugging to fix the bug (step 3), and finally
interact with the user interface to test the fix (step 4). The second strategy is a sub
strategy without the debugging step, i.e. it consists of steps 1, 3 and 4.

Finding F12:
A strategy to fix a bug in an application with a user interface is to
reproduce the bug in the UI, trigger the debugger by interacting with
the UI, change code which was identified during debugging, and test the
correctness of the fix by interacting with the UI.

During the observations using the think aloud method, it became clear that some
developers mapped elements of the user interface to internal elements of the appli-
cation. We found three different types of such mappings.

Mapping of UI Elements to Source Code (UR2.1)

Six participants from four companies mapped user interface elements to source code
or reported to do so. Participants P1 and P15 mapped interactions with UI wid-
gets such as button clicks to code triggered by the interaction. Participant P12

46

3.2 Results

changed the local language setting in the user interface to identify the code method
triggered by this action. Participants P2 and P17 mapped labels of text fields in
the user interface to variables in the code. For example, P2 familiarized with an
unknown application which performed calculations with several input parameters.
He searched for the the names of those parameters in code and thereby mapped
parameter names from the user interface to the corresponding variables in code.

Finding F13:
During program comprehension, developers of an application with a user
interface conceptually map elements of the user interface to source code.

Mapping of UI Elements to Data (UR2.2)

Two participants from two companies mapped user interface elements to data struc-
tures or reported to do so. Participant P4 mapped the values of text fields and other
GUI widgets to the contents of the database. Because of a mismatch between the
data shown in the user interface and the database (there were less data items in the
database than in the GUI) he detected that he is using the wrong database server
for testing. He also tested the the correctness of data storage logic by entering text
in text fields and checking if they arrive correctly in the database. Participant P10
explored an application during a code review and found that data entities shown in
the GUI are stored in a data dictionary.
This finding matches the systematic comprehension strategy identified by Littmann
et al. [110]: “The programmer using the systematic strategy traces data flow through
the program to understand global program behavior”.

Finding F14:
During program comprehension, developers of an application with a user
interface conceptually map elements of the user interface to data flow
within or data structures of the application.

Mapping of UI Elements to Algorithm Execution (UR2.3)

Two participants from two companies mapped UI elements to the execution of an
algorithm or reported to do so. Participant P2 started the application and repeat-
edly changed input parameters of a calculation algorithm via the user interface. He
executed the calculation algorithm with different parameter values to understand
the calculation performed. This behavior targets the functionality of an algorithm
and resembles a black box approach as it considers just the input and output values
of the algorithm. Participant P3 related the control flow of a processing routine to
elements of the user interface: “we only passed two times in this loop because we
have two categories of events in the UI” (two categories of events were visible in
the user interface of a calendar application). This behavior targets control flow of
an algorithm and resembles a white box approach as it investigates the steps of the
algorithm.
The difference of mapping UI elements to algorithm execution compared with map-
ping to source code is that this mapping focuses on the steps of the algorithm, not

47

Chapter 3 Problem Case Study

the code which implements those steps. This result can be described as “algorithm
reengineering”, i.e. a developer infers the steps of an unknown but implemented
algorithm from application behavior visible in the user interface.

Finding F15:
During program comprehension, developers of an application with a user
interface conceptually map elements of the user interface to the control
flow of algorithms implemented by the application.

Unexpected Interactions of Developers with UI

During the observations, we found two surprising and unexpected examples of a
developer interacting with the user interface: Participant P16 worked on the task
to integrate results of several search engines into one common result set. As this
typically is a backend task, we did not expect the participant to deal with the user
interface. However, the participant created a GUI project to test his implementation.
Similarly, participant P10 performed a code review to investigate how the application
could be extended to support a new concept of the application domain. In this case,
the participant examined the user interface before analyzing code.

3.3 Related Work

This section reviews related work in two areas: information needs of developers and
empirical studies about comprehension strategies of developers.

Information Needs of Developers

Several researchers studied information needs of developers during software devel-
opment and software evolution. Begel and Zimmermann [15] collected a list of
questions which are important for developers and identified 145 questions in 12 cat-
egories. One of their categories, “customers and requirements”, contains questions
about software usage. They also asked developers to prioritize the 145 identified
questions. Interestingly, the two top rated questions were usage-related: “How do
users typically use my application?” and “What parts of a software product are most
used and/or loved by customers?”. Similarly, Buse and Zimmermann [26] present
information needs during software analytics. They describe the decision scenario
“understanding customers” which “leverages information about customer behavior
when making decisions”, e.g. to “understand how a user is using our product” or
whether users are “performing tasks we expect”. Results of these two studies match
our finding that developers are interested in information about software usage and
that such information is important. Our results complement their results and iden-
tify additional aspects of software usage which are interesting for developers. Maalej
et al. [117] investigate the frequency of different information needs in a survey among
1477 developers. Besides the need for information about reproduction steps for bugs
(which was the most frequent information need and encountered at least weekly by
93 % of respondents), they do not investigate usage or user information. Sillito et
al. [168] observed 25 developers and compiled a list of 44 questions programmers

48

3.3 Related Work

ask during code changes. They explicitly focus on questions about the code base
and do not target questions about users or usage. They also observed participants
mapping UI elements to application internals. Ko et al. [96] observed 17 developers
at Microsoft and established a list of 21 information needs. They do not discuss in-
formation needs regarding usage or user, but also found that bug reproduction steps
are nearly impossible to acquire. Fritz and Murphy [54] interviewed 11 software de-
velopers and identified 78 questions of developers. Those questions consider mainly
code issues and project information and don’t target usage or user. Begel et al. [14]
surveyed 110 developers at Microsoft and identified the ten most important infor-
mation needs regarding inter-team coordination among developers. They do not
target usage and user information needs. Breu et al. [22] study information needs in
bug reports by analyzing 600 bug reports of two open source projects. They found
that “the role of users goes beyond simply reporting bugs: their active and ongoing
participation is important for making progress on the bugs they report”. Further,
they found that developers frequently request the following information from users:
reproduction steps, information about the environment, stack traces, and screen-
shots. While their results match with our result that developers are interested in
reproduction steps, our study is broader as it does not only consider information
needs during bug fixing.
Summarizing, the importance as well as the frequent unavailability of failure repro-
duction steps was identified by several related works. Besides reproduction steps,
most related studies do not investigate information needs regarding usage or user.
Hence, this case study complements them by investigating information needs re-
garding software usage from the user perspective.

Empirical Studies About Comprehension Strategies

Several empirical studies have been conducted to investigate strategies of developers
during program comprehension, i.e. which activities developers perform during pro-
gram comprehension and how they combine different activities to perform a certain
task. Ko and Uttl [99] study individual differences of developers comprehending an
unfamiliar application. They identified “Use of GUI” as a comprehension strategy
which “uses GUIs to comprehend programs” but do not describe or discuss this be-
havior. Ko et al. [97] also study developers understanding unfamiliar code. They
identify the developer action “Testing Paint by executing it from Eclipse” and ob-
served that “developers spent a tenth of their time testing the Paint application”.
But they do not describe how this test was conducted and how developers interacted
with the GUI. LaToza et al. [104] study developer tools, activities, and practices with
a focus on activities targeting source code. Their example of a bug investigation
task also describes a developer who first reproduces a failure by interacting with
the user interface and then triggers debugging by interacting with the user inter-
face. Singer et al. [169] study daily activities of software engineers. Koenemann
and Robertson [100] study comprehension strategies of expert developers. Corritore
and Wiedenbeck [34] compare comprehension strategies used by developers using
object-oriented and procedural programming languages. Vessey [193] investigates
differences in debugging behavior of expert and novice developers. Sillito et al. [167]
observe nine developers changing unfamiliar code using pair programming. Robillard

49

Chapter 3 Problem Case Study

et al. [145] study comprehension behavior of five developers during code changing
tasks and identify factors related to the effectiveness of program investigation.

Summarizing, the empirical studies discussed above focus mainly on source code
analysis or debugging. Some of them mention developers interacting with the user
interface but do not describe or analyze this behavior in depth. Hence, this case
study complements them by analyzing developer interactions with the user interface
during program comprehension.

3.4 Discussion

This section presents conclusions from the case study and discusses implications and
future work for researchers, practitioners, and tool vendors. Limitations of the case
study are discussed in Section 3.1.

3.4.1 Conclusions

Case study results about information needs (see IN1-IN4) show that developers are
interested in information about software usage from the user perspective because
they consider such information helpful or necessary during program comprehension.
More specifically, developers are interested in use cases and user behavior, user goals
and user needs, failure reproduction steps, and application domain concepts. These
information needs complement information needs identified by related work.
However, we observed only two participants (see IN5) accessing and exploiting us-
age information during program comprehension. This reveals a mismatch between
information needs and information availability. Related research already identified
two reasons behind this mismatch: communication gaps between developers and re-
searchers (Maalej et al. [115]) as well as a perspective change - transiting from being
primarily a user to being primarily a developer - of students during their computer
science education (Schinzel [159]). Future research is necessary to investigate the
mismatch in more detail, especially to investigate reasons behind it and to establish
its generalizability. This mismatch probably indicates a way to improve current
program comprehension practices by collecting usage information and providing it
to developers during program comprehension.

We found five reasons why developers interact with the user interface of the ap-
plication during program comprehension (see UR1): to reproduce failures, to find
relevant source code, to test an implemented change, to trigger the debugger, and to
familiarize with an unknown parts of the application. We call this result “UI-based
comprehension” because developers acquire information about the application and
its behavior by interacting with the user interface, effectively putting themselves
in the role of a user. We argue that “UI-based comprehension” denotes a compre-
hension activity which is a part of a larger comprehension strategy together with
activies such as debugging or reading code.
Related work (see Section 3.3) characterizes comprehension strategies as opportunis-
tic (only investigate and understand the part of a program necessary for the current
task) or systematic (investigate and understand the whole program). We argue that

50

3.4 Discussion

the “UI-based comprehension” can be employed by developers in both ways: Sys-
tematically by exploring all user interface elements to obtain an overview of the
user interface and the features available to users, e.g. when familiarizing with a new
application. And opportunistic by exploring only user interface elements necessary
for the current task, e.g. when reproducing a failure.

3.4.2 Implications And Future Work

This section presents implications and future work for researchers, practitioners, and
tool vendors.

Implications And Future Work For Researchers Based on the study results,
we encourage researchers to investigate how users can be involved during software
evolution to tackle the mismatch between developer interest in information about
software usage and its unavailability to developers. More specifically, they should
study how information about user needs and application usage can be acquired,
managed, presented to developers, and exploited during program comprehension
and software evolution. Further, they should study how the availability of this
information impacts program comprehension and software evolution tasks. To this
end, Pagano [135] proposes an approach to collect, process, and exploit textual user
feedback. This approach requires users to document and share feedback proactively.

Researchers should consider “UI-based comprehension” in future research about
program comprehension and investigate it in more detail. Future research directions
are the motivation behind the “UI-based comprehension” and the influence of com-
prehension context (characteristics of individual developer, type of task, type of
application) on its use. Additionally, researchers should investigate how developers
combine “UI-based comprehension” with other comprehension activities such as de-
bugging or reading source code. Another area of future research is to investigate the
conceptual mappings between UI elements and application internals in more detail.

This case study was explorative and resulted in a catalogue of findings. Future
work should investigate the generalizability of those findings and contextualize them,
i.e. determine in which contexts they are relevant.

Information needs of developers during software development and software evolu-
tion has been studied by several researchers in the last years (see Section 3.3). Like
this case study, each of these research efforts resulted in a list of information needs.
We see future work for researchers in prioritizing and contextualizing these infor-
mation needs, i.e. to investigate which information need is more important than
others and to determine the context in which an information need is relevant. Such
an effort could lead to a generally accepted list of information needs together with
a description of the context in which each information need is relevant. Dimensions
of such a context could be the type of task, the type of application, the experience
of the developer, or the familiarity of the developer with the application.

Furthermore, we propose to study “UI concept location” or “UI feature location”
which - in analogy to concept or feature location in source code - denote the mapping
of application domain concepts or application features to UI elements.

51

Chapter 3 Problem Case Study

Implications And Future Work For Practitioners Based on the study results,
we encourage practitioners to reconsider their strategy for involving users in their
evolution process and for eliciting feedback from them. More specifically, to identify
potential user involvement channels, to develop approaches to capture and ana-
lyze user feedback, to identify ways how to exploit knowledge gained, and to weigh
costs and benefits of such approaches. Further, we encourage practitioners to re-
consider the comprehension strategies they use in their daily work and to identify
comprehension strategies which optimize productivity in their context. Because two
participants used a UI-focused documentation style (see IN5), we encourage practi-
tioners to test whether user manuals can be exploited as information source during
program comprehension.

Implications and Future Work For Tool Vendors We encourage vendors of
software development and program comprehension tools should analyze the UI-based
comprehension strategy and consider it in the future development of their tools, i.e.
investigate tool support for the UI-based comprehension strategy. For example, to
enable developers to debug an application on user interface level instead of source
code level by allowing developers to set breakpoints in the UI, to inspect the state of
the UI, and to easily navigate from UI elements to application source code. Apple
recently released the “View Debugger” feature of its XCode IDE which heads in
this direction3: it allows developers to pause a running application, to inspect the
properties of the user interface, and to jump to relevant source code. Furthermore,
we encourage tool vendors to study how conceptual mappings between UI elements
and software internals can be supported by tools.

3.5 Chapter Summary

This chapter presented an exploratory case study about information needs of de-
velopers during software evolution. The case study focused on information needs
about software usage from a user perspective, i.e. why and how users use an ap-
plication. We observed and interviewed 21 developers from six software companies
during program comprehension tasks, mainly bug fixing and feature implementa-
tion. We found that developers are interested in use cases and user behavior, user
goals and user needs, failure reproduction steps, and application domain concepts.
But such information is rarely available to them during software evolution. These
results complement related work about developer information needs. Further, the
mismatch between developer interest in usage information and its rare availability
indicates a potential to improve software evolution practices by collecting such in-
formation and providing it to developers. Furthermore, we found that developers
interact with the user interface of the target application to reproduce failures, to
find relevant source code, to test an implemented change, to trigger the debugger,
and to familiarize with an unknown part of the application. By interacting with the
user interface, developers put themselves in the role of users. We call this result “UI-

3Source: https://developer.apple.com/library/prerelease/ios/documentation/DeveloperTools/
Conceptual/WhatsNewXcode/Articles/xcode_6_0.html (Accessed Jul 2014)

52

3.5 Chapter Summary

based comprehension” and argue that it is part of a broader comprehension strategy
together with other comprehension activities like reading source code or debugging.
As this developer behavior has not been studied in detail, we suggest to investigate
it in more detail and design tools supporting developers.

This dissertation contributes to the effort to tackle the mismatch between devel-
oper interest in usage information and its unavailability. It focuses on one aspect
of software usage: the interactions of users with the user interface. As those inter-
actions can be captured and analyzed automatically, they constitute an automated
feedback channel from users to developers which does not require any effort from
users and only few effort from developers. We present the Maltase framework to
capture and analyze user interactions automatically. Further, we evaluate its impact
on failure reproduction and user skill analytics. Thereby we address the problem
of missing failure reproduction steps which was found in the case study as well as
reported in related work.

53

Chapter 4

The MALTASE Framework
This chapter describes the Maltase framework for collection, storage, and anal-
ysis of user interactions. Maltase is a shorthand for “Monitoring, Analysis, and
ExpLoiTation of User InterActions in Software Evolution”. Section 4.1 sketches
an overview over the whole framework, Section 4.2 lists framework requirements,
Section 4.3 describes a model of user interactions and other relevant concepts, Sec-
tion 4.4 sketches the framework architecture, Section 4.5 discusses usage scenarios
for the framework, and Section 4.6 summarizes the state of research and practice
regarding usage monitoring and analysis of usage data.

4.1 Framework Overview

The Maltase framework consists of four layers: Monitoring and Information Ex-
traction layer, Storage and Transfer layer, Processing and Analysis layer, and Pre-
sentation and Integration layer (see Figure 4.1 for an overview). The Monitoring
and Information Extraction layer implements functionality to detect user interac-
tions at a high level of abstraction and elicit information about detected interactions
and their context. The Storage and Transfer layer implements functionality to rep-
resent monitored data, store them, and transfer them from a user device to a server
at the developer site. Data storage denotes storing monitored data temporarily on
the user device and permanently on a central server. Transfer denotes the transfer
of data between the user device and the developer server. The Processing and Anal-
ysis layer implements functionality to analyze monitored data. The type of analysis
performed depends on the framework application, i.e. the type of information which
should be extracted from monitored data. Hence, this layer can be regarded as
a toolbox of functionality which developers can use when implementing a specific
analysis. The toolbox contains tools such as aggregation of low level data, filtering
of data, pattern detection, or classification of interaction sequences or users. Finally,
the Presentation and Integration layer implements functionality to represent and vi-
sualize monitored data and analysis results. Furthermore, it provides functionality
to integrate this information in developers tools such as bug repositories or IDEs.
This helps developers to analyze monitored data, gain knowledge about usage of
the target application, and exploit this knowledge in their software evolution tasks
without the need for switching tools.

The details of the Maltase framework are defined by its requirements, its model,
and its architecture which are described in Section 4.2, Section 4.3, and Section 4.4.
An empirical evaluation of the Maltase framework is presented in Chapter 6.

55

Chapter 4 The MALTASE Framework

!"#$%"&$#'()(*#+"&,-."#(/0%&-1."#(
23%31."#("+(4$'4(536357(83,-#.1(983&($#%3&-1."#8:(/0%&-1."#("+($#+"&,-."#(-;"9%($#%3&-1."#8(-#<(1"#%30%(

=&"1388$#'()(>#-5?8$8(
=&3@&"1388$#':(A3-%9&3(/0%&-1."#:(=-B3&#(23%31."#:(C5-88$D1-."#(

!>EF>G/H;-83<(

A-$59&3(I3@&"<91."#(

HJ(*#+"&,-."#(-;"9%(

+-$59&3(&3@&"<91."#(8%3@8(

!>EF>G/H;-83<(

GK$55(23%31."#(

HJ(*#+"&,-."#(-;"9%((

983&(8K$558(

!>EF>G/H;-83<((

L83(C-83(F38.#'(

HJ(*#+"&,-."#(-;"9%(

<36$-."#8("+(983&(

;34-6$"&(+&",(

&3M9$&3,3#%8(

G%"&-'3()(F&-#8+3&(
I3@&383#%-."#(-#<(@3&8$8%3#1?("+(,"#$%"&3<(<-%-:(2-%-(%&-#8+3&(%"(<3635"@3&(83&63&(

Fr
am

ew
or

k
A

pp
lic

at
io

ns

=&383#%-."#()(*#%3'&-."#(

(=&383#%-."#("+(-#-5?8$8(&3895%8(%"(<3635"@3&8:(*#%3'&-."#($#%"(<3635"@3&(%""58(

Figure 4.1: Overview of Maltase Framework And Framework Applications

Maltase can be employed for different purposes. We call these purposes “frame-
work applications”. Figure 4.1 shows three framework applications: Maltase-based
failure reproduction denotes reporting monitored user interactions preceding failures
to developers. We hypothesize that this information supports developers when re-
producing failures and fixing bugs as reproduction steps are often missing in bug
reports submitted by users. Maltase-based skill detection denotes inferring user
skill levels from monitored user interactions. We hypothesize that this informa-
tion provides developers with insights about their user population and enables a
target application to adapt to the current user. Maltase-based use case testing
denotes comparing monitored user interactions to the flow of events of the use case
specification. As the use case specification represents developer assumptions about
user behavior, we hypothesize that Maltase-based use case testing detects mis-
matches between developer assumptions and user behavior which may lead software
improvements or use case updates. These framework applications are described in
more detail in Chapter 5 and an empirical evaluation of Maltase-based failure
reproduction and Maltase-based skill detection is presented in Chapter 6.

4.2 Requirements

This section presents requirements for the Maltase framework by describing func-
tional requirements, non-functional requirements, and use cases.

The overall goal of Maltase is to collect usage information and extract helpful
knowledge for developers during software evolution. Thereby, it aims to close the

56

4.2 Requirements

problems of missing developer knowledge about usage of the target application and
communication gaps between developers and users during software evolution.

4.2.1 Functional Requirements

To achieve its overall goal, the Maltase framework should implement the functional
requirements described below.

Monitoring of User Interactions With Semantics and Context User inter-
actions should be monitored at a high level of abstraction to be interpretable by
developers and enable developers to understand into user behavior. For example,
the user interaction “Save File” is more semantic as the user interaction “Mouse
click on screen position [100, 30]”, while both represent the same user interaction of
saving a file by clicking on a toolbar icon. Therefore, user interactions should be
monitored abstraction levels as high as possible such as “UI Events” and “Abstract
Interaction” (see Hilbert and Redmiles [79]). Furthermore, the context of a user
interaction should be captured. The appropriate level of abstraction as well as the
definition of context depends on the analysis purpose. Hence, the instrumentation
and analysis components have to be extensible and allow developers to adjust them
according to their current information need.
To enable the evaluation of Maltase-based failure reproduction and Maltase-
based skill detection, the Maltase framework should implement sensors which col-
lect the information necessary for both framework applications. They are described
in more detail in Chapter 5.

Temporal Storage of Monitored Data on User Device Monitored data should
be stored temporarily on the user device until its transfer to a developer server.

Transfer of Monitored Data to Developer Server Before monitored data can
be analyzed and inspected, it has to be transferred to a server on the developer’s site.
It should be able to trigger this data transfer by users manually, by the occurrence
of special events (such as closing the target application), or continuously during the
interaction of users with a target application.

Storage of Monitored Data on Developer Server Monitored data should be
stored on a developer server after its transfer. Analysis components then process
and analyze this data to extract information.

Data Analysis Before data analysis can be performed, monitored data usually
has to be cleaned and mining features have to be extracted. Hence, preprocessing
operations such as removing undesired types of interactions should be implemented
as part of an analysis component. Similarly, feature extraction operations such as
extracting the occurrence frequency of different types of user interactions should be
implemented. These preprocessing and feature extraction operations can be reused
and extended by developers designing a certain type of data analysis.

57

Chapter 4 The MALTASE Framework

The purpose of data analysis is to extract helpful information from monitored
data, i.e. insights about the user, the target application, or the interaction between
both. Depending on the type of information desired, the data analysis varies. Hence,
the Maltase framework should implement different types of analysis algorithms
such as classification learning or frequent pattern mining. These analysis algorithms
can be reused or extended by developers designing a data analysis routine for a
particular information need.

To enable the evaluation of Maltase-based failure reproduction and Maltase-
based skill detection, the Maltase framework should implement preprocessing op-
erations, feature extraction operations, and analysis algorithms which are necessary
for both framework applications. They are described in more detail in Chapter 5.

Visualization and Presentation of Monitored Data and Analysis Results Fi-
nally, monitored data and analysis results have to be presented to developers to
enable them to exploit the knowledge gained. Hence, functionality for the presenta-
tion and visualization of monitored data and analysis results should be implemented
by the Maltase framework. Furthermore, it should be possible to integrate the
components implementing this functionality in CASE tools used by developers and
therefore in the developer’s workflow.

To enable the evaluation of Maltase-based failure reproduction and Maltase-
based skill detection, the Maltase framework should implement functionality to
present and visualize information which is necessary for both framework applica-
tions. They are described in more detail in Chapter 5.

4.2.2 Use Cases

Figure 4.2 provides an overview of the use case model of Maltase. Two types of
actors considered: users and developers of a software application.

Work With Instrumented Application The actor user has only this use case. In
this use case, a user interacts with an instrumented target application and his or
her interactions are monitored in the background. The user should not notice the
presence of the instrumentation in terms of performance overhead, i.e. the target
application should behave the same way as without the instrumentation.
The user should be made aware of the instrumentation and be told what type of
data is collected and what it is used for.

In contrast to the actor user, the actor developer has several use cases which are
described below. The use cases illustrate how the Maltase framework implements
a communication channel between users and developers via the monitored user in-
teractions. As the use cases further show, this communication channel does not
require any effort by users, besides agreeing to use an instrumented target applica-
tion. In contrast, the actor developer has to perform some effort to establish this
communication channel and exploit information gathered. At least, developers have
to instrument an existing target application and deploy it to one or more users to
collect data. Furthermore, they have to conduct an analysis of monitored data to
gain usage information.

58

4.2 Requirements

MALTASE Framework

Work With
Instrumented
Application

Deploy
Instrumentation

Extend
Instrumentation

Inspect Monitored
Data

Tailor Data Analysis
Process

Reuse Analysis Component

Create Analysis Component

Perform Data
Analysis

MALTASE-based Failure
Reproduction

MALTASE-based Skill
Detection

MALTASE-based Use Case
Testing

Developer

User

<< inc lude>>

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.2: Use Cases of Maltase Framework

Deploy Instrumentation The developer has to instrument an existing target ap-
plication and deploy the instrumented target application to a user. To accomplish
this task, the developer uses sensors as well as storage and transfer infrastructure of
the Maltase framework.

Extend Instrumentation The developer extends sensors of the Maltase frame-
work toto monitor additional details about user interactions or interaction context.
Thereby, the developer reuses the existing storage and transfer infrastructure of the
Maltase framework.

Inspect Monitored Data The Maltase transfer component transfers monitored
data from user devices to a developer server. The developer inspects this data to
check which data arrived at the server and manually analyze it.

Tailor Data Analysis Process The developer creates a new analysis by reusing
and combining existing analysis components (use case “Reuse Analysis Component”),
implementing new analysis components (use case “Create Analysis Component”), or
a mixture of both.

59

Chapter 4 The MALTASE Framework

Reuse Analysis Component The developer reuses an existing analysis component
such as a classification algorithm. This use case requires that a data analysis routine
for the current information need is not yet implemented but the required analysis
algorithm is already implemented as part of the Maltase framework.

Create Analysis Component The developer creates a new analysis component
which analyses monitored data in a new, not yet implemented way.

Perform Data Analysis The developer analyses monitored data to extract infor-
mation satisfying his or her current information need. This is the central use case
for the actor developer as it aims to provide him or her with helpful knowledge,
while the other use cases were preparing this use case. Each framework application
of the Maltase framework constitutes a specialization of this use case.

Maltase-based Failure Reproduction The developer retrieves monitored user in-
teractions preceding a failure from the datastore and exploits them as reproduction
steps. This use case is a specialization of the use case “Perform data analysis” and
corresponds to the framework application “Maltase-based failure reproduction”
which is described in Section 5.1.

Maltase-based Skill Detection The developer analyzes monitored user interac-
tions to infer user skill levels automatically. Skill information supports the developer
in his or her evolution decisions. This use case is a specialization of the use case “Per-
form data analysis” and corresponds to the framework application “Maltase-based
skill detection” which is described in Section 5.2.

Maltase-based Use Case Testing The developer compares monitored user inter-
actions to the flow of events from the use case specification automatically. Detected
mismatches between both indicate software improvements or use case updates. This
use case is a specialization of the use case “Perform data analysis” and corresponds
to the framework application “Maltase-based use case testing” which is described
in Section 5.3.

4.2.3 Non-Functional Requirements

To achieve its overall goal, the Maltase framework should support the non-functional
requirements described below.

Limited Performance Overhead Every instrumentation introduces a performance
overhead compared to a plain version of the target application. To enable use in
real life situations, the Maltase sensors should introduce a performance overhead
which does not hinder users in their work with the target application.

Maintaining User Privacy Privacy questions arise when monitoring user inter-
actions with a target application and users might not accept Maltase because of
privacy issues. Hence, monitored data should not allow to identify the current user.

60

4.3 MALTASE Model

User Appl icat ion

Session

User
Interact ion

Usage Context

GUI

Use Case

1

*

1

11

1

1..*

Event

Interaction Sequence

interact with

describe

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.3: Overview of Maltase Model

Feasible Integration With Target Application It should be possible to integrate
the Maltase framework with a target application with low effort. Obviously, the
implementation technology (programming language, APIs) of the target application
have to be considered here. When the target application uses the same imple-
mentation technology as Maltase , it should be possible to integrate Maltase
framework and target application easily. When the target application uses another
implementation technology as Maltase , it should be possible to reuse the compo-
nents for storage, data analysis, and presentation; only the monitoring component
should have to be adapted.

Extensibility As the type of data analysis depends on the current developer in-
formation need, the components for instrumentation and data analysis should be
extensible. The extensibility should allow developers to reuse and extend existing
components to tailor their own monitoring and data analysis procedure.

4.3 MALTASE Model

The most important abstractions in the Maltase model are users, applications, the
interaction between both, as well as the usage context in which interactions occur.
Figure 4.3 shows how these concepts are related. An individual User works with a
particular Application. The interaction between the User and the Application via
the GUI is divided into sessions which consists of a sequence of User Interactions.
Each Session occurs in a certain Usage Context which consists of the User, the
Application, and further information depending on the type of analysis. A Use Case
describes a certain functionality of the target application.

61

Chapter 4 The MALTASE Framework

 Start Time
 End Time

Session

 Interaction Id
 Interaction Type
 Start Time
 End Time

User Interaction

 Interaction Id
 Key
 Value

Interact ion
Property

Atomic User
Interact ion

Composite User
Interact ion

1

1..*

1 *

0..1

1..*

Interaction Sequence

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.4: Model of User Interactions

4.3.1 Model of User Interactions

The model depicted in Figure 4.4 extends the model of Figure 4.3 and provides
additional details how user interactions are modeled. Each User Interaction has an
attribute Interaction Id which uniquely identifies this particular interaction instance,
an attribute Interaction Type representing the type of the interaction within a tax-
onomy of user interactions, and attributes Start Time and an End Time. Further,
each User Interaction may have an arbitrary number of Interaction Properties, al-
lowing to capture additional information specific to a particular interaction type. As
already discussed in the background section 2.2.4, user interactions can be captured
at different levels of abstraction and interactions on an abstract level usually consist
of several interactions on a lower level of abstraction. To reflect this structure and
to enable the modeling of user interactions on different levels of abstraction, the
composite pattern (cf. Gamma et al. [58]) is used: The class Atomic User Interac-
tion represents a single user interaction and the class Composite User Interaction
represents a sequence of user interactions, possibly from a lower level of abstraction.

As discussed in background section 2.2.4, interactions between users and a GUI
can be considered on different levels of abstraction. Figure 4.5 shows the abstraction
levels considered by the Maltase model. It is based on the abstraction levels defined
by Hilbert and Redmiles [79].

The following example introduces different abstraction levels before the abstrac-
tion levels of user interactions in Maltase are discussed in more detail. The ex-
ample considers the situation where a user works with a presentation software with
the goal to create a slide deck for a presentation. The user clicks on the “new slide”
button to create a new, empty slide and add it to the slide deck. The action of the
user to press the button on the mouse with his or her fingers is a Physical Event.
The device controller issues an interrupt to inform the system that the mouse was
clicked, which constitutes an Input Device Event. On the next level, UI Event, the
particular button which was clicked is known, namely “new slide”. Clicking this
button represents the Abstract Interaction “adding a new slide” which is part of the

62

4.3 MALTASE Model

Task to design a slide. Designing slides constitutes a sub task of the overall Goal to
create a slide deck for a talk.

As a user interaction on a particular abstraction level is usually composed of
several user interactions on a lower level of abstraction, the frequency of user inter-
actions decreases with increasing abstraction level. This has direct implications for
the performance overhead introduced by an instrumentation as each monitored user
interaction event has to be processed and stored. Similarly, the semantics of a user
interaction increases with abstraction, e.g. the user interaction “mouse click at posi-
tion [237, 25]” (input device event) has less semantic information as the interaction
“Save file” (abstract interaction).

As further shown by Figure 4.5, Maltase considers three different types of user
interactions: Artifact Manipulation, Command, and GUI Interaction. Users interact
with a software application not as a goal in itself but to get their work done. Mal-
tase models the work users are performing when employing a target application as
the manipulation of digital artifacts. Examples of digital artifacts are presentations,
slides, source code, or UML models. Users manipulate those artifacts by operations
like creation, deletion, or modification. The Maltase model considers such ma-
nipulations of digital artifacts and labels them Artifact Manipulation. As artifact
manipulations are more abstract than interactions with GUI elements and poten-
tially consist of several such interactions, they constitute interactions on abstract
interaction level. Therefore they provide semantics to user behavior.

