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Abstract

Purpose: Carbon ion radiotherapy aims to treat cancer with accelerated carbon ions by
depositing dose inside a patient’s body. Treatment planning is essential to develop an
optimal treatment scheme to treat the tumor most efficiently and simultaneously spare
normal tissue the best. Treatment plan evaluation is based on the RBE-weighted dose
RWD (relative biological effectiveness (RBE) x deposited dose) which combines biologi-
cal and physical concepts. RBE changes spatially depending on the irradiated cell type
and the present ion spectra. Physical beam properties including deposited dose, linear
energy transfer, nuclear fragmentation and lateral spread are considered in the treatment
planning. The accuracy of the physical dose delivery was increased enormously with re-
cent developments. RBE is predicted by biological modeling processes, extrapolating x-ray
dose response to ions. Considerable uncertainties are associated with the commonly used
biological models as well as with their input parameters. Current treatment planning
systems for carbon ion therapy do not consider these uncertainties and display a definite
RWD distribution. Physicians and medical physicists assess these uncertainties according
to experience and general knowledge in the field. The objective of this work is to directly
include and evaluate the impact of uncertainties in the biological dose response modeling
on carbon ion treatment plans.
Methods: Treatment planning for carbon ion therapy is implemented in a research treat-
ment planning environment. This is accomplished by combining Monte Carlo simulated
physical beam behavior with biological model predictions to facilitate biological effect based
treatment planning. Variance-based sensitivity analyses are adapted to the treatment plan-
ning process to account for uncertainties in the biological modeling and their impact on
treatment plan. Within one execution of the sensitivity analysis 105 treatment plans are
calculated in few hours, each with randomly changed input parameters. The random
changes in the input settings represent the examined uncertainties. This provides the
possibility to quantify and visualize the impact of different biological uncertainties on the
resulting uncertainty of RWD distributions.
Results: The sensitivity analyses allow to examine the impact of different uncertainties
on the planned treatment. Biological uncertainties result in considerable variations of
the RWD distribution. This affects treatment outcome as it leads to potential under- or
overdosage. The considerable uncertainties persist even in case an ideally precise physical
dose delivery is assumed. The newly developed methods are able to identify the biologi-
cal input parameters which have the highest impact on the resulting uncertainties in the
treatment plan and therefore have the greatest potential to improve accuracy of carbon ion
radiotherapy. The broad capability of the described approach is demonstrated in three-
dimensional geometries based on computed tomography images of real patients.
Conclusion: It is essential to include biological dose response uncertainties in the treatment
planning process of carbon ion radiotherapy. The presented sensitivity analysis is suitable
for carbon ion treatment planning and provides new insight to improve it. The developed
approach is an important contribution to enhance accuracy and reliability of carbon ion
treatment planning and its evaluation.
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Part I.

Introduction
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Radiotherapy with carbon ions has the potential to improve treatment outcome. Due
to their physical properties, carbon ions provide several advantages over x-ray or proton
radiotherapy. The dose deposition of carbon ions is characterized by a steep Bragg peak
and a small lateral spread. This offers the potential of very conformal dose application,
potentially improving the treatment outcome and reducing side effects. In addition, carbon
ions are densely ionizing. This is associated with an increased biological effectiveness.
Carbon ion facilities for radiotherapy are either in use or planned at several institutions
worldwide.
Carbon ion radiotherapy is based on two main aspects, a physical and a biological

one. The physical dose has to be combined with biological effects to facilitate precise and
accurate treatment. Recent developments in ion therapy allow very precise application
of the physical dose. The modeling of the biological effects is complex and based on
approximations, assumptions and extrapolation of the interplay of physical and biological
properties. Currently the resulting uncertainties in the biological modeling are omitted
in carbon ion treatment planning systems. Physicians and medical physicists assess these
uncertainties according to experience and general knowledge in the field. The aim of this
work is to include, analyze and visualize the impact of biological uncertainties on carbon
ion treatment planning.
Topic of this introduction is to present the context of carbon ion therapy along with

the uncertainties in biological dose response models. In chapters 1 and 2 the definitions
necessary for biological dose response modeling are given. This starts with the rationale
of radiotherapy in chapter 1. In this chapter also x-ray radiotherapy is introduced in
combination with the required accuracy in treatment delivery and planning. Chapter 2
focuses on carbon ion therapy. This includes sections concerning the physical and biological
principles applied to carbon ion therapy. The discussed uncertainties in biological dose
response modeling for carbon ion therapy are presented in chapter 3. The aim of this thesis
is to include these uncertainties into treatment plan evaluation to assess their impact and
improve the reliability of treatment planning. The proceeding to achieve this aim within
the scope of this thesis is outlined in chapter 4.
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1. Radiotherapy

Radiotherapy aims to treat tumors with ionizing radiation. Soon after the discovery of
x-rays by Röntgen in 1895 they were employed to treat cancer. Since then, external beam
therapy has been continuously developed. State of the art techniques for radiotherapy
with x-rays are based on linear accelerators and sophisticated beam shaping techniques.
The developments facilitate to treat the tumor and at the same time spare normal, not
malignant tissue as much as possible. Radiotherapy aims to irradiate the tumor with
sufficient dose to achieve local control while the dose to adjacent organs at risk is minimized
to avoid complications in normal tissue. This can be visualized by the therapeutic window
in figure 1.1. The figure shows the tissue damage as function of the applied (cumulative)
dose. The dose is defined as deposited energy per mass d = ∆E/∆m and is reported in
Gray (1 Gy = 1 J kg-1). For the tumor (blue line) high doses are favorable as they results
in higher tumor control probability. The aim is to spare normal tissue in order to not
induce critical normal tissue damage. The therapeutic window itself is the dose range
where the probability of tumor control without normal tissue complications is the highest.
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Figure 1.1.: Schematic representation of the dependencies of tumor control probability and
normal tissue complication probability on the dose.

Both the probability of tumor control and of normal tissue complication are described
by steep curves in the range of the therapeutic window. A small change in the dose has
a potentially high impact on the probability of tumor control and normal tissue complica-
tions. This requires precise treatment and reliable treatment planning. New techniques,
such as intensity modulated radiation therapy (IMRT) or volumetric arc therapy (VMAT)
facilitate very conformal dose distribution matching the shape of the tumor. Typical re-
quirements for treatment plans based on these modern techniques are very strict. For
instance, applied requirements for the planning target volume (PTV) can be that 98% of
the volume need to receive at least 95% of the prescribed dose and less than 2% of the
volume are allowed to receive more than 107% of the prescribed dose.
This required accuracy of x-ray radiotherapy demonstrates the importance of the evalu-

ation of uncertainties associated with different radiotherapy types. The aim of this thesis
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1. Radiotherapy

is to evaluate the uncertainties in biological dose response models for carbon ion treat-
ment planning. The use of ion radiotherapy is based on favorable properties of ions. They
have the potential to better balance the probabilities of tumor control and normal tissue
complication than radiotherapy with x-rays. Ion therapy, especially carbon ion therapy, is
topic of the following chapter.
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2. Carbon Ion Radiotherapy

In this chapter carbon ion therapy is introduced. Due to their properties, carbon ion beams
have the potential to provide more conformal physical dose distribution in combination
with an increased biological effectiveness based on their dense ionization patterns. This
facilitates a better normal tissue sparing. In order to show the potential of ion beams in
radiotherapy, the depth-dose deposition for x-ray (photons), protons and carbon ion beams
are discussed (section 2.1). In section 2.2 the physical properties of carbon ion beams are
summarized followed by a section focusing on the biological modeling process (section 2.3).
The biological modeling process is crucial to understand the biological uncertainties in dose
response modeling for carbon ion therapy that will be addressed throughout this work.

2.1. Depth Dose Curves: Bragg Peaks

The application of light ion beams (proton and carbon ions) for radiotherapy spreads
rapidly worldwide. The main rationale is the favorable energy loss of ions in matter,
resulting in the characteristic dose maximum at the end of their range. This peak is
characteristic for ions and known as the Bragg peak. A proton and a carbon ion Bragg
peak are compared to the depth dose curve of photons (x-rays) in figure 2.1. In this
example the depth of the proton and carbon ion Bragg peak is 15 cm, which corresponds
to an initial beam energy of 147 MeV/u and 279 MeV/u for protons and carbon ions
respectively. The depth of the peak can be adjusted by the ion energy. The higher the
energy the deeper the Bragg peak. A superposition of several thousands pristine Bragg
peaks with different energies and coming from several beam directions can be optimized
to achieve homogeneous tumor coverage.

2.2. Basic Physics: Fragmentation, Linear Energy

Transfer and Lateral Spread

In this section the underlying physical properties and concepts of carbon ion therapy are
introduced and compared to proton and photon therapy. The main physical properties,
important for carbon ion therapy can be classified into fragmentation, energy transfer and
lateral behavior.

2.2.1. Fragmentation

One of the differences in the dose distribution between carbon ions and protons (cf. fig-
ure 2.1) is the fragmentation tail behind the Bragg peak. This tail is caused by nuclear in-
teractions of the primary carbon ion beam with the atomic nuclei of the irradiated medium,
resulting in the fragmentation of the carbon ion. The fragments are dominated by protons
and alpha particles, but lithium, beryllium and boron ions are also generated. Some of

7



2. Carbon Ion Radiotherapy
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Figure 2.1.: Depth dose curves of broad photon (x-ray), proton and carbon ion beams. The
energies of the beams are 6 MeV photons, 147 MeV/u protons and 279 MeV/u
carbon ions. Protons and carbon ions show the characteristic Bragg peak.
Carbon ions show in addition the fragmentation tail behind the peak.

these have energies high enough to travel considerable distances beyond the range of the
initial carbon ions, producing the fragmentation tail [1].
There are two main reasons to consider the fragmentation of the carbon ion beam. On

the one hand, fragments deposit dose behind the Bragg peak, where potential organs at
risk (OAR) might be located. On the other hand, the effect of the irradiation on cells
varies greatly for different ions and their energies.

2.2.2. Linear Energy Transfer (LET)

A second physical term widely used to describe radiation quality in carbon ion therapy is
the linear energy transfer (LET). The dose-averaged LET concept is used throughout this
work. For one ion type Z with a certain fluence Φ (E,Z) the dose-weighted LET can be
written as

LET (Z) =

∫∞

0
Φ (Z,E) · (SP (Z,E))2 dE

∫∞

0
Φ (Z,E) · SP (Z,E) dE

(2.1)

It is based on the stopping power SP (E,Z) = dE (Z) /dl, where dE is the energy lost by
the ion in the distance dl [2, 3]. In addition, stopping powers depend on the medium which
the particle is going through. Treatment planning is based on the “dose to water” concept
in which dose calculations are done in water. This means that all materials are converted
to their “water-equivalent”. Consequently SP and LET are considered in water.
For ion energies relevant in carbon ion therapy, one can generally state two relations.

First, the slower the ion is, the larger becomes its stopping power. Second, the lighter
the ion is, the smaller the stopping power. The restricted LET∆, which only accounts for
the locally deposited energy by treating secondary electrons with energies higher than ∆
separately, is not used here. Hence LET = LET∞ is assumed. In carbon ion therapy LET
distributions are important, because the biology (in terms of cell survival after irradiation)
depends on LET. The absolute values and the change of LET for proton therapy is less

8



2.3. Basic Biology: Cell Survival, LQ-Model and RBE

pronounced.

2.2.3. Lateral Spread

One of the rationales for the use of carbon ion therapy is a smaller lateral spread of
carbon ions compared to protons while penetrating a material. Carbon ions are heavier
than protons, hence their direction is less affected by multiple-scattering effects and range
straggling [4]. This results in steeper lateral and distal dose gradients, promising the
potential of better normal tissue sparing compared to proton therapy. Treatment planning
for carbon ion therapy must consider the lateral beam behavior.

2.3. Basic Biology: Cell Survival, LQ-Model and RBE

The aim of radiotherapy is to kill cancer cells with ionizing radiation. Cells respond
differently to radiation. Biological modeling is needed to predict the radiation response
of biological systems. The linear-quadratic (LQ) model [5] is widely used to describe the
survival fraction S of cells irradiated with the dose d.

S = e−(αd+βd2) (2.2)

The exponent is the so called biological effect ε.

ε = − lnS = α · d+ β · d2 (2.3)

The radiosensitivity parameters α (linear) and β (quadratic) define the slope of the survival
curve. The radiobiological properties of cells are often described by an α/β -ratio. It is
considered that small α/β -ratios correspond to late reacting, larger α/β -ratios to early
reacting tissue types. Panel A of figure 2.2 shows two exemplary survival curves, one
for a late reacting tissue type (α/β = 2 Gy) and one for an early reacting tissue type
(α/β = 20 Gy).
The LQ model can be used to calculate fraction effects and to explain why tumor cells

can be efficiently treated with radiation. Compared to normal tissue, tumor cells have a
higher α/β -ratio and hence a less pronounced shoulder in the survival curve (figure 2.2,
panel A). Choosing the right dose per fraction (around d = 2 Gy in the plotted case) allows
to treat tumors with least affecting the normal tissue.
It is a general finding that high-LET radiation (particle therapy) achieves the same

biological effect with lower dose than photons [6]. This leads to the concept of the relative
biological effectiveness (RBE). As clinical experience is mostly based on photon (x-ray)
therapy, the RBE is defined as the ratio of photon dose dx to particle dose dp yielding the
same biological effect.

RBE =
dx
dp

∣

∣

∣

∣

ε=const

(2.4)

Panel B of figure 2.2 shows the determination of RBE with exemplified survival curves for
x-ray and carbon ion irradiation. Using the iso-effect criteria in equation (2.4) and the
LQ formula of equation (2.3) for the RBE determination, it can be expressed with the
following function.

RBE (αx, βx, αp, βp, dp) =
−αx +

√

αx
2 + 4dpβx (αp + βpdp)

2dpβx

(2.5)
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2. Carbon Ion Radiotherapy
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Figure 2.2.: Panel A shows cell survival curves for exemplary tumor tissue (αx/βx = 20 Gy)
and an exemplary normal tissue (αx/βx = 2 Gy) irradiated with x-rays. The
shoulder in the curve is more pronounced for smaller αx/βx. In panel B the
cell survival curve for αx/βx = 2 Gy for x-ray are compared to an example
cell survival curve for carbon ion irradiation. The survival curve is steeper for
carbon ions. The dashed lines show the determination of the RBE = dx/dp at
10% survival level (cf. equation (2.4)).

The radiosensitivity parameters for particle radiation are not only dependent on cell prop-
erties, but also on the LET and hence on the energy of the particles. For proton therapy
RBE values typically range between 1.0 and 1.3. A widely used approximation for proton
therapy is to set RBE to a constant value of 1.1 [7]. For heavier ions such an approximation
is not sufficient. As most of the cell survival data and clinical experience are obtained for
photon irradiation, biological modeling is needed to predict RBE (or αp and βp) for ions
based on photon parameters. Typical RBE values for carbon ion therapy range between
1.0 and 5.0 and are strongly dependent on the LET of the examined carbon ions and their
fragments.
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3. Uncertainties in Biological Dose
Response Models

Treatment planning for carbon ion therapy is based on the interplay of physics and bi-
ology as described in the previous chapter. Achievement of sufficient tumor control and
sparing of the normal tissue requires high accuracy in the delivered dose. Image guidance,
Monte Carlo dose calculation and tracking are just a few examples for newly developed
techniques that aim to reduce uncertainties in the dose application. In contrast to this
increasing accuracy, state of the art carbon ion treatment planning systems do not account
for biological uncertainties in the dose response modeling process. These uncertainties and
their impact are assessed by physicians and medical physicists based on their experience.
The various sources of the biological uncertainties are introduced in section 3.1.
To plan the treatment and predict its outcome, treatment planning for carbon ion ra-

diotherapy considers the combination of the physical dose and the relative biological effec-
tiveness (RBE, cf. section 2.3). The RBE reflects the biological modeling. Uncertainties
in RBE calculation directly affect the treatment of patients as they might result in under-
or overdosage and hence in potential treatment failure or normal tissue complications.
Up to now uncertainties in biological models have been examined only for simplified

scenarios or the models themselves [8, 9]. A comprehensive uncertainty analysis based
on real patient data has not been accomplished yet. This comprehensive analysis needs
to include uncertainties in biological parameters and provide the possibility to analyze
effects on treatment outcome. The objective of this thesis is to add biological uncertainties
to carbon ion treatment planning and evaluation. A key task in this context is the clear
visualization of the impact of biological uncertainties in treatment planning and evaluation.

3.1. Sources of Biological Uncertainties

There are numerous sources of uncertainty in the four radiosensitivity parameters (αx,
βx, αp and βp, cf. equation (2.5) on page 9) used for describing the RBE within the
framework of the linear-quadratic (LQ) model. In this section these sources are introduced.
The investigation of the impact of the shown and discussed uncertainties on carbon ion
treatment planning is the main objective of this thesis.
The first assumption on which biological modeling in radiotherapy relies is the LQ model

itself. In carbon ion therapy treatment planning in general and throughout this thesis in
particular it is assumed that the LQ model provides a sufficient framework for biological
modeling. It is assumed that the calculation of RBE (αx, βx, αp, βp, dp) as it is described in
equation (2.5) on page 9 represents the dose response relation. The uncertainties discussed
here concern the used biological parameters αx, βx, αp and βp. Uncertainties associated
with the mathematical description or validity of the LQ model itself are not considered.
The process of biological modeling in carbon ion therapy is difficult and complex, as

biological quantities cannot be measured directly. In the following sections the biolog-
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3. Uncertainties in Biological Dose Response Models

ical uncertainties are classified in an application-oriented way. In the first section the
uncertainties of measurable values are discussed. Those values are obtained from experi-
ments. Their uncertainties can theoretically be reduced by better statistics or more precise
measurements. In the second section a compilation of conceptual assumptions and extrap-
olations used in the biological response modeling of carbon ion therapy is presented. In
the last case the uncertainties are not quantified yet. The examination of the relations
requires additional development in the field of radiation biology.

3.1.1. Determination of the Used Biological Parameters and Their

Uncertainties

RBE is calculated based on the radiosensitivity parameters (αx and βx) of the x-ray ref-
erence radiation and the same set (αp and βp) of the considered particle irradiation. Cell
experiments with x-ray or ion beams facilitate the determination of the corresponding α
and β. These experiments are done with cell cultures plated on culture dishes and are
commonly characterized as in vitro. A precise description of these experiments can be
found in literature (e.g. in chapter 3 of reference [10]).

The uncertainty in the cell experiment is approximated by a standard deviation of several
repetitions of the same experiment. The number of independent but similar experiments is
commonly below ten, due to the great experimental effort to provide the cells and evaluate
their dose response. An increased number of repetitions could provide a better statistics
and hence a smaller standard deviation.

Figure 3.1 shows an example of the result and the further proceeding of the described
experiment with HEP3B (human hepatoma) cells irradiated with x-ray (panel A) and car-
bon ions (panel B) [11]. The dots indicate the experimental results. They are displayed
together with the corresponding standard deviations (error bars). The LQ model param-
eters are obtained from a fit to the experimental data. The panels in figure 3.1 show two
frequently used fitting methods. Within both approaches the function −αd− βd2 is fitted
to the natural logarithm of the survival ln (S (d)). This reflects the natural logarithm of
equation (2.2) on page 9 describing the LQ model. The difference between the two fitting
approaches is the relative weighting of the experimental data points. The standard fit
(black lines in figure 3.1) assigns equal weights to all data points. The weighted fit (blue
lines in figure 3.1) weights the different data points by the inverse of their relative standard
deviations σrel. This relative standard deviation is obtained dividing the absolute standard
deviation divided by the mean value. The weight 1/σrel increases the impact of data points
with a low σrel. The influence of data points with large σrel is reduced.

The tables below the panels in figure 3.1 summarize the results of the two different fitting
approaches. Although the difference of the resulting lines for both fits seems small, their
resulting α and β have considerable deviations. The marked 68.3% (one sigma) confidence
measure of both fitting approaches are large. These measures are commonly reported as
uncertainties in α and β. Figure 3.2 shows a compilation of reported fitting results for αp

and βp [12, 13]. αp and βp are shown together with their uncertainties (68.3% confidence
level) for protons, helium and carbon ions of different energies (different LET values) for
several cell lines. These values have large uncertainties. An additional issue is that the
confidence values of the fit do not represent the standard deviations of the initial data
points. If for instance the standard deviation of all data points in figure 3.1 would be
doubled, both fitting results and their confidence values would not change.
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3.1. Sources of Biological Uncertainties
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Figure 3.1.: Example of the result of a cell experiment and the fitting process. The mean
values of the experimentally derived data points are shown together with the
corresponding standard deviations. They are calculated from six independent
repetitions of the same cell experiment. Panel A shows an example for x-
ray, panel B for carbon ion irradiation. The results of two fitting approaches
are shown: a standard approach with equal weights for all data points (black
lines) and a weighted fitting approach (blue lines). Here the data points are
weighted with the inverse of their relative standard deviation 1/σrel. The fit
result for the radiosensitivity parameters are summarized in the tables be-
low the corresponding panels. The experimental data are courtesy of Daniel
Habermehl [11].

Besides the irradiated cell type the radiosensitivity parameters for ions depend on the
ion type and its linear energy transfer (LET): αp(Z, LET ) and βp(Z, LET ). Theoretically
it is possible to determine αp and βp for all needed ions as a function of LET with the above
described experimental and fitting procedures. Practically the analysis is not feasible due to
the extremely high amount of different combinations. Biological models are used instead to
extrapolate the x-ray results αx and βx to αp (Z, LET, αx, βx) and βp (Z, LET, αx, βx). Two
biological models are used in this thesis. They are further discussed later in chapter 6. Both
models depend on assumptions and parameters which introduce additional uncertainties in
αp and βp. The predictions of these biological models are validated against experimentally
derived αp and βp.

