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On the Channel Estimation Effort for Analog Computation over
Wireless Multiple-Access Channels
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Abstract—This letter studies a multiple-access transmission
scheme that exploits interference for an efficient function com-
putation in sensor networks. The central question is how much
channel knowledge is generally needed and how the channel
estimation effort can significantly be reduced. It is first shown
that the channel magnitude at the transmitters is sufficient
to achieve the same performance as with full channel state
information. It is further shown that for a wide range of fading
distributions, no channel state information is needed at the
transmitters, provided that the receiver has access to some
statistical channel knowledge and is equipped with multiple
antennas.

Index Terms—Computation over multiple-access channels,
function estimation, channel knowledge, wireless sensor net-
works.

I. INTRODUCTION

IN MANY wireless sensor network applications, sensor
nodes transmit their readings over a wireless channel to

a fusion center (FC), where some function of these readings
is computed (mean temperature, maximum pressure, etc.). For
the FC to be able to reliably reconstruct each individual sensor
reading, a medium access control protocol is typically used to
establish interference-free links.

Computation schemes based on interference-avoidance may
however be highly inefficient as individual sensor readings
are reconstructed although the FC is merely interested in a
function of them. In such cases, rather than avoiding the
interference, it is generally beneficial to exploit it for a better
performance in terms of computation rate, energy efficiency
or estimation quality. In fact, if the function to be computed at
the FC is linear, significant performance gains can be attained
by letting nodes transmit simultaneously for the FC to receive
a linear combination of the sensor readings [2], [3]. As shown
in [4], [5], the interference can also be harnessed to efficiently
compute nonlinear functions, provided that the sensor readings
are suitably pre-processed prior to transmission followed by a
receiver-side signal post-processing.

Whereas the ability to deal with nonlinear functions opens
the door to many exciting wireless sensor applications, ro-
bustness against the lack of perfect synchronism makes the
scheme of [4] amenable to practical implementation. However,
a crucial assumption in [4] is the perfect knowledge of channel
state information (CSI) at sensor nodes prior to transmissions,
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which is called “Full CSI”. Because “Full CSI” is difficult
to provide in many wireless sensor applications, this paper
explores the question of how much CSI is actually needed to
obtain reliable function estimates. In particular, we show that
the knowledge of the channel magnitudes (called “Modulus
CSI”) is sufficient to achieve the same performance as with
Full CSI. Moreover, we show that under certain conditions, no
CSI at sensor nodes is needed, provided that the FC has some
a priori statistical knowledge. If in addition the FC is equipped
with multiple antennas, similarly to the system model in [6], it
is shown that spatial diversity can be exploited to outperform
the single-antenna scheme with Full CSI. Our findings suggest
that the channel estimation effort at nodes can significantly be
reduced.1

II. SYSTEM MODEL AND PROBLEM STATEMENT

We slightly extend the system model introduced in [4] to
incorporate multiple antennas at the receiver-side. For more
information, examples and explanations, the reader is therefore
referred to [4]. Accordingly, we consider a wireless sensor
network consisting of a FC with N ∈ N antennas and K ∈
N single-antenna sensor nodes represented by the set K :=
{1, . . . ,K}. The corresponding sensor readings are denoted by
xk ∈ X and grouped in the vector x := [x1, . . . , xK ]T ∈ XK ,
where X ⊂ R is any compact set of sensor measurements
(e.g., temperatures, pressures, accelerations). The objective of
the network is to compute at the FC some given function
f : XK → R of the sensor readings, called desired function.
In this paper, we model the communication between the sensor
nodes and the FC in the complex baseband by a single-input
multiple-output multiple-access channel. So, the time-discrete
signal received by antenna n, n = 1, . . . , N , is

Yn[m] =
∑K

k=1
Hnk[m]wk[m] + Zn[m], m ∈ Z+ . (1)

Here and hereafter, wk : Z+ → C denotes the transmit signal
of node k which is subject to a power constraint Pmax > 0
(i.e., ∀k,m : |wk[m]|2 ≤ Pmax); Hnk[m] ∈ C is used to
model a frequency-flat fading channel from node k to antenna
n; Zn[m] ∼ NC(0, σ