The Maltase model considers a second type of user interaction on abstract inter-
action level, namely Commands such as opening a file, closing the target application,
or copy and paste interactions. Usually these commands can be triggered in several
ways like hot keys, the icon bar, or the main menu. Hence, they are more abstract
than interactions with GUI elements and provide semantics for user behavior.

Finally, the Maltase model considers interactions of users with GUI elements
which are labeled GUI Interaction. Each GUI interaction considers one or more
elements of the GUI such as buttons or windows. Types of GUI interactions can be
the activation of a GUI element or providing user input to a GUI element. As these
interactions are targeted to specific GUI elements, they are on UiEvent level.

The taxonomy of user interactions depicted in Figure 4.6 models the types of user
interactions considered in the Maltase model in more detail and puts them in the
context of events.

4.3.2 Model of Users, Events, Applications, and Usage

Contexts

Model of Users

The class User represents users which can be identified by their attribute Anonym
Name, a user name that allows to determine whether two sessions originate from
the same user but does not allow to identify the user person.
As users can be distinguished with regard to their usage purpose and their back-
ground, different characteristics of an individual user are represented by the class
User Property. Examples of user properties are their age or their skill. User-related
aspects such as the current task, the current location, or the current social situation

63

Chapter 4 The MALTASE Framework

Goal/ Problem

Task

Abstract
Interact ion

UI Event

Input Device Event

Physical Event

User Interaction

Art i fact
Manipulat ion

Command

GUI Interaction

1..*

1..*

1..*

1..*

1..*

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.5: User Interactions on Different Levels of Abstraction (Adapted from [79])

Event

Application EventUser
Interact ion

Art i fact
Manipulat ion

GUI Interaction

Create

Delete

Modi fy

Read

 Artifact Id
 Artifact Name
 Artifact Type
 Parent In Hierarchy

Work Art i fact
 GUI Element Id
 GUI Element Name
 GUI Element Type
 Parent In Hierarchy

GUI Element

Presentation
Slide

Source Code
Method

Uml Diagram
Element

Window Button

Activate

Click

Inpu t

Command

Save File

Close
Appl icat ion

Copy

Paste

0..*

1..*

0..*

1..*

targetsconcerns

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.6: Taxonomy of User Interactions

64

4.3 MALTASE Model

 Anonym Name
User User Property

Age User Skill

*

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.7: Model of Users

 Event Id
 Event Type
 Start Time
 End Time
 Sensor Id
 Sensor Type

Event

 Event Id
 Key
 Value

Event Property

User
Interact ion

System EventAppl icat ion
Event

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.8: Model of Events

are modeled as part of the usage context which is described below. Figure 4.7 details
the general model from Figure 4.3 and shows these relationships. The model of users
can be easily extended if other user characteristics should be considered.

Model of Events

Figure 4.8 shows how events are represented in the Maltase model. Events are
the basic mechanism to represent monitored data. Each event has the attributes
Event Id, an Event Type, a Start Time and End Timestamp, and a reference to
the sensor which created the event, represented by the attributes Sensor Id and
Sensor Type. Figure 4.8 shows the first level of the event taxonomy with three
types of events: User Interactions (actions of users, see Figure 4.4 and Figure 4.6 for
details), Application Events (events within the target application during execution,
see Figure 4.10 for details), and System Events (events within the system of the
target application during execution). The attribute Event Type characterizes the
event. It can refer to a particular ontology class in the event ontology. Additionally,
every event can have an arbitrary number of key-value properties which are modeled
by class Event Property. Event properties capture additional information about an
event and allow to capture information which is specific for certain types of events.

Model of Applications

Figure 4.9 provides an overview of the model of software applications. As we are
studying the interaction between users and software applications, the most relevant

65

Chapter 4 The MALTASE Framework

Appl icat ionGUI

Component Feature

Requirement
Document

Use Case

Requirement

1

1..* 1..* 1..*

describe

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.9: Model of Applications

Event

Application Event User
Interact ion

App Start App Close Failure

Crash Exception

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.10: Taxonomy of Application Events

part of the target application is the user interface. We assume that the target appli-
cation has a graphical user interface. Other aspects of the target application are its
components and its features. The components are the libraries or software modules
which collaboratively constitute the target application. The features are the blocks
of functionality which the target application offers to the user. The requirements
document consists of a set of requirements which describe the functionality of the
target application. An example for a requirement is a use case. This model of ap-
plications can be easily extended if other application aspects should be considered.

During the execution of a target application, different types of events occur. Simi-
larly to user interactions, those events can be monitored and logged. Which types of
events are relevant depends on the data analysis intended by developers. Figure 4.10
shows a taxonomy of application events. It contains events representing starting
the target application (Class App Start), closing the target application (Class App
Close) as well as two kinds of failures: Crash and Exception. This taxonomy can be
easily extended if other application events should be considered.

66

4.4 MALTASE Architecture

Usage
Context

User Appl icat ion

 Device Property
Device

 Hardware Type
 Hardware Property

Hardware Device

 Os Type
 Os Version

Operating System

Situation
Context

Failure Context Mult i Appl icat ion
Context

Multi Device
Context

Location
Context

Location Situation

2..*

1 1..*1

1

curr Location

Devices UsedOther Apps

Device Info

deployed on
interact with

curr Situation

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.11: Model of Usage Contexts

Model of Usage Context

The Class Usage Context represents information about the context in which a user
interacts with a target application. Hence, each usage context contains information
about the current user and the current target application. Which context infor-
mation is relevant beyond this basic information depends on the type of analysis.
Extended usage contexts are shown in Figure 4.11: Failure Context represents the
context in which a failure occurs. To reproduce the failure and fix the corresponding
bug, information about user interactions preceding the failure (captured as sequence
of user interactions) as well as the current system configuration (represented as De-
vice Info in the model) are necessary. Multi Application Context represents a user
working with several software applications in parallel on the same device and switch-
ing between them. Multi Device Context represents a user using the same target
application on different devices, e.g. on a laptop, a tablet, and a smartphone. Lo-
cation Context represents a context in which the current location of the user is
relevant. Finally, Situation Context considers the current situation of the user, e.g.
whether the user currently drives a car, participates in a meeting, or sits at his or
her desk. Other types of usage context can be added to extend the model.

4.4 MALTASE Architecture

The Maltase framework is designed using a layered architecture style [25] and
consists of four layers: Monitoring and Information Extraction layer, Storage and
Transfer layer, Processing and Analysis layer, and Presentation and Integration

67

Chapter 4 The MALTASE Framework

Monitoring & Information Extraction

Presentation & Integration

Processing & Analysis

Storage & Transfer

<<component>>
Event Sequence
Visualization

<<component>>
MALTASE Ontology

<<component>>
Model-Trace
Comparison<<component>>

Feature Extraction

<<component>>
Preprocessing

<<component>>
Sequential
Pattern Mining

<<component>>
Classif ication

<<component>>
File Data Store

<<component>>
Database Data Store

<<component>>
Server Push- Client

<<component>>
Server Push- Server

<<component>>
Moni tor ing
Infrastructure

<<component>>
MALTASE Sensors

<<component>>
Undo History
Extractor

<<component>>
Bug Tracker
Adapter

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.12: Overview of Framework Layers and Components

layer. Each layer implements a subset of the framework functionality. Figure 4.12
depicts the layers and their main components.

Monitoring & Information Extraction Layer The components of this layer im-
plement functionality to detect user interactions and extract context information.
An important aspect is the integration with the target application. The integration
approach used depends on the implementation technology of the target application
as well as the instrumentation approach chosen. This layer provides two approaches
to monitor user interactions: The component Maltase Sensors implements sensors
which register as event listeners in the target application or GUI framework. While
a user interacts with the target application, events are generated by the application
framework, caught by the sensors, and user interactions are identified. Because the
sensors are implemented as event listeners, they depend on the framework used, e.g.
Eclipse RCP or SWT, but not on the particular target application. Each sensor tar-
gets a certain type of user interactions. Furthermore, the component Undo History
Extractor provides another approach to monitor user interactions. In contrast to
the user interaction sensors, user interactions are not monitored when they occur.
Instead, the interaction history of the undo feature, i.e. the history of user actions
which is maintained by many software applications to allow users to undo previous

68

4.4 MALTASE Architecture

actions, is extracted. The extraction can be triggered by special events such as the
occurrence of a failure or can be done periodically. Obviously, this monitoring ap-
proach is applicable only for software applications supporting an undo feature. But
for those software applications, it constitutes a monitoring approach without perfor-
mance overhead as the manipulation actions are captured anyway. The component
Monitoring Infrastructure implements functionality to represent interaction data,
control sensors, and access the data store. This component is independent of the
application framework and target application, but depends on the implementation
technology.

Storage & Transfer Layer The components of this layer implement functionality
to store monitored data and transfer it to a developer server for further processing
and analysis. The layer implements two types of data store, namely a File Data
Store which saves monitored data as XML files and a Database Data Store which
saves monitored data in a relational database. In both cases, the Maltase Ontology
of application events and user interactions can be used as data model when persist-
ing monitored data. This eases data integration from different sensors and enables
ontology reasoning on monitored data. Using ontologies is optional and sensor im-
plementors can decide to use self-defined event names and property names. There
are two ways how monitored data can be transferred to a developer server. The
user can manually send one or more files with monitored data to developers (not
depicted in Figure 4.12). Also, monitored data can be sent automatically from the
user device to the developer server by the server push mechanism. The server push
mechanism is implemented by the components Server Push-Client, which runs on
the user device, and Server Push-Server, which runs on the developer server. The
data transfer can be trigger by specific events such as closing the target application,
periodically, or continuously during application usage.

Processing & Analysis Layer The components of this layer implement function-
ality to process monitored data and extract relevant information for developers.
There are two types of components within this layer: components to preprocess
data and extract features as well as components implementing machine learning al-
gorithms. The component Preprocessing subsumes functionality to preprocess and
clean monitored data. It implements functionality such as removing certain types
of interactions. The data for preprocessing operations are retrieved from the data
store. After data preprocessing, the component Feature Extraction may extract at-
tributes that form the input for machine learning algorithms. This is the case when
it is not reasonable to use monitored, cleaned data directly. Examples of features
are the average duration of breaks between two user interactions or the number of
interactions per minute. After preprocessing and feature extraction, different ma-
chine learning algorithms can be applied to extract patterns and knowledge. Differ-
ent types of analysis are represented by the components Sequential Pattern Mining
(mining sequential patterns that occur frequently in interaction traces), Classifi-
cation (classifying a user interaction sequence or a user into a set of pre-defined
classes), and Model-Trace Comparison (Comparison of interaction traces to a model
of expected behavior).

69

Chapter 4 The MALTASE Framework

User Device Developer Server

Target Application

<<component>>
Moni tor ing

Infrastructure

<<component>>
MALTASE Sensors

<<component>>
Server Push-

Client

<<component>>
File Data Store

<<component>>
Server Push-

Server

<<component>>
Database
Data Store

Presentation & Integration

Processing & Analysis

Information about Application UsageUser Developer

inspect, exploitinteract

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.13: Deployment of Framework Components
Arrows denote data flow between components

Presentation & Integration Layer The components in this layer implement func-
tionality to present monitored data and The component Event Sequence Visualiza-
tion implements functionality to visualize a sequence of monitored user interactions
and their context. The component Bug Tracker Adapter implements functionality
to create bug reports automatically and add monitored data or analysis results.

Deployment of Components Figure 4.13 shows a deployment diagram of the
Maltase components. Components are deployed on the user device and the devel-
oper server. Figure 4.13 shows only one user device but there might be many user
devices communicating with the same developer server. The user interacts with the
target application running on the user device. The target application is instrumented
with the Maltase Sensors. Monitored data is stored temporarily in a File Data
Store on the user device. From this temporal data store monitored data is trans-
ferred to the developer server by the server push mechanism which is implemented
by the components Server Push-Client, which is deployed on the user device, and
Server Push-Server, which is deployed on the developer server. The Server Push-
Server receives monitored data sent by the Server Push-Client and stores it in a
Database Data Store on the developer server. All components pf the preprocessing
and analysis layer and the presentation and integration layer operate on this data.

Overall, this architecture enables the flow of information about software usage
from users to developers. Developers get information about the interactions of users
and can analyze them regarding different aspects of interest. Thereby, Maltase

70

4.4 MALTASE Architecture

addresses the problem of missing developer knowledge about software usage as well
as communication gaps between developers and users.

4.4.1 Monitoring & Information Extraction Layer

The purpose of the Monitoring and Information Extraction layer is to detect user
interactions when they occur and to extract information about user interactions and
their context. This functionality can be implemented in different ways depending on
the targeted abstraction level of user interactions, the implementation technology of
the target application, and the integration mechanism into the target application.

Maltase uses an instrumentation approach which instruments the application
framework of target applications. Software applications and their GUIs are rarely
developed from scratch but using existing application and GUI toolkits. An example
of an application toolkit is the Eclipse RCP framework while the Standard Widget
Toolkit (SWT), Swing, and Abstract Window Toolkit (AWT) are examples for GUI
toolkits. Instrumenting software applications on this level has the advantage that
an instrumentation can be reused for every target application which is developed
with the same framework.
The Maltase instrumentation consists of two parts, the Monitoring Infrastructure
Component and a set of sensors. The Monitoring Infrastructure component imple-
ments functionality to represent monitored data, to communicate with a datastore,
and to manage a set of sensors. This component can be seen as a library imple-
mented in a particular programming language and it depends only on the program-
ming language used. Different types of sensors detect user interactions and collect
information about them and their context. The implementation of the sensors reuse
the monitoring infrastructure component. They integrate the instrumentation with
application or GUI toolkits and therefore depend on the toolkit used.
If another target application with the same programming language and the same
toolkits is to be instrumented, both components can be reused directly. If another
target application with the same programming language but other toolkits is to be
instrumented, the monitoring infrastructure component can be reused and only the
sensors have to be re-implemented. If another target application with different pro-
gramming language and different toolkits is to be instrumented, both components
have to be re-implemented.

Monitoring Infrastructure

The Monitoring Infrastructure component implements functionality to represent
monitored data, to control a set of sensors, and to communicate with a data store.
It is implemented in the Java programming language.

Monitored data are represented as events as described in the Maltase model
above (see Figure 4.8). Events are generated by sensors. A sensor is a component
whose task is the detection of one particular type of event and elicit information
about it. The use of sensors components constitutes a modular design as a sensor
implementor has to consider only how to detect the event type of interest and sensor
implementations are independent of each other. Figure 4.14 gives an overview of
the monitoring infrastructure component. The class Sensor Manager controls the

71

Chapter 4 The MALTASE Framework

whole instrumentation which is composed of one or more sensors. The whole instru-
mentation can be started, paused, or terminated via the sensor manager. Pausing
the instrumentation denotes stopping it temporarily and it can be resumed later.
Terminating the instrumentation denotes stopping the instrumentation completely
and it cannot be restarted. The sensor manager is implemented as a singleton (see
Gamma et al. [58]) to ensure that there is only one instance of it. When a Sensor is
created, it has to register itself at the sensor manager. Similar to the sensor man-
ager, each sensor implements operations to start, pause, and terminate the sensor.
Important operations for the sensor are initialize and deinitialize which have to be
implemented by every implementation of the abstract sensor class. The initialize
operation sets up the sensor by registering it as listener for specific framework events
or starting a new monitoring thread. The deinitialize operation is its counterpart
and cleans up everything the initialize method set up. The sensor class is abstract
and implements general functionality of a sensor. The specific functionality how
the occurrence of an event is detected and how further information is elicited has
to be implemented by subclassing the sensor class and overwriting the initalize and
deinitialize methods.

When a sensor detects an event, it creates an instance of the class event which
represents the detected event and captures event information in the attributes and
properties of this instance. It does not call specific components for further processing
or storage of the event, but announces the event by publishing it on the Event Bus.
This design follows the observer pattern (see Gamma et al. [58]) and decouples
sensors from further processing and storage components. It allows easy addition
and removal of sensors and event listeners. The event bus represents the subject
class of the observer pattern and notifies all registered listeners about the occurrence
of an event. It is also implemented as a singleton (see Gamma et al. [58]) to ensure
that there is one instance. The Event Listener class represents the observer class
of the observer pattern. Each implementation has to overwrite the handle event
method which is called when an event is published on the event bus. An event
listener has to be registered at the event bus to be notified of published events.
Examples for event listeners are the classes File Writer and Database Adapter that
implement functionality to write the event sequences to a file or a database.

MALTASE Sensors

This component constitutes of a set of sensors which monitor user interactions and
application events of a desktop application. Table 4.1 provides an overview of the
sensors. The sensors instrument software applications implemented using the Eclipse
Rich Client Platform RCP 1 and the Eclipse Standard Widget Toolkit SWT2. The
sensors integrate with these frameworks by using well defined extension points.
Hence, they can be installed and removed using the Eclipse update mechanism.
Furthermore, the target application does not have to be modified or recompiled to
install the sensors.

1http://wiki.eclipse.org/Rich_Client_Platform (Accessed Jan 2015)
2http://www.eclipse.org/swt/ (Accessed Jan 2015)

72

4.4 MALTASE Architecture

-instance : Event Bus
+publish(monitoredEvent : Event) : boolean
+registerListener(listener : Event Listener) : boolean
+deregisterListener(listener : Event Listener) : boolean
+getInstance() : Event Bus

Event Bus

+handleEvent(e : Event)
Event Listener

File Writer Database
Adapter

-sensing : boolean
-instance : SensorManager
+start() : boolean
+pause() : boolean
+terminate() : boolean
+getSensingStatus() : boolean
+registerSensor(sensor : Sensor) : boolean
+deregisterSensor(sensor : Sensor) : boolean
+getInstance() : Sensor Manager

Sensor Manager
-id : UUID
-sensing : boolean
-initialized : boolean
-type : string
+start() : boolean
+pause() : boolean
+terminate() : boolean
-initialize()
-deinitialize() : boolean
+getSensingStatus() : boolean
+getSensorId() : UUID
+getSensorType() : string
+createAndPublishEvent()
+setEventBus(bus : Event Bus)

Sensor

EventBus EventListeners

1 *

SensorManager registeredSensors

1 *

*
1

eventBus

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.14: Object Design of Component Monitoring Infrastructure

Table 4.1: Overview of Maltase Sensors

Sensor Name Monitored Events Abstraction Level Dependency of

Implementation

Sensors for User Interaction Events

Command Sensor User commands such as

“save file”

Command

(Abstract interaction)

Application framework

(Eclipse RCP, SWT)

Menu and

Toolbar Sensor

Interactions of users with

main menu, context

menus, and tool bar

GUI interaction

(UI Event)

Application framework

(Eclipse RCP, SWT)

GUI Part Sensor Activation of GUI parts

such as windows

GUI interaction

(UI Event)

Application framework

(Eclipse RCP)

Diagram

Manipulation

Sensor

Diagram manipulations

such as adding an UML

class

Artifact manipulation

(Abstract interaction)

Modeling Framework

(EMF)

Sensors for Application Events

Application

Sensor

Starting and closing of

target application

Application Event Application framework

(Eclipse RCP)

Exception Sensor Unhandled exceptions Application Event Application framework

(Eclipse RCP)

73

Chapter 4 The MALTASE Framework

User Interaction Sensors
The following user interaction sensors have been implemented:

• Command Sensor
This sensor monitors user commands such as saving files or exporting doc-
uments. Artifact manipulations are also covered by this sensor if they are
implemented using the command mechanism. It hooks as listener into the
SWT event queue and the Eclipse RCP command queue.

• Menu and Toolbar Sensor
This sensor monitors interactions with the main menu, context menus, and
the tool bar. It hooks as listener into the SWT event queue and the Eclipse
RCP command queue.

• GUI Part Sensor
This sensor monitors the activation of GUI parts such as windows or dialogs.
It hooks as listener into the Eclipse workbench infrastructure.

• Diagram Manipulation Sensor
This sensor monitors manipulations of diagrams such as a UML diagrams. It
hooks as listener into the Eclipse EMF framework3, which is a Eclipse frame-
work for creating and manipulation diagrams.

Figure 4.15 exemplary shows how the Command sensor integrates with the Eclipse
RCP framework. It extends the abstract sensor class from component Monitoring
Infrastructure and implements the initialize and deinitialize methods. In the ini-
tialize method, it registers itself as listener for SWT selection events at the display
of the target application. Therefore, it must implement the interface Listener and
overwrite its method handleEvent. This method is called when a selection event
occurs and it further analyzes the selected widget. When the widget is of type Item,
additional information such as the command id and the label text of the menu item
are extracted. Extracted information is captured in a new instance of class Event.

Application Event Sensors
The following application event sensors have been implemented:

• Exception Sensor
This sensor monitors handled exceptions during the execution of a target ap-
plication. It hooks as listener into the Eclipse runtime platform.

• Application Sensor
This sensor monitors when the target application starts and closes. Besides
generating events which represent these events, this sensor is used to trigger
start and stop the whole instrumentation. It hooks as listener in the Eclipse
runtime environment.

3https://www.eclipse.org/modeling/emf/ (Accessed Jan 2015)

74

4.4 MALTASE Architecture

org.eclipse.swt.widgets

+addFilter(SwtEventType : int, Listener : Listener)
Display

+handleEvent(SwtEvent)

<<Interface>>
Listener

maltase.Sensors

-initialize()
-deinitialize()
+handleEvent(SwtEvent)

Command Sensor

maltase.MonitoringInfrastructure

-initialize()
-deinitialize()

Sensor

MALTASE framework

RCP Target Application

<<implements>>

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.15: Integration of Command Sensor Into RCP Target Application

Undo History Extractor

The user interaction sensors described above integrate with application or GUI toolk-
its. This design ensures reusability for target applications developed using the same
frameworks but introduces a performance overhead for each single event. In con-
trast, the component Undo History Extractor does not monitor user interactions
directly but extracts them from the action history of undo features. It exploits the
following observation: If a target application allows users to undo previous actions,
a history of user actions is already maintained to implement the undo functionality.
Many software applications allow a fine-grained undo of previous actions which re-
quires the capture of user actions at a detailed level. For example, Figure 4.16 shows
an undo history of Microsoft Excel (order of actions from bottom to top) containing
detailed information about previous user actions.
The Undo History Extractor exploits this situation. Upon certain trigger events
such as unhandled exceptions or timers, it extracts the action history of the undo
feature. Therefore, it allows to monitor user interactions without additional perfor-
mance effort as the action history of the undo feature is captured anyway. But it also
has some drawbacks. Obviously, it requires a target application supporting undo
functionality. Furthermore, it relies on the actions captured by the undo feature
in terms of completeness and granularity. Completeness denotes the fraction of all
user interactions captured while granularity denotes the level of detail on which a
single user interaction is captured. It depends on the analysis purpose of developers
if information contained in the action history of the undo feature is sufficient.

75

Chapter 4 The MALTASE Framework

Figure 4.16: Action History of Microsoft Excel Undo Feature

The idea of the Undo History Extractor as well as an empirical study about its
feasibility has been described in Roehm and Bruegge [150]. Future work should im-
plement and evaluate it. For example, the Swing GUI toolkit provides a centralized
undo manager which can be exploited to extract user actions [71].

4.4.2 Storage & Transfer Layer

The components of this layer implement functionality to store monitored data and
transfer it to a developer server for permanent storage and analysis. All components
are independent of the target application.

File and Database Data Store

Data monitored by Maltase sensors has to be stored on two devices. First, it has
to be stored temporarily on the user device. Then it has to be transferred to a
developer server and stored there permanently. Maltase uses two types of data
store for this task: the File Data Store stores monitored data as XML files and
the Database Data Store stores monitored data in a relational database. Both data
stores use the event representation from the Maltase model (see Section 4.3 for
details) and translate it to an xml document structure or database schema. The
Database Data Store is implemented using the MySQL database system4. The File
Data Store is usually used on the user device. The data store on the developer server
is realized with the Database Data Store because of the concurrency of multiple user
devices accessing the server. Figure 4.17 shows events stored in the Database Data
Store, while Figure 4.18 shows the same events represented as an xml file from the
File Data Store.

Ontology Component

The Maltase framework encompasses an ontology in the Web Ontology Language
OWL [195] which represents the Maltase model described in Section 4.3. Fig-
ure 4.19 shows an excerpt of the Maltase ontology. It allows to define semantics

4http://www.mysql.com/ (Accessed Jan 2015)

76

4.4 MALTASE Architecture

Figure 4.17: Monitored Events in Database Data Store

<?xml version="1.0" encoding="utf-8" ?>

<EventSequence>

<Event>

<Id>13</Id>

<Type>ActivateGuiPart</Type>

<AddInfo>MOSKitt UML2 Class editor</AddInfo>

<StartTimestamp>2012-12-19 16:14:35</StartTimestamp>

<EndTimestamp>2012-12-19 16:14:35</EndTimestamp>

</Event>

<Event>

<Id>14</Id>

<Type>AddUmlClass</Type>

<AddInfo>org.eclipse.uml2.uml.Class</AddInfo>

<StartTimestamp>2012-12-19 15:56:22</StartTimestamp>

<EndTimestamp>2012-12-19 15:56:22</EndTimestamp>

</Event>

<Event>

<Id>15</Id>

<Type>ActivateGuiPart</Type>

<AddInfo>Propiedades</AddInfo>

<StartTimestamp>2012-12-19 16:13:02</StartTimestamp>

<EndTimestamp>2012-12-19 16:13:02</EndTimestamp>

</Event>

<Event>

<Id>16</Id>

<Type>ActivateGuiPart</Type>

<AddInfo>MOSKitt Model Explorer</AddInfo>

<StartTimestamp>2012-12-19 16:09:05</StartTimestamp>

<EndTimestamp>2012-12-19 16:09:05</EndTimestamp>

</Event>

<Event>

<Id>17</Id>

<Type>SaveFile</Type>

<AddInfo>org.eclipse.ui.file.save</AddInfo>

<StartTimestamp>2012-12-19 15:52:09</StartTimestamp>

<EndTimestamp>2012-12-19 15:52:09</EndTimestamp>

</Event>

</EventSequence>

Figure 4.18: Monitored Events in File Data Store

77

Chapter 4 The MALTASE Framework

Figure 4.19: Maltase Ontology (Excerpt)

of monitored data such as application events and user interactions. A defined se-
mantics facilitates the integration of monitored data from different sensors as well
as the collaboration of sensor implementers and implementers of analysis routines.
Furthermore, it enables semantic reasoning about monitored data. Monitored events
are mapped to this event ontology by specifying the correct, full URI of an ontology
class as event type. If sensor implementors use ontology URIs when creating events,
they are preserved during processing and storage in the Maltase framework and
can be exploited by analysis components.
Using the Maltase ontology is optional and depends on the sensor implementors.
When sensor implementors decide not to use the Maltase ontology, it is their
responsibility to assert meaningful event types which contain the information nec-
essary for the intended data analysis.

Server Push Mechanism

Monitored data has to be transferred from the user device where it was monitored
to the developer server for analysis. This functionality is implemented by the the
server push mechanism which consists of two components, Server Push-Client and
Server Push-Server. The component Server Push-Client runs on the user device,
retrieves monitored data from a local data store, and sends it to the Server Push-
Server. The Server Push-Server runs on the developer server, receives monitored
data from the Server Push-Client, and stores it in a permanent data store on the
developer server. The communication between client and server part is implement
using TCP sockets: monitored data is serialized, transferred via sockets in a network
or over the Internet, and deserialized on the server side.

An alternative to the server push mechanism is manual, file-based transfer. Mon-
itored data is stored in local XML files on the user device. Then, it is the responsi-
bility of the user to transfer XML files to the developer.

78

4.4 MALTASE Architecture

4.4.3 Processing & Analysis Layer

Monitoring and storing user interactions is not a goal in itself but a necessary
prerequisite to analyze software usage. The components in this layer implement
functionality for processing and analyzing monitored data with the goal to extract
helpful knowledge for developers during software evolution. All components are in-
dependent of the target application. Analysis results are presented to developers by
components of the Presentation and Integration Layer (see Section 4.4.4).

As discussed in the framework requirements in Section 4.2, the type of analysis
depends on monitored data as well as the current information needs of developers.
The completeness and level of detail of monitored data determines which analyses
can be performed. Furthermore, different analysis might be run on the same data
when developers are interested in different information. Therefore, the components
of this layer constitute a toolbox of functionality. Developers can choose from it and
combine different processing and analysis components depending on the available
data and their analysis purpose. In some cases, processing can be skipped altogether
and monitored data is inspected by developers directly. For example, monitored user
interactions preceding failures can be exploited as failure reproduction steps without
processing (see Maltase-based failure reproduction described in Section 5.1).

Preprocessing Component

Monitored data usually has to be cleaned and preprocessed before data analysis can
start. The preprocessing component implements such functionality.

The central entities on which all analysis components operate are events, sequences
of events, and sequence databases. These concepts originate from the Maltase
model. An event represents user interactions or application events. An event se-
quence is a set of events which represents a user session. Events of an event sequence
are ordered according to their timestamps. Finally, an event sequence database con-
sists of a set of event sequences.

Figure 4.20 depicts different types of preprocessing operations. All preprocessing
operations receive a database of event sequences as input, process it, and return
another database of event sequences. If only one event sequence is to be analyzed,
the database consists of one event sequence. Each implementation of a preprocessing
operation has to extend the abstract class PreprocessingOperation and implement
the doOperation method. This design standardizes the interface of preprocessing
operations and facilitates the concatenation of different preprocessing operations.

There are five different types of preprocessing operations in the Maltase frame-
work: FilterSequenceDb, SessionizeSequence, SortEvents, AggregateEvents, and Fil-
terEventSequence. FilterSequenceDb implements filter functionality on sequence
database level, i.e. adding or removing whole event sequences in a event sequence
database. Its subtypes implement different filter criteria: FilterSeqDbByUser ac-
cepts only event sequences from certain users, FilterSeqDbByDate accepts only event
sequences fulfilling certain date requirements, FilterSeqDbByEventType accepts only
event sequences that contain certain types of events, and FilterSeqDbBySeqLength
accepts only event sequences which have a certain minimal or maximal length. Ses-
sionizeSequence implements functionality to break up a long sequence into a set of

79

Chapter 4 The MALTASE Framework

EventSequenceDb

EventSequence

Event

+doOperation(in : EventSequenceDb) : EventSequenceDb
PreprocessingOperation

FilterSequenceDb FilterEventSeqenceAggregateEventsSessionizeSequence SortEvents

FilterSeqDbByUser

FilterSeqDbByDate

FilterSeqDb
ByEventType

FilterSeqDb
BySeqLength

SortByDate AggrDuplicateEvents

AggrConsecutive
Events

AggrEventPattern

FilterEventSeq
ByType

SessionizeBy
EventType

SessionizeByInactivity FilterEventSeq
ByDate

operatesOn

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.20: Overview of Preprocessing Operations

smaller sequences. Its subtypes implement different splitting criteria: Sessionize-
ByEventType splits a sequence according to the occurrence of a certain event type,
e.g. application start or application close events. SessionizeByInactivity splits a se-
quence after a certain time of user inactivity. SortEvents implements functionality
to sort events in a sequence. For example, to sort all events according to their times-
tamp (SortByDate). AggregateEvents implements functionality to aggregate two or
more events of an event sequence. Aggregation denotes the removal of a the set of
events and replace them with a single, new event. Its subtypes implement different
ways to aggregate sets of events. AggregateDuplicateEvents detects that two events
are duplicates and removes one of them. This situation can occur when two sensors
monitor the same type of event. AggregateConsecutiveEvents aggregates events of
the same type which occur after each other without another event in between. For
example, the event sequence “Copy, Paste, Paste, Paste” can be aggregated to the
event sequence “Copy, Paste” if the number of Paste occurrences is not relevant. And
AggregatePattern aggregates a certain event pattern, i.e. a set of events that occur
in a specified order after each other, and replaces the pattern events with a single
new event. Finally, FilterEventSequence implements functionality to filter events of
an event sequence. Similar to the filtering on sequence level, different criteria can
apply to determine which event instances to keep and which ones to remove. This
functionality is used to remove noisy events which are not relevant for the analysis.

Feature Extraction Component

Many machine learning algorithms need a set of features as input. The component
Feature Extraction component calculates such features from a database of event
sequences. Feature extraction can be seen as an aggregation of the event sequence
database focussing on aspects which are relevant for the analysis. The mechanisms in
this component differ from the ones in the preprocessing component in their purpose:

80

4.4 MALTASE Architecture

 name : String
Feature

+extract(eventSeqDb : EventSequenceDb) : List<Feature>
FeatureExtractor

FeatureValue

FeatureTarget

CountFeature

Occurrence
Feature

CountExtractor

Occurrence
Extractor

User

EventSequence

Numeric Boolean EventType

extracts

extracts

extracts

Visual Paradigm for UML Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.21: Overview of Feature Extraction Component

the purpose of the preprocessing component is to select and clean monitored data
retrieved from the server data store. The mechanisms in this component represent
a first step of analysis.

