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ABSTRACT

Advanced multicarrier systems, like the Offset-QAM filter

bank based (OQAM-FBMC) ones, are gaining importance

as candidates for the physical layer of the 5-th generation

of wireless communications. One of the main advantages

of FBMC, when compared to traditional cyclic prefix based

OFDM, is its higher spectral efficiency. However, this gain

can be lost again if the problem of training based channel es-

timation is not tackled correctly. This is due to the memory

inserted by the longer pulse shaping and the loss of orthogo-

nality of overlapping subcarriers. In this paper we approach

the problem of training based channel estimation for FBMC

systems. We propose an iterative algorithm based on the ex-

pectation maximization (EM) maximum likelihood (ML) that

reduces the overhead and consequently improves the spectral

efficiency.

Index Terms— OQAM; Filter Bank Multicarrier; Chan-

nel Estimation; ML estimation; Expectation Maximization

1. INTRODUCTION

We consider FBMC systems in wireless environments with

multipath propagation. In contrast to CP-OFDM, where a

rectangular pulse shaping is used, we take a finite impulse

response (FIR) prototype filter with a duration greater than

the symbol period, but as in CP-OFDM it is modulated by

complex exponentials. Consequently, more spectrally con-

centrated subcarriers are obtained which only overlap with

the two adjacent ones. Moreover, the FBMC system does not

include any guard interval, which also improves spectral effi-

ciency, at the cost of higher complexity.

In FBMC, orthogonality, i.e. inter-symbol interference

(ISI) and inter-channel interference (ICI)-free received sym-

bols, can only be guaranteed by the so called OQAM [1],

where the symbols’ real and imaginary parts are staggered

by T/2 and T is the QAM symbol period in each subcarrier.

Furthermore, the prototype filter can be designed according
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Fig. 1. FBMC System Overview.

to different goals, but we restrict ourselves to an FIR approx-

imation of the root raised cosine (RRC) with roll-off one.

This choice of the prototype will indeed introduce some ISI

and ICI, but if its degree is high enough, the interference is

negligible compared to the other impairments, for example,

ISI and ICI caused by a multipath channel.

In [2, 3], we have presented per-subcarrier fractionally

spaced equalizers that almost remove all ISI and ICI caused

by the multipath channel. We have assumed perfect chan-

nel impulse response (CIR) knowledge at the receiver side.

In [4] we have presented a method for the estimation of the

narrowband multipath channel viewed in each subcarrier us-

ing an EM based algorithm in order to increase the spectral

efficiency. In this contribution, we first present how to esti-

mate the broadband CIR without taking care of the spectral

efficiency, then we extend the results of [4] for the broadband

channel estimation to improve the spectral efficiency.

2. ADVANCED MULTICARRIER: OQAM BASED

FILTER BANK MULTICARRIER

A high level model of the FBMC system is shown in Fig. 1.

In this transmultiplex system, a synthesis filter bank (SFB)

performs a frequency division multiplexing of the T seconds

long QAM data symbols dk[m] at the transmitter. An analysis

filter bank (AFB) at the receiver separates the data onto each

subcarrier. We assume a slowly fading frequency selective

channel. Usually Mu out of M subcarriers are used.

Here we regard exponentially modulated SFBs and AFBs,

i.e. only one low-pass filter has to be designed and the other
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Fig. 3. Subchannel model for the FBMC/OQAM system.

sub-filters are obtained by modulating it as follows [5]

gk[l] = gP[l] exp

(

j
2π

M
k

(

l −
LP − 1

2

))

, l = 0, . . . , LP − 1,

where gP[l] is the impulse response of this prototype filter of

degree LP − 1. The prototype chosen here is an RRC filter

with roll-off factor one and consequently only the spectrum

of contiguous subcarriers overlap. The non-contiguous sub-

carriers are separated by the high stop-band attenuation. We

define LP = KM+1, where K is the time overlapping factor

that determines how many symbols superimpose. K should

be kept as small as possible not only to limit the complexity

but also to reduce the time-domain spreading of the symbols

and the transmission latency.