2
Z), σ

2
Z > 0, is for all n,m independent

and identically distributed (iid) receiver noise.
Eq. (1) reveals the superposition property of the wireless

channel, which results in interference between uncoordinated
transmissions. It is known that the interference can be har-
nessed for an efficient computation of linear functions of
the sensor readings [2]. This can be extended to nonlinear
functions by adequately pre-processing the sensor readings
together with a receiver-side signal post-processing [4], [5]. In
what follows, we assume ϕk : X → R to be a pre-processing

1Notation: The normal distribution and the proper complex normal distri-
bution are described by NR(·, ·) and NC(·, ·).
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function of node k ∈ K, whereas ψ : C → R is a post-
processing function operating on the channel output (1).

Remark 1: Note that every function f of K variables can
be written in the form f(x) = ψ

(∑K
k=1 ϕk(xk)

)
[5]. Thus

the scheme of [4] is in principle able to exploit interference
for estimating an arbitrary function of the measurements.

It follows from (1) that fading distorts the amplitude and
phase of transmit signals. For this reason, it is assumed in [4]
that each sensor k ∈ K knows Hnk[m] �= 0 at time instant
m in advance so that it can completely eliminate the fading
by inverting its own channel. In this letter, we show that such
an inversion is not necessary and significantly less channel
knowledge is sufficient in many cases of practical relevance.

III. ANALOG COMPUTATION OVER WIRELESS

MULTIPLE-ACCESS CHANNELS

A key advantage of the scheme in [4] over most other ap-
proaches is that only a coarse frame synchronization between
different sensors is needed. In short, the scheme works as
follows: each sensor k ∈ K transmits a distinct complex-
valued random sequence wk := [Wk[1], . . . ,Wk[M ]]T of
length M ∈ N with phases Θk[m], m = 1, . . . ,M , that are
drawn uniformly iid from [0, 2π) (see Table I). The transmit
energy of each wk is proportional to the pre-processed sensor
reading ϕk(xk) so that ‖wk‖22 ∝ Mpk := Mg(ϕk(xk)),
where g is an affine mapping to ensure that the transmit power
pk fulfills pk ∈ [0, Pmax], k ∈ K. Note that by Remark 1,
ϕk, k ∈ K, is chosen depending on the desired function f so
that the information about f(x) is contained in w1, . . . ,wK .

In this paper, we consider the channel in (1) to analyze the
impact of CSI on the performance of the scheme in [4]. To
this end, we first write (1) in the vector form

vec
(
Y
)
=: y = Hw + z , (2)

where w := vec(W ) ∈ CKM , z := vec(Z) ∈ CNM and

H :=

⎛
⎜⎝

H[1] 0 0 0
0 H[2] 0 0

...
...

. . .
...

0 0 0 H[M ]

⎞
⎟⎠ ∈ CNM×KM . (3)

The notation used in (2) and (3) is defined as follows: Y :=
(Yn[m]) ∈ CN×M is the matrix of channel outputs, H [m] :=
(Hnk[m]) ∈ CN×K is the channel matrix at channel use m,
m = 1, . . . ,M , W := [w1, . . . ,wK ]T ∈ CK×M is the matrix
of transmit sequences and Z := (Zn[m]) ∈ CN×M captures
the additive noise terms.

Now, to estimate f(x) given (2), the FC first calculates

‖y‖22 =

K∑
k=1

M∑
m=1

N∑
n=1

|Hnk[m]|2 |Wk[m]|2︸ ︷︷ ︸
∝ g(ϕk(xk))

+

N∑
n=1

Δn , (4)

with the overall noise at antenna n given by

Δn :=

M∑
m=1

K∑
k=1

K∑
�=1
� �=k

H∗
nk[m]Hn�[m]W ∗

k [m]W�[m]

︸ ︷︷ ︸
=:Δ1n

(5)

+ 2

M∑
m=1

K∑
k=1

Re
{
Hnk[m]Wk[m]Z∗

n[m]
}

︸ ︷︷ ︸
=:Δ2n

+

M∑
m=1

|Zn[m]|2
︸ ︷︷ ︸

=:Δ3n

.

