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ABSTRACT

This work investigates a chiral nucleon-meson model, which is suited to analyze chiral sym-
metry breaking and the thermodynamics of nuclear matter at the same time. We go beyond
the mean-field approximation by including pionic fluctuations in a non-perturbative way
with methods of the functional renormalization group. Within the model, we can exclude
a chiral phase transition for temperatures below 100 MeV and densities below about twice
the nuclear saturation density. Furthermore, we extend the model to asymmetric nuclear
matter and therefore obtain a description for the interior of neutron stars.

ZUSAMMENFASSUNG

In dieser Arbeit untersuchen wir ein chirales Nukleon-Meson-Modell, welches sowohl chi-
rale Symmetriebrechung als auch die Thermodynamik von Kernmaterie beschreiben kann.
Wir gehen über die Mean-Field-Näherung hinaus und berücksichtigen Pionfluktuationen
auf nichtperturbative Weise im Rahmen der funktionalen Renormierungsgruppe. Innerhalb
des Modells kann für Temperaturen unterhalb von 100 MeV und Dichten unter etwa der
zweifachen nuklearen Sättigungsdichte ein chiraler Phasenübergang ausgeschlossen werden.
Darüber hinaus weiten wir das Modell auf asymmetrische Kernmaterie aus und erhalten
damit eine Beschreibung für das Innere von Neutronensternen.
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1
INTRODUCTION

In January 1932, Lev Landau theorized [1] about the interior of heavy stars, a place
characterized by “a violation of the law of energy”, where “the laws of ordinary quantum
mechanics break down”, and “the density of matter becomes so great that atomic nuclei
come in close contact, forming one gigantic nucleus”. Whereas the two former conclusions
might sound a bit premature from today’s perspective, the “gigantic nucleus” is often
understood as a first description of a neutron star. Remarkably, Landau’s paper was
developed independently and even before1 the detection of the neutron by James Chadwick
in February 1932 [3]. It took another two years until Walter Baade and Fritz Zwicky
constructed the first models of neutron stars built out of actual neutrons, without altering
quantum mechanics and the conservation of energy [4–7].
These days we are again in a situation where the smoke starts to clear. In the past,

high-precision measurements of neutron-star masses were relatively sparse. Consequently,
the interior of a neutron star was up for speculation, and a plethora of theories based on
all kinds of exotic matter was on the market. But after the discovery of neutron stars
as heavy as twice the mass of the sun [8, 9], paired with an extreme accuracy, theoretical
considerations are strongly constrained. It turns out that conventional models – working
with nucleon and meson rather than quark degrees of freedom – are in agreement with all
constraints. More exotic models are either ruled out or require a substantial amount of
fine tuning.
In the present thesis, we study a generalized linear sigma model of nucleons (protons

and neutrons), interacting through exchange of pions and other boson fields. We include
fluctuation effects in the framework of the functional renormalization group in a systematic
non-perturbative way. The thermodynamic equation of state obtained in this model can
be taken to describe the interior of neutron stars. This allows us to compare our results
with state-of-the-art approaches such as chiral effective field theory, quantum Monte-Carlo
calculations, or phenomenological models.
One aspect of the strong force as described by Quantum Chromodynamics (QCD) is

chiral symmetry. At small baryon chemical potential chiral symmetry is restored at high
temperatures in a crossover and not in a true phase transition. In contrast, the situation
at higher baryon chemical potentials remains unclear. Many models predict a first-order
transition that ends in a second-order critical endpoint. A lot of theoretical and experi-
mental effort is put into the determination of the critical endpoint, whose existence would
be a landmark in the phase-diagram of QCD. However, it is far from certain whether such
a critical point exists. While we certainly cannot definitely answer this question within
our model, we can still exclude the appearance of a chiral first-order phase transition in a
broad region.
Another aspect of our approach concerns the question of chiral restoration in the context

of neutron matter at low temperatures, which is also relevant for the description of neutron

1 See Ref. [2] for the historical backgrounds, in particular how the paper on neutron stars possibly saved
Landau’s life.
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2 introduction

stars. The chiral condensate is an order parameter of chiral restoration. In chiral effective
field theory it was observed that the chiral condensate in symmetric nuclear matter is
stabilized at higher densities [10–13]. An important role is played by two-pion exchange
processes and repulsive three-body forces, including the appearance of a virtual ∆-isobar
and the action of the Pauli principle in the nucleon Fermi sea. Unfortunately, no such
stabilizing mechanism is known for pure neutron matter. The condensate decreases almost
linearly as a function of density [14, 15]. Already at about two to three times nuclear
saturation density, the condensate drops below 20 percent of its vacuum value. These
findings raise a principal question about the applicability of any chiral approach to neutron
matter at higher densities. We will argue that a non-perturbative treatment of pionic
fluctuations, as it is done in this work in the context of a chiral nucleon-meson model, can
indeed stabilize the condensate up to much higher densities.
The thesis is organized as follows: First, in Chapter 2, we give an introduction into the

many facets of QCD as the theory of strong interactions, inasmuch as they are relevant
to this work. The low-energy behavior of QCD is governed by two important proper-
ties, namely confinement and chiral symmetry breaking. The symmetries and symmetry
breaking patterns are investigated in detail. We extend the discussion to finite temper-
atures and densities, and elaborate on different approaches to study the phases of QCD.
We particularly focus on cold and dense nuclear matter and its characteristic liquid-gas
transition.
In Chapter 3, we take one step back and look deeper at the underlying formalism of

quantum field theories. A special role is played by the low-energy effective action, as
it contains the whole information about thermal and quantum fluctuations and therefore
provides us with the full low-energy theory. Out of a number of approaches to compute the
effective action, we focus on the functional renormalization group (FRG), which is based
on an action that interpolates between the quantum action of the microscopic theory and
the low-energy effective action.
Chapter 4 combines the concepts of the functional renormalization group with hadronic

physics. Cold and dense matter is described in the framework of a chiral nucleon-meson
model, with baryons interacting via exchange of pions and other boson fields. First, ex-
perimental and observational constraints from nuclear physics are discussed and the pa-
rameters are adjusted accordingly. After a mean-field study, the bosonic fluctuations are
included within the FRG framework. The properties of symmetric nuclear matter are
investigated and compared with calculations from different approaches. The model is ex-
tended to account for asymmetric nuclear matter and the liquid-gas transition is studied,
as the matter under consideration becomes more and more neutron rich. In the final sec-
tion, neutron star matter is analyzed. The corresponding equation of state is taken as a
model for the interior of a neutron star. The mass-radius relation is analyzed, in particular
with regard to the observational constraints.

Chapter 5 is reserved for a summary and an outlook to further research.



2
FROM GAUGE THEORIES TO NUCLEAR MATTER

Only four fundamental forces describe physical phenomena from subatomic scales up to
astronomic distances. In the order of increasing strength, these forces are gravity, the weak
force, electromagnetism, and the strong force. There exists a unified formalism – namely
gauge theory – which underlies all forces. The reason why gauge theory is so important
lies in the way how it combines the principle of locality with the freedom to choose a
reference frame [16].
The underlying gauge theory of the strong force is Quantum Chromodynamics (QCD).

A wide range of phenomena, reaching from the early universe, to nuclear physics and the
interior of dense stars, is governed by QCD. The aim of this first chapter is to give a broad
overview of the properties of QCD, in particular at finite temperature and density.

2.1 gravity

To begin with, we will briefly illustrate the concept of gauge theories in the case of general
relativity (GR). All concepts can then be applied mutatis mutandis to QCD as well. Our
main motivation is to understand the underlying equations that describe the interior of
a neutron star from a gravitational perspective. The task of nuclear physics is then to
provide a good description of matter that can be fed into the equations.
To keep the main discussion short, all relevant concepts and objects that are mentioned

in this overview are explained in more detail in Appendix A.2.1.
Space-time is modeled by a (3 + 1)-dimensional manifold, where at each point of the

manifold a reference frame can be chosen freely. It is convenient to glue a copy of flat
Minkowski space locally to each point. A change of reference frame is given by an element
of the restricted Lorentz group SO+

↑ (3, 1), which acts by matrix multiplication on vectors
in the internal Minkowski space. The manifold itself also comes with a notion of a local
linearization, namely the tangent space. The tangent space and the internal Minkowski
space can be identified with the help of the vierbein (or moving frame) eIµ, which converts
space-time indices µ into Minkowski indices I. Moreover, the vierbein induces a curved
metric gµν on the manifold from the internal flat Minkowski metric ηIJ .
Observers at different locations can make different choices of reference frames, but in

the end, they want to collate their measurements. To that end, the spin connection
ωµ

I
J allows to compare vectors XI defined in the local Minkowski spaces. The covariant

derivative of XI is given by

DµX
I =

(
δIJ ∂µ + ωµ

I
J

)
XJ . (2.1)

Its first part describes how XI changes as a function of space-time and its second part
describes how the internal Minkowski spaces are rotated relative to each other. The
vector XI is said to be parallely transported if its covariant derivative vanishes along the
path. A different choice of local reference frame is made by rotating the vierbein e by

3



4 from gauge theories to nuclear matter

an infinitesimal Lorentz transformation, h, which is an element of the Lie algebra so(3, 1)
with coordinates hIJ . Under this gauge transformation the connection changes as

ω → h(d+ ω)h−1 , (2.2)

where d denotes the exterior derivative. Furthermore, the connection gives rise to the
curvature tensor

Ω = dω + ω ∧ ω , (2.3)

where ∧ denotes the wedge-product. In local coordinates, Ω has components Ωµν
I
J , with

two internal and two space-time indices2. The dynamics of classical Einstein gravity can
be described by the Palatini action, SP, as defined in the appendix. An action for the
matter part,

Smatter =
∫
d4x Lm , (2.4)

is added to the Palatini action. The energy-momentum tensor,

Tµν = 2√
−g

∂Lm
∂gµν

, (2.5)

follows directly from the matter action. A variation of the full action SP + Smatter with
respect to e and ω yields Einstein’s field equations (see, e.g., [17]):

Rµν −
1
2gµνR = 8πGTµν , (2.6)

where the Ricci tensor has components Rµν = gνρ η
JK eσK e

ρ
I Ωµσ

I
J and the Ricci scalar is

R = gµνRµν .
We are mainly interested in neutron stars. The interior of a non-rotating neutron star

is modeled by a perfect fluid, characterized only by its pressure p, its energy density ε and
its four-velocity uµ. The energy-momentum tensor takes the simple form

Tµν = ε uµuν + p(gµν + uµuν) . (2.7)

We restrict ourselves to static, spherically symmetric solutions that only depend on a
radial coordinate, r. With an appropriate ansatz for the vierbein, one quickly computes
the connection ω, the curvature Ω, and solves Einstein’s equations (see [18] for a derivation).
As a consequence of Birkhoff’s theorem [19], the exterior of the neutron star is described
by the Schwarzschild solution. The interior is given by the solutions to the Tolman–
Oppenheimer–Volkoff (TOV) equations [20–22]

dp(r)
dr

= −G
r2

(
ε(r) + p(r)

)(
m(r) + 4πr3p(r)

)(
1− 2Gm(r)

r

)−1
,

dm(r)
dr

= 4πr2ε(r) .
(2.8)

The first equation is a generalization of the classical equation for hydrostatic equilibrium,
obtained in the Newtonian limit 2Gm(r)/r � 1 and p� ε:

dp(r)
dr

= −Gε(r)m(r)
r2 . (2.9)

2 If the internal indices are converted into space-time indices with the vierbein, one gets the Riemann
curvature tensor with components Rµνρσ. The components are related to each other by the Bianchi
identities.



2.2 quantum chromodynamics 5

The radius R of the neutron star is defined as the value of r where the energy density
of the neutron star dropped to the surface energy density, i.e., ε(R) = εs. There are two
different definitions of the mass of a star. First, the radial direction can be measured with
the metric entry grr = (1− 2Gm(r)/r)−1/2 , giving rise to the proper mass,

Mp = 4π
∫ R

0

dr r2√
1− 2Gm(r)

r

ε(r) , (2.10)

which includes the gravitational binding energy. The observable mass of the neutron star,

M = 4π
∫ R

0
dr r2ε(r) , (2.11)

is the difference of proper mass and gravitational binding energy, i.e., M = Mp − EB. It
is the observable mass and not the proper mass that enters the Schwarzschild metric in
the exterior of the neutron star, therefore only the observable mass can be measured at a
far distance. If we speak of the mass of the neutron star, we always mean the observable
mass M from now on.
From the TOV equations it is clear that the mass and radii of neutron stars can be

computed, once the relation between pressure and energy density is known. This equation
of state can only be computed within a microscopic theory of the strong force, which is
QCD. It is based on a generalization of gauge theories to more general internal spaces,
which was first proposed in 1954 by Chen Ning Yang and Robert Mills [23].

2.2 quantum chromodynamics

InYang–Mills theory, the gauge group is no longer the Lorentz group, but a non-abelian
Lie group, here taken to be SU(N), where N is some natural number. At each point of
space-time a copy of CN is attached, where SU(N) acts via matrix multiplication. Just
like in gravity, at each point the orientation in the internal space can be chosen freely. To
compare vectors in the internal space, an analogy of the spin connection must be defined,
namely the Yang–Mills connection AµIJ = Aaµ(T a)IJ , where (T a)IJ are the generators of
the Lie algebra su(N). The indices I, J are now purely internal and no longer connected to
space-time, even their multiplicity differs. Consequently, there is no analog of the vierbein.
The corresponding covariant derivative in the fundamental representation3 is defined in
analogy to (2.1) as

Dµ = ∂µ − igAaµT a , (2.12)

where g is the coupling constant of the Yang-Mills theory. The connection transforms
under a gauge transformation h ∈ su(N) in the internal space as

Aµ → h
(
i
g∂µ +Aµ

)
h−1 , (2.13)

similarly to Eq. (2.2). In analogy to Eq. (2.3), one defines the curvature

G = dA− igA ∧A , (2.14)

which is called the field strength of the theory. In local coordinates, G has components

Gaµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.15)

3 For a different representation R, replace the generators T a with the generators T aR of R.
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where fabc are the structure constants of SU(N). Quantum Chromodynamics (QCD)
is based on an SU(N) Yang–Mills-theory, where N is the number of colors, N = Nc = 3.
The Lie algebra su(3)c of the color gauge group SU(3)c is generated by T a = λa

2 , where
λa are the eight Gell-Mann matrices. The connection A therefore has components Aaµ,
with a = 1, . . . 8. They are identified as the gauge bosons of the theory, the gluons. The
gauge bosons couple to quark fields, ψ, that transform in the fundamental representation.
This means that under a local gauge transformation h ∈ su(3)c, the quarks transform as
ψ → hψ. The quarks come in Nf = 6 different flavors, namely up, down, strange, charm,
bottom, and top, with masses mf . The dynamics of QCD follows from its Lagrangian

LQCD =
Nf∑
f=1

ψ̄f
(
iγµDµ −mf

)
ψf −

1
4G

a
µνG

aµν , (2.16)

where γµ are the Dirac matrices defined in Appendix A.1. One is often interested in
composite operators, for instance the product of two fields at different space-time points.
However, since the relative phase is not physical, this is not a gauge invariant object.
Instead, operators are connected via Wilson lines, defined as the path-ordered product

W(x, y, γ) = P exp
(
ig

∫
γ
dxµ Aµ

)
, (2.17)

where γ is a path connecting x and y. Composite operators, like finite-size quark-antiquark,
baryon type or glue configurations can then be defined in a gauge-invariant way:

O1 = ψ̄(x)W(x, y, γ) ψ(y) ,

O2 = εabc
[
W(u, x, γ1)ψ(x)

]a[W(u, y, γ2)ψ(y)
]b[W(u, z, γ3)ψ(z)

]c
,

O3 = TrFµν(x)W(x, y, γ) Fµν(y) .
(2.18)

In the next sections, we will discuss the properties of QCD in more detail.

2.3 asymptotic freedom and confinement

QCD is characterized by two complimentary properties, namely asymptotic freedom at
high energies and confinement in the low energy regime, a behavior that does not appear in
any abelian four-dimensional theory. In 1973, Gross, Wilczek [24,25], and Politzer [26,27]
computed the change of the QCD analog of the fine structure constant, αs = g2/4π, as
the renormalization scale µR is varied in the MS-renormalization scheme. They found a
logarithmic decrease of αs for increasing scales,

αs(µR) = 4π
β0 log µ2

R

Λ2
MS

, β0 = 1
3(11Nc − 2Nf ) > 0 , (2.19)

where ΛMS ' 200–300 MeV [28] denotes the scale where a perturbative calculation diverges.
Consequently, QCD is asymptotically free at high energies.
On the other side, low energy QCD – or, equivalently, QCD at large distances – is not

accessible by perturbative calculations. A non-perturbative approach is lattice QCD
[29], where on a finite lattice an action is formulated, which approaches QCD in the
infinite-volume limit. Quarks are located on the lattice sites, and gluons link different
sites similar to the Wilson lines (2.17). Path-integrals then can be computed using Monte
Carlo techniques.
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In nature, free quarks and gluons are not observed, and the hadron spectrum consists
only of color-neutral particles, a property which is called color confinement. There are
numerous and often complimentary explanations for confinement (see, e.g., [30] for an
overview).

• A flux tube connects a quark and an anti-quark inside a meson. If one tries to
separate the two constituents, the size of the flux tube and consequently the energy
of the system rise linearly. It costs an infinite amount of energy to separate the
quark from the anti-quark. At some point, the flux tube will break and additional
mesons are generated. Indications for such a behavior are the Regge trajectories in
the resonance spectrum, which can be explained in a string-like picture.

• It is instructive to study the operator O1 defined in Eq. (2.18), where γ now is a
spatial path which connects a quark with an anti-quark at a distance r at a given
time t, in the limit of infinitely heavy masses. The correlator 〈O†1(t)O1(0)〉 can be
computed on a lattice in Euclidean time. For large times t, the minimum-energy
state is singled out, since all higher states are exponentially suppressed and one can
show that the r-dependent potential equals

V (r) = − lim
t→∞

d

dt
log 〈O†1(t) O(0)〉 . (2.20)

On the other hand, 〈O†1(t)O1(0)〉 is proportional to the expectation value of the
Wilson loop,

W (γ) =
〈

TrW(0, 0, γ)
〉
, (2.21)

for a rectangular path γ of side length r and t. Combining the two results above
yields W (γ) ∼ exp(−V (r)t). Therefore, a lattice gauge theory calculation of the
expectation value of the Wilson loop allows us to deduce the potential V (r) of a
pair of a static heavy quark and an antiquark. Indeed, lattice calculations (see,
e.g., [31]) show that the potential rises linearly for larger distances, which is a
signal of confinement, as described. At finite temperatures, a Wilson line wrapping
around the imaginary time direction is called a Polyakov loop. The expectation
value of the Polyakov loop is an order parameter for the breaking of the so-called
center symmetry, which is related to confinement. Strictly speaking, this is only true
in the pure gauge theory or in the limit of infinitely heavy quarks. The expectation
value of the Polyakov loop is still useful for small non-vanishing quark masses as a
measure for statistical confinement. However, the characteristic clustering property
of confinement cannot be achieved this way.

• A concept which goes back to ’t Hooft, Polyakov and Mandelstam [32–35] is to under-
stand confinement as a “dual” Meißner effect [36]. In the Bardeen–Cooper–Schrieffer
theory of superconductors, Cooper pairs of electrically charged electrons form a con-
densate. If a hypothetical magnetic monopole is inserted into the condensate, its
magnetic flux is confined to tubes as a consequence of the Meißner effect. In QCD,
the role of electric and magnetic fields is interchanged, hence the name “dual” super-
conductor. In 1994, monopole (and dyon) condensation was analytically proven to
be responsible for confinement and the emergence of a mass gap in N = 2 supersym-
metric Yang–Mills theory in the seminal papers by Seiberg and Witten [37,38]. The
proof, however, strongly relies on the large symmetry of the theory. In QCD, one has
to rely on lattice calculations and various simulations indeed indicate a monopole
dominance [39–43].
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• A different confinement mechanism due to ’t Hooft are center vortices [44,45], topo-
logical objects which populate the vacuum with Wilson lines intersecting with them.
The vortex picture is closely related to monopole condensation: monopoles can end
on vortices, such that vortices can be considered as flux tubes between monopoles
and anti-monopoles.

• In the Kugo–Ojima [46] and Gribov–Zwanziger [47, 48] scenarios, color confinement
is explained by a suppression of the gluons and an enhancement of the ghosts in the
infrared. Progress in this direction was made in Dyson–Schwinger calculations in
Landau gauge [49], in the framework of the functional renormalization group [50],
and on the lattice [51–55]. It was argued [56] that the critical exponents of the gluon
and ghost propagators in the IR determine the minima of the Polyakov potential.

After the discussion of the implications of local gauge symmetries, we now turn to the
global symmetries of QCD.

2.4 global symmetries

We have seen that as a consequence of confinement, quarks and gluons are not the right
degrees of freedom in the low-energy regime. In addition to the local gauge theory, QCD
possesses also a number of global symmetries. Weinberg’s famous “theorem” [57] states
that the low-energy effective theory is given by the most general Lagrangian consistent
with the underlying symmetries, where the free parameters have to be determined from ex-
periments. Therefore, a good knowledge of the global symmetries is crucial to understand
QCD at low energies.
First of all, as a quantum field theory, QCD is invariant under Poincaré transformations,

which implies invariance under simultaneous charge, parity, and time transformations
(CPT) [58]. In principle, CP could be broken if the theta term,

Lθ = − θ

64π2 ε
µνρσGaµνG

a
ρσ , (2.22)

is added to the Lagrangian. The theta term does not require a (local) metric tensor and
only depends on the (global) topology of the gauge field configurations. It turns out that
the vacuum structure of QCD is non-trivial and a θ dependence is a natural consequence
of instanton configurations.
Instantons are gauge configurations in the Euclidean, Wick-rotated version of QCD

[59–61] and can be interpreted as tunneling processes in the WKB formalism [62] between
different topologically non-equivalent vacua. Instantons are truly non-perturbative effects
which do not appear in perturbation theory around the trivial vacuum. A more detailed
description is given in Appendix A.2.2, where it is shown that any gauge configuration
can be classified by an integer, the so-called winding number

n = g2

64π2

∫
d4x εµνρσGaµνG

a
ρσ . (2.23)

In each sector, characterized by a fixed winding number, there is a gauge configuration
that minimizes the Yang–Mills action in Euclidean space, namely the (anti-)self-dual4 con-
figuration, which satisfies Gaµν = ±1

2εµνρσG
a,ρσ, for positive and negative winding numbers,

4 There are no self-dual solutions in Lorentzian signature in 3 + 1 dimensions, which is why one has to look
at Euclidean space.
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respectively. These configurations are called (multi-)instantons with winding number n,
and were first constructed for n = 1 by Belavin, Polyakov, Schwartz, and Tyupkin [59]. A
complete classification of instantons in a general framework was later obtained through
the ADHM construction5 [64]. From the self-duality relation follows that the contribution
of an instanton configuration with winding number n to the Euclidean path integral is
proportional to exp(−8π2|n|/g2) and depends non-analytically on g.
In the path integral, all fluctuations around instanton configurations with an arbitrary

winding number n are included. The cluster decomposition principle implies [65] that
these configurations contribute with a weight factor eiθn to the path integral, which leads
to the non-trivial theta vacuum. Equivalently, one can add the theta term (2.22) to the
Lagrangian.
The value of θ is a free parameter of the theory and has to be fixed empirically. An

upper limit from dipole moments [66] is |θ| < 10−10. The unexpected smallness of θ was
dubbed the strong CP problem. An elegant solution by Peccei and Quinn [67,68] is to
add a new U(1)PQ symmetry to the theory. In this way, θ turns into a dynamical field, the
axion, whose potential is minimized at θ = 0. In principle, another solution would be a
massless quark, because in this case θ could be rotated away. However, the quark-masses
of the lightest quarks in the MS scheme at a renormalization scale of µR = 2GeV are [28]

mu = 2.3+0.7
−0.5 MeV , md = 4.8+0.7

−0.3 MeV , ms = 95+5
−5 MeV . (2.24)

These masses are non-vanishing, which excludes this particular solution of the strong CP
problem. Nevertheless, they are very small compared to QCD scales which are of the
order 1GeV, for instance a few times ΛMS, or 4πfπ, where fπ is the decay constant of the
pion. It is therefore often fruitful to study QCD in the massless limit. In the following,
we will for simplicity only consider the two lightest quarks, the up and the down quark.
It is useful to decompose the quark field into left- and right-handed fields,

ψR = 1
2(1 + γ5)ψ , ψL = 1

2(1− γ5)ψ , (2.25)

where γ5 is defined in Appendix A.1. In terms of these new fields, the quark-part of the
QCD Lagrangian (2.16) with vanishing masses is diagonal: ψ̄Riγ

µDµψR + ψ̄Liγ
µDµψL.