Figure 4.21 gives an overview of the Feature Extraction component. A feature
consists of a feature value and a feature target. A feature can be attributed to a user
or an event sequence and this fact is represented as the FeatureTarget. For example,
the count feature calculates the number of interactions in a sequence (target: event
sequence) or the number of sessions of a user (target: user). The value of a feature
can be a numeric number or an event type.

Analysis is already possible at the level of extracted features. For example, event
sequences can be distinguished based on whether crash events occur in them. Also,
statistical analysis is possible by e. g. calculating the number of user interactions
per minute or frequencies of different types of user interactions.

Sequential Pattern Mining

The purpose of this component is to mine frequent sequential patterns of events
in monitored data. The component receives a database of event sequences and a
support value. It mines all frequent, sequential, closed patterns which occur in
the sequences of the input sequence database. Thereby, frequent denotes that the
number of occurrences is higher than the support value (the minimum number of
sequences in which a pattern must occur), sequential denotes that the order of
events is considered, and closed denotes that there is no sub pattern with the same
or higher support. This functionality is implemented using the BIDE algorithm [196]
as provided by the SPMF library5.

Detected patterns can be exploited in several ways. For example, they can be
used for event aggregation: When an instance of a pattern is detected, all events
of the pattern instance are removed and replaced with a single, new, more abstract
event. Further they can be used as features in classification: When classifying user

5http://www.philippe-fournier-viger.com/spmf/index.php (Accessed Jan 2015)

81

Chapter 4 The MALTASE Framework

skill, the occurrence of a pattern representing an undo operation can be used as an
indicator for novice users.

Classification

This component implements classifiers used to classify a particular user, a particular
event sequence, or a particular event into a predefined set of categories. Depending
on the type of entity to be classified, the input for this component is user data,
an event sequence, or a particular event. The component employs its classifier and
predicts a category for the input entity.

Before the classification component can be used, a classifier has to be learned. For
example, a classifier which detects wether the current user is a novice or an expert.
Decision tree classifier [141] are used because decision trees are well known classifiers
and decision trees can be interpreted by humans. This component is implemented
using weka’s J48 algorithm [69] which is an implementation of the C4.5 decision tree
learning algorithm [141]. Decision tree learning is a supervised learning algorithm
and therefore requires training data in order to learn the classifier.

This component is used to classify users based on their application skill in novices
or experts (see Maltase-based skill detection which is described in Section 5.2).

Model-Trace Comparison

The purpose of this component is to compare traces of monitored user interaction
with a model of expected behavior and detect mismatches between both. Mis-
matches represent deviations of user behavior from developer expectations. We hy-
pothesize that these mismatches yield interesting insights which can lead to software
improvements or the correction of model and developer expectations.

The input of this component is a use case of the target application as well as a
monitored interaction trace from a user session in which the user performs this use
case. It extracts a Petri net which represents the flow of events of the use case and
compares the input interaction trace to this Petri net, identifying missing interac-
tions as well as additional interaction compared to the use case specification. The
comparison is performed using the “conformance checking” mechanism of process
mining [189] which is implemented in the ProM library6.

This component is used in Maltase-based use case detection which is described
in more detail in Section 5.3.

4.4.4 Presentation & Integration Layer

The components of this layer implement functionality for presenting monitored data
and analysis results to developers. To minimize the effort, they integrates into the
workflow of developers whenever possible. The integration is realized by pushing
information into the tools and infrastructure used by developers in their work. All
components of this layer are independent of the target application.

6http://www.promtools.org/prom6/ (Accessed Jan 2015)

82

4.4 MALTASE Architecture

1

3 4 <REMOVED>

<REMOVED>

2

Figure 4.22: Visualization of Event Sequence in Timeline Tool (Source: [152])
1: Chronological timeline view, 2: Event type filter, 3: General event
properties, 4: Event properties specific for selected event

Event Sequence Visualization in Timeline Tool

To facilitate developers to inspect and analyze monitored data, this component
visualizes event sequences as shown in Figure 4.22. Developers can load a particular
event sequence and see it graphically on a timeline. They can navigate the event
sequence zooming in and out. Furthermore, they can filter event types, i.e. apply a
filter to display or hide types of events. When developers are interested in particular
event of the timeline, they can select it and inspect its properties. This functionality
is implemented in the Timeline Tool, a Java application which connects to the
Database Data Store, retrieves monitored interactions traces, and visualizes them.

Bug Tracker Adapter

To integrate information extracted by Maltase in the workflow of developers, this
component implements functionality to create a bug report and inject it in an ex-
isting bug tracker. This component is used when a data analysis detects a failure.
Figure 4.23 sketches how the integration works: An analysis component retrieves
monitored data from the server data store and analyzes it. If the analysis detects
a new failure, information about the failure is pushed to the component Bug Track
Adapter. This component creates a bug report which contains information about the
failure as well as the user interactions which preceding the failure. This bug report
is injected to the bug tracker running on another device via a HTTP or TCP/IP
connection. Currently the Maltase framework supports the Trac bug tracker7.

7http://trac.edgewall.org/ (Accessed Jan 2015)

83

Chapter 4 The MALTASE Framework

Bug Tracker Server

Developer Server

<<component>>
BugTracker

<<component>>
Analysis

Component

<<component>>
DataStore

<<component>>
Bug Tracker

Adapter

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4.23: Bug Tracker Integration
Arrows denote data flow between components

4.5 MALTASE Usage Scenarios

Maltase is agnostic to the development process used and can be employed in
different phases of a software development project or during software evolution. This
dissertation focuses on the use of Maltase in software evolution, but we envision
three usage scenarios for Maltase : gathering usage information in prototype-based
software development, supporting test documentation during software testing, and
gathering usage information during software evolution.

In the first usage scenario, Maltase is used to gather usage information in
prototype-based software development. Hence, the scenario requires a software de-
velopment process which frequently creates usable prototypes. This is the case for
many agile processes which emphasize the frequent creation of testable product
increments. In such a scenario, the Maltase framework is integrated with the pro-
totype and interactions of users testing the prototype are captured and analyzed.
This allows to exploit insights gained early during development.

In the second usage scenario, Maltase is used to document software testing activ-
ities. The Maltase framework is integrated with a version of the target application
to be tested. While testers interact with the target application during testing, their
interactions are captured and analyzed by Maltase . When testers trigger a fail-
ure, they don’t have to manually describe their interactions that led to the failure
because Maltase already monitored them in the background (cf. Maltase-based
failure reproduction in Section 5.1).

84

4.6 Related Work

In the third usage scenario, Maltase is used to collect usage information during
software evolution. The Maltase framework is integrated with the target appli-
cation and deployed together with it to users in the field. Maltase automatically
monitors and analyzes user interactions and sends this information back to develop-
ers. This scenario constitutes a continuous, automated feedback mechanism between
users and developers. The usage information gained is used in software evolution
and to improve the target application.

Several agile development practices and corresponding tools can be viewed as
enablers for the Maltase approach. The practices of continuos integration and
continuous delivery ensure that a usable prototype of the target application exists
at any time. This fits well with Maltase because at least a usable prototype is
necessary to monitor user interactions. Infrastructure tools for continuous delivery
allow the deployment of application releases to users and collect data from users.
Examples of such infrastructures are application distribution platforms such as Test-
Flight8 or Hockey App9. Similarly, several companies have introduced automated
crash reporting tools such as Microsoft Windows Error Reporting [63] or Apple
Crash Reporter 10. These tools collect crash data on a user device and send it to a
developer server but usually do not capture user interactions. Hence, we argue that
they should be extended by the collection of user interactions data to improve the
tools and to implement the Maltase approach.

4.6 Related Work

The purpose of the Maltase framework is the acquisition of usage information
by monitoring and analyzing high-level user interactions. This section discusses
related work in two directions, namely the monitoring of user interactions and their
analysis and exploitation. To focus the discussion, we do not review related work
targeting web applications or mobile applications as well as approaches monitoring
plain usage, i.e. no user interactions, or code execution.

Recent empirical studies found that usage information is important for develop-
ers. Begel and Zimmermann [15] collected a list of prioritized questions which are
important for developers and should be tackled by data scientists. The two top
rated questions were usage-related: “How do users typically use my application?”
and “What parts of a software product are most used and/or loved by customers?”.
Similarly, Buse and Zimmermann [26] present information needs during software
analytics. They describe the decision scenario “understanding customers” which
“leverages information about customer behavior when making decisions”, e.g. to
“understand how a user is using our product” or whether users are “performing tasks
we expect”. Redmiles [143] argues for the collection of usage information and de-
scribes a roadmap for human-centered software development with the goal to evolve
a software application through data-driven feedback. His roadmap consists of the
four main activities Observe, Use, Design, and Review. Observe denotes observing
users and their organizational context in the field using activity theory to investigate

8https://www.testflightapp.com/ (Accessed Jan 2015)
9http://hockeyapp.net (Accessed Jan 2015)

10https://developer.apple.com/library/mac/#technotes/tn2004/tn2123.html (Accessed Feb 2015)

85

Chapter 4 The MALTASE Framework

the usage context and derive requirements. Use denotes deploying an instrumented
application and collecting usage data. Finally, Review denotes maintenance of a
knowledge base with knowledge about an application and its use and exploiting this
knowledge base during software evolution, e.g. by basing evolution decisions on this
knowledge. Maltase fits well into this roadmap and implements its Use activity.
Orso [131] argues for the collection and exploitation of field data during software
engineering. According to him, the complexity of software itself as well as the het-
erogeneity of software environments is growing. Hence, it is difficult to envision and
test all possible usage environments before releasing an application and developers
are often unaware of the behavior of their software in the field. Orso argues that field
data should be collected to help developers overcoming the problems of increasing
complexity and unpredictability. Maltase fits well in his argumentation as it col-
lects one type of field data, namely user interactions. Diep [38] discusses how usage
data of deployed software can be collected and analyzed. She identifies three phases:
(1) pre-deployment phase when instrumentation probes are inserted, (2) during-
deployment phase when usage data is collected and sent to analysis servers, and (3)
post-deployment phase when collected field data is analyzed. Maltase supports all
three phases as it instruments target applications using sensors (pre-deployment),
collects and transfers monitored data (during-deployment), and enables analysis of
monitored data (post-deployment). In contrast to the Maltase framework, Diep
focuses on monitoring code execution to improve in-house testing activities.

Monitoring User Interactions

This section presents related work also monitoring user interactions with desktop
applications. User interactions can be monitored in several ways and on several
abstraction levels. Developers can monitor user interactions by manually adding
dedicated monitoring code to the code base of their application [179]. Frameworks
like Google Analytics (which is discussed below) can be used to transfer monitored
data to developer servers and analyze them. This instrumentation approach has
the drawbacks that monitoring code has to be added manually and it is usually dis-
tributed throughout the code base. This distribution makes it difficult to maintain
monitoring code and vulnerable to changes of the user interface [179]. In contrast,
Maltase monitors user interactions by software sensors which integrate with appli-
cation or GUI toolkits. This mechanism avoids manual instrumentation throughout
the code base of the target application and recompilation of the target application
because of the instrumentation.

To address the drawbacks of adding monitoring code to the code base of a target
application, aspect-oriented approaches have been proposed to instrument applica-
tions and monitor user interface events. Tao [177, 178, 179] monitors user action
events in Java applications. He exploits the Model View Controller (MVC) architec-
ture by observing event listeners implementing MVC via aspect oriented program-
ming. Hartman and Bass [71] use an aspect oriented approach to monitor GUI events
and additional processing information from different architecture layers. They also
monitor changes to documents via the undo mechanism of the GUI toolkit. Bateman
et al. [12] designed UMARA, a system which allows instrumentation without the

86

4.6 Related Work

need of programming. Users can select widget of Java GUIs and specify which wid-
get events should be captured. UMARA is based on aspect-oriented programming to
implement the instrumentation. Similarly, Shekh and Tyerman [165] as well as Tarta
and Moldovan [180] present frameworks which use aspect-oriented programming to
collect user interface events and evaluate the usability of an application. In contrast,
Maltase monitors user interactions on the levels of user interface events as well
as abstract interactions. Maltase does not use aspect oriented programming but
its sensors integrate via toolkit listener mechanisms with a target application. This
mechanism avoids the addition of monitoring code as well as the recompilation of
the target application because of the instrumentation.

User interactions can be monitored by exploiting listener mechanisms of appli-
cation or GUI toolkits. The Maltase sensors use such a mechanism to integrate
with a target application. The FastFix platform [137] deploys sensors implemented
as toolkit listeners to target applications. While Maltase and FastFix use similar
sensors for data collection, Maltase extends FastFix and provides additional func-
tionality to analyze monitored data. The Eclipse Usage Data Collector (UCD) 11

is a framework to collect usage data from users employing Eclipse-based applica-
tions. It monitors commands, actions invoked via menus or toolbars, and perspec-
tive changes. To monitor this data, Eclipse UCD uses listeners installed in the
Eclipse framework. While Maltase and Eclipse UCD use a similar mechanism
to monitor user interactions, Maltase provides functionality to analyze monitored
data which is not considered by Eclipse UCD. Dostál and Eichler [41] monitor user
commands in OpenOffice using a customized macro recorder. Furthermore, they
log user interface events to determine the interaction style, i.e. whether a command
was triggered by the main menu, the toolbar, or a hot key. Maltase monitors user
commands in a similar way but additionally monitors artifact manipulations and
provides functionality to analyze monitored data.

User interactions can be monitored using model-driven instrumentation as de-
scribed by Funk et al. [55]. Their approach models user interfaces in UML, identi-
fies GUI elements to be monitored by assigning a particular UML stereotype, and
generates application and monitoring code from these models. While this approach
has the advantage that the instrumentation can be changed easily by changing the
GUI model and re-generation of code, it is applicable only to applications which are
developed using GUI models. Maltase does not monitor user interactions using a
model-driven approach.

User interactions can be monitored by instrumenting the toolkit used by the
target application or the system environment on which the target application is
deployed [12]. Toolkit instrumentation denotes the instrumentation of the toolkit
which processes user interface events [12]. For example, Fenstermacher and Gins-
burg [49] monitor user interactions indirectly by monitoring events in applications
implemented using the Common Object Model COM. While the instrumentation
is reusable for all applications using the toolkit, the monitored interactions are
rather low-level, potentially causing problems to abstract and interpret collected
data. Maltase uses a middle way between application and toolkit instrumen-
tation. The Maltase sensors are installed in individual target applications, but
11http://eclipse.org/org/usagedata/ (Accessed Jan 2015)

87

Chapter 4 The MALTASE Framework

depend only on a toolkit. Hence, they are independent of a particular target appli-
cation and can be reused for other target applications using the same toolkit. But
the toolkit itself is not instrumented.
System instrumentation denotes to use logging on operating system-level to record
interface events [12]. This instrumentation is independent from the target applica-
tion, but - similar to toolkit instrumentation - monitored interactions are rather low-
level. For example, Alexander et al. [6] present AppMonitor, a tool which records
user interface events using the SDK of Microsoft Windows. Maltase does not
monitor user interactions on operating system level.

Several approaches have been proposed to monitor artifact manipulations per-
formed by users during their work with an application. Mylar [93, 122] monitors
the interaction history of software developers with code artifacts in the Eclipse IDE.
Maalej et al. [113] provide an overview of different approaches to monitor interac-
tions of developers with software artifacts. Maltase exploits monitored data for
different purposes. Terry et al. [182] as well as Hartman and Bass [71] monitor
document changes via the undo feature of the target application. The Maltase
framework describes two ways of monitoring user interactions, monitoring of undo
operations and the Maltase sensors.

Analyzing and Exploiting User Interactions

This section presents related work analyzing and exploiting monitored user inter-
actions in software engineering or software evolution. Because the analysis and
exploitation are often closely related, we discuss both together. Related work for
the Maltase applications, i.e. failure reproduction, skill detection, and use case
testing, is also discussed in Chapter 5.

Monitored user interactions can be analyzed for different purposes using different
analysis algorithms. Liu et al. [111] present a sequence mining approach to detect
frequent episodes in user action sequences. Similarly, El-Ramly et al. present the
algorithms IPM [46] and IPM2 [44] to discover interaction patterns in interaction
traces. They adapt algorithms from the field of sequential pattern mining to the
specifics of user interaction traces. Like these approaches, Maltase uses sequential
pattern mining techniques to detect patterns in interaction traces, but also employs
other analysis algorithms depending on the framework application.

Monitored user interactions can be exploited in software evolution. FastFix [137]
supports developers to reproduce failures, identify failure causes, and automatically
patch applications based on monitored usage data. Maltase extends the failure
reproduction support of FastFix and provides additional ways of exploiting moni-
tored interactions. The PORTNEUF framework [135] monitors user interactions as
context information for user feedback. The interaction context of a user is used to
recommend existing feedback with a similar context and to reduce duplicate user
feedback. Hilbert and Redmiles [77, 78, 80] present EDEM monitoring user interface
events selectively, i.e. developers have to specify their expectations and interactions
to be be monitored upfront. They use monitored interactions to analyze user behav-
ior, validate assumptions about user behavior, assess the impact of observed user
behavior, and allocate development resources. Maltase and EDEM share the goal

88

4.6 Related Work

to provide usage knowledge to developers via usage monitoring and implement sim-
ilar approaches for user interaction monitoring and data collection. But Maltase
differs from EDEM in two directions. While EDEM monitors user interactions at
the level of user interface events, Maltase additionally monitors user interactions
on the level of abstract interactions. Furthermore, Maltase addresses different
exploitations of monitored user interactions in software evolution. El-Ramly and
Stroulia [43] apply sequential pattern mining methods to interaction traces in order
to discover interaction patterns and exploit them for user interface reengineering.
Stroulia et al. [173, 174, 175] extract models of the user interface and of user tasks
from system-user interaction traces and use them to migrate legacy applications
to the web. Similarly, El-Ramly et al. [45] as well as Smit et al. [170] present ap-
proaches to reverse engineer use case models from monitored interaction traces. Like
Maltase, these approaches analyzes monitored user interactions but they exploit
knowledge gained for other software evolution tasks. Van der Schuur et al. [191]
as well as Krusche et al. [103] describe how software operation knowledge can be
incorporated in software development and evolution processes. As this area is not
investigated in this disseration because of scope reasons, their approach and results
should be considered when introducing Maltase in a software evolution context.

Monitored user interactions can be exploited to get insights into user behavior.
Pachidi et al. [133] analyze software operation data to gain knowledge about soft-
ware usage. They target four categories of knowledge: summaries of sessions and
user behavior, factors influencing customer decisions, user profiles, and frequent
navigation paths. To extract this knowledge, they use classification analysis, user
profiling, and clickstream analysis. They share with Maltase the goal of providing
developers with insights about software usage but target different types of knowl-
edge and use other types of analysis. Hence, their approach is complementary to
Maltase. Several researchers, e.g. Kay and Thomas [92], Terry et al. [182] and
Murphy et al. [122], have studied how users use a particular application. Microsoft’s
Customer Experience Improvement Programme12 collects data about command us-
age (e.g. paste) and feature usage (e.g. tables). This data is used to redesign the
user interface, e.g. optimize the arrangement of buttons. Runtime intelligence tools,
e.g. Google Analytics13 or Trackerbird Software Analytics 14, collect data how users
use a particular application. They provide insights in user behavior such as feature
usage or navigation patterns, but usually do not provide direct support for software
evolution. Several researchers, e.g. Kim et al. [95], Hullet et al. [83], and Gagné et
al. [56] present approaches to monitor user actions in games and extract insights to
improve game design. These approaches share with Maltase the goal to provide
developers with information about software usage, but usually do not provide direct
support for software evolution.

Exploiting monitored user interactions to evaluate the usability of an application
has a long tradition in the field of human-computer interaction. Hilbert and Red-
12http://blogs.technet.com/b/office2010/archive/2010/02/09/how-does-usage-

data-improve-the-office-user-experience.aspx (Accessed Feb 2015),
http://blogs.technet.com/b/office2010/archive/2009/11/03/data-driven-engineering-tracking-
usage-to-make-decisions.aspx (Accessed Feb 2015)

13http://www.google.com/analytics/ (Accessed Feb 2015)
14http://www.trackerbird.com/ (Accessed Feb 2015)

89

Chapter 4 The MALTASE Framework

miles [79] provide an overview of techniques to extract usability-related information
from monitored user interface events. Similarly, Ivory and Hearst [85] provide an
overview of automated methods for usability evaluation. Hoiem and Sullivan [81]
provide an overview of tools for computer-aided usability engineering (CAUSE), i.e.
tools for collection and analysis of usability data. Lecerof and Paternò [106] evaluate
user interfaces using task models and logs generated from user tests. Akers et al. [5]
present backtracking analysis, a usability method which treats backtracking actions
of users like undo as indicators for usability problems. Tao [179] use a grammar-
based approach to detect the user’s task based on monitored user interface events.
In contrast to these approaches, Maltase does not aim to evaluate the usability of
applications but to exploit monitored user interactions in software evolution.

Monitored interactions of developers with CASE tools have been used to study
developer behavior. Murphy et al. [122] study how developers use the Eclipse IDE.
Similarly, the Eclipse Usage Data Collector15 collects usage data of developers work-
ing with Eclipse. Murphy-Hill et al. [124] analyze refactoring practices of developers
based on monitored developer actions. Similarly, ElectroCodeoGram [160] mon-
itor programming actions of developers and analyze them to study programmer
behavior. Hackystat Hackystat [90] analyzes developer actions and development
processes in combination. Furthermore, monitored interactions of developers with
CASE tools have been used to improve CASE tools and support developers in their
work. Maalej et al. [113] review approaches collecting interaction data and exploit-
ing them as database for developer recommender systems. Maalej and Happel [114]
present TeamWeaver, a framework monitoring developer interactions with develop-
ment artifacts to automatically capture developer knowledge and enable knowledge
exchange in development teams. Similarly, Kersten and Murphy [93] monitor de-
veloper interactions with code artifacts to create a task context, i.e. a set of code
artifacts relevant to the current task. This task context is used to filter information
displayed in the IDE and reduce information overload. Inti [112] monitors interac-
tions of developers with CASE tools to detect the current intention of a developer
and integrate different CASE tools. In contrast to these approaches, Maltase does
not aim to study developer behavior or generate recommendations for developers
but to establish a feedback channel from users to developers via monitored data. As
developers are users, too, Maltase can be applied to CASE tools.

Monitored user interactions can be exploited to assist users and adapt to the cur-
rent user. Several frameworks, e.g. [37, 101], capture user interactions as part of the
usage context and exploit them to enable context-aware applications, i.e. applica-
tions which are aware of their context and adapt to it. Furthermore, monitored user
interactions can be exploited to support users in improving their application skills.
For example, Linton et al [109], Murphy-Hill et al. [123], and Matejka et al. [120]
monitor command usage and recommend users rarely used commands to improve
their application skill. Similarly, monitored user interactions can be exploited to as-
sist users by (partially) automating their tasks. For example, Liu et al. [111] present
an approach to assist users of Microsoft Word to format text or apply consistent
formatting styles based on frequent episodes in interaction traces. Maltase does

15http://eclipse.org/org/usagedata/ (Accessed Feb 2015)

90

4.7 Chapter Summary

not address such exploitation of monitored interactions. But we hypothesize that
interactions monitored by Maltase can be used for such purposes.

User interactions are one type of software operation knowledge. Van der Schuur
et al. [190] present a reference framework for utilization of software operation knowl-
edge. They define four types of software operation knowledge, namely performance,
quality, usage, and end-user feedback. Additionally, they describe how such knowl-
edge can be integrated into software evolution processes. Furthermore, Kristjánsson
and van der Schuur [102] survey industrial tools for the acquisition of software opera-
tion knowledge. Maltase fits into this framework as it investigates user interactions
as one type of software operation knowledge in detail and demonstrates exploitation
of user interaction knowledge.

4.7 Chapter Summary

This chapter described the Maltase framework in detail. It listed requirements
for a framework monitoring, analyzing, and exploiting user interactions in software
evolution: monitoring high-level user interactions because of their semantic, easy
integration of sensors in target applications to minimize instrumentation effort, in-
troduction of an acceptable performance overhead to avoid hindering users in their
work, maintaining user privacy to ensure user acceptance, visualization of monitored
data and analysis results to enable developers to inspect and exploit usage knowl-
edge, and the integration of the framework into existing tool chains to avoid tool
islands. Also, this chapter presented a conceptual model of user interactions, users,
software applications and usage contexts.

Furthermore, this chapter presented the architecture of the Maltase framework
consisting of four layers. The Monitoring & Information Extraction layer is responsi-
ble for monitoring user interactions. Maltase monitors high-level user interactions
such as commands and artifact manipulations to capture semantics. The Monitoring
& Information Extraction layer uses two mechanisms to monitor user interactions:
the Maltase sensors and the Undo History Extractor. The Maltase sensors hook
as listeners into application or GUI toolkits. Hence, they are reusable for other ap-
plications based on the same toolkits and do not require dedicated monitoring code
or recompilation of the target application. The Undo History Extractor extracts the
interaction history of the undo feature and enables monitoring with minimal runtime
overhead because this information is captured anyway. The components of the Mon-
itoring & Information Extraction Layer are the only components of the Maltase
framework which depend on the target application or its toolkits. The Data Storage
& Transfer layer is responsible for persisting monitored data and transmitting them
to a developer server. For this purpose, this chapter presented a taxonomy of appli-
cation events and user interactions, a database layout, a XML file format, as well as
a client-server communication mechanism based on TCP sockets. The Processing
& Analysis layer is responsible for processing and mining monitored data. For this
purpose, this chapter described preprocessing operations such as filtering, session-
izing, sorting, or aggregating events. Further, it defined analysis functionality such
as feature extraction, sequential pattern mining, or classification. The Presentation
& Integration layer is responsible to present monitored data and analysis results to

91

Chapter 4 The MALTASE Framework

developers and integrate this information into developer tools. For this purpose, it
contains a component to visualize monitored user interactions as well as component
to generate bug reports and inject them into a bug repository.

We presented three usage scenarios of the Maltase framework: software evolu-
tion, software testing, and prototype-based software development. In the software
evolution scenario, an instrumented version of the target application is deployed to
end users and used to collect field usage data. In the software testing scenario, an
instrumented version of the target application is deployed to testers and used to
document the testing activities. And in the prototype-based software development
scenario, an instrumented prototype is deployed to user representatives and used to
collect early feedback.

Finally, we discussed related work for the Maltase framework. We found that
many researchers investigated automated usability evaluation based on monitored
user interactions as well as usage of CASE tools by software developers. Maltase
differs from these areas as it exploits monitored user interactions during software
evolution. Furthermore, several runtime intelligence tools are used in practice which
monitor software usage and provide insights into user behavior. Maltase comple-
ments those tools by focusing on extraction of usage information relevant during
software evolution and its exploitation.

Overall, the Maltase framework implements an indirect communication channel
between users and developers via usage monitoring. This communication channel
requires no effort from user beyond their agreement of being monitored. Developers
can inspect monitored data and analysis results to get insights into user behavior,
exploit this knowledge in evolution tasks, and base evolution decisions on it. Hence,
Maltase addresses the communication gap between developers and users and pro-
vides developers with usage knowledge which is helpful during software evolution.

92

Chapter 5

Framework Applications

This chapter describes three ways to employ the Maltase framework to gain usage
knowledge for developers during software evolution. We call these ways “framework
applications”. The first framework application “Maltase-based failure reproduc-
tion” (Section 5.1) exploits monitored user interactions preceding failures as repro-
duction steps during bug fixing. The second application “Maltase-based skill de-
tection” (Section 5.2) classifies users according to their skills based on monitored user
interactions. And the third application “Maltase-based Use Case Testing” (Sec-
tion 5.3) compares monitored user interactions with use case steps to test whether
users employ an application as expected by developers.

5.1 MALTASE-based Failure Reproduction

This section describes Maltase-based failure reproduction, an approach monitoring
user interactions preceding failures and presenting them to developers during bug
fixing as reproduction steps. We hypothesize that this information helps developers
to reproduce and fix bugs. This approach has been published in Roehm et al. [152].
An empirical evaluation of the approach is presented in Section 6.3.

5.1.1 Motivation

“93% of 1,477 participating software developers encounter problems due
to missing knowledge when reproducing failures weekly, 70% daily.”
Maalej et al. [117]

Reproducing failures allows software developers to verify that a problem exists and
constitutes a first step towards identification of the failure cause and fixing the bug
causing the failure. To reproduce a particular failure, developers need information
about reproduction steps, i.e. the steps necessary to trigger the failure, and informa-
tion about the failure environment, i.e. the setting in which the failure occurs [201].
Because developers are usually not present when users employ an application in the
field, they do not have first hand information about reproduction steps and failure
environments. Correspondingly, participants of the problem case study presented
in Chapter 3 were interested in failure reproduction steps as one type of usage in-
formation. But because such information is rarely available to developers, they
frequently face problems when reproducing failures. In a survey [117], 93% of 1,477
participating developers reported that they face problems due to missing knowledge

93

Chapter 5 Framework Applications

when reproducing failures at least weekly, 70% faced such problems on a daily ba-
sis. Missing information of developers about failure reproduction steps and failure
environments constitutes a sub-problem of missing usage information.

Developers usually use two ways to acquire information about reproduction steps
and failure environments: bug reporting and collection of field data. During bug
reporting, users who experienced a failure report it together with reproduction steps
and information about the failure environment. Research has shown that this ap-
proach has some challenges because bug reports submitted by users often do not
contain reproduction steps or reported reproduction steps are wrong or incom-
plete [105, 203]. Alternatively, developers can instrument applications and collect
field data, i.e. data about the runtime behavior and runtime environment of deployed
programs [131]. Such an approach usually generates a big amount of trace data and
developers have to be supported to extract information about failure reproduction
steps and failure environment.

To address the problem of missing information about failure reproduction steps,
we apply the Maltase framework to monitor user interactions preceding failures
and provide them to developers during bug fixing. We call this approach Maltase-
based failure reproduction. It is based on the observation that reproduction steps for
interactive applications are usually the user interactions performed before a failure
occurs. Furthermore, monitoring high-level user interactions reduces the size of
monitored traces and potentially enables developers to manually inspect monitored
interaction traces and reproduce failures based on this information. Maltase-based
failure reproduction continuously monitors user interactions as well as the occurrence
of failures. Upon failure occurrence, it automatically creates a bug report which
contains information about the failure as well as the history of user interactions
preceding the failure.

5.1.2 Approach

Figure 5.1 shows an overview of Maltase-based failure reproduction which consists
of five main steps): monitoring user interactions and failure events, mapping moni-
tored events to a taxonomy, transferring failure information and monitored interac-
tions to a developer server, automated generation of bug reports, and visualization
of monitored interaction traces.

Monitoring User Interactions and Failure Events Maltase-based failure re-
production uses the Maltase framework to monitor user interactions and failure
events. While a user is interacting with a target application, the Maltase Sensors
capture these events and store them temporarily in the File Data Store on the user
device. The Maltase Sensors monitor user interactions on a high-level of abstrac-
tion such as user commands or artifact manipulations. Furthermore, the Maltase
Exception Sensor monitors the occurrence of exceptions. A detected exception trig-
gers the extraction of monitored user interactions from the File Data Store and their
transfer to a developer server.

94

5.1 MALTASE-based Failure Reproduction

User Device

Developer Server

Target Application

<<component>>
MALTASE Sensors

<<component>>
Server Push-

Client

<<component>>
File Data Store

<<component>>
Server Push-

Server

Bug Tracker Server

<<component>>
Bug Tracker

<<component>>
Bug Tracker

Adapter

<<component>>
Database
Data Store

<<component>>
Event Sequence

Visualization

User Developer

inspect,
reproduce

interact

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.1: Overview of Maltase-based Failure Reproduction
Arrows denote data flow
Based on Figures 4.12 and 4.13

Mapping to Taxonomy of User Interactions and Application Events To assist
developers to comprehend monitored user interactions, monitored user interactions
are mapped to a taxonomy of user interactions which is part of the Maltase ontol-
ogy. It is shown in Figure 5.2 on the right side. This mapping provides semantics
to monitored interactions via the ontology, i.e. the ontology defines the meaning for
each particular interaction. The mapping is performed by the Maltase Sensors by
assigning ontology descriptors as event types for detected events.

