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Abstract
One method to achieve robust speech recognition in ad-

verse conditions including noise and reverberation is to employ
acoustic modelling techniques involving neural networks. Us-
ing long short-term memory (LSTM) recurrent neural networks
proved to be efficient for this task in a setup for phoneme pre-
diction in a multi-stream GMM-HMM framework. These net-
works exploit a self-learnt amount of temporal context, which
makes them especially suited for a noisy speech recognition
task. One shortcoming of this approach is the necessity of a
GMM acoustic model in the multi-stream framework. Further-
more, potential modelling power of the network is lost when
predicting phonemes, compared to the classical hybrid setup
where the network predicts HMM states. In this work, we pro-
pose to use LSTM networks in a hybrid HMM setup, in order to
overcome these drawbacks. Experiments are performed using
the medium-vocabulary recognition track of the 2nd CHiME
challenge, containing speech utterances in a reverberant and
noisy environment. A comparison of different network topolo-
gies for phoneme or state prediction used either in the hybrid or
double-stream setup shows that state prediction networks per-
form better than networks predicting phonemes, leading to state-
of-the-art results for this database.
Index Terms: acoustic modelling, robust speech recognition,
neural networks, long short-term memory

1. Introduction
In recent years, neural networks (NNs) re-gained popularity for
acoustic modelling in speech recognition [1], although the un-
derlying methods had already been developed years ago [2].
Due to increased available computing power it is now possi-
ble to train large networks. Especially the utilisation of several
hidden layers (making it a deep network) increases the mod-
elling power of the system. For these reasons, deep NN (DNN)
acoustic models were shown to outperform the conventional
approach of Gaussian mixture models (GMMs). The GMM
acoustic model in a hidden Markov model (HMM) framework
is replaced by the network, which, instead of the GMM, creates
the HMM state likelihoods. This approach is also referred to as
the hybrid NN/HMM acoustic modelling approach. Such sys-
tems proved to be very robust in adverse conditions due to their
increased modelling power [3, 4].

In addition, recurrent neural networks (RNNs) using the
long short-term memory (LSTM) architecture [5] have been
successful for acoustic modelling. Using the LSTM topology,
these networks can exploit a self-learnt amount of long-range
temporal context. This ability is helpful to improve noise ro-
bustness, e. g. in cases where a portion of frames within a longer

window is spectrally masked by noise. Previously, in the con-
text of robust speech recognition, LSTM networks were mostly
used in a double-stream HMM architecture, where they are com-
bined with the GMM acoustic model. This approach was first
proposed in [6] and uses LSTM networks for phoneme predic-
tion. The predicted phoneme probabilities are then used for
decoding, jointly together with the GMM. Until now, LSTM
networks have rarely been applied as an acoustic model on their
own, predicting HMM states and using the hybrid acoustic mod-
elling approach. A hybrid system that employs LSTMs for
HMM state prediction could make use of the LSTM topology to
exploit long-range temporal context and of the modelling power
of a large network to be able to accurately predict HMM states.

1.1. Contribution

In this work, we propose to use LSTM RNNs for acoustic mod-
elling in the hybrid NN/HMM system architecture. We em-
ploy LSTM networks to predict HMM states, and use the net-
work predictions for acoustic modelling. Previous work us-
ing LSTMs for acoustic modeling has operated with the LSTM
mapping feature vector sequences to context-independent phone-
mes. In the present work, we expand the size of the output space
of the LSTM network to include the set of context-dependent
states. Experiments are performed using the database of the
medium-vocabulary recognition track of the 2nd CHiME Speech
Separation and Recognition Challenge [7]. This database con-
tains speech recordings in a reverberant domestic environment
with non-stationary noise sources. In the experimental vali-
dation, we compare state prediction networks (in the hybrid
setup) to the previous approach of predicting phonemes and
using them in a double-stream architecture. In addition, the
double-stream architecture can be used to combine the two dif-
ferent LSTM-based acoustic models. The experimental results
show that with LSTMs, state prediction networks outperform
networks predicting phonemes.