The massless QCD Lagrangian then possesses an enlarged symmetry under rotations
in flavor space, namely invariance under the symmetry group U(2)L ×U(2)R. The full
symmetry group is not preserved by the quantization procedure, but only a subgroup
U(1)V × SU(2)V . In the following, we will discuss the symmetries and symmetry breaking
patterns in more detail. The full symmetry group can be decomposed into four subgroups:

1. Singlet vector symmetry, U(1)V :

ψ → eiα ψ , ψ̄ → ψ̄ e−iα . (2.26)

The corresponding Noether current is V µ = ψ̄γµψ, and the respective charge is the
baryon number QV =

∫
d3x ψ†ψ, which is also conserved after the quantization pro-

cedure.

2. Singlet axial symmetry, U(1)A:

ψ → eiαγ5 ψ , ψ̄ → ψ̄ eiαγ5 . (2.27)

5 Instantons were consequently also studied extensively in differential geometry. For instance, Simon Don-
aldson won the Fields medal for his contributions to the classifications of four-manifolds with the help of
self-dual connections [63].
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In this case, the Noether current is Aµ = ψ̄γµγ5ψ and the corresponding axial charge
is given by QA =

∫
d3x ψ†γ5ψ. It turns out that the path-integral measure is not

invariant under an axial U(1)A symmetry transformation, but transforms as [69,70]

Dψ Dψ̄ → Dψ Dψ̄ exp
(
−α ig2

32π2

∫
d4x εµνρσGaµνG

a
ρσ

)
. (2.28)

By itself, this unusual transformation behavior does not break the axial symmetry,
in particular as the integrand in the exponent is a total derivative, as is shown in Ap-
pendix A.2.2. However, we have also seen that instanton configurations decay slowly
enough at large distances, such that the integral is non-vanishing. Consequently,
the U(1)A symmetry is said to be anomalously broken. As a consequence, the
η′-meson is no longer a (quasi-)Goldstone boson, which explains its large mass.

3. Symmetry under axial vector transformations (which do not form a group):

ψ → e−i
1
2α·τγ5 ψ , ψ̄ → ψ̄ e−i

1
2α·τγ5 , (2.29)

where τ = (τ1, τ2, τ3) are the Pauli matrices defined in Appendix A.1. Associated
with this symmetry are the axial currents Aµi = ψ̄γµγ5

τ i

2 ψ with the corresponding
charges QAi =

∫
d3x ψ†γ5

τ i

2 ψ. The invariance under axial transformation is called
chiral symmetry (although this expression is also often used for the full symmetry).
Whereas the QCD Lagrangian is invariant under chiral symmetry, the QCD ground
state is not invariant. The symmetry is said to be spontaneously broken and
the ground state of QCD is in the Nambu–Goldstone phase. If instead the
true ground state was in the Wigner–Weyl phase with unbroken symmetry, there
would be a degeneracy in the hadron spectrum between positive and negative parity
states, which is not observed in nature. Chiral symmetry breaking is associated with
an order parameter, the chiral or quark condensate, defined as

〈ψ̄ψ〉 = 〈ūu+ d̄d〉 = i

∫
d4xTrS(x, x) , (2.30)

where S(x, y) = −i 〈0|T ψ(x)ψ̄(y)|0〉 is the quark propagator. The chiral conden-
sate, 〈ψ̄ψ〉 = 〈ψ̄LψR + ψ̄RψL〉, mixes right- and left-handed components and there-
fore a non-vanishing condensate breaks chiral symmetry. In Euclidean time (see
Appendix A.1.4 for the conventions), the quark fields can be decomposed in terms
of eigenfunctions of the Dirac operator in a given gauge field configuration A, i.e.,

iγµED
E
µψλ = λψλ . (2.31)

Expressed in these eigenfunctions, the quark propagator is

S(x, y) = −
∑
λ

ψλ(x)ψ†λ(y)
im+ λ

. (2.32)

Because γE5 anti-commutes with γµEDE
µ , eigenfunctions occur in pairs, namely if ψλ

has eigenvalue λ, then γE5 ψλ has eigenvalue −λ. The eigenvalues are distributed
according to the spectral density ρ(λ), which is therefore an even function of λ. Since
the eigenfunctions are normalized, the quark condensate in the field configuration A
is

〈ψ̄ψ〉A =
∫
dλ ρ(λ) −i

im+ λ
= −

∫
dλ ρ(λ)

(
m

m2 + λ2 + i
λ

m2 + λ2

)
m→0−−−→ −

∫
dλ ρ(λ)

(
πδ(λ) + iPV 1

λ

)
= −πρ(0) .

(2.33)
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In the last step, the contribution from the principal value vanishes, because ρ(λ) is
an even function. The equation (2.33) is called the Banks–Casher relation [71]
and shows the connection between chiral symmetry breaking and quarks with λ ' 0.
Let us define the index of the Dirac operator as the number of left-handed zero
modes, nL, minus the number of right-handed zero modes, nR. The Atiyah-Singer
index theorem [72] relates the index of the Dirac operator (i.e., a locally defined
object) to the second Chern class (i.e., a globally defined object, which is simply the
winding number),

nL − nR = g2

64π2

∫
d4x εµνρσGaµνG

a
ρσ = n . (2.34)

Since instantons are related to zero-mode quarks via the index theorem, the instanton
liquid model can explain the generation of a condensate by a delocalization of these
zero-modes (see [73, 74] for numerical studies). Chiral symmetry is restored, once
the zero-mode zone disappears [75], and whether chiral symmetry is broken or not
depends crucially on the topological density of the instantons.
Through the triangle diagrams, instantons with winding number n change the axial
charge by a factor ∆QA = 2Nfn, where we have restored the explicit dependence on
Nf . For n = 1, non-local 2Nf -quark interactions are generated, as was first discussed
by ’t Hooft [76].

4. Vector symmetry, SU(2)V (isospin symmetry):

ψ → e−i
1
2α·τ ψ , ψ̄ → ψ̄ ei

1
2α·τ . (2.35)

The corresponding isovector currents are V µ
i = ψ̄γµ τ

i

2 ψ and the respective vector
charges are QVi =

∫
d3x ψ† τ

i

2 ψ. As a consequence of the Vafa–Witten theorem
[77], the SU(2)V symmetry cannot be spontaneously broken. Similarly to the deriva-
tion of the Banks–Casher relation, we compute a corresponding order parameter,
which is in this case the condensate

〈ūu− d̄d〉A =
∫
dλ ρ(λ)

[ −i
imu + λ

− −i
imd + λ

]
= (md −mu)

∫
dλ ρ(λ) 1

(imu + λ)(imd + λ) .

The integrand has poles at−imu and−imd. Because the Dirac operator is Hermitian,
the integration over λ extends only over real values. Consequently, the integral is non-
singular as mu → md, and the condensate vanishes. The vector symmetry cannot
be broken.

We have seen that the U(1)A symmetry is broken by quantum effects and the chiral symme-
try is broken spontaneously in the QCD ground state. In total, the original U(2)L ×U(2)R
symmetry is broken down to a U(1)V × SU(2)V subgroup. In addition, the finite quark
masses, M = diag(mu,md), introduce an explicit symmetry breaking effect. The diver-
gences of the currents in the presence of massive quarks is

∂µV
µ = 0 , ∂µA

µ = 2iψ̄Mγ5ψ + g2

16π2 ε
µνρσGaµνG

a
ρσ ,

∂µV
µ
i = iψ̄

[
M,

τ i

2
]
ψ , ∂µA

µ
i = iψ̄

{
M,

τ i

2
}
γ5ψ ,

(2.36)
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where {·, ·} is the anti-commutator. The vector current V µ
i is not conserved for mu 6= md.

We will now discuss in more detail the consequences of a spontaneously broken chiral
symmetry. Goldstone’s theorem [78, 79] tells us that for any spontaneously broken sym-
metry, there is a corresponding massless Goldstone boson. The axial charges do not leave
the vacuum invariant but instead generate new states QAi |0〉, which are identified as pseu-
doscalar mesons, the pions. As a consequence of explicit chiral symmetry breaking, the
pions are not exactly massless and are called pseudo-Goldstone bosons. Nevertheless, the
explicit symmetry breaking is small and from the approximate chiral symmetry alone it is
possible to derive several low energy theorems. Let |πi(p)〉 denote a normalized one-pion
state with momentum p. The state Aµi (x) |0〉 has non-vanishing overlap with the pions,

〈0|Aµi (x)|πj(p)〉 = ipµf0δij e−ipx . (2.37)
The momentum dependence is a consequence of Lorentz symmetry. Moreover, f0 denotes
the pion decay constant in the chiral limit, which differs from the physical pion decay
constant6,

fπ = (92.21± 0.02± 0.14)MeV [28] , (2.38)
only by corrections of the order of the quark masses. We will evaluate 〈0 | [QA1 , ∂µA

µ
1 ] | 0〉

at t = 0 in two different ways. First, with Eq. (2.36) we find〈
0
∣∣ [QA1 , ∂µAµ1 ] ∣∣ 0 〉 =

〈
0
∣∣ [QA1 , iψ̄{M,

τ1

2
}
γ5ψ

] ∣∣ 0 〉
= i(mu +md)

〈
0
∣∣ [QA1 , ψ̄ τ1

2 γ5ψ
] ∣∣ 0 〉 = − i2(mu +md) 〈ψ̄ψ〉 ,

(2.39)

where the last equation can be computed from QA1 =
∫
d3x ψ†γ5

τ1

2 ψ together with the
equal-time fermion anticommutation rules. Second, we insert a set of pion states into
〈0 | [QA1 , ∂µA

µ
1 ] | 0〉. The hypothesis of a partially conserved axial current states that

this forms already a complete set, i.e.,

1→
∫

d3p

2Ep(2π)3 |πi(p)〉 〈πi(p)| , (2.40)

if inserted into the commutator. As a consequence of Eq. (2.37) together with the relation
〈0|QAi |πj(p)〉 = iδijfπEp(2π)3δ(3)(p) at t = 0, we find〈

0
∣∣ [QA1 , ∂µAµ1 ] ∣∣ 0 〉 = if2

πE
2
p=0 = if2

πm
2
π . (2.41)

A comparison of Eqs. (2.39) and (2.41) yields the Gell-Mann–Oakes–Renner (GOR)
relation [80],

2m2
πf

2
π = −(mu +md) 〈ψ̄ψ〉 , (2.42)

which is valid up to corrections of the order m2
u,d. As the quark masses depend on the

renormalization scale, so does the quark condensate, and only the product is invariant
under the renormalization group. The GOR relation is tested extremely well on the
lattice [81]. It connects properties of quarks, i.e., QCD degrees of freedom, with properties
of the pions, which dominate the low energy regime. The chiral condensate can be deduced
from the quark masses, or from the lattice [82]. At a renormalization scale in the GeV
range, the condensate is of the order −1.8 fm−3.
Having discussed the low-energy properties of QCD, we will turn to non-vanishing tem-

peratures and densities in the next section.
6 The pion decay constant is determined from the decays π− → µ−ν̄µ and π− → µ−ν̄µγ. The first error
is due to the uncertainty of the matrix element |Vud| of the CKM-matrix, and the second error is due to
higher-order corrections.
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2.5 qcd at finite temperature and density

We have seen that the most important characteristics of low-energy QCD are color con-
finement and chiral symmetry breaking. Both properties are lost at high temperature, at
high densities, or in strong magnetic fields. In order to gain a solid understanding of such
diverse phenomena as the early universe, heavy-ion collisions, or neutron stars, it is there-
fore crucial to understand QCD quantitatively and qualitatively at finite temperatures
and chemical potentials (see [83] for a recent survey).

2.5.1 Heavy-ion collisions

At very high temperatures, the QCD coupling is small and thus perturbative QCD is
applicable. The dominant degrees of freedom are quarks and gluons and the system
is described as a quark-gluon plasma (QGP). It is believed that at the four main
experiments at the Relativistic Heavy Ion Collider (RHIC) in Brookhaven (namely STAR
[84], PHENIX [85], PHOBOS [86], and BRAHMS [87]) a state dominated by quarks and
gluons was produced. In the recent years a “standard model” of heavy-ion collisions
emerged [88–90], which in many ways parallels the big-bang standard model in cosmology
(see Table 1). The colliding objects move at a relativistic speed and are strongly Lorentz-
contracted along the collision axis. The initial state is characterized by the energy and
the centrality of the collision. After the initial collision, a hot and dense fireball is created,
which thereupon undergoes a rapid expansion. The initial state is far from equilibrium
and the pre-equilibrium phase is commonly described by classical Yang-Mills dynamics.
After a time of only about τ = 1 fm, the system is expected to reach thermal equilibrium,
at least locally. The main motivation for this assumption is the tremendous success of
phenomenological descriptions based on local equilibrium. An initial density profile is
chosen to characterize the system after local equilibration. Different descriptions exist,
such as MC-Glauber, MC-KLN and IP-Glasma models. The subsequent stage up to about
τ = 10 fm can be described by relativistic viscous hydrodynamics [91]. Because the final
density profile depends on the initial density profile, which differs slightly from collision
to collision, there are event-by-event fluctuations. Moreover, the centrality of the collision
influences the initial state. A study of anisotropies allows us to infer properties of the
QGP produced during the earliest stages of the collision. Dissipative forces can smear out
anisotropies, most importantly being the ratio of shear viscosity η and entropy density s
of the QGP. If η/s was too large, the anisotropies would disappear and all information
about the initial profile gets lost. For a given initial density profile, the ratio η/s is fitted
to the experimental data on the elliptic flow v2 as well as higher anisotropic flows vn [92].
It turns out that the elliptic flow is unexpectedly large and therefore η/s is very small.
For Au+Au collisions at RHIC, one finds [93,94]

η

s
' 1.5 · 1

4π . (2.43)

In addition, the IP-Glasma model based on the color-glass-condensate model seems to be
singled out by experiments, since it is the only approach which can reproduce all measured
anisotropies [95]. The ratio η/s is not constant but depends on the temperature. The
Au+Au collisions conducted at the ALICE and ATLAS experiments at the LHC probe the
QGP at large temperatures. Consequently, one finds a larger value for η/s ' 2.5/4π [96].
Even at these higher temperatures η/s is still very close to the bound 1/(4π) ' 0.08,
which was derived in the context of the AdS/CFT duality and is expected to hold for all
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heavy-ion collisions cosmological evolution

hot fireball: pressure-driven expansion space-time: gravity-driven Hubble expan-
sion

hadrosynthesis, chemical freeze-out primordial nucleosynthesis
kinetical freeze-out recombination
detected hadron abundances observed cosmic microwave background
initial density fluctuations leading to

• event-by-event fluctuations

• anisotropic flow

initial density fluctuations leading to

• large-scale structure of the universe,

• deviations from isotropy in the cos-
mic microwave background.

Table 1: A comparison of different stages in heavy-ion collisions and in cosmology.

reasonable gauge theories with gravity duals [97]. The quark gluon plasma is therefore
strongly coupled (sQGP) and behaves like an almost perfect fluid.
Finally, after the time-span τ of about 10 fm, the temperature drops down to about

160MeV. Matter starts to hadronize and chemical freeze-out sets in, which implies
that the ratios of the particle species are fixed from now on. After chemical freeze-out the
hadrons still scatter elastically until the temperature drops further and these interactions
cease as well. After the kinetical freeze-out, the particles propagate freely and can be
measured in the detectors.
At chemical freeze-out, the system can be described as a grand-canonical ensemble of

hadrons and resonances in equilibrium [98], including particles up to masses of about
2GeV. To account for the finite width of the resonances, one integrates over the mass,
distributed according to a Breit-Wigner function. Elastic interactions are included in
a simplified way by hard-core repulsion, implemented as an excluded volume correction,
similar to a van-the-Waals gas. The main assumptions of this hadron-resonance gas
(HRG) model is that the medium is at equilibrium, that hadronization of all particles
takes place at the same time, and that the in-medium masses of the hadrons do not differ a
lot from their vacuum values. The only free parameters of the model are the temperature
T and the baryon chemical potential µ at freeze-out. They are adjusted to the ratios of
hadron yields7 by minimizing the χ2 distribution. The model is remarkably successful in
reproducing the ratios of measured particle yields [99,100].
The HRG model works very well; however, it would certainly be desirable to compute

the freeze-out temperatures directly from QCD. In recent years, it became possible to
perform such calculations for small chemical potentials in lattice QCD, where one studies
ratios of cumulants of conserved charge fluctuations and determines in this way the freeze-
out line. In the limited range of small µ accessible to lattice computations, the results are
in agreement with the HRG calculations [101,102].
Numerous experiments at different energies were analyzed, from AGS, SIS, and SPS

to the RHIC (see [103] for a review). Each collision energy corresponds to a particular
freeze-out temperature and baryon chemical potential. For small energies, initial nucleons
are dominant, and the baryon chemical potential is large. Higher energies correspond to

7 Taking ratios of yields instead of yields eliminates the size of the fireball as an additional parameter.
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Figure 1: Chemical freeze-out points from the hadron-resonance gas model [100]. The freeze-out
curve points towards the nuclear liquid-gas transition in the lower right-hand corner.

smaller baryon chemical potentials, where newly produced hadrons dominate, with pions
being the most abundant species. At the same time, higher energies allow to test higher
temperatures. By varying the energy, one scans the freeze-out line in a T–µ diagram.
Some of the freeze-out points obtained from such a hadron-resonance gas analysis are
shown in Fig. 1. It is remarkable that if one follows the freeze-out line to higher baryon
chemical potentials, i.e., smaller energy, one ends up in a region very close to the nuclear
liquid-gas phase transition. This observation turns out to be important if one connects
the freeze-out line to chiral restoration. We will turn to this point in the next section.

2.5.2 Chiral restoration

Heavy-ion experiments revealed a new kind of matter at high temperatures, the strongly
coupled quark-gluon plasma. Together with deconfinement, chiral symmetry is also re-
stored. At zero chemical potential, both events are not phase transitions but crossovers,
which means that the respective order parameters are smooth functions of T . The pseudo-
critical temperature of the chiral restoration, Tc, is defined as the highest peak in the
susceptibility of the chiral condensate (the point of strongest descent of the condensate).
This temperature is nowadays well determined from different lattice calculations, with
comparable values

Tc = 154(9)MeV HotQCD [104] ,
Tc = 147–157MeV Wuppertal-Budapest [105] .

(2.44)

Remarkably, this temperature turns out to be very close to the chemical freeze-out tem-
perature, Tf , at zero baryon chemical potential. At small chemical potentials, it was
argued that only close to Tc it is possible to maintain chemical equilibrium [106]. If
the temperature of the system is below the QCD pseudo-critical crossover temperature,
the dominating interaction is two-particle hadron scattering and it was estimated that
these processes alone cannot establish chemical equilibrium of (multi-)strange hadrons
fast enough. Multi-hadron processes are suppressed by a high power of the density and
cannot contribute. However, close to the pseudo-critical temperature, the density increases
dramatically and multi-hadron processes become dominant. These collective excitations
are able to thermalize the system fast enough. A detailed comparison of different freeze-out
criteria is found in Ref. [107].



16 from gauge theories to nuclear matter

jA jB

T

µ
liquid-gas tr.

freeze-out

Figure 2: Two possible chiral restoration lines: In scenario A the entanglement between chiral
restoration and chemical freeze-out (dotted line) holds for larger chemical potentials as
well, whereas in scenario B the two lines are clearly separated.

The success of the hadron-resonance gas model further tells us that chemical freeze-
out should occur in the hadronic phase, i.e., Tf ≤ Tc. The latest calculations on the
lattice [108] and in the hadron-resonance gas model [109] indeed predict a smaller freeze-
out temperature than earlier works, in agreement with Tf ≤ Tc.
A natural question is whether this connection between chemical freeze-out and chiral

restoration holds as well for larger chemical potentials. If this was the case, as is shown in
scenario A in Fig. 2, chiral symmetry would get restored very close to the nuclear liquid-
gas transition. This would be problematic, because we have no experimental implications
that chiral symmetry is restored in nuclear matter at relatively low densities.
An important finding is that at least for small chemical potentials the pseudo-critical

temperatures of chiral restoration and deconfinement are closely intertwined. In principle,
it is possible that these lines diverge for larger chemical potentials. It was conjectured
that there might exist an exotic state, the quarkyonic phase [110], where the degrees of
freedom are still confined, but which differs from ordinary nuclear matter by a large baryon
number density and energy density that can be traced back to the quark constituents.
Chiral symmetry might already be restored, but this does not have to be the case. It was
argued that the chemical freeze-out curve can be explained by quarkyonic matter [111].
At low baryon chemical potentials, the baryon density is relatively small and Goldstone
bosons are the dominant degrees of freedom. The transition can then be estimated to
occur close to the Hagedorn temperature, where the dual resonance model breaks down.
For small baryon densities, this temperature does not vary a lot, such that the freeze-
out curve is almost horizontal. For higher densities (such as predicted in quarkyonic
matter), baryons dominate. The Hagedorn spectrum is now balanced by a Boltzmann
factor, which depends on µ. As a result, the freeze-out curve decreases almost linearly.
Mean-field studies of quark-meson or NJL models indeed show a phase with confined
degrees of freedom but where chiral symmetry is already restored. In contrast, if a µ-
dependent Polyakov-loop potential is used in a functional renormalization group approach,
this phase is absent [112, 113]. Further possible scenarios for high-density QCD phases,
which are frequently discussed in the literature are inhomogeneous phases, such as pion
or kaon condensates [114,115].
At very large chemical potentials, perturbative methods are applicable. The two-quark

state can be decomposed as 3⊗ 3 = 6⊕ 3, where the sextet is always repulsive, while
the anti-triplet becomes attractive via one-gluon exchange. Similarly to electro-magnetic
superconductivity, Cooper pairs can form and a diquark condensate is formed. The diquark
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condensate has color and flavor indices and therefore the local color symmetry is hidden
and the global flavor symmetry is broken. A color-superconducting phase is expected.
One important problem in QCD phase-diagram studies concerns the order of the chiral

restoration transition. All we know is that at zero chemical potential there is no phase
transition but rather a rapid crossover. At larger chemical potentials, the restoration could
in principle be of first order. The first-order line then ends in a second-order critical
endpoint (CEP). The CEP would be a landmark in the QCD phase-diagram and lots of
theoretical and experimental effort is therefore devoted to the search of the CEP. However,
it is not clear at all if it exists. There are numerous different approaches to study chiral
restoration, which can be roughly divided in what we will call “small-µ” and “small-T”
approaches.

1. Small-µ approaches. In principle, lattice QCD has the advantage that it does
not rely on any particular model assumptions. It would therefore be desirable to
compute the pseudo-critical temperature Tc as a function of the chemical potential
on the lattice. Unfortunately, lattice computations at large chemical potentials are
not possible because of the sign problem: the weighting factor is highly oscillatory
and a Monte-Carlo treatment of the path integral breaks down. Several approaches
were developed to extend lattice QCD to finite µ. Examples are reweighting, Taylor
expanding in µ, and the continuation to imaginary chemical potentials [116–119]. In
general, lattice calculations are still restricted by the sign problem to µ/3T < 1 and
cannot be trusted for large chemical potentials. Moreover, possible phase transitions
are connected with divergences and all approaches circumventing the sign problem
break down. Nevertheless, one can compute the curvatures κf and κc of the freeze-
out curve and chiral-restoration curve, respectively, for small µ, with

Tf,c(µ)
Tf,c(0) = 1− κf,c

(
µ

3Tf,c

)2

+O(µ4/T 4
f,c) . (2.45)

The curvatures obtained by lattice calculations are

κf = 0.21(2) [107],
κc = 0.059(2)(4) [120],
κc = 0.059(18) [121].

(2.46)

The curvature of the chemical freeze-out line is about a factor four larger than the
curvature of the chiral restoration curve. This indicates a divergence of the curves
as in scenario B in Fig. 2, already at small chemical potentials.
A study of the critical endpoint in lattice QCD is more involved because of the
sign problem. Some insight can be gained by varying the quark masses [122]. The
order of the phase transition depends on these quark masses. A useful approach is to
study the order of the chiral restoration as function of the light-quark massmu = md

and the strange quark mass ms. As noted above, at the physical point one finds a
crossover at µ = 0. In contrast, if the quark masses were smaller, there would be a
first-order phase transition [123]. On the boundary between these two regions in the
mass-plane, the transition is of second order. Consequently, it is fruitful to study
how this boundary region (the so-called critical surface) changes as a function of
the chemical potential. A lattice simulation at an imaginary chemical potential was
performed at relatively large quark masses. One observes that the critical surface
shrinks [124]. This means that the physical point stays in the crossover region and
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does not get closer to the boundary, which would exclude a critical endpoint for
physical quark masses.
A different conclusion was drawn from recent studies using Dyson–Schwinger
equations. A chiral CEP is found at a relatively high temperature T = 100 MeV
and a critical quark chemical potential in the range µq = 170–190 MeV [125,126].
Chiral restoration at larger chemical potentials can be studied in QCD-type mod-
els that take chiral symmetry into account. The Nambu–Jona-Lasinio model
[127, 128] (NJL model) was inspired by the Bardeen–Cooper–Schrieffer theory of
superconductors. It describes quark-type (quasi-)particles that interact via four-
fermion couplings [129]. The model does not include confinement, a short-coming
that can be overcome by coupling it to the Polyakov loop potential [130–137] (PNJL
model). The existence of a critical point cannot definitely be proven nor disproven
in these models. The strength of vector interactions and the ’t Hooft coupling
(which accounts for the axial U(1)A anomaly) play an important role, and whether
the CEP exists depends sensitively on their values. This can be shown in the NJL
model [138–140], in the local PNJL model [141, 142] as well as in a nonlocal PNJL
model [143]. In addition, the vector interaction also determines crucially the curva-
ture of the critical surface in these models [144].
The chiral quark-meson (QM) model couples quarks in a chirally invariant way
to a scalar, σ, and pionic degrees of freedom [145–147]. Statistical confinement can
be included by using the Polyakov-quark-meson model (PQM model [112, 148]). It
was found that the endpoint moves to smaller temperatures if the mass of the σ is
increased. In particular, if the mass is large enough, no CEP is found [149]. Likewise,
if the µ-dependence of the Polyakov loop (as derived from pure Yang-Mills theory)
is included in the model, the CEP moves to smaller temperatures [149].
At high baryon chemical potentials and small temperatures, baryons are the domi-
nant degrees of freedom. It is unlikely that a model built upon quark-type particles
– like the PQM model or PNJL model – can be applied within this region. Nucleons
play an important role and can substantially enhance the density and pressure as
compared to quark models, as was shown in Ref. [150]. As a result, the transition to
the quark-dominated phase is typically predicted at too low densities as compared
to more realistic models.
Another finding is that fluctuations beyond the mean-field approximation are very
important. If they are included properly, the critical endpoint appears at smaller
temperatures and larger chemical potentials. This effect already appears if back-
reactions are taken into account in the PQMmodel [112]. Similar effects are observed
if bosonic fluctuations are treated in the framework of the functional renormalization
group [113, 151–153]. No critical endpoint exists within the range of applicability
of the model. It is therefore not enough to stay in the mean-field approximation.
Fluctuations can make a difference and have to be properly accounted for.

