
Joint and Individual Secrecy in Broadcast Channels
with Receiver Side Information

Ahmed S. Mansour∗, Rafael F. Schaefer†, and Holger Boche∗

∗ Lehrstuhl für Theoretische Informationstechnik
Technische Universität München

Munich 80290, Germany
Email:{ahmed.mansour, boche}@tum.de

† Department of Electrical Engineering
Princeton University

Princeton, NJ 08540, USA
Email: rafaelfs@princeton.edu

Abstract—We study secure communication in which two
confidential messages are transmitted over a broadcast channel to
two legitimate receivers, while keeping an eavesdropper ignorant.
Each legitimate receiver is interested in decoding one confidential
message, while having the other one as side information. In order
to measure the secrecy of the communication, we investigate two
different secrecy criteria: joint secrecy and individual secrecy.
For both criteria, we provide an achievable rate region and
a matching multi-letter outer bound presenting a multi-letter
description for the capacity region. We further investigate the
class of more capable channels and provide a single-letter
converse establishing the secrecy capacity region, not only for
more capable channels but less noisy and degraded channels as
well. Our results indicate that the secrecy capacity for individual
secrecy is higher than the one for joint secrecy, as one message
can be used as a secret key for the other one.

I. INTRODUCTION

The wireless medium is characterized by an exposed nature
that allows transmitted signals to be received not only by
legitimate users but eavesdroppers as well. In [1], Shannon
studied the problem of secure communication and proved
that it can be achieved by a secret key shared between the
transmitter and the receiver if the entropy of this key is greater
than or equal to the entropy of the message to be transmitted.
This condition is a consequence of the assumption that both
the receiver and the eavesdropper have an equal access to the
transmitted signal. In [2], Wyner studied the degraded wiretap
channel and proved that secure transmission is still achievable
in the absence of a secret key. In [3], Csiszár and Körner
extended Wyner’s result to the general broadcast channel (BC)
with confidential messages. In [4], Kang and Liu generalized
the previous two approaches by studying the presence of a
shared secret key in the wiretap channel. They derived the
secrecy capacity for this scenario by combining the wiretap
coding principle along with Shannon’s one-time pad idea.

The problem of secure communication in BC with more
than two receivers remains an open topic. In [5], Chia and
El Gamal investigated the secrecy capacity for transmitting a
confidential common message over a BC with two receivers
and one eavesdropper. In [6], Bagherikaram, Motahri, and
Khandani studied the same channel but with two confidential
messages; one for each receiver. They managed to characterize
the secrecy capacity only if the channel is degraded. In this
paper, we study a related problem. We consider a BC with
two legitimate receivers and one eavesdropper. The transmitter
broadcasts two independent confidential messages to the two
legitimate receivers while keeping the eavesdropper ignorant

ChannelEnc
Source 1

Source 2
M1

Decoder 2

M2
Decoder 1

Eavesdropper

Sink 1

Sink 2

M2

M1

M̂1

M̂2

Fig. 1. Broadcast channel with two legitimate receivers and one eavesdropper,
where side information is available at the two legitimate receivers

about them. The setup has an additional feature, that each
legitimate receiver is interested in merely one message while
having the other one as side information as shown in Figure 1.
This brings the name: BC with receiver side information. This
problem is motivated by the concept of two-phase decode-
and-forward bidirectional relaying in a three-node network
[7]. In the first phase, node 1 and 2 transmit their messages
to the relay node which decodes them, while keeping the
eavesdropper unable to intercept any information about the
transmission. This problem was investigated in [8, 9], where
the latter discusses different secrecy criteria. Our work focuses
on the succeeding broadcast, where the relay encodes and
transmits both messages such that, the two legitimate receivers
can decode their intended message using their own message
as a side information, while keeping the eavesdropper igno-
rant. This problem was investigated in [10], where different
achievable rate regions and an outer bound were provided.
Differently from [10], we differentiate between joint and
individual secrecy and propose a new encoding technique for
the individual secrecy criterion.

This paper is organized as follows. In Section II, we state
the problem and present the two secrecy criteria that we study:
joint secrecy and individual secrecy. In Sections III and IV, we
provide achievable rate regions and multi-letter converses for
each secrecy criteria. We also establish the secrecy capacity
for more capable channels which includes both less noisy and
degraded ones. Our results indicate that individual secrecy can
provide a larger capacity region as compared to joint secrecy.

