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Abstract— This paper presents an incremental sampling- approach able to incorporate the deviation from a reference
based approach for traljectory_ imitation in cluttered environ-  path in terms of finite differences is presented in [13].
ments using the RRT* algorithm. Inspired by the discrete  gagaq on the discrete Laplace-Beltrami operator origigati
Laplace-Beltrami operator the underlying dlstz_ance metric is from differential geometry [14], Laplacian Trajectory Ei
based upon the difference from a reference trajectory throgh - 9 y » Lap o | y og
a quadratic distance term incorporating velocity and accedr-  (LTE) minimizes the curvature deviation from a reference
ation deviations along the trajectory. Mathematically-backed  path through a least squares approach. Still it can only be
approximations in combination with a task-space bias make applied to the unconstrained case without obstacles ateng t
it possible to use standard nearest neighbor methods in task path.

space when expanding the RRT*-tree. It is shown that metric- I . . L
consistent biases considerably increase the convergengeeed. The contribution of this paper is the combination of LTE

The proposed approach is validated in simulations in a 2D and RRT* - called Laplacian-RRT* - for finding similar-
environment and in experiments using a HRP-4 humanoid shaped trajectories in constrained environments. The- simi

robot. larity measure based upon the velocity/acceleration tiewia
and minimized by LTE serves as the distance metric for the
RRT* algorithm. Due to the high dimensionality of the con-

With continuously increasing computing power samplingfiguration space, the Laplacian-RRT* algorithm operates in
based motion planning has become very popular over thgsk space. Special focus is drawn on reasonable simplifica-
last two decades. This is due to various reasons: Samplingsns allowing one to use standard nearest neighbor methods
based planners are generally easy to implement, can hanfieask space, thus avoiding a brute-force approach or $euri
multiple types of constraints and converge quickly to aic approximations. Simulations investigate the convecge
feasible solution. Probably the most prominent plannees abroperties, imitation qua“ty and Computationa| Commxi
Probabilistic Roadmaps (PRM) [1], Rapidly Exploring Ranvf the method. A experiment involving a HRP-4 humanoid
dom Trees (RRT) [2] and a modification of RRT called RRT*p|atform shows the applicability of the approach to a réfal-|
[3]. All three algorithms can be seen rather as a frameworcenario and the comparison with potential field methods.
than a specific realization, allowing one to modify various The paper is organized as follows: Sec. Ill describes the
core components. As such they have been applied to differasiisics of LTE and RRT* which are combined in Sec. IV
robotic problems, including but not limited to kinematicand evaluated in Sec. V. Sec. VI and Sec. VII discuss the
motion planning [4] focusing on shortest path solutionspresented approach and present ideas for future expansion.
kinodynamic motion planning [5], [6] mainly interested in  Notation: Throughout the paper scalars are written in non-
minimal-time trajectories, nonholonomic path planning [7hold letters (e.gz), vectors in bold lower case letters (ea).
and guaranteed stability for nonlinear systems [8]. and matrices in bold capital letters (e4). Accessing a

An open problem for sampling-based planners is thgpecific element of a matrix/vector is denoted by curly

adaption of a trajectory to a similar one in terms of vesubscript brackets in a Matlab-like notation (eAy ., for
locity/acceleration in the presence of obstacles. Apgtesic the entire third row ofA).

tackling similar kind of problems are found in the field of im-
itation learning and inverse optimal control. Yet velocityd !l PROBLEM STATEMENT AND CONCEPTUAL APPROACH
acceleration similarity is only indirectly addressed bg tin- This paper looks at the problem of how to find a trajectory
derlying dynamical system [9], [10] or by the deviation fromin a constrained environment with similar local trajectory
a reference path [11], [12] together with robot kinematicsproperties as a reference trajectory. We define local ti@jgc
Obstacles along the way are either avoided through a reactiproperties as the velocityy and acceleratiord along the
control approach using Potential Fields [10] or through #rajectory. For a trajectory consisting ef sampling points
sampling-based planner [12] based upon a distance mettie cost function to be minimized then takes the form
measuring the absolute distance to a reference traje@ary. - n n