2. Small-T approaches. A different route to gain insight into chiral restoration and
chemical freeze-out is to start with what we know from nuclear physics at small
temperatures and high densities. Models based on hadronic degrees of freedom are
adjusted to reproduce the empirically given data. One of the earliest models for the
nuclear interactions was developed by Hideki Yukawa in 1935 [154]. In his theory,
a scalar field is the carrier of the force between nuclei. Later it was realized that
the long-range force is governed by pion exchange, which is a pseudo-scalar. At



2.5 qcd at finite temperature and density 19

smaller distances other more massive mesons become important, such as the ω(782)
and ρ(770) mesons. One-boson exchange models were extended substantially,
starting in the 60s (see [155] for a review). An important ingredient of these models is
the scalar-isoscalar σ or f0(500) field introduced by Johnson and Teller in 1955 [156].
If one analyses the I = 0 s-wave in pion-pion scattering, one indeed finds a pole.
However, its location is at

√
s ∼ (500−i 300) MeV [157,158]. It has a large imaginary

part – which would correspond to a decay width of Γ ' 600MeV – and therefore is
not a resonance. In fact, it does not even have a Breit-Wigner shape, and is certainly
not a particle. The boson σ that appears in boson-exchange models should therefore
rather be considered as an effective field which parametrizes part of the medium-
range interactions.
Dense matter can be studied in relativistic mean-field models, which are gener-
alizations of the Walecka model [159]. Some of the exchange bosons acquire expec-
tation values, whose dependence on temperature and density can then be derived.
All these models do not take chiral symmetry into account. After the discovery of
chiral symmetry, the field σ was combined with the pions into a four-vector which
transforms under the chiral symmetry group SU(2)L × SU(2)R ∼= SO(4). One gets
the linear sigma model derived by Gell-Mann and Lévy in 1960 [160]. Because the
σ does not correspond to a physical particle, it is desirable to eliminate it from the
theory. At low energies and temperatures, the pionic fluctuations should dominate
and the σ can be integrated out by making it infinitely heavy. One arrives at the non-
linear sigma model, which contains pion fields only. A systematic way to include
higher pionic interactions was finally introduced by Weinberg [57]. The crucial point
is that both the relevant momenta p and the pion mass mπ are small compared
to the chiral scale Λχ ' 1GeV. This provides us with a natural power counting
scheme, where p/Λχ and mπ/Λχ serve as expansion parameters. The mass of the
lowest excited state of the nucleon, the ∆(1232) resonance, is only 293MeV ' 2mπ

larger than the mass of the nucleon. It is therefore often useful to include this
mass difference also in the set of small scales, in order to improve the convergence
behavior. Weinberg argued that all possible terms are allowed in the Lagrangian at
a given order, as long as they respect the symmetries of the underlying theory. The
chiral effective field theory (ChEFT) obtained in this way [161] therefore is the
low-energy theory of QCD (for reviews consult [162–164]).
At zero temperature and at the chemical potential µ = 923MeV, there exists a first-
order liquid-gas phase transition from the vacuum state to nuclear matter. The
region in the phase diagram around the liquid-gas phase transition at finite densities
and temperatures can be studied in in-medium ChEFT (see [165] for a recent review).
The approach we will use in this thesis is based on a chiral version of the boson-
exchange model [150, 166]. Like in the linear sigma model, a four-vector (σ,π)
couples to the nucleon and accounts for long- and medium-range interactions. The
short-range interactions are modeled by an exchange of vector bosons. Because of the
chiral nature of the model, it is possible to study both the liquid-gas transition and
chiral restoration. This chiral nucleon-meson (ChNM) model has been studied
so far only in the mean-field approximation. Because we know that fluctuations –
especially those involving pions – have an important effect on chiral restoration, it
is necessary to include fluctuations beyond the mean-field approximation, which will
be the focus of the present work. All parameters of the models will be adjusted to
the empirical data we have concerning nuclear matter, which will be discussed next.
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2.6 nuclear matter

Nuclear matter is an idealized system of infinite extent, subject only to the strong force. Its
properties can be deduced from an extrapolation of empirical data of nuclei. An important
property of nuclei is saturation. For sufficiently large nuclei, the radius scales with the
number of nucleons, A, as

R ' A1/3r0 , (2.47)

where the empirical charge radius r0 is about 1 fm. Therefore, the charge density saturates
for large nucleon numbers, which is a consequence of the finite range of the nucleon-nucleon
interactions. An analysis of the charge distribution via electron-nucleon scattering revealed
that a large number of nuclei can be described by the charge distribution [167]

ncharge(r) = n0
1 + e(r−R)/a , (2.48)

where a ' 0.5 fm. In particular, the central density (A/Z)n0 is constant for each nucleus,
where Z is the number of protons. Empirically, one finds for the nuclear saturation
density the value

n0 = 0.16 fm−3 . (2.49)

In the liquid-drop model, the masses of nuclei are determined by the semi-empirical
mass formula (or Bethe-Weizsäcker formula)

M = Zmp + (A− Z)mn − EB , (2.50)

where the binding energy is

EB = aVA− aSA
2/3 − aC

Z2

A1/3 − aA
(A− 2Z)2

A
− aP

λ

A3/4 , (2.51)

for constants aV, aS, aC, aA, and aP. We discuss the individual terms in the following.
Because of the saturation property, a nucleus behaves similar to a liquid drop. The nuclear
force is short-ranged, so in a good approximation nucleons only interact with their nearest
neighbors. Hence, the main contribution to the binding energy comes from the volume
term proportional to the nucleon number or volume A ∼ R3. Nucleons on the surface can
only interact with other nucleons inside the nucleus. The binding energy therefore has to
be corrected by a term proportional to the surface area 4πR2 ∼ A2/3. The surface term
can also be written in the form

EB, surface = −4πR2Σ , (2.52)

where Σ denotes the surface tension. The third term in the binding energy stems from
a Coulomb interaction of the protons proportional to Z2R−1 ∼ Z2A−1/3. The fourth term
is the symmetry energy (also called asymmetry energy), which takes into account that
nuclei prefer to have N ' Z because of Pauli blocking, where N is the neutron number.
The last term is the pairing energy, where λ = 1 for odd-odd, λ = 0 for even-odd, and
λ = −1 for even-even nuclei, which follows from an analysis of possible beta-decays in
the shell model. The dependence on A is found empirically8. The parameters are fitted
to the available data. For the infinite system of nuclear matter, one studies the energy

8 Other dependencies are also found in the literature, for instance A−1/2.
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per particle E/A in the limit A → ∞. Only the volume term and the symmetry term
contribute.
The degree of isospin asymmetry can be characterized by the proton fraction,

x = Z

A
= np
np + nn

, (2.53)

where np and nn are the proton and neutron density, respectively. Symmetric nuclear
matter is characterized by x = 0.5, whereas pure neutron matter corresponds to x = 0.
The x-dependence of the energy per particle can be approximated by a parabolic expansion
around symmetric nuclear matter, i.e.,

E

A
(n, x) = E

A
(n, 0.5) + S(n) (1− 2x)2 + . . . . (2.54)

The energy per particle of symmetric matter at saturation density can be obtained from
an extrapolation of the binding energy of heavy nuclei to the thermodynamic limit. One
finds [168]

E

A
(n0, 0.5) = −16.0(1)MeV . (2.55)

Under the assumption that terms beyond the quadratic approximation can be neglected,
the density-dependent symmetry energy S(n) is the difference between the energy per
particle of pure neutron matter and symmetric nuclear matter for a given density, n.
Close to saturation density, we can expand

S(n) = Esym + L

3 (n− n0) + . . . . (2.56)

The leading term is the symmetry energy, as in the liquid-drop model. It is a measure
of the cost to convert symmetric nuclear matter to pure neutron matter at saturation
density. The L-parameter describes how this quantity changes if the density is increased.
These parameters are important, because they can be constrained by empirical data. For
neutron-rich nuclei the radius of the neutron distribution is larger than that of the protons.
If a neutron is not located in the core but in the skin, the surface tension increases. A
reduction in symmetry energy can compensate this effect. If the L-parameter (i.e., the
difference between symmetry energy in the center at higher density and at the surface
at lower density) is larger than the surface tension, it is energetically favorable to have
a thicker neutron-skin. A measurement of the neutron-skin thickness can therefore limit
the L-parameter. Other constraints can be obtained from heavy-ion collisions, dipole
polarizabilities, giant and pygmy dipole resonance energies, as well as from fitting nuclear
masses [169–171]. Combining all the constraints yields the following limits:

29MeV ≤ Esym ≤ 33MeV ,
40MeV ≤ L ≤ 62MeV .

(2.57)

After this concise overview of QCD and nuclear physics, we want to study the nucleon-
meson model as a useful description of dense matter. Before we can come to this point,
we have to develop the theoretical background needed to include fluctuations beyond the
mean-field approximation, which will be done in the next chapter.
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CONCEPTS OF THE RENORMALIZAT ION GROUP

Classically, the solutions of the equations of motions are well-determined paths. In con-
trast, in quantum mechanics all paths are allowed. Each path is weighted by a factor
exp(iS), where S denotes the action of the path. The solution of a quantum field the-
ory in the path-integral picture consists of a complete summation over all possible field
configurations with the respective measure. All information is finally encoded in a low-
energy effective action. In the following, we will present a modern approach to compute
the effective action, namely the functional renormalization group. The extension to finite
temperatures and chemical potentials is discussed.

3.1 the effective action

Nowadays, most quantum field theories are understood as effective theories. The theory
is modeled to describe nature in a certain range of momenta, or, equivalently, at certain
length scales. Accordingly, effective field theories naturally come with a certain cutoff
scale, Λ. In quantum electrodynamics, for instance, if one tries to push the cut-off scale
Λ to infinity, one either generates a non-physical Landau-ghost [172], or ends up with a
trivial free theory. Scalar φ4 theory is quite likely plagued by the same triviality problem
and does not exist without a cut-off scale [173]. Only in asymptotically free non-abelian
gauge theories the cutoff can in principle be pushed to infinity. In the following, we will
study theories defined at a scale Λ. The theory consists of a certain number of degrees of
freedom – the quantum fields – and a Lagrangian L, which encodes the dynamics. The
fields can consist of bosonic degrees of freedom, ϕ, as well as fermionic ones, ψ and ψ̄. The
momentum dependence will in the following be denoted by a subscript, i.e.,

ϕp ≡ ϕ(p) , ψp ≡ ψ(p) , ψ̄p ≡ ψ̄(p) . (3.1)

It is useful to combine the bosonic and fermionic fields into a vector

ξp =


ϕp

ψp

ψ̄T−p

 , ξTp := (ξT )−p =
(
ϕ−p , ψ

T
−p , ψ̄p

)
. (3.2)

In order to keep the equations readable, we adopt in the following DeWitt’s condensed
notation [174]. A quantum field ηa(x) is then simply denoted by ηI , where now I stands
for space-time coordinates x as well as external indices a. Moreover, the product of two
fields χ̃ and χ is defined as

χ̃χ ≡ χ̃IχI =
∑
a

∫
d4x χ̃a(x) χa(x) =

∑
a

∫
d4p

(2π)4 χ̃
a(−p) χa(p) . (3.3)

23
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The partition function Z[J ] and the Schwinger functional (or energy functional)
W [J ] depend on the external sources J = (j, η̄, ηT )T . They are defined as

Z[J ] = e−iW [J ] =
∫
Dξ ei

∫
d4x L+iJT ξ . (3.4)

In the spirit of Feynman’s path-integral formalism, the partition function is a sum over
all possible field configurations, weighted with the respective measure. The expectation
value of an operator O (which can contain fields and its derivatives) is in the presence of
external charges J given by

〈O〉J = 1
Z[J ]

∫
Dξ O ei

∫
d4x L+iJT ξ . (3.5)

For n ≥ 3, the Schwinger functional W it is the generating functional of all connected
correlation functions, i.e.,

δnW [J ]
iδJTi1(x1) · · · iδJTin(xn)

∣∣∣∣∣
J=0

= i
〈
ξi1(x1) · · · ξin(xn)

〉
conn

. (3.6)

Moreover, the propagator Di(x, y) of ξi is the connected two-point function and given by
a second derivative

δ2W [J ]
iδJTi (x1) iδJi(x2)

∣∣∣∣∣
J=0

= iDi(x1, x2) . (3.7)

Therefore, the Schwinger functional contains all information of the quantum field theory.
In the presence of a small coupling, W can be computed in a perturbative way with the
help of Feynman diagrams. However, at a strong coupling, or in the vicinity of phase
changes, such as those in QCD at finite temperature and chemical potential, no such
expansion parameter exists. A non-perturbative computation is required.
Instead of computing the partition function directly, which is a function of external

charges, it is fruitful to to change variables. The new variables are the expectation values
of the quantum fields ξ in a background source J , the classical fields

Φi(x) = 〈ξi(x)〉J = − δW [J ]
δJTi (x)

. (3.8)

The components of the classical fields in momentum space are in analogy to Eq. (3.2)
defined as

Φp =


φp

Ψp

Ψ̄T
−p

 , ΦT
p ≡ (ΦT )−p =

(
φ−p , ΨT

−p , Ψ̄p
)
. (3.9)

The change of variables is realized by a Legendre transformation of the Schwinger func-
tional,

Γ[Φ] = −W [J ]− JTΦ , (3.10)

which is the Φ-dependent (quantum) effective action. From the definition of the
effective action directly follow the quantum equations of motion,

δΓ[Φ]
δΦi(x) = −JTi (x) . (3.11)
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= = +

Figure 3: Relation between connected diagrams (full dots) and 1PI diagrams (open circles), in
the case of three-point correlators (left-hand side) and four-point correlators (right-hand
side).

In the absence of external sources, the right-hand side vanishes. Therefore, one important
feature of the effective action is that it is minimized by the classical field configuration Φ(x).
From topological considerations, there sometimes exist configurations that are space-time
dependent. Important examples are solitons, monopoles, domain walls, and cosmic strings.
Nevertheless, the minimizing field configuration often is homogeneously distributed, i.e.,
Φ(x) ≡ Φ = const., one example being the chiral condensate in nuclear matter. In this
case, the effective action factors, i.e.,

Γ[Φ] = −(V T ) · U(Φ) , (3.12)
where U(Φ) is the (quantum) effective potential, and (V T ) is a four-dimensional
volume factor, time T times spatial volume V . In this case, Γ is no longer a functional,
but only a function, which often leads to tremendous simplifications, as we will see below.
A second important property of the effective action Γ is that it also serves as a generating

functional. Whereas the Schwinger functional W gave us all connected diagrams, the
effective action Γ generates all one-particle irreducible (1PI) diagrams. These diagrams
cannot be split into two by cutting a single line. For n ≥ 3, the 1PI diagrams are the n-th
moments of Γ,

δnΓ[Φ]
δΦi1(x1) · · · δΦin(xn) = −i

〈
ξi1(x1) · · · ξin(xn)

〉
1PI . (3.13)

The connected n-point functions can be written in terms of 1PI-functions and connected
m-point functions with m < n. The respective diagrams for n = 3 and n = 4 are shown
in Fig. 3. Moreover, the second derivative of the effective action with respect to the fields
is the inverse propagator,

δ2Γ[Φ]
δΦT

i (x1) δΦi(x2)
= iD−1

i (x1, x2) , (3.14)

which follows from Eq. (3.7) and the identity∫
d4z

δ2W [Φ]
δJTi (x1) δJi(z)

δ2Γ[Φ]
δΦT

i (z) δΦi(x2)
= δ(x1 − x2) . (3.15)

In other words, the quantum effective action already contains all correlation functions at
tree-level. It is the low-energy action with all quantum fluctuations integrated out. If
the effective action is known, the low-energy theory is completely solved, and therefore
it is of great interest to know efficient methods to compute the effective action. In the
presence of a small coupling (such as the coupling strength or 1/Nc in the large-Nc limit)
the theory can be treated perturbatively. Then, up to one-loop order, the effective action
can be computed (see, e.g., [65]) as

Γ[Φ] = S[Φ] + i

2 Tr log δ
2S

δΦ2 + higher order. (3.16)

In the next section, we will extend the concepts above to finite temperatures.
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3.2 finite temperature

Thermodynamics and quantum field theory in the path-integral formalism are conceptually
very similar (see the textbooks [175, 176]). In statistical mechanics, a system in thermal
equilibrium is described by the grand-canonical partition function

Zgc = Tr e−β(H−µN) , (3.17)

where H is the Hamiltonian and N the particle number operator. The inverse temperature
β = 1/T and the chemical potential µ are introduced as Lagrange multipliers which ensure
the conservation of energy and particle number. The grand-canonical potential is formally
very similar to the partition function (3.4) of a quantum field theory, with the inverse
temperature playing the role of time. In the Matsubara formalism, a thermal field theory
can be obtained by Wick rotating the time dimension, t = x0 → −iτ = −ix4

E. The time
integral

∫
dt is replaced by an integral over τ . The τ -dimension is compactified on a circle

with radius β. The (anti-)commutation relations imply that bosonic fields ϕ are periodic
while fermionic fields ψ are antiperiodic, i.e.,

ϕ(x, β) = ϕ(x, 0) , ψ(x, β) = −ψ(x, 0) . (3.18)

As follows from a Fourier analysis, the corresponding momenta in the finite τ -direction
are discrete, i.e., p4 → −ωl, where ωl with l ∈ Z are the Matsubara frequencies,

ωl = 2lπT , for bosons,
ωl = (2l + 1)πT , for fermions.

(3.19)

Therefore, the four-dimensional momentum integral at zero temperature is replaced by a
three-dimensional integral and a summation over Matsubara frequencies:∫

d4p

(2π)4 → T
∑
ωl

∫
d3p

(2π)3 . (3.20)

We are finally interested in theories containing fermions ψ interacting with scalar fields ϕ
via a Yukawa interaction of strength gϕ and with a massive vector field A via a covariant
derivative Dµ = ∂µ − igAAµ. The most general action needed in the present context is in
Minkowskian signature given by

SM =
∫
d4x

[
ψ̄(iγµDµ − gϕϕ)ψ + 1

2∂µϕ ∂
µϕ− U(ϕ)− 1

4FµνF
µν + m2

A

2 AµA
µ
]
,

(3.21)

where Fµν is the field strength of the (possibly non-abelian) field Aµ and U(φ) is a potential,
which contains powers of φ and its derivatives. As shown in more detail in Appendix A.1,
the Minkowski action is turned into a Euclidean action

SE =
∫ β

0
dτ

∫
d3xE

[
ψ̄(γµED

E
µ + gϕϕ)ψ + 1

2∂
E
µϕ ∂

µ
Eφ+ U(ϕ)

+ 1
4FµνF

µν + m2
A

2 AE
µA

µ
E

]
.

(3.22)

The definition of the Euclidean objects, γµE, ∂Eµ , and AE
µ can also be found in the appendix.

As in statistical mechanics, a chemical potential µ for the fermionic modes is introduced
as a Lagrange parameter corresponding to the conserved particle number,

N =
∫
d3x ψ†(x)ψ(x) =

∫
d3x ψ̄(x) γ0 ψ(x) . (3.23)
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As a consequence, a term βµN is added to the exponent in the path integral. Altogether,
the partition function in Minkowskian signature at T = 0 and µ = 0, which is given by

ZM[Ji] =
∫
DψDψ†Dϕ exp

(
iSM + iJT ξ

)
, (3.24)

transforms into a partition function in Euclidean space at finite temperature T and chem-
ical potential µ, given by

ZM[Ji, T, µ] =
∫
DψDψ†Dϕ exp

(
− SE +

∫ β

0
dτ

∫
d3x µψ†ψ + JT ξ

)
. (3.25)

In complete analogy to the vacuum field theory, one can derive an effective action in the
presence of temperature and chemical potentials. Since the theory is defined in Euclidean
space, the definitions differ by several factors of i and −1 as compared to the vacuum field
theory. The Schwinger functional WE[J, T, µ] is the logarithm of the partition function,
i.e.,

eWE[J,T,µ] = ZE[J, T, µ] . (3.26)

The expectation value of ξ in the background of the source J defines the classical field

Φi(x) = 〈ξi(x)〉J,T,µ = δWE[J, T, µ]
δJTi (x)

. (3.27)

The propagator can be derived from the Schwinger functional via

δ2WE[J, T, µ]
δJTi (x1) δJi(x2)

∣∣∣∣∣
J=0

= Di(x1, x2) . (3.28)

The effective action is the Legendre transform of the Schwinger functional,

ΓE[Φ, T, µ] = −WE[J, T, µ] + JT Φ , (3.29)

which implies the quantum equations of motion

δΓE[Φ, T, µ]
δΦi(x) = JTi (x) . (3.30)

The inverse propagator is given by

δ2ΓE[Φ, T, µ]
δΦT

i (x1) δΦi(x2)
= D−1

i (x1, x2) . (3.31)

As in the vacuum case, for spatially constant solutions Φ of the quantum equations of
motion (such as the chiral condensate), the effective actions simplifies to

ΓE[Φ, T, µ] = (βV ) · UE(Φ, T, µ) , (3.32)

where βV is the Euclidean volume. Again, the effective potential UE(Φ, T, µ) is only a
function of Φ and no longer a functional. Let Φmin(T, µ) be the minimum of the potential
U at a given temperature and chemical potential. If the potential is evaluated at its
minimum and the external sources are set to zero, the partition function takes the simple
form

ZE(T, µ) = e−βV Ugc(T,µ) , (3.33)
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where Ugc is the grand-canonical potential,

Ugc(T, µ) = U
(
Φmin(T, µ), T, µ

)
. (3.34)

Equation (3.33) is identified as the grand-canonical partition function of a system in ther-
modynamic equilibrium. All thermodynamic observables can be computed from the corre-
sponding grand-canonical potential Ugc. In particular, the pressure p, the fermion density
n, the entropy density s, and the energy density ε, are given by

p = −Ugc(T, µ) , n = −
∂Ugc(T, µ)

∂µ
,

s = −
∂Ugc(T, µ)

∂T
, ε = −p+ µn+ Ts .

(3.35)

So far, we have only defined the effective action but we have not yet shown any practical
way how to compute the effective action efficiently. We will turn to this point in the next
section.

3.3 exact renormalization group equations

Often, a perturbative computation of the effective action is not feasible. As we have seen
in Sec. 2.3, this is the case in QCD at low energies, as the coupling grows too large and
perturbation theory breaks down. Further obstacles to perturbation theory are phase
transitions, such as the nuclear liquid-gas transition. The correlation length of effective
(quasi-)particles becomes large as compared to the characteristic distance between the
microscopic objects of the theory. If this is the case, interactions spread over the medium
and collective effects dominate.