Transfer of Monitored Data to Developer Server The detection of an exception
by the Exception Sensor triggers the extraction of monitored interactions from the
File Data Store, the bundling with additional failure information, and the transfer
to a developer server. This functionality is implemented by the Maltase com-
ponents Server-Push Client and Server-Push Server. When information about a
specific failure arrives at the developer server, it is processed in two ways: A bug
report is created automatically and injected in the bug tracking system. Further-
more, monitored data is stored in the Database Data Store. Developers can inspect
monitored data in the Database Data Store using the Timeline Tool which is part
of the component Event Sequence Visualization.

Generation of Bug Reports With Interaction History To inform developers
about failures and support developers to reproduce them, bug reports with moni-
tored user interactions preceding a failure are generated automatically. Upon arrival
at the developer server, failure information is pushed to the Bug Tracker Adapter.
This component creates a new bug report, adds the interaction history, and injects
it in the bug tracking system.

95

Chapter 5 Framework Applications

1

3 4 <REMOVED>

<REMOVED>

2

Figure 5.2: Visualization of Event Sequence in Timeline Tool (Left) and Taxonomy
of User Interactions and Application Events (Right)
Events in trace correspond to event types in taxonomy
Source: Figures 4.19 and 4.22

Visualization of Interaction Traces To allow developers to inspect monitored
data, the Timeline Tool (which is part of the component Event Sequence Visualiza-
tion) visualizes sequences of monitored user interactions and application events. It is
shown in Figure 5.2. Developers during bug fixing can inspect the user interactions
preceding failures and exploit this information to reproduce failures.

As with every approach, Maltase-based failure reproduction has prerequisites,
advantages, and limitations. Maltase-based failure reproduction requires an in-
teractive target application whose main source of non-determinism are user interac-
tions. To use the Maltase sensors, the target application has to be implemented
using the Eclipse RCP framework as well as the Eclipse Modeling Framework. Oth-
erwise, new sensors for the target application under study have to be implemented
while the other parts of the Maltase framework can be reused.
The fact that the Maltase framework monitors user interactions at a high level of
abstraction contributes several advantages to Maltase-based failure reproduction:
Because monitored user interactions are assigned meaning by mapping them to a
taxonomy, developers can understand user behavior. Because user interactions are
monitored, developers can discuss them with users (which they could not in case
of code execution monitoring). Because high-level monitoring usually captures a
smaller number of interaction events, developers are enabled to manually inspect
and analyze monitored traces. Because user interactions are captured automati-
cally, users do not have to remember or describe their interactions. Furthermore,
the automated generation of bug reports contributes advantages to Maltase-based
failure reproduction: Developers are informed proactively about field failures, bug
reports contain monitored user interactions preceding failures as reproduction steps,
and the approach is integrated into the developer workflow.
Maltase-based failure reproduction has some limitations which should be consid-
ered when applying it. It does not deal with noisy interactions, i.e. interactions

96

5.1 MALTASE-based Failure Reproduction

which are not necessary for failure reproduction. Furthermore, it focusses on the
provision of reproduction steps and does not address reproduction of the failure
environment. Hence, it should be complemented with approaches tackling this lim-
itation or capture information about the failure environment in addition to user
interactions. Additionally, Maltase-based failure reproduction addresses user in-
put as source of non-determinism while there are other types of non-determinism
like thread scheduling or network traffic [201]. Furthermore, privacy issues arise
because monitoring user interactions might capture sensitive data.

5.1.3 Related Work

Many approaches collect runtime data from deployed software. Tucek et al. [186]
re-execute applications to collect additional failure information. Artzi et al. [9] gen-
erate and execute multiple tests to reproduce a given failure. Liblit et al. [108]
monitor code execution of deployed software and analyze this data to isolate bugs
automatically. In contrast to Maltase-based failure reproduction, these approaches
monitor code execution. Several tools for automated crash reporting exist which re-
port crashes and information about the crash environment via the Internet, e.g.
MS Windows Error Reporting [63], Apple Crash Reporter1, Crashlytics2, Hock-
eyapp3, or Testflight4. These reporting tools collect information about system state
when a failure occurred such as thread states or memory dumps but do not capture
user interactions. Microsoft Problem Steps Recorder5 allows users to record their
interactions and captures a screenshot for every user interaction. In contrast to
Maltase-based failure reproduction, users have to start the recording proactively
and user interactions are recorded on GUI event level.

Capture/replay approaches have been proposed to capture and replay user events,
application events, and system events at different levels of abstraction (e.g. [16, 24,
64, 91, 132]). Clause and Orso [30] present an approach to debug field failures by
recording file system and stream actions, minimizing captured traces, and replaying
them. Herbold et al. [75] and Steven et al. [172] capture application events triggered
by user interactions and enable developers to replay them. Because these tools have
to ensure replay of captured traces, they monitor events at a lower level of abstraction
than the Maltase sensors.

Several approaches to reproduce field failures use a combination of field data
collection and in-house execution synthetization: BugRedux [88] is a general frame-
work to collect failing field executions and to synthesize executions which trigger
the same failure. F3 [89] extends BugRedux to synthesize passing and failing execu-
tions and exploits them to identify potentially faulty program entities. MIMIC [204]
extends F3 and compares a model of correct behavior to failing executions, identi-
fying violations of the model as potential explanations for failures. In contrast to
Maltase-based failure reproduction, those approaches also operate on code level.

1https://developer.apple.com/library/mac/technotes/tn2004/tn2123.html (Accessed Feb 2015)
2https://crashlytics.com/ (Accessed Feb 2015)
3http://hockeyapp.net (Accessed Feb 2015)
4https://www.testflightapp.com/ (Accessed Feb 2015)
5http://technet.microsoft.com/en-us/windows/dd320286.aspx (Accessed Feb 2015)

97

Chapter 5 Framework Applications

Several approaches have been proposed to automatically identify user input trig-
gering failures. For example, Clause and Orso [31] present Penumbra which iden-
tifies failure-relevant inputs using dynamic tainting. Similarly, Zeller and Hilde-
brandt [202] present the Delta Debugging algorithm which minimizes captured user
input or source code to the subset relevant for failure reproduction. Maltase-based
failure reproduction does not apply such minimization techniques.

Another way to identify failure-inducing program input is to generate input values
and test whether they trigger a failure. For example, Kifetew et al. [94] describe a
search-based failure reproduction approach which uses genetic programming to gen-
erate program inputs triggering failures. Cao et al. [27] combine a capture/replay
approach with input generation. They record only the hard-to-resolve functions at
runtime and generate failure-inducing input using captured runtime data. In con-
trast to these approaches, Maltase-based failure reproduction captures interactions
of real users and allows developers to inspect user behavior preceding failures.

Zimmermann et al. [203] propose to educate bug reporters to provide information
about reproduction steps when composing a bug report.

5.2 MALTASE-based Skill Detection

This section describes Maltase-based skill detection, an approach classifying users
according to their skill based on monitored user interactions. We hypothesize that
skill information supports developers to evolve an application and its help system
according to user needs. Furthermore, skill information can be used by intelligent
applications to adapt to the current user. An empirical evaluation of Maltase-
based skill detection is presented in Section 6.4.

5.2.1 Motivation

“Developers face the task of writing software for millions of users (at de-
sign time) while making it work as if it were designed for each individual
user (only known at use time).” Fischer [53]

To address the challenge described by Fischer [53] and optimize a software appli-
cation for the needs of individual users, developers need information about users
and usage contexts. Therefore, methods have been developed in the field of require-
ments engineering (e.g. observations and interviews) and software development (e.g.
participatory design) to involve users during software design and elicit such informa-
tion from them. But it is difficult to anticipate all types of users and usage contexts
before the deployment of an application. To address the problem of missing infor-
mation about software users, we apply the Maltase framework to monitor user
interactions and extract information about individual users from their interactions.

We focus on detecting user skill information because skills have a high impact
on performance when solving tasks with an application (Ghazarian and Noorhos-
seini [61]) and call this approach Maltase-based skill detection. We hypothesize
that skill information for specific users and the user population in total can be ex-
ploited by developers for three purposes. First, skill information supports developers

98

5.2 MALTASE-based Skill Detection

in their evolution decisions. For example, the implementation of advanced features
is only reasonable if a sufficiently large group of expert users exists. Second, knowl-
edge about user skills constitutes important context information when interpreting
other types of usage information. For example, a problem described in a bug report
submitted by a novice user might be no bug but originate from the inexperience
of the user. And third, information about the current users’ skill allows an appli-
cation to adapt to the current user to improve performance (Trumbly et al. [185]).
Developers usually do not have user skill information, potentially because of com-
munication gaps and the nature of skill which is not directly observable and difficult
to assess. Because the skill level of the current user is usually unknown, develop-
ers usually base their decisions on assumptions about “the typical user which does
not exist” (Fischer [53]). Furthermore, most applications use a uniform, static user
interface and help system for all users.

Nielsen [127] identifies three types of user experience: computing experience (abil-
ity with regard to computer use in general), system experience (ability with regard
to a particular system or software application), and domain experience (ability with
regard to a particular task domain). In contrast to Nielsen, we use the term “skill”
instead of “experience” because we focus on the ability of users to accomplish tasks
(“skill”) and not how this ability is acquired (“experience”) or more abstract concepts
(“knowledge”, “expertise”). Researchers have already investigated the detection of
computing experience from monitored user interactions (Ghazarian and Noorhos-
seini. [61]). Hence, we focus on the detection of system experience and domain
experience and call them “application skill” and “domain skill”, respectively. Follow-
ing Nielsen, we hypothesize that users need mainly two types of skill to accomplish
a given task using a software application: domain skill to know what they have to
do and application skill to know how to employ a particular software application to
accomplish “this what”. For example, business people need to know specific formats
of formal business letters and how to use Microsoft Word or LATEX to produce the
corresponding format. Furthermore, we hypothesize that discriminating between
application skill and domain skill is helpful to provide context-specific help and to
adapt to the current user. For example, it allows to distinguish if the source of a
user problem is the users unfamiliarity with the task domain or with the current
application. Consequently, an intelligent application can “explain” its features (in
case of low application skill) or present training material about the task domain (in
case of low domain skill).

5.2.2 Approach

Figure 5.3 showls an overview of Maltase-based skill detection which consists of
four main steps: monitoring user interactions, extraction of classification features
from monitored interaction traces, learning skill classifiers, and skill detection.

Monitoring User Interactions Maltase-based skill detection uses the Maltase
Sensors to monitor user interactions while a user is interacting with a target appli-
cation. Monitored interactions are stored temporarily on the user device in the File
Data Store and are transferred to a developer server for analysis purposes.

99

Chapter 5 Framework Applications

User Device Developer Server

Target Application

<<component>>
MALTASE
Sensors

<<component>>
Server Push-

Client

<<component>>
File Data Store

<<component>>
Server Push-

Server

<<component>>
Classif ication

<<component>>
Database
Data Store

<<component>>
Classif ier
Learner

<<component>>
Feature

Extraction

<<component>>
Skil l

Classif ier

User Developer

interact
inspect,
consider

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.3: Overview of Maltase-based Skill Detection
Arrows denote data flow
Based on Figures 4.12 and 4.13

Extraction of Classification Features To aggregate monitored data and extract
features necessary for classification algorithms, the component Feature Extraction
derives classification features from interaction traces. Examples of classification
features are the number of interactions per minute, the usage of hot keys, or the
average length of a break between two interactions. Extracted classification features
are used in two ways. The component Skill Classifier uses them to classify the skill
level of a user. Furthermore, the component Classifier Learner uses them to learn
classifier models.

Learning of Classifiers for User Skill Before classifiers can be used to detect
user skill, classifier models have to be learned. This is the task of the component
Classifier Learner. It learns skill classifiers using a supervised learning approach.
More specifically, it learns a decision tree classifier model [141] from sets of classi-
fication feature values together with skill labels. Learning is performed offline, i.e.
on the developer server, and learned classifier models are used by component Skill
Classifier to detect user skill levels. For each type of skill a separate classifier model
is learned.

Detection of User Skill Finally, component Skill Classifier uses decision tree clas-
sifier models [141] learned by component Classifier learner to detect user skill. Then,
developers can inspect skill information and consider it in their evolution decisions.
While the user interaction monitoring has to be done at runtime, feature extraction

100

5.2 MALTASE-based Skill Detection

and skill classification can be performed either online on the user device or offline on
a developer server. Online classification has the advantage that detected user skill
information can be used for user interface adaptation but it introduces a perfor-
mance overhead for the user. Offline classification minimizes performance overhead
but it requires to transfer monitored data to a developer server. Furthermore, its
classification results cannot be used for user interface adaptation. Developers have
to choose between online and offline classification depending on their situation.

As with every approach, Maltase-based skill detection has prerequisites, advan-
tages, and limitations. To successfully employ Maltase-based skill detection, it
must be possible to detect user skill based on classification features extracted from
monitored user interactions. To reuse the Maltase sensors, the target application
has to be implemented using the Eclipse RCP framework as well as the Eclipse
Modeling Framework. Otherwise, new sensors for the target application have to be
implemented while the other parts of the Maltase framework can be reused.
Maltase -based skill detection is performed in the background and does not require
users to spend effort or time. Furthermore, the monitoring of user interactions at a
high abstraction level potentially enables the detection of domain skill which can’t
be detected based on low-level interactions.
Maltase-based skill detection has some limitations which should be considered
when using it. As the concept of skill is difficult to measure and generalize, the
accurracy of Maltase-based skill detection has to be carefully investigated. Fur-
thermore, user skill usually changes over time when a user becomes familiar with
a software application or a task domain. This fact is not considered by Maltase-
based skill detection. Future work could extend the current approach and address
this dynamic. Additionally, ethical questions as well as privacy issues arise during
detection, processing, and storage of skill information. These issues have to be ad-
dressed by ensuring that skill information can only be accessed by authorized people
and that it is used for legal purposes only.

5.2.3 Related Work

Several researchers studied the automatic detection of user skills from monitored
user interactions. Ghazarian and Noorhosseini [61] detect system and task skill
from from low-level, high frequency user interactions such as mouse and keyboard
interactions for a paint application. Ghazarian and Ghazarian [60] detect task skill
based on pauses between mouse and keyboard interactions for a paint application.
Hurst et al. [84] detect task skill from mouse and menu interactions for an image
editing application. Vaubel and Gettys [192] predict general user skill from com-
mand frequencies and help requests for a word processing application. Beale et
al. [13] detect general user skill from text commands for functional programming
tool. Nagasaki and Azuma [125] detect task skill for a word processor and a model-
ing application based on general user interactions. Sao Pedro et al. [158] present an
approach to detect scientific inquiry skill of students from activity logs using ma-
chine learning detectors. While these approaches detect user skill from monitored
user interactions similar to Maltase-based skill detection, they do not discriminate

101

Chapter 5 Framework Applications

between application skill and domain skill. Furthermore, they do not discuss the
exploitation of skill information during software evolution.

Maltase-based skill detection creates a model of individual users based on their
detected skills. Building a model of users is usually called “user modeling” and
this activity is investigated by several researchers, mainly in the area of human-
computer interaction. Fischer [53] reviews user modeling techniques in human-
computer interaction and defines “user models” as “models that systems have of
users”. Similarly, Bezold and Minker [17] provide an overview of user modeling for
interactive systems with the goal of user adaptation. The Springer journal “User
Modeling and User-Adapted Interaction”6 and the conference series “Conference on
User Modeling, Adaptation and Personalization”7 are dedicated venues for research
about user modeling and user adaptation.

5.3 MALTASE-based Use Case Testing

This section describes Maltase-based use case testing, an approach comparing
monitored user interactions with use case steps. We hypothesize that information
about differences between both supports developers to detect software improvements
and update the use case documentation. The idea of Maltase-based use case test-
ing has been published in Roehm et al. [151]. This section describes a solution which
maps the problem to the process mining domain and reuses process mining tech-
niques to implement the detection of differences between monitored user interactions
and use case steps.

5.3.1 Motivation

As described by Norman [129], developers construct a conceptual model of software
usage and implicitly assume that the user’s model is identical to their model. Be-
cause of communication gaps between developers and users, the conceptual model
of developers is rarely tested and developer assumptions about user behavior rarely
corrected if they are wrong. Wrong developer assumptions about user behavior and
corresponding design decisions can lead to low software quality and usability.

Maltase-based use case testing addresses this problem and automatically com-
pares developer assumptions about user behavior to monitored user behavior. To
automatically compare developer assumptions, a representation of them is necessary.
Maltase-based use case testing uses the steps of use cases, also known as “flow of
events”, as representation of developer assumptions about user behavior because use
cases are usually written by developers and “describe the behavior of a system as
seen from a user’s point of view” [23]. Use case steps are compared to monitored,
high-level user interactions. This comparison allows to “test” the use case docu-
mentation of an application, i.e. to determine whether users use an application as
described in the use case documentation.

6http://rd.springer.com/journal/11257 (Accessed Feb 2015)
7http://www.um.org/conferences (Accessed Feb 2015)

102

5.3 MALTASE-based Use Case Testing

The following example illustrates the idea of Maltase-based use case testing.
We consider the development of an online banking application. Before implement-
ing the application, developers talked to banking customers and identified the use
case “Money Transfer” consisting of the user steps Login, Start bank transfer, Enter
recipient, Enter amount, Submit transaction, and Logout. After the requirements
engineering phase, developers designed, implemented, and deployed then the appli-
cation. Nor, users use the application to transfer money from one bank account to
another one. All user interactions are monitored anonymously. The comparison of
use case steps and monitored user interactions detects that users frequently forget
to logout. This difference is presented to the developers of the banking application
with the request to decide how it should be handled. As unterminated user ses-
sions are a security threat, they decide to add an automatic logout feature which
terminates a user session after a certain time of inactivity.

We argue that differences between use case steps and user interactions can be
interpreted in different ways. Developers have to analyze them, decide about their
severity, and derive corresponding actions. We see the following four ways for de-
velopers to treat a detected difference. First, the difference is irrelevant and can
be ignored. Second, the difference indicates a way to improve the application (as
illustrated by the example). Similarly, the difference can indicate a usability issue
which developers want to resolve. Third, the difference triggers an update to the
use case documentation. This is the case when monitored user behavior reflects a
valid use of the application which is not yet documented as a use case. And finally,
the difference indicates improvements of the help system or training programs. For
example, if users deviate frequently from steps of a particular use case but it is
necessary to follow these steps, the help system or training program can be adjusted
to provide users with help and training regarding the use case. Overall, detected
differences improve the understanding of developers about user behavior because
detected differences identify wrong developer assumptions. A detected difference
might trigger further investigation by e.g. user interviews or a usability lab study.

5.3.2 Approach

Figure 5.4 shows an overview of Maltase-based use case testing which consists
of four main steps: monitoring user interactions, mapping to the process mining
domain, detection of differences using process mining, and visualization of traces
and detected differences.

Monitoring User Interactions Maltase-based use case testing uses the Mal-
tase Sensors to monitor high-level interactions of a user with a target application.
Monitoring user interactions at a high abstraction level is important to ensure a
similar abstraction of monitored user interactions and use case steps. Monitored
interaction traces are temporarily stored in the File Data Store on the user device,
transferred to a developer server, and permanently stored in the Database Data
Store of the developer server.

103

Chapter 5 Framework Applications

User Device Developer Server
Target Application

<<component>>
MALTASE
Sensors

<<component>>
Server Push-

Client

<<component>>
File Data Store

<<component>>
Server Push-

Server

<<component>>
Database Data

Store

<<component>>
Model-Trace
Comparison

<<component>>
Event Sequence

Visualization

DeveloperUser

inspect,
consider

interact

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 5.4: Overview of Maltase-based Use Case Testing
Arrows denote data flow
Based on Figures 4.12 and 4.13

Mapping to Process Mining As use case steps describe expected sequences of user
interactions, they constitute a model of expected user behavior. In contrast, moni-
tored user interactions represent real user behavior in form of interaction traces. The
goal of Maltase-based use case testing is to compare both and detect differences,
i.e. deviations of real user behavior from expected user behavior. This situation
corresponds to the problem statement of conformance checking in process mining:
“conformance checking compares an existing process model with an event log of the
same process. Conformance checking can be used to check if reality, as recorded in
the log, conforms to the model and vice versa” [189]. Therefore, Maltase-based use
case testing maps the problem of detecting differences between use case steps and
monitored user interactions to the process mining domain and uses process mining
techniques to perform the comparison. Traces of monitored user interactions are
used directly. The user steps of the flow of events of a particular use case are auto-
matically transformed to a Petri net. It is assumed that the flow of events consists
of a certain number of use case steps with a given order. Each use case step is rep-
resented as a transition in the Petri net. Furthermore, two transitions representing
consecutive use case steps are connected through a place.

Difference Detection Using Process Mining Maltase-based use case testing
uses process mining algorithms to detect differences between monitored user inter-
action and use case steps. More specifically, it uses conformance checking by token
replay [189]. This algorithm requires an event log and a process model as input
and “replays” the event log on top of the process model, i.e. it checks whether it is
possible to fire transitions in the Petri net in the order indicated by the event log.
The result of the replay are discrepancies between the log and the model. There

104

5.3 MALTASE-based Use Case Testing

Figure 5.5: Visualization of Interaction Trace and Detected Differences
Edge numbers indicate order in trace, Red edges indicate unexpected
order of interactions, Red nodes indicate additional interactions, Yellow
nodes indicate “out of order” interactions

are two types of discrepancies: User interactions in the log which are missing in
the model and represent user interactions not foreseen by the model at the current
position (“move on log”). And user interactions in the model which are missing in
the log and represent expected user interactions which were not performed by the
user at the current position (“move on model”). Maltase-based use case testing
performs difference detection using the ProM process mining tool8.

Visualization of Interaction Traces and Detected Differences To help develop-
ers inspect detected differences, the component Event Sequence Visualization visual-
izes a single interaction trace and its deviations from the use case steps. Figure 5.5
shows this visualization for the exemplary use case of composing an e-mail. The
expected order of use case steps is Create new mail, Add recipient, Enter subject,
Enter body, and finally Send mail. Developers can inspect the order of user in-
teractions in the trace via numbered edges. A red edge represents two consecutive
interactions which do not correspond to the flow of events. Similarly, red nodes rep-
resent monitored user interactions which are not contained in the flow of events and
yellow nodes represent monitored interactions performed in an unexpected order.

As with every approach, Maltase-based use case testing has prerequisites, ad-
vantages, and limitations. As it targets use cases, a use case documentation of the
target application is required. To reuse the Maltase sensors, the target applica-
tion has to be implemented using the Eclipse RCP framework as well as the Eclipse
Modeling Framework. Otherwise, new sensors for the target application have to be
implemented while the other parts of the Maltase framework can be reused.
Maltase-based use case testing has the advantage of reusing established process

8http://processmining.org/ (Accessed Feb 2015)

105

Chapter 5 Framework Applications

mining technology which enables the detection of additional interactions and miss-
ing interactions in monitored interaction traces.
Maltase-based use case testing has three limitations. It assumes that use case
steps and monitored interactions are described at the same level of abstraction. We
argue that the monitoring of high-level user interactions by the Maltase sensors
justifies this assumption. For example, all user interactions in the e-mail example in
Figure 5.5 can be monitored by capturing user interface events for the corresponding
text fields or buttons. If user interactions are monitored at a lower abstraction level
than use case steps, an abstraction has to be performed to increases the abstraction
level of them. Furthermore, Maltase-based use case testing assumes that an in-
teraction trace corresponds to one use case and that this use case is known. This
information can be gathered by manually sessionizing interaction traces and iden-
tifying the use case of the trace. Alternatively, users can be asked to perform one
particular use case and monitor their interactions. Future work could investigate
the automation of the sessionization and use case detection. In addition, Maltase-
based use case testing assumes a strict order of use case steps. Future work could
investigate how this strict constraint can be softened.

5.3.3 Related Work

Several researchers proposed approaches to automatically compare monitored and
expected user behavior. Paternò et al. [106, 139] compare monitored user inter-
actions with task models which represent expected user behavior. Feuerstack et
al. [51] evaluate the usability of multimodal user interfaces by comparing monitored
user behavior to user interface models. Girgensohn et al. [62] as well as Hilbert and
Redmiles [78] detect mismatches between user interactions and previously defined
developers expectations at runtime using software agents. Hilbert and Redmiles [79]
discuss sequence comparison, i.e. the comparison of monitored event sequences with
expected sequences. Furthermore, formal verification techniques can be applied to
analyze user-system interactions before system deployment and identify potential
problems and unexpected interactions (see e.g. [20, 21]). In contrast to Maltase-
based use case testing, these approaches do not target use cases.

A complementary approach for use case testing is to transform use cases into
test cases and execute those to test software behavior. Several researchers, e.g.
[29, 36, 72, 126, 144], proposed such an approach. In contrast, Maltase-based use
case testing compares use case steps directly to monitored user interactions without
generating test cases.

Several researchers proposed approaches to reverse engineer use cases, i.e. to mine
use cases from runtime traces. For example, El-Ramly et al. [45, 46] as well as Smit
et al. [170] reverse engineer use cases from monitored interaction traces. Similarly,
Antonio et al. [8] and Li et al. [107] reverse engineer use cases from code execution
traces. These approaches assume that no use case documentation exists. In contrast,
Maltase-based use case testing assumes that a use case documentation written by
developers exists and compares it to monitored user interactions.

Use cases are one type of software requirements and several researchers proposed
approaches to monitor requirements at runtime. For example, Robinson discusses re-

106

5.4 Chapter Summary

quirements monitoring [147, 148] and monitors user goals at runtime [146]. Similarly,
Feather et al. [48, 52] determine whether a running system meets its requirements by
runtime monitoring and comparison to explicit specifications of requirements and
developer assumptions. Furthermore, Wang et al. [197] present a framework for
monitoring and diagnosing software requirements. Maltase-based use case testing
also monitores requirements but considers use cases instead of user goals.

5.4 Chapter Summary

This chapter presented three applications of the Maltase framework: monitoring
of user interactions preceding failures as reproduction steps to enable developers
to reproduce failures (Maltase-based failure reproduction), classification of user
skills based on monitored user interactions to inform developers about skill levels
of their users (Maltase-based skill detection), and comparison of monitored user
interactions with use case steps to detect wrong developer assumptions as indicators
for software improvements and use case updates (Maltase-based use case testing).
The chapter motivated each framework application, described its implementation
using components of the Maltase framework, and discussed related work. These
framework applications demonstrate how the Maltase framework can be employed
to acquire usage knowledge for developers. Furthermore, they illustrate how the
same type of data - monitored, high-level user interactions - can be analyzed and
exploited for different purposes.

107

Chapter 6

Evaluation

While the previous chapters described the Maltase framework (Chapter 4) and its
applications in software evolution (Chapter 5), this chapter describes an empirical
evaluation of the Maltase framework. Section 6.1 presents evaluation goals, re-
search methods, and the target application used in the evaluation. The next three
sections present results of three sub-evaluations targeting different aspects: Sec-
tion 6.2 presents an evaluation of Maltase monitoring by a simulation and a user
survey. Section 6.3 presents the evaluation of Maltase-based failure reproduction
by a controlled experiment. And Section 6.4 presents an evaluation of Maltase-
based skill detection by an evaluation case study. Section 6.5 discusses conclusions
and implications of all sub-evaluations. Finally, Section 6.6 summarizes the chapter.

6.1 Evaluation Overview

This section describes the “big picture” of the evaluation of Maltase before subse-
quent sections provide more details and discuss its findings. Figure 6.1 illustrates on
overview of the evaluation, more specifically the Maltase components evaluated
and the research methods used in the evaluation.

6.1.1 Goals

The purpose of the Maltase framework is to monitor application usage and to
extract actionable knowledge for developers during software evolution. The following
aspects are crucial to investigate when evaluating the Maltase framework: the
performance overhead it introduces, whether users accept it, and its benefit and
impact during software evolution.

Runtime monitoring introduces a performance overhead because it requires addi-
tional processing time and memory capacity. Hence, it is important to investigate
this performance overhead and ensure that it does not hinder users in their work.
We hypothesize that the performance overhead introduced by Maltase monitoring
does not hinder users in their daily work. We study this hypothesis in a simulation
and a user survey which are presented in Section 6.2, investigating the performance
overhead introduced by Maltase monitoring in terms of execution time and mem-
ory consumption as well as the users opinion about it.

User acceptance, i.e. whether users agree to work with an instrumented applica-
tion which monitors their interactions, is another important aspect besides technical

109

Chapter 6 Evaluation

!"#$%"&$#'()(*#+"&,-."#(/0%&-1."#(
23%31."#("+(4$'4(536357(83,-#.1(983&($#%3&-1."#8:(/0%&-1."#("+($#+"&,-."#(-;"9%($#%3&-1."#8(-#<(1"#%30%(

=&"1388$#'()(>#-5?8$8(
=&3@&"1388$#':(A3-%9&3(/0%&-1."#:(=-B3&#(23%31."#:(C5-88$D1-."#(

(

!>EF>G/H;-83<((

A-$59&3(I3@&"<91."#(

(

!>EF>G/H;-83<((

GJ$55(23%31."#(

(

!>EF>G/H;-83<(

K83(C-83(F38.#'(

G%"&-'3()(F&-#8+3&(
I3@&383#%-."#(-#<(@3&8$8%3#1?("+(,"#$%"&3<(<-%-:(2-%-(%&-#8+3&%"(<3635"@3&(83&63&(

Fr
am

ew
or

k
A

pp
lic

at
io

ns

=&383#%-."#()(*#%3'&-."#(

(=&383#%-."#("+(-#-5?8$8(&3895%8(%"(<3635"@3&8:(*#%3'&-."#($#%"(<3635"@3&(%""58(

Figure 6.1: Overview of Maltase Evaluation
Each box denotes a research method used in the evaluation

feasibility. We hypothesize that users accept Maltase when the monitoring is per-
formed anonymously and they perceive a benefit. We study this hypothesis in a
user survey which is presented in Section 6.2, investigating whether users agree to
work with a target application integrated with Maltase, i.e. an application which
monitors their interactions.

We evaluated two of the framework applications described in Chapter 5, Maltase-
based failure reproduction and Maltase-based skill detection. Maltase-based
failure reproduction presents monitored user interactions preceding failures to de-
velopers during bug fixing. We hypothesize that developers can reproduce failures
based on this information and that developers are enabled to reproduce failures they
cannot reproduce before. We study this hypothesis in a controlled experiment which
is presented in Section 6.3.

Maltase-based skill detection detects user skills based on monitored user inter-
actions. We hypothesize that user skills can be derived from user interactions mon-
itored by the Maltase framework. We study this hypothesis in an evaluation case
study which is presented Section 6.4, investigating how well MOSKitt application
skills and UML domain skills can be detected based on monitored user interactions.

6.1.2 Methodology

We conducted a simulation to measure the performance overhead introduced by
Maltase monitoring. We simulated user interactions and measured execution time
and memory consumption for both an instrumented and plain version of the CASE
tool MOSKitt. Comparing measurements for both versions allows to determine
the time and memory overhead introduced by Maltase monitoring. More details
about the simulation are given in Section 6.2. The simulation provides “numerical

110

6.1 Evaluation Overview

answers”, but it cannot reveal whether the performance overhead hinders users in
their work. For example, it is not clear from the simulation alone whether an increase
in execution time of 10 % is acceptable for users or not.

To complement results of the simulation and investigate user opinions about Mal-
tase, we conducted a user survey. We deployed an instrumented version of the
CASE tool MOSKitt to six MOSKitt users for two weeks. After this time, partici-
pants reported their opinion about performance overhead and privacy questions in
a survey. This user survey is presented in Section 6.2.

To evaluate Maltase-based failure reproduction, we monitored user interactions
preceding failures and presented them to developers during bug fixing. We conducted
a controlled experiment [42] to compare Maltase-based failure reproduction to
failure reproduction with textual bug reports submitted by users. The controlled
experiment is presented in Section 6.3.

To evaluate Maltase-based skill detection, we setup an evaluation case study
to collect monitored user interactions as well as user skill levels for application
and domain skill. This data collection was necesary because we did not find a
dataset containing this information. We had 14 participants of varying skill levels
perform three UML modeling tasks using MOSKitt, monitored their interactions,
and collected self-estimations of MOSKitt and UML skill. This dataset was used to
learn skill classifiers and evaluate their performance. The evaluation case study is
presented in Section 6.3.