E=> (s =)+ > (8is— 6., 1)

k=1

i=1
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the cost functionE as the underlying distance metric forwith
the RRT* algorithm. Whereas in theory any distance metric

w
can be used, the one in (1) is special as it can be minimized e
at relatively low computational cost for the unconstrained
case using LTE. w0
_ Wn,,0
I1l. BACKGROUND OFLTE AND RRT* go W21 TWa2l
1] = )
This section both briefly reviews LTE and RRT* and \P-
presents the extension of the original LTE method for being 5 Wn,1 —Wn,1
combined with RRT*. w22 Tawzz W22
A. Laplacian Trajectory Editing wn;m —2n_12 Wn_12
Let a trajectory be the combination of a.nd 8)
path, described by an ordered set of sampling w1010
pointsP = [p(t1), p(ta), - .., p(t,)]’ € R**m L
in task space and associated temporal :
informationT = [t1,ts,...,t,] € R" represented :’Z*SEI*O)
. m . .. n,0Cn,C
as timet, € R, p(t) € IR{ . For _ simplicity, Co ETRTIE
P = [p(t1),p(t2),...,p(tn)]T is rewritten as C, | = _ . 9
P:[plap27"'apn]T' 02 :
In case the sampling points are spaced equitemporally as %
tiy1 —t; = At Vi € {1,...,n — 1}, the acceleration along L2
the trajectory for thei-th sampling point can be described :
by the finite difference Wn,2Cn,2
DPi+1 — 2P; + Pi—1 @ The different terms in (7)-(9) account for weighted velgcit

At2 (P,,C;) and acceleratior,,C,) along the reference trajec-
The same accounts for the velocity along the trajector;?‘,)ry P. The termsP, and C, specify positional constraints
described by or the firstl sampling points and the last sampling point. The
deformed trajectoryP; = [p1s,P2.ss-- -, Pns)’ € R™X™

Pi — Pi—1

At () can then be calculated using least squares. As the least-
The key idea of LTE is to calculate local trajectory propesti Sduares solution minimizes the cost tefindefined as
resulting in a linear equation system. When adding boundary _ 2
constraints, the resulting overdetermined equation myste . m Py Co
can be solved using least squares. By introducing weighting b= Z Pi|Psry— |G , (10)
factors for each constraint, they can be prioritized to fit th k=1l \P2 Co {5k} o

user requirements. Note that the acceleration in this paper o _ S
is only a special case of theaplacian coordinatesn [15] the term £ is a naFuraI choice for a similarity measure.
for equitemporally spaced sampling points. With weighting/nder the assumption af; o > w; 1,w; > the unweighted

factor w; » instead of 115, (2) can be rewritten as positional offset||p; s — c;ol|3 is negligible. Then an ap-
proximate measure is given as

0; = wi2(Pit1 — 2Pi + Pi—1) = w; 2C; 2, 4) )
In a similar manner (3) becomes E ~ E = Z (1P31> Poin — (81> (11)
2 ’ 2
k=1 {:vk}
Yi = Wi,l(pi - pifl) = W;,1Ci 1, 5) St pis=cCio Vi= {1 o n} 2

with weighting factorw; ;. For the remainder of the paper

TTT
we only consider positional constraints in the form In case the elements ofC; C;]  correspond to the

undeformed trajectoryP as ~;, §; and the elements
Wi0Pi = Wi 0Ci 0- (6) in [PTPY]TP, to the deformed trajector®; as~; s, di s,

. . . ) , ) the similarity between the two trajectories is rewritten as
as additional constraints, fixing the sampling pgptto its

desired positiort; o. Again, the constraint is weighted with

3

2
a scalarw; . = Z Z('yi,s{k} — Yi{k}) (12)
Writing everything in matrix form, one obtains k=1 1=j
Py Co + Z (8:,500y — Bigny)*s
P | Ps=|Cy ), @) k=1 i=2
Py C, s.t. Pi,s = Ci0 Vi = {1,...,[,71}.



Note that the term similarity is slightly misleading as athig Algorithm 4: Rewi rel d(V, £, X ,,car, Tnew, idrand)

similarity between two trajectories corresponds to IBWE
values. In addition, the weighting terms o,w; 1,w; 2 can

be chosen arbitrarily.