3.3.1 Wilson’s RG and Polchinski’s RG

New non-perturbative approaches became possible through Wilson’s understanding of the
renormalization group [177] (see [178] for a short historical overview). In perturbative field
theory, one tries to integrate out all momentum scales at once. In general, this leads to
divergences both in the infrared and in the ultraviolet regime, which have to be regulated
in some way. We have however seen that we usually deal with effective theories, defined
at a certain momentum scale Λ. Wilson’s idea was to study how a theory changes if the
momentum scale is lowered to a new scale cΛ, with c < 1. His proposal was to integrate
out momentum shells, i.e., all contributions to the path integral with cΛ < |p| < Λ. After
a rescaling procedure, a new effective theory results, now at a scale cΛ. In principle, all
operators allowed by the underlying symmetries have to be included. Their respective
couplings are changing according to the renormalization group equations. In this way,
new operators naturally appear in the Lagrangian. This procedure is often numerically
more stable and easier to solve than a perturbative calculation. Most importantly, it is a
completetly non-perturbative approach and does not depend on any small couplings.
There are several different implementations of Wilson’s idea to compute the effective

action, which are sometimes collectively called exact renormalization group equations
(ERGE). The first one, Wilson’s ERGE, implements the idea of momentum shells in a
direct way. Let us rewrite the partition function in Euclidean space as

Z =
∫

[Dξ]|p|<Λ e−SΛ[ξ] =
∫

[Dξ]|p|<cΛ
∫

[Dξ]cΛ<|p|<Λ e−SΛ[ξ] , (3.36)
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where the path integral measure over the fields was split according to the contributing
momentum scales. If one now defines

e−ScΛ[ξ] ≡
∫

[Dξ]cΛ<|p|<Λ e−SΛ[ξ] , (3.37)

then the partition function reads

Z =
∫

[Dξ]|p|<cΛ e−ScΛ[ξ] . (3.38)

The path integral has the same structure as in Eq. (3.36). However, the momenta of
the fields contributing to the partition function are now restricted to the range |p| < cΛ.
What is described in this way is the flow of the action in the space of all possible actions,
sometimes called theory space.
Wilson’s ERGE is straightforward to write down, but almost impossible to tackle nu-

merically. In general, non-local interactions are generated and a derivative expansion is
not possible. An improvement is Polchinski’s ERGE as proposed in Ref. [179]. The
idea of Polchinksi was to replace the sharp momentum cutoff by a softer one (see [180] for
a review). He added a regulator term,

∆Sk[ξ] = 1
2ξ

TRk ξ , (3.39)

to the action, where Rk is a regulator function and k is a renormalization scale with
the dimension of a momentum. The renormalization scale plays the role of an intrinsic
resolution length ∼ k−1. The action then is k-dependent, i.e.,

SPol
k [ξ, J ] = SPol

k [ξ] + ∆Sk[ξ]− JT ξ . (3.40)

This action gives rise to the following definition of a partition function:

ZPol
k [J ] =

∫
Dξ e−SPolk [ξ,J ] . (3.41)

The regulator function as introduced by Polchinski has to satisfy three conditions:

1. First, Rk is supposed to regularize the theory in the infrared regime. Therefore, it
must be positive for small momenta, i.e.,

lim
p2/k2→0

Rk(p2) > 0 . (3.42)

2. Next, Rk has to vanish for k → 0, i.e.,

lim
k2/p2→0

Rk(p2) = 0 . (3.43)

In this way, it is ensured that the partition function Zk reduces to the full low-energy
partition function as k goes to zero.

3. Finally, for k → Λ, the regulator function has to be large. In this way, one recovers
the bare action as the starting point at k = Λ.
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k2
p2

k2

Rk

¶tRk

Figure 4: Typical behaviour of the regulator function Rk and its derivative ∂tRk = k∂kRk.

The regulator therefore typically looks like the one in Fig. 4. Modes with squared momen-
tum below k2 are equipped with an effective squared mass m2 ∼ k2. Higher momentum
modes are not altered, and the regulator vanishes. The exact form of the regulator func-
tion is in principle arbitrary. The flow in theory space will change, but the endpoint in
the limit k → 0 will be the same. In practice, approximations must be made, and also the
endpoint in theory space will depend on the specific choice of the regulator function.
We now turn to the determination of SPol

k [ξ]. The renormalization group procedure
consists of a rewriting of the path integral as the momentum scale is lowered. In the
spirit of Wilson’s integration over momentum shells, its value should not depend on the
renormalization scale k. Therefore, ∂ZPol

k
∂k = 0. This conditions allows us to solve for

SPol
k [ξ]. Its evolution as k is lowered is described by Polchinski’s equation [179]

∂SPol
k [ξ]
∂k

= 1
2
δSPol

k [ξ]
δξ

·
∂R−1

k

∂k
· δS

Pol
k [ξ]
δξ

− 1
2 Tr

(
∂R−1

k

∂k

δ2SPol
k [ξ]
δξ2

)
. (3.44)

3.3.2 The functional RG

Polchinski’s ERGE deals directly with the partition function in the path integral formalism.
It turns out that it is numerically and conceptually easier to consider the effective action
instead. This is the so-called functional renormalization group (FRG) approach. For
numerous reviews we refer for instance to Refs. [181–189]. Instead of Eq. (3.40), one
defines

Sk[ξ, J ] = S[ξ] + ∆Sk[ξ]− JT ξ , (3.45)

where the k-dependent action SPol
k [ξ] was replaced by the classical action S[ξ] and ∆Sk[ξ]

is defined as in Eq. (3.39). The regulator term Rk has to satisfy the same conditions
as above on page 29. The construction of the k-dependent effective action parallels the
discussion leading to Eq. (3.10). The partition function is

Zk[J ] = eWk[J ] =
∫
Dξ e−Sk[ξ,J ] . (3.46)

The classical field,

Φ = δWk[J ]
δJT

= 〈ξ〉J , (3.47)
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Γk=Λ[Φ] = S

Γk[Φ]
Γk=0[Φ] = Γ[Φ]

Figure 5: The flow of the effective action Γk in the infinite-dimensional “theory space”, spanned
by all operators allowed by the symmetries. The dynamics as a function of the renormal-
ization scale k is governed by the flow equation.

is computed from the Schwinger functional Wk[J ]. The k-dependent effective action
is defined as a slight modification of the Legendre transformation9. If Γ̃k[Φ] denotes the
Legendre transform of Wk[J ], then

Γk[Φ] = Γ̃k[Φ]−∆Sk[Φ] = −Wk[J ] + ΦTJ − 1
2ΦTRkΦ. (3.48)

The action Γk is designed in such a way that it interpolates between the microscopic action
(for k = Λ) and the full quantum effective action (in the limit k → 0), as illustrated in Fig.
5.
One defines the derivatives of the effective action with respect to the fields (with the

short-hand notation δΦp ≡ δ
δΦp ) as follows:

Γ(n,m)
k (p1, . . . , pn, q1, . . . , qm) ≡

→
δ ΦTp1

· · ·
→
δ ΦTpnΓk

←
δ Φq1 · · ·

←
δ Φqm . (3.49)

For the flow equation, the second derivative of the effective action is needed, which is the
following matrix (in what is sometimes called “superspace”):

Γ(1,1)
k (p, p′) =

→
δ ΦTp Γk

←
δ Φp′=


→
δ φ−p Γk

←
δ φp′

→
δ φ−p Γk

←
δ Ψp′

→
δ φ−p Γk

←
δ Ψ̄T−p′→

δ ΨT−p
Γk
←
δ φp′

→
δ ΨT−p

Γk
←
δ Ψp′

→
δ ΨT−p

Γk
←
δ Ψ̄T−p′→

δ Ψ̄p Γk
←
δ φp′

→
δ Ψ̄p Γk

←
δ Ψp′

→
δ Ψ̄p Γk

←
δ Ψ̄T−p′

 .
(3.50)

With these definitions we can now write down the flow equation for the effective action
Γk as it was first deduced by Christof Wetterich [190]:

k
∂Γk[Φ]
∂k

= 1
2 Tr

[
k
∂Rk
∂k
·
(
Γ(1,1)
k [Φ] +Rk

)−1]
= 1

2 . (3.51)

Wetterich’s flow equation relates the change of the k-dependent effective action to a one-
loop diagram. In general, the flow equation is a functional differential equation, because
Φ can depend on space-time coordinates as well. In the pictorial version on the right-
hand side, the line with the dot denotes a full propagator, whereas the cross denotes the
insertion of the regulator function k ∂Rk∂k . The trace goes over internal and space-time
indices. Moreover, it extends over the bosonic and fermionic subspaces as indicated in the
structure of the matrix (3.50). It is understood that the fermionic subspace comes with
an additional minus sign (sometimes called “supertrace”).

9 The modification is needed in order to establish the connection between Γk and the microscopic action S
in the limit k → Λ.
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As compared to the path integral formalism, a formulation in terms of differential equa-
tions has numerical advantages. Differential equations are often easier to implement and
are considerably more stable. Furthermore, the flow equations are invariant under all sym-
metries of the underlying theory, which is not always the case in a Wilsonian-type block
spin approach. This feature is particularly important in the case of gauge theories. As
compared to Polchinski’s equation, the FRG equations can be understood more intuitively
in terms of loop diagrams.
The flow equation can be proven as follows: First, the quantum equations of motion at

the scale k derived from the original (unmodified) effective action defined in Eq. (3.48) are

J =
→
δ ΦT Γ̃k[Φ] =

→
δ ΦT Γk[Φ] +RkΦ = Γ(1,0)

k [Φ] +RkΦ . (3.52)

Moreover, the full k-dependent propagator Dk can be expressed in terms of the effective
action from the following consideration:

δJ

δΦ
(3.52)= Γ(1,0)

k [Φ]
←
δ Φ +Rk = Γ(1,1)

k [Φ] +Rk

δΦ
δJ

(3.47)= δ2Wk[J ]
δJT δJ

(3.28)= Dk.

 =⇒ Dk =
(
Γ(1,1)
k [Φ] +Rk

)−1
. (3.53)

Note that the term Rk originates from the modified Legendre transformation (3.48). In
terms of the unmodified Legendre transformation Γ̃k we re-derive the formula (3.31):

Dk =
(
Γ(1,1)
k [Φ] +Rk

)−1
=
(
Γ̃(1,1)
k [Φ]

)−1
. (3.54)

The computation of the flow of Γk is now straightforward:

∂Γk[Φ]
∂k

(3.48)= −
(
∂Wk

∂k

)
[J ]−δWk[J ]

δJ
· ∂J
∂k

+ ∂J

∂k
· ΦT︸ ︷︷ ︸

=0

−1
2ΦT ∂Rk

∂k
Φ

(3.46)= 1
2
〈
ξT

∂Rk
∂k

ξ
〉
− 1

2ΦT ∂Rk
∂k

Φ = 1
2
∂Rk
∂k
· δ

2Wk[J ]
δJT δJ

(3.53)= 1
2
∂Rk
∂k
·
(
Γ(1,1)
k [Φ] +Rk

)−1
.

(3.55)

The formula includes – hidden in the DeWitt notation – a trace over internal, “super-
space”, and space-time indices. If we write down the trace explicitly, we arrive at the flow
equation (3.51).
The k-dependent effective action interpolates as desired between microscopic and quan-

tum effective action, which can be seen as follows:

1. By expanding the action around the classical (background) field Φ, it is easy to
derive from Eq. (3.48) that

e−Γk[Φ] =
∫
Dξ e−S[Φ+ξ]+ δΓk

δΦ ξ− 1
2 ξRkξ . (3.56)

For k = Λ, the regulator function Rk is required to be large. Consequently, −1
2ξRkξ

leads to a delta-functional δ[ξ]. Only the classical field configuration contributes
to the path integral and therefore Γk[Φ] k→Λ−−−→ S[Φ]. The regulator equips all parti-
cles with large effective masses. Consequently, all fluctuations around the classical
field configuration are highly suppressed and only the classical configuration can
contribute.
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2. In the opposite limit, when k → 0, the regulator term vanishes. All modes are fully
integrated out, so Γk → Γ̃k → Γ.

In general, the effective action contains all possible operators that respect the symmetries
of the underlying theory. The relative strength of these operators is then computed by
Wetterich’s flow equation. In this way, one gets an infinite tower of coupled equations.
Similar to the Dyson-Schwinger equations it is not feasible to compute an infinite number
of differential equations. It is therefore important to truncate the set of flow equations in
such a way that the most relevant operators are kept. In the derivative expansion [191],
only powers of derivatives of the fields up to a certain order are kept. All higher derivative
couplings are ignored. This approach is often combined with an expansion in powers
of the fields. The derivative expansion provides a useful scheme that allows systematic
improvement by going to higher orders. In practice, most calculations work at leading
order in the derivative expansion. It is instructive to first study a O(N)-symmetric model
with scalars φi, i = 1, . . . , N . The square of the fields that is invariant under O(N)
transformations is denoted as χ = 1

2φ
aφa. To leading order in the derivative expansion,

the effective action has the form [192]

Γk =
∫
d4x

[1
2Zk(χ) ∂µφa ∂µφa + 1

4Yk(χ) ∂µχ ∂µχ+ Uk(χ)
]
. (3.57)

A non-trivial wave-function renormalization Zk leads to an anomalous dimension. If Zk ≡ 1
and Yk ≡ 0, one speaks of the local potential approximation (LPA, [193]). A study of
an O(N) model indeed indicates that the anomalous dimension is negligible [194]. In the
LPA, it is possible to derive an optimized regulator function [195]. The Litim regulator
functions for bosonic and fermionic fields take the simple form

Rbos
k = p2 rbos ≡ (k2 − p2) · θ(k2 − p2) ,

Rfer
k =

(
0 ipµ(γµE)T

ipµγ
µ
E 0

)
rfer ≡

(
0 ipµ(γµE)T

ipµγ
µ
E 0

)(√
k2

p2 − 1
)
· θ(k2 − p2).

(3.58)

The role of the regulator can be understood very intuitively in this case. On the one
hand, its appearance in the full loop in the denominator acts as an IR cutoff: For small
momentum modes with p2 < k2, the squared momentum gets replaced by the larger
regulator scale k2. Even massless fluctuations acquire a finite effective mass and are
therefore smoothed out. On the other hand, the regulator insertion k dRkdk in the nominator
regulates in the ultraviolet regime, and modes with p2 > k2 do not contribute to the flow.
The flow equation therefore is manifestly both UV and IR finite.

The Litim regulator is optimal in the sense that it maximizes the denominator,

min
q2≥0

[→
δ ΦTq Γk

←
δ Φq +Rk(q2)

]
= Ck2 > 0 . (3.59)

The existence of a gap C > 0 is necessary in order for the flow to be finite. The maximum
is achieved for a regulator that renders the left-hand side momentum independent. To-
gether with the constraints on Rk stated on page 29, the regulator then is uniquely fixed.
Moreover, it can be shown that this choice of regulator leads to the fastest decoupling of
heavy modes [195].
At finite temperatures, the time integral is converted into a sum over Matsubara fre-

quencies according to Eq. (3.20). The inverse temperature acts already as an UV regulator
in the imaginary-time direction. The sum over Matsubara frequencies converges and the
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regulator function Rk only has to act on the three-momenta. The regulator takes the
form [196,197]

Rbos
k = p2 rbos = (k2 − |p|2) · θ(k2 − |p|2) ,

Rfer
k =

 0 ipi(γiE)T

ipiγ
i
E 0

 rfer =

 0 ipi(γiE)T

ipiγ
i
E 0

(√ k2

|p|2 − 1
)
· θ(k2 − |p|2) .

(3.60)

Because of the structure of the regulators, the dependence on three-momenta is eliminated
and only an integral over a theta-function remains. Then it is often possible to perform
the Matsubara sum, and the flow equation can be written down analytically.

3.4 numerical evaluation

In the following, different strategies are examined to numerically compute Wetterich’s
equation. Only the leading-order in the derivative expansion in the local potential ap-
proximation is discussed. Even in this case, there are infinitely many operators that are
allowed and therefore an infinite system of coupled differential equations has to be solved.
One possible truncation is to Taylor expand the potential up to a certain order around
the renormalization- scale dependent minimum. We again study the O(N) model from
Eq. (3.57) (with Zk ≡ 1 and Yk ≡ 0). The ansatz for the effective potential is

Uk(χ) =
Nmax∑
n=1

an,k
n! (χ− χ0,k)n . (3.61)

The right-hand side of the flow equation (3.51) can also be expanded in a power series
around χ0,k. Comparing the coefficients of both sides leads to flow equations for the
couplings an,k and the minimum χ0,k. The convergence of the expansion can be checked
by going to higher orders, i.e., by increasing Nmax.
The Taylor-expansion method is numerically fast. Moreover, the flow equations can be

interpreted in a pictorial way, which highlights the underlying physics. We will come back
to this point, once we derived the flow equations for the ChNM model. A big drawback,
however, is that the method relies on the existence of a unique minimum. Problems occur
if the underlying theory shows a first-order phase transition. At a phase transition, the
minimum of the potential is discontinuous and it is no longer possible to expand around a
global minimum χ0,k. The Taylor expansion method therefore breaks down at first-order
transitions, such as the liquid-gas transition.
A different approach that also works for first-order transitions is the grid method of

Ref. [198]. On the χ-axis, a total of N# grid points, χi, are chosen. The grid points are
distributed with constant spacing, d = χi+1 − χi. Around each of these grid poins, a local
effective potential Uk,i is defined on the interval χi − d

2 ≤ χ ≤ χi + d
2 . Each potential is

expanded up to the third power in χ (i.e., sixth powers in the fields) around its respective
grid point, i.e.,

Uk,i(χ) =
3∑

n=0

a
(n)
i (k)
n! (χ− χi)n . (3.62)

The full effective potential Uk(χ) is then obtained by gluing together these piecewise de-
fined potentials. The flow equations for a(0)

i (k) is given by Wetterich’s equation evaluated
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at χi. Because Wetterich’s equation involves the second derivative of the potential with
respect to the fields, the flow equation will be a function f that involves first and second
derivatives of the potential with respect to χ. The flow equation for a(1)

i (k) is obtained by
differentiating the flow equation for a(0)

i (k) with respect to χ. The system of differential
equations is

∂ka
(0)
i (k) = f

(
k, χi, a

(1)
i (k), a(2)

i (k)
)
,

∂ka
(1)
i (k) = (∂χf)

(
k, χi, a

(1)
i (k), a(2)

i (k), a(3)
i (k)

)
.

(3.63)

This is a system of 2N# uncoupled differential equations, because the equation at grid point
i contains no information about the neighboring grid points. However, there are 4N# un-
knowns and the system is underdetermined. The potentials at different grid points must
be matched in some way. The grand canonical potential is continuous and continuously
differentiable, therefore the potential Uk(χ) and its derivative U (1)

k (χ) have to be continu-
ous as well, as a consequence of the Gibbs-Duhem relation. Hence, the functions Uk,i(χ)
and U (1)

k,i (χ) are matched between two grid points, where both local potentials are defined.
In total, there are 2(N# − 1) matching conditions. To get a closed system of equations,
two more equations are needed. We additionally match the second derivative U (2)

k,i (χ) for
the outmost grid points between i = 1 and i = 2, as well as between i = N# − 1 and
i = N#. In total, all matching conditions are

3∑
n=0

1
n!

(
d

2

)n (
a

(n)
i (k)− (−1)na(n)

i+1(k)
)

= 0 , for i = 1, . . . , N# − 1 ,

2∑
n=0

1
n!

(
d

2

)n (
a

(n+1)
i (k)− (−1)na(n+1)

i+1 (k)
)

= 0 , for i = 1, . . . , N# − 1 ,

1∑
n=0

1
n!

(
d

2

)n (
a

(n+2)
i (k)− (−1)na(n+2)

i+1 (k)
)

= 0 , for i = 1 and N# − 1 .

(3.64)

The set of constraint equations can be written as a system of linear equations,

A



a
(0)
1 (k)
...

a
(0)
N#

(k)
a

(1)
1 (k)
...

a
(1)
N#

(k)


= B



a
(2)
1 (k)
...

a
(2)
N#

(k)
a

(3)
1 (k)
...

a
(3)
N#


, (3.65)

where A and B are (2N# × 2N#)-matrices. The matrices A and B are complicated for
larger values of N# and we will not write them down explicitly. However, a computer
algebra system easily inverts the matrix B. The second and third derivatives of the poten-
tial, a(2)

i (k) and a(3)
i (k), can then be expressed as functions of zeroth and first derivatives,

a
(0)
i (k) and a

(1)
i (k), respectively. We call the functions gi and hi respectively, for each

i = 1, . . . , N#:

a
(2)
i (k) = gi

({
a

(0)
j (k), a(1)

j (k)
}
j=1,...,N#

)
,

a
(3)
i (k) = hi

({
a

(0)
j (k), a(1)

j (k)
}
j=1,...,N#

)
.

(3.66)
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The functions gi and hi depend only linearly on its arguments. The coefficient take their
maximal values for the grid-point itself, j = i, and adjacent grid points, whereas the
influence of more distant grid-points decreases drastically. The 2N# functions gi and hi
allow us to eliminate a(2)

i (k) and a(3)
i (k) from the flow equations (3.63). A set of coupled

differential equations for a(0)
i (k) and a(1)

1 (k) is the result, which can be solved with efficient
numerical routines, like Runge-Kutta algorithms. As an initial condition we must provide
the potential and its first derivative at the UV scale, i.e., a(n)

i (ΛUV), for n = 1, 2 and
i = 1, . . . , N#.
Theoretically, the equations are integrated from k = Λ down to k = 0. It is in practice

not possible to integrate down to k = 0. The reason is that the effective action becomes
convex, which results in numerical instabilities. If the infrared cutoff kIR is chosen small
enough, the location of the minimum does not change anymore and the physical predictions
are left unaltered.
The grid method has the great advantage that it determines the potential not only

around its minimum as in the Taylor-expansion method, but globally as a function of χ.
The downside is that the numerical evaluation is considerably more costly as compared to
the Taylor expansion. Nevertheless, because we want to study first-order phase transitions,
we will use the grid method for explicit calculations.

We have now set the stage for a proper treatment of fluctuations and can turn to physical
applications.



4

FUNCTIONAL RENORMALIZAT ION GROUP APPROACH TO A
CHIRAL NUCLEON-MESON MODEL

We introduce the chiral nucleon-meson model in detail. First, we show how the parameters
are adjusted to hadron properties and nuclear physics constraints. Then, the methods
of the previous chapter are applied, and the model is investigated in the setup of the
functional renormalization group. Symmetric matter is studied, as well as asymmetric
matter. Finally, neutron stars are discussed.

4.1 the chiral nucleon-meson model

One of our aims is to study the chiral restoration at higher chemical potentials and small
temperatures. We want to start from the nuclear liquid-gas transition, because then
the parameters can be fitted to well-known data. We therefore study a model based
on the relevant degrees of freedom within that region. Close to the liquid-gas phase
transition, these are nucleons, which are interacting via exchange of effective bosons. To
study chiral restoration, chiral symmetry is to be included in the nucleon-model from
the beginning. The neutrons and protons are combined into an isospin doublet, ψ =
(ψa)a=1,2 = (ψp, ψn)T , that transforms in the fundamental representation of SU(2). The
long-range attractive part of the nucleon-nucleon interaction is modeled by the (2 × 2)-
matrix

Φ = 1√
2

(σ + iπ · τ ) (4.1)

that transforms in the (1
2 ,

1
2) representation of the chiral symmetry group SU(2)L×SU(2)R.

Here, τ are the Pauli matrices in flavor space (see Appendix A.1). The repulsive short-
distance foce is included via four-fermion vector-isoscalar interactions (ψ̄γµψ) (ψ̄γµψ) and
vector-isovector interactions (ψ̄γµτψ) · (ψ̄γµτψ). A Hubbard-Stratonovich transformation
replaces the four-point interaction with effective vector-bosons, the vector-isoscalar field
ωµ and the vector-isovector field ρµ. The field strength tensors are given by

F (ω)
µν = ∂µων − ∂νωµ ,

F (ρ)
µν = ∂µρν − ∂νρµ − gρρµ × ρν .

(4.2)

37
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In Minkowski space-time, the Lagrangian of the chiral nucleon-meson (ChNM) model
is given by

LM = ψ̄aiγ
µ∂µψa + 1

2 Tr ∂Φ ∂Φ† − Umic(Φ,Φ†)

− 1
4F

(ω)
µν F

(ω)µν − 1
4F

(ρ)
µν · F (ρ)µν + 1

2m
2
ωωµω

µ + 1
2m

2
ρρµ · ρµ

−
√

2ψ̄a
[1

2(1 + γ5)
(
gsΦab + gωγ

µωµδab + gργ
µρiµτ

i
ab

)]
ψb

−
√

2ψ̄a
[1

2(1− γ5)
(
gs(Φ†)ab + gωγ

µωµδab + gργ
µρiµτ

i
ab

)]
ψb.

(4.3)

The symmetry group SU(2)L × SU(2)R is a double cover of SO(4), which induces a Lie
algebra isomorphism su(2)L× su(2)R ∼= so(4). Therefore, an equivalent description can be
given in terms of a four-component field φ = (σ,π) instead of the field Φ. Its square,

χ = 1
2φ

2 = 1
2(σ2 + π2) , (4.4)

is invariant under chiral SO(4) transformations. In this new notation, the Lagrangian
reads:

LM = ψ̄
[
iγµ∂µ − gs(σ + iγ5π · τ )− γµ(gωωµ + gρρµ · τ )

]
ψ

+ 1
2∂µσ ∂

µσ + 1
2∂µπ · ∂

µπ − Umic(π, σ)

− 1
4F

(ω)
µν F

(ω)µν − 1
4F

(ρ)
µν · F (ρ)µν + 1

2m
2
ωωµω

µ + 1
2m

2
ρρµ · ρµ .