1.2. Related work

In [1], a broad overview of the application of DNNs for acoustic
modelling in various speech recognition tasks is given. A DNN
is created by using more than one hidden layer in a feed-forward
neural network. By combining multiple restricted Boltzmann
machines in a stack, a multilayer model called deep belief net
can be created [8]. The application of DNNs for noise robust
speech recognition was explored in [3]. In [9], deep LSTM
RNNs were used for speech recognition on their own, without
the need of an HMM framework, and in [10], the LSTM topol-
ogy was employed in a hybrid HMM setup. Several studies
employed NNs in the tandem system setup, predicting phones



and using the predictions as additional input features for an
HMM: in [11], RNNs were compared to other NN architectures.
In [12], an LSTM-HMM tandem system was succesfully ap-
plied for large-vocabulary continuous speech recognition. Us-
ing phoneme prediction LSTM networks in the double-stream
approach was first proposed in [6]. This system was succesfully
employed in the small-vocabulary recognition task of the 1st
CHiME Challenge [13, 14]. In the 2nd CHiME challenge, we
used that approach in combination with the provided baseline
GMM acoustic model [15], and later together with an advanced
GMM system [16]. Multi-stream HMM systems were origi-
nally proposed to combine independent feature streams [17].
For example, in this way, GMMs can be fused with NNs [18].

A short overview of the CHiME challenge is given in Sec-
tion 2. The employed HMM-GMM system is described in Sec-
tion 3. Section 4 introduces LSTMs and their application for
acoustic modelling. The experimental setup and results are pre-
sented in Section 5. Some concluding remarks are given in Sec-
tion 6.

2. CHiME medium-vocabulary track
The evaluation database of the 2nd CHiME medium-vocabulary
recognition track was constructed from the Wall Street Journal
(WSJ0) 5k vocabulary read speech corpus. Using recordings
from a domestic environment, the clean speech utterances are
convolved with impulse responses (simulating reverberation)
and mixed with noise backgrounds. In order to obtain different
signal-to-noise ratios (SNRs), the reverberated test utterances
are temporally placed in the background noise, leading to SNR
values ranging from -6 to 9 dB (in steps of 3 dB). The training
set includes 7 138 utterances from 83 speakers (14.5 hours), in
clean, reverberated and noisy form. 409 utterances (per SNR
value) from 10 speakers form the development set (4.5 hours in
total), while 330 utterances (per SNR value) from 8 other speak-
ers are used as a test set (4 hours in total). Recognition systems
are evaluated using word error rate (WER) in % as a measure.

3. HMM system
As HMM backend for the hybrid system and for experiments
with the GMM acoustic model, we use a system similar to the
one described in [19], implemented with the Kaldi speech recog-
nition toolkit [20]. The system uses context-dependent triphone
models with 40 phonemes (including silence). Each model has
three HMM states and in total, there are 1 936 different HMM
states, and 15 000 Gaussian components. Models are trained
with the maximum likelihood principle. In addition, Linear Dis-
criminant Analysis (LDA) [21] and maximum likelihood lin-
ear transform (MLLT) [22] are employed for feature decorre-
lation. LDA is applied on stacked MFCC vectors (13 coeffi-
cients over nine consecutive frames), reducing the resulting 117
dimensional vector to 40 dimensions. One after another, the
clean, reverberated, and noisy training data are used for train-
ing. Then, LDA and MLLT are applied, before running another
set of training iterations with the noisy training data. While
the recordings in the CHiME database are stereo, features are
extracted from mono signals, which are obtained by averaging
over the two channels. Considering the recording setup of the
CHiME database (fixed speaker position in front of the micro-
phone), averaging over the two channels corresponds to delay-
and-sum beamforming. Note that in contrast to the best system
setup in [19], we do not use speaker adaptive training in our
system, since it would require an additional decoding pass and
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Figure 1: Long short-term memory block, containing a memory
cell and the input, output and forget gates. T denotes a delay of
one time step.

furthermore assumes speaker identities to be known, which can
generally not be expected.

4. Acoustic modelling with neural networks
We compare two different methods for applying neural networks
as an acoustic model within the HMM framework: predicting
either phonemes or HMM states, both with LSTM networks.