TABLE I
TRANSMIT SIGNALS AT NODES DEPENDING ON THE AVAILABLE CSI.

Full CSI Wk[m] =
√
pk

H1k[m]
eiΘk[m]

Modulus CSI Wk[m] =
√

pk
|H1k[m]| e

iΘk[m]

No CSI Wk[m] =
√
pk eiΘk[m]

k ∈ K and m = 1, . . . ,M

The total received energy in (4) provides the basis for the
estimate f̂(x) of f(x), which is of the form f̂(x) =
χ
[
ψ
(
h(‖y‖22)

)]
. Here, the function h : R+ → R denotes

the receiver-side counterpart to g satisfying h
(∑

k∈K pk
) ≡∑

k∈K ϕk(xk), whereas χ : R → R is chosen to ensure
certain estimation properties (e.g., unbiasedness, consistency).
The reader is referred to [4] for more details.

Remark 2: The length of transmit sequences specifies the
number of channel uses for computing a single function value.
Hence, M is a crucial design parameter that determines the
trade-off between computation accuracy and efficiency.

IV. HOW MUCH CHANNEL KNOWLEDGE IS NEEDED?

This section analyzes the impact of transmitter CSI on the
function estimation error. More precisely, we assume three
different types of CSI at sensor nodes, resulting in different
transmit signals summarized in Table I. Accordingly, “Full
CSI” refers to the case considered in [4], [6], where each node
perfectly knows its own complex-valued channel coefficient.
In contrast, “Modulus CSI” corresponds to a scenario in which
each node knows only the modulus of its coefficient, whereas
“No CSI” means that nodes have no channel state information.
Notice that the FC does not need any instantaneous channel
knowledge but may has access to some statistical CSI.

A. Full CSI vs. Modulus CSI at Sensor Nodes

First, we assume that the FC has a single receive antenna
(i.e., N = 1) and consider the “Modulus CSI” case, which
stands in contrast to [4] where “Full CSI” was assumed for
sensor nodes to perfectly invert their channels. The goal is to
show that there is no performance loss compared to the “Full
CSI” case. We conjecture this because by the first term on the
right-hand side of (4), fading impacts the function computation
only through the instantaneous channel gains.2

With “Full CSI” at sensor nodes and N = 1, (4) reduces to
‖y‖22 =

∑
k∈K g(ϕk(xk))+Δ1 where the statistical moments

of Δ1 = Δ11+Δ21+Δ31 are independent of the fading, which
is necessary for the design of appropriate fixed estimators f̂ .
We prove in the following that this is also fulfilled in the case
of “Modulus CSI”.

Proposition 1: Regardless of the distribution of fading co-
efficients, all statistical moments of (4) under “Modulus CSI”
are identical to those under “Full CSI”.

Proof: A sketch of proof is deferred to Appendix A.
By Proposition 1, the full channel knowledge at sensor nodes
in [4] can be replaced without any difference by the knowledge
of instantaneous channel magnitudes. This will significantly

2Note that “Full CSI” and “Modulus CSI” are considered for the single-
antenna case N = 1 only.
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reduce the channel estimation effort in practical systems as
costly phase tracking is superfluous.

B. No CSI at Sensor Nodes

Let us now consider a FC with N ≥ 1 antennas to show
that for a large class of fading distributions, there is no need
for instantaneous CSI at sensor nodes, provided that the FC
has some a priori knowledge about fading statistics. To this
end, we model the channel gains in (4) as

|Hnk[m]|2 := r−αk

k |Fnk[m]|2 .
Here and hereafter, each r−αk

k describes the slow-fading part
of the channel (i.e., the slowly varying mean path attenuation)
where αk ≥ 2 is the path-loss exponent and rk ≥ 0 is the
distance between node k ∈ K and the FC; Fnk[m] ∈ C

captures the random fast-fading part induced by multipath
propagation. In this section, the notion of performance loss
due to the lack of CSI at nodes is defined as follows.