II. BC WITH RECEIVER SIDE INFORMATION

We consider the standard model with a block code of
arbitrary but fixed length n. For input and output sequences
xn, yn1 , yn2 , and zn of length n, the discrete memoryless BC
is given by

Wn(yn1 , y
n
2 , z

n|xn) =
n∏
k=1

W (y1,k, y2,k, zk|xk).
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Definition 1. A (2nR1 , 2nR2 , n) code Cn for the BC with
receiver side information consists of: two independent message
sets M1 and M2, an independent randomization message set
Mr, an encoding function at the relay node

E :M1 ×M2 ×Mr → Xn

which maps a message pair (m1,m2) ∈ M1 ×M2 and a
realization of the randomization message mr ∈ Mr, chosen
uniformly at random, to a codeword xn(m1,m2,mr), and two
decoders, one for each node

ϕ1 : Yn1 ×M2 →M1

ϕ2 : Yn2 ×M1 →M2

that maps each channel observation at the respective node and
its own message to the corresponding required message.

The (2nR1 , 2nR2 , n) code Cn is known to the two legitimate
receivers and the eavesdropper. We assume that messages
M1 and M2 are chosen uniformly at random. The reliability
performance of the code Cn is measured in terms of its average
probability of error

Pe(Cn) , P
[
M̂1 6= M1 or M̂2 6= M2|Cn

]
, (1)

where M̂1 and M̂2 are the estimated messages at nodes 1
and 2 respectively. In order to measure the ignorance of the
eavesdropper about the transmitted messages M1 and M2, we
consider two different secrecy criteria.

1. Joint Secrecy: the secrecy performance of the code Cn
is measured in terms of the joint leakage of M1 and M2

to the eavesdropper:

L(Cn) , I(M1M2; Z
n
)

= I(M1; Z
n
) + I(M2; Z

n|M1). (2)

2. Individual Secrecy: the secrecy performance of the code
Cn is measured as the sum of the individual leakages of
M1 and M2 to the eavesdropper:

L(Cn) , I(M1; Z
n
) + I(M2; Z

n
). (3)

Definition 2. A secrecy rate pair (R1, R2) ∈ R2
+ is achievable

for the BC with receiver side information, if for any εn and
τn in the form of e−αn, where α > 0, there exists a sequence
of (2nR1 , 2nR2 , n) codes {Cn}n≥1, such that

Pe(Cn) ≤ εn, L(Cn) ≤ τn. (4)

Depending on the selected secrecy criteria, L(Cn) is given by
(2) or (3).

In order to have a deeper look into the two criteria in (2)
and (3), we need to investigate and compare their secrecy
performance and the accompanied capacities. To the best of our
knowledge, previous literature on BC only considered the joint
secrecy criterion. This might be because any code that satisfies
the joint secrecy criterion also satisfies the individual one. We
can deduce this easily by comparing (2) and (3), knowing that

I(M2; Z
n
) ≤ I(M2; Z

n|M1),

since M1 and M2 are independent. This implies that the joint
secrecy is stronger than the individual one. Another point that

advocates the strength of the joint criterion over the individual
one is that; revealing one message to the eavesdropper might
threaten the secrecy of the other message in case of the individ-
ual secrecy, while the joint secrecy guarantees the secrecy of
the unrevealed message. The previous comparison tells us why
most researchers only considered joint secrecy. However, we
will show that, individual secrecy has some interesting features
as compared to the joint one. In particular, we will show that,
loosening the secrecy criterion from the joint to the individual
one can increase the secrecy capacity of the BC with receiver
side information significantly.

III. THE JOINT SECRECY CAPACITY REGION

In this section we investigate the joint secrecy criterion in
the BC with receiver side information. First, we present an
achievable secrecy rate region for the general case. We then
derive a multi-letter outer bound that matches the achievable
region. Finally, we establish the joint secrecy capacity region
when the two legitimate receivers are more capable than the
eavesdropper.

A. Achievable Rate Region

Lemma 1. An achievable joint secrecy rate region for the BC
with receiver side information is given by the set of all rate
pairs (R1, R2) ∈ R2

+ that satisfy

Rj ≤ I(V;Yj)− I(V; Z), j = 1, 2 (5)

for random variables with joint probability distribution
QV(v) QX|V(x|v) QY1Y2Z|X(y1, y1, z|x).

Proof: The proof combines the technique of random
coding with product structure as in [3] along with the usage
of resolvability to achieve secrecy [11–13]. We first show that
the rate region given by the set of all rate pairs (R1, R2) ∈ R2

+
satisfying

Rj ≤ I(X;Yj)− I(X; Z), j = 1, 2 (6)

is achievable. Then, the region in (5) with prefixed random
variable V follows immediately as in [3, Lemma 4].