4.1. Long Short-Term Memory recurrent neural networks

LSTM networks were first introduced in [5]. Compared to stan-
dard RNNs, LSTM RNNs are able to exploit a self-learnt amount
of temporal context. The LSTM networks use so-called mem-
ory blocks instead of the conventional activation functions in
the hidden layers. Each memory block consists of a memory
cell and three gate units: the input gate, output gate, and forget
gate, as depicted in Fig. 1. These gates control the behaviour of
the memory block. The forget gate can reset the cell variable
which leads to ‘forgetting’ the stored input ct, while the in-
put and output gates are responsible for reading input from the
feature vector xt and writing output to ht, respectively. With
this architecture, the network is capable of storing input over a
longer period of time and thus exploiting a self-learnt amount of
long-range temporal context. Furthermore, we use bidirectional
RNNs [23]. Such networks process the input data in both direc-
tions with two separate hidden layers, exploiting context from
both temporal directions [24]. The output of both hidden lay-
ers is then fed to the output layer. Additionally, the concept of
using multiple hidden layers can also be applied here. Network
training is performed using backpropagation through time, us-
ing the cross entropy as an error function. Our LSTM software
is publicly available1.

4.2. Acoustic modelling using phoneme predictions

In this approach, the network is trained to predict phonemes b,
using a forced alignment of the training data (generated by the
HMM system). The frame-wise phoneme predictions are con-
verted into state likelihoods in the following way [6]: from the
predicted phoneme probabilities p(bt|xt), frame-wise discrete
phoneme predictions are obtained. These predictions are eval-
uated using the development set and the phoneme confusions
are stored in a discrete probability table. Using a mapping from
phonemes to HMM states leads to state likelihoods p(xt|st). In

1https://sourceforge.net/p/currennt



Table 1: Results for GMM acoustic modelling (WER [%] on the
development set)

SNR [dB]
-6 -3 0 3 6 9 Average

64.3 55.6 47.3 40.0 36.0 29.7 45.5

this way, the HMMs do not directly model prediction probabil-
ities of the LSTM, but instead, the confusions of the LSTM.

4.3. Acoustic modelling using state predictions

This method correponds to the classical hybrid system where
the neural network is trained to predict HMM states s. The
training targets are (as in the case of phoneme predictions) gen-
erated using a forced alignment of the HMM system. From the
resulting posterior probabilities of the network p(st|xt), the re-
quired state likelihoods are obtained using Bayes’ rule.

4.4. Double-stream and hybrid decoding

The HMM state likelihoods are combined with the GMM acous-
tic model in a double-stream model topology. At every time
step t, the likelihoods of the GMM and the NN acoustic model
are joined multiplicatively,

p(xt|st) = pG(xt|st)λ · pN (xt|st)1−λ, (1)

where pG and pN are the likelihoods of the GMM and the
NN acoustic models, respectively, and λ is the stream weight
of the GMM stream. Setting λ = 0.0 corresponds to hybrid
NN/HMM acoustic modelling, where only the NN model is
used. In addition, the double-stream setup can also be used to
combine both LSTM acoustic models (phoneme and state pre-
diction).

The biggest difference between the two methods of using
neural network predictions for acoustic modelling is the number
of training targets. For phoneme predictions, the network has 40
output units, whereas the network predicting HMM states has
1 936 output units (number of HMM states). The likelihoods
derived from the phoneme predictions model the confusions the
network makes.

5. Experiments
In our experiments, we compare the two different ways of acous-
tic modelling using LSTM networks (with different network
topologies), performing experiments on the medium vocabu-
lary track of the 2nd CHiME Challenge database as described
in Section 2.

5.1. Parametrisation

The parametrisation of the HMM-GMM system has already
been described in Section 3. This system is used to generate
the forced alignments needed for setting the training targets for
the NNs.

All evaluated NNs work with logarithmic Mel filterbank
outputs as features. In other studies it was shown that with neu-
ral networks, those features perform better than MFCCs [1, 25].
We use 26 coefficients (plus root-mean-square energy) cover-
ing the frequency range from 20–8 000 Hz, together with delta
and delta-delta coefficients, resulting in an 81-dimensional fea-
ture vector. Since the CHiME corpus contains noisy training
data, all networks were trained in a multi-condition way, i. e.,
using noisy and reverberated-only training data together. The
networks are trained through gradient descent with a learning
rate of 10−5 and momentum of 0.9. During training, zero mean

Table 2: Results for different phoneme prediction networks
(WER [%] on the development set), either used as an acoustic
model alone or combined with the GMM in the double-stream
architecture.