Definition 1: The loss of performance is quantified by

λ(L) :=

∣∣∣∣∣
∑

k,m,n |Hnk[m]|2pk∑
k,m,n E{|Hnk[m]|2} − 1

K

∑
k
pk

∣∣∣∣∣ , (6)

where L := KMN .
Remark 3: The intuition behind (6) is to have a reasonable

measure of distance between
∑

k,m,n |Hnk[m]|2pk (cf. (4))
and

∑
k pk when employing statistical CSI at the FC, since∑

k pk =
∑

k g(ϕk(xk)) contains the relevant information
about f(x).

1) Block-Fading with Equal Mean Path Losses: Suppose
that the channel gains are constant for the duration of M
channel uses in which case (3) reduces to the Kronecker
product H = IM ⊗ H[1], where IM is the M × M
identity matrix. Furthermore, suppose that the coefficients
Hnk[1] of H[1] ∈ CN×K are iid with E{|Hnk[1]|2} =

r−αk

k E{|Fnk[1]|2} = r−α1
1 ((σ

(1)
11 )2 + |μ(1)

11 |2) < ∞. Here,
μ
(1)
11 := E{F11[1]} ∈ C (if exists) captures the line-of-

sight components and (σ
(1)
11 )2 := Var{F11[1]} > 0 denotes

some finite variance of fast-fading effects. Prominent examples
among others are Rice fading as well as Rayleigh fading
(μ(1)

11 = 0). This model reflects a homogeneous propagation
environment with nodes located at similar distances to the
FC, which results in equal mean path losses. Then, under
mild conditions, the averaging property of (4) allows a simple
correction of fading effects at the FC, which further reduces
the channel estimation effort in comparison to “Modulus CSI”.

Proposition 2: Suppose that the FC scales the total
received energy (4) by 1/(KMN E{|H11[1]|2}), where
E{|H11[1]|2} = r−α1

1 ((σ
(1)
11 )2 + |μ(1)

11 |2). Then, for any given
ε > 0 and M ∈ N, there exists L(ε,M) such that λ(L) ≤ ε
with probability one, for all L = KMN ≥ L(ε,M).

Proof: The proof is deferred to Appendix B.
Proposition 2 requires that E{|H11[1]|2} ∈ (0,∞) is known
at the FC in advance. This information can be obtained from
an unbiased estimation of r−α1

1 ((σ
(1)
11 )2 + |μ(1)

11 |2): During an
initialization phase, all nodes concurrently transmit with unit
power (i.e., pk ≡ 1 for all k ∈ K) and M large enough so that
the FC can obtain a sufficiently good estimate of the second
moment directly from the total received energy (4).

Corollary 1: Let r−α1
1 ((σ

(1)
11 )2 + |μ(1)

11 |2) = 1 and assume
“No CSI” (see Table I). Then, for any M ∈ N, λ(L) → 0
with probability one as L→ ∞ (or, equivalently, KN → ∞).

Remark 4: Note that although Definition 1 and Proposition
2 consider only one particular term in (4), the results remain
valid if (6) would also incorporate the overall noise

∑
nΔn.

The results above indicate that for sufficiently large values
of KN (or, equivalently, L = KMN for some given M ),
CSI at sensor nodes is not necessary, provided that some
knowledge about the channel statistics is available at the
FC. From the proof of Proposition 2 and with the law
of the iterated logarithm [7, p. 397], we can conclude that

λ(L) ∈ O
(√

log logKN
KN

)
almost surely.

Remark 5: The almost sure convergence implies that
λ(L) ∈ O (

1
KN

)
in probability.

2) Independent and Identically Distributed Fading: If we
have flat fading with a sufficiently short coherence time, then
the first term in (4) has KMN iid summands. By Proposition

2, we therefore have λ(L) ∈ O
(√

log logKMN
KMN

)
almost

surely. So rapid changes of the fading environment can be
beneficial when no CSI is available at nodes.