6.1.3 CASE Tool MOSKitt

The CASE tool MOSKitt1 was used as target application during this evaluation.
MOSKitt is an RCP-based open source desktop application for modeling and diagram-
editing. MOSKitt supports modeling UML, BPMN, and entity relationship dia-
grams as well as capturing and managing software requirements in textual form.
MOSKitt has been constantly developed since 2007 by 27 contributing developers
and comprises 2 million lines of code which are mostly written in Java. Its user in-
terface follows the WIMP style (Windows, Icons, Menus, Pointer) and consists of a
project navigator, a palette for selecting model elements, and a diagram canvas (see
Figure 6.2). We chose the UML (Unified Modeling Language) class diagram editor
as context of the evaluation because it is the most prominent feature of MOSKitt
and we had access to users of this feature. This editor allows users to create and
modify UML class diagrams.

6.1.4 Integration of MALTASE Framework and MOSKitt

Figure 6.3 shows how the Maltase components for monitoring, data transfer, and
data persistence were deployed during the evaluation. MOSKitt is instrumented
with the Maltase Sensors. These sensors detect user interactions, extract context
information about them, and pass this data via Maltase Monitoring Infrastructure
component the to the Maltase client, which runs as a separate application on the
user device. The Maltase Server Push-Client component sends monitored date

1http://www.moskitt.org/ (Accessed Dec 2014)

111

Chapter 6 Evaluation

Figure 6.2: MOSKitt User Interface

via a TCP/ IP-channel to the developer server. The Maltase Server Push-Server
component receives data on the server side, passes them to the Maltase Database
Data Store which stores monitored data permanently in a database.

The deployment diagram shown in Figure 6.3 requires three setup steps. First, the
Maltase components have to be installed within MOSKitt using the RCP update
mechanism. Second, the configuration (especially the TCP/IP settings of transfer
components) have to be set appropriately to allow communication between client
and server. And third, the MALTASE client and the developer server with the
Maltase server components have to be started.

Developer Server

MALTASE Server

<<component>>
Server

Push-Server

User Device

MALTASE ClientMOSKitt

<<component>>
MALTASE
Sensors

<<component>>
Server

Push-Cl ient

<<component>>
Database
Data Store

<<component>>
Moni tor ing

Infrastructure

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 6.3: Deployment of Maltase Components During Evaluation
Arrows denote data flow

112

6.2 Evaluation of MALTASE Monitoring

6.2 Evaluation of MALTASE Monitoring

This section reports on the simulation and the user survey to study the performance
overhead introduced by Maltase monitoring and its the user acceptance. The
evaluation was conducted in collaboration with an industry partner and its results
have been partially published in [152]. This section describes design and results
in more detail and presents unpublished results about privacy issues. Section 6.5
discusses conclusions and implications of the results.

6.2.1 Design

This evaluation uses two research methods, simulation and user survey, because they
complement each other. We implemented the Maltase components necessary to
monitor user interactions, transmit them to a server, and store them in a database
and integrated them with MOSKitt. The following Maltase sensors were used:
command sensor, menu and toolbar sensor, GUI part sensor, diagram manipulation
sensor, application sensor, and exception sensor. We simulated user interactions,
measured execution time and memory usage during the simulation, and compared
those metrics of a plain MOSKitt instance with those of an instrumented MOSKitt
instance. Six users of MOSKitt worked with an instrumented MOSKitt instance for
two weeks and reported their feedback in a survey. Using both, simulation and user
survey, was necessary because both methods complement each other: the simulation
can measure performance overhead but cannot tell whether users perceive overhead
as hindering their work. Similarly, the user survey can reveal the perception of users
about privacy issues and performance overhead, but does not allow to quantify
performance overhead.

Design of Simulation

We generated sequences of diagram manipulations and used them to simulate user
interactions. This allowed to re-create the same user behavior multiple times and
“apply” it to different MOSKitt instances. These sequences were simulated with
a plain MOSKitt instance, i.e. a MOSKitt version without sensors, as well as an
instrumented MOSKitt instance, i.e. a MOSKitt version with the Maltase sensors.
We measured and compared differences regarding time and memory consumption to
evaluate the performance overhead introduced by the Maltase sensors.

In this simulation, we consider diagram manipulations such as creating a di-
agram element as user interactions. The following types of diagram manipula-
tions were simulated: Create/ Delete Project (CP, DP), Create Model (CM), Cre-
ate/Update/Delete Element (CE, UE, DE), Execute Transformation (ET), Change
Size (CS), Move Figure (MF), Switch Editor (SW), Undo (UN) and Redo (RE).
The frequency of each manipulation type was determined randomly. As the order
of manipulations is not arbitrary, e.g. an element can only be created when an um-
brella model exists, a state machine was used to determine the next manipulation
(see Figure 6.4). In MOSKitt, diagram elements are parts of models and models
are organized in projects. The states InElement, InModel, and InProject represent
the current focus of the user. During creation of the manipulation sequence, the

113

Chapter 6 Evaluation

Ready

InProject

InModel

InElement

Exception

DP

CP

CP CM

CE,UE,DE

Figure 6.4: State Machine Used to Generate Sequences of Diagram Manipulations
C = Create, D = Delete, U = Update,
P = Project, M = Model, E = Element (Source: [152])

diagram is in a certain state and randomly selects a manipulation that is feasible in
that state. If a manipulation is feasible in a state, it is represented as an edge leaving
the state node. Projects can be created and deleted at any time and exceptions can
occur at any time as well. Between two manipulations, a time break of 0, 1, or 2
seconds was inserted randomly.

The generated sequences of diagram manipulations were simulated with a plain
MOSKitt instance and a MOSKitt instance instrumented with Maltase sensors.
Nine user sessions ranging in length from 50 to 800 diagram manipulations were
simulated. The total time needed for the execution of all manipulations of a sequence
was measured and the time per manipulation was calculated by dividing the total
time by the number of manipulations. The average RAM consumption during a
simulated session was calculated from periodical measures of RAM consumption.
Those measures were collected using the nmon utility tool. A machine with a similar
configuration as a typical user machine was used to run the simulation: A laptop
equipped with a Intel Core 2 Duo processor (2 cores at 2.00 GHz) and 3 GB RAM
which run Ubuntu Linux as operating system.

Design of User Survey

Six MOSKitt users (see Table 6.1 for details) worked with an MOSKitt instance in-
strumented with the Maltase sensors for two weeks and reported their experiences
in a survey. Participants were software developers working for the Spanish company
which developed MOSKitt. They used MOSKitt in their software engineering work
to create UML diagrams or document requirements textually. Participants worked
with an instrumented version of MOSKitt for 5 days on average (min: 1 day, max:
8 days) and performed on average 6 sessions (min: 3 sessions, max: 12 sessions)

114

6.2 Evaluation of MALTASE Monitoring

during this time. Two participants didn’t use MOSKitt in their normal work while
three participants used it daily. As this study was part of a larger study, the instru-
mentation consisted of the Maltase sensors and additionally sensors for a record
& replay approach that monitored application usage on a lower level of granular-
ity. User feedback was collected using an anonymized, web-based questionnaire.
Participants were asked the following questions:

• Do you agree with the following statement:
“The application behaves the same way with as without the sensors.” (Q1,
agreement on a 5-item Likert scale Strongly Agree, Agree, Undecided, Dis-
agree, Strongly Disagree)

• Did you notice changes in performance (e.g. longer response time) since you
started using MOSKitt with sensors? (Q2, Yes/ No)

• If yes, do you agree with the following statement: “The performance over-
head introduced by the sensors is tolerable and does not hinder my work.“
(Q3, agreement on a 5-item Likert scale Strongly Agree, Agree, Undecided,
Disagree, Strongly Disagree).

• Do you agree that the following information about is sent to the maintenance
team to help them fix errors quickly, given that the information is anonymous,
i.e. it is not possible to establish my identity?
... information about my interactions (such as edits and deletions of diagram
elements)
... information about my system (such as application version, Java version,
Operating system version)
... text I enter in text fields
... the name of each file I manipulate
... the content of each file I manipulate
(Q4, agreement on a 5-item Likert scale Strongly Agree, Agree, Undecided,
Disagree, Strongly Disagree)

6.2.2 Results

Figure 6.5 shows the time and memory overhead between plain and instrumented
MOSKitt instance during the simulations. The time overhead is 45 % for short
sequences and converges to 5 % with increasing sequence length. We expected the
overhead for short sequences as the sensor initialization overhead is proportionally
large for sequences with few diagram manipulations. The average memory overhead
introduced was 2-5 % independent of sequence length.

Table 6.1 summarizes the answers of survey participants. Five participants agreed
or strongly agreed that they did not perceive a difference in the behavior of the
instrumented MOSKitt compared with MOSKitt without sensors. Participant P2
disagreed and perceived a performance overhead, but judged it not to hinder his or
her daily work. All six participants strongly agreed or agreed that user interactions,
system information, and names of manipulated files can be monitored and sent to
developers. For text entered and the content of manipulated files, the feedback of
participants differed: while four participants agreed or strongly agreed that this
information can be monitored, two participants disagreed or strongly disagreed.

115

Chapter 6 Evaluation

Figure 6.5: Performance Overhead Introduced by Maltase Monitoring
(Source: [152])

Table 6.1: Participants And Results of User Survey

Participant P1 P2 P3 P4 P5 P6

Information about Participants

Days of Use 8 3 8 7 1 3

Sessions 8 3 12 7 4 3

Usual Usage Freq. Never Never Daily Daily Daily Weekly

Answers to Performance Overhead Questions (Q1-Q3)

Same behavior (Q1) Agree Disagr. Agree Strong

Agree

Agree Agree

Perf. changes (Q2) No Yes No No No No

No hindrance (Q3) - Agree - - - -

Answers to Privacy Questions (Q4)

User interactions Strong

Agree

Strong

Agree

Strong

Agree

Strong

Agree

Agree Strong

Agree

System information Strong

Agree

Agree Agree Strong

Agree

Agree Strong

Agree

Text entered Strong

Agree

Agree Strong

Agree

Strong

Agree

Disagr. Strong

Disagr.

File names Strong

Agree

Agree Strong

Agree

Strong

Agree

Agree Agree

File content Strong

Agree

Agree Strong

Agree

Strong

Agree

Strong

Disagr.

Strong

Disagr.

116

6.3 Evaluation of MALTASE-based Failure Reproduction

6.2.3 Limitations and Threats to Validity

We see the following four threats to validity for this evaluation. First, only diagram
manipulations were simulated and therefore only the overhead of the diagram sensor
as well as the processing and storage components are evaluated. As diagram manip-
ulations are frequent user interactions in a diagram editor, we argue that the results
are representative for diagram manipulation sessions. Second, generated sequences
of diagram manipulations might deviate from real user behavior. To minimize this
threat, the order of manipulations in generated sequences was determined randomly
using the state machine and time breaks between two manipulations were introduced
randomly. Third, an additional record & replay-instrumentation was running in par-
allel to the Maltase sensors during the user survey. Therefore, it is not possible
to determine the extent to which the Maltase sensors are responsible for the per-
formance overhead. But as this instrumentation introduced additional performance
overhead and most users did not perceive any performance overhead, we argue that
this fact does not affect the results. Fourth, the user survey was conduced with few
participants in a cooperative setting, that is the participants knew the experimenters
well and cooperated with them in a research project. Furthermore, participants were
software developers themselves and probably do not represent the general user pop-
ulation. Hence, participants might be biased and future work should establish the
generalizability of results regarding privacy.

6.3 Evaluation of MALTASE-based Failure

Reproduction

This section reports on a controlled experiment evaluating Maltase-based failure
reproduction described in Section 5.1. The experiment was conducted in collabora-
tion with Gurbanova [67] and published in Roehm et al. [152]. This section describes
design and results of the experiment while Section 6.5 discusses conclusions and im-
plications of the results.

6.3.1 Design

This controlled experiment was designed to evaluate Maltase-based failure repro-
duction and compare it to failure reproduction with traditional, textual bug reports
submitted by users. We used failures from bug reports in the MOSKitt bug repos-
itory in this experiment. To reflect the situation that many bug reports submitted
by users do not contain reproduction steps [105, 203], bug reports were divided in
two categories: bug reports that lack reproduction steps (BugReportMissingSteps) and
bug reports that contain reproduction steps (BugReportWithSteps).

Experiment Setup

We conducted two sub-experiments. Experiment 1 studied whether developers can
reproduce failures based on monitored user interactions preceding failures. Partici-
pants had to reproduce two bug reports from category BugReportWithSteps. To avoid

117

Chapter 6 Evaluation

a dependency of the results on the order of tasks, the order was chosen randomly.
Members of the experimental group were given the Timeline Tool visualizing user
interactions preceding the failure while members of the control group were given
textual bug reports. Hence, the independent variable in experiment 1 was the rep-
resentation of reproduction steps, either as visual interaction trace or in textual
form. The dependent variable was whether participants could reproduce the failure.
Experiment 2 studied whether Maltase-based failure reproduction enables develop-
ers to reproduce failures which they cannot reproduce with textual bug reports. Each
participant had to reproduce one bug report from category BugReportMissingSteps.
Members of the experimental group were given both the textual bug report and the
Timeline Tool visualizing user interactions preceding the failure while members of
the control group were given the textual bug report. Hence, the independent vari-
able in experiment 2 was the availability of reproduction steps while the dependent
variable was whether participants could reproduce the failure. While this seems to
be “unfair” for members of the control group, it represents the usual situations of
developers that bug reports submitted by users do not contain reproduction steps.

For each sub-experiment, we used a between subject design. We assigned partic-
ipants to experimental group and control group randomly for experiment 1. After
experiment 1, the groups of participants were switched, i.e. participants in the ex-
perimental group for experiment 1 were assigned to the control group in experiment
2 and vice versa. This design ensures that each participant works with the Timeline
Tool. Table 6.2 gives an overview of the experiment setting.

Experiment Procedure

At the beginning of each session, participants were introduced to the UML modeling
feature of MOSKitt and the Timeline Tool with a short video. Afterwards, each
participant had to explore an exemplary interaction trace in the Timeline Tool and
answer seven questions about it to make sure that they understood the usage of the
tool. Then, experiment 1 and experiment 2 were conducted. Finally, participants
filled a questionnaire to collect their opinion about the Timeline Tool and Maltase-
based failure reproduction.

During the experiment sessions, participants were observed and interesting obser-
vations were noted in a protocol. We logged hard results such as whether participants
were able to reproduce a failure and how much time it took them. Additionally, we
protocoled interesting participant behavior allowing to detect usability issues of the
Timeline Tool, to identify extensions of the Timeline Tool, and to qualitatively
analyze developer behavior during failure reproduction.

To help the experimenter conduct experiment sessions, we developed an exper-
imenters guide (a step-by-step guide how to conduct an experiment session), an
information sheet (a list of information pieces which should be given to participants
at beginning of a session), an observer sheet (a template to record results and ob-
servations), and a questionnaire. This material was tested and revised with one
participant and can be found in Appendix A.1.

118

6.3 Evaluation of MALTASE-based Failure Reproduction

Table 6.2: Experiment Setup

Failure Material for

Experimental Group

Material for

Control Group

Experiment 1

F1 (BR1) Timeline Tool with user

interaction trace

Textual bug report

F2 (BR2) Timeline Tool with user

interaction trace

Textual bug report

Experiment 2

F3 (BR3) Timeline Tool with user

interaction trace,

textual bug report

Textual bug report

Bug Report Selection and Trace Generation

To find suitable bug reports for the experiment, we analyzed the MOSKitt bug
repository. Developers of MOSKitt reported that approx. 90 % of bug reports in
the repository do not contain reproduction steps. The following inclusion criteria
were used for selecting suitable bug reports: First, the failure reported in the bug
report had to be reproducible in MOSKitt version 1.3.7 such that all of them could
be investigated using the same MOSKitt instance. Second, the reported failure had
to occur while using the UML modeling feature of MOSKitt to minimize familiar-
ization effort for participants unfamiliar with MOSKitt. Third, the reported failure
had to trigger an error dialog or an entry in the error log, ensuring that a failure
reproduction can be detected clearly. Fourth, the bug report had to be in English.
Using these criteria, four bug reports were selected.

These suitable bug reports were divided into the categories BugReportWithSteps

and BugReportsMissingSteps. When we could reproduce a failure based on the descrip-
tion in the bug report, it was categorized as BugReportWithSteps. In other cases, it
was categorized as BugReportMissingSteps and a developer of MOSKitt was asked to
provide reproduction steps. As one of the bug reports triggered several exceptions,
it was used as example in the tutorial for the Timeline Tool and the other three bug
reports BR12, BR23 and BR34 were used in the experiments. Table 6.3 provides
details about these bug reports.

We simulated user interactions triggering each failure by performing the repro-
duction steps described in Table 6.3 in an instrumented version of MOSKitt. The
Maltase sensors recorded those simulated user interactions and created a user in-
teraction traces which was shown to participants in the Timeline Tool. The following
sensors were used: CommandSensor, GUI Part Sensor, Diagram Sensor, Exception
Sensor, Application Sensor.

2https://moskitt.gva.es/redmine/issues/165 (Accessed Dec 2014)
3https://moskitt.gva.es/redmine/issues/138 (Accessed Dec 2014)
4https://moskitt.gva.es/redmine/issues/139 (Accessed Dec 2014)

119

Chapter 6 Evaluation

Table 6.3: Bug Reports Used in Experiment

Id,

Cat.

Title:

Description of Bug Report

Reproduction Steps

BR1,
With
Steps

Error when assigning a StateMachine
to a SubmachineState:
When adding a "Submachine State",
Moskitt throws an exception:
Unhandled event loop exception
java.lang.Stack OverflowError
Then, the submachine is shown into
the diagram, but it cannot be deleted.

1. Create new ’MOSKitt’ project.
2. Create new UML2 diagram of type ’UML
State machine’
3. Create a new ’Submachine State’ element
4. Select the parent StateMachine as the
referenced state machine
-> An exception is thrown and diagram is no
longer editable

BR2,
With
Steps

[Use Case] Error when create an
extension point into a Use Case figure:
[Use Case] Error when create an
extension point into a Use Case figure

1. Create a new ’MOSKitt’ project
2. Create new UML2 diagram of type ’UML
UseCase’
3. Create a ’UseCase’ element
4. Create an ’ExtensionPoint’ inside use case
-> An entry appears in the error log

BR3,
No

Steps

[Statemachine] Error when create a
State Submachine:
[Statemachine] Error when create an
State Submachine

1. Create a new ’MOSKitt’ project
2. Create new UML2 diagram of type ’UML
State machine’
3. Create another UML2 diagram of type
’UML State machine’
4. Save both diagrams and keep them open
5. In the first diagram, create a ’Submachine
State’. When prompted to select a State
Machine, select the one from the other
diagram.
-> An exception is thrown and MOSKitt
needs to be restarted

120

6.3 Evaluation of MALTASE-based Failure Reproduction

Table 6.4: Participants of Experiment
Position: S = Student, R = Researcher, D = Developer
Experience: Beg. = Beginner, Int. = Intermediate, Adv. = Advanced

Participant P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Position S S S S S S S S R R D D

Gender M M M M F F M F F M M M

MOSKitt Exp. No No No No No No No No No No Yes Yes

UML Exp. Int. Int. Beg. Beg. Int. Int. Adv. Int. Int. Adv. Adv. Adv.

Bug Fixing Freq. Day Week Day Day Month Never Day Day Month Week Day Month

Participants

Table 6.4 provides an overview of experiment participants. The experiment was
conducted with 12 participants: eight master students, two researches, and two
developers from the MOSKitt development team. Students and researchers did not
have previous experience with MOSKitt. The self-assessment of UML experience,
i.e. domain knowledge, ranged from beginner to advanced with mode intermediate
(on scale Beginner - Intermediate - Advanced).

6.3.2 Results

This section presents both quantitative and qualitative results of the experiment.
Conclusions from the results are discussed in Section 6.5. Table 6.5 provides an
overview of quantitative results.

Quantitative Results

In experiment 1, six of six members of the experimental group could reproduce the
failures based on interaction traces presented by the Timeline Tool. Similarly, six of
six members of the control group could reproduce the failures based on textual bug
reports. The average time needed by members of the experimental group was 3:30
min for F1 and 3:08 min for F2. Members of the control group needed 2:49 min and
2:05 min, respectively.
We conclude that developers can reproduce failures based on interaction traces pre-
sented by the Timeline Tool. As we did only a brief introduction of the Timeline Tool
at the beginning of each experiment session, the additional time needed by members
of experimental group might be explained with the time needed to familiarize with
the Timeline Tool.

In experiment 2, four of the six members of the experimental group were able
to reproduce the failure based on interaction traces presented by the Timeline Tool
and textual bug reports. Two participants from the experimental group, P10 and
P12, could not reproduce the failure. Participant P12 could not reproduce the fail-
ure because he was ignoring some interactions of the interaction trace. Participant
P10 could not reproduce the failure because he was exploring the interaction trace
backwards, i. e. right to left instead of left to right. In contrast, only one of six

121

Chapter 6 Evaluation

Table 6.5: Quantitative Results of Experiment
Success: Was failure reproduced? (Yes/ No)
Time: Times taken in minutes
Group: E=Experimental Group, C=Control Group

Part. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Experiment 1

Group C E E C C E C E E C E C

Order F1,

F2

F1,

F2

F1,

F2

F2,

F1

F1,

F2

F2,

F1

F1,

F2

F1,

F2

F2,

F1

F2,

F1

F2,

F1

F1,

F2

F1 Time 3:00 5:50 6:00 3:00 3:30 2:00 3:20 3:50 1:30 1:55 1:50 2:10

F1 Success Y Y Y Y Y Y Y Y Y Y Y Y

F2 Time 1:15 2:00 3:00 3:00 4:00 5:30 1:25 3:10 2:40 2:10 2:30 0:40

F2 Success Y Y Y Y Y Y Y Y Y Y Y Y

Experiment 2

Group E C C E E C E C C E C E

F3 Time 7:30 6:00 8:00 10:0 7:00 7:45 5:00 7:40 3:10 4:50 4:50 4:30

F3 Success Y N N Y Y N Y N N N (Y) N

members of the control group was able to reproduce the failure with a textual bug
report. This was the developer that originally fixed the bug and he could reproduce
it after a major hint from the experimenter. Members of the experimental group
needed on average 6:28 min to reproduce the failure.
We conclude that Maltase-based failure reproduction enables developers to repro-
duce failures when bug reports lack reproduction steps. This is a major improvement
over the state of the practice, where reproduction steps are frequently missing in
bug reports submitted by users.

Qualitative Results

While observing participants during the experiment, we identified two trace explo-
ration strategies: Nine participants explored the trace chronologically, i.e. left to
right, while three participants explored the trace backwards, i.e. right to left. The
backwards strategy seems to resemble the analysis of a stack trace, where an ex-
ception is analyzed by exploring executed methods starting with the latest method
(top down in the stack trace). To reproduce failures using the Timeline Tool, par-
ticipants had to work chronologically but were not told this before. Also, they did
not know that the Timeline Tool presents minimal reproduction traces, i.e. all user
interactions of an interaction trace have to be performed to reproduce a failure.
We hypothesize that participants who explored the trace from right to left tried to
identify the first interaction necessary for failure reproduction.

All participants provided with both bug report and Timeline Tool analyzed the
bug report first. When they noticed that the textual bug report did not contain
reproduction steps, all of them switched to the Timeline Tool. We hypothesize that

122

6.4 Evaluation of MALTASE-based Skill Detection

participants refer to textual bug reports first because they are well known. Also,
textual bug reports can give a quick impression about the failure. One participant
proposed to integrate both, the interaction trace and the textual bug report, in a
common view to facilitate the exploitation of both data sources simultaneously. We
agree and think that this is an interesting direction for future work.

We collected feedback of participants about Maltase-based failure reproduction
and its impact on failure reproduction in a short questionnaire. Eleven participants
agreed (8) or strongly agreed (3) that the meaning of information presented in the
Timeline Tool is clear and easy to understand. Similarly, eleven participants agreed
(7) or strongly agreed (4) that it is easy to find required information in the Timeline
Tool during failure reproduction. Eleven participants agreed (3) or strongly agreed
(8) that the Timeline Tool is helpful when reproducing failures. Similarly, eleven
participants agreed (6) or strongly agreed (5) that it is clear what the user did by
analyzing the interaction trace in the Timeline Tool. Eight participants preferred the
interaction traces as presented by the Timeline Tool while two participants preferred
textual bug reports, given that both contain the same information.

6.3.3 Limitations and Threats to Validity

As every empirical study, the design of this experiment has threats to validity.
Interaction traces presented to participants in the Timeline Tool were generated
manually. Thereby, we followed reproduction steps elicited from the textual bug
reports or provided by MOSKitt developers. This procedure ensures that the traces
consist of real user interactions. It allows to test whether developers comprehend
user interactions presented in the Timeline Tool and whether they can reproduce
failures based on this information. But it has the limitation that traces contain no
noise, i.e. user interactions not necessary for failure reproduction. Hence, future
work could investigate failure reproduction with interaction traces containing noise
as well as approaches to automatically extract reproduction steps from user inter-
action traces. Furthermore, each participant reproduced three bug reports for one
application. Because real bug reports and a real world application were used in
the experiment, we argue that the experiment represented developers’ situation in
the real world. But future work should study external validity, i.e. to what degree
experiment results generalize to other types of failures and other applications. Also,
participants reproduced failures on a laptop with the same MOSKitt instance which
was used to generate the interaction traces. Hence, the impact of Maltase-based
failure reproduction for changing environments should be investigated and it should
be combined with approaches targeting the reproduction of failure environments.

6.4 Evaluation of MALTASE-based Skill Detection

This section reports on an evaluation case study to evaluate Maltase-based skill
detection which is described in Section 5.2. The data collection was conducted in
collaboration with Theiner [184]. This section presents design and results of the
case study while Section 6.5 discusses conclusions and implications of the results.

123

Chapter 6 Evaluation

6.4.1 Design

This evaluation case study is a confirmatory case study [42] investigating the hy-
pothesis that user skills can be inferred from user interactions. We used the UML
editor MOSKitt as target application and consider two types of user skill following
the skill categories of Nielsen [127]: MOSKitt application skill, i.e. skill with regard
to the MOSKitt application, and UML domain skill, i.e. skill regarding modeling
UML class diagrams. As we could not find a dataset containing user interactions
as well as MOSKitt and UML skill levels, we collected the data ourselves. We had
study participants work on UML modeling tasks in MOSKitt and captured their
interactions during those task with the Maltase sensors. Furthermore, we asked
participants for self-estimations of their skill. This dataset was used to learn and
evaluate skill classifiers.

Tasks

Each participant had to complete the same three tasks which were UML modeling
exercises from the book by Bruegge and Dutoit [23]. The level of difficulty increased
with each task: While the first two tasks were closed tasks, i.e. their solution was
obvious from the task description, the last task was open, i.e. the solution was not
obvious from the task description and different solutions were possible.

The following three tasks were used during data collection of the study (the full
task descriptions are given in Appendix A.2):
Task T1: Participants were given a UML class diagram on a sheet of paper and
asked to create the same class diagram in MOSKitt. The diagram consisted of three
classes and three associations.
Task T2: Participants were given an existing UML class diagram in MOSKitt which
consisted of six classes but no associations. Each class represented a geometric figure
such as a polygon or a rectangle. Additionally, they were given a textual description
of associations between those classes, e.g. “a group consists of figures” or “a polygon
consists of at least three lines”. The task was to add six associations described in
the text to the existing class diagram.
Task T3: Participants were given the following textual description of a “restaurant
world”: “Create a UML model for the following situation: In a small town there are
five restaurants with a number of employees ranging from two in the smallest to 16
employees in the biggest restaurant. Each employee has an individual salary. There
are two types of employees: cooks and waiters. Waiters wait on tables, pass the
orders to the kitchen, serve the menus and collect the money from the customers.
The cooks prepare the menus. Each menu has its own price depending on the dishes,
but each consists of at least a salad and a main course. Customers visit restaurants
and order menus. The largest restaurant can serve up to 100 customers at a time, at
bad times a restaurant might have no customers at all.” Participants had to model
this “restaurant world” as a UML class diagram.

124

6.4 Evaluation of MALTASE-based Skill Detection

Participants

The study design requires a basic understanding of UML class diagrams. Hence, we
recruited participants with at least basic UML class diagram skills. To detect differ-
ent skill levels regarding MOSKitt and UML, we aimed to recruit participants with
different skill levels, i.e. skill combinations like “UML beginner, MOSKitt beginner”,
“UML advanced, MOSKitt beginner”, or “UML advanced, MOSKitt advanced”. The
combination “UML beginner, MOSKitt advanced” was excluded because as expe-
rience with MOSKitt usually requires also UML experience as MOSKitt is mainly
used as a UML tool. Three groups of people represent these skill combinations:
students with basic UML skills from software engineering classes but no experience
with MOSKitt; software engineering researchers with UML skills but no experience
with MOSKitt, and finally software developers from the MOSKitt team with both
UML and MOSKitt skills. Hence, we recruited participants from these groups.

We conducted the experiment with 15 participants: six students, seven software
developers, and two researchers. Table 6.6 provides an overview of the participants.
Five developers were members of the MOSKitt development team. We collected
self-estimations of participants for MOSKitt skill and UML skill on a four-item
scale (None, Beginner, Intermediate, Advanced). Ten participants had not worked
with MOSKitt before, one judged him- or herself on intermediate level, and four on
advanced level. Six participants judged themselves to be on beginner level regarding
UML class diagram modeling, five on intermediate level, and four on advanced level.
Because skill self-estimations may not be reliable, we additionally determined skill
levels independently of participant’s self-estimations: We classified MOSKitt skill
of participants based on their MOSKitt experience on a two-item scale as novices
or experts. Furthermore, we classified UML skill of participants based on their
solution to task T3 on a three-item scale as beginner, intermediate, or advanced.
All participants had a high skill level regarding computer usage as they frequently
use computers during their daily work. Experiment sessions of six participants
were conducted remotely via screen sharing while the sessions with the other eight
participants were conducted on site. Remote participation was necessary because
the MOSKitt development team was not co-located. For each participant, the time
needed for each task and the complexity of the solution for task T3, i.e. the number
of UML elements in the solution, was recorded and is given in Table 6.6.

Research Process

Figure 6.6 provides an overview how the study was the dataset was collected and
how skill classifiers were learned and evaluated from this dataset. In the following
we briefly describe each step.

Data Collection Phase All study sessions were conducted by one experimenter
with one participant. If a participant had not used MOSKitt before, a short demo
video explaining the creation of UML class diagrams in MOSKitt was shown at
the beginning of a session. Participants were provided with a laptop on which an
instrumented MOSKitt instance was running as well as a task sheet describing the
three tasks. Each participant had to solve the tasks consecutively without addi-

125

Chapter 6 Evaluation

Table 6.6: Overview of Case Study Participants
’Remote?’ denotes participation via screen sharing
’Team?’ identifies members of MOSKitt development team

Id Sex Occu-

pation

MOSKitt

Skill

(Rep.)

MOSKitt

Skill

(Aggr.)

UML

Skill

(Rep.)

UML

Skill

(Met-

ric)

Rem-

ote?

Te-

am?

Time

T1

in

min

Time

T2

in

min

Time

T3

in

min

Com-

pl.

T3

Soln.

