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Abstract— This paper presents an incremental sampling-
based approach for trajectory imitation in cluttered environ-
ments using the RRT* algorithm. Inspired by the discrete
Laplace-Beltrami operator the underlying distance metric is
based upon the difference from a reference trajectory through
a quadratic distance term incorporating velocity and acceler-
ation deviations along the trajectory. Mathematically-backed
approximations in combination with a task-space bias make
it possible to use standard nearest neighbor methods in task
space when expanding the RRT*-tree. It is shown that metric-
consistent biases considerably increase the convergence speed.
The proposed approach is validated in simulations in a 2D
environment and in experiments using a HRP-4 humanoid
robot.

I. I NTRODUCTION

With continuously increasing computing power sampling-
based motion planning has become very popular over the
last two decades. This is due to various reasons: Sampling-
based planners are generally easy to implement, can handle
multiple types of constraints and converge quickly to a
feasible solution. Probably the most prominent planners are
Probabilistic Roadmaps (PRM) [1], Rapidly Exploring Ran-
dom Trees (RRT) [2] and a modification of RRT called RRT*
[3]. All three algorithms can be seen rather as a framework
than a specific realization, allowing one to modify various
core components. As such they have been applied to different
robotic problems, including but not limited to kinematic
motion planning [4] focusing on shortest path solutions,
kinodynamic motion planning [5], [6] mainly interested in
minimal-time trajectories, nonholonomic path planning [7]
and guaranteed stability for nonlinear systems [8].

An open problem for sampling-based planners is the
adaption of a trajectory to a similar one in terms of ve-
locity/acceleration in the presence of obstacles. Approaches
tackling similar kind of problems are found in the field of im-
itation learning and inverse optimal control. Yet velocityand
acceleration similarity is only indirectly addressed by the un-
derlying dynamical system [9], [10] or by the deviation from
a reference path [11], [12] together with robot kinematics.
Obstacles along the way are either avoided through a reactive
control approach using Potential Fields [10] or through a
sampling-based planner [12] based upon a distance metric
measuring the absolute distance to a reference trajectory.An
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approach able to incorporate the deviation from a reference
path in terms of finite differences is presented in [13].
Based on the discrete Laplace-Beltrami operator originating
from differential geometry [14], Laplacian Trajectory Editing
(LTE) minimizes the curvature deviation from a reference
path through a least squares approach. Still it can only be
applied to the unconstrained case without obstacles along the
path.

The contribution of this paper is the combination of LTE
and RRT* - called Laplacian-RRT* - for finding similar-
shaped trajectories in constrained environments. The simi-
larity measure based upon the velocity/acceleration deviation
and minimized by LTE serves as the distance metric for the
RRT* algorithm. Due to the high dimensionality of the con-
figuration space, the Laplacian-RRT* algorithm operates in
task space. Special focus is drawn on reasonable simplifica-
tions allowing one to use standard nearest neighbor methods
in task space, thus avoiding a brute-force approach or heuris-
tic approximations. Simulations investigate the convergence
properties, imitation quality and computational complexity
of the method. A experiment involving a HRP-4 humanoid
platform shows the applicability of the approach to a real-life
scenario and the comparison with potential field methods.

The paper is organized as follows: Sec. III describes the
basics of LTE and RRT* which are combined in Sec. IV
and evaluated in Sec. V. Sec. VI and Sec. VII discuss the
presented approach and present ideas for future expansion.

Notation: Throughout the paper scalars are written in non-
bold letters (e.ga), vectors in bold lower case letters (e.g.a)
and matrices in bold capital letters (e.g.A). Accessing a
specific element of a matrix/vector is denoted by curly
subscript brackets in a Matlab-like notation (e.g.A{3,:} for
the entire third row ofA).