It can be concluded that uncertainties in biological parameters arise from α and β which
are fitted with large confidence intervals to experimental data that have considerable error
bars themselves. Additional biological models are needed to predict αp and βp. This
modeling is based on assumptions and uncertain parameters and can only be validated
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3. Uncertainties in Biological Dose Response Models

against experimentally derived, hence inherently uncertain data.
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Figure 3.2.: LQ model radiosensitivity parameters αp and βp together with their uncertain-
ties reported in literature. The values are taken from references [12, 13]. They
were determined for a range of different cell lines, irradiation types (protons,
helium and carbon ions) and energies. The figure demonstrates the consider-
able uncertainties in the radiation sensitivity parameters.

3.1.2. Potentially Uncertain Concepts in the Biological Modeling
Process

The quantified uncertainties described in the previous section are not the only challenges in
the biological modeling of carbon ions. In this section a compilation of additional arguments
for uncertainties in carbon ion therapy is given. The human body is a very complex system
and direct measurement of needed cell properties is currently not possible. This is why the
below discussed characteristics are far from clinical implementation. In the routine day-
to-day practice only the planned dose distribution is individualized, while the biological
part of treatment planning is not personalized for every patient. Mean values of biological
parameters obtained from a group of patients are used. The implementation of individual
radiotherapy accounting for radiobiological properties is only possible if predictive assays
are developed, determining the crucial biological factors. The here presented challenges
are explained in detail in radiobiology literature (for instance reference [10]).

Biological parameters are obtained from cell experiments which can be done only in
vitro. The challenge is to perform the transfer from these in vitro experiments to cells in
the human body. Even if the possibility to successfully cultivate tumor or normal tissue
cells of a patient is assumed, there are factors such as the immune system response or the
oxygenation level that influence the dose response but cannot be exactly reproduced in
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3.1. Sources of Biological Uncertainties

vitro. This also includes the so-called bystander effect which appears between cells located
in close proximity to each other.
A further challenge is the possibly high spatial variation of crucial biological factors for

the dose response in the human body. In order to account for the spatial variations of
for instance the oxygenation level, two consequent challenges need to be solved. First,
the spatial distributions of the cell properties that influence dose response need to be
obtained. The second challenge is the resolution. The properties might change from cell to
cell (micrometer scale) whereas treatment planning is done based on computed tomography
images with a resolution in the order of millimeters.
The research in the field of biological dose response behavior of cells inside the human

body is not yet sufficient to include these potential sources of uncertainties in the analysis
within the scope of this thesis. It is not known yet whether the relations and potential
sources of uncertainty presented here can be included in the framework of the standard
LQ model. It may be necessary to adapt or replace the model.
To improve carbon ion treatment planning the implementation of an uncertainty analysis

is necessary. Including the quantified uncertainties discussed in section 3.1.1 is a first step.
Though it is not yet possible to account for the entire set of radiobiological challenges
mentioned in this section.
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4. Structure and Outline

Following the introduction and the objective of this thesis presented in the previous chap-
ters, the outline and structure of it is given here. Throughout this work, uncertainties in
biological dose response modeling are implemented into carbon ion treatment planning and
its evaluation. This is subdivided into six parts:

 Part I (“Introduction”) summarizes the context of this work and states its objec-
tives. Radiotherapy in general and carbon ion therapy in particular are introduced
in chapter 1 and chapter 2 respectively. The sources of biological uncertainties are
discussed in chapter 3. Outline and structure of this thesis are described here, in
chapter 4.

 Part II (“Implementing Biological Optimization for Carbon Ion Therapy”) deals with
carbon ion treatment planning, optimization and their implementation into a treat-
ment planning system. The physical beam model is described in chapter 5 followed
by the used biological models and their implementation in chapter 6. Treatment plan
optimization and evaluation are described in chapter 7.

 Part III (“Sensitivity Analysis”) introduces different sensitivity analysis approaches.
Throughout chapter 8 they are introduced along with their limitations and imple-
mentations tailored to biological uncertainties in carbon ion therapy. The developed
visualization tools are introduced in section 8.5.

 Part IV (“Impact of Uncertainties in Biological Dose Response Models on Carbon Ion
Treatment Plans”) contains the result of the sensitivity analysis applied to carbon
ion therapy. In chapter 9 the examined uncertainty settings are summarized. In the
following chapter 10 the results for comprehensive sensitivity analyses are presented.
Several partial sensitivity analyses are discussed in chapter 11. The partial sensitiv-
ity analysis considers only a subset of the comprehensive sensitivity analysis. The
analysis of the tumor control probability is topic of chapter 12. A conclusion of the
evaluations in this part of the thesis is given in chapter 13.

 Part V (“Summary and Conclusion”) summarizes and concludes this thesis.

 Part VI (“Appendix”) contains supplementary information and figures.
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Part II.

Implementing Biological Optimization
for Carbon Ion Therapy
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In the following the methods to calculate and optimize dose and RBE-weighted dose
(RWD) are described. Based on patient data, these methods are implemented in a research
treatment planning system (TPS). The TPS is based on CERR (Computational Environ-
ment for Radiotherapy Research) [14]. CERR is an open source radiation therapy tool
written in Matlab. It allows handling of computed tomography (CT) images, contouring of
regions of interest, dose calculation for photons, treatment plan optimization and treatment
plan analysis. The potential of CERR is extended by LAP-CERR (Laser Accelerated
Proton - CERR) [15, 16]. In this context the capability to calculate dose distributions for
protons and carbon ions is added to CERR. LAP-CERR is based on CERR version 4.0 beta
2 and primarily designed for dose calculation of laser accelerated protons. In the following
chapters the extension of LAP-CERR to carbon ion therapy, including fragmentation, LET
calculations, biological modeling and RWD-optimization is described. Please contact the
author∗ for a version of the source code or further support.
In the next chapters the basic physical beam model (chapter 5) and used biological mod-

els (chapter 6) are introduced. In the course of this thesis, the repair-misrepair-fixation
(RMF) model was combined for the first time with fragmentation spectra to predict RBE
for carbon ions [17]. That is why we validated the RMF model predictions against experi-
mentally measured cell survival data and commonly used biological models (cf. section 6.2
and 6.3). In chapter 7 the used optimization method and its’ implementation is described.

∗Contact Florian Kamp, florian.kamp@mytum.de
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5. Physical Beam Model

5.1. Depth Dose Curves and dij -Matrix

The physical information of carbon ion beams is simulated with Monte Carlo (MC) algo-
rithms and implemented into the dose calculation of CERR. The fragmentation spectra of
the incident carbon ion beam are generated with the MC code FLUKA [18, 19] as described
by Parodi et al. [20] but for a generic beamline. In total Parodi et al. provided a set of 32
carbon ion beams with energies ranging from 90 to 400 MeV/u in 10 MeV/u steps. This
energy range covers treatment depths up to 27 cm in water with a mean distance of 0.8 cm
between the single Bragg peaks. Here the fully ionized elements H, He, Li, Be, B and C are
scored. Generated neutrons are not considered. The resulting fragmentation spectra are
described as particle fluence Φ(z, Z, E) which depends on the depth z, the atomic number
Z of the ion and its energy E [21]. Figure 5.1 panel A and B show an example of the sim-
ulated fragmentation spectra for an initial carbon ion beam energy of E0 = 350 MeV/u.
Due to fragmentation, the number of carbon ions decreases with increasing depth. At the
depth of the Bragg peak, there is a steep drop in the number of carbon ions. Here they
have lost all their energy and stopped. Protons and helium ions are the most prominent
fragments and reach higher energies per nucleon (panel B).
Depth dose curves D (z) are obtained using the fragmentation spectra and the stopping

power SP . The preparation of the fragment spectra for the use in the TPS CERR was
done with the help of Sarah Brüningk within the scope of her master thesis [22].

D (z) =
∑

Z

∫ ∞

0

Φ (z, Z, E) · SP (Z,E) dE (5.1)

Figure 5.1 panel C shows the percentage depth dose (pdd) curves for the initial carbon
ion beam energy E0 = 350 MeV/u and the contribution of the six considered ion types.
The pdd curves are obtained by normalizing depth dose curves to the maximum of the
total dose. Panel C has a logarithmic y-axis to highlight the contribution of the fragments.
Besides the initial carbon ions, protons and helium ions have the highest contribution to
dose, followed by boron ions. The total depth dose curve, as sum over the six curves
(cf. equation (5.1)), is plotted with a linear y-axis in panel D, showing the steep Bragg
peak and the fragmentation tail.
The lateral spread σ(z) without an initial width of the carbon ion beam is plotted in

panel E. The lateral information for this work is gained via interpolation of a lateral spread
database to the simulated initial carbon energies. The database was previously simulated
with the MC code Geant4 [23]. The lateral spread increases to a maximum of σ (z) = 2 mm
at the depth of the Bragg peak of the highest tabulated energy (400 MeV/u). In general
higher initial energy results in a deeper Bragg peak and larger maximum lateral spread.
The small σ (z) facilitates very steep lateral dose gradients. This is one of the rationales
for carbon ion therapy (cf. chapter 2 on page 7). The increase of the lateral spread in
the fragmentation tail, distal to the Bragg peak is caused by the lighter fragments. In the
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5. Physical Beam Model

database [23] the lateral spread is approximated by Gaussian functions. To evaluate and
demonstrate the impact of biological uncertainties in a TPS, the lateral beam modeling by
one Gaussian is sufficient.
For protons a spot-scanning, Pencil Beam (PB) algorithm was implemented in (LAP-)

CERR by Stefan Schell [16, 15]. Within this thesis, I extended LAP-CERR to carbon ions
and their fragmentation spectra. In the implemented approach the dose distribution of one
spot of a PB can be described as function of D(z) and σ(z). An initial spread of the PB
can be included in σ(z).

D (x, y, z) =
D (z)

2π σ2(z)
exp

(

−1

2

x2 + y2

σ2(z)

)

(5.2)

Here, σ(z) is not dependent on x and y. z is the beam direction while x and y are the two
lateral directions. There are drawbacks related to the PB algorithm, for instance in case
inhomogeneous structures are present [24]. Neither the lateral spread nor the fragmentation
spectra include the necessary information to account for inhomogeneous structures. The
uncertainty caused by this is not considered in the evaluation of the biological uncertainties.
Necessary spots in between the 32 initial carbon ion beam energies, are implemented

by a simplified range shifter. It shifts the next Bragg peak with higher energy to the
desired depth. The treatment plan optimization is based on a dij matrix which contains
the complete dose information for every voxel i for every spot j. A spot can have its own
set of position and initial beam energy. One entry in dij represents the dose in voxel i by
a normalized spot j. Multiplying dij by a weights vector ω results in the dose distribution
in every voxel di =

∑

j dij · ωj. Note, that d is used instead of D, indicating a dose per
fraction. Further details about the PB algorithm and the construction of the dij matrix
can be found in references [16, 25].

5.2. LET and LETij- Matrix

The dose-weighted LET is calculated by combining the fragmentation spectra and the
corresponding stopping powers (cf. equation (2.1)).

LET (z) =

∑

Z

∫∞

0
Φ (z, Z, E) · (SP (Z,E))2 dE

∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

(5.3)

The LET (z) curves are tabulated for all 32 initial carbon ion beam energies. Figure 5.2
shows the (total) LET for E0 = 350 MeV/u together with the contributions of the frag-
mentation ions. Up to some millimeters distal to the Bragg peak (zBragg = 21.9 cm) the
carbon ions are the crucial contribution to the total LET. Nevertheless, the lower LET
fragmentation ions result in a noteworthy lower total LET. With further depth, distal to
the Bragg peak, there are no carbon ions left and LET decreases in a first big step. Then
it continuously declines with decreasing number of high-LET ions (compare to the depth
dose relations and relative particle numbers in figure 5.1).
Similar to the dij approach a LETij matrix is implemented in the TPS, allowing the fast

calculation of dose-weighted LET maps. The LET distribution lateral to the central axes
is assumed to be constant at the value of the central axes (LET (x, y, z) = LET (z) for any
x, y combination). The uncertainty caused by this is not considered in the evaluation of
the biological uncertainties.
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5.2. LET and LETij- Matrix
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Figure 5.1.: Exemplary fragmentation spectra, corresponding depth dose curves and fitted
lateral spread for an initial carbon ion energy of E0 = 350 MeV/u. Panel A
shows the relative occurrence of different ion types (The legend of panel A can
be found in panel B). Panel B shows the fragmentation spectra in a depth of
z = 20.9 cm close to the Bragg peak. In panel C the percentage depth dose
(pdd) curve including the contribution of different fragments is displayed with
a logarithmic y-axis. The data is completed by the total depth dose curve with
a linear y-axis (panel D) and the lateral spread (panel E).
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Figure 5.2.: Depth dependency of dose-weighted LET distributions for carbon ions with
E0 = 350 MeV/u. The total LET as well as the contributions of the different
fragmentation ions are displayed. The Bragg peak lies in a depth of 21.9 cm.
The corresponding depth dose relations for the different ions are displayed in
figure 5.1 panel C on page 25.
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6. Biological Models and their
Implementation

In carbon ion therapy, treatment planning must include physical beam properties such
as absorbed dose, LET and nuclear fragmentation, as well as differences in the relative
biological effectiveness (RBE) of ions compared to photons. In ion therapy RBE or the ra-
diosensitivity parameters α and β, which are needed to calculate RBE (cf. equation (2.5))
are dependent on the irradiated cell itself, then on ion type and energy. Due to the nuclear
fragmentation of the carbon ion beam there are several different ion types present. The en-
ergy spectra of these ion types change with depth (cf. figure 5.1 on page 25). The number
of possible combinations for cell experiments is hence too high to perform them system-
atically for all needed ions and their different energies. Consequently biological models
are needed to estimate RBE for treatment plan optimization and evaluation. Within the
framework of the LQ model (cf. section 2.3), several biological models have been developed
to predict changes in α and β as a function of particle type and energy, assuming a set of
x-ray reference parameters. As most of clinical experience and biological experiments are
obtained with x-rays, they are used as reference radiation.
Two biological models are used in this work: the local effect model (LEM) and the repair-

misrepair-fixation (RMF) model. These models and their implementation are presented in
the following chapter. The RMF model has not been combined with fragmentation spectra
or implemented in a TPS before. Therefore the model predictions are compared to other
models and to in vitro measured data, based on cell survival experiments. The implemen-
tation of the RMF model into carbon ion treatment planning as well as the comparisons,
mentioned above, have recently been summarized in a paper which was submitted in De-
cember 2014 [17]. The LEM was chosen because it is actually used in patient treatment
at the HIT (Heidelberger Ionenstrahl-Therapiezentrum). The RMF model was chosen be-
cause it is very fast and thus provides the possibility to perform a comprehensive sensitivity
analysis, as described later on in this work.

6.1. Local Effect Model (LEM)

6.1.1. Basic Concept

The local effect model (LEM) has been developed to predict cell survival after charged
particle irradiation [26, 27]. Besides the x-ray radiosensitivity parameters, the model is
based on several further considerations. One of the main features (cf. reference [28],
page 230) is a threshold dose, above which the LQ model becomes purely linear. This
is needed because the photon response curve is extrapolated to very high local doses,
prominent in high-LET radiation. Then, the radial track structure of deposited dose is
parametrized on a sub- m scale. In addition the critical target (e.g. the cell nucleus) is
modeled as a cylinder. The distribution of the particle tracks over the target structure is
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6. Biological Models and their Implementation

simulated with a Monte Carlo algorithm. The obtained local dose deposition in the target
structure is then converted to a dose and a probability of cell survival. This leads to a
survival curve to which αp and βp are fitted.
There have been several improvements on the original LEM1 version (LEM2-4). For a

more detailed overview see Grün et al. [29] and references therein. Within the scope of this
thesis the LEM1 is implemented into CERR. LEM1 is the only version which is currently
implemented in clinical routine [30]. For comparison with other biological models, LEM4
[31] results, published in [29], are used as well.

6.1.2. Implementation

The dependencies of αp and βp on the ion type and energy are taken from the LEM
implementations by INFN (Istituto Nazionale di Fisica Nucleare) and I-SEE (Internet -
Simulation, Evaluation, Envision) which are available online∗ [32]. There, tabulated LEM1
data sets are available for different cell lines (αx and βx). Following Zaider and Rossi [33],
dose-weighted αp(z) and βp(z) can be calculated for each cell line by integrating over the
fragmentation spectra:

αp (z) =

∑

Z

∫∞

0
αp (z, Z, E) · Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

(6.1)

√

βp (z) =

∑

Z

∫∞

0

√

βp (z, Z, E) · Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

(6.2)

The depth dependencies according to equations (6.1) and (6.2) are pre-calculated for all
32 carbon ion beam energies and needed cell lines and tabulated. For carbon ion treatment
optimization two matrices αp,ij and βp,ij are constructed similar to the dij matrix. These
matrices contain the contribution of spot j to the voxel i.

6.2. Repair-Misrepair-Fixation (RMF) Model

6.2.1. Basic Concept

The repair-misrepair-fixation (RMF) model was developed and evaluated by Carlson et
al. [12] as a mechanistic approach, linking reproductive cell death by mitotic catastrophe,
apoptosis, or other cell death modes to double-strand break (DSB) induction and process-
ing. Carlson et al. [12] and Frese et al. [34] showed how to determine the linear α and the
quadratic β term of the LQ model for a given radiation quality, using DSB induction (Σ)
and the frequency-mean specific energy (z̄F ).

α =
Σ

Σx

[

αx + 2
βx

Σx

(Σ · z̄F − Σx · z̄Fx
)

]

(6.3)

β =

(

Σ

Σx

)2

βx (6.4)

∗http://totlxl.to.infn.it/lem
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6.2. Repair-Misrepair-Fixation (RMF) Model

The initial number of DSB per Gy per giga-base-pair is derived from the Monte Carlo
Damage Simulation (MCDS) [35, 36]. In the MCDS, Σ is only dependent on the physical
property [37],

Z2
eff

β2
v

=
Z2

β2
v

[

1− exp
(

−125 · βv · Z− 2

3

)]

(6.5)

where Zeff is the effective ion charge and βv is the velocity of the ion divided by the speed
of light in vacuum. This is a key feature of the RMF model, resulting in one (Zeff/βv)

2 -
Σ table describing the DSB induction for all relevant ions and their energies. The second
variable depending on the radiation quality is z̄F , which can be approximated as

z̄F = 0.204
SP

d2C
(6.6)

with the stopping power SP and dC the diameter of a spherical water target, representing
the cell. Here dC = 5  m is used as it was done by Carlson et al. [12]. The x-ray reference
radiation is modeled by its spectrum of secondary electrons. An electron spectrum of a
Cobalt-60 source is provided at MCDS homepage† [38]. A complementary MCDS run for
the generation of the used Σ lookup table lasts approximately 2 h on a 2.66 GHz dual-core
work station. In this work, MCDS version 3.10 is used. It provides an improvement of the
z̄F approximation for high stopping powers [39], which had no impact on the here presented
results.

6.2.2. Implementation

The structure of the RMF model allows an adapted, faster way to calculate αp and βp for
different cell lines (characterized here by αx and βx). Inserting equations (6.3) and (6.4)
in equations (6.1) and (6.2), αx and βx can be factored out.

αp (z) = αx

∑

Z

∫∞

0

[

Σ(z,Z,E)
Σx

]

Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

+ βx

∑

Z

∫∞

0

[

2Σ2(z,Z,E)
Σ2

x
· z̄F
]

Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

− βx

∑

Z

∫∞

0

[

2Σ(z,Z,E)
Σx

· z̄Fx

]

Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

= αx · c1 (z) + βx · c2 (z) (6.7)

√

βp (z) =

∑

Z

∫∞

0

[√
βx · Σ(z,Z,E)

Σx

]

Φ (z, Z, E) · SP (Z,E) dE
∑

Z

∫∞

0
Φ (z, Z, E) · SP (Z,E) dE

=
√

βx · c1 (z) (6.8)

†http://faculty.washington.edu/trawets/mcds
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This allows to tabulate only c1 (z) and c2 (z) for the RMF model. Any desired αx, βx

combination can be chosen still after the ray tracing, when the ij-matrices are already
constructed. This leads to the concept of c1,ij and c2,ij within the RMF model.
Please note the further step in section 7.1, equations (7.5) - (7.8), where it is shown

that αx and βx can be still changed after the optimization using the RMF model. The
calculation of a new set of αp and βp based on changes in αx and βx is hence very fast.
Another advantage of the RMF model is that RBE (cf. equation (2.5)) is only a function
of αx/βx and not αx and βx (cf. reference [34], equation (17))

RBERMF

(

αx

βx

, c1, c2, d

)

=
1

2d
·



−αx

βx

+

√

(

αx

βx

)2

+ 4d

(

c1
αx

βx

+ c2 + c21d

)



 . (6.9)

6.2.3. Validation of RMF Model Predictions against a Cell Survival

Database

In contrast to the LEM, the RMF model has not been used in three-dimensional ion
treatment planning before. To validate the use of the RMF model for carbon ion therapy,
the model predictions are compared to published, experimentally derived values [17]. The
Particle Irradiation Data Ensemble (PIDE)‡ [40] provides a compilation of α and β values,
fitted to cell survival curves for ions and reference x-rays. PIDE version 2.0 released in
September 2013 is used. In contrast to the evaluation by Frese et al. [34], who compared αp

and βp values as function of LET to in vitro results, RBE values at two survival levels are
compared. The low dose limit RBEα and RBE(S = 10%) are evaluated here. Figure 6.1
shows the comparison of protons (panel A and B) and carbon ions (panel C and D). Protons
are chosen because they are the most prominent fragmentation ions. Panel A and C show
the simplified zero dose limit, where RBE reduces to RBE = αp/αx. Using the RMF
model (equations (6.3) and (6.4)), the hyperbolas describing the RMF model results can
be calculated as a function of αx/βx.