B. RRT*

A drawback of LTE is that it can modify trajectories

for Tnear € Xn,wzr do
|f id<wnz?ar) = idrun,d + 1 or 7;d(wmcar) = idrand + 2
then

1= id71<3a7‘;
Check any possible combinatidp;—2, pi—1, Pi }
for lower cost/collision and rewire when necessary

only for the unconstrained case and at once, i.e. non-retun (V;F)
incrementally. In contrast, RRT* makes it possible to find

optimal trajectories in an incremental way for the consedi

case with guaranteed asymptotic optimality. Its pseudecod  graph(V, E) within a sphere of fixed radius centered at

(in black letters) is given as follows:

Algorithm 1: Laplacian-RRT* {/, E/, N)

for f=1,...,N do
xra,nd~7'/d7'and — Sarrpl e;
Tnearest Near est (‘/7 Trand idi‘(z,i:(l);
Tnew <= APPr0ach( Tnearest; Trand) ;
if Col | 'i si onFree(necarest; Tnew) then
Xnear Near (V7 wnew);
XTIC(IT <; ‘/r;

retumn G = (V,E)

(V,E) « Parent | d(V, E, Xnear, Tnew, 1drand);
(V,E) + Rewi rel d(V, E, Xnear, Tnew, idrana);

Algorithm 2: Parent | d(V, E, X,,cars Tnew, idrand)

V+—VUznew;

MIiNCost<— 00; Tmin <= NULL; 0pmin <— NULL;

for Tnear € Xnear do

if id(Znear) = idrana — 1 then

o < St eer (-Tneam xnew);
if Cost (Znear) + Cost (o) < minCostand
Col I'i si onFree(o) then
L minCost<— Cost (Zneqr) + Cost (0);

Tmin = Tnear; Omin < O,

E <_ E U {xnecww "I/.TLE’M)};
return (V, E)

Algorithm 3: Rewi re(V, E, X, car;, Tnew)

for znear € Xnear do
o < Steer (xnmmxnear);
if Cost (znew) + Cost (0) < CoSt (near) and
Col |i si onFr ee(o) then
-Tparent — Par ent (mnea'r);
L B+ E\ {frparent,xnear};
E+~FEU {xnew, xnear};

the stater and based on the distance metfict(x, ').

« St eer: Gives a pathr connecting two states andz’.

« Appr oach: Approaches the desired positiehfrom x
by a predefined amournt.

o Col I i si onFree: Checks if the patly between two
statesz and z’ lies entirely in the free (i.e. non-
colliding) configuration spac€'s,.. € C.

« Sanpl e: Independent uniformly random sampling of
Cfree-

When expanding the grapfi, E) with edgesFE the al-
gorithm first samples a new state.,,q from the free
configuration space and approaches it from the closest node
Tnearest, F€SUlting inz,,.,,. IN case the path between .q.cst
and z,.,, is non-colliding, a parent node,,, is selected
from the set of nearest nodes,,.,. as described in the
Par ent function such that it connects 19,.,, with minimal
cost. Having added,.,, and the edge between,,, and
Tnew tO the graph, thdRewi r e function checks whether a
nodez,,cor € Xnear Can be connected via,,.,, with less
than its current cost and rewires the graph accordingly.

IV. COMBINING LAPLACIAN TRAJECTORYEDITING AND
RRT*

Both RRT* and LTE have different advantages. LTE is
faster than RRT* and able to minimize the cost function
in (11)-(12) in a computationally efficient way. RRT* on
the other hand also works in the presence of obstacles. This
section explains how to combine LTE with RRT* to combine
the advantages of both algorithms. It also presents several
biases/approximations for faster convergence and reduced
computational complexity.

A. Modifications to RRT*

A key concept of RRT* is the underlying distance metric
dist(z,z’) between two states: and z’. Differing from
other approaches, the used distance metric for equiteithpora
spaced sampling points is inspired by (12) as

retrn (V; ) dist(v,2') = dist(pi,pis), (13)
2
= Yi,s{k} — Yi{k
Its core components are: kz::l( {k} = Yigk})
« Cost : Optimal cost of a given state based on the under- m

lying distance metriaiist(z,z’) between two states

andz’ in the configuration spac€.