To maintain the orthogonality between all subcarriers and

for all time instants, the complex QAM input symbols dk[m]
are OQAM staggered. We illustrate the OQAM staggering for

odd indexed subcarriers in Fig. 2. For even indexed subcarri-

ers the T/2 delay is placed at the lower branch. The OQAM

de-staggering is performed at the receiver by the application

of flow-graph reversal, substitution of up-samplers by down-

samplers and exchange of ℜ{·} and jℑ{·}.

After the OQAM staggering, the subcarrier signals are up-

sampled by M/2 , filtered and added. A broadband signal

is then generated and digital-to-analog converted into an IQ

baseband signal that is analog processed and transmitted. At

the receiver side the RF signal is amplified, brought to base-

band, filtered and then analog-to-digital converted. The re-

ceived signal is then filtered and down-sampled by M/2.

The fact that only contiguous subcarriers overlap, al-

lows us to construct the model for one subcarrier shown in

Fig. 3. The inputs xk[n] are OQAM symbols and the received

subcarrier signals yk[n] still have to be equalized and de-

staggered before further processing of the QAM symbols. As

a consequence, in this model the input and output sampling

rates are 2/T . We assume here a multipath channel with per-

fect frequency synchronization (no carrier frequency offset or

Doppler shift). A time offset can be incorporated in the CIR.
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Fig. 4. Subcarrier model for broadband channel estimation.

3. SYSTEM MODEL AND CHANNEL IMPULSE

RESPONSE ESTIMATION

Let us assume that per-subcarrier linear or decision feedback

equalizers are employed. As shown in [2, 3], the CIR knowl-

edge is necessary for their design. Here we further assume

that the training sequences are not only employed in the ob-

served subcarriers, but also in their adjacent ones. Later we

will alleviate this and only the observed subcarriers will be

reserved for training.

The subcarrier model of Fig. 3 can be simplified as shown

in Fig. 4 for the purpose of estimating the broadband CIR h[l].
The output yk[n] contains the downsampled received samples

at the OQAM symbol rate and is defined as

yk[n]=g̃k,k[n]∗xk[n]+g̃k,k−1[n]∗xk−1[n]

+g̃k,k+1[n]∗xk+1[n]+ηk[n], (1)

where ∗ represents linear convolution, and g̃k,k[n], g̃k,k−1[n]
and g̃k,k+1[n] are the downsampled impulse responses of

length Lg̃ = ⌈ 2LP+Lh−2
M/2 ⌉ that result from the convolution of

tha transmit filters gk[l], gk−1[l] and gk+1[l], the receive filter

gk[l] and the frequency selective channel h[l]. ηk[n] is the

downsampled narrowband colored noise.

One can stack the coefficients of the impulse responses

g̃k,k[n], g̃k,k−1[n] and g̃k,k+1[n] in vectors g̃k,k, g̃k,k−1

and g̃k,k+1 ∈ CLg̃ and decompose them as the products

of matrices Ḡk,k, Ḡk,k−1 and Ḡk,k+1 ∈ CLg̃×Lh with the

CIR vector h ∈ CLh as g̃k,k= Ḡk,kh, g̃k,k−1= Ḡk,k−1h,

g̃k,k+1=Ḡk,k+1h. We then have Ḡk,k=JG
DSGk,k , Ḡk,k−1=

JG
DSGk,k−1, Ḡk,k+1=JG

DSGk,k+1, where JG
DS is a downsam-

pling matrix with its ℓ-th row given by eTq ∈ {0, 1}(2LP−1) for

q=(ℓ−1)M/2+1 and ℓ ∈ {1, 2, ..., Lg̃}. eq is a unity vector

with 1 in the q-th position and 0s elsewhere. Gk,k, Gk,k−1

and Gk,k+1 ∈ C(2LP−1)×Lh are the convolution matrices

generated by the impulse responses (gk ∗gk)[l], (gk ∗gk−1)[l]
and (gk ∗ gk+1)[l]. Moreover, we have that ηk = Γkν, where