RBEα =
αp

αx

=
Σ

Σx

+ 2

(

Σ2

Σ2
x

· z̄F − Σ

Σx

· z̄F,x
)(

αx

βx

)−1

(6.10)

Instead of the integrals in equation (6.7), the DSB induction Σ can be used as mono-
energetic protons and carbon ions are evaluated.
Figure 6.1 illustrates that the RMF model is able to predict quantitative and qualitative

trends in ion RBE. Higher LET results in higher RBE. Additionally, the value of RBE
declines with increasing αx/βx. This observation is valid for RBEα as well as RBE(S =
10%). The RBE for carbon ions is much higher than RBE for protons. The described
relations are more pronounced for carbon ions, but do have the same trend for protons.
The RBE of further ions (Z = 2...5) contained in the fragmentation spectra lie in between
protons and carbon ions. RBEα shows a higher dependency on αx/βx.
RMF model based RBE predictions for carbon ions change from RBEα = 17 to 3.6

(LET = 130 keV/ m) or 7 to 2.5 (LET = 70 keV/ m) in the evaluated αx/βx range.
There is only a slight decrease in RBE at 10% survival level: 3.6 to 3.3 and 2.42 to 2.33
for LET = 130 keV/ m and 70 keV/ m respectively. For protons this effect is smaller,
ranging from RBEα = 3.12 to 1.92 (LET = 24 keV/ m) or 1.4 to 1.26 (LET = 8 keV/ m).

‡https://www.gsi.de/bio-pide
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6.2. Repair-Misrepair-Fixation (RMF) Model

Figure 6.1.: Comparison of RMF model predictions with experimentally derived values
reported by multiple institutions (PIDE data base) for RBE values of two
biological endpoints (panel A and C: RBEα, panel B and D: RBE at a survival
S = 10% for protons and carbon ions respectively) and a range of linear
energy transfer (LET) and αx/βx values.
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6. Biological Models and their Implementation

For the presented proton LET ranges, the RBE at 10% survival is quasi constant over the
plotted αx/βx range. The values are RBE = 1.9 for LET = 24 keV/ m and RBE = 1.3
for 8 keV/ m respectively.

In the framework of the RMF model, the displayed relations depend only on αx/βx

(cf. equation (6.9)). This means if one specific LET and survival level is considered, two
cell lines with equal αx/βx have the same RBE value.

Error bars are not reported in the PIDE database. They are in general large and rep-
resent a main challenge for biological modeling. This affects both, LEM and RMF model
predictions. The error bars and the basic issue of taking the step from in vitro cell experi-
ments to cell response inside the human body, represent the rationales of this thesis. This
key topic is subject of chapter 3.

6.2.4. Combining Fragmentation Spectra with the RMF Model

In order to evaluate the impact of the fragmentation on RBE predictions three different
approaches are compared: FLUKA-simulated spectra with and without fragmentation and
the analytical approach without fragmentation used by Frese et al. [34]. This work was
accomplished in collaboration with David J. Carlson, Katia Parodi, Gonzalo Cabal and
Andrea Mairani [17]. Figure 6.2 shows the impact of the fragmentation spectra on RWD for
two different αx/βx = 2 and 10 Gy for a one-dimensional spread-out Bragg peak (SOBP)
covering a 5 cm target, from 10 to 15 cm depth in water. A constant dose d = 1 Gy
was optimized for panel A and B. In addition, a constant RWD of 3 Gy(RBE) is shown
in panel C and D. The inclusion of fragmentation spectra reduces the predicted RWD,
particularly in the distal part of the SOBP. Table 6.1 shows the reduction of the RBE
values for different dose levels ranging from 0.1 to 10 Gy, comparing the FLUKA spectra
with and without fragmentation for the proximal edge (z = 10 cm), distal edge (z = 15 cm)
and the mean value across the entire SOBP. Panels C and D in figure 6.2 illustrate the
physical dose, which is needed to obtain a uniform biological effect of 3 Gy(RBE) within
the SOPB. If nuclear fragments are neglected in the simulation, the estimated physical
dose required to obtain a constant RWD may be underestimated. For the here used 5 cm
SOBP this is by up to 33% for αx/βx = 2 Gy and 24% for αx/βx = 10 Gy respectively
(panel C and D). The highest underestimations occur in the distal part of the SOBP.
Without fragmentation a dose of 0.36 Gy is needed instead of 0.54 Gy with fragmentation
for αx/βx = 2 Gy. The corresponding dose values for αx/βx = 10 Gy are d = 0.60 Gy
without and d = 0.79 Gy with fragmentation.

If fragmentation spectra are included, the absolute value of RBE reduces. Similar eval-
uations for different treatment depths and target sizes are quantitatively and qualitatively
consistent. The reduction is the largest where the number of fragments is the highest (close
to the distal part of the SOBP). The potential RBE over prediction of the RMF model at
the distal edge of a carbon ion SOBP, as reported by Frese et al. [34], is less prominent.

Figure 6.2 and table 6.1 furthermore show good agreement of the analytical implemen-
tation and the FLUKA spectra without fragmentation. The approximation done by Frese
et al. [34] matches with the Monte Carlo results (differences smaller than 10%). This
comparison to published data is the reason for choosing a one-dimensional SOBP in this
part of the work.
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6.3. Comparison of RMF Model Predictions to LEM Predictions

RBE( αx/βx = 2 Gy)

Proximal Distal Average
dose anal. MC MC anal. MC MC anal. MC MC
in Gy w/o Frag. w/o Frag. Frag. w/o Frag. w/o Frag. Frag. w/o Frag. w/o Frag. Frag.
0.1 2.17 2.04 2.01 10.75 9.74 8.37 4.42 4.12 3.75
0.5 1.93 1.84 1.80 6.71 6.22 5.48 3.28 3.12 2.90
1 1.80 1.74 1.70 5.34 5.01 4.45 2.81 2.71 2.53
2 1.64 1.63 1.59 4.36 4.12 3.67 2.43 2.37 2.22
5 1.53 1.54 1.51 3.45 3.34 2.99 2.10 2.07 1.95
10 1.49 1.51 1.47 3.04 3.00 2.69 1.95 1.95 1.84

RBE( αx/βx = 10 Gy)

Proximal Distal Average
dose anal. MC MC anal. MC MC anal. MC MC
in Gy w/o Frag. w/o Frag. Frag. w/o Frag. w/o Frag. Frag. w/o Frag. w/o Frag. Frag.
0.1 1.64 1.61 1.58 5.02 4.73 4.06 2.46 2.39 2.22
0.5 1.63 1.59 1.56 4.53 4.30 3.75 2.36 2.30 2.15
1 1.61 1.58 1.54 4.15 3.98 3.50 2.28 2.23 2.08
2 1.55 1.55 1.52 3.77 3.63 3.21 2.17 2.13 2.00
5 1.50 1.52 1.48 3.27 3.19 2.85 2.02 2.00 1.89
10 1.48 1.50 1.46 2.98 2.95 2.64 1.93 1.92 1.82

Table 6.1.: RBE values for a range of physical doses and αx/βx values. RBE estimations
of the analytical model without fragmentation as published by Frese et al.
[34] can be compared to estimations using the MC spectra with and without
fragmentation. The RBE values are shown for the proximal edge (z = 10 cm),
the distal edge (z = 15 cm) and the mean from 10-15 cm (compare to figure
6.2, upper row).

6.3. Comparison of RMF Model Predictions to LEM

Predictions

We compared LEM1 predictions to RMF model predictions for two different cell lines, one
with a small αx/βx ratio of 2 Gy (αx = 0.1 Gy-1, βx = 0.05 Gy-2 as used for chordoma of
the skull base, [30]) and a second with a higher ratio αx/βx = 9.2 Gy (αx = 0.184 Gy-1,
βx = 0.02 Gy-2 for Chinese hamster fibroblast, V79 [41]). Tabulated LEM1 data for both
cell lines are provided online by the INFN/I-SEE project. Figure 6.3 illustrates the com-
parison in a simplified one-dimensional geometry, similar to figure 6.2 (cf. Kamp et al.
[17]). Both models were implemented using the FLUKA generated fragmentation spectra.

In panels A and B RBE predictions for the LEM1(RBELEM1) and the RMF model
(RBERMF) can be compared. For αx/βx = 2 Gy and a constant physical dose of 0.5 and
2 Gy, RBERMF lies below RBELEM1 in the entrance region (-58% and -40% for d = 0.5 and
2 Gy) and the proximal part (-48% and -30%) of the target. On the distal edge, RBERMF

values rise above the RBELEM1 values (+23% and +38%). For the higher αx/βx = 9.2 Gy
RBERMF is close to to RBELEM1 (-10% and -5%) in the entrance region, approximately
the same in the proximal part of the SOBP and lies above it in the distal part (+60%
and +66%). The same behavior is observed for those plans that are optimized on constant
RBELEM1 and then recalculated with the RMF model, keeping d constant at the LEM1
optimization result. The difference between RBERMF and RBELEM1 ranges from -58% over
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Figure 6.2.: Comparison of RMF model predictions of RWD for a SOBP in one dimen-
sion with and without FLUKA-generated nuclear fragments and an analytical
approach without fragmentation implemented by Frese et al. [34]. The com-
parison is shown for two assumed αx/βx = 2 and 10 Gy (left and right panels
respectively). SOBPs were optimized for a target in water at a depth of 10-
15 cm for a physical dose of 1 Gy (panels A and B) and a RWD of 3 Gy(RBE)
(panels C and D).

-43% to +24% (entrance, proximal, distal) for αx/βx = 2 Gy and -9% over -3% to +60%
respectively for αx/βx = 9.2 Gy. The changes are less prominent in the two fields cases
(panel E and F), because high LET regions from one field average each other out with the
low LET regions of the second field. The trends for αx/βx = 2 Gy in figure 6.3 (smaller
RBE in the entrance region, and the proximal part of the target and higher RBE in the
distal part of the target) resemble the figures reported by Grün et al. [29] obtained in a
3-D geometry. Similar to their LEM1/LEM4 comparison for chordoma (αx = 0.1 Gy-1,
βx = 0.05 Gy-2 ), we optimized a spherical target, with 6 cm diameter located at z = 7
to 13 cm depth in water. Here, plans are optimized on constant physical dose for five
different dose levels, ranging from 0.5 to 10 Gy for one field. The RBE is evaluated for the
LEM1 and the RMF model. Table 6.2 shows the results for the proximal edge, distal edge,
and mean RBE in the sphere for the FLUKA-RMF implementation, our FLUKA-LEM1
combination and the results for LEM1 and LEM4 reported by Grün et al. [29].
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Figure 6.3.: Comparison of RMF model and LEM1 predictions for a 1-D treatment sce-
nario. Plans were optimized on a constant physical dose of 0.5 and 2 Gy
(panels A and B). Panels C and D (single field) and panels E and F (two
fields) show scenarios based on the biological effect optimization for LEM1.
RMF model predictions are recalculated with the same physical dose distri-
bution resulting from LEM1. Panels C and D show the left fields of panels E
and F.
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6. Biological Models and their Implementation

RBE (LEM1 / FLUKA) RBE (LEM1 / Grün[29])

Dose in Gy Proximal Distal Average Proximal Distal Average
0.5 3.52 4.77 3.94 3.69 4.99 4.19
1 2.83 3.74 3.12 2.96 3.86 3.30
2 2.24 2.87 2.43 2.33 2.93 2.56
5 1.65 1.99 1.74 1.70 2.01 1.82
10 1.34 1.52 1.39 1.38 1.52 1.43

RBE (RMF / FLUKA) RBE (LEM4 / Grün[29])

Dose in Gy Proximal Distal Average Proximal Distal Average
0.5 1.89 5.28 2.88 2.09 8.61 4.19
1 1.77 4.31 2.52 1.80 6.45 3.30
2 1.65 3.55 2.22 1.53 4.75 2.56
5 1.55 2.87 1.95 1.26 3.13 1.83
10 1.51 2.57 1.84 1.13 2.28 1.45

Table 6.2.: Comparison of RBE model predictions calculated with the RMF model, LEM1-
FLUKA combination as well as the LEM1 and LEM4 results reported by Grün
et al. [29]. The values are taken from a spherical target optimization (diameter
6 cm) located in 10 cm depth in water at the depths 7 cm (proximal) and
13 cm (distal). The plans are optimized in 3-D to constant physical dose values
ranging from 0.5 to 10 Gy.

We are able to reproduce the Grün-LEM1 values with our FLUKA-LEM1 combination.
Deviations in RBE are less than 6%. This implementation allows the comparison of RMF
model predictions to the latest version LEM4. In the proximal part of the planning target
volume (PTV), RMF model and the LEM4 have lower RBE predictions than the LEM1.
This effect is higher for the RMF model and small doses and smaller for higher doses.
At the distal point of the PTV, both, RMF model and LEM4 increase the RBE values.
Despite the high dose level of 10 Gy, RMF model prediction show a less steep increase of
the RBE. The mean RBE values of the RMF model calculations are smaller than LEM1
and LEM4. This can be explained by a steeper increase at greater depth, towards the
distal edge of the PTV of the RMF model predictions.
The RMF model predictions show similar behavior like the versions of the LEM. Devia-

tions from the LEM1 have the same trend as the LEM4 (for αx/βx = 2 Gy). Further LEM4
data, e.g. for different cell lines or treatment depths and geometries are not available in
literature. For a comprehensive RMF model comparison to LEM4 further data are needed.
Nevertheless, the performed validation of the RMF model justifies its use in the analysis
of the uncertainties in the biological modeling of carbon ion treatment planning.
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7. Treatment Optimization and
Evaluation

The goal of radiotherapy is to kill cancer cells (treat the tumor) and at the same time spare
normal tissue. This means to obtain the optimal treatment plan within physical and tech-
nological boundaries and respect to given clinical criteria. Those criteria and constraints
are translated into numerical values which can be used as an input for optimization algo-
rithms. An overview of different optimization approaches and algorithms can be found in
literature (e.g. [28], chapter 17 and references therein).

In particle radiotherapy, several pristine Bragg peaks (spots) are placed in the target to
cover the target homogeneously. An optimization is needed to find the necessary weights
of the used spots. The aim of optimization in ion radiotherapy is to find an optimal set
of weights for the beam spots to achieve the treatment goal, i.e. to deliver a prescribed
dose to the target and preferably spare normal tissue. To translate this objective into
a numerical function that can be handled by optimization algorithms, several steps have
to be taken. In the next sections the needed physical and biological quantities and their
calculation are presented. This is followed by the description of the used objective function
and the implementation of additional constraints and objectives. Then the patient case
used throughout this thesis is presented along with an exemplified optimization result. The
chapter is completed by a short description of the tools implemented for treatment plan
evaluation.

7.1. Voxel-wise Calculation of Relevant Physical and

Biological Quantities

The concept of the ij-matrices was already introduced in section 5.1. The next equations
give an overview of the implemented matrices as well as the physical and biological quanti-
ties that can be calculated in every voxel (i) for a given set of weights ωj. The calculation
of LET is described in [3], the calculation of αp,i and βp,i in [42].

di =
∑

j

dij · ωj (7.1)

LETi =
1

di

∑

j

LETij · dij · ωj (7.2)

αp,i =
1

di

∑

j

αp,ij · dij · ωj (7.3)

√

βp,i =
1

di

∑

j

√

βp,ij · dij · ωj (7.4)
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The RMF model has the very convenient property that αx and βx can always be factored
out and, hence, even be changed after an optimization without the need for much addi-
tional computation time. Using the RMF model, αp,i and βp,i can be expressed similar to
equations (6.7) and (6.8) on page 29.

αp,i = αx,i · c1,i + βx,i · c2,i (7.5)

βp,i = βx,i · (c1,i)2 (7.6)

Solving equations (7.5) and (7.6) for c1,i and c2,i shows how to determine these values from
known αp,i and βp,i distributions. A change of αx and βx can be done very fast. It is based
on αp,i and βp,i only, without the need to store c1 and c2 values.

c1,i =

√

βp,i

βx,i

(7.7)

c2,i =
αp,i − αx,i

√

βp,i

βx,i

βx,i

(7.8)

Within the framework of the RMF model, also c1 and c2 can be implemented as ij-matrices.
Combining equations (7.7) and (7.8) with equations (7.3) and (7.4) demonstrates this.
Note, that αx,i and βx,i can have a different value in every voxel i but do not depend on
the spot j.

c1,i =

√

βp,i

βx,i

=

√

√

√

√

1

βx,id2i

(

∑

j

√

βp,ij · dij · ωj

)2

=
1

√

βx,i · di

∑

j

√

βx,i · c1,ij · dij · ωj

=
1

di

∑

j

c1,ij · dij · ωj (7.9)

c2,i =
αp,i − αx,i

√

βp,i

βx,i

βx,i

=
−αx,i

√

βp,i

βx,i
+ αp,i

βx,i

=
1

βx,i

(

−αx,i · c1,i +
1

di

∑

j

αp,ij · dij · ωj

)

=
1

βx,i

(

−αx,i · c1,i +
1

di

∑

j

αx,i · c1,ij · dij · ωj +
1

di

∑

j

βx,i · c2,ij · dij · ωj

)

=
1

di

∑

j

c2,ij · dij · ωj (7.10)
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7.2. Cost-Function

The list of quantities that are needed in every voxel is completed by RBE, RWD and
the equivalent dose in 2 Gy fractions (EQD2) [43] which are calculated for isoeffects in the
LQ model framework. The dose di is a dose per fraction.

RBEi =
−αx,i +

√

α2
x,i + 4βx,i (αp,idi + βp,id2i )

2βx,idi
(7.11)

RWDi = RBEi · di (7.12)

EQD2i = RBEi ·N · di
RBEi · di + αx,i/βx,i

2Gy + αx,i/βx,i

(7.13)

For the calculation of EQD2 the number of fractions N needs to be specified.

7.2. Cost-Function

Wilkens and Oelfke [42] proposed an optimization routine based on the biological effect.

F =
∑

i

pi (εi (ω)− εi,pres)
2 (7.14)

=
∑

i

pi
[(

αp,i · di + βp,i · d2i
)

−
(

αx,i · dx,i + βx,i · d2x,i
)]2

(7.15)

where F is the objective function and pi the penalty term. This term is the relative im-
portance of the deviation from the prescribed biological effect. The higher pi, the more
important it is to achieve the prescribed biological effect in this voxel. As the biological
effect is a less intuitive quantity, RWD values are prescribed for this carbon ion optimiza-
tion. The RWD can be converted to a biological effect by equation (2.3). The objective
function is minimized using the fmincon functionality contained in the Matlab (versions
2012-2014a) optimization toolbox with the constraint that ωj ≥ 0 ∀j. For an optimization
step, the gradient is needed for all beam spots.

∂F

∂ωk

= 2
∑

i

pi (εi (ω)− εi,pres) ·
[

αp,ikdp,ik + 2

(

∑

j

√

βp,ijdp,ij · ωj

)

·
√

βp,ikdp,ik

]

(7.16)

The sums in the description of the objective functions include all voxel. This is done for an
easier notation. If one voxel should not appear in the objective function, the correspond-
ing penalty term is set as pi = 0. To save computation time and RAM (Random-Access
Memory), voxel with pi = 0 are removed before the optimization. The L-BFGS (limited
memory-Broyden-Fletcher-Goldfarb-Shanno [44, 42] algorithm is used for the determina-
tion of the Hessian matrix. For the sake of completeness, the formulas for the analytical
calculation of the Hessians are given in Appendix A.

7.3. Objectives and Constraints

To steer the optimization towards the result desired, additional objectives and constraints
can be added to the objective function.
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7.3.1. Implemented Objectives

Additional terms for maximum and minimum RWD can be assigned for every voxel and
converted to biological effects. Objectives for the maximum RWD are used to spare normal
tissue or avoid hot spots in the target, whereas minimum RWD objectives are reasonable
only for target structures.

FobjMax =
∑

i

pi,objMax [εi (ω)− εi,objMax]
2
+ (7.17)

FobjMin =
∑

i

pi,objMin [εi,objMin − εi (ω)]
2
+ (7.18)

The [ ]+ operator is short notation for a multiplication by the Heaviside step function H(x),
which is 0 for x < 0 and 1 for x ≥ 0. The gradients for the objectives can be calculated
similarly to equation (7.16) because the terms with the first derivation of H(x) are 0.

∂FobjMax

∂ωk

= 2
∑

i

pi,objMax [εi (ω)− εi,objMax]+ · g (αp, βp, d, ω) (7.19)

∂FobjMin

∂ωk

= 2
∑

i

pi,objMin [εi,objMin − εi (ω)]+ · g (αp, βp, d, ω) (7.20)

with

g (αp, βp, d, ω) =

[

αp,ikdp,ik + 2

(

∑

j

√

βp,ijdp,ij · ωj

)

·
√

βp,ikdp,ik

]

Note, that these objectives are minimized too, hence the total cost function for an opti-
mization including objectives is calculated as a sum. Consequently also the gradients are
summed up.

Ftot = F + FobjMax + FobjMin (7.21)

∂Ftot

∂ωk

=
∂F

∂ωk

+
∂FobjMax

∂ωk

+
∂FobjMin

∂ωk

(7.22)

The calculation of the corresponding Hessian matrices is summarized in Appendix A.2.