(4.5)

Finite temperatures and chemical potentials require a modification. In the Matsubara
formalism, space-time is Wick-rotated to Euclidean space. The time-component is rotated
as x0 → −iτ . The τ -dimension is compactifed on a circle, such that τ is restricted to [0, β]
with inverse temperature β = 1/T . Hence, the time-integral is replaced by −i

∫ β
0 dτ . The

bosons and fermions are periodic or anti-periodic, respectively, under a shift τ → τ + β.
As we have seen in Sec. 3.2, the Minkowski-space action SM =

∫
d4x LM is transformed

into a Euclidean action SE =
∫ β
0 dτ

∫
d3x LE with

LE = ψ̄
[
γµE∂

E
µ + gs(σ + iγ5π · τ )− iγµ(gωωE

µ + gρρ
E
µ · τ )

]
ψ

+ 1
2∂

E
µσ ∂

µ
Eσ + ∂Eµπ · ∂µEπ + Umic(π, σ)

+ 1
4F

(ω)
µν F

(ω)µν + 1
4F

(ρ)
µν · F (ρ)µν + 1

2m
2
ωω

E
µω

µ
E + 1

2m
2
ρρ

E
µ · ρµE .

(4.6)

The definition of the Euclidean gamma matrices, γµE, derivatives, ∂Eµ , and vector fields, ωE
µ

and ρEµ , is found in Appendix A.1.
Baryon-number conservation is guaranteed by a Lagrange parameter, the baryon chem-

ical potential, µ. As in Sec. 3.2, in the path integral formalism the exponent picks up an
additional term −µ

∫ β
0 dτ

∫
d3x ψ†ψ proportional to the baryon number.

For isospin asymmetric matter, an additional chemical potential can be introduced
that breaks isospin symmetry. We will outline two ways to introduce a second chemical
potential.
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1. Isospin chemical potential. The ChNM model is invariant under rotations in
isospin-3 direction, which are given by

ψ → eiθτ3
ψ , ψ† → e−iθτ3

ψ , π± ≡ π1 ± iπ2 → e∓2θi π± . (4.7)

The corresponding Noether current is

J3
µ = ψ̄τ3γµψ + i(π−∂µπ+ − π+∂µπ−) = ψ̄τ3γµψ + 2(π2∂µπ1 − π1∂µπ2) . (4.8)

The isospin chemical potential is most easily introduced in the Hamiltonian formal-
ism, as outlined in [176] in the context of Bose-Einstein condensation. The conjugate
fields to π1,2 are η1,2 = ∂π1,2

∂t . The conserved charge is the integral over space of the
zero component of J3

µ,

Q =
∫
d3x

(
ψ†τ3ψ + 2π2η1 − 2π1η2) . (4.9)

The relevant part of the Hamiltonian of the ChNM model needed in the present
context is

H = 1
2η

2
1 + 1

2η
2
2 + (∇π1)2 + (∇π2)2 + U(π2

1 + π2
2) + . . . , (4.10)

where all terms that do not depend on π1,2 are not written down explicitly. The
isospin chemical potential µI is introduced as the Lagrange multiplier that ensures
charge conservation. Let {ξi} be the collection of all fields ψ, σ, π, ω, and ρ. In the
path integral formalism, the partition function is

Z
(iso)
E [J ] =

∫
Dη1Dη2

∫
Dπ1Dπ2 (· · · ) exp

{∫ β

0
dτ

×
[ ∫

d3x
(
iη1

∂π1
∂τ

+ iη2
∂π2
∂τ

+ . . .−H+
∑
i

Jiξ
i
)
− µIQ

]}
,

(4.11)

where again all fields other than π1,2 are not written down explicitly. The conjugate
momenta η1 and η2 appear only quadratically and can be integrated out. The result
can be written as

Z
(iso)
E [J ] =

∫
Dπ1Dπ2 (· · · ) exp

{
−
∫ β

0
dτ

∫
d3x

×
[1

2
(
(∂µ + 2µIδµ0)π+

) (
(∂µ − 2µIδµ0)π−

)
+ . . .+ µIψ

†τ3ψ −
∑
i

Jiη
i
]}
.

(4.12)

The omitted terms in the exponent essentially give the Lagrangian (4.3), only with
the kinetic terms of the fields π1 and π2 omitted.
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If all fields are again written down explicitly, the full partition function is

Z
(iso)
E [J ] =

∫
DψDψ†DσDπDωDρ exp

{
−
∫ β

0
dτ

∫
d3x

×
[
ψ̄
[
γµE∂

E
µ + gs(σ + iγ5π · τ ) + γµ(δ4

µµ+ δ4
µµIτ

3 − igωωE
µ − igρρEµ · τ )

]
ψ

+ 1
4F

(ω)
µν F

(ω)µν + 1
4F

(ρ)
µν · F (ρ)µν + 1

2m
2
ωω

E
µω

µ
E + 1

2m
2
ρρ

E
µ · ρµE

+ 1
2∂

E
µσ ∂

µ
Eσ + 1

2∂
E
µπ0 ∂

µ
Eπ0 + 1

2
(
(∂Eµ + 2µIδ4

µ)π+
) (

(∂µE − 2µIδ
µ
4 )π−

)
+ Umic(π, σ)−

∑
i

Jiη
i
]}

,

(4.13)

where it is implicitly understood that the fields obey the respective boundary con-
ditions. Note that simply adding a term µIQ to the action does not give the right
expression. The term 2µ2

Iπ+π− is not obtained in this way and only follows from
the proper derivation as outlined above.

2. Proton and neutron chemical potentials. Another possibility is to introduce a
chemical potential which only couples to the charge

Q =
∫
d3x ψ†τ3ψ , (4.14)

which is the difference of proton and neutron number. This chemical potential
together with the baryon chemical potential can be replaced by chemical potentials
µp and µn which couple to proton and neutron number, respectively. Projectors on
proton and neutron states are defined as

Pp =
(

1
0

)
, Pn =

(
0

1

)
. (4.15)

The partition function gets an additional factor exp(βµpNp + βµnNn), where

Np =
∫
d3x ψ†Ppψ =

∫
d3x ψ†pψp , Nn =

∫
d3x ψ†Pnψ =

∫
d3x ψ†nψn .

(4.16)

The partition function at finite temperature and chemical potential then is

ZE[J ] =
∫
DψDψ†DσDπDωDρ exp

{
−
∫ β

0
dτ

∫
d3x

×
[
ψ̄
[
γµE∂

E
µ + gs(σ + iγ5π · τ ) + γµ(δ4

µµpPp + δ4
µµnPn − igωωE

µ − igρρEµ · τ )
]
ψ

+ 1
4F

(ω)
µν F

(ω)µν + 1
4F

(ρ)
µν · F (ρ)µν + 1

2m
2
ωω

E
µω

µ
E + 1

2m
2
ρρ

E
µ · ρµE

+ 1
2∂

E
µσ ∂

µ
Eσ + 1

2∂
E
µπ · ∂µEπ + Umic(π, σ)−

∑
i

Jiη
i
]}

.

(4.17)
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In the absence of a term which explicitly breaks isospin symmetry, the model only depends
on the square χ = 1

2(σ2 + π2). The charge (4.9) corresponds to isospin-3 rotations that
involve the pionic fields π1,2. In consequence, the partition function (4.13) is no longer
invariant under the full isospin group SO(4). Instead, the isospin chemical potential breaks
the group down to an SO(2)×SO(2) subgroup. The invariant squares transforming under
this subgroup are

χ1 = 1
2(π2

1 + π2
2) , χ2 = 1

2(π2
3 + σ2) . (4.18)

A non-vanishing value of χ1 is identified as a pion condensate. The model with isospin-
chemical potential is substantially harder to solve in the framework of the functional
renormalization group as will be explained, once the flow equations are derived. We will
therefore study the second variant, although it does not fully take the isospin symmetry
into account. We will also comment on the justification of this approximation later on.

4.2 mean-field approximation

In general, a full solution of the path integral (4.17) is not feasible. Moreover, the micro-
scopic potential Umic is not known a priori. In a first approximation to the full problem, all
bosonic fields are replaced by their (temperature and density-dependent) expectation val-
ues and are treated as background fields. This is called the mean-field approximation.
Only rotationally invariant solutions are considered. Therefore, all spatial components
of the vector bosons ωi and ρi vanish in the mean-field approximation. Instead of using
the Euclidean four-component of the vector fields it is advantageous to work with the
Minkowskian zero-component. As explained in Appendix A.1, the reason is that the ex-
pectation value of the zero-components are real in contrast to the Euclidean fields. Hence,
ω4 is replaced by −iω0 and ρ4 by −iρ0.
In general, isospin symmetry can be broken for asymmetric matter. A possible conse-

quence is a pion-condensate, which was studied in the framework of the functional renor-
malization group for two-color QCD [199] and also in the quark-meson model [200]. In
this thesis, we assume that the pion condensate vanishes, i.e., π = 0. The only isospin-
symmetry breaking is introduced by different chemical potentials for protons and neutrons,
as well as a possible non-vanishing mean field of the ρ-boson in isospin-3 direction, ρ3

0(x).
To sum up, the only fields that can get an expectation value are σ(x), ω0(x) and ρ0

3(x). In
thermodynamic equilibrium, only spatially constant fields are considered. The mean-field
values of the vector bosons enter the partition function in the same way as the chemical
potentials. It therefore is reasonable to introduce effective chemical potentials,

µp,eff = µp − gωω0 − gρρ3
0 ,

µn,eff = µn − gωω0 + gρρ
3
0 ,

(4.19)

which the nucleons experience in the presence of bosonic background fields. The mean
field of the σ-boson equips the nucleons with a mass term, namely

m = gsσ . (4.20)
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In the mean-field approximation, the partition function evaluated at vanishing sources
takes the form

ZE =
∫
DψDψ† exp

{
−
∫ β

0
dτ

∫
d3x

×
[
ψ̄
[
γµE∂

E
µ +m+ γ4(µp,effPp + µn,effPn)

]
ψ − 1

2m
2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2 + Uσ(σ)
]}

.

(4.21)

The σ-potential Uσ partially parameterizes the effects of the vacuum fluctuations of pions
and the σ-field. For fixed, space-time independent bosonic fields, the potential Uσ and the
mass terms factor out and give a contribution exp{−βV · UB(σ, ω0, ρ3

0)}, where we defined
the bosonic potential

UB(σ, ω0, ρ
3
0) = −1

2m
2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2 + Uσ(σ) . (4.22)

The remaining nucleon fields appear only quadratically. As a consequence, the path inte-
gral can be performed and the partition function is

logZE = log detD − βV · UB(σ, ω0, ρ
3
0) = Tr logD − βV · UB(σ, ω0, ρ

3
0) , (4.23)

where the operatorD is easiest computed in momentum space, which according to Eq. (3.20)
splits into an integral over three-momenta and a sum over the Matsubara frequencies,
ω

(p)
l = (2l + 1)πT and ω(n)

l = (2l + 1)πT , for protons and neutrons, respectively. Then D
takes the form (see, e.g., [176])

D = −β
[
(ω(p)
l + iµp,eff)Pp + (ω(n)

l + iµn,eff)Pn − iγ0γipi − imγ0]. (4.24)

First, the determinant over Dirac and isospin indices is computed and then, after applying
Eq. (4.23), the trace over momenta is taken. With the definition E =

√
p2 +m2, one finds

Tr logD = 2V
∑
i=p,n

∞∑
l=−∞

∫
d3p

(2π)3 log
[
β2((ω(i)

l + iµi,eff)2 + E2)]

= V
∑
i=p,n

∞∑
l=−∞

∑
r=±1

∫
d3p

(2π)3 log
[
(2l + 1)2π2 + β2(E − rµi,eff)2

]

= V
∑
i=p,n

∞∑
l=−∞

∑
r=±1

∫
d3p

(2π)3

{
log

[
1 + (2l + 1)2π2]

+
∫ β2(E−rµi,eff)2

1

dx2

x2 + (2l + 1)2π2

}
.

(4.25)

The first term does not depend on the temperature or the chemical potentials. It therefore
gives a (divergent) contribution that can be absorbed into the potential Uσ(σ). The
summation over l can be performed for the integrand of the last term. The sum has poles
at l = −1

2 ± i
x
2π . The identity

∞∑
l=−∞

f(l) = −π
∑

res. ai
Res(f, ai) · cot(πai) , (4.26)
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yields that the summation equals

−π · 1
2π ·

cot(−π
2 + ix2 )

2ix − π · 1
2π ·

cot(−π
2 − i

x
2 )

−2ix = 1
x
·
(1

2 −
1

ex +1

)
. (4.27)

The x-integral now can be performed. Again, terms independent of the temperature and
the chemical potentials are dropped. It remains

Tr logD = 2V
∑
i=p,n

∫
d3p

(2π)3

{
βE +

∑
r=±1

log
[
1 + e−β(E−rµi,eff)

]}

= 2V
∑
i=p,n

∫
dΩ dp

(2π)3

{
p2βE −

∑
r=±1

1
3p

3 ∂

∂p
log

[
1 + e−β(E−rµi,eff)

]}

= 2βV
∑
i=p,n

∫
d3p

(2π)3

{
E +

∑
r=±1

p2

3EnF(E − rµi,eff)
}
,

(4.28)

where the second line follows from an integration by parts and the Fermi distribution nF
is defined in Appendix A.1. The first contribution to Eq. (4.28) does not depend on the
temperature and is quadratically divergent. However, it does depend on the field σ, and
can be identified as a Hartree term, which takes fermionic vacuum fluctuations into account.
In the older literature, the Hartree term was often ignored, and therefore one sometimes
speaks of the “extended mean-field (eMF) approximation” if it is included. We will not
make such a distinction and always include the Hartree term. A first proper treatment of
this term in the context of the quark-meson model was done by Skokov et al. [201], which
we will briefly reproduce. First, notice that the three-dimensional integral can be turned
into a four-dimensional integral, namely,∫

d4p

(2π)4 log p
2 +m2

p2 = lim
Λ→∞

∫ Λ

−Λ

dp0
2π

∫
d3p

(2π)3 log p
2
0 + E2

p2
0 + p2

= lim
Λ→∞

∫
d3p

(2π)3
1

2π ·
(

4E arctan Λ
E
− 4|p| arctan Λ

|p|
+ 2Λ log E

2 + Λ2

p2 + Λ2

)
=
∫

d3p

(2π)3E + C ,

(4.29)

where C is an (infinitely large) constant that can be dropped. The four-dimensional
integral over the logarithm can be computed in dimensional regularization. Set d = 4− 2ε
and let Λ be an arbitrary momentum scale. Then∫

d3p

(2π)3E = Λ2ε
∫

ddp

(2π)d log p
2 +m2

p2 = Λ2ε
∫ m2

0
dm̃2

∫
ddp

(2π)d
1

p2 + m̃2

= Λ2ε
∫ m2

0
dm̃2 Γ(1− d

2) Γ(d2)
(4π)d/2 Γ(1) Γ(d2)

(m̃2)−(1−d/2)

= − m4

32π2

(
1
ε

+ 3
2 − γE − log 4πm2

Λ2

)
,

(4.30)

where γE is the Euler-Mascheroni constant. If the counterterm

δL = −(gsσ)4

8π2

(1
ε

+ 3
2 − γE − log 4π

)
(4.31)
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is added to the Lagrangian, the contribution of the Hartree term to logZE is

βV · m
4

8π2 log m
2

Λ2 = βV · (gsσ)4

8π2 log (gsσ)2

Λ2 . (4.32)

Because this term depends only on the bosonic fields, we will include this term (divided
by −βV ) in the bosonic potential UB(σ, ω0, ρ3

0).
From Eq. (4.23) and recalling the discussion that lead to Eq. (3.32), the mean-field

potential is defined as

UMF(T, µp, µn, σ, ω0, ρ
3
0) = UF(T, µp, µn, σ, ω0, ρ

3
0) + UB(σ, ω0, ρ

3
0) , (4.33)

where the fermionic potential is given by

UF(T, µ, σ, ω0, ρ
3
0) = − 2

β

∑
i=p,n

∑
r=±1

∫
d3p

(2π)3 log
[
1 + e−β(E−rµi,eff)

]
= −2

∑
i=p,n

∑
r=±1

∫
d3p

(2π)3
p2

3EnF(E − rµi,eff) .
(4.34)

Next, we turn to the description of the bosonic potential UB(σ, ω0, ρ3
0). Let us restore the

pion fields for a moment. If chiral symmetry is unbroken, the chiral part of the potential,
U

(χ)
B depends only on the invariant square, χ = 1

2(σ2 + π2). At T = 0 and µp = µn = 0,
the potential can be expanded up to order Nmax around the vacuum expectation values
of the fields, namely

σ = σ0 , π = 0 . (4.35)

The corresponding invariant square is denoted as χ0 = 1
2σ

2
0. In addition, the contribution

from the Hartree term (4.32) is included with σ2 → 2χ. Moreover, chiral symmetry is
explicitly broken by a linear term in σ, which slightly distorts the potential towards the
σ-direction. The complete ansatz for the bosonic potential is

UB(σ,π, ω0, ρ
3
0) = −1

2m
2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2 + UB,χ(χ) + c(σ0 − σ) , (4.36)

where

UB,χ(χ) =
Nmax∑
n=0

an
n! (χ− χ0)n − g4

sχ
2

2π2 log 2g2
sχ

Λ2 . (4.37)

The derivatives of UB,χ with respective to the field χ are denoted by primes, e.g.,

U ′B,χ(χ) =
∂UB,χ(χ)

∂χ
. (4.38)

The parameters of the model are fixed by three considerations. First, in vacuum, i.e., at
T = 0 and µn = µp = 0, the potential has to reproduce the low-energy theorems. More
parameters are fitted to the liquid-gas phase transition of nuclear matter. Finally, the
equation of state of pure neutron matter gives one further constraint. We will discuss each
of these constraints in the following.
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4.2.1 Vacuum constraints

Constraints in vacuum include low-energy theorems, the pion decay constant, fπ = 93MeV,
and the pion mass, mπ = 139MeV.

1. The minimum of the potential is fixed by low-energy theorems in vacuum. Under
an infinitesimal axial vector transformation (2.29), the fields transform as

ψ →
(
1− i12α · τγ5

)
ψ , πi → πi + σαi , σ → σ − πiαi . (4.39)

The axial vector current, Aµi , can be read off by making α dependent on space-time.
Terms only depending on σ2 + π2 are invariant, while

ψ̄
[
iγµ∂µ + gs(σ + iγ5π · τ )

]
ψ → ψ̄

[
iγµ∂µ + gs(σ + iγ5π · τ )

]
−

−
(
ψ̄γµγ5

τ i

2 ψ + σ∂µπi − πi∂µσ
)

︸ ︷︷ ︸
Aµi

∂µα
i.

(4.40)

The last term of the of the axial current Aµi can be neglected as compared to the
other two terms, if we expand around the expectation values 〈σ〉 = σ0 and 〈π〉 = 0.
The divergence of the axial current is given by

∂µA
µ
i = σ0∂µ∂

µπi + . . . = σ0m
2
ππi + . . . , (4.41)

where we omitted terms involving the nucleons and wrote down only the projection
on the pion fields. The same quantity can be computed from Eq. (2.37), namely

∂µA
µ
i = fπm

2
ππi + . . . , (4.42)

where again only the projection on the pion fields is written down. Comparing the
two expressions, we find that the vacuum expectation value of σ equals the pion
decay constant,

σ0 = fπ. (4.43)

2. The masses of the fields are determined by the second derivatives of the potential
with respect to the fields φ = (φa) = (σ,π), evaluated at the vacuum expectation
values. They are therefore given by the matrix

Ma
b = ∂UB

∂φa∂φb
= U ′B,χ(χ) · δab + U ′′B,χ(χ)φa φb . (4.44)

This matrix can be diagonalized with respect to the eigenvalues

λ0 = U ′B,χ(χ) + 2χU ′′B,χ(χ) , λ1,2,3 = U ′B,χ(χ) . (4.45)

The latter are eigenvalues because

det
(
Ma

b − U ′B,χ(χ) δab
)

= detU ′′B,χ(χ)φa φb

= detU ′′B,χ(χ)


φ0φT

...
φ3φT

 = det


φT

...
φT

 ·∏
a

U ′′B,χ(χ)φa = 0.
(4.46)
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The corresponding eigenvectors are

ker


φT

φT

φT

φT

 =
〈
−φ1

φ0

0
0

 ,

−φ2

0
φ0

0

 ,

−φ3

0
0
φ0


〉
. (4.47)

The orthogonal vector is φ with eigenvalue U ′B,χ(χ) + 2χU ′′B,χ(χ). The masses of the
three pions and the σ-boson are therefore given by

m2
π = U ′B,χ(χ0) , m2

σ = U ′B,χ(χ0) + 2χU ′′B,χ(χ0) . (4.48)

Another way to prove these equations is to expand the potential around χ = χ0 and
to explicitly compute the potential up to quadratic order in the fields.

3. The pressure has to vanish in vacuum, i.e., the potential is zero at its minimum.
This yields the conditions

UB(fπ,0, 0, 0) = 0 ,
∂UB,χ
∂σ

(fπ,0, 0, 0) = 0 . (4.49)

4. The coupling constant gs is fixed by the nucleon mass, since in vacuum the coupling
to the σ-field, ψ̄gsσ0ψ = ψ̄gsfπψ, provides a mass term and therefore

gs = mN
fπ

= 10.1 , (4.50)

where mN = 939MeV is the nucleon mass.

The ansatz for the chirally invariant part of the baryon potential satisfying the
above constraints (4.48) and (4.49) is

UB,χ(χ) = g4
s

8π2 f
4
π log

1
2f

2
π

χ
+
[
m2
π + g4

s

4π2 f
2
π

(
1 + 2 log

1
2f

2
π

χ

)]
(χ− χ0)

+ 1
2

[
m2
σ −m2

π

f2
π

+ g4
s

2π2

(
3 + 2 log

1
2f

2
π

χ

)]
(χ− χ0)2

+
Nmax∑
n=3

an
n! (χ− χ0)n ,

(4.51)

given that the symmetry breaking constant is

c = m2
πfπ . (4.52)

Note that the renormalization scale, Λ, from the regularization of the Hartree term disap-
peared from the mean-field potential, as it should [201]. Moreover, the potential is finite
in the limit χ→ 0 as the logarithmic terms cancel.
The potential is expanded in powers of χ up to order Nmax = 4. The remaining free

parameters are mσ, a3, a4, mω, mρ, gω, and gρ.
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4.2.2 Constraints from the liquid-gas phase transition

The expectation values of the bosonic fields have been taken to be constant so far. For
each value of T , µn, and µp, these expectation values are determined in such a way that
the most dominant contribution to the path integral is selected, which is the one that
minimizes the mean-field potential UMF. The respective solutions are marked by a bar:

σ̄(T, µp, µn) , ω̄0(T, µp, µn) , ρ̄3
0(T, µp, µn) . (4.53)

Comparing with Eq. (3.34), if the mean-field potential is evaluated at these values, one
obtains the grand-canonical potential,

Ugc(T, µp, µn) = UMF
(
T, µp, µn, σ̄(T, µp, µn), ω̄0(T, µp, µn), ρ̄3

0(T, µp, µn)
)
. (4.54)

It is useful to define the following field-dependent functions:

nn(T, µp, µn, σ, ω0, ρ
3
0) = −∂UMF

∂µn
= 2

∫
d3p

(2π)3

[
nF(E − µn,eff)− nF(E + µn,eff)

]
,

np(T, µp, µn, σ, ω0, ρ
3
0) = −∂UMF

∂µp
= 2

∫
d3p

(2π)3

[
nF(E − µp,eff)− nF(E + µp,eff)

]
,

ns(T, µp, µn, σ, ω0, ρ
3
0) = ∂UMF

∂m

=
∑
i=p,n

2
∫

d3p

(2π)3
m

E

[
nF(E − µi,eff) + nF(E + µi,eff)

]
.

(4.55)

When evaluated at the minimum (4.53), they yield according to Eq. (3.35) the neutron,
proton, and scalar density, respectively.
The minimization of the potential with respect to ω0 is

∂UMF
∂ω0

(T, µp, µn, σ̄, ω̄0, ρ̄
3
0) = 0 ,

⇒ 0 = −m2
ωω̄0 −

∂

∂ω0

{ 2
β

∑
i=p,n

∑
r=±1

∫
d3p

(2π)3 log
[
1 + e−β(E−rµi,eff)

]}

⇒ ω̄0 = gω
m2
ω

∑
i=p,n

2
β

∫
d3p

(2π)3
∑
r=±1

∂

∂µi,eff
log

[
1 + e−β(E−rµi,eff)

]
= gω
m2
ω

∑
i=p,n

2
∫

d3p

(2π)3

[
nF(E − µi,eff)− nF(E + µi,eff)

]
= gω
m2
ω

[
np(T, µp, µn, σ̄, ω̄0, ρ̄

3
0) + nn(T, µp, µn, σ̄, ω̄0, ρ̄

3
0)
]
.