II. PROBLEM STATEMENT AND CONCEPTUAL APPROACH

This paper looks at the problem of how to find a trajectory
in a constrained environment with similar local trajectory
properties as a reference trajectory. We define local trajectory
properties as the velocityγ and accelerationδ along the
trajectory. For a trajectory consisting ofn sampling points
the cost function to be minimized then takes the form

Ē =

n∑

i=1

(γi,s − γi)
2 +

n∑

k=1

(δi,s − δi)
2, (1)

that is the summed squared difference of veloci-
ty/acceleration between a reference trajectory and the
new trajectory (subscripts). In order to find optimal
trajectories in the presence of obstacles, the idea is to use



the cost functionĒ as the underlying distance metric for
the RRT* algorithm. Whereas in theory any distance metric
can be used, the one in (1) is special as it can be minimized
at relatively low computational cost for the unconstrained
case using LTE.

III. B ACKGROUND OFLTE AND RRT*

This section both briefly reviews LTE and RRT* and
presents the extension of the original LTE method for being
combined with RRT*.

A. Laplacian Trajectory Editing

Let a trajectory be the combination of a
path, described by an ordered set of sampling
pointsP = [p(t1),p(t2), . . . ,p(tn)]

T ∈ R
n×m

in task space and associated temporal
informationT = [t1, t2, . . . , tn] ∈ R

n represented
as timeti ∈ R, p(ti) ∈ R

m. For simplicity,
P = [p(t1),p(t2), . . . ,p(tn)]

T is rewritten as
P = [p1,p2, . . . ,pn]

T .
In case the sampling points are spaced equitemporally as

ti+1 − ti = ∆t ∀i ∈ {1, . . . , n− 1}, the acceleration along
the trajectory for thei-th sampling point can be described
by the finite difference

pi+1 − 2pi + pi−1

∆t2
. (2)

The same accounts for the velocity along the trajectory,
described by

pi − pi−1

∆t
. (3)

The key idea of LTE is to calculate local trajectory properties,
resulting in a linear equation system. When adding boundary
constraints, the resulting overdetermined equation system
can be solved using least squares. By introducing weighting
factors for each constraint, they can be prioritized to fit the
user requirements. Note that the acceleration in this paper
is only a special case of theLaplacian coordinatesin [15]
for equitemporally spaced sampling points. With weighting
factorωi,2 instead of 1

∆t2
, (2) can be rewritten as

δi = ωi,2(pi+1 − 2pi + pi−1) = ωi,2ci,2, (4)

In a similar manner (3) becomes

γi = ωi,1(pi − pi−1) = ωi,1ci,1, (5)

with weighting factorωi,1. For the remainder of the paper
we only consider positional constraints in the form

ωi,0pi = ωi,0ci,0. (6)

as additional constraints, fixing the sampling pointpi to its
desired positionci,0. Again, the constraint is weighted with
a scalarωi,0.

Writing everything in matrix form, one obtains




P̄0

P̄1

P̄2



Ps =





C0

C1

C2



 , (7)

with





P̄0

P̄1

P̄2



 =







































ω1,0

. . .
ωl,0

ωn,0

ω2,1 −ω2,1

. . .
ωn,1 −ωn,1

ω2,2 −2ω2,2 ω2,2

. . .
ωn−1,2 −2ωn−1,2 ωn−1,2







































,

(8)
and





C0

C1

C2



 =







































ω1,0c1,0
...

ωl,0cl,0
ωn,0cn,0

ω1,1c1,1
...

ωn,1cn,1

ω1,2c1,2
...

ωn,2cn,2







































. (9)

The different terms in (7)-(9) account for weighted velocity
(P̄1,C1) and acceleration (̄P2,C2) along the reference trajec-
tory P. The termsP0 andC0 specify positional constraints
for the firstl sampling points and the last sampling point. The
deformed trajectoryPs = [p1,s,p2,s, . . . ,pn,s]

T ∈ R
n×m

can then be calculated using least squares. As the least-
squares solution minimizes the cost term̂E defined as

Ê =
m∑

k=1

∥
∥
∥
∥
∥
∥
∥





P̄0

P̄1

P̄2



Ps{:,k} −





C0

C1

C2





{:,k}

∥
∥
∥
∥
∥
∥
∥

2

2

, (10)

the term Ê is a natural choice for a similarity measure.
Under the assumption ofωi,0 ≫ ωi,1, ωi,2 the unweighted
positional offset‖pi,s − ci,0‖