7.3.2. Implemented Constraints

Besides the constraint for ωj (ωj ≥ 0), hard minimum and maximum RWD constraints can
be set. Again, using equation (2.3), RWD can be converted into biological effects. Using
the feature of the Matlab fmincon function which allows nonlinear constraints in form of
c (ω) ≤ 0, a hard maximum and minimum biological effect constraint can be added to the
optimization for all voxel where desired.

ci,conMax = αp,idp,i + βp,id
2
p,i − εi,conMax ≤ 0 (7.23)

ci,conMin = −αp,idp,i − βp,id
2
p,i + εi,conMin ≤ 0 (7.24)
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7.4. Example of a Treatment Plan Optimization Result

p RWDpres pobjMax RWDobjMax pobjMin RWDobjMin

Target 150 3 Gy(RBE) 150 3.4 Gy(RBE) 300 2.95 Gy(RBE)
non Target 0 — 10 2.5 Gy(RBE) 0 —

Table 7.1.: Default prescribed RWD, penalties and objectives for the optimizations per-
formed for this work. Constraints were not applied.

The corresponding gradients are

∂ci,conMax

∂ωk

= αp,ikdp,ik + 2

(

∑

j

√

βp,ijdp,ij · ωj

)

·
√

βp,ikdp,ik (7.25)

∂ci,conMin

∂ωk

= −αp,ikdp,ik − 2

(

∑

j

√

βp,ijdp,ij · ωj

)

·
√

βp,ikdp,ik (7.26)

A further constraint forces the mean RWD inside the target to be the prescribed RWD.
It was implemented using the equal constraint of the Matlab fmincon function, which has
the general form ceq (ω) = 0. Applying this for the mean prescribed dose in the target we
get:

ceqmeanTar =
1

Ntar

∑

i∈tar

(

αp,idp,i + βp,id
2
p,i − εpresTar

)

= 0 (7.27)

with Ntar being the number of voxel in the target. It is assumed that εpresTar is constant
throughout the target. The gradient can be calculated as follows.

∂ceqmeanTar

∂ωk

=
1

Ntar

∑

i∈tar

[

αp,ikdp,ik + 2

(

∑

j

√

βp,ijdp,ij · ωj

)

·
√

βp,ikdp,ik

]

(7.28)

The calculation of the Hessian of the implemented constraints is presented in Appendix A.3.

7.4. Example of a Treatment Plan Optimization Result

Figure 7.1 shows a result of a treatment plan optimization. This astrocytoma patient was
initially treated with photon radiotherapy at the Klinikum rechts der Isar in Munich and is
used as the planning and evaluation example throughout this work. For figure 7.1 constant
values αx = 0.1 Gy-1 and βx = 0.05 Gy-2 are set throughout the patient. The RMF model
is used here. (A similar example using the LEM1 is shown in figure B.1 in Appendix B.)
The plan was optimized on RWD = 3 Gy(RBE) in the target region with two carbon
beams. These eight panels show the used beam geometry and the calculated biological
and physical quantities in color on top of the patient CT. The optimization settings in
terms of prescribed RWD, penalties and objectives are summarized in table 7.1. These are
the default values, used if not specified otherwise. Constraints were not applied for the
optimizations executed for this work.
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Figure 7.1.: Example of an optimization result with the RMF model showing the optimized
RWD (panel A) and the calculated RBE (panel B). Physical dose and dose-
weighted LET are plotted in panels C and D. The radiosensitivity parameters
αp and βp (panels E and F respectively) were obtained with the RMF model
and constant values αx = 0.1 Gy-1 and βx = 0.05 Gy-2. Panel G shows the
EQD2 calculated voxel by voxel. The used beam geometry for the astrocytoma
patient can be found in panel H. The planning target volume (PTV) is marked
in red, the left optical nerve in green together with the left eyeball (orange)
and the left lens (brown).
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7.5. Treatment Evaluation

7.5. Treatment Evaluation

In the following sections, treatment plan evaluations are introduced. For evaluation and
comparison the information in the three-dimensional maps (cf. figure 7.1) needs to be
compressed and visualized. The approaches presented here do not comprise the entire list
of tools and values available in radiotherapy. The selection is limited to the approaches
implemented in the sensitivity analysis performed in this work.
Referring to the uncertainties in biological dose response models, a further differentiation

can be done. Here I want to draw attention to the dimension of the examined treatment
evaluation. The three-dimensional maps in the previous chapter are of the highest dimen-
sion. This information is reduced to one dimension for dose-volume histograms presented
in section 7.5.1. Tumor control probability (TCP, section 7.5.2) and dVol (section 7.5.1)
are scalars. The reduction of dimensions results, inevitable, in a loss of information.

7.5.1. Dose-Volume Histogram (DVH) and dVol

Dose-volume histograms (DVHs) are commonly used tools for three-dimensional treatment
plan evaluation. They convert 3-D dose distributions into histograms, displaying the main
features of a treatment plan: maximum, minimum, mean and median dose. Another
measure, strongly related to the DVH, is dVol. It describes the dose that a part of the
volume reaches or exceeds. For example, d98% = 2 Gy means that at least 2 Gy are
delivered to 98% of the volume (cf. reference [45], page 127). Note, that the dose per
fraction is used here to be consistent with the calculations in the previous chapters.
DVHs can be presented in both differential and cumulative form. As cumulative DVHs

are usually used in clinical routine, this type of histogram is considered in this thesis. A
cumulative DVH shows the fraction of the volume of a structure receiving doses of at least
a given value [46, 47].
The concept of DVHs and dVol were introduced for photon irradiation, but can applied

for ion therapy as well. This leads to the RWDVH (RBE-weighted dose-volume histogram)
and RWDVol. Figure 7.2 shows the RWDVH of the optimization result in figure 7.1 for two
different structures.

7.5.2. Tumor Control Probability (TCP)

The tumor control probability (TCP) was introduced to describe the outcome of a radio-
therapy treatment. Several TCP models were developed ([28], page 228 and references
therein). TCP modeling is complex, as tumor response is influenced by several factors,
which may change dynamically. The response of tumor cells depend for example on oxy-
genation, angiogenesis and the state of the cell cycle.
Here a simple Poisson statistics based model is used, which is derived from the LQ cell

survival description and does not include repopulation, (changing) oxygenation et cetera.
Several additional assumptions are made. The main assumption is that a tumor consists of
a number of non-interacting, individually responding clonogenic cells. The tumor is locally
controlled in case zero clonogenic cells survive [48]. TCP can then be calculated as the
probability that all clonogenic cells are killed.

TCP = exp

[

−
∑

i∈PTV

ρcνi · exp
(

−αp,idiN − βp,id
2
iN
)

]

. (7.29)
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Figure 7.2.: Example of a RWDVH for the RWD distribution shown in figure 7.1 panel A
for two structures. Example RWDVol values for the planning target volume
(PTV) are: RWD98% = 2.93 Gy(RBE) and RWD2% = 3.16 Gy(RBE).

The density of the clonogenic cells ρc is set, spatially constant, to 107 cm-3 cells. In
this thesis the volume of a voxel is used for νi. In the used patient case this means
νi = (0.2 cm)3.
This is a brief introduction to TCP calculations. This thesis neither aims to predict

absolute TCP values, nor does it compare different (competing) treatment plans. TCP is
introduced to examine how the calculation itself is subject to changes due to uncertainties
in biological parameters. For this, equation (7.29) is adequate. Normal tissue complication
probabilities, which limit the maximum achievable dose in the tumor and hence TCP are
not evaluated within the scope of this thesis.
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Part III.

Sensitivity Analysis
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The uncertainties in biological dose response models are investigated with a sensitivity
analysis (SA). A sensitivity analysis can be defined as: The study of how uncertainty in
the output of a model (numerical or otherwise) can be apportioned to different sources
of uncertainty in the model input. (Saltelli et al. [49]). Two features are important
throughout this thesis. First, it is important to calculate and quantify uncertainties in the
model output. Second, the composition of this uncertainty in the output is broken down to
the different input uncertainties. Without the second feature, the analysis would be better
characterized as an uncertainty analysis and not a sensitivity analysis.
The SA applied here demonstrates the impact of uncertainties in the model input, result-

ing in an uncertainty of the output. In addition, SA aims to tell the relative importance of
different model input uncertainties on the output uncertainty. In other words, the uncer-
tainties of the biological dose response models (error bars) are determined, accompanied
by the information about its composition. With this, a weighting of the impact of different
uncertainties in the model input is achieved.
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8. Sensitivity Analysis Methods

In this chapter several well known, basic SA methods are recapitulated followed by a set
of more advanced variance (or Monte Carlo)-based approaches. After a short introduction
to the method, I will point out the limitations of the basic SA methods and why more
advanced methods are needed here. Additionally the drawbacks of the new approaches
are discussed together with their implementation into treatment plan evaluation. The end
of this chapter links the SA to treatment plan evaluation by showing newly developed
visualization methods. These visualizations are essential for analyzing the SA results.
First the SA methods are presented in a general (more mathematical) way. Then they

are adapted to the biological methods in carbon ion therapy. As an example function
Y (X1, ..., Xj, ..., Xm) of m input variables can be considered. For a better notation it is
assumed that all Xj affect Y (meaning ∂Y/∂Xj 6= 0). For the sake of convenience, the
input variables are independent ∂Xj/∂Xk = 0 for k 6= j if not indicated otherwise (the case
of dependent variables is discussed briefly for SA approaches where it might be important).
The basic motivation of any SA is to evaluate the impact of a change or uncertainty ∆Xj

in the inputs Xj on the result Y . This can be done using the following methods.

8.1. Simple Sensitivity Analysis

8.1.1. Method

The simplest and hence extensively used method to access the sensitivity of Y on a change
in Xj is to add this change Xj +∆Xj and reevaluate the function.

∆jY = Y (X1, ..., Xj +∆Xj, ..., Xm)− Y (X1, ..., Xj, ..., Xm) (8.1)

This way is often used to show a general behavior of a function with changing input. A
further step, defining a simple sensitivity value S, is to divide equation (8.1) by the change
in one parameter.

Ssimple
j =

Y (X1, ..., Xj +∆Xj , ..., Xm)− Y (X1, ..., Xj , ..., Xm)

∆Xj

(8.2)

Equations (8.1) and (8.2) are strongly related to each other. Most often equation (8.1)
is used in literature related to ion therapy. An example is shown in [8] where inputs are
changed by ±25%. The definition of Ssimple

j is added here because it shows the first step
towards a mathematical treatment of changes. The difference caused by a changing Xj

is normalized by the size of the change and hence better comparable in the mathemati-
cal sense. This is not necessarily true for actually applied physical functions and input
uncertainties. To demonstrate this, the very simple function Y = X1 + X2 can be used
as an example. In case that the uncertainty in X1 is small (e.g. ∆X1 = 0.1) compared
to the uncertainty in X2 (e.g. ∆X2 = 1), both sensitivities are Ssimple

1 = Ssimple
2 = 1,
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8. Sensitivity Analysis Methods

indicating the same impact, whereas Y is changed by ∆1Y = 0.1 compared to ∆2Y = 1.
The normalization to the size of the change is not always useful.
Evaluating either of these two equations systematically for allm input parameters, gives a

first impression of the different impacts of changes in different Xj . This method was already
applied for SAs of RBE predictions with the LEM (cf. section 6.1) and the dependencies on
different model parameters [8, 9]. Note, that in references [8, 9] Y (X1, ..., Xj+∆Xj , ..., Xm)
is compared to Y (X1, ..., Xk + ∆Xk, ..., Xm) with k 6= j. This simple SA method can on
the one hand be used for arbitrary numerical and analytical functions and is fast from
the computational side. On the other hand it has several drawbacks and limitations to be
discuss in the next section.

8.1.2. Limitations

The implementation and execution of this approach appears to be straight forward and fast.
Having a closer look, several drawbacks come to mind. First, Y is only evaluated around
one point (X1, ..., Xm). In addition, if the function Y is not linear in Xj , the measure

Ssimple
j is dependent on ∆Xj . ∆jY is always dependent on ∆Xj . This means, for this

type of sensitivity approach you need to know (or guess) how much a parameter has to be
changed. This is inevitable. However other SA approaches are able to handle an assumed
distribution for all ∆Xj automatically. A third main drawback is the difficulty to obtain
interplay effects (cross terms) of two input parameters. It is possible to change several
parameters and calculate e.g. Y (X1+∆X1, ..., Xj +∆Xj , ..., Xm+∆Xm)−Y (X1, ..., Xm).
For biological dose response modeling, this is done with two input parameters by Böhlen
et al. [8].
Interplay in terms of ∆jkY indicate the deviation caused by the combination of two

changes.

∆jkY = Y (X1, ..., Xj +∆Xj, Xk +∆Xk, ..., Xm)− Y (X1, ..., Xm)−∆jY −∆kY (8.3)

Consequently the calculation effort grows very fast in this approach, if more than two input
parameters are considered. An example demonstrating this interplay effect is presented in
Appendix C.
Even if this SA approach was executed systematically, it becomes very difficult to eval-

uate the SA result. Already at one point in the (X1, ..., Xm) space, it gets very complex
(or impossible) to visualize changes in several input parameters, including cross terms.

8.2. Gaussian Error Propagation

The Gaussian error propagation is the best known error propagation in physics. It is called
Gaussian, because the uncertainties in the input parameters are assumed to be normally
(Gaussian) distributed. These distributions are described by a mean value X̄j and the
standard deviation σj . The general Xj + ∆Xj can hence be described as X̄j + σj . The
evaluated function Y must be analytical.

8.2.1. Method

The Gaussian error propagation evaluates a numerical function around the mean values
X̄j of the input. A Taylor series is expanded around the result of these mean values

50



8.3. Factor Prioritization

(cf. e.g. reference [50]).

YTay ≈ Y (X̄1, ..., X̄m) +

m
∑

j=1

∆Xj

[

∂Y

∂Xj

]

X̄1,...,X̄m

(8.4)

By setting ∆Xj = σj the assumed normal distributions for the uncertainty in the input
parameters can be propagated to the result of the function. Their combination allows to
determine the standard deviation of the result.

σY =

√

√

√

√

m
∑

j=1

σ2
j

[

∂Y

∂Xj

]2

X̄1,...,X̄m

(8.5)

A sensitivity value can be defined as

Sgauss
j = σ2

j

[

∂Y

∂Xj

]2

X̄1,...,X̄m

(8.6)

indicating the composition of σY and hence the sensitivity of the result on an uncertainty
in Xj . For equations (8.4)-(8.6) it is necessary that ∂Xj/∂Xk = 0, meaning indepen-
dent inputs. There are ways to include dependencies within input parameters into this
approach. In the next section, it is explained why the Gaussian error propagation is not
suitable for the biology of carbon ion therapy. That is why dependent input parameters
are not further introduced here. Note the link in-between equation (8.2) and (8.4). The
limit ∆Xj → 0 transfers equation (8.2) to ∂Y/∂Xj . For analytical functions, the Gaussian
error propagation overcomes some of the limitations discussed for the simple SA (cf. sec-
tion 8.1.2). In the Gaussian error propagation the partial derivation is multiplied by the
standard deviation. Thus uncertainty distributions in the inputs can be combined in a
consistent way, resulting in a standard deviation and hence, a distribution in the result.

8.2.2. Limitations

Only analytical functions can be evaluated with a Gaussian error propagation. Most of
the methods of treatment plan evaluation cannot be described reasonably by analytical
functions, as they are based on the distribution throughout the patient geometry (cf. chap-
ter 7.5). The Gaussian error propagation is consequently not suitable for the SA of bio-
logical model processes in carbon ion therapy. Further general limitations of this approach
are the goodness of the approximation with a Taylor series expansion. The linear terms
considered here, describe the function well only in the region around the expansion (here
X̄1, ..., X̄m). The linearity should be a good approximation at least ±σj from the mean
values [50]. Additionally the uncertainty distribution of the input parameters needs to be
Gaussian, or at least of a very similar shape.

8.3. Factor Prioritization

Factor Prioritization (FP) is a SA approach that is able to rank (prioritize) the impact of
uncertainties on a result of a function. It overcomes most of the drawbacks mentioned for
the simple SA (cf. section 8.1.2) and the Gaussian error propagation (cf. section 8.2.2).

51



8. Sensitivity Analysis Methods

FP is a variance-based Monte Carlo approach. It is described by A. Saltelli et al. [51] in
the book “Global Sensitivity Analysis, The Primer”. The method can be explicitly used
for any numerical or analytical function. It is possible to assign uncertainties of different
shape (not only Gaussian) and evaluate the function over a range in the whole (X1, ..., Xm)
space. In this section I describe the method itself and its implementation for biological
modeling of carbon ion therapy (compare to Kamp et al. [21]), followed by the discussion
of its limitations and challenges.

8.3.1. Method

In this Monte Carlo approach a function is evaluated n = 103 to 106 times, depending on the
number of input parameters. For each run all parameters are changed simultaneously, using
random numbers according to their associated uncertainties. To describe the uncertainty
in an input variable any random number distribution can be assigned. This includes the
common normal, uniform, asymmetrical (e.g. Beta distribution) or discontinuous (e.g.
Poisson) distributions. The distribution should be chosen to best describe the uncertainty.
Consequently the result of the function Y needs to be written as a vector Y of length

n, where each entry is calculated with the corresponding entries of the randomly changed
input parameters (X1, ...,Xm) of the same length n. Variance-based statistic formalisms
rank the input parameter-uncertainty pairs according to their impact on the result of the
function. This sensitivity Sj (first order sensitivity index) on the j-th input parameter Xj

is defined as:

Sj =
var (mean (Y |Xj ≈ const))

var (Y )
(8.7)

The numerator is calculated following reference [51] by first sorting the n (Xj ; Y ) pairs by
increasing Xj. The sorted pairs are divided into npar equally sized partitions containing
n/npar entries with increasing Xj. The mean value is taken from these partitions, the
variance from the npar mean values. Within the scope of this work, npar was set to 256.
Calculated this way, the sensitivity ranges from S = 0 (no influence) to S = 1 (only
influential part).

8.3.2. Implementation

Computation time and memory are the most crucial factors for the implementation of a
FP into carbon ion treatment planning. For instance, in case of the astrocytoma patient
discussed earlier (cf. figure 7.1, page 42) the dose was calculated in almost 3 · 105 voxel.
Combining this calculation with n = 106 runs in every voxel it becomes obvious why it is
necessary to consider computation time and memory.
The implementation strongly depends on the nature of the measure. On the one hand

there are voxel based quantities like RBEi, RWDi, EQD2i, αp,i and βp,i which are cal-
culated in every voxel i (cf. section 7.1). On the other hand there are structure-based
quantities like (RW-)DVH, dVol or TCP (cf. section 7.5) calculated based on all voxel in a
certain structure.
Figure 8.1 illustrates the two different approaches. For a voxel-wise SA, the voxel are

grouped into subgroups of e.g. 1000 voxel (panel A) and the S values are calculated in
parallel at the same time for one subgroup. The number of voxel in one subgroup is
selected to use the available memory most efficiently. Computation time can be decreased
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Figure 8.1.: Schematic representation of the memory saving SA implementation. Panel A
depicts the approach for a voxel-wise SA, as it is done for RBE, RWD or EQD2
resulting in sensitivity maps. A subgroup of e.g. 1000 voxel can be calculated
at once (parallelization). In contrast to this, panel B shows the structure-based
implementation. Measures like (RW-)DVH, dVol or TCP combine all RWD
information of a structure to one value. First this result vector Y is calculated,
then the sensitivity. The calculation is grouped in the direction of the number
of runs, e.g. 500 runs can be executed simultaneously (parallelization). Typical
values for the number of runs, number of voxel (panel A) and number of voxel
in a target (panel B) are n = 105, 3 · 105 and 3.5 · 104 respectively.

by calculating e.g. S(RBE), S(RWD) and S(EQD2) one after each other for one subgroup,
because in this case indexing and parameter changing have to be done only once. Resulting
Si maps for all Xj can be displayed similarly to the color wash of the dose maps on patient
geometries.

Panel B shows the second approach, needed to efficiently calculate sensitivities of struc-
ture based values. For the assessment of measures like (RW-)DVHs, dVol and TCP the
complete information of all voxel in the structure have to be available. These measures are
parallelized in the direction n, e.g. 500 runs at once. This number of runs is selected to
use the available memory most efficiently. The sensitivity is calculated once all n runs are
completed. Several of the structure-based measures can again be executed successively for
the same subset of runs.

In general, the same set of random numbers is used for every voxel. This can be done if
relative uncertainties are assigned for every input parameter. Unnecessary sorting of the
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same random numbers repeatedly is prevented by storing and reusing the indexing after
sorting it the first time in one Xj .
An extensive testing was done for the necessary size of n and npar. They were set to

n = 131072 = 217 and npar = 256 = 28. It resulted in 5-9 h computational time for a
comprehensive FP for all mentioned voxel and structure-based measures and five changed
input parameters. The exact time depends on the used beam geometry. The calculations
were done on a 8 core 2.66 GHz workstation with 32 GB RAM (Random-Access Memory).
The calculation of a subset has the potential to be faster. For example a FP of five RWDVol

values and the (RW-)DVHs of the PTV and some structures is done in few minutes.

8.3.3. Limitations

The FP approach has its main limitation in computational time and the required memory
capacity. When applying it to the biology of carbon ions, those limitations have to be
considered simultaneously. Due to the high grade of parallelization, computation time is
accelerated best by a higher number of cores. The memory available must be above a
certain threshold to allow the allocation of every necessary array once. Then, the more
memory is available, the larger are possible subgroups (cf. figure 8.1). For instance, this
saves up to e.g. 15 % computational time for a step from 500 to 104 voxel per subgroup. A
further limitation of the FP approach is the requirement for independent input parameters
(∂Xj/∂Xk = 0 for k 6= j). The consequences of this requirement are discussed later on in
chapter 11.

8.4. Cross Terms and Factor Fixation

The approach of the FP is extended by adding interplay effects in terms of higher-order
sensitivity values (also called cross terms). The resulting methods of total sensitivity
(TS) and the factor fixation (FF) approach are adapted from the book “Global Sensitivity
Analysis, The Primer” by Andrea Saltelli et al. [51]. The assessment of cross terms
is necessary in case (X1, ...Xm) are not combined linearly, meaning for functions that
∂2Y/∂Xj∂Xk 6= 0 for any j 6= k. The FF method offers a criterion to remove an input
parameter from the SA. If a change in an input has no impact on the result, it can be set
constant.