3) Independent but not Identically Distributed Fading:
Now, we consider a heterogeneous propagation environment
in which the fading coefficients are independent but have
different distributions. More precisely, we assume

E{|Hnk[m]|2} = r−αk

k ((σ
(m)
nk )2 + |μ(m)

nk |2) <∞
(σ

(m)
nk )2 := Var{Fnk[m]} > 0 ,

for n = 1, . . . , N , m = 1, . . . ,M, k ∈ K.
Proposition 3: Let ∀k,m, n : Vnk[m] := |Hnk[m]|2pk

with finite second moments and
∑∞

k,m,n
Var{Vnk[m]}

(kmn)2 < ∞.
Suppose that the FC scales the received energy (4) by
1/

(∑
k,m,n r

−αk

k ((σ
(m)
nk )2 + |μ(m)

nk |2)), which is known a pri-
ori. Then, for any ε > 0, there exists L(ε) such that λ(L) ≤ ε
with probability one for all L with min{K,N,M} ≥ L(ε).

Proof: The proof is deferred to Appendix C.
Note that if

∑
k,m,n r

−αk

k ((σ
(m)
nk )2 + |μ(m)

nk |2) is too small,
the noise amplification due to the scaling may be unacceptable.
In such cases, the mitigation of fading effects can be divided
into two parts: i) each sensor node estimates its r−αk

k to
appropriately adapt to the slowly varying attenuation by power
control and ii) the FC scales the received energy (4) by∑

k,m,n E{|Fnk[m]|2}. Such a procedure is even necessary
if the channel coefficients vary too fast, since then tracking
channel coefficients at nodes cannot be implemented reliably.

V. NUMERICAL EXAMPLES AND DISCUSSION

This section provides some numerical examples to validate
the results of Section IV. To this end, we consider a typical
scenario in which K sensor nodes measure temperatures xk ∈
X = [5 ◦C, 25◦C], k ∈ K, and where the goal is to estimate a
function of these measurements at the FC. The performance
measure is chosen to be the outage probability P(|E| ≥ ε),

ε > 0, with |E| :=
∣∣∣ f̂−f
fmax−fmin

∣∣∣ and [fmin, fmax] the range of f .
Example 1: Consider the homogeneous case of iid Ri-

cian fading with unit mean path attenuations: r−αk

k = 1
and Re{Fnk[m]}, Im{Fnk[m]} ∼ NR(

√
.125, .375), for all
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Fig. 1. Full CSI and Modulus CSI (N = 1) vs. No CSI (N = 1, 2, 4).

n, k,m. The network consists of K = 25 nodes with sequence
lengths M = 15. The desired function is “arithmetic mean”
(see [4]) and Pmax = σ2

Z = 1. A comparison of the block-
fading case Section IV-B1 and the iid case Section IV-B2 for
N = 1, 2, 4 is depicted in Fig.1(a).

Fig.1(a) confirms that there is no benefit from having “Full
CSI” instead of “Modulus CSI”, as stated in Proposition 1.
Moreover, the plots show that already for N = 2 and relatively
small values of K,M , “No CSI” outperforms the “Full CSI”
case (with a single antenna). Since the assumptions on fading
fulfill the conditions of Corollary 1, there is no need for
channel estimation, neither at the nodes nor at the FC.

Example 2: Let K = 250, M = 100, and “ge-
ometric mean” (see [4]) be the desired function. Con-
sider a heterogeneous Rician fading environment in which
Re{μ(m)

nk }, Im{μ(m)
nk } and (σ

(m
nk )

2 are uniformly drawn from
[0.1, 1], for all k,m, n. A comparison of “Full CSI” with “No
CSI” is depicted in Fig. 1(b).

Fig.1(b) shows that if K,M are sufficiently large, then CSI
at nodes provides already for N = 1 no advantage, which can
be used to significantly reduce the complexity of nodes.

APPENDIX

A. Sketch of proof for Proposition 1

We have to analyze error terms Δ11 and Δ21 in (5), which
depend on channel coefficients. Due to the lack of space,
we consider here the first moment only but higher moments
are identical to those under “Full CSI” as well and therefore
independent of fading. Obviously, E{Δ21} ≡ 0 always holds
due to the independence of transmit signals, fading and noise.
As far as Δ11 is concerned, the following lemma is helpful.