(4.56)

Likewise, the minimization conditions with respect to ρ3
0 and σ can be computed. We

define the quantities

Gω = g2
ω

m2
ω

, Gρ =
g2
ρ

m2
ρ

, (4.57)
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which are the coupling strengths of the original vector-isoscalar interactions (ψ̄γµψ) (ψ̄γµψ)
and vector-isovector interactions (ψ̄γµτψ) · (ψ̄γµτψ). The resulting set of mean-field
equations is

gωω̄0 = Gω
[
np(T, µp, µn, σ̄, ω̄0, ρ̄

3
0) + nn(T, µp, µn, σ̄, ω̄0, ρ̄

3
0)
]
,

gρρ̄
3
0 = Gρ

[
np(T, µp, µn, σ̄, ω̄0, ρ̄

3
0)− nn(T, µp, µn, σ̄, ω̄0, ρ̄

3
0)
]
,

∂UB
∂σ

(σ̄, ω̄0, ρ̄
3
0) = −gs ns(T, µp, µn, σ̄, ω̄0, ρ̄

3
0) .

(4.58)

The ω0-field adjusts itself in such a way that it is proportional to the baryon density
(proton plus neutron density), whereas the ρ3

0-field is proportional to the difference of
proton and neutron density.
In a first step, we study isospin-symmetric nuclear matter, characterized by equal chem-

ical potentials µ ≡ µn = µp, which implies equal neutron and proton densities. The ex-
pectation value of the ρ-boson vanishes and therefore the ρ-boson does not contribute in
this case. Isospin-symmetric nucular matter is characterized by a first-order liquid-gas
phase transition at vanishing temperature. Most of the remaining model parameters are
adjusted as to provide a good description of the liquid-gas transition.

1. The chemical potential is the change of energy, when an additional particle is added.
The liquid-gas phase transition therefore sets in at a critical chemical potential which
equals the difference of nucleon mass and binding energy,

µc = mN − EB = 939MeV− 16MeV = 923MeV. (4.59)

There are three scales mN > µc > mL involved, where the latter is the Landau
mass. It is the effective mass associated with a pseudo-particle excitation at the
Fermi surface. The Fermi momentum, pF = 290MeV, can be computed from the
nuclear saturation density n0 = 4

6π2 p
3
F = 0.16 fm−3. The liquid-gas phase transition

manifests itself in the mean-field potential by two degenerate minima, one located
at the vacuum value σ = fπ and a newly appearing second minimum at a smaller
value σc. In particular, the nucleon in the liquid phase is described by an effective
in-medium mass gsσc. The Landau mass is then given by

mL =
√
p2
F + g2

sσ
2
c . (4.60)

The Landau mass is equal to the effective chemical potential at the second minimum
at σc. From the mean-field equations (4.58) one finds

mL = µc − gωω̄0,c = µc −Gω(np + nn) = µc −Gωn0 , (4.61)

where ω̄0,c is the expectation value of ω0 at σc. This condition fixes the coupling

Gω = µc −mL
n0

. (4.62)

The value of the Landau mass (or, equivalently in our model, the effective in-medium
nucleon mass) is not precisely known. As in Ref. [166] we fix mL = 0.8mN. Then

Gω = 5.71 fm2 , σc = 69.8MeV . (4.63)
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It turns out that if the vector fields are treated as background fields, the theory does
not depend on the Yukawa coupling and the mass separately, but only on the ratio
Gω = g2

ω/m
2
ω. One way to see this, is to observe that the mean field equations are

invariant under the rescaling transformation

mω → λmω , ω0 → ω0/λ , gω → λgω , (4.64)

for any positive λ. In the absence of a kinetical term, the overall factorization of ω0
is not determined. The physically meaningful combination which is invariant under
this symmetry is the field gωω0. In terms of this new field, one already sees at the
level of the Lagrangian (4.3), but also explicitly in the mean-field equations (4.58)
that the theory depends only on Gω. If the vector boson is allowed to fluctuate, the
overall normalization of ω0 is fixed, and the mass becomes an independent parameter.
After this clarification, for the sake of concreteness and in order to be comparable
to the literature, we choose mω = 783MeV, which is the mass of the physical omega
meson. This fixes

gω = 9.5 , ω0,c = −18MeV . (4.65)

2. The remaining parameters are mσ, a3, a4, gρ, and mρ. Two parameters are fixed in
order to reproduce the liquid-gas phase transition. We have just seen that at T = 0
and µ = µc the potential develops a second minimum at σ = σc. The condition of
two degenerate minima is

∂UMF
∂σ

(0, µc, µc, σc, ω0,c, 0) = 0 ,

UMF(0, µc, µc, σc, ω0,c, 0) = UMF(0, µc, µc, fπ, 0, 0) = 0 .
(4.66)

The negative of the mean-field potential evaluated at its minimum yields the pressure.
The second condition tells us that at µc both the vacuum and nuclear matter have
vanishing pressure and can coexist. The two conditions allow us to solve for a3(mσ)
and a4(mσ), such that only the σ-massmσ remains as a free parameter. The solution
is

a3 = −2.70 · 10−1 MeV−2 +4.40 · 10−7m2
σ MeV−4 ,

a4 = −2.24 · 10−4 MeV−4 +5.54 · 10−10m2
σ MeV−6 .

(4.67)

The most important inputs from nuclear matter are the compression modulus,

K = 9n
(
dn

dµ

)−1
, (4.68)

and the surface tension of a nuclear droplet. We will now recall Coleman’s compu-
tation of the surface tension in field theory in a thin-wall approximation [202]. Let us
start with pure vacuum. At the phase transition, bubbles appear in the surrounding
vacuum. A single bubble can be described as a time-independent field configuration,
σ(r), that depends only on the radius r. Outside the bubble, the σ-field takes the
value fπ, whereas inside the bubble, σ = σc, the value of nuclear matter. Only in
a small transition region σ(r) is varying. Let R be radius of the bubble, implicitly
defined by

σ(R) = 1
2(fπ + σc) . (4.69)
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The thin-wall approximation states that the region where σ(r) is varying is much
smaller than R. The action of the field configuration is

S = 4π
∫
dr r2

[
1
2

(
dσ

dr

)2
+ UMF(σ)

]
, (4.70)

and the classical field equation obtained from the action is

d2σ

dr2 + 2
r

dσ

dr
= dUMF

dσ
. (4.71)

In the wall region, the second term is negligible, because we assume that R is large.
The remaining equation is a typical soliton-like equation and can be written as

d

dσ

[
1
2

(
dσ

dr

)2
− UMF(σ)

]
= 0 . (4.72)

An integration, together with the boundary condition at r =∞ gives

1
2

(
dσ

dr

)2
− UMF(σ) = −UMF(fπ) = 0 . (4.73)

The action S is a measure of the energy from the non-trivial configuration. Outside
the bubble, the integrand vanishes, because in this region UMF(σ) = UMF(fπ) = 0
and σ(r) is constant. The integration over the interior delivers the contribution
from the volume term. The integration over the wall-region separating the two
phases gives the contribution of the surface energy. We can approximate r ' R in
this region. With the help of Eq. (4.73) we obtain for this integration region

Ssurface = 4πR2
∫ fπ

σc
dσ
dσ

dr
= 4πR2

∫ fπ

σc
dσ
√

2UMF(σ) . (4.74)

Comparing with Eq. (2.52) we find the surface tension of the nuclear droplet in our
model,

Σ =
∫ fπ

σc
dσ
√

2UMF(σ) . (4.75)

The surface tension indicates how strongly the minima at the liquid-gas transition
are separated. According to Eq. (4.75), it measures the thickness of the potential
barrier between the two minima, so if the surface tension is large, the liquid phase
and the gas phase are well separated. If the temperature is increased, the potential
well between the two minima and therefore also the surface tension decrease. In
addition, the two minima approach each other. At the critical point of the liquid-
gas phase transition, the minima are degenerate and the surface tension goes to zero.
The droplets of nuclear matter are no longer held together by the surface tension
and they completely melt away. Accordingly, liquid and gas phases are no longer
distinguishable. Therefore, the position of the critical endpoint is sensitive to the
initial input value of Σ at T = 0. The larger the value of the surface tension, the
more temperature is needed to melt the nucleons. The empirical value of the surface
tension deduced from the semi-empirical mass-formula (2.50) is Σ = 1.11MeV fm−2.
This value can be obtained by the choice

mσ = 880MeV . (4.76)



4.2 mean-field approximation 51

0 20 40 60 80 100

0

2

4

6

8

10

U
M
F
(M

eV
/f
m

3
)

σ (MeV)
60 70 80 90 100

0.0

0.5

1.0

1.5

2.0

U
M
F
(M

eV
/f
m

3
)

σ (MeV)

σc fπ

Figure 6: The mean-field potential of symmetric nuclear matter at T = 0 and µ = µc.

As already mentioned, we stress that the σ-boson in our model only parameterizes
part of the unresolved short-distance interaction. It does not correspond to the pole
in the pion-pion scattering amplitude, which cannot be treated as a particle.
The higher Taylor coefficients of the χ-expansion associated with this particular
σ-mass follow from Eq. (4.67)

a3 = 6.87 · 10−2 MeV−2 , a4 = 2.05 · 10−4 MeV−4 . (4.77)

The compression modulus comes out as

K = 290MeV , (4.78)

slightly larger than the empirical value K = 240(30)MeV.

For vanishing temperature, the mean-field potential is shown for µ = µc in Fig. 6. The
minimum at σ = σc corresponds to nuclear matter, the minimum at σ = fπ to the vacuum
state.

4.2.3 Constraints from pure neutron matter

Next, asymmetric matter is studied in the ChNM model. The chemical potentials of
neutrons and protons are now different. Because neutron and proton densities also are
different, the expectation value of the ρ-field is non-vanishing. Consequently, the param-
eters gρ and mρ contribute and have to be fixed. We fit their values to the equation of
state of pure neutron matter, characterized by a vanishing proton density. The function
np defined in Eq. (4.55) is therefore set to zero. Since µp,eff is positive, the integrand,

nF(E − µp,eff)− nF(E + µp,eff) = 1
eβ(E−µp,eff) +1

− 1
eβ(E+µp,eff) +1

, (4.79)

is non-negative and vanishes only for µp,eff = 0. Hence, the chemical potential of the
proton is determined as a function of the expectation values of the vector bosons as

µp = gωω0 + gρρ
3
0 . (4.80)

The mean-field equations (4.58) with np = 0 imply a direct proportionality of ω̄0 and ρ̄3
0,

namely

gρρ̄
3
0 = −Gρ

Gω
gωω̄0 , (4.81)
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and the expectation value ρ̄3
0 can be eliminated in favor of ω̄0. The neutron effective

chemical potential is therefore given by

µn,eff = µn − gωω0

(
1 + Gρ

Gω

)
. (4.82)

The only free parameters are the temperature T and the neutron chemical potential µn.
The remaining two mean-field equations can be solved under the constraints (4.80), (4.81),
and (4.82) for ω0 and σ.
At zero temperature, the neutron and scalar density can be computed analytically. Two

possible cases have to be considered.

1. µn,eff < m. The Fermi distribution in the integrand of UF defined in Eq. (4.34) turns
into a step function θ(µn,eff −

√
p2 +m2), which vanishes identically for all momenta.

Only the bosonic part contributes to the mean-field potential, i.e.,

UMF = UB . (4.83)

The mean field equations simplify to

ω̄0 = 0 , ∂UB
∂σ

(σ̄, 0, 0) = 0 . (4.84)

2. µn,eff ≥ m. The step function provides now an upper cutoff for the momenta and
the Fermi sea of the nucleons is filled. The mean-field potential is

UMF = UB −
1
π2

∫ √µ2
n,eff−m2

0
dp

p4

3
√
p2 +m2

= UB + 1
24π2

[
µn,eff

(
5m2 − 2µ2

n,eff
)√

µ2
n,eff −m2

− 3m4 log
µn,eff +

√
µ2
n,eff −m2

m

]
.

(4.85)

The resulting mean-field equations then are

gωω̄0 = Gω
π2

∫ √µ2
n,eff−m2

0
dp p2 = Gω

3π2 (µ2
n,eff −m2)3/2 ,

∂UB
∂σ

(σ̄, ω̄0, ρ̄
3
0) = − gs

π2

∫ √µ2
n,eff−m2

0
dp

mp2

ω

= − gs
2π2

(
mµn,eff

√
µ2
n,eff −m2 −m3 log

µn,eff +
√
µ2
n,eff −m2

m

)
,

(4.86)

where it is implicitly understood that m and µn,eff have to be evaluated at the
minimum σ̄, ω̄0, and ρ̄3

0.

For a given µn, the mean-field equations are solved. According to Eq. (4.54), the grand-
canonical potential is the mean-field potential evaluated at the minimum σ̄, ω̄0, and ρ̄3

0.
We suppress the field-dependence of the quantities in our notation. In the following, all



4.2 mean-field approximation 53

quantities are implicitly evaluated at the minimum. From the grand-canonical potential,
the energy density (3.35) follows, namely

ε = UMF + µn nn

= UB + 1
24π2

[(
5m2 µn,eff − 2µ3

n,eff + 8µn µ
2
n,eff − 8µn m

2)√µ2
n,eff −m2

− 3m4 log
µn,eff +

√
µ2
n,eff −m2

m

]
.

(4.87)

The energy per particle is given by
E

A
= ε

nn
−mN = UMF

nn
+ µn −mN

= UB
nn

+ 1
8

[5m2 µn,eff − 2µ3
n,eff + 8µn µ

2
n,eff − 8µn m

2

µ2
n,eff −m2

− 3m4

(µ2
n,eff −m2)3/2 log

µn,eff +
√
µ2
n,eff −m2

m

]
−mN .

(4.88)

In Eq. (2.54) we gave an expression for the energy per particle, which in the case of pure
neutron matter at saturation density reads

E

A
(n0, 0) = E

A
(n0, 0.5) + Esym . (4.89)

If we take Esym = 32MeV, we find the energy per particle of pure neutron matter at n0,
namely

E

A
(n0, 0) = 16MeV. (4.90)

All remaining parameters can now be fixed. First, the expectation values σ̄ and ω̄0 can be
computed as follows:

nn = 1
3π2

(
µ2
n,eff − (gsσ̄)2)3/2 = n0 ,

⇒ σ̄ = 1
gs

√
µ2
n,eff − (3π2n0)2/3 , gωω̄0 = Gωnn = Gωn0 .

(4.91)

The free variables µn and Gρ have to be fixed in order to reproduce (4.90) together with
∂UMF
∂σ

= 0 . (4.92)

The solution is found for µn = 985MeV and for the coupling

Gρ = 1.07 fm2 . (4.93)

Again, we stress that only the ratio Gρ = g2
ρ/m

2
ρ enters the model in the mean-field

approximation. We fix mρ = mω to make the model comparable to the literature. With
this choice, the coupling of the ρ-field is given by

gρ = 4.12 . (4.94)

All mean-field parameters are summed up in Table 2. The model is completely determined
and can be studied by varying T , µp, and µn. We will first discuss the extension beyond
the mean-field approximation and then compare the results directly to the mean-field
calculations.
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a3 (MeV−2) a4 (MeV−4) mσ (MeV) gs Gω (fm2) Gρ (fm2)

6.87 · 10−2 2.05 · 10−4 880 10.1 5.71 1.07

Table 2: List of all mean-field parameters.

4.3 wetterich’s flow equation

Fluctuations can be included in the framework of the functional renormalization group.
The k-dependent effective action is treated up to first order in the derivative expansion
(see Eq. (3.57)), and in the local potential approximation, i.e., with Zk ≡ 1 and Yk ≡ 0.
Moreover, the influence of a running of the Yukawa couplings is expected to be small,
as is known from explicit computations in the quark-meson model [203]. The Yukawa
couplings gs, gω, and gρ are therefore taken to be constants. We define the following
matrix of chemical potentials

µ = µpPp + µnPn =
(
µp

µn

)
. (4.95)

The ansatz for the effective action Γk in the ChNM model in four-dimensional Euclidean
space-time is given by

Γk =
∫
d4x

{
ψ̄
[
γµE∂

E
µ + gs(σ + iγ5 π · τ ) + γ0µ− iγµ(gω ωE

µ + gρ ρ
E
µ · τ )

]
ψ

+ 1
2∂

E
µσ ∂

µ
Eσ + ∂Eµπ · ∂µEπ + Uk(T, µp, µn,π, σ, ωµ,ρµ)

+ 1
4F

(ω)
µν F

(ω)µν + 1
4F

(ρ)
µν · F (ρ)µν

}
,

(4.96)

where Uk is the k-dependent effective potential that contains bosonic interactions and the
mass terms of the vector bosons. It is important to stress that the fields that appear in
the effective action are not the quantum fields of the initial action. Instead, they are the
“classical” fields at the scale k as defined in Eq. (3.47). In the limit k → 0 they are exactly
the classical fields (3.8) of the low-energy theory. Strictly speaking, the fields that appear
in the Lagrangian (4.3) of the underlying theory are the fields ξ of Sec. 3.1, whereas the
fields in the effective action above correspond to the fields Φ. We do not want to blow up
the notation by introducing new labels, but the distinction should be kept in mind.
The nucleons are allowed to fluctuate around the Fermi surface. The vector bosons,

in contrast, are heavier than the relevant scales. Therefore, the ω and the ρ fields can
be included as non-fluctuating background fields, so we will treat them in the mean-field
approximation. As discussed in Appendix A.1, the Euclidean expectation values of the
vector fields are purely imaginary. It is therefore convenient to work with the real vector-
field components in Minkowski-space. Hence, ωE,4 and ρ3

E,4 are replaced by −iω0 and
−iρ3

0, respectively. The effective action simplifies to

Γk =
∫
d4x

{
ψ̄
[
γµE∂

E
µ + gs(σ + iγ5 π · τ ) + γ0(µ− gω ω0 − gρ ρ3

0 τ
3)
]
ψ

+ 1
2∂

E
µσ ∂

µ
Eσ + ∂Eµπ · ∂µEπ + Uk(T, µp, µn,π, σ, ω0, ρ

3
0)
}
.

(4.97)
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In analogy to the mean-field potential (4.36), the ansatz for the effective potential Uk
is

Uk(T, µp, µn,π, σ, ω0, ρ
3
0) = −1

2m
2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2

+ Uk,χ(T, µp, µn, χ, ω0, ρ
3
0) +m2

πfπ(fπ − σ) .
(4.98)

The chiral potential Uk,χ can be Taylor expanded around χ0. The non-analytic term in
the mean-field potential originates from a Hartree term that is automatically included in
the RG treatment. Therefore, the ansatz for Uk,χ is

Uk,χ(T, µp, µn, χ, ω0, ρ
3
0) =

∑
n

an,k(T, µp, µn, ω0, ρ3
0)

n! (χ− χ0)n . (4.99)

In thermodynamics, we are finally interested in homogeneous fields. The volume factors
out and the left-hand-side of Wetterich’s equation (3.51) turns into a flow for the effective
potential,

∂Γk
∂k

= βV · ∂Uk,χ(T, µp, µn, χ, ω0, ρ3
0)

∂k
. (4.100)

The computation of the right-hand side of the flow equation is slightly technical and
therefore performed in Appendix A.3. The Bose distribution nB and the Fermi distribution
nF are defined in Appendix A.1. Wetterich’s flow equation for the ChNM model is
given by

k
∂Uk,χ
∂k

(T, µp, µn, χ, ω0, ρ
3
0) = fU (T, µp, µn, χ, ω0, ρ

3
0) ,

fU (T, µp, µn, χ, ω0, ρ
3
0) = 1

2 + 1
2

= k5

12π2

{
1 + 2nB(Eσ)

Eσ
+

3
[
1 + 2nB(Eπ)

]
Eπ

−
∑
i=n,p

4
[
1−∑r=±1 nF(EN − rµi,eff)

]
EN

}
,

(4.101)

with

E2
π = k2 +m2

π , E2
σ = k2 +m2

σ , E2
N = k2 +m2

N ,

m2
π = U ′k,χ(χ) , m2

σ = U ′k,χ(χ) + 2χU ′′k,χ(χ) , m2
N = 2g2

sχ ,

µp,eff = µp − gωω0 − gρρ3
0 , µn,eff = µn − gωω0 + gρρ

3
0 .

The different contributions to the flow equation can be given a physical interpretation.
The σ field, the pions and the nucleons enter all with their respective multiplicity. The
nucleons come with an additional minus sign from the trace in the fermionic loop. All
particles enter with a vacuum piece and a Bose or Fermi distribution, respectively, which
vanishes in the limit T = µ = 0. Next, we will elucidate the connection to in-medium
propagators.



56 functional renormalization group approach to a chiralnucleon-meson model

4.3.1 Taylor-expansion method

Because of the first-order liquid-gas phase transition, the minimum of the potential as
a function of σ is discontinuous. As we have seen in Sec. 3.4, the flow equation has to
be solved on a grid in σ (or χ). But before we turn to the actual evaluation of the flow
equation, it is nevertheless useful to study the Taylor expanded flow equations, even though
this approach works only away from the phase transition. Starting from the ansatz (4.99),
the flow equations for the couplings can be computed directly from the full flow equation
as

k
∂an,k
∂k

= k
∂

∂k

∂nUk,χ
∂nχ

∣∣∣∣
χ=χ0

= ∂nfU
∂χn

∣∣∣∣
χ=χ0

. (4.102)

To get a better physical understanding, it is useful to study the expression for fU with
the Matsubara sums not yet performed. As shown in Appendix A.3,

fU = lbos0 (Eπ) + lbos0 (Eσ)−
∑
i,n,p

lfer0 (EN, µi,eff) , (4.103)

where the threshold functions are defined as

lbos0 (E) = k5

6π2T
∑
l

1
ω2
l + E2 , ωl = 2lπT ,

lfer0 (E,µ) = k5

6π2T
∑
l

1
(ωl + iµ)2 + E2 , ωl = (2l + 1)πT .

(4.104)

Instead of the Matsubara formalism one can work in the real-time formalism (which is
however practically more difficult) by replacing

1
ω2
l + |p|2 +m2 →

i

p2 −m2 + iε
+ 2π

eβ|p0|−1
δ(p2 −m2) , (4.105)

in the case of bosons, as is shown for instance in Ref. [176]. We have defined p2 = p2
0 − |p|2.

The Matsubara sum is then replaced by an integral over p0. For fermions, the fields double
in real-time formalism, and correspondence is in general more difficult. However, in the
case of vanishing temperature the same results can be obtained from a calculation in real
time, using the propagator

DF = (pµγµ +m)
[

i

p2 −m2 + iε
− 2π θ(p0) · θ(kf − |p|) · δ(p2 −m2)

]
. (4.106)

The first term is identified as the vacuum propagator. The second term is an in-medium
insertion as a result of the Fermi sea, filled up to kf =

√
µ2 −m2, which accounts for

Pauli-blocking effects. In the non-relativistic limit, an equivalent description of the prop-
agator is given by

DF = iθ(kf − |p|)
p0 − p2

2m − iε
+ iθ(|p| − kf )
p0 − p2

2m + iε
. (4.107)

The first expression corresponds to propagating particles, the second to holes. All particle-
hole excitations are therefore naturally included in the FRG framework. We can now
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give a physical interpretation of the flow equations. First, look at the flow of the zero-
component, i.e., the pressure, which is given by

k
∂a0,k
∂k

= fU
∣∣
χ=χ0

= 1
2

∣∣∣∣
χ=χ0

+ 1
2

∣∣∣∣
χ=χ0

. (4.108)

Note that the interpretation of the loops is different from that in the full flow equation.
Here, the loops are evaluated at the minimum χ0, whereas in the flow equation, the loops
still depend on χ as a free parameter and therefore determine the potential for all values
of χ. If we replace the propagator by the free one, this is just the leading order in thermal
perturbation theory. Note, however, that here we make use of the full propagator, and
the equation is exact.
In a similar way, the flow equations for the higher order couplings can be obtained.

From Eq. (4.102) we must differentiate with respect to the fields χ, and new propagators
are generated this way. The new equations can be understood in terms of diagrams:
Differentiating with respect to χ corresponds to “pulling out” legs from the loops in all
possible ways. For a2,k we can write

k
∂a2,k
∂k

=
∣∣∣∣
χ=χ0

+
∣∣∣∣
χ=χ0

− 1
2

∣∣∣∣
χ=χ0

.

(4.109)

We can also understand these results in a more formal way. One can take functional
derivatives of Wetterich’s flow equation with respect to the field χ to get the flow equation
of n-point functions. For instance, taking one derivative gives the flow equation of the
one-point function

k
∂Γ(1,0)

k

∂k
= −1

2 Tr
[
k
∂Rk
∂k
·
(
Γ(1,1)
k +Rk

)−1
· Γ(2,1) ·

(
Γ(1,1)
k +Rk

)−1]
. (4.110)

Pictorially we can write this equation as

k
∂

∂k
= −1

2 . (4.111)

The solid lines represent all possible fields in the theory (bosons and fermions). The cross
on the right-hand side is the regulator insertion k ∂Rk∂k . The full propagators correspond to
(Γ(1,1)
k +Rk)−1, and Γ(2,1) is the full three-point coupling. Taking one further derivative

with respect to χ gives the flow of the two-point function,

k
∂Γ(1,1)

k

∂k
= −1

2 Tr
[
k
∂Rk
∂k
·
(
Γ(1,1)
k +Rk

)−1
· Γ(2,2) ·

(
Γ(1,1)
k +Rk

)−1]
+ Tr

[
k
∂Rk
∂k
·
(
Γ(1,1)
k +Rk

)−1
· Γ(2,1) ·

(
Γ(1,1)
k +Rk

)−1
· Γ(2,1) ·

(
Γ(1,1)
k +Rk

)−1]
.