8.4.1. Method

Higher-order sensitivity parameters can be calculated similarly to Sj in equation (8.7)
combined with equation (8.3). For the second-order this means:

Sjk =
var (mean (Y |Xj ≈ const,Xk ≈ const))

var (Y )
− Sj − Sk (8.8)

The numerator is calculated by first sorting the n (Xj ; Y ) pairs with increasing Xj . The
sorted pairs are divided into npar,j equally sized partitions containing n/npar,j entries with
increasing Xj. Within these npar,j partitions, the (Xk; Y ) pairs are sorted with increasing
Xk and divided in npar,k parts. The mean value is then taken over each of the npar,j · npar,k

parts. Higher-order terms, e.g. Sjkl, can be calculated accordingly. It is obvious that
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with increasing number of evaluated inputs m this method becomes more and more com-
putationally intensive. First of all the number of runs n must be large enough to have a
reasonable mean value in case the highest-order is calculated (n/(npar,1 · ... · npar,m) ≥ 64).
In addition, the possible combinations grow with the m2.
Combining all possible cross terms which include a sensitivity on Xj , leads to the total

sensitivity value TSj .

TSj = Sj +
∑

k 6=j

Sjk +
∑

k 6=j,l 6=j,l 6=k

Sjkl + ... + S1...m (8.9)

With equation (8.9) the factor fixation method can be defined. If TSj ≈ 0 then the
parameter Xj has no influence on the change in Y . The parameter can be fixed to an
arbitrary value within the simulated random number distribution. The number of input
parameters can be reduced by one. Note, that the mathematical condition TSj = 0 was
adapted to TSj ≈ 0 as it is numerically not possible to achieve TSj = 0.
There are several properties associated with the cross terms and the TS. They are

derived and motivated in reference [51]. They become true for a large n.

Sij = Sji (8.10)

Sj ≤ TSj (8.11)
∑

j

Sj +
∑

j

∑

k>j

Sjk +
∑

j

∑

k>j

∑

l>k

Sjkl + ... + S1...m = 1 (8.12)

A set of useful consequences can be obtained from these relations. In case
∑

j Sj = 1, none
of the higher-order sensitivity values is nonzero. Hence, TSj = Sj for all j. Consequently,
in case TSj = Sj for Xj , all cross terms containing it are zero. This can be reverted as
well. In case TSj > Sj there are nonzero cross terms for the input Xj.
The full potential of these relations is explained in the next section. It is possible to

determine Sj and TSj directly, without calculating all higher-order S values explicitly.

8.4.2. Implementation

Computation time for all cross terms in equation (8.9) and all voxel is not feasible in
biological modeling in carbon ion treatment planning (even form = 3). For structure-based
measures it is possible but still very computationally intense. This is further discussed
in the next section considering the limitations of this SA approach. Saltelli et al. [51]
described a faster method to calculate Sj and TSj. Here, the initial set of (X1, ...,Xm)
of size n is extended as shown in figure 8.2. This leads to Y being of length n(m + 2).
Combined with the description of the variance as scalar products, Sj and TSj can be
determined (cf. [51], page 165).

Sj =
YA ◦ YCj

−mean (YA)

YA ◦ YA −mean (YA)
(8.13)

TSj = 1− YB ◦ YCj
−mean (YA)

YA ◦ YA −mean (YA)
(8.14)

The scalar product is indicated by “◦”, the derivation of the random number sets A,B
and Cj , based on which YA,YB and YCj

are calculated, is shown in figure 8.2. The
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8. Sensitivity Analysis Methods

implementation, especially the differentiation between voxel-wise and structure-based SA,
is done in the same way as for the FP in section 8.3. Note, that in figure 8.1 on page 53 the
number of runs n needs to be substituted by n(m+2). As the number of runs is increased
here, the size of the subgroups that can be executed simultaneously for an optimal use of
memory, is smaller than for FP.
Using the above mentioned consequences of equations (8.11) and (8.12), after calculating

only Sj and TSj, it is possible to tell whether higher-order sensitivity values for Xj do exist
or not.
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Figure 8.2.: Composition ofA,B andCj from a set on 2n random numbers. The additional
Cj are derived by substituting the values for Xj in B by the entries from A
(shown in red). All sets are of size (n×m).

8.4.3. Limitations

For this SA approach computation time and memory become even more crucial. The
evaluation of all cross terms for this SA is very time consuming. This is only partly due
to the rise with m2. Additionally, to calculate a reasonable mean value for the last term
S1...m the number of runs must be at least n = 64 · (npar,1 · ... · npar,m). This value grows
very fast in m, considering that npar,j should be at least 8, even better 16. For a single
value, with m = 3, npar,j = 16 for all j and n = 1.04 · 106 a full determination of all cross
terms takes about 0.2 min. If m = 4 this value already increases to 5 min, for m = 5 to
11 h on a 8 core 2.66 GHz workstation with 32 GB RAM.
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The fast method based on the scalar product is less computationally intensive but still
grows with n(m + 2). The long computation time might be reduced by reducing n. The
disadvantage is that the TS result appears very noisy in case of too small n. Calculating
S and TS for a plan with two fields, as e.g. shown in figure 7.1 takes around 10 h for
one standard evaluation with n = 131072 = 217 on the 8 core 2.66 GHz workstation with
32 GB RAM. Such a standard evaluation consists of m = 4 and a SA of several voxel and
structure based quantities.

It has to be concluded that FF and TS are not fully suitable for voxel-wise calculations,
however they can be reasonably used for structure-based values. Computation time in this
case is approximately 1-2 h. The advantage is that a FP can be done first. If

∑

j Sj is
close to 1, the cross terms are not important and a calculation of TS is not necessary.

8.5. Visualizations

In this section the visualization tools developed for the SA analysis of biological models
in carbon ion therapy are presented. In the previous sections it became obvious that
one of the main challenges is a clear visualization. Each of the tools presented in the
following allows a different access to the SA result. The combination of these methods
facilitates the understanding of the consequences of uncertainties in the biological modeling
process. The visualizations are based on the same example SA. The changed parameters
and uncertainties are introduced with the scatterplots in the next section.

8.5.1. Scatterplots

Scatterplots result directly from the n executions of a function. The structure of figure 8.3
[21] is adapted from reference [51]. It is used to explain and access Sj values. Here, RBE
is modeled with the repair-misrepair-fixation (RMF) model and is hence a function of
αx/βx, c1 and c2. Uncertainties in these three input parameters are simulated with normal
distributions, displayed in the histograms. Every dot in the scatterplots represents one
RBE calculation, each with a different set of randomly generated input parameters. The
uncertainty in the result is displayed in the horizontal histogram in the upper left frame.

Using scatterplots, the meaning of S can be explained in terms of correlation. There are
three different S values in figure 8.3. The smallest is S (αx/βx) ≈ 0.03. A change in this
parameter has almost no impact on the uncertainty of RBE. There is no correlation in the
corresponding scatterplot. For the next S (c2) ≈ 0.17, there is already a small trend: A
change to higher c2 is more probable to result in a higher RBE. In this example, c1 has
the highest impact on the uncertainty in RBE. There is a clear correlation that higher
c1 results in higher RBE. This is also reflected in the large S (c1) ≈ 0.80. In addition,
S (αx/βx) + S (c1) + S (c2) ≈ 1. This indicates that there are no cross terms for this
example.

Scatterplots are an intuitive way to access sensitivity values. Due to the fact that they
can represent only limited amount of data at once, scatterplots are most useful in case of
structure-based measures. Nevertheless, the detail which they provide is also useful for
voxel-wise SAs. One scenario for example is to evaluate 3-D maps, as it is done in the
next section and then “zoom in” for detailed, scatterplot-based representation for selected
voxel.
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8. Sensitivity Analysis Methods

Figure 8.3.: Scatterplot illustration of an example SA of RBE as a function of αx/βx, c1 and
c2. Their uncertainty is simulated using normal distributions with a standard
deviation of 15% for αx/βx and of 10% for c1 and c2 respectively. The standard
deviations are relative to the mean value, which is marked with a dashed red
line in the histograms. The here indicated mean values are the unchanged
results of a biological optimization. A subset of 1000 runs is displayed in
the scatter plots. The sensitivity S of RBE on the three input parameters is
marked on top of the respective scatter plot. The physical dose is kept constant
at d = 1.28 Gy.

8.5.2. 3-D Sensitivity Analysis

Figure 8.4 shows axial slices of a 3-D map displaying the SA result. Similar to the dose
distribution, S and TS values are displayed in color maps on top of the patient CT. Here
RWD was calculated as a function of αx/βx, c1 and c2. The treatment plan is the same as
in figure 7.1 on page 42. Several structures are drawn in the figures: the planning target
volume (PTV) in red, the left optic nerve in green, the left eyeball in orange and left lens
in brown.

In addition to the RWD distribution (panel A in figure 8.4), its uncertainty is shown in
terms of a standard deviation in panel B. The spatial distributions of the unchanged input
parameters are shown in panels D-F. For these sensitivity maps, S and TS are calculated
voxel-wise. This offers the potential to see spatial distributions in S and TS. If a voxel
of interest is selected, it is always possible to “zoom in” to a scatterplot representation,
providing more detailed information.

Note the effect of noise for the TS values. If TS is small (in the PTV in panel J,
distal to the PTV in panel K and in the end of the fragmentation tail in panel L), TS
might numerically be negative and not displayed in the color maps, as they are limited to
0 ≤ TS ≤ 1. Typically, the negative values range in the order of 0 to -0.05. Using higher
n could solve this problem, but this approach is limited by computation time.
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Figure 8.4.: Axial slice of a voxel-wise SA. The optimization of this astrocytoma tumor case
was described in section 7.4 on page 41. The panels depict: the optimization
result (A), its uncertainty in terms of a standard deviation (B), the beam
geometry (C) and the three (unchanged) distributions of the input parameters
(D-F). The voxel-wise S maps (G-I) are displayed together with the TS maps
(J-L). Several structures are marked in colors (cf. panel C): PTV(red), left
optic nerve (green), left eyeball (orange) and left lens (brown). The sensitivities
are calculated with n = 1.04 · 106 and normally distributed random numbers
for the input parameters. A standard deviation of 15% was used for αx/βx

and of 10% for c1 and c2 respectively.

59



8. Sensitivity Analysis Methods

8.5.3. Sensitivity-Volume Histograms

In the previous section, axial slices of 3-D sensitivity maps were shown. Similar to the DVH
approach, described in section 7.5.1 on page 43, the 3-D information for one structure can be
compressed. This is possible for both S and TS (Sensitivity-Volume Histogram (SVH) and
Total Sensitivity-Volume Histogram (TSVH) respectively). Figure 8.5 shows an example
of a SVH (panel A) and a TSVH (panel B) for uncertainties in RWD. The SVH is obtained
for the PTV. It contains the information about the frequency of the S values for all voxel
in the structure. Hence, the SVH can reveal, which input uncertainty affects the result of
a structure the most. In the example SVH (panel A), the change of c1 has the greatest
impact on the RWD distribution inside the PTV.
The TSVH (panel B) is plotted for the left lens. The lens is shown in brown in figure 8.4.

It is a small structure, but illustrates best one of the advantages of the FF approach. The
TSVH shows that TSRWD(c2) < 0.05 in all voxel inside this structure. Hence c2 could be set
constant in these voxel as the change in the RWD is not caused by this input uncertainty.
TSVHs can be analyzed for every structure. Due to limited n and the resulting noise in TS,
there might be negative values in some voxel (cf. figure 8.4 panel J-L). Here the structure
of the left lens was chosen, because it illustrates the possibility of FF and all TS > 0 for
all voxel in this structure.
Similar to the DVHs in section 7.5.1, the SVHs and TSVHs contain basic information

like minimum, maximum, median and mean (total) sensitivity for a structure.
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Figure 8.5.: Sensitivity- and total sensitivity-volume histograms. The SVH in panel A is
evaluated for the PTV. The uncertainty in input parameter c1 has the greatest
impact throughout all voxel contained in the PTV. The TSVH in panel B is
shown for the left lens. It illustrates the FF approach. TSRWD(c2) < 0.05
for all voxel in this structure. The uncertainty in c2 has no impact on the
uncertainty in the RWD, hence c2 can be set constant for this OAR. The
shown histograms are derived from the example sensitivity analysis shown in
figure 8.4 page 59. The color maps there show the spatial variation of S and
TS.
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8.5.4. DVH-Probability Plots

The Monte Carlo execution of treatment plans in the FP and FF approach makes it possible
to add probability statements to RWDVHs. An example is shown in figure 8.6. The
RWDVH is calculated individually for every run. Based on this data, standard deviations
can be added to the RWDVH of the optimized treatment result. Using standard deviations,
the probability that the RWDVH of a treatment plan lies in a particular area is added to
the RWDVH. In this case, 68.3% of the treatments lie in the dark area, 95.4% in the
combination of light and dark areas.
To demonstrate their uncertainties, the RWDVHs of the PTV and the left optic nerve are

extended by these probability statements. Both structures are drawn in figure 8.4. Panel A
of this figure depicts the optimization result. Its RWDVH is shown in black in figure 8.6.
The left optic nerve is chosen as a representative OAR. It lies distal to the PTV in an
area with a relatively high RWD. With the given uncertainties in the input parameters,
uncertainties are added to RWDVHs. It is desirable to see uncertainties in a RWDVH as
the concept of RWDVH is the most common tool for treatment plan evaluation.
The measure RWDVol allows to examine the composition of the standard deviation in the

RWDVH-probability plots. An example of a SA result for RWD98% is shown in figure 8.6.
It shows the composition of the uncertainty in the minimum RWD which 98% of the
structure receive. In the PTV an uncertainty in c1 has the greatest impact, whereas in
the optic nerve the uncertainty in αx/βx is the most prominent. The SA of RWDVol can
be done for arbitrary relative volumes. This includes 0 and 100%, representing maximum
and minimum RWD respectively.
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αx/βx c1 c2

PTV SRWD98%
0.06 0.60 0.32

opt nerve SRWD98%
0.55 0.10 0.29

αx/βx c1 c2

PTV TSRWD98%
0.06 0.60 0.32

opt nerve TSRWD98%
0.57 0.11 0.30

Figure 8.6.: RWDVH-probability plot for two representative structures. This plot com-
bines the RWDVH from the optimization result with its uncertainty, caused
by uncertain input parameters. The colored areas represent probabilities that
a RWDVH line is contained in it. They are determined with the standard
deviation. 68.3% of the RWDVHs lie in the dark area (±1σ), 95.4% in the
union of the light and the dark area (±2σ). S and TS for the RWD98% are
tabulated for both structures. The SA of RWDVol describes the composition
of the uncertainty. It can be calculated for arbitrary relative volumes.
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Part IV.

Impact of Uncertainties in Biological
Dose Response Models on Carbon Ion

Treatment Plans
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In this part the SA is applied to the uncertainties in biological response modeling for
carbon ion therapy. Based on the sensitivity approaches and their visualization, RMF
model and LEM1 predictions are analyzed. To perform these analyses, first the sets of
default uncertainty distributions are summarized in chapter 9. The distributions are as-
signed to the uncertain input parameters. SA results are presented for several biological
models, treatment scenarios and measures for treatment plan evaluation. In chapter 10
a comprehensive SA for the RMF model is presented. This includes the evaluation of re-
ductions and increases in the assigned uncertainties. The SAs of LEM1 and RMF model
based treatment plans are compared for different scenarios in chapter 11. The SA for the
calculation of tumor control probabilities is presented in chapter 12. The consequences on
carbon ion treatment planning and evaluation are concluded in the chapter 13.
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9. Evaluated Uncertainty Settings

Several uncertainty sets are evaluated within the scope of this work. The decision which
set is used depends on the objective of the evaluation and the biological model used. For
example, it is possible to perform a comprehensive SA for the repair-misrepair-fixation
(RMF) model. This means, uncertainties can be assigned to x-ray reference parameters
as well as to the biological modeling process. Throughout this work only tabulated data
for the local effect model (LEM1) predictions are available and not the source code itself.
Thus only a subset of parameters can be changed consistently. Note, that the implemented
sensitivity approaches can in general be applied to a comprehensive analysis of LEM1
predictions, presuming the modeling process itself is available and not the tabulated results.
Default values for the uncertainties are shown here. In certain cases the effect of changing
uncertainties is evaluated. Deviations from these default values are indicated if applied.
The same set of relative random numbers is used for all voxel during the execution

of the SA. This can be achieved by normally distributed random numbers with a mean
value of one. The resulting random numbers are multiplied by the chosen parameters.
Consequently, the mean value of the uncertain input parameter is the value used for the
optimization. An example explaining these relative random numbers is shown later in
section 12. For the demonstration of the SA, all uncertainties are modeled as normally
distributed within the scope of this thesis.
Table 9.1 displays the default uncertainties for different evaluated functions types. The

function Y represents the examined values which are influenced by a set of input parame-
ters. The first two columns are only applicable for the RMF model, as c1 and c2 are unique
for it (cf. section 6.2 on page 28). In the framework of the RMF model, RBE is a function
of αx/βx. Column two of table 9.1 shows that the two uncertainties in αx and βx are
combined to an uncertainty of their ratio. The division of two normal distributions needed
here can be done as e.g. shown in the Appendix of Friedrich et al. [52]. The used standard
deviation of 15% for αx/βx within the scope of his SA is a sufficiently good approximation.
The LEM1 data available for this work are tabulated for only a small number of combi-

nations of αx and βx. This limits the possibility of the variance-based SA approaches. The
used uncertainty sets for a SA of LEM1 based treatment plans are shown in columns three,
four and five. Several assumptions need to be made for these partial SAs as the Monte
Carlo SA approaches FP and FF need independent input variables. This is in general not
the case for biological models, as αp and βp depend on αx and βx. The assumptions needed
for columns three, four and five are further explained when they are applied in chapter 11.
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Y (αx, βx, d, c1, c2) Y (αx/βx, d, c1, c2) Y (αx, βx, d) Y (αp, βp, d) Y (αx, βx, αp, βp, d)

σ(αx) = 10%
}

σ(αx/βx) = 15%
σ(αx) = 10% σ(αp) = 10% σ(αx) = 10%

σ(βx) = 10% σ(βx) = 10% σ(αp) = 10% σ(βx) = 10%
σ(d) = 5% σ(d) = 5% σ(d) = 5% σ(d) = 5% σ(αp) = 10%
σ(c1) = 10% σ(c1) = 10% σ(βp) = 10%
σ(c1) = 10% σ(c1) = 10% σ(d) = 5%

Table 9.1.: Default uncertainties assigned to the input parameters. Column one and two are
only applicable for the RMF model. A typical measure for the first column is the
tumor control probability TCP (αx, βx, d, c1, c2). With the second column RBE,
RWD and EQD2 can be evaluated. The standard deviation σ(αx/βx) = 15% is
derived from σ(αx) = 10% and σ(βx) = 10%. Columns three, four and five can
be used for both LEM1 and RMF model calculations. Additional assumptions
need to be made. They are introduced in chapter 11 where they are applied.
Note, that there are cases where the dependency of Y on the dose or further
parameters is not necessary. This is for instance the case in section 10.1. Here
the first column is reduced to Y (αx, βx, c1, c2) or Y (βx, c1). The corresponding
uncertainties in e.g. d, αx or c2 are neglected if necessary.
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10. Comprehensive SA for RMF Model
Predictions

The RMF model is suitable for a comprehensive SA, because the biological modeling pro-
cess is very fast. This feature has already been described by introducing c1 and c2 in
section 7.1 on page 37. It facilitates the high number of executions of the biological mod-
eling process, needed for the SA. RBE and hence RWD calculations are very fast in every
voxel. Several examples for a comprehensive SA with the RMF model are discussed in
the next sections. The SA for the result of the biological modeling (αp (αx, βx, c1, c2) and
βp (βx, c1)) is presented in section 10.1. The comprehensive SA, including uncertainties in
αx, βx, c1, c2 and d is discussed in section 10.2. The influence of reduced or increased
uncertainties is evaluated in section 10.3.

10.1. Sensitivity Analysis for αp and βp

The first step towards a comprehensive SA for RMF model based RBE predictions is to
analyze the biological modeling process itself. This means to examine αp and βp in respect
to their dependencies on input parameters. According to equations (7.5) and (7.6) on
page 38, αp (αx, βx, c1, c2) and βp (βx, c1) can be written as functions of four or two input
parameters respectively. Relative standard deviations of 10% are assigned to the four input
parameters.

Figure 10.1 shows the result for this SA in case of x-ray reference parameters αx = 0.1 Gy-1

and βx = 0.05 Gy-2 as used for chordoma of the skull base [30]. The modeled unchanged
αp and βp are shown in panels A and B. Both increase with increasing LET. The spatial
distribution of LET is shown in panel C of figure 10.1. The resulting standard deviations
of αp and βp (panels D and E) show the same behavior as αp (panel A) and βp (panel B)
respectively. Their relative standard deviation (derived by “dividing panel D by panel A”
or “panel E by panel B”) ranges from 10.1% to 12.4% for αp and is spatially constant at
22.6% for βp respectively. Together with the spatial sensitivity distribution, these aspects
are explained in the following.