Γk ∈ CLo×(LP+Lo−1) is the corresponding downsampled

version of the convolution matrix generated from the impulse

response gk[l].
Now we can stack the samples yk[n] in a vector to obtain

yk=Xkg̃k,k+Xk−1g̃k,k−1+Xk+1g̃k,k+1+Γkν[l],

=(XkḠk,k+Xk−1Ḡk,k−1+Xk+1Ḡk,k+1)h+ Γkν[l],



where Xk−1,Xk,Xk+1 ∈ CLo×Lg̃ are Hankel matrices con-

taining xk−1[n], xk[n] and xk+1[n], the training sequences of

length LT = Lo + Lg̃ − 1 each. By defining Sk =XkḠk,k

and Uk=Xk−1Ḡk,k−1+Xk+1Ḡk,k+1, we get

yk = (Sk +Uk)h+ ηk (2)

for each observed subcarrier. Finally, we stack the Mt vectors

with the outputs of the observations subcarriers to obtain
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ν,

y = (S+U)h+ η. (3)

It should be noted that the vectors yk that are collected into y

usually do not belong to contiguous subcarriers, i.e. the obser-

vations are sparsely taken on the subcarrier axis. This allows

the use of training that is frequency multiplexed with data

symbols. This way, a higher spectral efficiency is obtained

by reducing the number of transmitted training symbols.

3.1. Broadband ML

We can see that in the linear model of (3) the noise η is

Gaussian distributed with zero mean and covariance matrix

Rη = σ2
νΓΓ

H = diag(Rη,0,Rη,1, ...,Rη,Mt−1) and the ob-

servation y given h is then Gaussian distributed. The maxi-

mum likelihood (ML) estimate of h in this case is given by

ĥ = arg max
h∈CLh

p(y|h) = argmin
h

J(h), (4)

where J(h) = (y − (S+U)h)HR−1
η (y − (S+U)h).

Since Rη is independent of h and if ((S+U)HR−1
η (S+U))

is invertible, as we will assume here, we just need to apply the

derivative and make it equal to zero

∂J(h)

∂hH
=(S+U)HR−1

η (S+U)ĥ−(S+U)HR−1
η y=0.

The ML estimate of h is then given by

ĥ =
(

(S+U)HR−1
η (S+U)

)−1
(S+U)HR−1

η y. (5)

The covariance matrix of the estimation error ∆ĥ = (ĥ−
h) of the broadband ML estimator is given by

R
∆ĥ

=E
[

∆ĥ∆ĥ
H
]

=
(

(S+U)HR−1
η (S+U)

)−1
. (6)

As a consequence, the theoretical MSE of the broadband ML

estimator is given by ǫ= σ2Mu

M tr
{

R
∆ĥ

}

.

When multicarrier systems like FBMC or CP-OFDM are

deployed, the number of subcarriers filled with data and train-

ing Mu is smaller than M , in order to allow for upsampling,

filtering and D/A conversion. Even if all Mu subcarriers are

filled with training symbols only, the estimation of the broad-

band CIR can only be performed in a fraction of its total fre-

quency response. As a consequence R
∆ĥ

will become ill

conditioned or even singular. The reason is that the regions

of the channel frequency response that are not excited cannot

and need not be reliably estimated.