2
2 is negligible. Then an ap-

proximate measure is given as

Ê ≈ E =
m∑

k=1

∥
∥
∥
∥
∥

(
P̄1

P̄2

)

Ps{:,k} −

(
C1

C2

)

{:,k}

∥
∥
∥
∥
∥

2

2

(11)

, s.t. pi,s = ci,0 ∀i = {1, . . . , l, n},

In case the elements of[CT
1 C

T
2 ]

T correspond to the
undeformed trajectoryP as γi, δi and the elements
in [P̄T

1 P̄
T
2 ]

TPs to the deformed trajectoryPs asγi,s, δi,s,
the similarity between the two trajectories is rewritten as

E =

m∑

k=1

n∑

i=2

(γi,s{k} − γi{k})
2 (12)

+

m∑

k=1

n−1∑

i=2

(δi,s{k} − δi{k})
2,

s.t. pi,s = ci,0 ∀i = {1, . . . , l, n}.



Note that the term similarity is slightly misleading as a high
similarity between two trajectories corresponds to lowÊ, Ē
values. In addition, the weighting termsωi,0, ωi,1, ωi,2 can
be chosen arbitrarily.

B. RRT*

A drawback of LTE is that it can modify trajectories
only for the unconstrained case and at once, i.e. non-
incrementally. In contrast, RRT* makes it possible to find
optimal trajectories in an incremental way for the constrained
case with guaranteed asymptotic optimality. Its pseudocode
(in black letters) is given as follows:

Algorithm 1: Laplacian-RRT* (V,E,N )

for f = 1, . . . , N do
xrand, idrand ← Sample;
xnearest ← Nearest(V,xrand, idrand);
xnew ← Approach(xnearest, xrand);
if CollisionFree(xnearest, xnew) then

Xnear ← Near(V, xnew);
Xnear ← V ;
(V,E) ← ParentId(V,E,Xnear, xnew, idrand);
(V,E) ← RewireId(V,E,Xnear, xnew, idrand);

return G = (V,E)

Algorithm 2: ParentId(V,E,Xnear, xnew, idrand)
V ← V ∪ xnew;
minCost← ∞; xmin ← NULL; σmin ← NULL;
for xnear ∈ Xnear do

if id(xnear) = idrand − 1 then
σ ← Steer(xnear, xnew);
if Cost(xnear) + Cost(σ) < minCostand
CollisionFree(σ) then

minCost← Cost(xnear) + Cost(σ);
xmin ← xnear; σmin ← σ;

E ← E ∪ {xnear, xnew};
return (V,E)

Algorithm 3: Rewire(V,E,Xnear, xnew)
for xnear ∈ Xnear do

σ ← Steer(xnew, xnear);
if Cost(xnew) + Cost(σ) < Cost(xnear) and
CollisionFree(σ) then

xparent ← Parent(xnear);
E ← E\ {xparent, xnear};
E ← E ∪ {xnew, xnear};

return (V,E)

Its core components are:

• Cost: Optimal cost of a given state based on the under-
lying distance metricdist(x, x′) between two statesx
andx′ in the configuration spaceC.

• Near/Nearest: Returns a set of statesX ∈ V resp.
the nearest statexnearest from the verticesV of the

Algorithm 4: RewireId(V,E,Xnear, xnew, idrand)
for xnear ∈ Xnear do

if id(xnear) = idrand + 1 or id(xnear) = idrand + 2
then

i = idnear;
Check any possible combination{pi−2,pi−1,pi}
for lower cost/collision and rewire when necessary

return (V,E)

graph(V,E) within a sphere of fixed radius centered at
the statex and based on the distance metricdist(x, x′).

• Steer: Gives a pathσ connecting two statesx andx′.
• Approach: Approaches the desired positionx′ from x

by a predefined amountα.
• CollisionFree: Checks if the pathσ between two

statesx and x′ lies entirely in the free (i.e. non-
colliding) configuration spaceCfree ⊆ C.

• Sample: Independent uniformly random sampling of
Cfree.