Panels G, H, J and K show the corresponding sensitivity maps for αp. Several relations
can be observed directly. Sαp

(αx) is equal to Sαp
(c1) and Sαp

(βx) is equal to Sαp
(c2). This

is a direct consequence of the assigned relative standard deviations and the calculation of
αp,i = αx,i · c1,i + βx,i · c2,i in equation (7.5). For example, considering the first term of
the sum, a relative change of +10% in either αx or c1 results in a multiplication by 1.1.
Changes in the second term of the sum can be explained analogously with βx and c2. The
spatial distribution in the sensitivity maps is different for panels G and J (or H and K).
αp is more dependent on changes in αx and c1 in voxel with lower LET (compare also to the
c1 and c2 panels displayed in figure 8.4 on page 59). For high LET regions, uncertainties
in βx and c2 have a higher impact. The combination of multiplications and a sum in the
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Figure 10.1.: SA of αp and βp for RMF model predictions. The panels show the modeled
αp and βp together with their resulting standard deviation (panels A, B, D
and E). Panels C and F show a LET map and the simulated beam geometry
respectively. The six sensitivity maps, four for αp and two for βp, are shown in
panels G-L. The underlying treatment plan, including a spatial distribution
of c1 and c2, is displayed in figure 8.4 on page 59. The relative standard
deviation of the input parameter distributions are 10% for each of the four
changed inputs parameters. The planning target volume (PTV) is marked in
red, the left optical nerve in green together with the left eyeball (orange) and
the left lens (brown).
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calculation of αp also leads to spatial variations in the relative change (σ (αp) /αp ranges
from 10.1% to 12.4%).
The SA of βp is shown in panels I and L. The uncertainty in c1 has a higher impact on the

uncertainty in βp. Considering equation (7.6), βp can be calculated as βp,i = βx,i · (c1,i)2.
The square of c1 results in the higher impact of changes in c1. The spatially constant
sensitivity values result from the relative changes, which are applied to all voxel in the
same way. Nevertheless this allows spatial variations of σ (βp) (panel E). Only the relative
change σ (βp) /βp and the sensitivity of this change in βp are spatially constant.

10.2. Comprehensive Sensitivity Analysis

The RMF model predictions allow a comprehensive SA. Comprehensive in this context
means, that in total three sources of uncertainty are considered: first, biological uncertain-
ties in the reference x-ray parameters αx and βx, second, uncertainties in the biological
modeling process represented by c1 and c2 and third, an uncertainty in the physical dose d.
Within the scope of this thesis, this comprehensive SA can only be performed for the RMF
model, due to the advantages of the c1 and c2 formalism. This formalism allows very fast
RBE predictions with changing parameters. Similar comprehensive SA approaches for the
LEM1 and the reason why it was not feasible to implement them are topic of chapter 11.
The comprehensive SA is demonstrated based on two different cell lines. One has a

small αx/βx = 2 Gy (αx = 0.1 Gy-1 and βx = 0.05 Gy-2). This cell line is commonly used
for chordoma of the scull base [30]. The second cell line has a greater αx/βx = 9.2 Gy
(αx = 0.184 Gy-1, βx = 0.02 Gy-2). These values were obtained for Chinese hamster
fibroblast, V79 [41].
In the framework of the RMF model, RWD can be calculated as a function of αx/βx, d,

c1 and c2. The next double page shows axial slices of the 3-D sensitivity maps for a com-
prehensive SA of two exemplified cell lines. Figure 10.2 shows the result for αx/βx = 2 Gy,
figure 10.3 for αx/βx = 9.2 Gy. In both figures the optimized RWD (panel A) is dis-
played together with its uncertainty (panel D). The LET (panel B) and the beam geometry
(panel E) are shown together with the four unchanged input parameter maps (panels C,
G-I). The four corresponding sensitivity maps are shown in panels F, J-L.
Considering the small αx/βx = 2 Gy in figure 10.2 several relations can be observed. The

impact of changing d is almost constant spatially with SRWD (d) ≈ 0.3. The SRWD (αx/βx)
is small throughout the patient except in the region 1 to 2.5 cm distal to the PTV. In this
region SRWD (αx/βx) reaches values up to 0.5. This means that the uncertainty in αx/βx

has the greatest impact on the uncertainty in RWD in this region. The sensitivity maps
of the two biological modeling parameters c1 and c2 show opposite behavior: SRWD (c1) is
up to 0.7 in the PTV and in the fragmentation tail far from the PTV. In the region 0 to
2.5 cm distal to the PTV it drops to very small values SRWD (c1) ≤ 0.05, whereas SRWD (c2)
is small everywhere except the PTV SRWD (c2) ≈ 0.15 and the mentioned region from 0 to
2.5 cm distal to the PTV (SRWD (c2) ≈ 0.4).
The high values in SRWD (αx/βx) and SRWD (c2) and the corresponding low SRWD (c1) are

in regions of high LET. A strong LET dependency can already be seen for the unchanged
c1 and c2. This dependency on LET in combination with the changing sensitivity is of
interest, especially if an organ at risk (OAR) lies in this region. In the presented patient
case the left optic nerve, marked in green in the panels, is located in the region of high
LET. The uncertainty in the αx/βx is more crucial for this OAR than for the PTV. The
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Figure 10.2.: Comprehensive SA for αx/βx = 2 Gy. RWD is a function of αx/βx, d, c1 and
c2. The optimized RWD (panel A) is displayed together with its uncertainty
σ (RWD) (panel D). The LET (panel B) and the beam geometry (panel E) are
shown together with the four unchanged input parameter maps (panels C, G-
I). The four sensitivity maps are shown in panels F, J-L. The planning target
(PTV) volume is marked in red, the left optical nerve in green together with
the left eyeball (orange) and the left lens (brown).
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αx/βx = 9.2 Gy
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Figure 10.3.: Comprehensive SA for αx/βx = 9.2 Gy. RWD is a function of αx/βx, d, c1 and
c2. The optimized RWD (panel A) is displayed together with its uncertainty
σ (RWD) (panel D). The LET (panel B) and the beam geometry (panel E) are
shown together with the four unchanged input parameter maps (panels C, G-
I). The four sensitivity maps are shown in panels F, J-L. The planning target
volume (PTV) is marked in red, the left optical nerve in green together with
the left eyeball (orange) and the left lens (brown).
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αx/βx = 2 Gy αx/βx = 9.2 Gy

PTV αx/βx d c1 c2

SRWD 2%
0,04 0,31 0,43 0,21

SRWD50%
0,03 0,31 0,49 0,17

SRWD98%
0,05 0,31 0,42 0,23

optic nerve αx/βx d c1 c2

SRWD 2%
0,14 0,28 0,17 0,42

SRWD50%
0,29 0,22 0,08 0,42

SRWD98%
0,49 0,16 0,09 0,25

PTV αx/βx d c1 c2

SRWD 2%
0,06 0,27 0,62 0,06

SRWD50%
0,04 0,26 0,66 0,04

SRWD98%
0,05 0,26 0,63 0,06

optic nerve αx/βx d c1 c2

SRWD 2%
0,15 0,27 0,47 0,12

SRWD50%
0,25 0,25 0,37 0,14

SRWD98%
0,19 0,23 0,47 0,08

Figure 10.4.: Probability RWDVH for the PTV and the left optic nerve for two different
αx/βx values: αx/βx = 2 Gy panel A and αx/βx = 9.2 Gy panel B. In these
plots, uncertainties are added to the optimization result (solid and dashed
black lines). The uncertainties in the RWDVH are indicated as ±σ (68.3%
lie inside the dark area) and ±2σ (95.4% lie inside the combination of light
and dark area). The tables present the SA result for SRWDV ol

. The PTV
and the left optic nerve are evaluated for three representative relative vol-
umes. An axial slice of the shown example SA is presented in figure 10.2 for
αx/βx = 2 Gy and in figure 10.3 for αx/βx = 9.2 Gy.

part of the biological modeling represented by c1 on the other hand shows the highest
impact on the uncertainty of RWD in the PTV but only a small impact on the uncertainty
of RWD in the left optic nerve.
The corresponding SA for αx/βx = 9.2 Gy with the same set of relative uncertainties

in the input parameters is shown in figure 10.3. This SA has the same trends as the ones
described for αx/βx = 2 Gy. The main deviations are a generally higher uncertainty in
the RWD and a greater SRWD (c1). The sensitivity values for αx/βx and c2 are accordingly
smaller.
The differences between αx/βx = 2 Gy and αx/βx = 9.2 Gy are further examined in

figure 10.4. Here the probability RWDVHs of both SA are shown. The uncertainty for
αx/βx = 2 Gy (panel A) is smaller than for αx/βx = 9.2 Gy (panel B). The tables show
SRWDV ol

values. In this example three representative relative volumes were chosen. Com-
paring the values for the PTV, one can see the above described observation that c1 becomes
more important for αx/βx = 9.2 Gy, whereas the uncertainty of c2 is less important.
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10.3. Influences of Reduced or Increased Uncertainties

Comparison of the SRWDV ol
values for PTV and the left optic nerve demonstrates that

different structures can have very different SA results. Depending on the location of the
structure, different input parameter uncertainties might have a different impact. In this
case, αx/βx and c2 are more important for the left optic nerve than for the PTV. For c1
and d it is the opposite. This is valid for both cell lines and was already observed in the
axial slices of the 3-D sensitivity maps in figures 10.2 and 10.3.
Summing up S (αx/βx) + S (d) + S (c1) + S (c2) ≈ 1 for all SRWDV ol

and both cell lines.
This means, that there are no cross terms in this case. The total sensitivity is equal to the
first order sensitivity values (TS = S).

10.3. Influences of Reduced or Increased Uncertainties

In this section the influence of an uncertainty reduction or increase is demonstrated. The
SA is executed with changed uncertainty distributions for the four input parameters αx/βx,
d, c1 and c2. Their default uncertainties were introduced in chapter 9 on page 67. There
are many possibilities to change the uncertainties in the input parameters. Independent
of each other, each of them can be lower or higher than their default values. In addition,
any input parameter can be removed from the SA by assigning no uncertainty to it. In
figure 10.5 the probability RWDVH of the default uncertainty setting (panel A) is shown
together with the result of three representative scenarios.
The first scenario is the reduction of all four input uncertainties by a factor of two

(σ (αx/βx) = 7.5%, σ (d) = 2.5%, σ (c1) = 5% and σ (c2) = 5%) which is shown in panel B.
A 5% relative standard deviation might not represent the actual uncertainties of the biolog-
ical parameters (cf. chapter 3 on page 11). Nevertheless, this scenario shows the potential
of more precise determination of biological parameters. There is a considerable decrease in
the uncertainty of the RWDVH for the reduced uncertainties (panel B) compared to the
default uncertainties in (panel A). The smaller the input uncertainties the less uncertain
is the result.
The second scenario (panel C), is the opposite of the first scenario. The default uncer-

tainty values are doubled (σ (αx/βx) = 30%, σ (d) = 10%, σ (c1) = 20% and σ (c2) = 20%).
This results in a much higher uncertainty in the RWDVHs. Cross terms also known as
higher order sensitivity values do not occur in this scenario, although their appearance is
more likely for larger input uncertainties. These higher order sensitivity values describe
the interplay effect of two input uncertainties. They were introduced along with the total
sensitivity analysis in section 8.4. RWDVol values (data not shown) are similar to the values
of the default settings (cf. figure 10.4, panel A).
In the third scenario the uncertainty in the dose is removed (panel D). This can be

interpreted as the assumption that the delivered dose is exactly equal to the planned
(optimized) dose. The uncertainty of the RWDVH of panel D is only slightly smaller than
the default values. Thus eliminating all physical dose uncertainties will not lead to a precise
treatment result. The uncertainties in the biological parameters have a large impact on the
uncertainty in the RWD distribution and hence on general treatment outcome. Note, that
this third scenario is equivalent to the SA shown in the visualization example in section 8.5.
Figure 8.4 on page 59 shows the corresponding axial slices of the 3-D maps.
A further scenario, in which σ (c1) = 0 and σ (c2) = 0 is discussed in the next chapter.

There σ (c1) and σ (c2) are removed from the SA in order to compare SAs for treatment
plans based on both LEM1 and RMF model predictions.
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10. Comprehensive SA for RMF Model Predictions

default uncertainties reduced uncertainties (halved)

increased uncertainties (doubled) no uncertainty in d (σ (d) = 0)

Figure 10.5.: This figure demonstrates the impact of changes in the uncertainty distribu-
tions. The optimization result shown by a solid and a dashed black line
is calculated with unchanged input parameters. The uncertainties in the
RWDVH of the left optic nerve and the planning target volume (PTV) are
indicated as ±σ (68.3% lie inside the dark area) and ±2σ (95.4% lie inside
the combination of light and dark area). Panel A shows the result for the
default uncertainty set (σ (αx/βx) = 15%, σ (d) = 5%, σ (c1) = 10% and
σ (c2) = 10%). In panel B the uncertainties are halved (σ (αx/βx) = 7.5%,
σ (d) = 2.5%, σ (c1) = 5% and σ (c2) = 5%). In panel C they are doubled
(σ (αx/βx) = 30%, σ (d) = 10%, σ (c1) = 20% and σ (c2) = 20%). Panel D
shows the probability plots in case that no uncertainty is assigned to the dose
d (σ (αx/βx) = 15%, σ (d) = 0, σ (c1) = 10% and σ (c2) = 10%).
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11. Partial Sensitivity Analysis for
LEM1 and RMF Model Predictions

In this chapter, the SA is applied to the LEM1 as well. Within the scope of this thesis,
LEM1 predictions of αp and βp are obtained from the implementation by INFN (Istituto
Nazionale di Fisica Nucleare) and I-SEE (Internet - Simulation, Evaluation, Envision)
which are available online∗ [32]. In this database, tabulated αp and βp are available for 15
different αx and βx values. Due to this tabulation it is not possible to change αx and βx

by arbitrary uncertainties and obtain a new set of αp and βp values for the LEM1. Note,
that if for instance the source code of the LEM1 is available, it is possible to perform a
comprehensive SA for LEM1 predictions. Computation time is likely to be a limiting factor
in this scenario.
The executed variance-based SA requires independent input parameters (cf. section 8.3

on page 51). The consequence within the scope of this thesis is that the general function
RBE (αx, βx, αp (αx, βx) , βp (αx, βx) , d) is not suitable for SAs based on LEM1 predictions.
The dependencies written as αp (αx, βx) and βp (αx, βx) need to be omitted. With the avail-
able tabulated LEM1 data this can be done in three different ways: RBE (αx, βx, d) dis-
cussed in section 11.1, RBE (αp, βp, d) discussed in section 11.2 and RBE (αx, βx, αp, βp, d)
discussed in section 11.3. In addition, these steps mean that any further parameter used
by the LEM is set constant to the value used for the creation of the database and is not
affected by uncertainties. The effect of uncertainties in a subset of the LEM parameters
are discussed by Friedrich et al. [9].
The LEM1 is currently used for patient treatment planning [30], therefore the partial

SAs are already of great use. Although they do not represent comprehensive SAs, they
provide a first insight to the size of uncertainties caused by the biological modeling process.
The partial SAs for the LEM1 based treatments are compared to the corresponding partial
SA for treatment plans based on RMF model predictions.

11.1. Partial SA: RBE (αx, βx, d)

In this partial SA approach the general RBE (αx, βx, αp (αx, βx) , βp (αx, βx) , d) is reduced
to RBE (αx, βx, d). This means, the conditions αp (αx, βx) = const and βp (αx, βx) = const
are applied.
Axial slices of the 3-D maps of the partial SA result are shown in figure 11.1 for RMF

model based treatment plans and in figure 11.2 for LEM1 based treatment plans. Three
cell lines are evaluated. Their αx/βx ratios are marked above the first row in the figures.
The small αx/βx = 2 Gy (αx = 0.1 Gy-1 and βx = 0.05 Gy-2) is commonly used for
chordoma of the scull base [30]. The intermediate αx/βx = 5.1 Gy (αx = 0.313 Gy-1 and
βx = 0.0615 Gy-2) is obtained for human submandibular gland (HSG) cells [41]. The

∗http://totlxl.to.infn.it/lem
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Figure 11.1.: Partial SA result for RMF model based treatment plans, uncertainties in αx,
βx and d and three different αx/βx ratios. The panels show the optimized
RWD (panels A) together with its uncertainty (panels B). Panels C-E show
the sensitivity maps.
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11.1. Partial SA: RBE (αx, βx, d)

LEM1
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Figure 11.2.: Partial SA result for LEM1 based treatment plans, uncertainties in αx, βx

and d and three different αx/βx ratios. The panels show the optimized RWD
(panels A) together with its uncertainty (panels B). Panels C-E show the
sensitivity maps.
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RMF, αx/βx = 2 Gy LEM1, αx/βx = 2 Gy

RMF, αx/βx = 5.1 Gy LEM1, αx/βx = 5.1 Gy

RMF, αx/βx = 9.2 Gy LEM1, αx/βx = 9.2 Gy

Figure 11.3.: This figure shows the probability RWDVHs for the partial SA applied to both
RMF model and LEM1 based treatment plans and a range of αx/βx. The
partial SA is based on the assumption that RBE (αx, βx, d). The unchanged
optimization result is displayed in solid black for the planning target volume
(PTV) and in dashed black for the left optical nerve. The uncertainties in
the RWDVHs are indicated as ±σ (68.3% lie inside the dark area) and ±2σ
(95.4% lie inside the combination of light and dark area).
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11.1. Partial SA: RBE (αx, βx, d)

third cell line has the greatest αx/βx = 9.2 Gy (αx = 0.184 Gy-1, βx = 0.02 Gy-2). These
values were obtained for Chinese hamster fibroblast, V79 [41]. The default input parameter
uncertainties are used: σ (αx) = 10%, σ (βx) = 10% and σ (d) = 5%.
The rows of figure 11.1 and figure 11.2 show the optimized RWDs (panels A) together

with their resulting uncertainties (panels B). The sensitivity maps are displayed in panels C-
E. Several structures are marked in the plots: the planning target volume (PTV) in red,
the left optical nerve (green) as well as the left eyeball (orange) and the left lens (brown).
The optimization results of the six considered optimizations are comparable (panels A

in the figures). In the corresponding uncertainties (panels B) two trends are observed.
The uncertainty increases with increasing αx/βx and the uncertainty is in general slightly
higher for the RMF model.
The partial SA for both models are very similar. SRWD (αx) (panels C) shows the highest

values. The only exception is the region of the PTV in case of the small αx/βx = 2 Gy.
In this case SRWD (αx) ≤ 0.2. SRWD (βx) (panels D) is only high inside the PTV, where
SRWD (αx) decreases at the same time. This is more pronounced for small αx/βx than for
large αx/βx. The uncertainty in d (panels E) has a sensitivity value SRWD (αx) ≈ 0.2, only
in the PTV it increases to SRWD (αx) ≈ 0.4.
The sensitivity maps (panels C-E) can be explained with the calculation of the RWD

(cf. equations (2.5) and (7.12)).

RWD = RBE(αx, βx, d) · d = 0.5

(

−αx/βx +

√

(αx/βx)
2 + 4d (αp + βpd) /βx

)

(11.1)

The dose d is high in the PTV as the tumor is located there. The second term in the square
root (4d (αp + βpd) /βx) is relatively large, hence all three input uncertainties contribute
to the uncertainty in the result.
The dose d is small in the regions where SRWD (αp) dominates. Small d allows to expand

the square root in equation (11.1) with a Taylor series.

RWD = 0.5

(

−αx/βx +

√

(αx/βx)
2 + 4d (αp + βpd) /βx

)

(11.2)

= 0.5 (αx/βx) ·
(

−1 +

√

1 +
4dβx (αp + βpd)

α2
x

)

(11.3)

≈ 0.5 (αx/βx) ·
(

−1 + 1 + 0.5
4dβx (αp + βpd)

α2
x

)

(11.4)

=
d (αp + βpd)

αx

(11.5)

The requirement for this Taylor expansion
√
1 + x ≈ 1 + 0.5x is that |x| ≤ 1 [53]. In the

Taylor expansion done here, x = 4dβx (αp + βpd) /α
2
x. This shows that the βx terms are

canceled out for small d. The parameters αx and d remain along with their uncertainties.
For the shown examples, this is true in regions where d ≤ 0.25 Gy. This region is identical
to the region where SRWD (αp) ≥ 0.75. SRWD (αp) > SRWD (d) in the regions with small d,
due to the fact that the assigned uncertainties are different (σ (αp) = 10% and σ (d) = 5%).
The small differences in the PTV region between the LEM1 and RMF model based

partial SA can be explained with equation (11.1) and the general behavior of αp and βp.
For the RMF model, both αp and βp increase with increasing LET (cf. figure 7.1, page 42),
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11. Partial Sensitivity Analysis for LEM1 and RMF Model Predictions

whereas for the LEM1, only αp increases with LET and βp decreases (cf. figure B.1, in
Appendix B). The part 4d (αp + βpd) /βx of equation (11.1) shows, why a larger βp results
in a larger sensitivity value of d and βx. This effect is the greatest for αx/βx = 2 Gy.
Figure 11.3 shows the corresponding probability RWDVHs for the partial SA discussed,

based on figures 11.1 and 11.2. In this partial SA, the RMF model based treatment
plans have a slightly higher uncertainty in the RWDVHs. All displayed combinations show
significant uncertainties in the RWDVHs. A consideration of uncertainties in the biological
modeling of carbon ion therapy is necessary, independent of the applied αx/βx or the used
biological model.