Network GMM
Function Layers - 3

LSTM 81-128-90 59.1 39.8
BLSTM 81 59.7 39.7
BLSTM 81-128-90 49.0 36.5
BLSTM 100-100-100 45.3 34.9

Table 3: Results for hybrid acoustic modelling with different
state prediction networks (WER [%] on the development set)

Network
Function Layers Average WER
BLSTM 300 40.0
BLSTM 300-300 31.5
BLSTM 500-500 31.4
BLSTM 300-300-300 32.0

Gaussian noise with standard deviation 0.6 is added to the in-
puts in order to further improve generalisation. All weights
were randomly initialised from a Gaussian distribution with mean
0 and standard deviation 0.1. After every training epoch, the av-
erage cross entropy error per sequence on the development set
is evaluated. Training is aborted as soon as no improvement on
the development set can be observed during 20 epochs.

Phoneme prediction networks work better in the double-
stream setup where they are combined with the GMM. In this
case, the stream weight is set to λ = 0.5 based on experi-
ence from previous work. In addition, for the phoneme pre-
diction networks, we report results for the hybrid setup as well.
The state prediction networks are capable of functioning as an
acoustic model alone, without the double-stream setup. We
tested different network configurations, to investigate how the
topology influences the recognition performance, where we re-
lied on our experience from previous works to determine the
network size.

5.2. Development set results

Development set results for the employed GMM system are
shown in Table 1, resulting in decreasing WER from 64.3 % to
29.7 % with increasing SNR, and an average WER of 45.5 %.
These results demonstrate the difficulty of the recognition sce-
nario.

Using phoneme prediction NNs as an acoustic model (cf.
Section 4.2) leads to the results in Table 2. All NNs are eval-
uated in the hybrid and in the double-stream setup. The re-
sults show clearly that, in order to obtain reasonable results,
it is required to combine the NN predictions with the GMM
acoustic model. An LSTM network with three hidden layers
improves the GMM result by 5.7 %, absolutely, and a BLSTM
with one layer achieves similar results. Adding more layers to
the BLSTM improves the result to 36.5 % average WER. An-
other improvement can be achieved by using a more straight-
forward network topology, compared to the other network topolo-
gies which were derived based on our previous experience. This
system’s performance (last row in Table 2), used as an acous-
tic model alone, is similar to the GMM; it will be used (in the
multi-stream setup) in the experiments with the test set.

Results for the evaluated state prediction networks, used as
an acoustic model in the hybrid setup, are shown in Table 3.



Table 4: Test set results for selected systems (WER [%])

SNR [dB]
System -6 -3 0 3 6 9 Avg.

GMM baseline [7] 70.4 63.1 58.4 51.1 45.3 41.7 55.0
evaluated GMM 60.2 50.6 44.9 37.0 31.0 27.6 41.9

GMM (discriminative learning+SAT) [19] 54.7 45.1 36.0 28.6 24.4 21.4 35.0
GMM (discriminative learning+SAT) + denoising [26] 44.1 35.5 28.1 21.2 17.4 14.8 26.9

GMM + BLSTM 78-128-90 [15] 58.6 50.1 43.9 37.1 32.7 28.3 41.8
DNN [4] 42.1 31.7 24.7 19.4 16.4 14.3 24.8

GMM + BLSTM (phonemes) 45.6 36.6 30.8 25.0 20.4 19.3 29.6
BLSTM (states) 40.3 32.2 25.0 19.8 16.8 15.8 25.0

BLSTM (phonemes) + BLSTM (states) 35.9 28.3 22.5 17.8 15.3 13.6 22.2

A BLSTM network with one layer achieves a similar perfor-
mance (40.0 %) as a comparable phoneme prediction network
(39.7 %, row three in Table 2). Adding a second layer leads to a
substantial improvement (31.5 %). This network (which is later
employed in the test set experiments) has 1.4 million weights
in total. Increasing the layer size of this network (3.2 million
weights) or adding a third layer (2 million weights) brings no
benefit. These results show the limits of increasing the size of
the network. Presumably, training methods known from deep
learning are required to improve the performance of larger net-
works. The BLSTM network with two layers of size 300 (row
three) was also evaluated in combination with the GMM, in
the double-stream setup, resulting in a WER of 30.8 % (result
not shown in the table). This is a further small improvement,
which, however, comes at the computational cost of evaluating
the GMM.