« Near /Near est : Returns a set of state¥ € V resp.
the nearest state,,.....s: from the verticesV of the

+ Z(éi—l,s{k} - 5i—1{k})2-

k=1
that is the weighted difference of velocity and acceleratio
between two points in configuration space. The index1



for the acceleration vector is intentional due to the oneas
sided incremental nature of RRT*, making it necessary to

use backward finite differences. As the acceleration vector P _ EO 80

. . . s = 1 1] (14)
are calculated from three sampling points according to (3), P C
each stater € C of the configuration space consists of three . 2 2
subsequent sampling point;_»,p;_1,pi}. In order to Prris = Popriy (15)
reduce the dimensionality of the problem frdR¥™ to R™ with C, = (Pb> (16)
and simplify calculations, the Laplacian-RRT* algorithm Pe)’
operates in task space using an adequate bias [5], [16]. C, = P,P, a7
Thus every velocity/acceleration vector is not associati¢iul C, = P,P. (18)

a statex,z’ in configuration space but with an individual

sampling pointp;, p; s in task space. The distance metricThe resulting vectop;,;, — pi is used as an offset for
is only defined for sampling points with similar index the Approach function in order to bias the tree growth
Implicitly it is assumed thaP andP, have the same number towards the goal position while being consistent with the
of sampling points. Because the sampling points are indexedsed distance metric, see Fig. 1.

the original RRT* algorithm has to be modified, ensuring

that connected nodes of the graph correspond to subsequent P
sampling points of the trajectory. "‘~~E‘ff_‘b .
The modifications are described in Alg. 1-4 (in red pwpz"’ SIS

letters): Due to indexed sampling points, tt8anpl e
function outputs both, a sample position and an index

id 1.92.. ... n). Because a distanaéist(z.z') = Fig. 1. Task Space Bias. Qriginal_trajectd?y(grey_), Laplacian-RRT*-tree
rand € {1,2,..., } ( ’ ) 0 black) and calculated optimal trajectaBy, for a single branch of the tree
does not necessarily correspond to sampling points cloggy) with corresponding optimal next sampling popt, 1.5

together in task space,,..,- now consists of all vertice¥’,

resulting in a brute-force approach. Differing from the 2) Task Space Nearest NeigboBecause the Laplacian-
Parent function, the Parentld function also checks RRT* algorithm operates in task space, it relies on a nearest
the index of the parent node. The mutual dependence fighbor search in task space. Otherwise - as shown in
subsequent acceleration vectors along the same traject&y: |\-A - the setX,.., has to consist of all vertices
causes theRewi rel d function to check every possible v/ for finding the optimal node. Looking at (11), it is
combination{p; 2, pi—1,Pi} | € {idrand + 1,idrana + 2} visible that the similarity measur® depends quadratically
for better cost/collision and rewire in case. on the elements oP,. It is assumed that the next sam-
pling point’s positionp;;1, of the branchP, is split up
aspi+1,p = Pi+1,p + Api+1,» such that

Pi+1,, = argmin k), (19)

Pi+1,b

B. Introducing Bias For Faster Convergence

The algorithm in Sec. IV-A is both slow and slowly . o . s
. . i.e. the positionp;; 1 ; leads to maximal similarity. Then the
converging because the s&t,..,. for the nearest neighbor similarity measureE depends auadratically of
search consists of all vertices Ii. For faster convergence y b q Y O8Pi+15:

this subsection presents a task space bias [5], [16] censist Given dn‘ferent branche§Pb1, U Py} of the tree with
corresponding next sampling poiN{®;+1.61; - - -, Pi+1,6m }

with the used distance metric and a nearest neighbor appl’Oﬁl vina approximately the same shape due to a task space
mation, allowing one to use nearest neighbor methods in ta}sﬁ 9 app y P P

space for finding the closest node in configuration space. a;as and thus leading to approximately the same similarity