When expanding the graph(V,E) with edgesE the al-
gorithm first samples a new statexrand from the free
configuration space and approaches it from the closest node
xnearest, resulting inxnew. In case the path betweenxnearest

and xnew is non-colliding, a parent nodexpar is selected
from the set of nearest nodesXnear as described in the
Parent function such that it connects toxnew with minimal
cost. Having addedxnew and the edge betweenxpar and
xnew to the graph, theRewire function checks whether a
nodexnear ∈ Xnear can be connected viaxnew with less
than its current cost and rewires the graph accordingly.

IV. COMBINING LAPLACIAN TRAJECTORYEDITING AND

RRT*

Both RRT* and LTE have different advantages. LTE is
faster than RRT* and able to minimize the cost function
in (11)-(12) in a computationally efficient way. RRT* on
the other hand also works in the presence of obstacles. This
section explains how to combine LTE with RRT* to combine
the advantages of both algorithms. It also presents several
biases/approximations for faster convergence and reduced
computational complexity.

A. Modifications to RRT*

A key concept of RRT* is the underlying distance metric
dist(x, x′) between two statesx and x′. Differing from
other approaches, the used distance metric for equitemporally
spaced sampling points is inspired by (12) as

dist(x, x′) = dist(pi,pi,s), (13)

=
m∑

k=1

(γi,s{k} − γi{k})
2

+

m∑

k=1

(δi−1,s{k} − δi−1{k})
2.

that is the weighted difference of velocity and acceleration
between two points in configuration space. The indexi − 1



for the acceleration vector is intentional due to the one-
sided incremental nature of RRT*, making it necessary to
use backward finite differences. As the acceleration vectors
are calculated from three sampling points according to (3),
each statex ∈ C of the configuration space consists of three
subsequent sampling points{pi−2,pi−1,pi}. In order to
reduce the dimensionality of the problem fromR3m to Rm

and simplify calculations, the Laplacian-RRT* algorithm
operates in task space using an adequate bias [5], [16].
Thus every velocity/acceleration vector is not associatedwith
a statex, x′ in configuration space but with an individual
sampling pointpi,pi,s in task space. The distance metric
is only defined for sampling points with similar indexi.
Implicitly it is assumed thatP andPs have the same number
of sampling points. Because the sampling points are indexed,
the original RRT* algorithm has to be modified, ensuring
that connected nodes of the graph correspond to subsequent
sampling points of the trajectory.

The modifications are described in Alg. 1-4 (in red
letters): Due to indexed sampling points, theSample
function outputs both, a sample position and an index
idrand ∈ {1, 2, . . . , n}. Because a distancedist(x, x′) = 0
does not necessarily correspond to sampling points close
together in task space,Xnear now consists of all verticesV ,
resulting in a brute-force approach. Differing from the
Parent function, the ParentId function also checks
the index of the parent node. The mutual dependence of
subsequent acceleration vectors along the same trajectory
causes theRewireId function to check every possible
combination{pi−2,pi−1,pi} | i ∈ {idrand + 1, idrand + 2}
for better cost/collision and rewire in case.

B. Introducing Bias For Faster Convergence

The algorithm in Sec. IV-A is both slow and slowly
converging because the setXnear for the nearest neighbor
search consists of all vertices inV . For faster convergence
this subsection presents a task space bias [5], [16] consistent
with the used distance metric and a nearest neighbor approxi-
mation, allowing one to use nearest neighbor methods in task
space for finding the closest node in configuration space.

1) Task Space Bias:When operating in Task Space in-
stead of Configuration Space, a suitable bias is essential
for the RRT* algorithm to converge quickly. Yet a com-
mon problem when using complex distance metrics and/or
unintuitive configuration spaces is the difficulty of finding
a proper goal-driving heuristic. The Laplacian Trajectory
Editing framework has the invaluable advantage of providing
a very good approximation of the optimal next node with
respect to (13). In general when expanding the RRT*-tree,
one is given a branchPb = [p1,b,p2,b, . . . ,pl,b]

T of the tree,
an original trajectoryP that has to be resembled as good as
possible and a known start/end sampling pointps = p1,b/pe.
When expanding the branch with another sampling point
with index l + 1, its optimal positionp̂l+1,b is calculated

as

Ps =





P̄0

P̄1

P̄2





+ 



C0

C1

C2



 , (14)

p̂l+1,b = Ps{l+1,:}, (15)

with C0 =

(
Pb

pe

)

, (16)

C1 = P̄1P, (17)

C2 = P̄2P. (18)

The resulting vector̂pl+1,b − pl,b is used as an offset for
the Approach function in order to bias the tree growth
towards the goal position while being consistent with the
used distance metric, see Fig. 1.