11.2. Partial SA: RBE (αp, βp, d)

In this partial SA approach the general RBE (αx, βx, αp (αx, βx) , βp (αx, βx) , d) is reduced
to RBE (αp, βp, d). This means, the conditions αx = const, βx = const together with
∂αp/∂αx = ∂αp/∂βx = 0 and ∂βp/∂αx = ∂βp/∂βx = 0 are applied. This evaluation is
very similar to the one presented in the previous section. The same three αx/βx values are
evaluated for both the RMF model and the LEM1. The default uncertainties are assigned
to the input parameters: σ (αp) = 10%, σ (βp) = 10% and σ (d) = 5%.
In Appendix D.1 axial slices of the 3-D SA for the three αx/βx values and the two

biological models are shown. Based on these figures a similar discussion as in the previous
section is done (Appendix D.1).
Figure 11.4 shows the probability RWDVHs for the three αx/βx values and the two

biological models. The higher the αx/βx value is, the larger are the resulting uncertainties.
The LEM1 based treatment plans have a slightly higher uncertainty than the corresponding
RMF model based plans. Compared to figure 11.3, figure 11.4 shows larger uncertainties
in all six panels. Note, that this does not directly mean that the uncertainties in αp and βp

are more crucial than the uncertainties in αx and βx. The biological modeling for both the
RMF model and the LEM1, predict αp and βp as functions of αx and βx. This was omitted
here, but needs to be considered for a comprehensive SA. Nevertheless, this partial SA
provides important information: all displayed combinations show significant uncertainties
in the RWDVHs. Hence, also this partial SA shows that a consideration of uncertainties
in the biological modeling of carbon ion therapy is necessary, independent of the applied
αx/βx or the used biological model.
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11.2. Partial SA: RBE (αp, βp, d)

RMF, αx/βx = 2 Gy LEM1, αx/βx = 2 Gy

RMF, αx/βx = 5.1 Gy LEM1, αx/βx = 5.1 Gy

RMF, αx/βx = 9.2 Gy LEM1, αx/βx = 9.2 Gy

Figure 11.4.: This figure shows the probability RWDVHs for the partial SA applied to both
RMF model and LEM1 based treatment plans and a range of αx/βx. The
partial SA is based on the assumption that RBE (αp, βp, d). The unchanged
optimization result is displayed in solid black for the planning target volume
(PTV) and in dashed black for the left optical nerve. The uncertainties in
the RWDVHs are indicated as ±σ (68.3% lie inside the dark area) and ±2σ
(95.4% lie inside the combination of light and dark area).
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11. Partial Sensitivity Analysis for LEM1 and RMF Model Predictions

11.3. Partial SA: RBE (αx, βx, αp, βp, d)

In this partial SA approach the general RBE (αx, βx, αp (αx, βx) , βp (αx, βx) , d) is reduced
to RBE (αx, βx, αp, βp, d). This means the conditions ∂αp/∂αx = ∂αp/∂βx = 0 and
∂βp/∂αx = ∂βp/∂βx = 0 are applied. Note, that this does not reflect biological modeling
as it is done by the RMF model or the by LEM1. The biological model is executed once
to obtain a set of αp and βp. To perform the SA, independent uncertainties are assigned
to αx, βx, αp, βp and d. The simulated changes in αp and βp do not depend on changes
in αx and βx. Nevertheless this partial SA is presented in this thesis to demonstrate the
necessity to include αp (αx, βx) and βp (αx, βx) into a comprehensive SA for the biological
modeling of carbon ion therapy. This is done by comparing the partial SA presented here
with the comprehensive SA presented in section 10.2 on page 71.
The default uncertainties are assigned to the five input parameters: σ (αx) = 10%,

σ (βx) = 10%, σ (αp) = 10%, σ (βp) = 10% and σ (d) = 5%. Figure 11.5 shows the result
for αx/βx = 2 Gy modeled with the RMFmodel. The partial SA results for αx/βx = 9.2 Gy
are shown in Appendix D.2. The small αx/βx = 2 Gy (αx = 0.1 Gy-1 and βx = 0.05 Gy-2)
is commonly used for chordoma of the scull base [30]. The second, larger αx/βx = 9.2 Gy
(αx = 0.184 Gy-1, βx = 0.02 Gy-2) is obtained for Chinese hamster fibroblast, V79 [41].
Panel A of figure 11.5 shows the standard deviation of the RWD distribution. The RWD

itself did not change for this partial SA and is equivalent to panel A in figure 10.2 on
page 72. Panels B-F in figure 11.5 show the five corresponding sensitivity maps. The
planning target volume (PTV) is marked in red, the left optical nerve in green together
with the left eyeball (orange) and the left lens (brown).
SRWD (αx) ≈ 0.45 outside the PTV and declines SRWD (αx) < 0.1 inside the PTV

(panel B). SRWD (αp) ≈ 0.40 throughout the whole patient (panel D). SRWD (βx) and
SRWD (αp) are very low outside the PTV and reach values up to SRWD (βx) ≈ 0.24 and
SRWD (βp) ≈ 0.05 in the PTV (panels C and E respectively). SRWD (d) ranges from 0.10
outside the PTV to 0.26 in the PTV (panel F). The results for the corresponding partial
SA based on LEM1 predictions are very similar and not shown here.
The comparison with the comprehensive SA for the RMF model (figure 10.2 on page 72)

demonstrates the drawbacks of the partial SA. The spatial changes of the SRWD values are
not reproduced. This is especially crucial for changes distal to the PTV, which depend
on the LET and are caused by the high LET values occurring there (cf. section 10.1 on
page 69 and section 10.2 on page 71). This region is of special interest, as OARs (organs
at risk) are potentially located there (for example the left optical nerve in the discussed
treatment scenario).
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11.3. Partial SA: RBE (αx, βx, αp, βp, d)
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Figure 11.5.: Result of the partial SA for a treatment plan based on the RMF model with
αx/βx = 2 Gy. Panel A shows the uncertainty in the RWD distribution, pan-
els B-F the sensitivity maps for the partial SA of RBE (αx, βx, αp, βp, d). The
dependencies of αp and βp on αx and βx are omitted. The assigned uncertain-
ties of the input parameter are: σ (αx) = 10%, σ (βx) = 10%, σ (αp) = 10%,
σ (βp) = 10% and σ (d) = 5%. The planning target volume (PTV) is marked
in red, the left optical nerve in green together with the left eyeball (orange)
and the left lens (brown).
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12. Uncertainties in Tumor Control
Probability (TCP) Calculation

In this chapter a comprehensive SA of the tumor control probability (TCP) is analyzed.
In the framework of the RMF model, TCP can be expressed as a function of the biological
modeling parameters c1 and c2 instead of αp and βp. Equation (12.1) is derived from
TCP (αx, βx, d, αp, βp) (cf. equation (7.29) on page 43) combined with αp = αxc1 + βxc2
and βp = βxc

2
1 (cf. equations (7.5) and (7.6) on page 38).

TCP (αx, βx, d, c1, c2) =

exp

[

−
∑

i∈PTV

ρcνi · exp
(

− (αx,ic1,i + βx,ic2,i) diN − βx,ic
2
1,id

2
iN
)

]

(12.1)

In the following section a comprehensive SA is presented for TCP (section 12.1). A
total sensitivity analysis result along with its composition out of higher order sensitivities
is discussed in section 12.2.

12.1. Comprehensive SA of TCP

The results of the comprehensive SA for two representative cell lines are presented by the
scatterplots in figure 12.1. The first cell line has a small αx/βx = 2 Gy (αx = 0.1 Gy-1

and βx = 0.05 Gy-2) as used for chordoma of the skull base [30]). The comprehensive SA
for this cell line is shown in panel A. In addition panel B displays a similar comprehensive
SA for the larger αx/βx = 9.2 Gy (αx = 0.184 Gy-1, βx = 0.02 Gy-2). These values are
used for Chinese hamster fibroblast, V79 [41]. The needed number of fractions was set to
N = 32 for both αx/βx ratios.

The default uncertainties are assigned to the five input parameters: σ (αx) = 10%,
σ (βx) = 10% σ (d) = 5%, σ (c1) = 10% and σ (c2) = 10%. In figure 12.1 these uncertainty
distributions are displayed in five histograms (second row in both panels). Here the rela-
tive uncertainties (e.g. 1 + ∆αx) are displayed. Absolute values are not suitable for the
visualization because the same random numbers are applied in every voxel and the input
parameters change spatially. The calculation of TCP combines all voxel in the PTV to a
single value (equation (12.1)). The changed values in every voxel i for one run nr of the
SA are derived by multiplications (cf. equations (12.2) to (12.6)).
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12. Uncertainties in Tumor Control Probability (TCP) Calculation

Figure 12.1.: This figure shows scatterplot representations of two SA results for the tumor
control probability (TCP). Two αx/βx values are evaluated: αx/βx = 2 Gy
(panel A) and αx/βx = 9.2 Gy (panel B). Comprehensive SAs are shown.
This means that the TCP (αx, βx, d, c1, c2) is calculated based on RMF model
predictions. The histograms show the relative uncertainties of the input pa-
rameters and the uncertainty in TCP. The red dashed lines indicate the initial
unchanged values. To provide an optimal visualization the scatterplots dis-
play 103 out of 1.3 · 105 runs. Obtained sensitivity values S are shown above
the respective scatterplots.
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12.1. Comprehensive SA of TCP

α
(nr)
x,i =

(

1 + ∆α(nr)
x

)

αx,i (12.2)

β
(nr)
x,i =

(

1 + ∆β(nr)
x

)

βx,i (12.3)

d
(nr)
i =

(

1 + ∆d(nr)
)

di (12.4)

c
(nr)
1,i =

(

1 + ∆c
(nr)
1

)

c1,i (12.5)

c
(nr)
2,i =

(

1 + ∆c
(nr)
2

)

c2,i (12.6)

Note, that the multiplication separates the spatial distribution in the voxel i from the
changes in every run nr. For instance the normal distribution indicated by σ (αx) = 10%
is consequently assigned to ∆αx. This is done accordingly for all other presented SAs
(cf. chapter 9 on page 67). It is emphasized here, as the relative uncertainty distributions
are necessary to display the SA result in the scatterplots.

Figure 12.1 shows large uncertainties in TCP. Both optimizations resulted initially in
a TCP value above 80 % (red dashed line in the TCP histogram). The simulated values
achieve every possible TCP value from TCP = 0 (tumor not controlled) to TCP = 1
(tumor controlled). As a consequence the measure TCP has to be interpreted cautiously
when it is applied to carbon therapy.

The sensitivity values above the scatter plots in figure 12.1 show that the assigned
uncertainties in the input parameters have different impacts for different αx/βx values.
S (c1) ≈ 0.27 and S (βx) ≈ 0.24 have the highest values for αx/βx = 2 Gy (panel A),
whereas S (c1) ≈ 0.41 and S (αx) ≈ 0.17 are the two main sensitivities for αx/βx = 9.2 Gy
(panel B). The impact of an uncertainty in the dose d is similar for both αx/βx.

The sensitivity values indicate the presence of correlation (cf. the discussion of scatter-
plots as a visualization tool for variance-based SA approaches in section 8.5.1 on page 57).
This correlation is difficult to observe in the scatterplots of figure 12.1, as the resulting
uncertainty of TCP cannot be described with a standard deviation. The largest sensitivity
value is S (c2) ≈ 0.41 for αx/βx = 9.2 Gy (panel B). This scatterplot shows the best visu-
alization of the correlation: the higher c1 is, the higher becomes the probability to achieve
a high TCP value.

Summing S (αx)+S (βx)+S (d)+S (c1)+S (c2) results in 0.81 and 0.83 for αx/βx = 2 Gy
and αx/βx = 9.2 Gy respectively. This means that there are nonzero higher order sensitivi-
ties in this analysis. They are discussed in the next section along with the total sensitivities
TS.

Partial SAs, as analyzed for the LEM1 in chapter 11, were also adapted to TCP calcula-
tions. They showed similar large uncertainties in TCP ranging from TCP = 0 to TCP = 1
(data not shown). A comprehensive SA for other structure-based measures can be done
accordingly. For example, the equivalent uniform dose (EUD) has been implemented as
well. Variations in EUD are also large (data not shown). The computational time for a
comprehensive SA of EUD is similar to the computation of the SAs of the RWDVHVol

which takes few hours. A comprehensive SA of TCP is faster, because only the voxel
located in the target need to be considered.
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12. Uncertainties in Tumor Control Probability (TCP) Calculation

12.2. Total Sensitivity Analysis and Higher Order

Sensitivity Values

In this section the total sensitivity analysis and its composition of higher order sensitivity
values is discussed. Summing the first order sensitivity values shown in figure 12.1 results in
S (αx)+S (βx)+S (d)+S (c1)+S (c2) = 0.81 and 0.83 for αx/βx = 2 Gy and αx/βx = 9.2 Gy
respectively. If this sum is below one, higher order sensitivity values are present and the
total sensitivity TS > S for all or a subset of the input parameters (cf. equations (8.9)
and (8.11) and their discussion on page 55).

The analysis is demonstrated for the small αx/βx = 2 Gy (cf. panel A of figure 12.1).
Table 12.1 shows the complete sensitivity information. The sensitivity values were obtained
in three different ways: by calculating all cross terms, by the Factor Prioritization (FP)
approach and by the Factor Fixation (FF) approach. The five columns show the sensitivity
values for the five input parameters. The corresponding inputs are highlighted in bold in
every column.

The cross terms in lines 2-16, as well as S and TS in lines 1a and 17a are calculated for
n = 1.05 · 106 by executing and sorting them gradually. The number of parts in which the
sorted result is divided has the size npar = 8. This means that for the fifth order term, there
are 85 subdivisions each with 32 runs. The order of the sorting is indicated by the order in
the sensitivity values. For instance S (βxβxβx, d) is calculated by first sorting in βx and then in
d in the next step. The exact procedure has been introduced in section 8.4 on page 54. The
total sensitivity values TS are calculated as sum over all possible combinations containing
one input parameter (cf. equation (8.9) on page 55). This corresponds to a summation of
one column (lines 1a and 2-16) in table 12.1. Note, that equation (8.10) holds for large
enough n. The sorting, which is done in this SA, becomes independent of the order of the
input parameters (“The result does not change if for example the sorting is done first along
αx and then in βx or vice versa”). Hence, the cross terms that depend on the same set of
input parameters result in the same value. The cross terms in table 12.1 are independent
of the order within the input parameters. This holds for all combinations (for instance, in
line 3: S(βxβxβx, d) = S(ddd, βx) or in line 9: S(βxβxβx, d, c1) = S(ddd, βx, c1) = S(c1c1c1, βx, d)). Although
all cross terms in table 12.1 are smaller than 0.03, they result in substantially greater TS
than S values.

The results for both the Factor Prioritization (FP, cf. section 8.3 on page 51) and the
Factor Fixation (FF, cf. section 8.4 on page 54) are based on n = 1.3 · 105 runs. The FP
approach calculates the first order sensitivities (SFP ), whereas the FF approach is a fast
approximation to calculate SFF and TSFF .

Table 12.1 facilitates to compare the first order sensitivity values S and SFP with the
approximation SFF . All three values agree well for the five input parameters (lines 1a-1c
in table 12.1). Note, that S and SFP are calculated in exactly the same way. The values
are not equal as the number of runs is different. Due to the needed statistic for all cross
terms, S is calculated based on n = 1.05 · 106 whereas SFP only on n = 1.3 · 105. The
small deviation is not caused by the seed of the random numbers. Executing the same SA
a second time, with a different seed of random numbers but same n, has the same result.

The two calculations of the total sensitivity values in lines 17a and 17b of table 12.1
have relatively high differences (up to 18 %). The approximation of TSFF (line 17b) is
greater than the actual sum over the cross terms TS (line 17a). The main question for
the total sensitivity analysis is how reliable all the small cross terms can be calculated or
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first order

1a S (αxαxαx) = 0.028 S (βxβxβx) = 0.231 S (ddd) = 0.159 S (c1c1c1) = 0.253 S (c2c2c2) = 0.095
1b SFP (αxαxαx) = 0.031 SFP (βxβxβx) = 0.245 SFP (ddd) = 0.166 SFP (c1c1c1) = 0.266 SFP (c2c2c2) = 0.104
1c SFF (αxαxαx) = 0.026 SFF (βxβxβx) = 0.243 SFF (ddd) = 0.157 SFF (c1c1c1) = 0.266 SFF (c2c2c2) = 0.096

second order

2 S (αxαxαx, βx) = 0.002 S (βxβxβx, αx) = 0.002 S (ddd, αx) = 0.001 S (c1c1c1, αx) = 0.002 S (c2c2c2, αx) = 0.001
3 S (αxαxαx, d) = 0.002 S (βxβxβx, d) = 0.014 S (ddd, βx) = 0.014 S (c1c1c1, βx) = 0.025 S (c2c2c2, βx) = 0.006
4 S (αxαxαx, c1) = 0.002 S (βxβxβx, c1) = 0.026 S (ddd, c1) = 0.015 S (c1c1c1, d) = 0.015 S (c2c2c2, d) = 0.005
5 S (αxαxαx, c2) = 0.001 S (βxβxβx, c2) = 0.006 S (ddd, c2) = 0.005 S (c1c1c1, c2) = 0.010 S (c2c2c2, c1) = 0.010

third order

6 S (αxαxαx, βx, d) = 0.002 S (βxβxβx, αx, d) = 0.002 S (ddd, αx, βx) = 0.002 S (c1c1c1, αx, βx) = 0.003 S (c2c2c2, αx, βx) = 0.001
7 S (αxαxαx, βx, c1) = 0.003 S (βxβxβx, αx, c1) = 0.003 S (ddd, αx, c1) = 0.002 S (c1c1c1, αx, d) = 0.002 S (c2c2c2, αx, d) = 0.001
8 S (αxαxαx, βx, c2) = 0.001 S (βxβxβx, αx, c2) = 0.001 S (ddd, αx, c2) = 0.001 S (c1c1c1, αx, c2) = 0.001 S (c2c2c2, αx, c1) = 0.001
9 S (αxαxαx, d, c1) = 0.002 S (βxβxβx, d, c1) = 0.021 S (ddd, βx, c1) = 0.021 S (c1c1c1, βx, d) = 0.021 S (c2c2c2, βx, d) = 0.006
10 S (αxαxαx, d, c2) = 0.001 S (βxβxβx, d, c2) = 0.006 S (ddd, βx, c2) = 0.006 S (c1c1c1, βx, c2) = 0.012 S (c2c2c2, βx, c1) = 0.012
11 S (αxαxαx, c1, c2) = 0.001 S (βxβxβx, c1, c2) = 0.012 S (ddd, c1, c2) = 0.007 S (c1c1c1, d, c2) = 0.007 S (c2c2c2, d, c1) = 0.007

fourth order

12 S (αxαxαx, βx, d, c1) = 0.003 S (βxβxβx, αx, d, c1) = 0.003 S (ddd, αx, βx, c1) = 0.003 S (c1c1c1, αx, βx, d) = 0.003 S (c2c2c2, αx, βx, d) = 0.001
13 S (αxαxαx, βx, d, c2) = 0.001 S (βxβxβx, αx, d, c2) = 0.001 S (ddd, αx, βx, c2) = 0.001 S (c1c1c1, αx, βx, c2) = 0.001 S (c2c2c2, αx, βx, c1) = 0.001
14 S (αxαxαx, βx, c1, c2) = 0.001 S (βxβxβx, αx, c1, c2) = 0.001 S (ddd, αx, c1, c2) = 0.001 S (c1c1c1, αx, d, c2) = 0.001 S (c2c2c2, αx, d, c1) = 0.001
15 S (αxαxαx, d, c1, c2) = 0.001 S (βxβxβx, d, c1, c2) = 0.013 S (ddd, βx, c1, c2) = 0.013 S (c1c1c1, βx, d, c2) = 0.013 S (c2c2c2, βx, d, c2) = 0.013

fifth order

16 S (αxαxαx, βx, d, c1, c2) = 0.003 S (βxβxβx, αx, d, c1, c2) = 0.003 S (ddd, αx, βx, c1, c2) = 0.003 S (c1c1c1, αx, βx, d, c2) = 0.003 S (c2c2c2, αx, βx, d, c1) = 0.002

total sensitivity

17a TS (αxαxαx) = 0.055 TS (βxβxβx) = 0.346 TS (ddd) = 0.255 TS (c1c1c1) = 0.374 TS (c2c2c2) = 0.163
17b TSFF (αxαxαx) = 0.065 TSFF (βxβxβx) = 0.384 TSFF (ddd) = 0.291 TSFF (c1c1c1) = 0.411 TSFF (c2c2c2) = 0.192

Table 12.1.: This table summarizes the full (total) sensitivity analysis including all higher order sensitivities. TCP (αx, βx, d, c1, c2) is
analyzed for αx/βx = 2 Gy. The five columns show the values for the five input parameters. The corresponding input
parameter is highlighted in bold in the columns. The results for both the Factor Prioritization (FP, line 1b) and the Factor
Fixation (FF, lines 1c and 17b) are based on n = 1.3 · 105 runs. The cross terms in lines 2-16, as well as S and TS in
lines 1a and 17a, are calculated for n = 1.05 · 106.91
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approximated. The reliability of both approaches increases with number of runs.
This comparison shows that the first order sensitivity values have good agreement,

whereas the total sensitivity analysis and the resulting Factor Fixation approach defer
noteworthy. A higher number of runs might result in better statistics and more reliable
results. This is not feasible due to the increased computation time.
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13. Sensitivity Analysis: Summary and
Conclusion

In the previous chapters the variance-based sensitivity analysis (SA) methods were applied
to the uncertainties in biological dose response models. The key results are summarized
here. First general conclusions regarding the SA approaches and their implementation into
carbon ion treatment planning are given. The second part is related to the SAs performed
and evaluated within this thesis.

It was shown throughout the previous chapters that the variance-based SA can be
adapted to carbon ion treatment planning. With the used formalisms it is possible to
calculate 1.3 · 105 carbon ion treatment plans in few hours. This allows voxel-wise and
structure-based SAs of real patient cases. Up to five independent input parameters were
evaluated simultaneously, the extension to a sixth parameter or even more is straight for-
ward.