1) Task Space BiasWhen operating in Task Space in- min  (E) ~ const. Vi€ {1,...,m}, (20)
stead of Configuration Space, a suitable bias is essential Poi,Pry1,bi

for the RRT* algorithm to converge quickly. Yet a com-ihe similarity £ is mainly influenced by the offsekp;_.1 ;,
mon problem when using complex distance metrics a”d/%rllowing one to search for minimakpy1 ; in task shace
unintuitive configuration spaces is the difficulty of findingusing standard nearest neighbor methods (Fig. 2).

a proper goal-driving heuristic. The Laplacian Trajectory pepce when given a random sampling
Editing framework has the invaluable advantage of pro‘gdinpoint Trand = Prand With index id,.nq = | + 1, calculating

a very good approximation of the optimal next node Withha nearest neighbar,eares: =
respect to (13). In general when expanding the RRT*-tree, o
one is given a brancR;, = [p1 4, P2, - - -, piy)” Of the tree, Prearest = argMin|Prand — Pr41,pil 7, (21)

an original trajectoryP that has to be resembled as good as Pi41,be

possible and a known start/end sampling pint= p, ,/p.. that is the Frobenius norm between every optimal next
When expanding the branch with another sampling poirgampling poin; 1 ;; and the random sampling poipf -
with index [ + 1, its optimal positionp;+; is calculated

Prearest Simplifies as
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Fig. 2. Task Space Nearest Neighbors. Left side: Deviatiothe next Fig. 4. Growing Exploration Ratio. Due to the task space lis new
sampling pointp;1; from its optimal positionp; 1, by Ap;i1s. sampling pointp,¢., is located along the line betwegn i »; andp,qnq
Right side: Approximate nearest neighbor calculation dasethe distance and not along the line betwegs ;; andp,qnd

between optimal sampling points;;; »; and a random sampling point
Prand

Piti Diot i = Prow Pioi

e
“‘..__P.s

Pi+1,6i = Prew

P
When adding a new sampling poifi; ;; with possibly Pras

suboptimal positionp;+1,5; # Pi+1,6: t0 the branchPy,,

it automatically becomes the last sampling and the indexFig. 5.  Multiple Sampling Point Expansion. Left side: Contienal
increases by one. By defining the sensitiviiyn of E apprpach ex}ending only one node. Right'side: Acceleram.nloach im-
depending Orﬁpl,bi for a trajectory withn sampling points proving multiple nodesd = 3 for the given illustration)

as

2
7813 , (22) 5) Reduced Rewiring:For large Laplacian-RRT*-trees
82Apl,bz’

Api,4i=0 with possibly ten thousands of nodes, checking every com-
one sees in Fig. 3 that the sensitivity is independent of tfiNation {pi—»,p;—1,p;} of three sampling points with
choice ofl andn over a wide range of andn. This gives subsequent |r?d|ces as described in Alg. 4 becomes qu!ckly
rise to the simplification of using the nearest neighborctear unfeasible: It is known that one of the three sampling points

regardless of each node’s index for tear est function. NS 10 b€Zncw = Pnew. Under the assumption of;
sampling points in the tree and all sampling point indices

Slyn =

. . s g 88 being identically distributed over the range,...,n}, the
s P YA A amount of checks per iteration is approximately
&z N\ 2
z4 J c=3(—t) : (25)
2 n
52 )
é ‘ ‘ ‘ ‘ that is O ((%) ) complexity. Following the same argu-
0 1 2 3 4 . . .
10 10 samp“:;’poim(l) 10 10 mentation as in"Sec. IV-B.2, when decomposing the three
sampling points as
Fig. 3. Sensitivitys; ,, for multiple trajectories with different number of Pq =Dg+Apg, g={i,i—1,i—2}, (26)
sampling points:, evaluated over varied sampling point indide3he used B
parameterization is)) = 1e6, w} = 0.1 w? =1 the similarity £/ is mainly influenced byAp,, that is the
deviation from the optimal positiop,. As one of the three
3) Growing Exploration Ratio:As described in Sec. Ill- sampling points is alway$,c., = Pnew, 8@ g00d approx-