P1 M Stud. None Novice Interm. Beg. No No 10.8 9.4 8.3 21
P2 M Dev. Interm. Expert Interm. Adv. Yes Yes 3.7 5.7 24.5 26
P3 M Dev. Adv. Expert Interm. Interm. Yes Yes 6.8 2.9 9.9 29
P4 M Stud. None Novice Interm. Interm. No No 7.7 6.3 27.1 26
P5 M Res. None Novice Adv. Adv. No No 6.9 4.8 10.8 No
P6 N Dev. Adv. Expert Interm. Adv. Yes Yes 11.1 5.1 10 30
P7 F Dev. Adv. Expert Interm. Interm. Yes Yes 5.9 3.8 21.2 34
P8 F Dev. Adv. Expert Adv. Adv. Yes Yes 7.0 4.4 26.3 57
P9 M Stud. None Novice Interm. Interm. No No 6.3 5.0 9.7 24
P10 M Stud. None Novice Beg. Interm. No No 5.5 3.9 11.8 26
P11 M Stud. None Novice Beg. Beg. Yes No 6.0 12.8 20.6 26
P12 M Dev. None Novice Beg. Beg. No No 12.7 11.9 32 26
P13 M Dev. None Novice Interm. Interm. No No 12.8 5.0 22.3 40
P14 M Stud. None Novice Interm. Interm. No No 4.3 7.9 9.4 21

Data Collection Phase Data Analysis Phase

!"#$%"&$#'(")((
*+,&(-#%,&./0"#+((

1"22,/0"#(")(
3.&0/$4.#%(-#)"(

5.%.(12,.#$#'(

6,.%7&,(89%&./0"#(

6,.%7&,(:,2,/0"#(

12.++$;,&(<,.&#$#'(

12.++$;,&(
8=.27.0"#(

1"22,/0"#(")(>.+?(
:"270"#+(

6"&(
,./@(
%A4,(
")(
+?$22(
+,4B(

Figure 6.6: Research Process of Evaluation Case Study

126

6.4 Evaluation of MALTASE-based Skill Detection

tional help. Participants could work on each task until they felt to be done. While
participants worked on the tasks, their interactions were recorded with the RCP
Framework Sensors of the Maltase framework (step ’Monitoring of user interac-
tions’ in Figure 6.6). The following Maltase sensors were used: menu and toolbar
sensor, GUI part sensor, diagram sensor, and command sensor. Furthermore, we
implemented additional sensors which monitor mouse actions like mouse clicks and
mouse movements as well as hot keys. At the end of a session, the participant had to
complete a questionnaire which collected self-estimations of MOSKitt UML Class
Editor skill and UML Class Diagram skill on a four level scale (Never used, Be-
ginner, Intermediate, and Advanced) together with general participant information
(step ’Collection of Participant Info’ in Figure 6.6). Furthermore, task solutions
were saved for later analysis (step ’Collection of Task Solutions’ in Figure 6.6). The
experimenter observed participants during their work and recorded observations.
To help the researcher conducting study sessions, we designed a study guide (a
step-by-step guide how to conduct a session), an information sheet (a list of infor-
mation pieces which should be given to participants at beginning of a session), an
observer sheet (a template to note results and observations), and a questionnaire.
This material was tested in two test runs and revised after each run. It can be
found in Appendix A.2. Six sessions were conducted remotely via screen sharing
because the corresponding participants were not co-located. In these cases, partici-
pants took control over the study laptop via screen sharing and remotely interacted
with MOSKitt. The task sheet was presented next to MOSKitt on the screen.

Data Cleaning The dataset collected during study sessions was cleaned and ex-
tended in several ways which are described in the following.
To control for usability issues due to screen sharing, we asked remote participants
if they experienced usability problems during their session. This was the case for
one participant and we removed his or her data from the dataset before classifier
learning and evaluation (this participant is not shown in Table 6.6).
Because skill self-estimations are typically not reliable, we aggregated the self-
reported MOSKitt skill estimations (column ’MOSKitt Class Diagram Editor Skill
(Reported)’ in Table 6.6) to improve the quality of our data. Nine participants had
never worked with MOSKitt before the study. Therefore we categorized them as
’novice’ (column ’MOSKitt Class Diagram Editor Skill (Aggregated)’ in Table 6.6).
Five participants from the MOSKitt development team judged their MOSKitt UML
class editor skill as ’intermediate’ or ’advanced’. Consequently, we categorized them
as ’experts’. We validated this categorization by running the k-means clustering
algorithm with k=2 clusters on the dataset. All but one ’expert’ participants were
assigned to one cluster and all ’novice’ participants were assigned to the other clus-
ter. Hence, we are confident that the aggregated skill levels are reasonable. In case
of UML class diagram skill, no such clear distinction could be made because all par-
ticipants had experience with UML class diagrams and skill self-estimations ranged
from ’beginner’ to ’advanced’ (column ’UML Class Diagram Skill (Reported)’ in Ta-
ble 6.6). Therefore we analyzed participants’ solutions to task T3 in order to validate
UML skill self-estimations. We investigated differences between correct, complete
solutions and incorrect, incomplete solutions. We found three dimensions where

127

Chapter 6 Evaluation

solutions differed: frequent use of advanced modeling constructs (namely datatypes
and unbounded multiplicities such as ’1..*’), the number of modeling errors, and the
fraction of information given in the task description but not modeled in the solution.
We designed an expert and a novice predictor for each of these three dimensions sep-
arately: Participants were classified as experts if they used each advanced modeling
constructs more than once while they were classified as novices if they used each
construct at most once. Further, participants were classified as experts if they made
at most one error in their T3 solutions, while they were classified as novices if they
made more than three errors. Finally, participants were classified as experts when
they modeled more than 90% of the information contained in the task description,
while they were classified as novices when they modeled less than 66%. The param-
eter values of these predictors were determined by manual analysis and comparison
of T3 solutions. A majority vote of these predictors was used to determine the UML
class diagram skill of each participant (column ’UML Class Diagram Skill (Metric)’
in Table 6.6). If participants were estimated neither as ’expert’ or ’novice’ in the ma-
jority vote, they were categorized as ’intermediate’. We also ran k-means clustering
with k=3 to validate the UML class diagram skill levels. But we could not find an
assignment of participants to clusters which resembled the UML skill distribution,
neither for the self-reported skill estimations nor for the metric.

Feature Extraction Classification features such as the number of command ac-
tions summarize a user session and are needed by skill classifiers as input. They are
extracted from monitored interaction traces by the feature extractor component.
Table 6.7 provides an overview of the classification features used. We extracted 88
classification features in seven categories and analyzed which feature subset performs
best to predict user skill. We extracted seven different types of features: general fea-
tures, features based on mouse actions, features based on keyboard actions, features
based on interactions with the WIMP user interface, features specific for MOSKitt,
features specific for UML modeling, and task specific features. For each feature type,
the absolute count as well as the frequency per minute were extracted. For example,
the total number of actions during a study session as well as the number of actions
per minute were used as a classification feature. We motivate some features in the
following: The feature “palette hover actions” (F11) resembles that MOSKitt users
have to select a UML modeling construct such as a class or an inheritance relation
from a tool palette before they can then add it to the diagram canvas. Hence, we
hypothesize that hovering over a tool palette item indicates exploration. Further,
the features “add-delete-add pattern?” (F12) and “add-delete-add pattern” (F13)
resemble a usability problem which influenced many novice MOSKitt users: when
drawing an association between two UML classes, the direction was counterintuitive
and many novice users had to delete the wrong-directed association and recreate
it with the right direction. Task-dependent features were manually derived from
interaction traces or the solution of task T3.

Feature Selection Extracted feature values were used to learn skill classifiers.
We used decision trees as classifiers for user skill. Ideally, a decision tree learning
algorithm is able to automatically choose the optimal subset of features for con-

128

6.4 Evaluation of MALTASE-based Skill Detection

Table 6.7: Classification Features Extracted From Interaction Traces
’Runtime?’ denotes if a feature can be extracted at runtime

Id Shorthand Description Run-

time?

General Features

F1 #actions Number of (all types of) actions Yes

Features Based on Mouse Actions

F2 #clicks Number of mouse clicks Yes
F3 #mouse pauses Number of pauses between two mouse actions Yes
F4 Øpause duration Average pause duration between two mouse actions Yes

Features Based on Keyboard Actions

F5 hot keys used? Indicates whether hot keys were used Yes
F6 #hot key actions Number of hot key actions Yes

Features Based on Interactions With WIMP User Interface

F7 #commands Number of command actions Yes
F8 #menu actions Number of main menu and context menu actions Yes
F9 #tool actions Number of toolbar actions Yes
F10 #UI part switches Number of switches to another part of the UI Yes

Features Based on Target Application “MOSKitt”

F11 #palette hover
actions

Number of hovers over tool palette items (tool
palette is MOSKitt specific UI-component to select
UML modeling elements)

Yes

F12 add-delete-add
pattern?

Indicates whether interaction pattern “Add assoc.,
delete it, add it again” occurred

Yes

F13 #add-delete-add
pattern

Number of occurrences of pattern “Add assoc.,
delete it, add it again”

Yes

Features Based on Target Domain “UML Class Diagram Modeling”

F14-
F33

diagram
manipulation actions

Number of actions which add or remove a particular
type of UML class diagram modeling construct, e.g.
AddUmlClass, AddUmlOperation,
RemoveUmlAssociation, RemoveUmlProperty

Yes

Features Based on Task

F34 task time Time needed to complete each task, i.e. T1, T2, T3 No
F35 solution complexity

T3
Complexity of solution for task T3;
measured as the total number of classes, relations,
operations, attributes, and multiplicities

No

129

Chapter 6 Evaluation

structing the decision tree. But it has been shown that even random features can
decrease classifier performance because of the greediness of decision tree learning
[199]. Hence, a feature selection step is necessary to identify the optimal feature
subset for learning decision tree classifiers. We selected features for decision tree
learning in two sub-steps. First, we used a filter method [199] to determine a first
subset of features: All features were ranked according to their information gain with
respect to the currently investigated skill type and all features with a low information
gain were dropped. Second, the first feature subset was further reduced by a wrap-
per method [199]: A decision tree classifier was learned for all feature combinations
of the first feature subset and evaluated against a training set. The combination of
features with the best result was used for classifier learning. This analysis was done
individually for each skill type using the weka data mining toolkit [69].

Classifier Learning We learned decision tree classifiers for the following four types
of user skill (see Table 6.8): self-estimated MOSKitt UML class diagram editor
skill (four-item scale: Never used, Beginner, Intermediate, Advanced), aggregated
MOSKitt UML class diagram editor skill (two-item scale: Novice, Expert), reported
UML class diagram skill (three-item scale: Beginner, Intermediate, Advanced), and
UML class diagram skill derived using the metric described above (same three item
scale). A decision tree classifier was learned for each type of skill separately using
the feature subset identified during feature selection. Decision trees were learned
using weka’s J48 algorithm [69] which is an implementation of the C4.5 decision tree
learning algorithm [141]. We chose decision trees since they are well-known classifiers
and lead to human-interpretable classifiers. We also experimented with different
feature subsets when learning skill classifiers: all features (all features described in
Table 6.7), independent features (all features independent of application, domain,
and task), runtime features (features which can be derived online at runtime), and
UML modeling features (features derived from UML modeling actions).

Classifier Evaluation Each skill classifier was evaluated using 10-fold cross vali-
dation. The results of the classifier evaluation are summarized in Table 6.8.

6.4.2 Results

This section presents results from classifier learning and evaluation as well as obser-
vations made during study sessions. Conclusions and implications from these results
are discussed in Section 6.5.

Results From Classifier Learning and Evaluation

We learned and evaluated classifiers for different types of user skill, namely MOSKitt
Skill (Reported), MOSKitt Skill (Aggregated), UML Skill (Reported), and UML
Skill (Metric). Table 6.8 provides an overview of the results obtained. ’Accuracy’
denotes the fraction of participants which were classified correctly. The kappa coeffi-
cient κ is a chance-corrected measure that expresses the agreement between classified

130

6.4 Evaluation of MALTASE-based Skill Detection

Table 6.8: Results of Classifier Learning and Evaluation

Skill Type Features

Used

Accu

racy

κ Prec.

(Wgt.

Avg.)

Recall

(Wgt.

Avg.)

Tree

Size

Classification Features in

Decision Tree

Application Skill

MOSKitt
Skill (Rep.)

All 86% 0.69 0.79 0.86 3 EdgeRemoved (F14-F33)
Runtime 86% 0.69 0.79 0.86 3 EdgeRemoved (F14-F33)

MOSKitt
Skill (Aggr.)

All 93% 0.84 0.94 0.93 3 EdgeRemoved (F14-F33)
Runtime 93% 0.84 0.94 0.93 3 EdgeRemoved (F14-F33)

Domain Skill

UML Skill
(Rep.)

All 64% 0.26 0.59 0.64 7 AddDeleteAddPattern (F13),
GuiPartActivation (F10)

Runtime 64% 0.26 0.59 0.64 7 AddDeleteAddPattern (F12),
GuiPartActivation (F10)

UML Skill
(Metric)

All 71% 0.51 0.76 0.71 7 AddDeleteAddPattern (F13),
PaletteHover (F11)

Runtime 71% 0.51 0.76 0.71 7 AddDeleteAddPattern (F12),
PaletteHover (F11)

skill levels and true skill levels [199]. Its value indicates the performance improve-
ment over a random classifier. Precision and recall values for each classifier are given
averaged, i.e. the number of participants on each skill level are taking into account
when calculating these metrics.

The accuracy of classifiers for the reported MOSKitt skill was 86%. Their kappa
value κ was 0.69, indicating a better performance than a random classifier. The
classifiers also outperform a ZeroR [199] classifier (a classifier which always predicts
the most common value of the target skill level) with an expected accuracy of 64 %.
All decision trees consist of only three nodes, indicating that few features suffice to
classify user skill which translates to a low performance overhead as only these few
features have to be monitored and extracted. Moreover, the classifier learned from
runtime features only performs as well as the classifier learned from all features. This
observation indicates that runtime information suffices to detect user skill and that
skill detection can be employed during runtime, i.e. while the user is interaction with
an application. When ignoring features related to the MOSKitt usability issue (i.e.
features EdgeRemoved (F14-F33) and add-delete-add pattern (F12, F13)) during
classifier learning, the classifier performance slightly decreases to 79% accuracy (κ:
0.53, precision: 0.73, recall: 0.79).
Figure 6.7 shows the decision tree learned for aggregated MOSKitt skill from all
features. It consists of one test of the feature EdgeRemoved (F14-F33), i.e. how
often an edge in a UML class diagram was removed during a session. When a user

131

Chapter 6 Evaluation

EdgeRemoved

(F14-33)

<=1 >1

Expert Novice

Figure 6.7: Decision Tree for MOSKitt Skill (Aggr.) Learned From All Features

removed at most one edge during a session, he or she is classified as an expert user.
Otherwise the user is classified as a novice users.

Classifiers for aggregated MOSKitt skill performed slightly better with an accu-
racy of 93%. Their kappa value κ was 0.94, indicating that the classifiers clearly
outperform a random classifier. Similarly, the classifiers outperform a ZeroR clas-
sifier with expected accuracy of 64%. We observed an equal performance of both
classifiers learned from all features and classifiers learned from runtime features
only. Similar to classifiers for reported MOSKitt skill, the classifier learned from
all features and the classifier learned from runtime features only show the same
performance. Furthermore, the size of the decision trees is small. When ignoring
features related to the MOSKitt usability issue (i.e. features EdgeRemoved (F14-
F33) and add-delete-add pattern (F12, F13)) during classifier learning, the classifier
performance decreases to 86% accuracy (κ: 0.69, precision: 0.86, recall: 0.86).

The accuracy of classifiers for reported UML skill was 64%. The kappa value κ
of 0.26 indicates a small performance improvement compared to a random classi-
fier. Compared to a ZeroR classifier with an expected accuracy of 64%, learned
classifiers show the same performance. Similar to classifiers for reported MOSKitt
skill, the classifier learned from all features and the classifier learned from runtime
features only show the same performance. Furthermore, the size of the decision
trees is small. When ignoring features related to the MOSKitt usability issue (i.e.
features EdgeRemoved (F14-F33) and add-delete-add pattern (F12, F13)) during
classifier learning, the classifier performance remains similar with 64% accuracy (κ:
0.3, precision: 0.59, recall: 0.64).

Classifiers for UML skill derived using the metric perform performed slightly bet-
ter with accuracy of 71%. They perform better than a random classifier (kappa
value κ of 0.51) and a ZeroR classifier with expected accuracy of 50 %. Similar to
classifiers for reported MOSKitt skill, the classifier learned from all features and the
classifier learned from runtime features only show the same performance. Further-
more, the size of the decision trees is small. When ignoring features related to the
MOSKitt usability issue (i.e. features EdgeRemoved (F14-F33) and add-delete-add
pattern (F12, F13)) during classifier learning, the classifier performance decreases
to 57% accuracy (κ: 0.23, precision: 0.45, recall: 0.57).

Observations During Study Sessions

We made several observations during the study sessions which provide insights about
skill classification and classification features. Users with a high skill level completed
the easy tasks T1 and T2 in less time than less skilled users. We made this ob-
servation for both application and domain skill. Interestingly, this observation was

132

6.4 Evaluation of MALTASE-based Skill Detection

not true for the more complex task T3. Here, several participants with high skill
level took much longer time because they modeled the solution in much more detail.
Hence, task completion time should not be used as an indicator for user skill alone.

We identified a usability issue in MOSKitt during the study which affected many
novice MOSKitt users when creating directed associations between two classes. To
accomplish this task, a user has to choose an association type from the tool palette,
click on the source class, keep the mouse pressed, move the cursor to the destination
class, and release the mouse. Several novice MOSKitt users released the mouse too
early or selected the classes in the wrong order. When users faced this situation,
they had to delete the association and create it again correctly. We call this behavior
the “Add association, Delete association, Add association” pattern and hypothesize
that it is indicator for low MOSKitt skill (cf. features F12 and F13 in Table 6.7).

Furthermore, we found that frequency of hot keys was inversely proportional to
user skill level. This was to our surprise as we had assumed that hot key usage is
an indicator for high user skill. When examining this observation in more detail,
we found that ’F2’ hot key was the most frequently used hot key. This hot key is
used to rename a model element in MOSKitt. When a new model element is created
in MOSKitt, it is assigned a default name. The user can immediately change the
default name by overwriting the default name right after the creation of the model
element. While experienced MOSKitt users renamed model elements at the time of
creation, this option was not obvious for new MOSKitt users. Hence, new MOSKitt
users used the F2 shortcut to change element names. We conclude that a particular
classification feature can be an indicator for high user skill in one context while it
can be an indicator for low user skill in another context. This requires a careful
analysis of classification features when transferring skill classifiers from one context
to another one, e.g. from one application to another application or from one domain
to another domain.

6.4.3 Limitations and Threats to Validity

As every empirical study, the design of this case study has limitations and threats to
validity. The case study was conducted with a single application, MOSKitt, within
a single domain, UML class diagram modeling. Future work has to establish the
generalizability of the results to other applications and domains.
Furthermore, 14 participants took part in the study. Because of this medium number
of participants, results should be interpreted carefully and conservatively. We argue
that this number is big enough to obtain insights but it remains future work to
establish the generalizability of the results. However, many comparable studies
were conducted with a similar number of participants.

Study participants self-estimated their skill levels regarding MOSKitt and UML
class diagram modeling. While this information is easy to obtain, it might not always
correspond to the true skill level or be inconsistent among different participants. To
address this threat, we determined participants’ skill levels independently of their
own ratings as described above.

133

Chapter 6 Evaluation

User skills change over time when users become experienced with an application
or a task domain. Moreover, different types of user skill might be correlated with
each other. These two characteristics of user skill were not considered in this study.

During the study, a usability problem of MOSKitt was detected which mainly
affected novice MOSKitt users and forced them to correct their UML diagram by
removing and re-creating associations between classes. The features EdgeRemoved
(F14-F33) and add-delete-add pattern (F12, F13) reflect this behavior and those
features were used in several classifiers to discriminate between novice and expert
MOSKitt users. Hence, it is not possible to assess whether these classifiers are able
to discriminate between novice and expert users in the absence of this usability prob-
lem. But the observation that MOSKitt skill can be reliably predicted without these
features shows that there are alternatives to using those features for classification.

We conducted seven study sessions remotely via screen sharing because all ad-
vanced MOSKitt users were located abroad. We asked all remote participants
whether they faced usability problems due to screen sharing and did not use their
data if this was the case. Several remote participants commented that they could
not use all hot keys they were used to, which might influence results regarding
hot key usage. But we observed that work on UML modeling tasks in MOSKitt
requires mainly interactions with the tool palette and diagram canvas using the
mouse. Moreover, all tasks could be completed without using hot keys.

6.5 Discussion

The evaluation found that Maltase monitoring introduces a time overhead of 5%
and a memory overhead of 2-5%. Users do not perceive this performance overhead or
judge it as not hindering their work. Hence, we conclude that Maltase monitoring
is feasible without introducing performance problems for users.

Survey participants agreed that their interactions with the application as well
as system information is monitored and collected anonymously. Hence, we con-
clude that Maltase can be used in the context represented by study participants,
i.e. software developers working with CASE tools. Future work should investigate
whether this result holds for users in general. Related work by Sheth et al. [166]
found that interaction data is considered less sensitive than document content or
personal data by users.

We did not directly evaluate the size of interaction traces and whether data of
many users can be stored and transferred by components of the Data Storage &
Transfer layer. But as no problems occurred during the user survey study (where
six MOSKitt users worked with an instrumented MOSKitt instance connected to
one developer server), we assume that the Maltase framework can handle inter-
action traces from a moderate number of users. Future work could investigate how
Maltase handles interaction traces of a large user base and whether load balancing
mechanisms are necessary in that case.

Participants working with Maltase-based failure reproduction could reproduce a
failure in 16 of 18 instances. Hence, we conclude that developers can reproduce fail-

134

6.5 Discussion

ures based on monitored user interactions preceding failures. Further, we conclude
that the Maltase sensors provide enough information for failure reproduction.

The evaluation found that participants unfamiliar with MOSKitt were able to
reproduce failures they could not reproduce with textual bug reports only: The
four students working with textual bug reports could not reproduce the failure in
experiment 2 while the four students working with Maltase-based failure repro-
duction could reproduce it. As the students were master students and most of them
worked as part-time developers, we hypothesize that they mimic developers without
MOSKitt experience. Hence, we conclude that Maltase-based failure reproduction
enables developers unfamiliar with an application to reproduce failures they cannot
reproduce with bug reports because of missing reproduction steps in the reports.
This is a major improvement over the state of the practice where bug reports sub-
mitted by users often do not contain reproduction steps [105, 203].
As only two developers from the MOSKitt team participated in the evaluation, we
refrain from making conclusions about the impact of Maltase-based failure repro-
duction for developers experienced with an application. But the positive feedback
from both developers about Maltase-based failure reproduction indicates an inter-
est and impact for developers, too.

The interaction traces used in the evaluation did not contain noise, i.e. interac-
tions which are not necessary for failure reproduction. Hence, future work should
investigate two directions: Maltase-based failure reproduction with interaction
traces containing noise as well as automated extraction of reproduction steps from
monitored interaction traces, i.e. identification of the sub-trace which is necessary
and sufficient to reproduce a failure.

Other researchers have proposed approaches to reproduce and fix field failures,
especially capture/replay approaches and code monitoring approaches. Future work
should compare such approaches with Maltase-based failure reproduction. We
argue that performance overhead introduced as well as the fraction of failures ad-
dressed by each approach are important aspects in this comparison.

Based on the positive evaluation results of Maltase-based failure reproduction,
we encourage developers to consider using such an approach in their applications.
This consideration should include balancing the efforts to the benefits, designing
an infrastructure similar to the Maltase framework for monitoring and collection
of user interactions preceding failures, and identification of circumstances in which
users of their application accept such an approach.
Similarly, we encourage vendors of crash reporting tools to consider user interactions
preceding failures, i.e. to monitor user interactions and include user interactions
preceding a failure in failure reports together with memory dumps and stack traces.

The classifiers for MOSKitt skill clearly outperform random and ZeroR classifiers.
Hence, we conclude that Maltase-based skill detection can discriminate between
novice and expert users of MOSKitt and that the Maltase sensors provide enough
information for this classification. Future work should investigate how this result
translates to other applications.

The performance of classifiers for UML skill was unsatisfactory as most classifiers
exhibit a similar performance as a ZeroR classifier (a classifier always predicting the
most common skill level). We expected such a performance as the k means clustering

135

Chapter 6 Evaluation

for UML skill was not able to separate participants according to their UML skill
level. Hence, future work should investigate if it is possible to detect UML skill from
user interactions and how classifiers for UML skill classifiers can be improved.

All decision trees required only a few classification features, indicating that only
a few features suffice to detect user skill. This result confirms related work by Hurst
et al. [84] who found that “differences between novice and expert users can be sensed
with high accuracy using only a few key features”. We conclude that skill classifiers
introduce a small performance overhead as only a few features have to be monitored.

Classifiers learned from all classification features showed the same performance
as classifiers learned from runtime features (features which can be extracted at
runtime). This result indicates that non-runtime features do not provide information
improving classifier performance. Hence, we conclude that classification features
necessary for skill classifiers can be extracted at runtime and that runtime features
suffice for skill classifiers.

We observed that task completion time is an indicator of high user skill for easy
tasks but not for complex tasks. Similarly, we observed that hot key usage was an
indicator for low user skill in the evaluation while it might indicate high user skill
in other contexts. Hence, we conclude that the correlation of a classification feature
with user skill depends on the context (task, application, domain) and that a careful
analysis is necessary when transferring classifiers from one context to another one.

Detecting user skills raises ethical questions as this information might be mis-
used. Hence, care should be taken to protect information about user skill such as
anonymizing skill data or encrypting it during transfer. If the skill information is
used only for adaptation of the user interface or the application, it should not be
sent to a developer server.

We argue that information about user skills can be used in two ways: First, to
automatically adapt the user interface or the application to the current user, e.g. by
hiding complex features or providing additional help for novice users. And second,
we hypothesize that developers can exploit information about the skill distribution
of their user base in software evolution decisions. For example, if developers knew
that the majority of their users are novices, they might decide to implement a certain
functionality using a wizard style which provides user guidance. Future work should
investigate such exploitations of user skill information in more detail.

Overall, the evaluation demonstrated that Maltase provides developers with
helpful knowledge during software evolution, namely reproduction steps for failures
and information about user skill. As Maltase is a framework, it can be extended
by more sensors and more types of analysis to provide additional knowledge to de-
velopers. An example of a further analysis is the comparison of monitored user
interactions to the flow of events of use cases to detect mismatches between both.
Also, future work could investigate feature detection based on monitored user inter-
actions, i.e. to identify which application features a user used during a session.
Different types of analyses performed on monitored, high-level user interactions show
an advantage of this type of data: they can be reused, i.e. user interactions which
have been monitored once can be analyzed multiple times to gain different kinds of
information (“monitor once, analyze multiple times”).

136

6.6 Chapter Summary

Based on evaluation results about the feasibility and impact of Maltase, we
encourage developers to consider using a usage analysis tool in their applications.
This consideration should include an analysis of benefits of such an approach as
well as balancing those benefits with the effort required for its installation and
maintenance. Furthermore, developers should determine in which types of usage
data they are interested in, how this data can be collected and analyzed, and how
it impacts their software evolution tasks.

A prerequisite for using Maltase is the acceptance by users of the target ap-
plication. As the evaluation has shown the impact of Maltase during software
evolution, we encourage users to accept a usage analysis tool in the software ap-
plications they use. Care should be taken when designing a usage analysis tool to
adhere to privacy concerns of users. To achieve this, we see the following measures:
anonymizing monitored usage data, transferring usage data only with user approval,
and presenting usage data to users to create transparency about collected data.
There is a dilemma regarding user acceptance for a usage analysis tool: Usually users
do not have a direct benefit from a usage analysis tool. Hence, it might be difficult
to convince them to use such a tool and future work could investigate incentives for
motivating users to accept such a tool.

The evaluation was performed with one application. As a real world application
was used, we argue that the evaluation results are relevant in practice. But future
work could investigate whether the Maltase framework can be employed with other
applications and whether the same results hold. When integrating the Maltase
framework with an application, only the sensors and monitoring infrastructure com-
ponent depend on the implementation technology and might have to be adapted or
rewritten. The other parts of the the Maltase framework are independent of the
target application or its implementation technology.

6.6 Chapter Summary

This chapter described an empirical evaluation of the Maltase framework. Frame-
work components were implemented and integrated with MOSKitt, a real-world
CASE tool. A simulation and a user survey were performed to investigate the per-
formance overhead and user acceptance of Maltase. The simulation simulation user
sessions for a plain and an instrumented MOSKitt instance and compared perfor-
mance metrics of both. It found that Maltase monitoring introduces a performance
overhead of 5 % execution time and 2-5 % memory consumption. During the user
survey, six MOSKitt users worked with an instrumented MOSKitt instance for two
weeks and reported their experiences. It found that the performance overhead intro-
duced by Maltase monitoring is not perceived by users or does not hinder them.
Further, it found that participants accept anonymously interaction monitoring.

A controlled experiment was conducted to evaluate Maltase-based failure repro-
duction and compare it to failure reproduction with textual bug reports. Partici-
pants had to reproduce failures from bug reports in the MOSKitt bug repository
based on either monitored user interactions or textual bug reports. The experiment
found that developers can reproduce failures based on monitored user interactions
preceding the failure and that the Maltase sensors provide enough information for

137

Chapter 6 Evaluation

failure reproduction. Further, it found that Maltase-based failure reproduction
enables developers unfamiliar with an application to reproduce failures they could
not reproduce with textual bug reports. Because of the limited number of experi-
enced developers, we cannot draw conclusions for them but their positive feedback
indicates an interest of developers in Maltase-based failure reproduction.

An evaluation case study was performed to evaluate Maltase-based skill de-
tection. Participants had to work on UML modeling tasks in MOSKitt and their
interactions were monitored by Maltase sensors. This dataset was used to learn
and evaluate decision tree classifiers for MOSKitt application skill and UML domain
skill. The case study found that Maltase-based skill detection can discriminate
between novice and expert users of MOSKitt and that the Maltase sensors pro-
vide enough information for this classification. The performance of classifiers for
UML skill was similar to a classifier always predicting the most common skill level.
Decision tree classifiers tested just a few classification features, indicating that skill
classifiers have to introduce only a small performance overhead.

Overall, the evaluation showed that Maltase provides developers with helpful
knowledge during software evolution, namely reproduction steps for failures and
information about user skills. Hence, Maltase addresses the problem of missing
usage information and narrows communication gaps between developers and users.

138

Chapter 7

Conclusion

This chapter summarizes the contributions of the dissertation (Section 7.1), discusses
general issues and proposes future work (both in Section 7.2).

7.1 Contributions

This dissertation addressed the problem of missing usage knowledge among software
developers. We hypothesized that such knowledge can be extracted from monitored,
high-level user interactions. To study this hypothesis, we designed and implemented
the Maltase framework which monitors and analyzes high-level user interactions
with the goal to exploit usage knowledge in software evolution. To evaluate the
impact of Maltase, we employed different research methods such as exploratory
case study, simulation, user survey, controlled experiment, and evaluation case study.
Our contribution is fourfold: First, we studied the dissertation problem in a problem
case study and identified developer information needs regarding software usage.
Second, we implemented the Maltase framework to monitor and analyze high-
level user interactions. We evaluated the performance overhead and user acceptance
of Maltase in a simulation and a user survey. Third, we demonstrated the viability
of the Maltase framework by implementing three applications of it. And fourth,
we evaluated the impact of Maltase in a controlled experiment and an evaluation
case study. The remainder of this section presents these contributions in more detail.

Problem Case Study About Developer Information Needs

We conducted an exploratory problem case study about information needs of de-
velopers focussing on usage information. We analyzed observation protocols and
interview minutes from sessions with 21 developers from six software companies
during program comprehension tasks. We found that developers are interested in
use cases and user behavior, user goals and user needs, failure reproduction steps,
and application domain concepts. But such information is rarely available to them
during software evolution. These findings complement related work about developer
information needs. Also, we found that developers interact with the user interface
of the target application to reproduce failures, to find relevant source code, to test
implemented changes, to activate a debugger, and to familiarize themselves with
unknown parts of the application. Overall, developers put themselves in the role of
users by interacting with the user interface during program comprehension. We call
this the “UI-based comprehension” and argue that this activity is part of a broader

139

Chapter 7 Conclusion

comprehension strategy together with other activities like reading code or debug-
ging. We summarize our results in a catalogue of 15 findings which can serve as
starting point for further research.

Implementation and Evaluation of Maltase Framework

Maltase is a framework for monitoring and analyzing high-level user interactions to
gain relevant knowledge for developers. Maltase contains components to monitor
user interactions, store and transfer monitored data to a developer server, preprocess
and mine monitored data, and present monitored data and analysis results to devel-
opers and integrate this information in the existing developer tool chain. Maltase
monitors user interactions on a high abstraction level such as user commands and
artifact manipulations. Maltase can be easily integrated into new target applica-
tions because it depend on toolkits and not on a particular application. Maltase
is extensible because it allows to add new sensors and analysis components.