1. Random Codebook Cn: Fix an input distribution QX(x)
and construct xn(m1,m2,mr) for mj ∈ Mj =
J1, 2nRj K, j = 1, 2, and mr ∈ Mr = J1, 2nRrK by
generating symbols xi(m1,m2,mr) with i ∈ J1, nK,
independently at random according to QX(x).

2. Encoder E: Given a message pair (m1,m2), it chooses
a randomization message mr uniformly at random from
the set Mr and transmits xn(m1,m2,mr).

3. First Decoder ϕ1: Given yn1 and its own message
m2, outputs (m̂1, m̂r); if it is the unique pair, such
that (xn(m̂1,m2, m̂r), y

n
1 ) is jointly typical. Otherwise

declares an error.
4. Second Decoder ϕ2: Given yn2 and its own message
m1, outputs (m̃2, m̃r); if it is the unique pair, such
that (xn(m1, m̃2, m̃r), y

n
2 ) is jointly typical. Otherwise

declares an error.

Reliability and Secrecy Analysis: We define the error proba-
bility of this scheme as

P̂e(Cn) , P
[
(M̂1, M̂r) 6= (M1,Mr) or

(M̃2, M̃r) 6= (M2,Mr)|Cn
]
. (7)
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We then observe that P̂e(Cn) ≥ Pe(Cn), cf. (1). Using the
standard analysis of random coding we can prove that for a
sufficiently large n, with high probability P̂e(Cn) ≤ εn if

Rj +Rr < I(X;Yj)− δn(εn) j = 1, 2. (8)

The validity of (8) follows from the product structure of the
codebook and the availability of the side information at the
receiver as in [7, 14]. On the other hand, for a sufficiently
large n and τn > 0, the joint leakage given in (2) is with high
probability smaller than τn if

Rr ≥ I(X; Z) + δn(τn). (9)

This follows from Hou’s and Kramer’s work in [12], or other
strong secrecy approaches as for example [11, 13]. Combining
(8) and (9), then taking the limit as n → ∞, which implies
that δn(εn) and δn(τn)→ 0 gives the achievability of any rate
pair (R1, R2) satisfying (6).

B. Multi-Letter Converse

Proposition 1. The joint secrecy capacity region of the BC
with receiver side information is upper bounded as follows

Rj ≤ lim
n→∞

1

n

[
I(V;Y

n
j )− I(V; Z

n
)
]
, j = 1, 2 (10)

for random variables satisfying the Markov chain V − Xn −
(Yn1 ,Y

n
2 ,Z

n).

Proof: Suppose that for some εn, τn > 0 and sufficiently
large n, there exists a (2nR1 , 2nR2 , n) code Cn such that (4)
is satisfied, where L(Cn) satisfies (2). We have

R1 =
1

n
H(M1)

(a)
=

1

n
H(M1|M2)

=
1

n

[
I(M1; Y

n
1 |M2) +H(M1|Yn1M2)

]
(b)

≤ 1

n
I(M1; Y

n
1 |M2) + γ(εn)

(c)

≤ 1

n
I(M1M2; Y

n
1 ) + γ(εn) (11)

(d)

≤ 1

n

[
I(M1M2; Y

n
1 )− I(M1M2; Z

n
)
]
+ γ(εn, τn) (12)

where (a) follows from the independence of M1 and M2; (b)
follows from Fano’s inequality with γ(εn) = 1/n+ εnR1; (c)
follows by the chain rule and (d) follows from (2) and (4),
where γ(εn, τn) = τn/n + γ(εn). Following the same steps
we can achieve a similar bound for R2:

R2 ≤
1

n

[
I(M1M2; Y

n
2 )− I(M1M2; Z

n
)
]
+ γ(εn, τn). (13)

Now, if we use V , (M1,M2) and take the limit as n→∞,
such that γ(εn, τn)→ 0, where the convergence of the limit is
guaranteed by the Fekete’s lemma [15], cf. also [13, Lemma 5],
we reach the upper bound in (10).

Remark: Since the multi-letter upper bound in (10) matches
the achievable rate region in (5) applied to the n-fold product
of the BC, this establishes a multi-letter description for the
capacity region. However, a single-letter description is de-
sirable because the former multi-letter one is not efficiently
computable.

C. More Capable Channels

Since finding a single-letter converse for the general BC
with receiver side information is hard, we focused our attention
on the special case of more capable channels.