B, the Appr oach function of the Laplacian-RRT* algorithm imate solution is obtained by finding the nearest neigh-
depends on a variable specifying the amount of explo- bors of p,.,, when looking for candidate sampling points
ration. It has been found practical to increase the variabfg;—2, pi—1, pi}. In addition, the heuristic of just rewiring
a with increasing number of iteratiorf, see Fig. 4. The candidate sampling points wittdl(z,ecqr) = idrana + 1 IS
used heuristic for théppr oach function with p; ;; as the used in order to reduce complexity @ (2t).

nearest node anp ; as its optimal next node is
NB+1,0i P V. EXPERIMENTAL EVALUATION

Experiments are conducted in two ways, through compu-

B aff ifaff<i, 23
7= 1 else (23) tational simulations and using a HRP-4 humanoid robotic
. R latform.
Prew =  DPitipi +V(Prand — Piripi) - (24) P
N——

. - ) . A. Simulations
task space bias growing exploration ratio

Simulations using a 2D example illustrate the principle
4) Multiple Sampling Point ExpansionTo increase the procedure when expanding the Laplacian-RRT*-tree. Shown
amount of exploration per iteration and therefore reduee thn Fig. 6 are two versions of Laplacian-RRT*, the unbiased
number of computationally expensive nearest neighbér/tagersion according to Sec. IV-A on the left side and the biased
space bias calculations, the branBl; can be expanded version as described in Sec. IV-B on the right side. The task
with multiple sampling point;41 4, ..., Pitopi IN €Very consists in finding a trajectory not colliding with obstexle
iterations based on the task space bias trajed®yryFig. 5 (in red) and resembling the reference trajectory (in orange
illustrates the idea. as good as possible in terms of (11). For all simulations the
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the unbiased version and only 5000 iterations are run (10060500 B Rowireld

standard deviation

parameters have been setdo= 2e — 4, § = 0.5, o0 = 3, 700 - [ total processing time 3
g = = i i i [__JLTE s
wio = leb, w; 1 i0.1 Wiz = 1. 'I_'o reduce calc_ulanon time, . || B colision detection g
the reduced rewiring technique in Sec. IV-B.5 is also used fo I nearest neighbor search P
2 2

S

for all other versions). Clearly the unbiased version feils £ 00k
come up with good results whereas the optimal trajectory c%
the biased version resembles the reference trajectory well§ 390¢
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reference traj.
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Fig. 8. Processing time evaluation

% oe
o reference traj.
Fig. 7 compares the cost of the unbiased and biased§ g:

version over 30 rollouts. Costs are only plotted after & o4

feasible solution connecting the first and last samplingpoi ~ o3

has been found. It is visible that the cost of the biased ©° 1 fimelsf 4 5 o 1 fime[sf 4 5
version is about three magnitudes smaller than the unbiased

one. In addition the cost graphs of the biased version st&jy. 9. Velocity and acceleration plots of the optimal tcagey of the
almost constant: Caused by the growing exploration ratio ipiased Laplacian-RRT*

combination with the task space bias, near-optimal saistio

are found rather quickly at the cost of a reduced exploration

Fig. 6. Spatial comparison of different Laplacian-RRT* egaches without
bias (left) and with bias (right)

el

4
3
2
1
0

acceleration [m/s?]

ratio. B. Experiments On Humanoid Robot HRP4
25 76X 10° Real-life experiments for a pick-and-place scenario use a
2ol T meancos ) 74 HRP4 humanoid robot as shown in Fig. 10. For a physically
w15 single cost 3 L 7.2 feasible full-body robot movement based on the endeffec-
~C 7

7~ tor trajectory, a hierarchical inverse kinematics methed a

described in [17] is adopted. The task consists in placing
a cup upright on the table by following a reference tra-
jectory (orange) that has been previously recorded from a
Fig. 7. Comparison of the codt of different Laplacian-RRT* approaches human demonstration using a Vortex motion capture system.
without bias (left) and with bias (right) Obstacles (a pile of books) along the reference trajectory
. . ] ] force the robot to find a new suboptimal trajectory (green).
Shown in Fig. 8 are computation times based on 3y approaches for obstacle avoidance are compared, the