To solve this problem we perform the projection of the

lower dimensional hDS ∈ C
LhDS into the higher dimensional

h given by h=AhDS. This linear operation can be seen as

hDS, the broadband CIR that can be estimated in the occu-

pied spectrum, being fractionally upsampled by a factor of

Lfrac = Lh/LhDS
, where LhDS

= ⌊Mu

M Lh⌋. This operation

is performed in three steps: upsampling by a factor of Lh,

low-pass filtering and downsampling by a factor LhDS
. Math-

ematically, this can be described by

A = JA
DS

[

0A ILhDS
Lh

0A

]

GintJUS, (7)

where JA
DS is a downsampling matrix with its ℓ-th row given

by eTq ∈ {0, 1}(LhDS
Lh) for q = (ℓ − 1)LhDS

+ 1 and

ℓ ∈ {1, 2, ..., Lh}, JUS is an upsampling matrix with its ℓ-th
column given by eq ∈ {0, 1}(LhDS

Lh) for q=(ℓ − 1)Lh + 1
and ℓ ∈ {1, 2, ..., LhDS

}, Gint ∈ R
(LhDS

Lh+2(dg−1))×(LhDS
Lh)

is a convolution matrix obtained from the interpolation fil-

ter gint ∈ R2dg−1, 0A ∈ {0}(LhDS
Lh)×(dg−1). gint[n] is

taken as an FIR approximation of a raised cosine filter

with a sharp roll-off α = 0.001, transfer function degree

of Lgint
=10LhDS

Lh and group delay dg=5LhDS
+1.

By substituting h in the linear model (3) we obtain

ĥDS=
(

AH(S+U)HR−1
η (S+U)A

)−1
AH(S+U)HR−1

η y.

The corresponding MSE is given by

ǫDS=
σ2Mu

M
tr
{

(

AH(S+U)HR−1
η (S+U)A

)−1
}

. (8)

3.2. EM-ML Estimator

We now assume that the Uks are unknown, this means that

the subcarriers adjacent to the ones with training contain data.

Moreover, in [4] we have employed a subcarrier model where

narrowband propagation channels were estimated in the sub-

carriers. Now we modify the subcarrier observations vector

to contain a mix of two models: for the training part we take

the broadband model and for the unknown data we take the

narrowband model.

Now, we can rewrite the observations vector in (2) ob-

tained for each subcarrier at the receiver as

yk = Skh+Hku
′

k + ηk, (9)

where Hk ∈ C
Lo×Lg̃′ , with Lg̃′ =Lhk

+ Lḡ′ − 1 and Lḡ′ =
⌈ 2LP−1

M/2 ⌉, is a convolution matrix obtained from the narrow-

band propagation channel hk ∈ C
Lhk observed in each sub-

carrier that is calculated from the broadband channel by the



transformation hk = Bkh. Thereby, the following definition

holds

Bk=
[

ILhk
0B1

]

FH
Lhk

Mi

[

0B2 ILhk
Mi

0B3

]

FMf

[

ILh

0B4

]

,

with FMf
being an Mf -DFT matrix, Mf =MLhk

Mi, 0B1 ∈

{0}Lhk
×(Lhk

(Mi−1)), 0B2 ∈ {0}(Lhk
Mi)×(kLhk

Mi), 0B3 ∈
{0}(Lhk

Mi)×((M−1−k)Lhk
Mi), 0B4 ∈ {0}(Mf−Lh)×Lh , Mi

is a resolution factor for the calculation’s precision of the hks.

Moreover, the following equalities hold

Ukh = U′

kBkh = U′

khk = Hku
′

k = HkGu,kxu,k, (10)

where U′

k is a Hankel matrix obtained for the narrowband

subcarrier model. Note that Gu,k ∈ C
Lg̃′×2L′

t and xu,k ∈

C2L′

t , where L′

t = Lg̃′ + Lo − 1.

Stacking all the subcarrier observations, we get
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ν,

y = Sh+HEu
′ + η = Sh+Uh+ η, (11)

where U = [BT
0 U

′ T
0 ,BT

1 U
′ T
1 , ...,BT

Mt−1U
′ T
Mt−1]

T and

HE = diag(H0,H1, ...,HMt−1).
Although the exact values of u′

k are unknown, their

statistics are known. We then define the interference co-

variance matrices as Ru,k =
σ2

d

2 Gu,kG
H
u,k and Pu,k =

σ2

d

2 Gu,kdiag(1,−1, 1, ...)GT
u,k, where xu,k was assumed to

be i.i.d. and Gaussian distributed with zero mean and vari-

ance σ2
d/2. This is usually a good approximation although

xu,k is composed of symbols taken from a finite constellation.