Pp1,b

p2,b

pl,b
pl+1,b

Ps

Fig. 1. Task Space Bias. Original trajectoryP (grey), Laplacian-RRT*-tree
(black) and calculated optimal trajectoryPs for a single branch of the tree
(red) with corresponding optimal next sampling pointp̂l+1,b

2) Task Space Nearest Neigbors:Because the Laplacian-
RRT* algorithm operates in task space, it relies on a nearest
neighbor search in task space. Otherwise - as shown in
Sec. IV-A - the setXnear has to consist of all vertices
V for finding the optimal node. Looking at (11), it is
visible that the similarity measurēE depends quadratically
on the elements ofPs. It is assumed that the next sam-
pling point’s positionpl+1,b of the branchPb is split up
aspl+1,b = p̂l+1,b +∆pl+1,b such that

p̂l+1,b = argmin
pl+1,b

(E), (19)

i.e. the position̂pl+1,b leads to maximal similarity. Then the
similarity measureĒ depends quadratically on∆pl+1,b.

Given different branches{Pb1, . . . ,Pbm} of the tree with
corresponding next sampling points{pl+1,b1, . . . ,pl+1,bm}
having approximately the same shape due to a task space
bias and thus leading to approximately the same similarity
as

min
Pbi,pl+1,bi

(E) ≈ const. ∀ i ∈ {1, . . . ,m}, (20)

the similarityĒ is mainly influenced by the offset∆pl+1,bi,
allowing one to search for minimal∆pl+1,bi in task space
using standard nearest neighbor methods (Fig. 2).

Hence when given a random sampling
point xrand = prand with index idrand = l + 1, calculating
the nearest neighborxnearest = pnearest simplifies as

pnearest = argmin
pl+1,bi

‖prand − p̂l+1,bi‖F , (21)

that is the Frobenius norm between every optimal next
sampling point̂pl+1,bi and the random sampling pointprand.



Pp1,b

p2,b

pl,b

pl+1,b
Δpl+1,b

pl+1,b

P

pl,b1
prand

pl,b2

pl+1,b1

pl+1,b2

Ps

Fig. 2. Task Space Nearest Neighbors. Left side: Deviation of the next
sampling pointpl+1,b from its optimal positionp̂l+1,b by ∆pl+1,b.
Right side: Approximate nearest neighbor calculation based on the distance
between optimal sampling pointŝpl+1,bi and a random sampling point
prand

When adding a new sampling pointp̂l+1,bi with possibly
suboptimal positionpl+1,bi 6= p̂l+1,bi to the branchPbi,
it automatically becomes the last sampling and the indexl
increases by one. By defining the sensitivitysl,n of Ē
depending on∆pl,bi for a trajectory withn sampling points
as

sl,n =
∂E2

∂2∆pl,bi

∣
∣
∣
∣
∆pl,bi=0

, (22)

one sees in Fig. 3 that the sensitivity is independent of the
choice ofl andn over a wide range ofl andn. This gives
rise to the simplification of using the nearest neighbor search
regardless of each node’s index for theNearest function.
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Fig. 3. Sensitivitysl,n for multiple trajectories with different number of
sampling pointsn, evaluated over varied sampling point indicesl. The used
parameterization isω0

i = 1e6, ω1
i = 0.1 ω

2
i = 1

3) Growing Exploration Ratio:As described in Sec. III-
B, theApproach function of the Laplacian-RRT* algorithm
depends on a variableα specifying the amount of explo-
ration. It has been found practical to increase the variable
α with increasing number of iterationf , see Fig. 4. The
used heuristic for theApproach function withpl,bi as the
nearest node and̂pl+1,bi as its optimal next node is

γ =

{

αfβ if α fβ ≤ 1,

1 else,
(23)

pnew = p̂l+1,bi
︸ ︷︷ ︸

task space bias

+ γ(prand − p̂l+1,bi)
︸ ︷︷ ︸

growing exploration ratio

. (24)

4) Multiple Sampling Point Expansion:To increase the
amount of exploration per iteration and therefore reduce the
number of computationally expensive nearest neighbor/task
space bias calculations, the branchPbi can be expanded
with multiple sampling pointspl+1,bi, . . . ,pl+σ,bi in every
iterations based on the task space bias trajectoryPs. Fig. 5
illustrates the idea.