Definition 3. The two legitimate receivers are said to be more
capable than the eavesdropper in a BC, if for every input X,
we have

I(X;Yj) ≥ I(X; Z), j = 1, 2. (14)

The class of more capable channels is a wide class. It
contains physically and stochastically degraded channels as
well as less noisy channels cf. for example [16]. This implies
that establishing secrecy capacity for more capable channels
provides the capacity region for these channels as well.

Theorem 1. The joint secrecy capacity region of the more
capable BC with receiver side information is the set of all
rate pairs (R1, R2) ∈ R2

+ that satisfy

Rj ≤ I(X;Yj)− I(X; Z), j = 1, 2 (15)

for random variables with joint probability distribution
QX(x) QY1Y2Z|X(y1, y1, z|x).

Proof: The achievability follows as in the proof of
Lemma 1. Now for the converse, we start by R1 and let
U1
i , (Yi−11 ,Zni+1), and V1

i , (M1,M2,U
1
i ). Using (12), we

have

R1

(a)

≤ 1

n

[
n∑
i=1

I(M1M2; Y1i|Y
i−1
1 )− I(M1M2; Zi|Z

n
i+1)

]
+ γ(εn, τn)

(b)
=

1

n

[
n∑
i=1

I(M1M2; Y1i|Y
i−1
1 Zni+1)

− I(M1M2; Zi|Y
i−1
1 Zni+1)

]
+ γ(εn, τn)

=
1

n

[
n∑
i=1

I(V1
i ; Y1i|U1

i )− I(V1
i ; Zi|U

1
i )

]
+ γ(εn, τn)

where U1
i−V1

i−Xi−(Y1i,Zi) forms a Markov chain. Step (a)
follows from the chain rule and (b) follows from the Csiszár
sum identity [3, Lemma 7]. Introducing a random variable T
independent of all others and uniformly distributed over J1, nK,
then letting U1 = (U

1
T ,T), V

1 = V
1
T , Y1 = Y1T and Z = ZT ,

we have

R1 ≤ I(V1; Y1|U1)− I(V1; Z|U1) + γ(εn, τn). (16)

Similarly, let U2
i , (Yi−12 , Z̃i+1), and V2

i , (M1,M2,U
2
i )

such that U2
i −V2

i −Xi− (Y2i,Zi). Using (13), we can derive
a similar bound for R2 as

R2 ≤ I(V2; Y2|U2)− I(V2; Z|U2) + γ(εn, τn). (17)

Back to R1, Eq. (16) can be further simplified as

R1 ≤ E
[
I(V1; Y1|U1 = u1)− I(V1; Z|U1 = u1)

]
+ γ(εn, τn)

(a)

≤ I(V1; Y1|U1 = u1∗)− I(V1; Z|U1 = u1∗) + γ(εn, τn)
(b)
= I(V1∗; Y1)− I(V1∗; Z) + γ(εn, τn) (18)
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where V1∗ −X− (Y1,Z) forms a Markov chain. Step (a) fol-
lows as u1∗ is the value of U1 that maximizes the difference in
(16) and (b) follows because V1∗ is distributed as QV1|U1=u1∗ .
Similarly for R2, we have

R2 ≤ I(V2∗; Y2)− I(V2∗; Z) + γ(εn, τn), (19)

where V2∗ −X− (Y2,Z) forms a Markov chain, such that
V2∗ is distributed as QV2|U2=u2∗ and u2∗ is the value
of U2 that maximizes the difference in (17). Because
of the Markov chains and the fact that if Y1 and Y2

are more capable than Z, I(X;Y1|V1∗) ≥ I(X; Z|V1∗) and
I(X;Y2|V2∗) ≥ I(X; Z|V2∗). The bounds in (18) and (19) can
be simplified to

R1 ≤ I(X;Y1)− I(X; Z) + γ(εn, τn)

R2 ≤ I(X;Y2)− I(X; Z) + γ(εn, τn). (20)

Before finalizing our converse, we need to illustrate an
important point. One might argue that getting rid of the
conditional random variables U1 and U2 using the previous
procedure can not be done for R1 and R2 simultaneously
because U1 and U2 might be dependent, such that u1∗ and
u2∗ can not occur concurrently. This fact does not affect our
converse because it only implies that the derived upper bounds
are loose. Yet, our result assures that for the more capable
case, these bounds are tight enough. Now taking the limit as
n → ∞, which implies that γ(εn, τn) → 0, Equation (15) is
satisfied.