For the linear model of (11), the ML estimator has no

closed form solution and one way to calculate it is by em-

ploying the iterative EM algorithm [6], that works here as fol-

lows: Before the first iteration, an initial channel estimate is

performed by ignoring U. This estimate is given by

ĥ0 = (SHR−1
η S)−1SHR−1

η y. (12)

Then, the iterative process starts. For each iteration i, the

algorithm is divided into two steps: the E-step and the M-

step. In the E-step, an approximation of the ML function (here

its derivative) is obtained by taking its expected value condi-

tioned on the channel estimate in the iteration before and the

observed sequence, as follows

E

[

∂J(hi)

∂hH
i

∣

∣

∣

∣

y,hi

]

=
[

SHR−1
η (S+E[U])+ E[U]HR−1

η S

+E[UHR−1
η U]

]

hi−(S+E[U])HR−1
η y.

The result is a function of E[u] and E[UHR−1
η U]. E[u]= ûi

is actually an estimate of the interference term u in the i-th

iteration. Furthermore, one can show that

E[UHR−1
η U]=

Mt−1
∑

k=0

E[UH
kR

−1
η,kUk]=

Mt−1
∑

k=0

BH
kE[U

′H
k R−1

η,kU
′

k]Bk.

To express the above expectation also in terms of the

estimate ûi, one first has to write the matrix U′

k as a func-

tion of the vector u′

k as U′

k =
∑Lhk

ℓ=1 Dℓu
′

ke
T
ℓ , where

Dℓ =
[

0D1 ILo
0D2

]

is a matrix that selects Lo rows

of u′

k, 0D1 ∈ {0}Lo×(ℓ−1), 0D2 ∈ {0}Lo×(Lhk
−ℓ) and

eℓ ∈ {0, 1}Lhk . We then obtain

E
[

U′H
k R−1

η,kU
′

k

]

=E

[

Lh
∑

λ=1

eλu
′H
k DT

λR
−1
η,k

Lh
∑

ℓ=1

Dℓu
′

ke
T
ℓ

]

=

Lh
∑

λ=1

eλ

Lh
∑

ℓ=1

E
[

u′H
k DT

λR
−1
η,kDℓu

′

k

]

eTℓ

=

Lh
∑

λ=1

eλ

Lh
∑

ℓ=1

tr
(

DT
λR

−1
η,kDℓE

[

u′

ku
′H
k

]

)

eTℓ .

Furthermore,

E
[

u′

ku
′H
k

]

=Rǫ,k,i+E[u′

k]E[u
′

k]
H = Rǫ,k,i+û′

k,iû
′H
k,i, (13)

where Rǫ,k,i is the covariance matrix of the estimation error

of u′

k in the i-th iteration. Consequently, we obtain

E
[

U′H
k R−1

η,kU
′

k

]

= Ψk,i + E[U′

k]
HR−1

η,kE[U
′

k], (14)

with [Ψk,i]ℓ,λ = tr(DT
ℓ R

−1
η,kDλRǫ,k,i). Then it follows that

E[UHR−1
η U] =

Mt−1
∑

k=0

BH
k (Ψk,i + E[U′

k]
HR−1

η,kE[U
′

k])Bk,

= Ψi + ÛH
i R

−1
η Ûi, (15)

where ÛH
i R

−1
η Ûi =

∑Mt−1
k=0 BH

kÛ
′H
k,iR

−1
η,kÛ

′

k,iBk, and

Ψi =
∑Mt−1

k=0 BH
kΨk,iBk.

Finally, we define Sû,i = S+ Ûi and write

E

[

∂J(hi)

∂hH
i

∣

∣

∣

∣

y,hi

]

=
(

SH
û,iR

−1
η Sû,i +Ψi

)

hi−SH
û,iR

−1
η y.