(4.112)

Again, the pictorial representation is straightforward:

k
∂

∂k
= − 1

2 + . (4.113)
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As is clear from the formulas or the pictorial representation, the flow equation for an n-
point coupling requires information about the n+1 and n+2-point couplings as well. As a
consequence, an infinite number of coupled equations must be solved. The flow equations
bear a resemblance to Dyson-Schwinger equations. One difference is that the FRG
equations contain only full propagators and n-point functions, whereas also bare couplings
enter the Dyson-Schwinger equations. In both approaches, the set of equations has to be
truncated in order to do numerical calculations.
For boson-exchange models it is common to make a different ansatz. Instead of the

Taylor expansion (4.99) around the fixed value χ0 = 1
2f

2
π , it is more useful to expand

around a k-dependent minimum χ0,k. The potential is defined as

UTaylor
k,χ (T, µp, µn, χ, ω0, ρ

3
0) =

∑
n

an,k(T, µp, µn, ω0, ρ3
0)

n! (χ− χ0,k)n . (4.114)

Not all coefficients are independent. The coefficient a1,k can be fixed by requiring that
χ0,k is the minimum of UTaylor

k,χ for all k. The flow of the couplings can be determined as
follows:

k
dan,k
dk

= k
d

dk

∂nUTaylor
k,χ

∂χn

∣∣∣∣
χ=χ0

. (4.115)

The right-hand side can then be computed using the identity

k
d

dk

∂UTaylor
k,χ

∂χ
= k

∂

∂k

∂UTaylor
k,χ

∂χ
+
∂2UTaylor

k,χ

∂χ∂χ0,k

∂χ0,k
∂k

, (4.116)

and similar for higher χ-derivatives, together with the flow equation (4.101). For con-
creteness, we expand up to power n = 2 in χ− χ0,k. The full set of flow equations is
then

k
dχ0,k
dk

= − 2
m2
πfπχ

−3/2
0,k + 2a2,k

∂fU
∂χ

∣∣∣∣
χ=χ0

,

k
da0,k
dk

= m2
πfπ√

2χ0,k
k
dχ0,k
dk

+ fU
∣∣
χ=χ0

,

k
da2,k
dk

= ∂2fU
∂χ2

∣∣∣∣
χ=χ0

.

(4.117)

After this short digression we will now turn back to the evaluation of the flow equations
and discuss the role of the vector fields in more detail.

4.3.2 Flow equations for the vector fields

As discussed, the vector fields ω and ρ parameterize part of the nucleonic short-range
interactions. Consequently, their masses are large compared to the relevant scales, and
they are treated as constant background fields. The values ω0 and ρ3

0 are adjusted in such
a way that the effective potential (4.98) is minimized. In principle, the flow equations
have to be solved for a certain number of values (ω0, ρ3

0) distributed over a suitable range,
which is numerically costly. It is therefore desirable to eliminate the background fields as
free parameters. Background fields ω0,k(χ) and ρ3

0,k(χ) are introduced, which depend both
on the flow parameter k and the chiral field χ. Their values are adjusted in such a way
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ω0Uk

k

ω0,k

Figure 7: Two-dimensional slice (with the χ and ρ3
0 directions not shown for simplicity): the poten-

tial is minimized at each k as a function of ω0. The solution is ω0,k. Instead of finding
the constant ω0 that minimizes the potential at k = 0, one determines the minimum at
each renormalization scale k.

that at each scale k and value of χ the full effective potential is minimized as a function
of ω0 and ρ3

0. The corresponding equations are

∂

∂y

[
Uk,χ

(
T, µp, µn, χ, y, ρ

3
0,k(χ)

)
− 1

2m
2
ωy

2
] ∣∣∣
y=ω0,k(χ)

= 0 ,

∂

∂z

[
Uk,χ

(
T, µp, µn, χ, ω0,k(χ), z

)
− 1

2m
2
ρz

2
] ∣∣∣
z=ρ3

0,k(χ)
= 0 .

(4.118)

A visualization is given in Fig. 7, where only two dimensions are shown and the depen-
dence on ρ3

0 is neglected for reasons of visualizability. The flow equation for ω0(k) can be
rewritten more explicitly using Wetterich’s equation (4.101)

∂

∂y

[ ∫ k

Λ
dp

∂

∂p
Up,χ

(
T, µp, µn, χ, y, ρ0,k(χ)

)
− 1

2m
2
ωy

2
]∣∣∣
y=ω0,k(χ)

= 0 , (4.119)

with the solution

ω0,k(χ) = − 1
3π2m2

ω

∫ Λ

k
dp

p4

EN

∑
r=±1

∂

∂y

[
nF
(
EN − r(µp − gωy − gρρ3

0,k(χ))
)

+ nF
(
EN − r(µn − gωy + gρρ

3
0,k(χ))

)]∣∣∣
y=ω0,k(χ)

.

(4.120)

The y-derivative can be replaced by a derivative with respect to the chemical potential.
We define the k- and χ-dependent effective chemical potentials,

µp,eff,k(χ) = µp − gωω0,k(χ)− gρρ3
0,k(χ) ,

µn,eff,k(χ) = µn − gωω0,k(χ) + gρρ
3
0,k(χ) .

(4.121)

The k-dependence of the ω-boson is then given by the solution of the integral equation

gωω0,k(χ) = Gω
3π2

∫ Λ

k
dp

p4

EN

∑
r=±1

∂

∂µ

[
nF(EN − rµ)

∣∣∣
µ=µp,eff,k(χ)

+nF(EN − rµ)
∣∣∣
µ=µn,eff,k(χ)

] (4.122)



60 functional renormalization group approach to a chiralnucleon-meson model

The flow equation for ρ3
0(k) can be derived in exactly the same way. The only difference is

that by replacing the y-derivative with a µ-derivative, the Fermi distribution that contains
the neutron chemical potential picks up an additional minus sign. With this taken into
account we arrive at the flow equation for the ρ3

0 background field:

gρρ
3
0,k(χ) = Gρ

3π2

∫ Λ

k
dp

p4

EN

∑
r=±1

∂

∂µ

[
nF(EN − rµ)

∣∣∣
µ=µp,eff,k(χ)

−nF(EN − rµ)
∣∣∣
µ=µn,eff,k(χ)

]
.

(4.123)

The k-dependent fields ω0,k(χ) and ρ3
0,k(χ) are inserted into the effective potential. Ap-

plying equation (4.118) allows us to rewrite the minimizing condition for Uk as

k
∂Uk
∂k

(
T, µp, µn, σ,π, ω0,k(χ), ρ3

0,k(χ)
)

=
{
k
∂Uk,χ
∂k

(T, µp, µn, χ, y, z)

+ ∂

∂y

[
Uk,χ(T, µp, µn, χ, y, z)−

1
2m

2
ωy

2
]
· k∂ω0,k(χ)

∂k

+ ∂

∂z

[
Uk,χ(T, µp, µn, χ, y, z)−

1
2m

2
ρz

2
]
· k
∂ρ3

0,k(χ)
∂k

}∣∣∣∣
y=ω0,k(χ), z=ρ3

0,k(χ)

= k
∂Uk,χ
∂k

(T, µp, µn, χ, y, z)
∣∣∣
y=ω0,k(χ), z=ρ3

0,k(χ)
.

(4.124)

If one finally uses Eq. (4.101), Wetterich’s flow equation is transformed into

k
∂Uk,χ
∂k

(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)

= fU
(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)
.

(4.125)

Note that the flow equation for ω0,k(χ) can be rewritten after an integration by parts and
with help of ∂

∂µ → −r
EN
p ·

∂
∂p as

gωω0,k(χ) = Gω
π2

∫ Λ

k
dp p2 ∑

i=p,n

[
nF
(
EN − µi,eff,k(χ)

)
− nF

(
EN + µi,eff,k(χ)

)]
− Gω

3π2 p
3 ∑
i=p,n

[
nF
(
EN − µi,eff,k(χ)

)
− nF

(
EN + µi,eff,k(χ)

)] ∣∣∣Λ
p=k

.

(4.126)

The expectation value of the background field ω0 is therefore still determined by an equa-
tion similar to the mean-field equation (4.58). However, the baryon number must be
computed for the effective action at the flow parameter k in order to keep the equations
self-consistent. Hence, the nucleonic loop is integrated only from Λ down to the scale k,
which gives the contribution of a Fermi gas with restricted momenta. Moreover, there is
a boundary term (the second line), as a consequence of the cutoffs k and Λ in the infrared
and ultraviolet, respectively. In the limit Λ →∞ and k → 0, the boundary terms vanish
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and for a fixed value of χ, the vector field ω0 takes its mean-field value (4.58) – with
χ = 1

2 σ̄
2 still understood as a free parameter –, namely

ω0,k=0(χ) Λ→∞−−−−→ ω̄0(χ) . (4.127)

In this limit, all fluctuations with arbitrary momenta are taken into account. The flow
parameter k is directly related to the momentum parameter p in the fermionic integral,
which contributes to the mean field potential. The value of χ is determined as the minimum
of the effective potential, which can differ from the mean-field solution, and the field ω̄0(χ)
then is evaluated at a different value. The field ρ3

0 can be treated in exactly the same way
with the analogous conclusions.

Recall from Sec. 4.1 that there are two different ways to introduce an additional chemical
potential. We added different chemical potentials for protons and neutrons, respectively.
Another strategy more in the spirit of chiral symmetry would have been to introduce an
isospin-chemical potential, µI. The isospin-chemical potential is related to a rotation
around the isospin-3 direction. As a consequence, µI couples to the kinetic term of π1 and
π2, as can be read off from Eq. (4.13). Therefore, the bosonic part of the flow equation
depends also on µI. As was shown in Ref. [200], the pions π1 and π2 are influenced by
the isospin-chemical potential, and the energy E in the Bose distribution is replaced by
E ± 2µI. In the presence of vector bosons, ω0 and ρ3

0, the isospin chemical potential is
shifted. Consequently, also the pion loops for π1 and π2 contribute to the flow of the
vector bosons. It follows that the flow equations for ω0 and ρ3

0 are more complicated.
Most importantly, the pionic loop depends explicitly on the potential Uk, and so do the
flow equations of the vector bosons. For proton and neutron chemical potentials, the flow
equations (4.122) and (4.123) are numerically very useful, as they do not depend on the
potential Uk. Therefore, these equations can be solved first for a given temperature and
chemical potentials µp and µn. The result is then inserted into the flow equation for the
potential. This split into two processes does no longer work in the presence of an isospin-
chemical potential. Either the full set of equations has to be solved at once, or ω0 and ρ3

0
are kept as free parameters, which have to be minimized in the end. As a consequence of
the symmetry breaking SO(4)→ SO(2)× SO(2), an additional complication is that the
potential depends on two different invariants, as defined in Eq. (4.18). The flow equations
have to be solved on a two-dimensional grid, which is much more demanding.
Luckily, this additional source of isospin breaking is not expected to be severe. First,

it gives a correction of the order µI/µ to the pion loops, where µ is the baryon chemical
potential. This ratio is at most about 0.15 for high-density neutron matter, and usually
even smaller in our applications. Note that the pion loops themselves give only a correction
to the leading nucleon part. In an explicit calculation in chiral effective field theory, the
contribution of the isospin-breaking effects in the pion sector to the equation of state was
found to be small [204].

4.3.3 Fluctuations around the liquid-gas transition

In the mean-field approximation, the effects of the bosonic quantum fluctuations are not
implicitly included. Nevertheless, a certain amount of information is contained in the
couplings of the higher powers in the fields. If the bosonic fields are integrated out,
these terms are converted into contact interactions between two and more nucleons. The
contact interactions then parametrize the unknown short-distance physics. The purpose
of the model is to describe symmetric and asymmetric nuclear matter. As we have seen in
Sec. 4.2.2, the parameters are determined in such a way that a good description of nuclear
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matter around the liquid-gas phase transition at vanishing temperature is guaranteed. As a
consequence, the fluctuations should also be systematically included around the liquid-gas
transition at T = 0 and µp = µn = µc = 923MeV. Litim and Pawlowski gave a description
how to include thermal fluctuations without infrared problems [196]. In the spirit of their
approach, we study the flow equation of the chiral part of the effective potential relative
to the potential at the liquid-gas transition, i.e.,

Ūk,χ(T, µp, µn, χ, ω0, ρ
3
0) = Uk,χ(T, µp, µn, χ, ω0, ρ

3
0)− Uk,χ(0, µc, µc, χ, ω0,c, 0) .

(4.128)

The flow equation is

k
∂Ūk,χ
∂k

(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)

= f̄U
(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)
, (4.129)

where

f̄U
(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)

= fU
(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)
− fU

(
0, µc, µc, χ, ω0,c, 0

)
.

(4.130)

The subtracted term is

fU
(
0, µc, µc, χ, 0, 0

)
= k5

12π2

{
1
Eσ

+ 3
Eπ
−

8
[
1− θ

(
µc − gωω0,c − EN

)]
EN

}
, (4.131)

where Eπ and Eσ are evaluated at the potential at T = 0 and µ = µc. The value of ω0,c
was given in Eq. (4.63).

In the following, we describe the procedure to solve Wetterich’s equation. First, tem-
perature and the chemical potentials µp and µn are fixed as external parameters. The
flow equations for the vector fields depend on χ but not on the potential Ūk,χ. It is there-
fore possible to first compute the solutions ω0,k(χ) and ρ3

0,k(χ) for each point on a χ-grid
as a function of k, independent of the flow equation for the potential. These functions
then are inserted into the flow equation for the potential Ūk,χ. In a second step, the flow
equation for the potential is solved with the grid method explained in Sec. 3.4. This way,
the numerical cost is reduced significantly. Finally, the explicit symmetry breaking term
m2
πfπ(fπ − σ) and the term Uk,χ(0, µc, µc, χ, 0, 0) are added to the potential and the min-

imum σmin is determined. We define χmin = 1
2σ

2
min. From Eq. (3.34), the grand-canonical

potential is

Ugc(T, µp, µn) = Uk=0
(
T, µp, µn,π = 0, σmin, ω0,k=0(χmin), ρ3

0,k=0(χmin)
)
. (4.132)

All thermodynamic quantities follow from Eq. (3.35).
It is far from obvious that the flow equations reduce to the mean-field equations if the

boson loops are turned off. Therefore, this is a useful consistency check, which we turn to
in the following section.

4.3.4 Renormalization group equations in the mean-field approximation

In the mean-field approximation, not only the vector particles but all bosonic exchange
particles are replaced by their expectation values. As a consequence, the bosonic loops do
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not contribute to the flow equation. At the mean-field level, the flow equation simplifies
to

k
∂Ūk,χ
∂k

(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)

= k5

12π2
4∑i=n,p

∑
r=±1 nF

(
EN − rµi,eff,k(χ)

)
− 8 θ

(
µc − gωω0,c − EN

)
EN

.

(4.133)

The flow equation is a differential equation that requires an initial condition. Therefore,
the potential has to be fixed at the ultraviolet cutoff scale Λ. We choose the scale

Λ = 1.4GeV, (4.134)

which is large enough that also for large chemical potentials (in the 1GeV range) and
higher temperatures (up to about 100MeV) all relevant contributions to the partition
function – such as fluctuations around the Fermi surface – are included.
The initial UV-potential is fixed at T = 0 and µp = µn = 0. To determine it, the flow

equation is solved in the backward direction. In this case, the initial condition at k = 0
is given by the mean-field potential (4.33). The ansatz for the potential at the ultraviolet
cutoff Λ is

ŪΛ,χ(χ) = UMF
(
0, 0,

√
2χ, 0, 0

)
−m2

πfπ(fπ − σ)

− U0,χ
(
0, µc, µc, χ, ω0,c, 0

)
+
∫ Λ

0
dk

∂Ūk,χ
∂k

(0, 0, 0, χ, 0, 0)

= UB,χ(χ)− U0,χ
(
0, µc, µc, χ, ω0,c, 0

)
−
∫ Λ

0
dk

2k4

3π2 ·
θ
(
µc − gωω0,c − EN

)
EN

,

(4.135)

where UB,χ(χ) is the chiral bosonic part (4.37) of the mean-field potential. We now show
that if this potential is taken as a starting point, the flow provides us with the mean-field
potential for any given T , µp, and µn. In fact, the effective potential is

Ueff(T, µp, µn, σ) = Uk=0
(
T, µp, µn,π = 0, σ, ω̄0(χ), ρ̄3

0(χ)
)

= Ū0,χ
(
T, µp, µn, χ, ω0,0(χ), ρ3

0,0(χ)
)

+ U0,χ(0, µc, µc, χ, ω0,c, 0) +m2
πfπ(fπ − σ)

= ŪΛ,χ(χ) + U0,χ(0, µc, µc, χ, ω0,c, 0) +m2
πfπ(fπ − σ)

−
∫ Λ

0
dk

∂Ūk,χ
∂k

(
T, µp, µn, χ, ω0,k(χ), ρ3

0,k(χ)
)

= UB,χ(χ) +m2
πfπ(fπ − σ)−

∑
i=n,p

∑
r=±1

∫ Λ

0
dk

k4

3π2 ·
nF
(
EN − rµi,eff,k(χ)

)
EN

.

(4.136)

On the other hand, the mean field potential is given by

UMF(T, µp, µn, σ, ω0, ρ
3
0) = −1

2m
2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2 + UB,χ(χ) +m2
πfπ(fπ − σ)

−
∑
i=p,n

∑
r=±1

∫ ∞
0

dp
p4

3π2 ·
nF(EN − rµi,eff)

EN
.

(4.137)



64 functional renormalization group approach to a chiralnucleon-meson model

We replace the vector fields by their χ-dependent minima ω̄0 and ρ̄3
0. If the cutoff Λ is large

enough compared to the scales T and µ, the contributions from p > Λ are suppressed by
the Fermi distribution. Moreover ω0,k=0(χ)→ ω̄0(χ) in this case, according to Eq. (4.127).
The mean field potential then is equal to

UMF(T, µp, µn, σ, ω̄0, ρ̄
3
0) = −1

2m
2
ω

[
ω0,0(χ)

]2 − 1
2m

2
ρ

[
ρ3

0,0(χ)
]2 + UB,χ(χ)

+m2
πfπ(fπ − σ)−

∑
i=p,n

∑
r=±1

∫ Λ

0
dp

p4

3π2 ·
nF
(
EN − rµi,eff,0(χ)

)
EN

.
(4.138)

Note the different way that ω0 enters Ueff and UMF. While the value in the RG-calculation
is calculated for each k self-consistently, in the mean-field approach ω0 is minimized in the
end. The effective chemical potential in the mean-field approximation does not depend on
the momentum p. Also the interpretation of the integral is slightly different: In the mean
field approach, the integral extends over all particles and all momenta p, whereas in the
RG treatment, at a certain step k, fluctuations at this scale are integrated out. While the
first integral is in momentum space, the second is along the RG-scale. To see that both
potentials are the same, subtract Ueff from UMF:

UMF(T, µp, µn, σ, ω̄0, ρ̄
3
0)− Ueff(T, µp, µn, σ)

= −1
2m

2
ω

[
ω0,0(χ)

]2 − 1
2m

2
ρ

[
ρ3

0,0(χ)
]2

+
∑
i=n,p

∑
r=±1

∫ Λ

0
dk

k4

3π2 ·
nF
(
EN − rµi,eff,k(χ)

)
− nF

(
EN − rµi,eff,0(χ)

)
EN

= −1
2m

2
ω

[
ω0,0(χ)

]2
+
∑
r=±1

∫ Λ

0
dk

k4

3π2EN

∫ ω0,k(χ)

ω0,0(χ)
dy

∂

∂y

[
nF
(
EN − r(µp − gωy − gρρ3

0,k(χ))
)

+nF
(
EN − r(µn − gωy + gρρ

3
0,k(χ))

)]
− 1

2m
2
ρ

[
ρ3

0,0(χ)
]2

+
∑
r=±1

∫ Λ

0
dk

k4

3π2EN

∫ ρ3
0,k(χ)

ρ3
0,0(χ)

dz
∂

∂z

[
nF
(
EN − r(µp − gωω0,k(χ)− gρz)

)
−nF

(
EN − r(µn − gωω0,k(χ) + gρz)

)]
.

(4.139)

The first two lines of the last expression cancel, as do the last two lines. We will show this
explicitly for the first two lines, the second cancellation is analogous. The two integrals
can be interchanged as shown in Fig. 8. Let ω0(k)−1 be the inverse function with respect
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Figure 8: The order of the integrals is changed.

to k, such that ω−1
0 (y) = k (where we suppress the χ dependence for simplicity). With

the help of Eq. (4.120) the first two lines can be written as

− 1
2m

2
ω

[
ω0,0(χ)

]2
+
∫ ω0,Λ(χ)≡0

ω0,0(χ)
dy

∑
r=±1

∫ Λ

ω−1
0 (y)=k

dk
k4

3π2EN

∂

∂y

[
nF
(
EN − r(µp − gωy − gρρ3

0,k(χ))
)

+nF
(
EN − r(µn − gωy + gρρ

3
0,k(χ))

)]
= −1

2m
2
ω

[
ω0,0(χ)

]2 −m2
ω

∫ 0

ω0,0(χ)
dy y = 0 .

(4.140)

We have seen that the mass terms that explicitly appear in the mean-field potential are con-
tained in the flow-equation in a intricate way through the k-dependent effective chemical
potentials.
This concludes the proof of the equivalence between mean-field calculations and the RG

flow without bosonic fluctuations.

4.4 symmetric nuclear matter

We now include the bosonic loops in our calculation. The flow equations at the liquid-
gas transition are subtracted. At vanishing temperature, the whole range of chemical
potentials µ < µc corresponds to a single physical state, namely the vacuum. The flow
equation in this case is given by

∂Ūk(µ, χ)
∂k

= 2k4

3π2
θ
(
µ− gωω0,k −

√
k2 + 2g2χ

)
− θ

(
µc −

√
k2 + 2g2χ

)√
k2 + 2g2χ

+ bos. part,

(4.141)

where the bosonic terms are not written down explicitly. The main contribution to the
flow equation comes from the nucleonic term. For µ < µc and for σ close to fπ, the
vector field ω0,k vanishes, and

√
2g2χ ' mN = 939MeV. Therefore, for µ < µc the theta

functions both vanish and there is no nucleonic contribution to the flow equation. The
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a3 (MeV−2) a4 (MeV−4) mσ (MeV) gs Gω (fm2) Gρ (fm2)

5.55 · 10−3 8.38 · 10−5 770 10 4.04 1.12

Table 3: List of all FRG parameters.

µ = 930MeV

µ = 923MeV

µ = 915MeV

Figure 9: The σ-dependent effective potential for vanishing temperature at three different baryon
chemical potentials.

solution of the remaining flow equation is Ūk(µ, χ) = 0 for σ close to fπ. The properties
of the effective potential at its minimum – its value and the values of its derivatives – are
not affected by the renormalization group equations. The pion mass and the pion decay
constant are not altered and stay at their vacuum values. As a consequence, the vacuum
constraints will not change.
In contrast, the fluctuations do influence the dependence of the potential on temperature

and chemical potential. The higher powers in χ and the vector couplings have to be re-
adjusted in order to reproduce a correct saturation density, surface tension, and symmetry
energy. The new parameters are given in Table 3.
The full flow equations can now be solved with the grid method. For a given temperature

and chemical potentials µp and µn, the effective potential (4.98) at k = 0 is computed as a
function of σ. First we treat symmetric nuclear matter, where the chemical potentials are
equal, i.e., µ ≡ µp = µn. Most of the results of the following sections have been published
in Refs. [205,206].