The sensitivity analysis allows to prioritize the uncertainty in different input parameters
(Factor Prioritization). The Factor Fixation approach, which allows to remove uninfluen-
tial input uncertainties, does not have sufficient statistics for a voxel-wise total SA. The
calculation of structure-based measures requires less computation time. In this case it is
possible to increase the number of runs and consequently to provide sufficient statistics for
total sensitivity analyses. Due to computational limits a complete total SA, including all
cross terms is applicable only for structure-based measures like the tumor control probabil-
ity (TCP, chapter 12). Nevertheless the implemented SAs proved to be a powerful tool for
the evaluation of biological uncertainties in dose response models for carbon ion therapy.

Comprehensive SAs were performed for relative biological effectiveness (RBE) predic-
tions based on the repair-misrepair-fixation (RMF) model. This included uncertainties
in the reference radiosensitivity parameters (αx and βx), the biological modeling process
and the physical dose. Obtained uncertainties in the resulting RBE-weighted dose (RWD)
turned out to be large. It was shown that the impact of different uncertainties on the
RWD changes spatially throughout a patient (cf. chapter 10). This issue is crucial, as
the impact of biological uncertainties differs for the tumor and organs at risk, depending
on their location. The large uncertainties in the RWD result in a large spread in tumor
control probability (cf. chapter 12).

The assumption of a precise physical dose delivery (without uncertainty) nevertheless
resulted in a considerable uncertainty in the RWD due to the uncertainties in the biological
modeling process (cf. section 10.3). This finding justifies the need to consider biological
uncertainties, regardless of the achieved precision and accuracy in the physical dose delivery.

The partial sensitivity analyses for the first version of the local effect model (LEM1) and
the repair-misrepair-fixation (RMF) model indicate that the evaluation of uncertainties
in a subset of parameters only is not sufficient (cf. chapter 11). A comprehensive SA
is needed, as it includes all dependencies (αp (αx, βx) and βp (αx, βx)) in the biological
modeling process. Similar to the comprehensive SA, the partial SAs showed large variations
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in RWD. The spatial variations inside a patient are not reproduced by the partial SAs.
Variance-based sensitivity approaches were successfully implemented in carbon ion treat-

ment planning. The resulting uncertainties of the RBE-weighted dose are considerable and
need to be included into treatment planning and evaluation. The shown SAs facilitates
the examination and comparison of the impacts of biological uncertainties in dose response
models and hence further improve the accuracy and reliability of carbon ion radiotherapy.
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14. Summary

In this chapter the main parts and developments of this work are recapitulated. In order
to evaluate the impact of uncertainties in biological dose response models a variance-based
sensitivity analysis was developed and implemented into carbon ion therapy.
The implementation of three-dimensional carbon ion treatment planning was described in

part II. The work was focused on the used biological models and their implementation. The
repair-misrepair-fixation (RMF) model was successfully combined with carbon ion fragment
spectra and validated within the scope of this thesis (cf. chapter 6 and reference [17]). The
RMF model proved to be advantageous for fast biological modeling in carbon ion therapy.
Variance-based sensitivity methods were adapted to three-dimensional carbon ion treat-

ment planning (chapter 8). These methods add error bars to a result and allow to examine
the composition of its uncertainty originating from different input uncertainties (cf. refer-
ence [21]). The application of this sensitivity approach to treatment planning in carbon
ion therapy leads to several important results:

 The uncertainties in biological parameters and the physical dose result in large uncer-
tainties of the RBE-weighted dose RWD (“RWD = relative biological effectiveness
(RBE) multiplied by physical dose”) and hence in potential under- or overdosage
(chapter 10). This bears the risk of lower tumor control probability or higher com-
plication rates in normal tissue.

 Large uncertainties in the RWD persist even in case the uncertainty in the phys-
ical dose is removed (ideally precise planning and delivery of the physical dose).
This proves that the consideration of biological uncertainties in carbon ion treatment
planning is essential for the assessment of treatment outcome (section 10.3).

 Inclusion of the biological modeling process into the sensitivity analysis is necessary.
Although partial sensitivity approaches, excluding parts of the biological modeling
process, showed large uncertainties in the result similar to the comprehensive sen-
sitivity analysis, the spatial distributions could not be reproduced with the partial
sensitivity approaches (chapter 11).

 Uncertainties have a high impact on calculated tumor control probabilities (TCP) for
carbon ion treatment plans (chapter 12). Absolute TCP values and the comparison
of TCP need to be interpreted cautiously in carbon ion therapy.

The presented work provides powerful tools to evaluate the impact of uncertainties in
biological dose response modeling for carbon ion therapy. Besides the possibility to add
error bars to treatment plan evaluation, it assess which input uncertainties are the crucial
factors for the resulting uncertainty of RWD. Now the possibility is given to evaluate the
potential of uncertainty reductions due to further development in radiation biology. The
presented methods can be used to enhance the accuracy of the biological modeling process
and to increase robustness of carbon ion treatment plans, leading to increased reliability.
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15. Conclusion

Throughout this thesis it was shown how to include uncertainties in biological dose response
models into carbon ion therapy treatment planning and evaluation. This was done by a
sensitivity analysis approach. Besides the uncertainty in the result of the treatment plan it
provides the ranking of the impacts of uncertainties in different input parameters. Based
on this sensitivity analysis, clear visualization tools were developed to examine biological
uncertainties of carbon ion treatment planning. The introduced approach is suitable for
comprehensive sensitivity analyses accounting for the main uncertainties in the biological
dose response modeling for carbon ion therapy.
The results of performed sensitivity analyses show large uncertainties in the treatment

plans. They are mainly caused by uncertainties in the biological modeling. This leads
to the conclusion that precise physical dose application and planning is only half way to
reliable carbon ion treatment planning. Carbon ion treatment planning must account for
biological uncertainties in dose response modeling. The developed tools add the mentioned
biological uncertainties to the treatment planning process and rank them by their impact.
This ranking shows which uncertainty should be reduced to gain the most precision in a
treatment plan.
The developed methods provide efficient tools to examine and compare the impacts of

biological uncertainties in dose response models and hence further improve the accuracy
and reliability of carbon ion radiotherapy. This approach is an important contribution
to the general attempt to provide save and accurate patient treatment with carbon ion
therapy.
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A. Hessians for the Optimization

In this chapter the calculations of the Hessian matrices for the optimization (cf. chapter 7)
are given. In the implemented optimization Hessian matrices were approximated with
the L-BFGS (limited memory-Broyden-Fletcher-Goldfarb-Shanno [44]) algorithm. The
approximation is considerably faster than the exact calculation. The equations for the
exact calculation of the Hessian matrices are listed for the sake of completeness.

A.1. Hessian of the Cost-Function

The Hessian matrix of the standard cost function can be written as [42]:
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. (A.1)

The used variables are introduced along with the calculation of the cost function F and its
gradient ∂F/∂ωk in chapter 7. In this chapter, starting on page 37, the implementation of
the optimization is described.

A.2. Hessian of the Objectives

Here the Hessian matrices of the implemented objectives are described. A total Hessian
matrix as combination of the standard cost function (cf. equations (7.14) and (A.1)) and
the objectives (cf. equations (A.2) and (A.3)) is a simple sum. The contribution of a voxel
i to the calculation is only nonzero, if in this voxel the condition (εi (ω)− εi,objMax) ≥ 0 is
fulfilled for the maximum objective or, correspondingly, (εi,objMin − εi (ω)) ≥ 0 is fulfilled
for the minimum objective. These conditions can be implemented by assigning pi,objMax = 0
or pi,objMin = 0 in the needed voxel. The Hessian matrices for the objectives can be
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calculated:
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)

·
(
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(
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)

·
√
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)
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√
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]

(A.2)

∂2FobjMin
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·
√
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·
(
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(

∑
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√

βp,ijdp,ij · ωj

)

·
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βp,ikdp,ik

)

+ 2pi,objMin (εi,objMin − εi (ω))
√

βp,ildp,il ·
√

βp,ikdp,ik

]

. (A.3)

The used variables are introduced along with the calculation of the cost functions (FobjMax

and FobjMin) and their gradients (∂FobjMax/∂ωk and ∂FobjMin/∂ωk) in chapter 7. In this
chapter 7, starting on page 37, the implementation of the optimization is described.

A.3. Hessian of the Constraints

The Hessian matrix of the hard maximum and minimum constraints can be calculated as
follows:

∂2ci,conMax

∂ωk∂ωl

= 2
√

βp,ildp,il ·
√

βp,ikdp,ik (A.4)

∂2ci,conMin

∂ωk∂ωl

= −2
√

βp,ildp,il ·
√

βp,ikdp,ik. (A.5)

The used variables are introduced in chapter 7, starting on page 37. The Hessian matrix
of the mean RWD is:

∂2ceqmeanTar

∂ωk∂ωl

=
1

Ntar

∑

i∈tar

(

2
√

βp,ildp,il ·
√

βp,ikdp,ik

)

. (A.6)

The calculation and explanation of these hard maximum and minimum constraints and
the constraint for the mean RWD in the target are presented in section 7.3 on page 39.
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B. Example of a Treatment Plan
Optimization Result for LEM1
Predictions

Figure B.1 shows a result of a treatment plan optimization. This astrocytoma patient
was initially treated with photon radiotherapy at the Klinikum rechts der Isar in Munich
and is used as the planning and evaluation example throughout this work. For figure B.1
constant values αx = 0.1 Gy-1 and βx = 0.05 Gy-2 are set throughout the patient. The
first version of the local effect model (LEM1) is used here. (A similar example using the
repair-misrepair-fixation(RMF) model is shown in figure 7.1 on page 42.) The plan was
optimized on RWD = 3 Gy(RBE) in the planning target volume (PTV) with two carbon
beams. These eight panels show the used beam geometry and the calculated biological and
physical quantities in color displayed on top of the patient CT. The optimization settings in
terms of prescribed RWD, penalties and objectives are summarized in table 7.1 on page 41.
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Figure B.1.: Example of an optimization result with the first version of the local effect
model (LEM1) showing the optimized RWD (panel A) and the calculated RBE
(panel B). Physical dose and dose-weighted LET are plotted in panels C and D.
The radiosensitivity parameters αp and βp (panels E and F respectively) were
obtained with the LEM1 and constant values αx = 0.1Gy-1 and βx = 0.05Gy-2.
Panel G shows the EQD2 calculated voxel by voxel. The used beam geometry
for the astrocytoma patient can be found in panel H. The planning target
volume (PTV) is marked in red, the left optical nerve in green together with
the left eyeball (orange) and the left lens (brown).
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C. Sensitivity Analysis, Example of the
Interplay Effect of Changes in Two
Parameters

Throughout the introduction to sensitivity analysis (cf. chapter 8) the terms “interplay”
effect or “cross terms” are used frequently to describe the interaction of changes in two (or
more) parameters. Here a short example is given, demonstrating how this term is derived
and how it has to be interpreted. Considering a simple function

Y (X1, X2) = X1 ·X2 (C.1)

evaluated at the point X1 = 10 and X2 = 2 and in addition with +0.5 deviation from X1

and X2:

Y (10.0, 2.0) = 20.00 (C.2)

Y (10.5, 2.0) = 21.00 (C.3)

Y (10.0, 2.5) = 25.00 (C.4)

Y (10.5, 2.5) = 26.25. (C.5)

The deviations in Y can be calculated following the simple approach in equation (8.1) and
equation (8.3) on pages 49 and 50 respectively.

∆Y = Y (10.5, 2.5)− Y (10.0, 2.0) = 6.25 (C.6)

∆1Y = Y (10.5, 2.0)− Y (10.0, 2.0) = 1 (C.7)

∆2Y = Y (10.0, 2.5)− Y (10.0, 2.0) = 5 (C.8)

∆12Y = Y (10.5, 2.5)− Y (10.0, 2.0)−∆1Y −∆2Y = 0.25 (C.9)

The ∆Y = 6.25 total deviation in the result Y consists of ∆1Y = 1 and ∆2Y = 5 from
X1 and X2 respectively and ∆12Y = 0.25 of their interplay. Because X1 was changed, a
change in X2 has a greater impact and vice versa. Note, that ∆12Y = 0 follows if the
two parameters are linked linearly. This is for example the case for Y = X1 ± X2. This
linear combination has the property ∂2Y/∂X1∂X2 = 0, showing that there is no interplay
between X1 and X2.
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D. Partial SA

D.1. Partial SA: RBE (αp, βp, d), 3-D SA

In this section axial slices of the 3-D partial SA (cf. section 11.2, page 82) are presented.
The performed partial SA assumes that the relative biological effectiveness is a function of
only three input parameters: RBE (αp, βp, d).
Figure D.1 shows the results for RMF model based treatment plans and figure D.2

for LEM1 based treatment plans. The figures can be found on the next double page.
Three cell lines are evaluated. Their αx/βx ratios are marked above the first row in the
figures. The small αx/βx = 2 Gy (αx = 0.1 Gy-1 and βx = 0.05 Gy-2) is commonly used
for chordoma of the scull base [30]. The intermediate αx/βx = 5.1 Gy (αx = 0.313 Gy-1

and βx = 0.0615 Gy-2) is obtained for human submandibular gland (HSG) cells [41]. The
third cell line has the greatest αx/βx = 9.2 Gy (αx = 0.184 Gy-1, βx = 0.02 Gy-2). These
values were obtained for Chinese hamster fibroblast, V79 [41]. The default input parameter
uncertainties are used: σ (αp) = 10%, σ (βp) = 10% and σ (d) = 5%.
The rows of figures D.1 and D.2 show the optimized RWDs (panels A) together with

their resulting uncertainties (panels B). The sensitivity maps are displayed in panels C-E.
Several structures are marked in the plots: the planning target volume (PTV) in red, the
left optical nerve (green) as well as the left eyeball (orange) and the left lens (brown).
The optimization results of the six considered optimizations are comparable (panels A

in the figures). In the corresponding uncertainties (panels B) two trends are observed. The
uncertainty increases with increasing αx/βx and the uncertainty is in general slightly higher
for the LEM1 based treatment plans. SRWD (αp) is the highest in the RMF model based SA
in figure D.1. Its value decreases in the area of the PTV. The dose d has the second highest
impact on the resulting uncertainty in the RWD. SRWD (d) is higher in the PTV. The trend
of higher SRWD (d) and lower SRWD (αp) in the PTV is more pronounced the lower αx/βx.
The sensitivity on the βp is the smallest and only reaches values SRWD (βp) > 0.05 in the
PTV.
The sensitivity values for the LEM1 based treatment plans, displayed in figure D.2, show

constant SRWD (αp), SRWD (βp) and SRWD (d). The sensitivity on αp is the highest, followed
by the sensitivity on d. SRWD (βp) < 0.05 throughout the patient.
For both models the mentioned trends in panels C-E can be explained with the cal-

culation of RWD = 0.5

(

−αx/βx +
√

(αx/βx)
2 + 4d (αp + βpd) /βx

)

(cf. equation (11.1)).

The x-ray parameters are constant for this partial SA, this means that d (αp + βpd) is the
crucial part for the RWD calculation in this partial SA.
Considering d (αp + βpd) explains the spatial distribution of SRWD (αp), SRWD (βp) and

SRWD (d). For both RMF model and LEM1 based treatment plans, the dose d is small
outside the PTV. Only the term αp · d actually influences d (αp + βpd), resulting in a very
small SRWD (βp), but high SRWD (αp) and SRWD (d). SRWD (αp) > SRWD (d) as the assigned
uncertainties are different (σ (αp) = 10% and σ (d) = 5%). In the case of RMF model
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D. Partial SA

RMF
αx/βx = 2 Gy αx/βx = 5.1 Gy αx/βx = 9.2 Gy

A) RWD 3.1

0

G
y
(R

B
E

)

B) σ(RWD) 0.20

0

G
y
(R

B
E

)

C) S
RWD

(αp) 1.0

0

E) S
RWD

(d) 1.0

0

D) S
RWD

(βp) 1.0

0

A) RWD 3.1

0

G
y
(R

B
E

)
B) σ(RWD) 0.23

0

G
y
(R

B
E

)

C) S
RWD

(αp) 1.0

0

E) S
RWD

(d) 1.0

0

D) S
RWD

(βp) 1.0

0

A) RWD 3.1

0

G
y
(R

B
E

)

B) σ(RWD) 0.26

0

G
y
(R

B
E

)

C) S
RWD

(αp) 1.0

0

E) S
RWD

(d) 1.0

0

D) S
RWD

(βp) 1.0

0

Figure D.1.: Partial SA result for RMF model based treatment plans, uncertainties in αp,
βp and d and three different αx/βx ratios. The panels show the optimized
RWD (panels A) together with its uncertainty (panels B). Panels C-E show
the sensitivity maps.
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D.1. Partial SA: RBE (αp, βp, d), 3-D SA
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Figure D.2.: Partial SA result for LEM1 based treatment plans, uncertainties in αp, βp

and d and three different αx/βx ratios. The panels show the optimized RWD
(panels A) together with its uncertainty (panels B). Panels C-E show the
sensitivity maps.
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D. Partial SA

predictions, βp increases with increasing LET (cf. figure 7.1, page 42). In combination
with d2 this leads to a small increase in SRWD (βp) and a higher SRWD (d) in the PTV.
Consequently SRWD (αp) is reduced in the PTV for RMF model based treatment scenarios.
For the LEM1, βp decreases with increasing LET (cf. figure B.1, in Appendix B). βp is
small inside the PTV. The term βpd

2 has no influence on the resulting uncertainty in RWD.
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D.2. Partial SA: RBE (αx, βx, αp, βp, d) for αx/βx = 9.2 Gy

D.2. Partial SA: RBE (αx, βx, αp, βp, d) for

αx/βx = 9.2 Gy

Topic of this section is to give an additional example of the partial SA calculated with
RBE (αx, βx, αp, βp, d). A more detailed description of the approach and its assumptions
was given in section 11.3 on page 84. In mentioned section figure 11.5 shows the partial SA
result for αx/βx = 2 Gy calculated with the RMF model. Here in figure D.3 a RMF model
based treatment plan with αx/βx = 9.2 Gy is evaluated. The results for the corresponding
partial SAs based on LEM1 predictions are very similar and not shown here.
Panel A of figure D.3 shows the standard deviation of the RWD distribution. The RWD

itself did not change for this partial SA and is equivalent to panel A in figure 10.3 on
page 73. Panels B-F in figure D.3 show the five corresponding sensitivity maps. The
planning target volume (PTV) is marked in red, the left optical nerve in green together
with the left eyeball (orange) and the left lens (brown).
The trends in the sensitivity maps are similar to the partial SA with αx/βx = 2 Gy

shown in figure 11.5 on page 85. For αx/βx = 9.2 Gy the changes between sensitivity
values inside and outside the PTV are smaller. SRWD (αx) is approximately 0.45 outside
the PTV and declines to 0.35 inside the PTV (panel B). SRWD (βx) ≈ 0 outside the PTV
and increases to SRWD (βx) ≈ 0.03 in the PTV (panel C). SRWD (αp) ≈ 0.42 (panel D) and
SRWD (βp) ≈ 0 (panel E) throughout the whole patient. SRWD (d) ranges from 0.1 outside
the PTV to 0.2 in the PTV (panel F).
The comparison of this partial SA with the comprehensive SA for the RMF model

(figure 10.3 on page 73) demonstrates again the drawbacks of this partial SA. Like in the
example for αx/βx = 2 Gy the spatial changes of the SRWD values are not reproduced for
αx/βx = 9.2 Gy. The corresponding example for αx/βx = 2 Gy is shown in section 11.3
on page 84. This is crucial for the changes distal to the PTV, where potentially organs at
risk (OAR) are located. In the patient case used here, the left optical nerve is located in
this region.
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Figure D.3.: Result of the partial SA for a treatment plan based on the RMF model with
αx/βx = 9.2 Gy. Panel A shows the uncertainty in the RWD distribution, pan-
els B-F the sensitivity maps for the partial SA of RBE (αx, βx, αp, βp, d). The
dependencies of αp and βp on αx and βx are omitted. The assigned uncertain-
ties of the input parameter are: σ (αx) = 10%, σ (βx) = 10%, σ (αp) = 10%,
σ (βp) = 10% and σ (d) = 5%. The planning target volume (PTV) is marked
in red, the left optical nerve in green together with the left eyeball (orange)
and the left lens (brown).
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Belka and K. Parodi: “Phantom based evaluation of CT to CBCT image registration
for proton therapy dose recalculation” accepted in Phys. Med. Biol.

 Landry G., G. Dedes, J. Handrack, R. Nijhuis, C. Thieke, G. Janssens, J. Orban
de Xivry, M. Reiner, F. Kamp, J. Wilkens, C. Paganelli, M. Riboldi, G. Baroni, U.
Ganswindt, C. Belka and K. Parodi: “Investigating CT to CBCT image registration
for head and neck proton therapy as a tool for daily dose recalculation” accepted in
Med. Phys.

Papers in books and conference abstracts

First author

 Kamp F., G. Cabal, A. Mairani, K. Parodi, J.J. Wilkens and D.J. Carlson: “Predict-
ing the Relative Biological Effectiveness of Carbon Ion Radiation Therapy Beams
Using the Mechanistic Repair-Misrepair-Fixation (RMF) Model and Nuclear Frag-
ment Spectra” International Journal of Radiation Oncology, Biology, Physics 90(1,
Suppl.), S849, 2014. (poster)

 Kamp F. and J.J. Wilkens: “Variance-based Sensitivity Analysis to Quantify the
Impact of Biological Model Uncertainties in Carbon Ion Therapy” in: S. Klöck (ed.)
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Ganswindt, C. Thieke, G. Janssens, J. Orban de Xivry, C. Paganelli, F. Kamp, M.
Riboldi, J.J. Wilkens, G. Baroni, C. Belka and K. Parodi: “A novel approach to
estimate the dosimetric influence of anatomical changes in head and neck cancer
patients undergoing proton therapy using daily CBCT imaging” in: S. Klöck (ed.)
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