P

pl,bi
prand

pl+1,bi

pnew

Fig. 4. Growing Exploration Ratio. Due to the task space biasthe new
sampling pointpnew is located along the line between̂pl+1,bi andprand

and not along the line betweenpl,bi andprand

P

pl,bi pl+1,bi = pnew

P

pl,bi

Ps Ps

pl+1,bi = pnew

pl+2,bi

pl+3,bi

Fig. 5. Multiple Sampling Point Expansion. Left side: Conventional
approach extending only one node. Right side: Accelerated approach im-
proving multiple nodes (σ = 3 for the given illustration)

5) Reduced Rewiring:For large Laplacian-RRT*-trees
with possibly ten thousands of nodes, checking every com-
bination {pi−2,pi−1,pi} of three sampling points with
subsequent indices as described in Alg. 4 becomes quickly
unfeasible: It is known that one of the three sampling points
has to bexnew = pnew. Under the assumption ofnt

sampling points in the tree and all sampling point indices
being identically distributed over the range{1, . . . , n}, the
amount of checksc per iteration is approximately

c = 3
(nt

n

)2

, (25)

that is O
((

nt

n

)2
)

complexity. Following the same argu-
mentation as in Sec. IV-B.2, when decomposing the three
sampling points as

pq = p̂q +∆pq, q = {i, i− 1, i− 2}, (26)

the similarity Ē is mainly influenced by∆pq, that is the
deviation from the optimal position̂pq. As one of the three
sampling points is alwaysxnew = pnew, a good approx-
imate solution is obtained by finding the nearest neigh-
bors of pnew when looking for candidate sampling points
{pi−2,pi−1,pi}. In addition, the heuristic of just rewiring
candidate sampling points withid(xnear) = idrand + 1 is
used in order to reduce complexity toO

(
nt

n

)
.

V. EXPERIMENTAL EVALUATION

Experiments are conducted in two ways, through compu-
tational simulations and using a HRP-4 humanoid robotic
platform.

A. Simulations

Simulations using a 2D example illustrate the principle
procedure when expanding the Laplacian-RRT*-tree. Shown
in Fig. 6 are two versions of Laplacian-RRT*, the unbiased
version according to Sec. IV-A on the left side and the biased
version as described in Sec. IV-B on the right side. The task
consists in finding a trajectory not colliding with obstacles
(in red) and resembling the reference trajectory (in orange)
as good as possible in terms of (11). For all simulations the



parameters have been set toα = 2e − 4, β = 0.5, σ = 3,
ωi,0 = 1e6, ωi,1 = 0.1 ωi,2 = 1. To reduce calculation time,
the reduced rewiring technique in Sec. IV-B.5 is also used for
the unbiased version and only 5000 iterations are run (10000
for all other versions). Clearly the unbiased version failsto
come up with good results whereas the optimal trajectory of
the biased version resembles the reference trajectory well.

optimal traj.

reference traj.

obstacles

tree

Fig. 6. Spatial comparison of different Laplacian-RRT* approaches without
bias (left) and with bias (right)