IV. THE INDIVIDUAL SECRECY CAPACITY REGION

In this section we investigate the individual secrecy crite-
rion for the BC with receiver side information. We first provide
an achievable rate region for the general case, then we derive
a multi-letter outer bound that matches this region. Finally we
establish the individual secrecy capacity region for the more
capable case.

A. Achievable Rate Region

Lemma 2. An achievable individual secrecy rate region for
the BC with receiver side information is given by the set of all
rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ min
[
I(V;Y1)− I(V; Z) +R2 , I(V;Y1)

]
R2 ≤ min

[
I(V;Y2)− I(V; Z) +R1 , I(V;Y2)

] (21)

for random variables with joint probability distribution
QV(v) QX|V(x|v) QY1Y2Z|X(y1, y1, z|x), such that I(V;Y1)
and I(V;Y2) are greater than I(V; Z).

Proof: The proof combines the techniques used in the
previous section along with the Shannon’s cipher system,
where the Shannon ciphered message is used as a part of
the randomization index for wiretap encoding. We started
by dividing each message set Mj with j = 1, 2 into two
independent parts Mjk = J1, 2nRjkK, k = 1, 2 such that M12

andM21 are of the same size. We constructM⊗ = J1, 2nR⊗K
by Xoring the corresponding elements ofM12 andM21. Thus,
we have

R1 = R11 +R12, R2 = R22 +R21,

R⊗ = R12 = R21 ≤ min(R1, R2).
(22)

1. Random Codebook Cn: Fix an input distribution QX(x)
and construct xn(m11,m22,m⊗,mr) for mjj ∈ Mjj

j = 1, 2, m⊗ ∈M⊗, and mr ∈Mr = J1, 2nRrK by gen-
erating symbols xi(m11,m22,m⊗,mr) with i ∈ J1, nK,
independently at random according to QX(x).

2. Encoder E: Given a message pair (m1,m2), it calcu-
lates the triple (m11,m22,m⊗) then chooses a message
mr uniformly at random from the set Mr and transmits
xn(m11,m22,m⊗,mr).

3. First Decoder ϕ1: Given yn1 and m2 = (m21,m22),
outputs (m̂1, m̂r); where m̂1 is the concatenation of m̂11

and m̂12. First, it finds the unique triple (m̂11, m̂⊗, m̂r)
such that (xn(m̂11,m22, m̂⊗, m̂r), y

n
1 ) is jointly typical.

Then, it computes m̂12 by Xoring m21 and m̂⊗.
4. Second Decoder ϕ2: Given yn2 and m1 = (m11,m12),
outputs (m̃2, m̃r); where m̃2 is the concatenation of m̃22

and m̃21. First, it finds the unique triple (m̃22, m̃⊗, m̃r)
such that (xn(m11, m̃22, m̃⊗, m̃r), y

n
2 ) is jointly typical.

Then, it computes m̃21 by Xoring m12 and m̃⊗.

Reliability and Secrecy Analysis: We define the error proba-
bility for this scheme as

P̃e(Cn) , P
[
(M̂11, M̂⊗, M̂r) 6= (M11,M⊗,Mr) or

(M̃22, M̃⊗, M̃r) 6= (M22,M⊗,Mr)|Cn
]
, (23)

where P̃e(Cn) ≥ Pe(Cn), cf. (1). Now following the same
procedures used in the previous section, we can prove that for
a sufficiently large n, with high probability P̃e(Cn) ≤ εn if

Rjj +R⊗ +Rr < I(X;Yj)− δn(εn) j = 1, 2. (24)

Because of the new message sets structure, the random variable
M1 is identified as the product of two independent and
uniformly distributed random variables M11 and M12. Thus,
the leakage of M1 to the eavesdropper becomes

I(M1; Z
n|Cn) = I(M11; Z

n|Cn) + I(M12; Z
n|M11Cn). (25)

One can prove that the second term in (25) vanishes as

I(M12; Z
n|M11) = H(M12|M11)−H(M12|ZnM11)

(a)
= H(M12)−H(M12|ZnM11)
(b)

≤ H(M12)−H(M12|M11M22M⊗Mr)
(c)
= H(M12)−H(M12|M⊗)

(d)
= 0 (26)

where (a) follows because M12 and M11 are independent;
(b) follows because (M11,M22,M⊗,Mr) − Xn − Zn forms
a Markov chain; (c) follows because M12 is independent from
M11,M22 and Mr and (d) follows because of the Shannon’s
cipher system as H(M12) = H(M21). It is worth mentioning
that, revealing M2 to the eavesdropper might threaten the
validity of this result. Since the eavesdropper may succeed
in inferring some information about M12 using M2 and Zn.
On the other hand, for a sufficiently large n and τn > 0, the
first term in (25) is with high probability smaller than τn, if