We implemented the Maltase framework and integrated it in the real-world
UML editor MOSKitt to demonstrate its feasibility. Furthermore, we conducted a
simulation and a user survey to investigate the performance overhead and user ac-
ceptance of Maltase. The simulation found that Maltase monitoring introduces a
performance overhead of 5 % execution time and 2-5 % main memory consumption.
In the user survey, we deployed Maltase to six users for two weeks and collected
their feedback in a survey. The user survey found that the performance overhead
introduced by Maltase is acceptable to users and that users accept that their in-
teractions are monitored by Maltase. Maltase complements existing monitoring
frameworks who either focus on monitoring code execution or exploit monitored user
interactions for usability evaluation or usage statistics.

Applications of Maltase Framework in Software Evolution

We described three applications of the Maltase framework: presenting monitored
user interactions preceding failures to developers as reproduction steps, classification
of user skills based on monitored user interactions, and comparison of monitored
user interactions to use case steps. These applications illustrate how Maltase can
be employed to provide developers with usage knowledge. In addition, different
framework applications demonstrate the generalizability of Maltase: the same
data - monitored user interactions - can be exploited for different purposes.

Evaluation of Maltase Applications

We investigated the impact of Maltase by evaluating two framework applications in
detail. To evaluate Maltase-based failure reproduction, we conducted a controlled
experiment comparing Maltase-based failure reproduction to failure reproduction
using textual bug reports submitted by users. The controlled experiment found
that developers can elicit reproduction steps from monitored and visualized high-
level user interactions. Maltase-based failure reproduction enables inexperienced
developers to reproduce failures they cannot reproduce with bug reports submitted
by users. Because of a limited number of participants, we cannot draw conclusions

140

7.2 General Discussion and Future Work

for experienced developers. But the positive feedback of participating developers
indicates a strong interest of developers.

To evaluate Maltase-based skill detection, we conducted an evaluation case
study learning skill classifiers from monitored interactions of participants with dif-
fering skill levels. The case study found that Maltase-based skill detection can
discriminate between novice and expert users of MOSKitt. The performance of
classifiers for UML Class Diagram skill was unsatisfactory and requires future re-
search.

As Maltase enables inexperienced developers to reproduce previously unrepro-
ducible failures and is able to discriminate between expert and novice MOSKitt
users, it provides developers with helpful knowledge during software evolution. We
conclude that our main hypothesis is true. Furthermore, we conclude that Maltase
addresses the problem of missing usage information and narrows the communication
gap between developers and users.

Parts of this dissertation have been published in the following papers: [76], [137],
[149], [150], [151], [152], [153], [154].

7.2 General Discussion and Future Work

Extension and Improvement of Maltase Framework

As with each approach, Maltase has advantages and disadvantages. We see the
following advantages of Maltase: it requires no effort from users, it requires only
little effort from developers for analyzing monitored interactions and analysis re-
sults, it analyzes real user behavior, and it is scalable to a large number of users
because if its automation. On the other hand, we see the following disadvantages
of Maltase: it captures no information about user goals, motivation behind mon-
itored behavior, or visionary feedback like feature requests. Hence, Maltase is
suitable to gain insights about the current state of the target application, but not
about visionary future improvements as expressed in feature requests. Furthermore,
developers might want to investigate the motivation behind observed user behavior
which is usually not possible by analyzing usage data alone. To address these limita-
tions, future work could investigate how Maltase can be combined with other user
involvement methods such user observations, user interviews, app store feedback,
bug reports, or integrated feedback mechanisms.

The integration of Maltase into the tool chain of developers could be improved.
Currently, the Report Generator component generates bug reports with monitored
user interactions and injects them into a bug repository. A mechanism to aggregate
bug reports of the same origin could avoid flooding the bug repository. Furthermore,
the visualization component could be extended to show bug reports with preceding
user interactions, user skill statistics, and detected differences between monitored
interactions and use case steps in an integrated fashion. We envision a dashboard-
like presentation of monitored data and analysis results as a single access point for
usage knowledge. Such a dashboard could be integrated into Integrated Development
Environments or be deployed as a separate Web application.

141

Chapter 7 Conclusion

We hypothesize that informing users about the interaction monitoring and user
control over the sensors are important measures for the user acceptance of Maltase.
Currently, the monitoring is performed in the background and hidden from the user.
The Maltase framework could be extended to enable users to inspect monitored
data and control the sensors. Future work in this direction could investigate how
monitored data can be presented to users in an understandable way.

Maltase-based failure reproduction could be improved to deal with noisy inter-
actions automatically, i.e. to automatically identify the subsequence of monitored
interaction traces needed to reproduce failures. One could use delta debugging [202]
or sequential pattern mining [118] for this purpose. Also, future research could
investigate how the performance of UML skill classifiers in Maltase-based skill
detection can be improved. Maltase-based use case testing could be improved by
relieving the strict constraints on the order of use case steps. Future work could
investigate approaches which allow the comparison of monitored user interactions
and use case steps without placing such strict restrictions. Furthermore, future work
could investigate approaches to automatically split interaction traces into sessions
corresponding to a use case instance and to detect the current use case.

Additionally to improving existing framework applications, future work could in-
vestigate new applications. Maltase can possibly identify usability problems, e.g.
by monitoring backtracking user interactions indicating usability problems as pro-
posed by Akers et al. [5]. Similarly, Maltase can possibly detect which software
feature a user is using and to calculate feature usage statistics.

This dissertation focused on analyzing individual user interaction traces. Another
research direction is to investigate the analysis of sets of interaction traces. Ana-
lyzing sets of interaction traces can possibly reveal common and uncommon user
behavior within a user group or detect changes in the behavior of a particular user.

Similarly, this dissertation focused on monitoring high-level interactions of user
with a WIMP GUI of a desktop application. We hypothesize that Maltase can
be applied to other types of interactive applications like e.g. mobile apps. Future
work could investigate this hypothesis and study which changes of Maltase are
necessary for such a situation.

Further Evaluation of Maltase Framework

The following parts of the Maltase framework have not yet been evaluated: the
Undo History Extractor component and Maltase-based use case testing. Evalua-
tion of the Undo History Extractor could investigate whether it is possible to elicit
reproduction steps, user skills, or deviations of user behavior from use case steps
from the interaction history of the undo feature. Evaluation of Maltase-based
use case testing should investigate whether detected differences allow developers to
identify software improvements and use case updates.

This dissertation investigated the use of Maltase during software evolution. But
we see two additional usage scenarios of Maltase: software testing and prototype-
based software development.
Software testing with Maltase requires to integrate Maltase with a version of the
target application to be tested and to monitor the behavior of testers. Testers can be
dedicated in-house testing personnel or potential users which participate in a beta

142

7.2 General Discussion and Future Work

test. All three Maltase applications can be employed during testing: Maltase-
based failure reproduction can be used to document failures and their reproduction
steps which are detected by testers, Maltase-based skill detection can be used to
investigate if the testers represent the target user population with regard to user
skill, and Maltase-based use case testing can be used to get feedback where testers
deviate from expected behavior and to identify potential software improvements.
Prototype-based software development with Maltase requires the integration of
Maltase with a prototype of the target application and to conduct user studies
during development. Technologies such as continuous integration and continuous
delivery ensure that a usable version of the application is available at any time and
enable this usage scenario. Prototype-based software development with Maltase
allows developers to get feedback about software usage early and to consider this
feedback in future development activities. The Maltase applications can be em-
ployed in the following ways: Maltase-based failure reproduction can be used to
document failures and their reproduction steps and Maltase-based use case testing
to detect where users deviate from expected behavior and identify software improve-
ments. Future work could investigate these usage scenarios.

This dissertation focused on the acquisition of usage knowledge from monitored
user interactions. Future work could study how the exploitation of usage knowledge
can be integrated in software development and evolution processes, e.g. during
activities like sprint planning. We refer to related work by van der Schuur et al. [191]
and Krusche et al. [103] who study such aspects.

Further Research Directions

This dissertation investigated Maltase and usage monitoring in general mainly
from a developer perspective. To comprehensively evaluate Maltase and make
it usable in practice, it is necessary to study the user perspective as well. We
see two main aspects which could be investigated by future work: user privacy
and indirect user benefit. As Maltase monitors user interactions, privacy issues
arise as sensitive information might be captured. An important aspect for future
investigation is to study under which circumstances users accept Maltase, i.e.
which information about their software usage they are willing to share with which
organizations and for which purposes. A recent survey by Sheth et al. [166] as well
as the user survey in this dissertation indicate that users perceive interaction data
as less sensitive than personal data or document content. But future research could
investigate privacy issues during user monitoring in more detail. While Maltase
provides a direct benefit for developers because of the acquisition of usage knowledge,
its benefit for software users is indirect: In exchange for using a target application
instrumented with Maltase, they are promised an improved target application with
less bugs, less usability problems, and functionality tailored to their needs. Future
work could investigate whether this promise motivates users to accept Maltase,
how the benefits of Maltase can be explained to users, and how users can be
motivated to use a target application instrumented with Maltase.

The problem case study identified “UI-based comprehension”, a comprehension
activity during which developers interact with the user interface during program
comprehension. As this comprehension activity has not been studied in detail,

143

Chapter 7 Conclusion

future work could investigate it. In particular, it could investigate the motivation
of developers behind this behavior, the context in which developers employ this
behavior, the combination with other comprehension activities, and possibilities for
tool support. Furthermore, the problem case study identified developer information
needs similarly to several other empirical studies [14, 15, 22, 26, 54, 96, 117, 168].
Future work could develop a theory of developer information needs based on these
studies. We argue that it would be interesting to contextualize information needs,
i.e. to determine the development context such as the task or the type of application
in which a particular information need arises.

Throughout this dissertation, we used the term “maltase” as abbreviation for
“Monitoring, Analysis, and ExpLoiTation of User InterActions in Software Evolution”.
But originally, maltase is the name of an enzyme that breaks disaccharide maltose
(malt sugar) and enables humans to digest carbohydrates. In this spirit, we hope
that Maltase enables developers to “digest” user interaction traces and usage data
to extract helpful usage knowledge and to bridge the communication gap between
developers and users.

144

Bibliography
[1] IEEE Standard for Software Maintenance. IEEE Std 1219-1998, 1998.

[2] U. Abelein and B. Paech. A proposal for enhancing user-developer communi-
cation in large IT projects. In Proceedings of the 5th International Workshop
on Cooperative and Human Aspects of Software Engineering, pages 1–3. IEEE,
2012.

[3] U. Abelein and B. Paech. State of Practice of User-Developer Communication
in Large-Scale IT Projects: Results of an Expert Interview Series. In C. Sali-
nesi and I. van de Weerd, editors, Requirements Engineering: Foundation for
Software Quality, volume 8396 of Lecture Notes in Computer Science, pages
95–111. Springer, 2014.

[4] U. Abelein and B. Paech. Understanding the Influence of User Participation
and Involvement on System Success - a Systematic Mapping Study. Empirical
Software Engineering, 20(1):28–81, 2015.

[5] D. Akers, R. Jeffries, M. Simpson, and T. Winograd. Backtracking events
as indicators of usability problems in creation-oriented applications. ACM
Transactions on Computer-Human Interaction, 19(2):1–40, 2012.

[6] J. Alexander, A. Cockburn, and R. Lobb. AppMonitor: A tool for recording
user actions in unmodified Windows applications. Behavior Research Methods,
40(2):413–421, 2008.

[7] R. Ali, C. Solis, M. Salehie, I. Omoronyia, B. Nuseibeh, and W. Maalej.
Social sensing: when users become monitors. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, pages 476–479. ACM, 2011.

[8] G. Antonio, D. Lucca, A. R. Fasolino, U. D. Carlini, N. Federico, and V. Clau-
dio. Recovering use case models from object-oriented code: a thread-based
approach. In Proceedings of the Seventh Working Conference on Reverse En-
gineering, pages 108–117. IEEE, 2000.

[9] S. Artzi, S. Kim, and M. D. Ernst. ReCrash: Making software failures re-
producible by preserving object states. In ECOOP 2008 - Object-Oriented
Programming, volume 5142 of Lecture Notes in Computer Science, pages 542–
565. Springer, 2008.

[10] M. Bano and D. Zowghi. A systematic review on the relationship between
user involvement and system success. Information and Software Technology,
58(0):148–169, 2015.

145

Bibliography

[11] G. Baster, P. Konana, and J. Scott. Business Components: A Case Study of
Bankers Trust Australia Limited. Communications of the ACM, 44(5):92–98,
2001.

[12] S. Bateman, C. Gutwin, N. Osgood, and G. McCalla. Interactive usability
instrumentation. In Proceedings of the 1st ACM SIGCHI Symposium on En-
gineering Interactive Computing Systems, pages 45–54. ACM, 2009.

[13] R. Beale, J. Finlay, J. Austin, and M. Harrison. User modelling in classifi-
cation: a neural-based approach. In J. Taylor and C. Mannion, editors, New
Developments in Neural Computing, pages 103–110. Adam Hilger LTD, 1989.

[14] A. Begel, K. Y. Phang, and T. Zimmermann. Codebook: Discovering and
Exploiting Relationships in Software Repositories. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, pages 125–
134. ACM, 2010.

[15] A. Begel and T. Zimmermann. Analyze This! 145 Questions for Data Scientists
in Software Engineering. In Proceedings of the 36th International Conference
on Software Engineering, pages 12–23. ACM, 2014.

[16] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight Recording to Re-
produce Field Failures. In Proceedings of the 2013 International Conference
on Software Engineering, pages 362–371. ACM, 2013.

[17] M. Bezold and W. Minker. User Modeling in Interactive Systems. In Adaptive
Multimodal Interactive Systems, pages 41–65. Springer, 2011.

[18] E. Bjarnason, K. Wnuk, and B. Regnell. Requirements are slipping through
the gaps - A case study on causes & effects of communication gaps in large-
scale software development. In Proceedings of the 19th IEEE International
Requirements Engineering Conference, pages 37–46. IEEE, 2011.

[19] B. Boehm. Some future trends and implications for systems and software
engineering processes. Systems Engineering, 9(1):1–19, 2006.

[20] M. L. Bolton, E. J. Bass, and R. I. Siminiceanu. Using formal verification
to evaluate human-automation interaction: A review. IEEE Transactions on
Systems, Man, and Cybernetics, 43(3):488–503, 2013.

[21] M. L. Bolton, N. Jim, M. M. V. Paassen, and M. Trujillo. From Task Models
for the Formal Verification of Human-Automation Interaction. IEEE Trans-
actions on Human-Machine Systems, 44(5):561–575, 2014.

[22] S. Breu, R. Premraj, J. Sillito, and T. Zimmermann. Information Needs in
Bug Reports: Improving Cooperation Between Developers and Users. In Pro-
ceedings of the 2010 ACM Conference on Computer Supported Cooperative
work, pages 301–310. ACM, 2010.

[23] B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering Using
UML, Patterns, and Java. Pearson Education, 3rd edition, 2010.

146

Bibliography

[24] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for
web application debugging. In Proceedings of the 26th Annual ACM Sympo-
sium on User Interface Software and Technology, pages 473–484. ACM, 2013.

[25] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley
and Sons, 1996.

[26] R. P. L. Buse and T. Zimmermann. Information needs for software devel-
opment analytics. In Proceedings of the 34th International Conference on
Software Engineering, pages 987–996. IEEE, 2012.

[27] Y. Cao, H. Zhang, and S. Ding. SymCrash: Selective Recording for Reproduc-
ing Crashes. In Proceedings of the 29th ACM/IEEE International Conference
on Automated Software Engineering, pages 791–802. ACM, 2014.

[28] N. Chapin, J. E. Hale, K. Khan, J. F. Ramil, and W.-G. Tan. Types of software
evolution and software maintenance. Journal of Software Maintenance and
Evolution: Research and Practice, 13(1):3–30, 2001.

[29] L. C. L. Chen and Q. L. Q. Li. Automated test case generation from use
case: A model based approach. In Proceedings of the 3rd IEEE International
Conference on Computer Science and Information Technology, pages 372–377.
IEEE, 2010.

[30] J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging of
Field Failures. In Proceedings of the 29th International Conference on Software
Engineering, pages 261–270. ACM, 2007.

[31] J. Clause and A. Orso. Penumbra: Automatically Identifying Failure-Relevant
Inputs Using Dynamic Tainting. In Proceedings of the 18th International Sym-
posium on Software Testing and Analysis, ISSTA’09, pages 249–259. ACM,
2009.

[32] M. Cohn. Succeeding with agile: software development using Scrum. Pearson
Education, 2010.

[33] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke.
A Systematic Survey of Program Comprehension through Dynamic Analysis.
IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[34] C. L. Corritore and S. Wiedenbeck. Direction and Scope of Comprehension-
Related Activities by Procedural and Object-Oriented Programmers: An Em-
pirical Study. In Proceedings of the 8th International Workshop on Program
Comprehension, pages 139–148. IEEE, 2000.

[35] J. Creswell. Research design: Qualitative, quantitative, and mixed methods
approaches. SAGE Publications, 2009.

147

Bibliography

[36] A. L. L. de Figueiredo, W. L. Andrade, and P. D. L. Machado. Generating
interaction test cases for mobile phone systems from use case specifications.
ACM SIGSOFT Software Engineering Notes, 31(6):1–10, 2006.

[37] A. K. Dey, G. D. Abowd, and D. Salber. A Conceptual Framework and a
Toolkit for Supporting the Rapid Prototyping of Context Aware Applications.
Human-Computer Interaction, 16(2):97–166, 2001.

[38] M. M. Diep. Analysis of a Deployed Software. In Proceedings of the 6th
Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering, pages 595–
598. ACM, 2007.

[39] E. W. Dijkstra. Software Engineering As It Should Be (Panel Remark). In Pro-
ceedings of the 4th International Conference on Software Engineering. IEEE,
1979.

[40] A. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-Computer Interaction.
Prentice Hall, 3rd edition, 2003.

[41] M. Dostál and Z. Eichler. A Hybrid Approach to User Activity Instrumenta-
tion in Software Applications. In HCI International 2011 - Posters’ Extended
Abstracts, volume 173 of Communications in Computer and Information Sci-
ence, pages 566–570. Springer, 2011.

[42] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting Empirical
Methods for Software Engineering Research. In F. Shull, J. Singer, and D. I.
Sjø berg, editors, Guide to Advanced Empirical Software Engineering, pages
285–311. Springer, 2008.

[43] M. El-Ramly and E. Stroulia. Mining software usage data. In Proceedings of
the 1st International Workshop on Mining Software Repositories, 2004.

[44] M. El-Ramly, E. Stroulia, and P. Sorenson. From run-time behavior to us-
age scenarios: An interaction-pattern mining approach. In Proceedings of the
eighth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 315–324. ACM, 2002.

[45] M. El-Ramly, E. Stroulia, and P. Sorenson. Mining system-user interaction
traces for use case models. In Proceedings of the 10th International Workshop
on Program Comprehension, pages 21–29. IEEE, 2002.

[46] M. El-Ramly, E. Stroulia, and P. Sorenson. Recovering software requirements
from system-user interaction traces. In Proceedings of the 14th International
Conference on Software Engineering and Knowledge Engineering, SEKE ’02,
pages 447–454. ACM, 2002.

[47] K. Ericsson and H. Simon. Protocol analysis: Verbal reports as data (rev. ed.).
MIT Press, 1993.

148

Bibliography

[48] M. Feather, S. Fickas, a. V. Lamsweerde, and C. Ponsard. Reconciling system
requirements and runtime behavior. In Proceedings of the Ninth International
Workshop on Software Specification and Design, 1998.

[49] K. Fenstermacher and M. Ginsburg. A lightweight framework for cross-
application user monitoring. IEEE Computer, 35(3):51–59, 2002.

[50] J. Fernandez-Ramil, A. Lozano, M. Wermelinger, and A. Capiluppi. Empirical
Studies of Open Source Evolution. In Software Evolution, pages 263–288.
Springer, 2008.

[51] S. Feuerstack, M. Blumendorf, M. Kern, M. Kruppa, M. Quade, M. Runge,
and S. Albayrak. Automated usability evaluation during model-based inter-
active system development. In Engineering Interactive Systems, volume 5247
of Lecture Notes in Computer Science, pages 134–141. Springer, 2008.

[52] S. Fickas and M. S. Feather. Requirements Monitoring in Dynamic Environ-
ments. In Proceedings of the 2nd IEEE International Symposium on Require-
ments Engineering, pages 140–147. IEEE, 1995.

[53] G. Fischer. User Modeling in Human Computer Interaction. User Modeling
and User-Adapted Interaction, 11(1-2):65–86, 2001.

[54] T. Fritz and G. C. Murphy. Using information fragments to answer the ques-
tions developers ask. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering, pages 175–184. ACM, 2010.

[55] M. Funk, P. Hoyer, and S. Link. Model-driven instrumentation of graphical
user interfaces. In Proceedings of the 2nd International Conference on Ad-
vances in Computer-Human Interaction, pages 19–25. IEEE, 2009.

[56] A. R. Gagné, M. Seif El-Nasr, and C. D. Shaw. Analysis of Telemetry Data
from a Real-time Strategy Game: A Case Study. Computers in Entertainment,
10(3):1–25, 2012.

[57] L. Galvis Carreno and K. Winbladh. Analysis of User Comments: An Ap-
proach for Software Requirements Evolution. In Proceedings of the 35th In-
ternational Conference on Software Engineering, pages 582–591. ACM, 2013.

[58] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1st edition, 1994.

[59] J. J. Garrett. The Elements of User Experience: User-Centered Design for
the Web and Beyond. Pearson Education, 2010.

[60] A. Ghazarian and A. Ghazarian. Pauses in man-machine interactions: a clue to
users’ skill levels and their user interface requirements. International Journal
of Cognitive Performance Support, 1(1):82–102, 2013.

149

Bibliography

[61] A. Ghazarian and S. Noorhosseini. Automatic detection of users’ skill levels
using high-frequency user interface events. User Modeling and User-Adapted
Interaction, 20(2):109–146, 2010.

[62] A. Girgensohn, D. F. Redmiles, and F. M. Shipman. Agent-Based Support
for Communication between Developers and Users in Software Design. In
Proceedings of the 9th Conference on Knowledge-Based Software Engineering,
pages 22–29. IEEE, 1994.

[63] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G. Nichols,
D. Grant, G. Loihle, and G. Hunt. Debugging in the (very) large: Ten years
of implementation and experience. In Proceedings of the 22nd ACM SIGOPS
Symposium on Operating Systems Principles, pages 103–116. ACM, 2009.

[64] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing- and
touch-sensitive record and replay for Android. In Proceedings of the 35th
International Conference on Software Engineering, pages 72–81. IEEE, 2013.

[65] K. Grindley. Managing IT at board level: The hidden agenda exposed. Pit-
mans, London, 1991.

[66] J. Grudin. Interactive Svstems: Bridging the Gaps between Developers and
Users. Computer, 24(4):59–69, 1991.

[67] N. Gurbanova. Presenting User and Context Information to Developers during
Bug Fixing (Master Thesis), 2012.

[68] E. Guzman and W. Maalej. How Do Users Like This Feature? A Fine Grained
Sentiment Analysis of App Reviews. In Proceedings of the 22nd IEEE Inter-
national Requirements Engineering Conference, pages 153–162. IEEE, 2014.

[69] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18, 2009.

[70] M. A. Harris and H. R. Weistroffer. A new look at the relationship between
user involvement in systems development and system success. Communications
of the Association for Information Systems, 24(1), 2009.

[71] G. S. Hartman and L. Bass. Logging Events Crossing Architectural Bound-
aries. In M. Costabile and F. Paternò, editors, Human-Computer Interaction -
INTERACT 2005, volume 3585 of Lecture Notes in Computer Science, pages
823–834. Springer, 2005.

[72] B. Hasling, H. Goetz, and K. Beetz. Model Based Testing of System Require-
ments using UML Use Case Models. In Proceedings of the 1st International
Conference on Software Testing, Verification, and Validation, pages 367–376.
IEEE, 2008.

150

Bibliography

[73] J. Heiskari and L. Lehtola. Investigating the State of User Involvement in Prac-
tice. In Proceedings of the 16th Asia-Pacific Software Engineering Conference,
pages 433–440. IEEE, 2009.

[74] S. Herbold. Usage-based Testing for Event-driven Software. PhD thesis, 2012.

[75] S. Herbold, J. Grabowski, S. Waack, and U. Bünting. Improved bug reporting
and reproduction through non-intrusive GUI usage monitoring and automated
replaying. In Proceedings of the 4th International Conference on Software
Testing, Verification and Validation Workshops, pages 232–241. IEEE, 2011.

[76] T.-M. Hesse, S. Gärtner, T. Roehm, B. Paech, K. Schneider, and B. Bruegge.
Semiautomatic Security Requirements Engineering and Evolution using Deci-
sion Documentation, Heuristics, and User Monitoring. In Proceedings of the
1st International Workshop on Evolving Security and Privacy Requirements
Engineering, pages 1–6. IEEE, 2014.

[77] D. Hilbert and D. Redmiles. Agents for collecting application usage data
over the Internet. In Proceedings of the Second International Conference on
Autonomous Agents, pages 149–156. ACM, 1998.

[78] D. M. Hilbert and D. F. Redmiles. An Approach to Large-scale Collection of
Application Usage Data Over the Internet. In Proceedings of the 20th Inter-
national Conference on Software Engineering, pages 136–145. IEEE, 1998.

[79] D. M. Hilbert and D. F. Redmiles. Extracting usability information from user
interface events. ACM Computing Surveys, 32(4):384–421, 2000.

[80] D. M. Hilbert and D. F. Redmiles. Large-Scale Collection of Usage Data
to Inform Design. In Proceedings of the Eighth IFIP Conference on Human-
Computer Interaction, pages 569–576, 2001.

[81] D. E. Hoiem and K. D. Sullivan. Designing and using integrated data collection
and analysis tools: challenges and considerations. Behaviour & Information
Technology, 13(1-2):160–170, 1994.

[82] S. Hornik, G. Klein, and J. Jiang. Communication skills of IS providers: an
expectation gap analysis from three stakeholder perspectives. IEEE Transac-
tions on Professional Communication, 4(1):17–34, 2003.

[83] K. Hullett, N. Nagappan, E. Schuh, and J. Hopson. Empirical analysis of user
data in game software development. In Proceedings of the ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Measurement,
pages 89–98. ACM, 2012.

[84] A. Hurst, S. E. Hudson, and J. Mankoff. Dynamic detection of novice vs.
skilled use without a task model. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pages 271–280. ACM, 2007.

[85] M. Y. Ivory and M. a. Hearst. The state of the art in automating usability
evaluation of user interfaces. ACM Computing Surveys, 33(4):470–516, 2001.

151

Bibliography

[86] W. Jiang, H. Ruan, and L. Zhang. Analysis of Economic Impact of Online Re-
views: An Approach for Market-Driven Requirements Evolution. In D. Zowghi
and Z. Jin, editors, Requirements Engineering, volume 432 of Communications
in Computer and Information Science, pages 45–59. Springer, 2014.

[87] W. Jiang, H. Ruan, L. Zhang, P. Lew, and J. Jiang. For User-Driven Software
Evolution: Requirements Elicitation Derived from Mining Online Reviews. In
V. Tseng, T. Ho, Z.-H. Zhou, A. Chen, and H.-Y. Kao, editors, Advances
in Knowledge Discovery and Data Mining, volume 8444 of Lecture Notes in
Computer Science, pages 584–595. Springer, 2014.

[88] W. Jin and A. Orso. BugRedux: Reproducing field failures for in-house de-
bugging. In Proceedings of the 34th International Conference on Software
Engineering, pages 474–484. IEEE, 2012.

[89] W. Jin and A. Orso. F3: fault localization for field failures. In Proceedings
of the 2013 International Symposium on Software Testing and Analysis, pages
213–223. ACM, 2013.

[90] P. Johnson. Project Hackystat: Accelerating adoption of empirically guided
software development through non-disruptive, developer-centric, in-process
data collection and analysis. Technical report, University of Hawai, 2001.

[91] S. Joshi and A. Orso. SCARPE: A Technique and Tool for Selective Capture
and Replay of Program Executions. In Proceedings of the IEEE International
Conference on Software Maintenance, pages 234–243. IEEE, 2007.

[92] J. Kay and R. C. Thomas. Studying long-term system use. Communications
of the ACM, 38(7):61–69, 1995.

[93] M. Kersten and G. C. Murphy. Using Task Context to Improve Program-
mer Productivity. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 1–11. ACM, 2006.

[94] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing Field
Failures for Programs with Complex Grammar-Based Input. In Proceedings of
the Seventh IEEE International Conference on Software Testing, Verification
and Validation, pages 163–172. IEEE, 2014.

[95] J. H. Kim, D. V. Gunn, E. Schuh, B. C. Phillips, R. J. Pagulayan, and
D. Wixon. Tracking real-time user experience (TRUE): A comprehensive in-
strumentation solution for complex systems. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 443–451. ACM,
2008.

[96] A. Ko, R. DeLine, and G. Venolia. Information needs in collocated software
development teams. In Proceedings of the 29th International conference on
Software Engineering, pages 344–353. IEEE, 2007.

152

Bibliography

[97] A. Ko, B. Myers, M. Coblenz, and H. Aung. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks. IEEE Transactions on Software Engineering, 32(12):971–
987, 2006.

[98] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran. A Case Study of Post-
Deployment User Feedback Triage. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software Engineering, pages
1–8. ACM, 2011.

[99] A. J. Ko and B. Uttl. Individual differences in program comprehension strate-
gies in unfamiliar programming systems. In Proceedings of the 11th IEEE
International Workshop on Program Comprehension, pages 175–184. IEEE,
2003.

[100] J. Koenemann and S. P. S. Robertson. Expert problem solving strategies for
program comprehension. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 125–130. ACM, 1991.

[101] P. Korpipaa, J. Mantyjarvi, J. Kela, H. Keranen, and E.-J. Malm. Managing
context information in mobile devices. IEEE Pervasive Computing, 2(3):42–
51, 2003.

[102] B. Kristjánsson and H. van der Schuur. A Survey of Tools for Software Oper-
ation Knowledge Acquisition. Technical report, Utrecht University, 2009.

[103] S. Krusche, L. Alperowitz, B. Bruegge, and M. O. Wagner. Rugby: An Agile
Process Model Based on Continuous Delivery. In Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering, pages 42–50.
ACM, 2014.

[104] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models. In Pro-
ceedings of the 28th international Conference on Software Engineering, pages
492–501. ACM, 2006.

[105] E. I. Laukkanen and M. V. Mantyla. Survey Reproduction of Defect Reporting
in Industrial Software Development. In Proceedings of the International Sym-
posium on Empirical Software Engineering and Measurement, pages 197–206.
IEEE, 2011.

[106] A. Lecerof and F. Paternò. Automatic Support for Usability Evaluation. IEEE
Transactions on Software Engineering, 24(10):863–888, 1998.

[107] Q. Li, S. Hu, P. Chen, L. Wu, and W. Chen. Discovering and mining use
case model in reverse engineering. In Proceedings of the 4th International
Conference on Fuzzy Systems and Knowledge Discovery, pages 431–436. IEEE,
2007.

[108] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. ACM SIGPLAN Notices, 38(5):141, 2003.

153

Bibliography

[109] F. Linton, D. Joy, H. P. Schaefer, and A. Charron. OWL: A recommender
system for organization-wide learning. Educational Technology and Society,
3(1):62–76, 2000.

[110] D. D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway. Mental Models and
Software Maintenacne. Journal of Systems and Software, 7(4):341–355, 1987.

[111] J. Liu, K. Wong, and K. Hui. Discovering User Behavior Patterns in Per-
sonalized Interface Agents. In K. Leung, L.-W. Chan, and H. Meng, editors,
Intelligent Data Engineering and Automated Learning - IDEAL 2000. Data
Mining, Financial Engineering, and Intelligent Agents, volume 1983 of Lec-
ture Notes in Computer Science, pages 398–403. Springer, 2000.

[112] W. Maalej. Intention-Based Integration of Software Engineering Tools. Phd
thesis, 2010.

[113] W. Maalej, T. Fritz, and R. Robbes. Collecting and Processing Interaction
Data for Recommendation Systems. In M. P. Robillard, W. Maalej, R. J.
Walker, and T. Zimmermann, editors, Recommendation Systems in Software
Engineering, pages 173–197. Springer, 2014.

[114] W. Maalej and H.-J. Happel. A Lightweight Approach for Knowledge Sharing
in Distributed Software Teams. In T. Yamaguchi, editor, Practical Aspects of
Knowledge Management, volume 5345 of Lecture Notes in Computer Science,
pages 14–25. Springer, 2008.