Fig. 7 compares the cost̄E of the unbiased and biased
version over 30 rollouts. Costs are only plotted after a
feasible solution connecting the first and last sampling point
has been found. It is visible that the cost of the biased
version is about three magnitudes smaller than the unbiased
one. In addition the cost graphs of the biased version stay
almost constant: Caused by the growing exploration ratio in
combination with the task space bias, near-optimal solutions
are found rather quickly at the cost of a reduced exploration
ratio.
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Fig. 7. Comparison of the cost̄E of different Laplacian-RRT* approaches
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Shown in Fig. 8 are computation times based on 30
rollouts. The algorithm is implemented in Matlab R2013b
(single-threaded) on a i7-3635QM/8GB notebook using Mat-
lab’s knnsearch nearest neighbor search method. The
x-axis shows the computation time at intermediate steps
of the algorithm after every 1000-th iteration. The to-
tal processing time (grey) with corresponding standard
deviation (black bars) is split up both into algorithms
(ParentId/RewireId) and functions (LTE/collision de-
tection/nearest neighbor search) causing the main compu-
tational load. In addition, the number of tree nodes and its
standard deviation is displayed in blue. It is visible that most
computation time is spent for the nearest neighbor search and
collision detection.

It is stated in Sec. III-A that the used version of LTE
minimizes the squared deviation from the reference trajectory
in terms of weighted velocity and acceleration terms. Fig. 9
shows velocity and acceleration plots of both, reference and
optimal trajectory. No major deviations from the reference
trajectory can be observed.
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Fig. 9. Velocity and acceleration plots of the optimal trajectory of the
biased Laplacian-RRT*

B. Experiments On Humanoid Robot HRP4

Real-life experiments for a pick-and-place scenario use a
HRP4 humanoid robot as shown in Fig. 10. For a physically
feasible full-body robot movement based on the endeffec-
tor trajectory, a hierarchical inverse kinematics method as
described in [17] is adopted. The task consists in placing
a cup upright on the table by following a reference tra-
jectory (orange) that has been previously recorded from a
human demonstration using a Vortex motion capture system.
Obstacles (a pile of books) along the reference trajectory
force the robot to find a new suboptimal trajectory (green).
Two approaches for obstacle avoidance are compared, the
Laplacian-RRT* method and a potential field approach [18].
The used parameters for the Laplacian-RRT* algorithm are
α = 1e − 3, β = 0.5, σ = 10, ω0

i = 1e6, ω1
i = 0.1

ω2
i = 1. As shown in the figure, the similaritȳE of

the Laplacian-RRT* based trajectory with respect to the
reference trajectory is about5× better (=lower) than the
potential field based trajectory. Shown in Fig. 11 are velocity
and acceleration plots for the optimal trajectory found by
Laplacian-RRT*, the resulting potential field trajectory and
the reference trajectory. Whereas the potential field trajectory
has large velocity/acceleration errors fort > 2.5s, there are
only small errors for the Laplacian-RRT* trajectory over the
entire timespan due to its stochastic nature.

VI. D ISCUSSION

Differing from all known sampling-based approaches, this
is the first method defining optimality not based on an
extrinsic measure like ”shortest path” or ”minimum time”
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but with respect to another trajectory, making it well suited
for motion imitation tasks.

The method suffers from a few drawbacks: The used
heuristics for biasing exploration towards the goal node make
the problem computationally tractable but reduce the amount
of exploration. As a least-squares problem has to be solved
in every iteration step, the straightforward approach is only
applicable for small trajectories, e.g.n < 200. Otherwise
multiresolution techniques as described in [13] are better
suited. In addition, the distance metric is only well defined
for trajectories with similar number of sampling points.

The approach can be readily extended in a number of
ways: So far, only first and second order derivatives are
considered. Yet higher-order derivatives can be added in a
similar manner. Another option are via points that have to
be passed on the way to the goal position. By adding an
additional positional constraint to the matrix̄P0, they can
be incorporated.

VII. C ONCLUSION AND FUTURE WORK

This paper presents Laplacian-RRT* as a novel tool for
finding similar-shaped trajectories in a constrained environ-
ment using a sampling-based approach. The similarity mea-

sure is based upon the local trajectory properties as velocity
and acceleration along the trajectory. Mathematically derived
approximations allow one to perform a standard nearest
neighbor search in task space when looking for the closest
node of the tree to be expanded, thus increasing speed
considerably.

Future work will be focused on combining Laplacian-
RRT* with full-body movement schemes for humanoid
robots in order to derive an optimal controller for dynamical
movements in partially blocked environments.
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