R⊗ +Rr ≥ I(X; Z) + δn(τn). (27)

Thus the whole expression in (25) is with high probability
smaller than τn. Repeating the same steps for M2, we can show
that with high probability the individual leakage given by (3)
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is also smaller than some τn. Now using Fourier-Motzkin
elimination on the rate constraints given in (22), (24) and (27),
followed by replacing X by a prefixed random variable V as in
Lemma 1 and [3, Lemma 4] and taking the limit as n → ∞,
which implies that δn(εn) → 0 and δn(τn) → 0, leads the
achievability of any rate pair (R1, R2) satisfying (21).

B. Multi-Letter Converse

Proposition 2. The individual secrecy capacity region of the
BC with receiver side information is upper bounded as follows

R1 ≤ lim
n→∞

1

n
min

[
I(V;Yn1 )− I(V; Z

n
) + nR2,I(V;Yn1 )

]
R2 ≤ lim

n→∞

1

n
min

[
I(V;Yn2 )− I(V; Z

n
) + nR1,I(V;Yn2 )

]
for random variables satisfying the Markov chain V − Xn −
(Yn1 ,Y

n
2 ,Z

n).

Proof: Suppose that for some εn, τn > 0 and sufficiently
large n, there exists a (2nR1 , 2nR2 , n) code Cn such that (4)
is satisfied, where L(Cn) satisfies (3). We have

R1

(a)

≤ 1

n

[
I(M1M2; Y

n
1 )− I(M1; Z

n
)
]
+ γ(εn, τn)

=
1

n

[
I(M1M2; Y

n
1 )− I(M1M2; Z

n
) + I(M2; Z

n|M1)
]

+ γ(εn, τn)
(b)

≤ 1

n

[
I(M1M2; Y

n
1 )− I(M1M2; Z

n
)
]
+R2 + γ(εn, τn)

(28)

where (a) follows from (3) and (4); while (b) follows as
I(M2; Z

n|M1) = H(M2|M1)−H(M2|M1Z
n) ≤ nR2. If we

use V , (M1,M2) in (11) and (28), then take the limit as
n→∞, so γ(εn) and γ(εn, τn)→ 0, where the convergence
of the limit is guaranteed by the Fekete’s lemma [15], we
reach the upper bound of R1. Repeating the same steps for R2

completes our proof and establishes a multi-letter description
for the capacity region similarly as in Section III-B.

C. More Capable Channels

Theorem 2. The individual secrecy capacity region of the
more capable BC with receiver side information is the set of
all rate pairs (R1, R2) ∈ R2

+ that satisfy

R1 ≤ min
[
I(X;Y1)− I(X; Z) +R2 , I(X;Y1)

]
R2 ≤ min

[
I(X;Y2)− I(X; Z) +R1 , I(X;Y2)

] (29)

for random variables with joint probability distribution
QX(x) QY1Y2Z|X(y1, y1, z|x).

Proof: The achievability follows as in the proof of
Lemma 2, while for the converse, we start by highlighting
the standard single-letter bound

Rj ≤ I(X;Yj) + γ(εn), j = 1, 2. (30)

We then compare (12) and (28). Now using the same steps used
in the converse of the more capable channel in the previous
section for both R1 and R2, we reach the following

R1 ≤ I(X;Y1)− I(X; Z) +R2 + γ(εn, τn)

R2 ≤ I(X;Y2)− I(X; Z) +R1 + γ(εn, τn).
(31)

Combining (30) and (31), then take the limit as n→∞, such
that γ(εn) and γ(εn, τn)→ 0 completes our converse.

V. CONCLUSION

We studied the broadcast channel with receiver side in-
formation, where the transmitter sends confidential messages
to the legitimate receivers while keeping the eavesdropper
ignorant. We measured this ignorance by two secrecy criteria:
the joint secrecy and the individual one. For each criterion we
derived an achievable rate region and a corresponding multi-
letter converse. We established the secrecy capacity of the
class of more capable channels which includes both less noisy
and degraded ones by providing a single-letter converse. Our
analysis illustrated that loosening the secrecy criterion from the
joint to the individual one, induces an increase on the secrecy
capacity. This increase arises from using one message as a
secret key for the other one. However, doing so might threaten
the secrecy of each message upon revealing the other one to
the eavesdropper.
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