rollouts. The algorithm is implemented in Matlab R2013Q 4pjacian-RRT* method and a potential field approach [18].
(single-threaded) on a i7-3635QM/8GB notebook using Matrne ysed parameters for the Laplacian-RRT* algorithm are
lab’s knnsear ch nearest neighbor search method. The, _ |, _ 3,8 =05 0 =10, 0 = 1e6, w' = 0.1

x-axis shows the computation time at intermediate stepg _ 1. As shown in the figure, the similarity of

of the algorithm after every 1000-th iteration. The to+he Laplacian-RRT* based trajectory with respect to the
tal processing time (grey) with corresponding standargsference trajectory is aboutx better (=lower) than the
deviation (black bars) is split up both into algorithmsygtential field based trajectory. Shown in Fig. 11 are véjoci
(Parent | d/Rewi r el d) and functions (LTE/collision de- ang acceleration plots for the optimal trajectory found by
teqtion/nearest neighpor search) causing the main COMAUsplacian-RRT*, the resulting potential field trajectonyda
tational load. In addition, the number of tree nodes and iffe reference trajectory. Whereas the potential fielddtejg
standard deviation is displayed in blue. It is visible thatstn 55 large velocity/acceleration errors for 2.5s, there are
computation time is spent for the nearest neighbor searth @8nly small errors for the Laplacian-RRT* trajectory oveeth

10 6.8

5 1000 2000 3000 4000 5000 66 2000 4000 6000 8000 10000

iteration (it) iteration(it)

collision detection. . entire timespan due to its stochastic nature.
It is stated in Sec. IlI-A that the used version of LTE
minimizes the squared deviation from the reference trajgct V1. DISCUSSION

in terms of weighted velocity and acceleration terms. Fig. 9

shows velocity and acceleration plots of both, referenak an Differing from all known sampling-based approaches, this
optimal trajectory. No major deviations from the referencés the first method defining optimality not based on an
trajectory can be observed. extrinsic measure like "shortest path” or "minimum time”
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refer

optimal traj.
tree

Laplacian-RRT* biased

Potential Fields

I Potential Fields

sure is based upon the local trajectory properties as wgloci
and acceleration along the trajectory. Mathematicallyveer
approximations allow one to perform a standard nearest
neighbor search in task space when looking for the closest
node of the tree to be expanded, thus increasing speed
considerably.

Future work will be focused on combining Laplacian-
RRT* with full-body movement schemes for humanoid
robots in order to derive an optimal controller for dynanhica
movements in partially blocked environments.

ACKNOWLEDGEMENT

This work is supported in part within the DFG excel-
lence research cluste€ognition for Technical Systems -
CoTeSys(ww. cot esys. org) and by the Ministry of
Education, Science, Sports and Culture, Grant-in-Aid for
Scientific Research (S), 2008-2012, 20220001, “Estaloigshi
Human-Machine Communication through Kinesiology and

[ Laplacian-RRT* biased

Fig. 10. Simulation results (right) and conducted expenin{éeft) using
HRP4. A bar graph shows the similarity meas#eof the two compared
methods
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Fig. 11. \Velocity (left) and acceleration plot (right) ofethcompared
methods

[71
but with respect to another trajectory, making it well sdite [8]
for motion imitation tasks.

The method suffers from a few drawbacks: The usedg)
heuristics for biasing exploration towards the goal nod&ema
the problem computationally tractable but reduce the amoug !
of exploration. As a least-squares problem has to be solv c?
in every iteration step, the straightforward approach ity on
applicable for small trajectories, e.g. < 200. Otherwise
multiresolution techniques as described in [13] are better
suited. In addition, the distance metric is only well definedl2]
for trajectories with similar number of sampling points.

The approach can be readily extended in a number gfa]
ways: So far, only first and second order derivatives ari@4]
considered. Yet higher-order derivatives can be added in 135]
similar manner. Another option are via points that have tg
be passed on the way to the goal position. By adding dh6]
additional positional constraint to the matrB, they can
be incorporated.

[11]

[17]

VIlI. CONCLUSION AND FUTURE WORK [18]

This paper presents Laplacian-RRT* as a novel tool for
finding similar-shaped trajectories in a constrained emvir
ment using a sampling-based approach. The similarity mea-

Linguistics Integration” (PI: Y. Nakamura)
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