Given the estimate of h and the training, one can estimate

u′. It can be shown that the entries of u′ are alternating purely

real and purely imaginary, because in addition to the OQAM

data signals in subcarriers k−1 and k+1 also the impulse

response from the two adjacent subcarriers have alternating

real and imaginary coefficients. As a consequence, the in-

terference term u′

k has improper statistics and the following

Widely Linear MMSE [7] estimator can be employed

E[u′

i] = û′

i = W1yu +W2y
∗

u, (16)



where yu = y − Sĥi ≈ ĤE,iu
′ + η,

W1=(Ruyu
−Puyu

R−∗

yu
P∗

yu
)(Ryu

−Pyu
R−∗

yu
P∗

yu
)−1,

W2=(Puyu
−Ruyu

R−1
yu

Pyu
)(R∗

yu
−P∗

yu
R−1

yu
Pyu

)−1,

while Ryu
= ĤE,iRuĤ

H
E,i+Rη, and Ruyu

=RuĤ
H
E,i. The

pseudo-covariance matrices are given by Pyu
= ĤE,iPuĤ

T
E,i

and Puyu
=PuĤ

T
E,i, where Ru = diag(Ru,0, ...,Ru,Mt−1),

and correspondingly for Pu. One can see that all covariance

matrices are block diagonal and the estimation of u′ in (16) is

equivalent to estimating the u′

ks subcarrier-wise.

The corresponding error covariance is given by

Rǫ,i=Ru −W1R
H
uyu

−W2P
H
uyu

, (17)

where Rǫ,i = diag(Rǫ,0,i,Rǫ,1,i, ...,Rǫ,Mt−1, i).
Finally, the M-step is performed, where J(hi) is mini-

mized, resulting in the new channel estimate

ĥDS,i+1=(AH(SH
û,iR

−1
η Sû,i+Ψi)A)−1AHSH

û,iR
−1
η y.

The estimation of ui and hi = AhDS,i is then repeated NEM

times until convergence is achieved.

4. SIMULATION RESULTS

For the performance simulations, the parameters were M =
256, Mu = 210, K = 4 and an RRC prototype with roll-off

one. The total signal bandwidth is 12.6 MHz and the sam-

pling rate is M/T = 15.36 MHz, giving a subcarrier band-

width of 60 kHz and a symbol duration of T = 16.67 µs.

The channel model was the ITU-Vehicular A without mobil-

ity. The CIR duration is Lh = 36 samples.

The observations were taken from every 4-th subcarrier.

Then we can consider two cases: for known u 158 subcar-

riers are filled with training and the rest with data, while for

unknownu only 53 subcarriers are filled with training and the

rest with data. We have used random QPSK training symbols.

The normalized MSE (NMSE) of the channel estimation was

averaged over 100 channel realizations, each was also aver-

aged over 10 training sequences and, for each training, aver-

aged over 10 noise realizations. In Fig. 5, the theoretical and

numerical NMSEs for the different estimators are depicted as

a function of Es/N0. Further parameters are Lo = 4 and for

the ML-EM algorithm Lhk
= 3. The theoretical NMSE and

the curve whereu is known show a lower bound on the NMSE

performance. The curve for NEM =0 shows an upper bound,

since there the interference from data carrying subcarriers de-

grades the estimation performance. The ML-EM curves show

the performance for NEM =2, 5, 7 and 10 iterations. One can

see that for 10 and 20 iterations the performance is the same,

showing that no more than 10 iterations are necessary. A great

improvement compared to 0 iterations is achieved and a low

level of MSE is achieved.
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Fig. 5. NMSE as a function of Es/N0.

5. CONCLUSIONS

We have presented a novel method for the estimation of fre-

quency selective channels in FBMC systems. It is an exten-

sion of an earlier method we have developed based on the

EM algorithm, but this time for the broadband channel esti-

mation. A three times improvement in the spectral efficiency

can be achieved compared to the best possible ML estimator

considering the same system model. We could show a great

NMSE improvement for the same training burden.
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