Lemma 1 ([8]): Let A,B be real independent random vari-
ables. If A or B is uniformly distributed in [0, 2π), then the
reduced sum C = (A+B)mod 2π is uniformly distributed in
[0, 2π) as well.

We write the random fading coefficient between the kth

sensor, k ∈ K, and the FC at channel use m, m = 1, . . . ,M ,
in polar form as H1k[m] = |H1k[m]| eiΛ1k[m], where Λ1k[m]
is used to denote the corresponding random phase. Then, in
the case of “Modulus CSI” Δ11 becomes

Δ11 = 2

M∑
m=1

K∑
�=2

�−1∑
k=1

√
p�pk cos

(
ΔΛ�k[m] +ΔΘ�k[m]

)

with ΔΛ�k[m] := Λ1�[m]−Λ1k[m] and ΔΘ�k[m] := Θ�[m]−
Θk[m]. Note that the moduli of the channel coefficients are
removed but the phases are still present. Let Z�k[m] :=
ΔΛ�k[m] +ΔΘ�k[m] and C�k[m] := cos(Z�k[m]).

A sufficient condition for E{Δ11} to be zero is that for
all , k,m and any distribution of ΔΛ�k[m], E{C�k[m]} = 0
holds. Since Θ�[m] and Θk[m] are uniformly iid in [0, 2π) for
all  �= k, Lemma 1 implies that the differences ΔΘ�k[m] are
uniformly iid in [0, 2π) as well. Moreover, since ΔΘ�k[m] and
ΔΛ�k[m] are independent for all m, k,  �= k, we conclude
from Lemma 1 that all Z�k[m] are uniformly distributed in
[0, 2π). Since E{cos(X)} =

∫ 2π

0
1
2π cos(x)dx = 0 with X

being uniformly distributed in [0, 2π), it follows E{C�k[m]} ≡
0, for all k and  �= k. Finally, considering the linearity of the
expectation operator, we conclude E{Δ11} ≡ 0 so that the
mean of (4) behaves the same as in the case of “Full CSI”
regardless of the fading distribution.

B. Proof of Proposition 2

Consider (6) and let Vnk[1] := |Hnk[1]|2pk. Note that
∀n, k : E{|Vnk[1]|} = r−αk

k E{|Fnk[1]|2}pk = r−α1
1 ((σ

(1)
11 )2+

|μ(1)
11 |2)pk <∞, because pk is finite for all k ∈ K. Since this is

a necessary and sufficient condition of Kolmogorov’s strong
law of large numbers for iid variables [7, Thm. 3, p. 391],
it follows for the first term in (6),

∑
k,m,n Vnk[1]

Lr
−α1
1 ((σ

(1)
11 )2+|μ(1)

11 |2)
a.s.→

E{|H11[1]|2}ξ
r
−α1
1 ((σ

(1)
11 )2+|μ(1)

11 |2) = ξ, for KN → ∞, where ξ is either
1
K

∑
k pk or limK→∞

∑
k pk (the limit always exists and is

finite). As a consequence, λ(L) vanishes almost surely.

C. Proof of Proposition 3

If
∑∞

k,m,n
Var{Vnk[m]}

(kmn)2 < ∞, Kolmogorov’s strong
law of large numbers for independent but not iden-
tically distributed variables [7, Thm. 2, p. 389] yields
for the first term in (6)

∑
k,m,n Vnk[m]

∑
k,m,n r

−αk
k ((σ

(m)
nk )2+|μ(m)

nk |2)
a.s.→

∑
k,m,n E{|Hnk[m]|2} limK→∞ 1

K

∑
k pk

∑
k,m,n r

−αk
k ((σ

(m)
nk )2+|μ(m)

nk |2) = limK→∞ 1
K

∑
k pk as

min{K,M,N} → ∞ so that λ(L) → 0 with probability one.
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