5.3. Test set results

In Table 4, we show experimental results of selected systems for
the test set of the CHiME corpus. For comparison, we cite re-
sults of systems from the original CHiME challenge. The chal-
lenge baseline (55% WER) consists of a simple GMM system.
With the GMM system evaluated in this paper, the WER is re-
duced to 41.9 %. This improvement can be attributed to a better
system topology and training procedure, feature transformation
in the form of LDA and MLLT, and the beam-forming approach
employed in the front-end. The system presented in [19] addi-
tionally makes use of discriminative learning and speaker adap-
tive training (SAT), resulting in a WER of 35.0 %. Adding a
denoising method as front-end processing to that system [26] re-
duced the WER to 26.9 %, which was the best entry to the 2nd
CHiME challenge medium vocabulary track. In our original
contribution to the challenge, we combined the double-stream
BLSTM approach (though using MFCCs instead of Log-FB
features) with the baseline GMM, decreasing the WER from
55.0 % to 41.8 %. Now, combining the BLSTM phoneme pre-
dictions with a better GMM system (41.9 %) results in a WER
of 29.6 %. It is expected that the combination of a better GMM
(as the one in [26] with a WER of 26.9 %) with the phoneme
predictions of the LSTM can lead to even better results. Row
seven in Table 4 (25.0 %) represents the result of the state pre-
diction BLSTM in the hybrid system. Compared to the double-
stream system (29.6 %), a relative WER reduction of 16 % is
achieved. The last row shows the result of using the double-
stream architecture to combine both different LSTM acoustic
models. This combination leads to a further substantial im-
provement. In comparison to the DNN results (24.8 %) pre-
sented in [4], the BLSTM in the hybrid setup achieves similar
results (25.0 %). However, there are two differences between

these two systems, which complicates the comparison: first,
while the DNN used clean GMM alignments for training as well
as several iterations of alignment and re-training, the BLSTM
in our work was trained using GMM alignments on noisy data,
and only one iteration of training. On the other hand, our system
used delay-and-sum beamforming as preprocessing.

6. Conclusions
We used LSTM RNNs as an acoustic model for a robust speech
recognition system. Bidirectional LSTM networks were trained
with HMM states as training targets, and the resulting predic-
tions were converted into state likelihoods for decoding in the
HMM framework in the hybrid setup. This method was com-
pared to our previous approach of predicting phonemes with the
LSTM, converting these phoneme predictions into state likeli-
hoods and using them in a GMM-LSTM double-stream setup.
The experimental results, obtained with the medium-vocabulary
recognition track of the 2nd CHiME challenge, showed that
the hybrid system (using state prediction networks) achieves a
lower WER than the double-stream setup (using phoneme pre-
diction networks). The BLSTM in the hybrid setup furthermore
outperformed the best entry to the original CHiME challenge.
In addition, a further improvement was obtained by combining
both different LSTM acoustic models.

It was shown that the state prediction network profits more
from a deep network topology, compared to the phoneme pre-
diction network. Combining the state predictions with a GMM
in the double-stream setup brought only a small improvement,
because the GMM and LSTM acoustic models are probably
strongly correlated.

Concerning future work, it is still unclear, how big the in-
fluence of front-end processing such as speech or feature de-
noising on NN systems for robust speech recognition is. In [3],
it was shown that such techniques have a lower impact when
applied as a front-end to the NN system, while in the study
presented in [27], speech enhancement was able to improve a
DNN recognition system. Therefore, it will be interesting to in-
vestigate the application of speech or feature enhancement as a
front-end to the LSTM systems presented in this work. Our re-
sults showed that the employed method for phoneme prediction
networks is complementary to GMM acoustic modelling and
therefore, the double-stream system can profit from improve-
ments in the GMM front-end.

Furthermore, methods such as generative pre-training could
be applied to LSTM networks to improve their performance.
Further investigations about the influence of network topology
of LSTMs as well as better direct comparison to state-of-the-art
DNN systems are neccesary to draw more general conclusions
about the comparability of LSTMs and other DNNs.
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