[115] W. Maalej, H.-J. Happel, and R. Asarnusch. When users become collabora-
tors: Towards continuous and context-aware user input. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object Oriented Program-
ming Systems Languages and Applications, pages 981–990. ACM, 2009.

[116] W. Maalej and D. Pagano. On the socialness of software. In Proceedings of the
Ninth IEEE International Conference on Dependable, Autonomic and Secure
Computing, pages 864–871. IEEE, 2011.

[117] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke. On the Comprehension
of Program Comprehension. ACM Transactions on Software Engineering and
Methodology, 23(4):31:1–31:37, 2014.

[118] N. R. Mabroukeh and C. I. Ezeife. A taxonomy of sequential pattern mining
algorithms. ACM Computing Surveys, 43(1):1–41, 2010.

[119] J. Mann. IT Education’s Failure to Deliver Successful Information Systems:
Now is the Time to Address the IT-User Gap. Journal of Information Tech-
nology Education, 1(1):253–267, 2002.

[120] J. Matejka, W. Li, T. Grossman, and G. Fitzmaurice. CommunityCommands:
Command Recommendations for Software Applications. In Proceedings of the
22nd Annual ACM Symposium on User Interface Software and Technology,
pages 193–202. ACM, 2009.

154

Bibliography

[121] T. Menzies and T. Zimmermann. Software Analytics: So What? IEEE
Software, 30(4):31–37, 2013.

[122] G. C. Murphy, M. Kersten, and L. Findlater. How Are Java Software Devel-
opers Using the Eclipse IDE? IEEE Software, 23(4):76–83, 2006.

[123] E. Murphy-Hill, N. Carolina, R. Jiresal, and G. C. Murphy. Improving Soft-
ware Developers’ Fluency by Recommending Development Environment Com-
mands. In Proceedings of the ACM SIGSOFT 20th International Symposium
on the Foundations of Software Engineering, pages 42:1–42:11. ACM, 2012.

[124] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we
know it. IEEE Transactions on Software Engineering, 38(1):5–18, 2012.

[125] H. Nagasaki and M. Azuma. A methodology for assessing user’s skill grade to
implement adaptive user interface systems. In Proceedings. of the First IEEE
International Conference on Cognitive Informatics, pages 280–287. IEEE,
2002.

[126] C. Nebut, F. Fleurey, Y. Le Traon, and J.-M. Jezequel. Automatic test genera-
tion: a use case driven approach. IEEE Transactions on Software Engineering,
32(3):140–155, 2006.

[127] J. Nielsen. Usability Enginering. Morgan Kaufmann Publishers Inc., 1993.

[128] J. Nielsen. Alertbox: First Rule of Usability? Don’t Listen to Users., 2001.

[129] D. Norman. The Design of Everyday Things. Basic Books, 2013.

[130] J. Oh, D. Kim, U. Lee, J.-g. Lee, and J. Song. Facilitating Developer-User In-
teractions with Mobile App Review Digests. In Extended Abstracts on Human
Factors in Computing Systems, pages 1809–1814. ACM, 2013.

[131] A. Orso. Monitoring, Analysis, and Testing of Deployed Software. In Proceed-
ings of the FSE/SDP Workshop on Future of Software Engineering Research,
pages 263–267. ACM, 2010.

[132] A. Orso and B. Kennedy. Selective capture and replay of program executions.
In Proceedings of the 3rd International Workshop on Dynamic Analysis, pages
1–7. ACM, 2005.

[133] S. Pachidi, M. Spruit, and I. van de Weerd. Understanding users’ behavior with
software operation data mining. Computers in Human Behavior, 30(0):583–
594, 2014.

[134] D. Pagano. Towards Systematic Analysis of Continuous User Input. In Pro-
ceedings of the 4th International Workshop on Social Software Engineering,
pages 7–11. ACM, 2011.

[135] D. Pagano. PORTNEUF - A Framework for Continuous User Involvement.
PhD thesis, 2013.

155

Bibliography

[136] D. Pagano and B. Bruegge. User Involvement in Software Evolution Practice:
A Case Study. In Proceedings of the 35th International Conference on Software
Engineering, pages 953–962. IEEE, 2013.

[137] D. Pagano, M. Juan, A. Bagnato, T. Roehm, B. Bruegge, and W. Maalej.
FastFix: Monitoring control for remote software maintenance. In Proceedings
of the 34th International Conference on Software Engineering, pages 1437–
1438. IEEE, 2012.

[138] D. Pagano and W. Maalej. User Feedback in the AppStore: An Empirical
Study. In Proceedings of the 21st IEEE International Requirements Engineer-
ing Conference, pages 125–134. IEEE, 2013.

[139] F. Paternò, A. Piruzza, and C. Santoro. Remote web usability evaluation ex-
ploiting multimodal information on user behavior. In Computer-Aided Design
of User Interfaces V, pages 287–298. Springer, 2007.

[140] K. Pohl. Requirements engineering: fundamentals, principles, and techniques.
Springer, 2010.

[141] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[142] N. A. Qureshi, N. Seyff, and A. Perini. Satisfying User Needs at the Right
Time and in the Right Place: A Research Preview. In D. Berry and X. Franch,
editors, Requirements Engineering: Foundation for Software Quality, volume
6606 of Lecture Notes in Computer Science, pages 94–99. Springer, 2011.

[143] D. F. Redmiles. Supporting the end users’ views. In Proceedings of the Working
Conference on Advanced Visual Interfaces, pages 34–42. ACM, 2002.

[144] B. Regnell, P. Runeson, and C. Wohlin. Towards integration of use case mod-
elling and usage-based testing. Journal of Systems and Software, 50(2):117–
130, 2000.

[145] M. Robillard, W. Coelho, and G. Murphy. How effective developers inves-
tigate source code: an exploratory study. IEEE Transactions on Software
Engineering, 30(12):889–903, 2004.

[146] W. N. Robinson. Seeking Quality through User-Goal Monitoring. IEEE Soft-
ware, 26(5):58–65, 2009.

[147] W. N. Robinson. A roadmap for Comprehensive Requirements Monitoring.
IEEE Software, 43(5):64–72, 2010.

[148] W. N. Robinson. Understanding Software System Evolution through Require-
ments Monitoring. Requirements Management-Novel Perspectives and Chal-
lenges, 2012.

156

Bibliography

[149] T. Roehm. Two User Perspectives in Program Comprehension: End Users and
Developer Users. In Proceedings of the 23th IEEE International Conference
on Program Comprehension (Submitted), 2015.

[150] T. Roehm and B. Bruegge. Reproducing Software Failures By Exploiting the
Action History of Undo Features. In Proceedings of the 36th International
Conference on Software Engineering, pages 496–499. ACM, 2014.

[151] T. Roehm, B. Bruegge, T.-M. Hesse, and B. Paech. Towards Identification of
Software Improvements and Specification Updates By Comparing Monitored
and Specified End User Behavior. In Proceedings of the 29th IEEE Interna-
tional Conference on Software Maintenance, pages 464–467. IEEE, 2013.

[152] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej. Monitoring
User Interactions for Supporting Failure Reproduction. In Proceedings of the
21th IEEE International Conference on Program Comprehension, pages 73–82.
IEEE, 2013.

[153] T. Roehm and W. Maalej. Automatically Detecting Developer Activities and
Problems in Software Development Work. In Proceedings of the 34th Interna-
tional Conference on Software Engineering, pages 1261–1264. IEEE, 2012.

[154] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional de-
velopers comprehend software? In Proceedings of the 34th International Con-
ference on Software Engineering, pages 255–265. IEEE, 2012.

[155] Y. Rogers, H. Sharp, and J. Preece. Interaction Design. John Wiley & Sons,
3rd edition, 2011.

[156] R. L. Rosnow and R. Rosenthal. Beginning behavioral research: A conceptual
primer. Pearson, 6th edition, 1996.

[157] P. Runeson and M. Höst. Guidelines for conducting and reporting case study
research in software engineering. Empirical Software Engineering, 14(2):131–
164, 2008.

[158] M. a. Sao Pedro, R. S. J. De Baker, J. D. Gobert, O. Montalvo, and A. Nakama.
Leveraging machine-learned detectors of systematic inquiry behavior to esti-
mate and predict transfer of inquiry skill. User Modelling and User-Adapted
Interaction, 23(1):1–39, 2013.

[159] B. Schinzel. Weltbilder und Bilder der Informatik. Informatik-Spektrum,
36(3):260–266, 2013.

[160] F. Schlesinger and S. Jekutsch. ElectroCodeoGram: An Environment for
Studying Programming. In Workshop on Ethnographies of Code, pages 30–31,
2006.

157

Bibliography

[161] K. Schneider, S. Meyer, M. Peters, F. Schliephacke, J. Mörschbach, L. Aguirre,
and S. M. De. Feedback in Context: Supporting the Evolution of IT-
Ecosystems. In M. Ali Babar, M. Vierimaa, and M. Oivo, editors, Product-
Focused Software Process Improvement, volume 6156 of Lecture Notes in Com-
puter Science, pages 191–205. Springer, 2010.

[162] N. Seyff, F. Graf, and N. Maiden. Using Mobile RE Tools to Give End-Users
Their Own Voice. In Proceedings of the 18th IEEE International Requirements
Engineering Conference, pages 37–46. IEEE, 2010.

[163] N. Seyff, G. Ollmann, and M. Bortenschlager. AppEcho: A User-Driven, In
Situ Feedback Approach for Mobile Platforms and Applications. In Proceed-
ings of the 1st International Conference on Mobile Software Engineering and
Systems, pages 99–108. ACM, 2014.

[164] T. M. Shaft and I. Vessey. The Relevance of Application Domain Knowledge:
Characterizing the Computer Program Comprehension Process. Journal of
Management Information Systems, 15(1):51–78, 1998.

[165] S. Shekh and S. Tyerman. An Aspect-Oriented Framework for Event Capture
and Usability Evaluation. In L. Maciaszek, C. González-Pérez, and S. Jablon-
ski, editors, Evaluation of Novel Approaches to Software Engineering, vol-
ume 69 of Communications in Computer and Information Science, pages 107–
119. Springer, 2010.

[166] S. Sheth, G. Kaiser, and W. Maalej. Us and Them - A Study of Privacy
Requirements Across North America, Asia, and Europe. In Proceedings of the
36th International Conference on Software Engineering, pages 859–870. ACM,
2014.

[167] J. Sillito, K. De Volder, B. Fisher, and G. Murphy. Managing software change
tasks: an exploratory study. In Proceedings of the International Symposium
on Empirical Software Engineering, pages 23–32. IEEE, 2005.

[168] J. Sillito, G. Murphy, and K. De Volder. Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engi-
neering, 34(4):434–451, 2008.

[169] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil. An Examination of
Software Engineering Work Practices. In Proceedings of the 1997 Conference
of the Centre for Advanced Studies on Collaborative Research, pages 174–188.
IBM Press, 1997.

[170] M. Smit, E. Stroulia, and K. Wong. Use case redocumentation from GUI
event traces. In Proceedings of the 12th European Conference on Software
Maintenance and Reengineering, pages 263–268. IEEE, 2008.

[171] D. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harslem. Designing the
Start user interface. Byte, 7(4):242–282, 1982.

158

Bibliography

[172] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A capture/ re-
play tool for observation-based testing. ACM SIGSOFT Software Engineering
Notes, 25(5):158–167, 2000.

[173] E. Stroulia, M. El-Ramly, P. Iglinski, and P. Sorenson. User interface reverse
engineering in support of interface migration to the web. Automated Software
Engineering, 10(3):271–301, 2003.

[174] E. Stroulia, M. El-Ramly, L. Kong, P. Sorenson, and B. Matichuk. Reverse en-
gineering legacy interfaces: an interaction-driven approach. In Proceedings of
the Sixth Working Conference on Reverse Engineering, pages 292–302. IEEE,
1999.

[175] E. Stroulia, M. El-Ramly, and P. Sorenson. From legacy to Web through inter-
action modeling. In Proceedings of the International Conference on Software
Maintenance, pages 320–329. IEEE, 2002.

[176] A. S. Tanenbaum. Modern Operating Systems. Prentice Hall, 2nd edition,
2001.

[177] Y. Tao. Capturing user interface events with aspects. In Human-Computer
Interaction. HCI Applications and Services, volume 4553 of Lecture Notes in
Computer Science, pages 1170–1179. Springer, 2007.

[178] Y. Tao. Toward Computer-Aided Usability Evaluation for Evolving Interactive
Software. In Proceedings of the Workshop on Reflection, AOP, and Meta-Data
for Software Evolution, 2007.

[179] Y. Tao. Grammatical Analysis of User Interface Events for Task Identifica-
tion. In A. Marcus, editor, Design, User Experience, and Usability. Theories,
Methods, and Tools for Designing the User Experience, volume 8517 of Lecture
Notes in Computer Science, pages 197–205. Springer, 2014.

[180] A. M. Tarta and G. Moldovan. Automatic Usability Evaluation Using AOP.
In Proceedings of the IEEE International Conference on Automation, Quality
and Testing, Robotics, pages 84–89. IEEE, 2006.

[181] A. Taylor-Cummings and D. Feeny. The Development and Implementation of
Systems: Bridging the User-IS Gap. In L. Willcocks, D. Feeny, and G. Islei,
editors, Managing IT as a strategic resource, pages 171–198. McGraw-Hill,
1997.

[182] M. Terry, M. Kay, B. V. Vugt, B. Slack, T. Park, and B. Van Vugt. ingimp:
Introducing instrumentation to an end-user open source application. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
pages 607–616. ACM, 2008.

[183] D. Tesch, M. G. Sobol, G. Klein, and J. J. Jiang. User and developer common
knowledge: Effect on the success of information system development projects.
International Journal of Project Management, 27(7):657–664, 2009.

159

Bibliography

[184] S. Theiner. User Skill Classification Based on Interaction Trace Analysis (Mas-
ter Thesis), 2013.

[185] J. Trumbly, A. Kirk, and M. Merle. Performance effect of matching computer
interface characteristics and user skill level. International Journal of Man-
Machine Studies, 338(4):713–724, 1993.

[186] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnosing
Production Run Failures at the User’s Site. In Proceedings of 21th ACM
SIGOPS Symposium on Operating Systems Principles, pages 131–144. ACM,
2007.

[187] D. Tuffley. Exploring the IT-User Gap: Towards developing communication
strategies. In Qualitative Research in IT & IT in Qualitative Research, 2005.

[188] D. Tuffley. Software Requirements: Closing The User-Developer Gap - Tech-
nical Writer as Facilitator between User and Developer During the Software
Requirements Analysis Phase. VDM Verlag, Saarbrücken, 2008.

[189] W. M. P. van der Aalst. Process Mining: Discovery, Conformance and En-
hancement of Business Processes. Springer, 2011.

[190] H. Van Der Schuur, S. Jansen, and S. Brinkkemper. A reference framework
for utilization of software operation knowledge. In Proceedings of the36th EU-
ROMICRO Conference on Software Engineering and Advanced Applications,
pages 245–254. IEEE, 2010.

[191] H. Van Der Schuur, S. Jansen, and S. Brinkkemper. If the SOK fits, wear
it: Pragmatic process improvement through software operation knowledge.
In D. Caivano, M. Oivo, M. Baldassarre, and G. Visaggio, editors, Product-
Focused Software Process Improvement, volume 6759 of Lecture Notes in Com-
puter Science, pages 306–321. Springer, 2011.

[192] K. P. Vaubel and C. F. Gettys. Inferring User Expertise for Adaptive Inter-
faces. Human-Computer Interaction, 5(1):95–117, 1990.

[193] I. Vessey. Expertise in debugging computer programs: A process analysis.
International Journal of Man-Machine Studies, 23(5):459–494, 1985.

[194] L. Vogel. Eclipse 4 RCP: The complete guide to Eclipse application develop-
ment. Lars Vogel, 2013.

[195] W3C OWL Working Group. OWL 2 web ontology language document
overview, 2009.

[196] J. Wang and J. Han. BIDE: Efficient Mining of Frequent Closed Sequences. In
Proceedings of the 20th International Conference on Data Engineering, pages
79–90. IEEE, 2004.

160

Bibliography

[197] Y. Wang, S. A. McIlraith, Y. Yu, and J. Mylopoulos. Monitoring and diag-
nosing software requirements. Automated Software Engineering, 16(1):3–35,
2009.

[198] T. Wehrmaker, G. Stefan, and K. Schneider. ConTexter Feedback System.
In Proceedings of the 34th International Conference on Software Engineering,
pages 1459–1460. IEEE, 2012.

[199] I. H. Witten and E. Frank. Data Mining. Morgan Kaufmann Publishers, 2nd
edition, 2005.

[200] F. Yetim, S. Draxler, G. Stevens, and V. Wulf. Fostering Continuous User Par-
ticipation by Embedding a Communication Support Tool in User Interfaces.
AIS Transactions on Human-Computer Interaction, 4(2):153–168, 2012.

[201] A. Zeller. Why Programs Fail. Morgan Kaufmann, 2nd edition, 2009.

[202] A. Zeller and R. Hildebrandt. Simplifying and Isolating Failure-Inducing In-
put. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[203] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A. Schröter, and
C. Weiss. What makes a good bug report? IEEE Transactions on Software
Engineering, 36(5):618–643, 2010.

[204] D. Zuddas, W. Jin, F. Pastore, L. Mariani, and A. Orso. MIMIC: Locating
and Understanding Bugs by Analyzing Mimicked Executions. In Proceedings
of the 29th ACM/IEEE International Conference on Automated Software En-
gineering, pages 815–825. ACM, 2014.

161

List of Figures

2.1 Conceptual Models of Developers and Users 22
2.2 MOSKitt User Interface . 28
2.3 Spectrum of HCI events . 28
2.4 Abstraction Levels of User Interactions 29
2.5 Processing Pipeline of User Interactions 30

4.1 Overview of Maltase Framework And Framework Applications . . . 56
4.2 Use Cases of Maltase Framework 59
4.3 Overview of Maltase Model . 61
4.4 Model of User Interactions . 62
4.5 User Interactions on Different Levels of Abstraction 64
4.6 Taxonomy of User Interactions . 64
4.7 Model of Users . 65
4.8 Model of Events . 65
4.9 Model of Applications . 66
4.10 Taxonomy of Application Events . 66
4.11 Model of Usage Contexts . 67
4.12 Overview of Framework Layers and Components 68
4.13 Deployment of Framework Components 70
4.14 Object Design of Component Monitoring Infrastructure 73
4.15 Integration of Command Sensor Into RCP Target Application 75
4.16 Action History of Microsoft Excel Undo Feature 76
4.17 Monitored Events in Database Data Store 77
4.18 Monitored Events in File Data Store 77
4.19 Maltase Ontology . 78
4.20 Overview of Preprocessing Operations 80
4.21 Overview of Feature Extraction Component 81
4.22 Visualization of Event Sequence in Timeline Tool 83
4.23 Bug Tracker Integration . 84

5.1 Overview of Maltase-based Failure Reproduction 95
5.2 Visualization of Event Sequence in Timeline Tool and Taxonomy of

User Interactions and Application Events 96
5.3 Overview of Maltase-based Skill Detection 100
5.4 Overview of Maltase-based Use Case Testing 104
5.5 Visualization of Interaction Trace and Detected Differences 105

6.1 Overview of Maltase Evaluation . 110
6.2 MOSKitt User Interface . 112
6.3 Deployment of Maltase Components During Evaluation 112

163

List of Figures

6.4 State Machine Used to Generate Sequences of Diagram Manipulations 114
6.5 Performance Overhead Introduced by Maltase Monitoring 116
6.6 Research Process of Evaluation Case Study 126
6.7 Decision Tree for MOSKitt Skill . 132

164

List of Tables

3.1 Overview of Case Study Participants 36
3.2 Excerpt from Observation Protocol 37
3.3 Overview of Case Study Results . 41

4.1 Overview of Maltase Sensors . 73

6.1 Participants And Results of User Survey 116
6.2 Experiment Setup . 119
6.3 Bug Reports Used in Experiment . 120
6.4 Participants of Experiment . 121
6.5 Quantitative Results of Experiment 122
6.6 Overview of Case Study Participants 126
6.7 Classification Features Extracted From Interaction Traces 129
6.8 Results of Classifier Learning and Evaluation 131

165

Appendix A

Evaluation Material
This appendix contains material used in the empirical evaluation of the Maltase
framework described in Chapter 6.

A.1 Material for Evaluation of MALTASE-based

Failure Reproduction

This appendix contains material used in the controlled experiment evaluating Maltase-
based failure reproduction described in Section 6.3. The material was adapted from
Gurbanova [67].

Experimenters Guide

The following experimenters guide was used to help the experimenter conduct ex-
periment sessions:

Before participant appears
1. Assign participant to group for 1st experiment randomly. The participant will

be in the other group for the 2nd experiment. The next participant automat-
ically goes to the other combination.

2. Choose order of tasks randomly.

With participant
3. Introduce participant to experiment (see Information Sheet)
4. Show MOSKitt Tutorial
5. If the group is experimental, introduce Timeline Tool:

a. Introduce Timeline Tool by showing Timeline Tool video
b. Let participant play with Timeline Tool
c. Let participant answer first part of questionnaire “Understanding the Time-
line Tool”

Experiment 1: Timeline Tool vs. Bug report
6. Start screen cast
7. Give participant the Timeline for 1st task (Experimental group)

OR bug report for 1st task (Control group)
8. Let participant execute 1st task and observe.

Stop task after 7 min.
9. Note down time taken and whether the failure could be reproduced.

167

Appendix A Evaluation Material

10. Repeat steps 7.-9. with 2nd task.

Experiment 2: Timeline Tool + Bug report vs. Bug report
11. If the group is experimental, follow step 5.
12. Give participant the Timeline Tool + Bug Report for 3rd task (Experimental

group)
OR bug report for 3rd task (Control group)

13. Let participant execute 3rd task and observe.
Stop task after 9 min.

14. Note down time taken and whether the failure could be reproduced.
15. Stop screen cast.
16. Ask participant to fill the questionnaire (see Questionnaire).

Make sure to understand answers given to open questions.

After participant left
17. Complete notes and store screen cast.

Information Sheet

The following information sheet was used to help the experimenter introduce par-
ticipants to the experiment:

Welcome to this experiment and thanks for participating!

The purpose of this work is to study how visualization of user interactions can help
developers to reproduce failures.

Your identity in this study will be treated anonymously and no personal data will
be given to anybody else. The results of the study may be published but we will
not give your name or include any references to you.

The experiment will be conducted as follows:
You will have to reproduce failures with MOSKitt, an UML editor that will be
introduced to you shortly. Reproduction means that you have to make failures
happen which are described in textual bug reports or by the Timeline Tool. For
some bugs you will get textual bug report and for others the Timeline Tool.

During the experiment, your interactions will be recorded.

After the tasks, we will ask you to fill a short questionnaire to give us your opinion
about the Timeline Tool and failure reproduction with it.

Do not hesitate to ask questions if any!

Thank you again for your time!

Observer Sheet

The following observer sheet was used to help the experimenter record results and
observations during experiment sessions:

168

A.1 Material for Evaluation of MALTASE-based Failure Reproduction

Participant: ___
Date and Time: ___

Experiment 1: Bug report vs. Timeline Tool

Group (experimental, control): ___

Failure/ Bug Report 1: ___
Failure reproduced successfully? ___
Time needed: ___
Comments on Timeline usage: ___
Other comments: ___

Failure/ Bug Report 2: ___
Failure reproduced successfully? ___
Time needed: ___
Comments on Timeline usage: ___
Other comments: ___

Experiment 2: Bug report vs. Timeline Tool + Bug report

Group (experimental, control): ___

Failure/ Bug Report 3: ___
Failure reproduced successfully? ___
Time needed: ___
Comments on Timeline usage: ___
Other comments: ___

Questionnaire

The following questionnaire was used to collect participant feedback about Maltase-
based failure reproduction:

Understanding the Timeline Tool

Please answer the following questions while inspecting an interaction trace with the
Timeline Tool:

1. What type of event occurred most frequently? ___
2. What was the last event before the first exception? ___

What was the category of this event (application, user, environment)? ___
When did this event occur? ___
What type of node did the user create in this event? ___

3. What type of diagram was created in this trace? ___
4. What type of exception was thrown at the end of the trace and what is the

error message of this exception? ___

Feedback on the Timeline Tool

Please indicate your honest opinion about the following statements (agreement on
a 5-item Likert scale Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree):

169

Appendix A Evaluation Material

• “The meaning of user interactions presented by the Timeline Tool is clear and
easy to understand.”

• “It is easy to find required information in the Timeline Tool.”
• “Color helps to make a distinction between different types of events.”
• “The GUI element titles (labels, tool tips, ...) are clear, concise and under-

standable.”
• “The screen changes occurring upon my interactions (e.g. click on an event)

are clear and seem reasonable.”

Are there any parts of the Timeline Tool you found confusing or difficult to under-
stand? Which ones? ___

Which changes would you make to the Timeline Tool to improve its usability? ___

Failure Reproduction with the Timeline Tool

Please indicate your honest opinion about following statements (agreement on a
5-item Likert scale Strongly Agree, Agree, Neutral, Disagree, Strongly Disagree):

• “The Timeline Tool is helpful when reproducing failures.”
• “It is clear what a user did when looking at the information provided by the

Timeline Tool.”
• “I prefer textual bug reports over visual Timeline Tool (given that both contain

the same information).”

Which information did you miss in the Timeline Tool that would be helpful to
reproduce failures? ___

How can the Timeline Tool be improved to increase its support for failure reproduc-
tion? ___

Personal Information (will be treated confidentially)

Gender: ___

Age: ___

Which of the following describes your current profession best (tick one)?
[] Student
[] Software Developer
[] Researcher

How do you judge your knowledge of UML (tick one)?
[] Beginner
[] Intermediate
[] Advanced

How long do you develop software (tick one)?
[] 0-1 year
[] 2-5 years
[] 5-10 years
[] > 10 years

170

A.2 Material for Evaluation of MALTASE-based Skill Detection

How often do you usually reproduce failures in your daily work (tick one)?
[] Never
[] Once a month
[] Once a week
[] Daily

A.2 Material for Evaluation of MALTASE-based

Skill Detection

This appendix contains material used in the case study evaluating Maltase-based
skill detection in Section 6.4. The material was adapted from Theiner [184].

Study Guide

The following study guide was used to help the researcher conduct study sessions:

Preparation
Before a study sessions starts, check the following points:
• Start the server.
• Start the client.
• The following documents should be on hand:

- Info sheet
- Questionnaire
- The task sheet
- The observer sheet

• Prepare the MOSKitt workspace:
Create a new copy of the task handouts, archive old projects, and close all
diagrams.

• Prepare MOSKitt video.

With participant
• Explain the purpose of the experiment.
• Hand the info sheet to the participant.
• Read the info sheet together and answer questions.
• Have the participant fill the questionnaire.
• Show MOSKitt introduction video.
• Ask for questions.
• Hand over the task sheet.
• Let participant work on the tasks.
• Observe the participant and record the time needed for each task.
• The third task can be solved in several ways and may take quite a while.

However, after 15 minutes the task should be aborted, even if the user did not
finish everything.

171

Appendix A Evaluation Material

After participant left
• Check that interactions are saved in the database.
• Archive the MOSKitt workspace.
• Collect the sheets (questionnaire, observer sheet) and file them.

Make sure that the participant id is noted on each of them.

Observer Sheet

The following observer sheet was used to help the researcher record results and
observations during study sessions:

Date: ___
Participant: ___
Start time: ___

Task 1
Start: ___, End: ___
Observations: ___

Task 2
Start: ___, End: ___
Observations: ___

Task 3
Start: ___, End: ___
Observations: ___

End time: ___

Other observations: ___

172

A.2 Material for Evaluation of MALTASE-based Skill Detection

Task Descriptions

The following task descriptions were used in the evaluation case study. The exercises
were adapted from Bruegge and Dutoit [23].

Task T1

This task let’s you get familiar with the basic features of MOSKitt.
• Open the existing UML class diagram “Task1” from the workspace.
• Delete any existing objects.
• Recreate the class diagram below in MOSKitt. Try to include all details like

e.g. multiplicities.
• Save your work.

173

Appendix A Evaluation Material

Task T2

Open the UML class diagram “Task2” from the workspace. The diagram should look
like this:

The diagram is missing some properties and relationships between the classes.
Please add the missing information of the following specification:

• A canvas consists of figures (Composition).
• A group consists of figures.
• A polygon consists of at least three lines.
• Figure is an abstract class with the property position and an abstract method

draw().
• Group, Polygon, Line, and Circle are implementations (subclasses) of the class

“Figure”.
Save your work.

Task T3

Create a new UML class diagram named “Task3”.

Create a UML model for the following situation:
In a small town there are five restaurants with a number of employees ranging from
two in the smallest to 16 employees in the biggest restaurant. Each employee has
an individual salary. There are two types of employees: cooks and waiters. Waiters
wait on tables, pass the orders to the kitchen, serve the menus, and collect the money
from the customers. The cooks prepare the menus. Each menu has its own price
depending on the dishes, but each consists of at least a salad and a main course.
Customers visit restaurants and order menus. The largest restaurant can serve up
to 100 customers at a time while a restaurant might have no customers during bad
times.

Save your work.

174

A.2 Material for Evaluation of MALTASE-based Skill Detection

Questionnaire

The following questionnaire was used to collect participant information:

What is your gender?
[] Female
[] Male

What is your occupation?
[] Student
[] Researcher
[] Software developer
[] Other: ___

How do you rate your UML skills?
[] Never used UML
[] Beginner (Basic knowledge of the UML main capabilities)
[] Intermediate (Used UML for a few projects)
[] Advanced (Frequent use of UML or worked on large UML models)

For how long do you know UML?
[] Don’t know UML
[] 0-2 years
[] 2-5 years
[] > 5 years

How often do you use UML for your work or study?
[] A few times a week
[] A few times a month
[] A few times a year
[] Never

How do you rate your MOSKitt skills?
[] Never used MOSKitt
[] Beginner (Started MOSKitt and tried it out)
[] Intermediate (Created a few simple UML diagrams in MOSKitt)
[] Advanced (Frequent use of MOSKitt or MOSKitt developer)

Have you worked with any other UML tool than MOSKitt?
[] No
[] Yes, with ___

175

	Introduction
	Problem Statement
	Research Approach
	Scope
	Structure

	Foundations
	Terminology
	Background
	Differences and Gaps Between Developers and Users
	User Involvement in Software Evolution
	User Interfaces of Software Applications
	Nature of User Interactions
	Processing of User Interactions
	Software Analytics

	Problem Case Study
	Design
	Research Questions
	Case and Participant Selection
	Data Collection Procedures
	Analysis Procedures
	Reliability and Validity Measures
	Threats to Validity

	Results
	Information Needs of Developers Regarding Software Usage
	Developers in the Role of Users

	Related Work
	Discussion
	Conclusions
	Implications And Future Work

	Chapter Summary

	The MALTASE Framework
	Framework Overview
	Requirements
	Functional Requirements
	Use Cases
	Non-Functional Requirements

	MALTASE Model
	Model of User Interactions
	Model of Users, Events, Applications, and Usage Contexts

	MALTASE Architecture
	Monitoring & Information Extraction Layer
	Storage & Transfer Layer
	Processing & Analysis Layer
	Presentation & Integration Layer

	MALTASE Usage Scenarios
	Related Work
	Chapter Summary

	Framework Applications
	MALTASE-based Failure Reproduction
	Motivation
	Approach
	Related Work

	MALTASE-based Skill Detection
	Motivation
	Approach
	Related Work

	MALTASE-based Use Case Testing
	Motivation
	Approach
	Related Work

	Chapter Summary

	Evaluation
	Evaluation Overview
	Goals
	Methodology
	CASE Tool MOSKitt
	Integration of MALTASE Framework and MOSKitt

	Evaluation of MALTASE Monitoring
	Design
	Results
	Limitations and Threats to Validity

	Evaluation of MALTASE-based Failure Reproduction
	Design
	Results
	Limitations and Threats to Validity

	Evaluation of MALTASE-based Skill Detection
	Design
	Results
	Limitations and Threats to Validity

	Discussion
	Chapter Summary

	Conclusion
	Contributions
	General Discussion and Future Work

	Bibliography
	List of Figures
	List of Tables
	Evaluation Material
	Material for Evaluation of MALTASE-based Failure Reproduction
	Material for Evaluation of MALTASE-based Skill Detection