4.4.1 Liquid-gas transition

In Fig. 9, the potential at T = 0 is shown for three different chemical potentials. Because
the fluctuations are included around the liquid-gas transition as discussed in Section 4.3.3,
the effective potential at µ = µc looks similar to the mean-field potential from Fig. 6. The
slight differences originate from the re-adjustment of the parameters. At smaller chemical
potentials, the minimum of the effective potential is located at σ = fπ, and the system
is still in its vacuum ground state. Therefore, in a T–µ phase-diagram, the µ-axis at
T = 0 up to µ = µc corresponds to a single physical state. At µ = µc, the two minima of
the effective potential are degenerate. Vacuum and nuclear matter both have vanishing
pressure and can coexist. The Fermi sea is filled and the system changes. Drops of nuclear
liquid form and the density increases up to saturation density. The whole coexistence
region up to saturation density corresponds to a single chemical potential, µc, and can
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Figure 10: The σ-dependent effective potential at the liquid-gas phase transition for three different
temperatures.

therefore not be resolved in our framework. Finally, for larger chemical potentials the
system is characterized by a smaller expectation of the σ-field and the density increases.
Next, we study finite temperatures. In Fig. 10, we show the potential for three different

temperatures at the first-order transition. The chemical potential is adjusted such that
the two minima are degenerate. One observes that the minima move closer to each other
as the temperature increases. At the critical temperature,

Tc = 18.3MeV, (4.142)

and for µ = 913MeV, the minima are no longer separated, and we have reached the second-
order critical endpoint of the liquid-gas phase transition. For higher temperatures, there
is a unique minimum.
In Fig. 11, the liquid-gas phase transition is shown in a T–µ phase diagram. The left-

bending of the curve can be understood from a Clausius–Clapeyron type relation. Along
the first-order line, the minima (corresponding to the gas and the liquid phase) must be
degenerate. Therefore, the total differentials of the effective potentials agree for both
phases, i.e.,

∂Uliquid
∂µ

dµ+ ∂Uliquid
∂T

dT = ∂Ugas
∂µ

dµ+ ∂Ugas
∂T

dT . (4.143)

The slope of the transition line then can be expressed as the ratio of differences between
baryon number densitites, nliquid − ngas, and entropy densities, sliquid − sgas, i.e.,

dT

dµ
= −nliquid − ngas

sliquid − sgas
. (4.144)

In the limit of vanishing temperatures, the denominator vanishes as a consequence of
Nernst’s theorem. The slope diverges and the transition line hits the µ-axis at a right angle.
For non-zero temperatures, particle-hole excitations around the Fermi surface contribute
to the entropy in the liquid phase. The entropy is therefore larger in the liquid phase than
in the gas phase. Moreover, the liquid phase is denser than the gas phase and the slope
of the transition line is negative, as observed.
For comparison, we show the results obtained from a mean-field analysis [166]. Where

necessary, we will in the following distinguish between the MF-ChNM model (at the
mean-field level) and the FRG-ChNM model (with fluctuations included). The critical
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Figure 11: Liquid-gas phase transition. Dashed line: mean-field result of the ChNM model. Solid
curve: FRG calculation including bosonic fluctuations. Dotted curve: in-medium chiral
effective field theory calculation of Refs. [12, 13].

endpoint is situated at a larger temperature Tc = 20.7MeV and a smaller chemical po-
tential µ = 901MeV. Fluctuations beyond the mean-field approximation bend the phase-
transition boundary towards higher chemical potentials. The curvature of the boundary
line is in good agreement with the ChEFT results of Refs. [12, 13]. These calculations
were performed in a perturbative framework up to three-loop order. The free energy was
computed including all possible one- and two-pion exchange processes in the medium.
Moreover, three-body forces and ∆-isobar excitations were included. In our framework,
pion and nucleon loops are resummed in a non-perturbative way. In addition, part of the
effects that are treated explicitly in ChEFT are relegated to the parametrization of the ef-
fective potential. Nevertheless, the results are consistent. The critical temperature in our
model is higher compared to the ChEFT result, Tc = 15.1MeV [12,13]. Our temperature is
in excellent agreement with empirical data. The critical temperature can be deduced from
nuclear reactions and multifragmentation experiments, which yield a critical temperature
of Tc = 17.9(4)MeV [207, 208]. The surface tension of the nuclear droplets is related to
the potential well between the two minima (see Eq. (4.75)). For increasing temperature,
the surface tension therefore decreases, until it vanishes at the critical point, and liquid
and gas phases are no longer separated. It is therefore easier to break the droplets at
higher temperatures. Experimentally, one observes a larger amount of intermediate-mass
fragments (multifragmentation). Likewise, the barrier for nuclear fission is smaller, and
from a measurement of the fissility one can estimate the critical temperature. Our model
nicely reproduces the temperature deduced in this way. It should be noted that in our
idealized model surface effects as well as Coulomb repulsion are not taken into account. In
order to make contact with experiments, the effects of light clusters have to be included
at low densities. A study in the framework of relativistic mean field and microscopic
quantum statistical models showed a moderate influence on the position of the critical
endpoint [209].
In Fig. 12 we show the coexistence regions of the liquid-gas phase transition in a

temperature-density plane. Again, ChEFT and FRG agree nicely at small temperatures,
once the fluctuations are taken into account. Also the critical density comes out the same,
at about

n = 0.33n0 = 0.053 fm−3. (4.145)

This value for the critical density is again in excellent agreement with the experimental
result of n = 0.06(1) fm−3 [207,208].
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Figure 13: Pressure as a function of baryon chemical potential for three different temperatures.
Solid line: FRG-ChNM model. Dashed: ChEFT [12,13].

The grand-canonical potential is obtained by evaluating the potential at its minimum,
and the pressure as a function of the chemical potential can then be computed. The pres-
sure obtained in our model is compared with the ChEFT results in Fig. 13. Because the
effective potential was adjusted to reproduce the properties of nuclear matter at µ = µc
and vanishing temperature, the results agree very well in both approaches close to this
point. Since both models are consistent with the empirical compressibility of nuclear mat-
ter, they also agree on the slope of the pressure, which is related to the compressibility.
The equations of state are also consistent for larger chemical potentials. At higher temper-
atures, slight deviations appear, largely because the two models predict a different critical
temperature.
The energy per particle is shown as a function of density in Fig. 14. For comparison,

we show two equations of state obtained in different ways. The first one is the Akmal-
Pandharipande-Ravenhall EoS [210], which is based on the phenomenological Argonne v18
two-nucleon interactions together with the Urbana IX three-nucleon interactions. Rela-
tivistic boost corrections were included in the calculation. The second equation of state
was obtained in an auxiliary-field diffusion Monte-Carlo (AFDMC) framework. The FRG-
ChNM model is in remarkable agreement with both equations of state up to densities as
large as three times nuclear saturation density.
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Figure 14: The energy per particle of symmetric nuclear matter. Solid line: FRG-ChNM model.
Dotted: Akmal-Pandharipande-Ravenhall EoS [210]. Dashed: AFDMC [211].

4.4.2 Chiral restoration

The FRG-ChNM model nicely reproduces the liquid-gas transition and is also in agreement
with realistic equations of state up to at least three times nuclear saturation density.
Therefore, the model should be applicable at least up to about 100MeV temperature
and three times nuclear saturation density, which corresponds to a chemical potential of
about 1GeV. The model allows us to search for chiral restoration within this window.
As we have seen in Sec. 2.5.2, chiral symmetry is restored in its Wigner-Weyl phase at
high temperatures and high densities. Once the chiral symmetry is restored, a description
based on hadronic matter is no longer applicable. Quarks and gluons start to play a role
as one gets closer to the quark-gluon-plasma phase. All approaches to the QCD phase
diagram based on hadronic matter rely on broken chiral symmetry. This is particularly
the case for chiral perturbation theory, which takes chiral symmetry as its starting point;
but also the ChNM model is restricted to the Nambu-Goldstone phase. The breaking of
chiral symmetry is indicated by an order parameter, for instance the chiral condensate.
As shown in Ref. [212], the chiral condensate can be computed in a systematic way from
the Hellmann-Feynman theorem,

dE(λ)
dλ

=
〈
φ(λ)

∣∣∣ dH(λ)
dλ

∣∣∣ φ(λ)
〉
, (4.146)

where E is the energy, H the Hamiltonian, λ some parameter of the theory, and φ(λ) a
given normalized state. Let us write the Hamiltonian density of two-flavor QCD as

H = H0 +muūu+mdd̄d = H0 +mqψ̄ψ + 1
2δmq(d̄d− ūu), (4.147)

with H0 the Hamiltonian in the chiral limit and

ψ̄ψ = ūu+ d̄d , mq = 1
2(mu +md) , δmq = md −mu . (4.148)

The correction proportional to δmq is small and can be ignored to leading order in the
following. The Hellmann-Feynman theorem is now applied to H =

∫
d3x H and λ = mq,

d

dmq

〈
φ(mq)

∣∣∣ ∫ d3x H
∣∣∣φ(mq)

〉
=
〈
φ(mq)

∣∣∣ ∫ d3x ψ̄(x) ψ(x)
∣∣∣φ(mq)

〉
. (4.149)
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The equations for nuclear matter at density n and for the vacuum are substracted, i.e.,
for |φ(mq)〉 = |n〉 and |φ(mq)〉 = |0〉, respectively. The integral

∫
d3x factors out as a

consequence of homogeneity. Let us define 〈ψ̄ψ〉n = 〈n|ψ̄ψ|n〉. Furthermore, let ε denote
the energy density of nuclear matter at density n (normalized to the vacuum). Then one
gets

dε

dmq
= 〈ψ̄ψ〉n − 〈ψ̄ψ〉0 . (4.150)

The energy density of nuclear matter is in leading order in density n determined by the
mass of the nuclei, i.e.,

ε(n) = mN n . (4.151)

Higher corrections from the kinetic energy of the nucleon as well as nucleon interactions
can be neglected for low densities. In fact, the binding energy of nuclear matter is small
compared to the nucleon mass. We get

n
dmN
dmq

= 〈ψ̄ψ〉n − 〈ψ̄ψ〉0 . (4.152)

The left-hand side can be evaluated further in terms of the pion-nucleon sigma term,
σN. Let |N〉 be the one-nucleon state. The pion-nucleon sigma term can then be defined
as [213]

σN = mq

∫
d3x

(
〈N |ψ̄ψ|N〉 − 〈0|ψ̄ψ|0〉

)
. (4.153)

In this formulation, it can be interpreted as a measure of how the chiral condensate is
distorted around the nucleon. From the Hellmann-Feynman theorem, the pion-nucleon
sigma term is related to the quark-dependence of the corresponding energy, which for a
nucleon at rest is the nucleon mass, so

σN = mq
dmN
dmq

. (4.154)

After integrating both sides from 0 to mq, the pion-nucleon sigma term gets a new inter-
pretation. It is the difference between the nucleon mass at physical quark masses, mN,
and the nucleon mass in the chiral limit, m(χ)

N , i.e.,

σN = mN −m
(χ)
N . (4.155)

The value of the pion-nucleon sigma term is not extremely well determined. It can be
obtained by an extrapolation of πN-scattering to the unphysical Cheng-Dashen point with
s = u = m2

N and u = 2m2
N. Results are typically of the order σN = 44MeV (see, e.g., [214]).

Similar results are obtained on the lattice, where the quark-mass can be varied directly,
see for instance [215].
A combination of Eq. (4.152) and (4.154) gives us the leading order behavior of the

chiral condensate as a function of density,

〈ψ̄ψ〉n
〈ψ̄ψ〉0

= 1 + σN
mq 〈ψ̄ψ〉0

n . (4.156)
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Figure 15: Symmetric nuclear matter at T = 0. Left: normalized chiral condensate computed in
ChEFT [13]. Right: chiral order parameter in the MF-ChNM model (dashed) and the
FRG-ChNM model (solid line).

The latter term can be expressed in terms of the pion mass and the pion decay constant
using the Gell-Mann–Oakes–Renner relation (2.42):

〈ψ̄ψ〉n
〈ψ̄ψ〉0

= 1− n

nχ
, nχ = m2

πf
2
π

σN
. (4.157)

To leading order, the chiral condensate vanishes at nχ ' 3n0 and chiral symmetry is
restored. Higher order corrections can be included by going beyond the linear-density
approximation (4.151) for the energy density ε. Then, using the chain rule, the chiral
condensate is

〈ψ̄ψ〉n
〈ψ̄ψ〉0

= 1 + 1
〈ψ̄ψ〉0

dmN
dmq

∂ε

∂mN
+ 1
〈ψ̄ψ〉0

dmπ

dmq

∂ε

∂mπ
+ . . . . (4.158)

The last term on the right-hand side can be evaluated from the Gell-Mann–Oakes-Renner
relation, dmπdmq

= mπ
2mq , such that

〈ψ̄ψ〉n
〈ψ̄ψ〉0

= 1− 1
nχ

(
∂ε

∂mN
+ mπ

2σN
∂ε

∂mπ

)
+ . . . . (4.159)

The right-hand side can then be evaluated, for instance, in the framework of in-medium
chiral perturbation theory [10–13]. The free-energy density is calculated up to three-loop
order in a perturbative way. All one-pion and two-pion exchange processes in the medium
are included. Moreover three-body forces and the ∆-isobar are included explicitly. An
important finding is that the condensate decreases much slower as compared to the leading
linear term. To explain the stabilization of the chiral condensate, a crucial role is played
by two-pion exchange processes with the exchange of a virtual ∆-isobar.
In the ChNM model, the expectation value of the σ-field plays the role of an order

parameter, as it vanishes in the chirally-restored phase. On the right-hand side of Fig. 15,
the chiral order parameter (normalized to its vacuum expectation value) at vanishing tem-
perature is shown as a function of baryon chemical potential. The first-order liquid-gas
transition is also visible in the chiral order parameter, which shows a discontinuity at
µ = µc. However, the chiral order parameter is still non-vanishing and chiral symmetry is
not yet restored. In the mean-field approximation, a first-order transition to the chirally
symmetric Wigner-Weyl phase already sets in at µ = 945MeV, corresponding to a baryon
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Figure 16: Left: normalized chiral condensate at T = 0 computed in ChEFT [13]. Right: chiral
order parameter in the FRG-ChNM model (solid line). The dotted lines stem from a
Maxwell construction.
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Figure 17: Contour plots of the chiral order parameter σ/fπ. Within the region of applicability
(µ . 1GeV, T . 100MeV) of the FRG-ChNM model, the order parameter is nonzero
and chiral symmetry is not restored.

density of 1.5n0, which is an unphysical behavior. Once fluctuations are included, the
chiral order parameter gets stabilized and decreases slowly up to larger chemical poten-
tials. On the left-hand side, we show for comparison the chiral condensate as computed
in ChEFT [13]. We see that both the condensate in ChEFT and the chiral order param-
eter σ run almost parallel. In both approaches, chiral restoration is postponed to higher
densities, once fluctuations are included. Therefore, it is crucial to include fluctuations
beyond the mean-field approximation to get a proper physical description at higher den-
sities. Figure 16 shows the chiral condensate as a function of the density. At 2.5 times
nuclear saturation density the chiral condensate has dropped only to about two thirds of
its vacuum value. Of course, one has to keep in mind that the effective potential was
fitted to the properties of nuclear matter around the liquid-gas transition. In particular,
the χ-dependence was expanded around the vacuum value χ0 = 1

2f
2
π . If the expectation

value of σ becomes too small, the expansion breaks down and the model is no longer
applicable. Consequently, the chiral restoration itself cannot be treated within the ChNM
model. In contrast, the power of the ChNM model is to exclude a possible restoration to
the Wigner-Weyl phase for a certain physical range.
Figure 17 shows contour lines of the normalized chiral order parameter σ/fπ at finite

temperature and chemical potential. As long as µ . 1GeV and T . 100MeV, the chiral
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Figure 18: The density as an order parameter of the liquid-gas transition. It shows a discontinuity
at µc.

order parameter stays above sixty percent of its vacuum value and the model is applicable.
Chiral symmetry is broken for T . 100MeV and densities below at least twice the nuclear
saturation density. We can now return to the original question about the relation between
chiral restoration and chemical freeze-out. The chiral symmetry line lies well above the
chemical freeze-out line, as in scenario B of Fig. 2, in agreement with the lattice findings.
Scenario A is strongly disfavored by our calculations and the entanglement between chem-
ical freeze-out and chiral restoration is realized only at small chemical potentials, whereas
at larger chemical potentials, there is a clear separation.

4.4.3 Fluctuations

A mean-field approximation breaks down in the vicinity of the critical endpoint of a first-
order phase transition. Fluctuations play an important role and cannot be ignored. As
already discussed in Ref. [166], a detailed study of the critical endpoint of the liquid-
gas transition can only be done once fluctuations are included. In the framework of the
functional renormalization group, pionic fluctuations are treated in a systematic way. It is
important to estimate the size of these fluctuations. Phase transitions are associated with
a corresponding order parameter. In the case of the liquid-gas phase transition, the order
parameter is the density, as can be seen in Fig. 18. Below µc the system is in the vacuum
and the density vanishes, and at µ = µc, the density jumps to nuclear saturation density.
The magnitude of the fluctuations can be estimated from the baryon-number suscep-

tibility,

χn(T, µ) = −∂
2U

∂µ2 = ∂n

∂µ
, (4.160)

associated with the baryon number density. In Fig. 19, plateau lines of constant χn
are shown, both in the mean-field approximation and with fluctuations included with the
functional renormalization group. The susceptibility diverges at the critical endpoint of the
liquid-gas transition. In the mean-field approximation, the region where the susceptibility
is large turns out to be relatively narrow, but long in extent. It is elongated along an
extrapolation of the first-order transition line down to smaller chemical potentials and
higher temperatures. In the FRG treatment, the region where the susceptibility is large
and fluctuations are important is centered more around the critical endpoint. The region
is broader but does not extend to small chemical potentials.
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Figure 19: Contour plots of the baryon number susceptibility, χn = ∂n
∂µ , in units of fm−2. Left:

mean-field, right: FRG-ChNM.
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Figure 20: Contour plots of the normalized chiral susceptibility, χσm2
σ,vac. Left: mean-field, right:

FRG-ChNM.

We have seen that the liquid-gas transition leaves its traces also in the order parameter
of the chiral transition, namely the expectation value of σ. The corresponding chiral
susceptibility is the inverse square of the σ-mass,

χσ = 1
m2
σ

. (4.161)

Because the mass of the σ-boson is different in the mean-field approximation and in the
FRG calculation, we multiply the chiral susceptibility with the respective square of the
σ-mass in vacuum, χσm2

σ,vac. A comparison of these quantities is shown in Fig. 20. Again,
a similar behavior is found as for the baryon number susceptibilities. A long but narrow
region in the mean-field approximation turns into a broader but more centered region,
once fluctuations are included.
A corresponding calculation was performed in a quark-meson model to study the crit-

ical region around the chiral critical endpoint (present in this model) [146]. The same
conclusions were drawn in this study. Similar computations were also performed in the
Polyakov-loop extended quark-meson (PQM) model [152,201].
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4.5 asymmetric nuclear matter

From now on, we allow the proton and neutron chemical potentials to be different. We
can then study asymmetric nuclear matter with different proton density, np, and neutron
density, nn. Parts of the following sections have been published in Ref. [216].

4.5.1 Phase coexistence and equation of state

A measure for the asymmetry is the proton fraction

x = Z

A
= np
np + nn

. (4.162)

In Fig. 14 we have shown the energy per particle for symmetric nuclear matter, i.e., for
x = 0.5. We now want to study how the equation of state changes as the proton fraction
decreases. Figure 21 depicts the energy per particle for different proton fractions, ranging
from symmetric nuclear matter (x = 0.5) to pure neutron matter (x = 0). For isospin-
symmetric nuclear matter, the global minimum is located at nuclear saturation density,
and the energy per particle equals the binding energy of −16MeV. If we follow the dashed
line, we see that the minimal energy per particle increases as x decreases, until it vanishes
for x ' 0.11. For smaller values of x, the global minimum appears at vanishing density.
The system is no longer self-bound and loses its saturation property. There appears
however still a remnant of the first-order transition. In Fig. 22, the coexistence regions
are shown for different proton fractions. For x < 0.11 there still is a coexistence region,
but it starts already at a non-vanishing density, as can be seen for instance for x = 0.1.
A first-order transition with a characteristic jump in density remains. Strictly speaking,
the density is no longer an order parameter, since it does not vanish in one of the phases.
In Fig. 21 the coexistence region for x = 0.1 corresponds to the dotted line, which can
be obtained from a Maxwell construction. If x decreases even further, the coexistence
region shrinks until it vanishes for x = 0.045. At this point, the energy per particle has a
saddle point. For smaller x, it is a monotonously increasing function of density and the
first-order transition disappears completely. As a consequence, the coexistence region is
absent. From the coexistence regions one can read off the critical endpoint as a function
of x, as indicated by the dotted line.
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Figure 22: The liquid-gas coexistence regions for different proton fractions x.
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Figure 23: Equation of state. Left: at low densities, FRG (solid line) as compared to mean field
(dashed line), and chiral Fermi liquid theory [217] (gray band, ChFLT). Right: at higher
densities, FRG (solid line), as compared to mean field (dashed line), and QMC calcula-
tions [218] (gray band, with 32.0MeV ≤ Esym ≤ 33.7MeV).

We now study the equation of state of pure neutron matter in more detail. In Fig. 23 we
compare our results with a recent quantum Monte Carlo (QMC) study that includes real-
istic two- and three-nucleon interactions [218], as well as with chiral Fermi liquid theory
at lower densities. Relativistic mean-field calculations typically have the problem that the
equation of state is too soft at low densities, while it overshoots at higher densities. The
same is true for the ChNM model in the mean-field approximation (dashed line). Once
pionic fluctuations are incorporated (solid line), the equation of state improves consider-
ably. Both at low and higher densities a good agreement with realistic models is achieved.
The agreement is remarkable, given that there is only one additional adjustable parameter,
namely the coupling strength of the ρ-boson, Gρ. The coupling was fitted to reproduce
the symmetry energy Esym = 32MeV. There is some empirical uncertainty in the size
of the symmetry energy (see Eq. (2.57)). In Fig. 24 we vary the coupling constant in
the range 0.91 fm2 ≤ Gρ ≤ 1.46 fm2. The corresponding symmetry energies then lie within
29MeV ≤ Esym ≤ 33MeV. A number of realistic equations of state are shown for compar-
ison. The Akmal-Pandharipande-Ravenhall equation of state [210] was already discussed
above for symmetric nuclear matter. Quantum Monte Carlo studies have been performed,
based on both realistic potentials [211] and chiral potentials [219]. We also show results
from chiral effective field theory [220]. Here, the equation of state was however fitted to
the APR equation of state at medium and high densities. The FRG-ChNM model is found
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Figure 24: The equation of state for pure neutron matter. The gray band are our results with
29MeV ≤ Esym ≤ 33MeV. For comparison, we show predictions from ChEFT (solid
line, [220]), QMC based on realistic potentials (dashed, [211]), QMC based on chiral
potentials (dotted, [219]) as well as the Akmal-Pandharipande-Ravenhall EoS (dashed-
dotted, [210]).

to be in excellent agreement with all realistic equations of state, up to at least three times
nuclear saturation density.
Another parameter which is empirically relatively well determined is the L-parameter

related to the slope of the symmetry energy defined in Eq. (2.56). From numerous data,
L is restricted to the range 40MeV ≤ L ≤ 62MeV, see Eq. (2.57). For a symmetry energy
of Esym = 32MeV, we find in the FRG-ChNM model that

L = 66.3MeV . (4.163)

As can be seen also from the equation of state, the slope at nuclear saturation density is
slightly too large compared to realistic equation of state. Nevertheless, the L-parameter
is in reasonable consistence with the empirical constraints.

4.5.2 In-medium pion mass

Almost twenty years ago, extremely narrow and deeply-bound pionic atoms have been
observed at the GSI [222]. Such states had been predicted earlier on the basis of pion-
nucleus optical potentials [223]. The existence of these bound-states is a consequence
of an intricate interplay between Coulomb attraction and s-wave repulsion. The pion-
nucleus optical potential has been studied in chiral effective field theory and it was found
that in addition to the linear-density approximation, an important role is played by a
double-scattering process in the nuclear medium [224]. From the optical potential, one
can deduce the effective in-medium pion mass. In Fig. 25 we show the effective pion
mass as a function of density. On the left-hand side, the effective-pion mass in symmetric
nuclear matter within the FRG-ChNM model is plotted10. For comparison, we show the
result from the leading-order in density, as well as a recent chiral effective field-theory
computation up to next-to-leading order [221]. At nuclear saturation density, the effective
pion-mass is about ten percent larger as compared to the vacuum.
In pure neutron matter, the first-order transition is absent, and the pion mass is a

continuous function of µ. The dependence on density turns out to be close to that of
symmetric nuclear matter. In fact, in a fuller treatment, the masses of π−, π+ and

10 We note that densities below n0 cannot be resolved, as they correspond to a single chemical potential.
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Figure 25: In-medium pion mass. Left: symmetric nuclear matter. The FRG-ChNM (solid line) is
compared to ChEFT in leading and next-to-leading order [221]. Right: pure neutron
matter.

π0 behave differently. The main effect is due to the different coupling of the pions to
the nucleons in the Weinberg-Tomozawa term. The mass of the π− increases faster [225],
whereas the π0-mass increases slower, and the π+-mass is even smaller at saturation density
as compared to the vacuum [226]. These effects are not visible in our treatment, since
we neglect isospin-breaking effects in the pion sector. However, as the influence on the
pion mass is relatively modest, this approximation does not strongly affect the equation
of state.

4.5.3 Chiral restoration

We extend the discussion of chiral restoration to pure neutron matter. Similarly to our
discussion in Sec. 4.4.2, the chiral condensate for pure neutron matter can be computed
in chiral effective field theory. In contrast to symmetric nuclear matter, the condensate is
not stabilized in neutron matter. In Ref. [14], one-pion exchange, iterated one-pion and
irreducible two-pion exchange was considered, including the ∆-isobar excitations, together
with corrections from Pauli-blocking up to three-loop order. Still, the condensate drops
almost linearly without larger deviations from the leading-order term. At a density of
about 3n0, the condensate is only at twenty percent of its vacuum value. Because of
Pauli blocking, certain diagrams that can appear in symmetric matter are absent for
pure neutron matter. Therefore, it is possible to even include the effects of four-body
forces. A full calculation at next-to-next-to-next-to-leading order (N3LO) was performed
in Ref [15]. It is again found that the condensate decreases only slightly slower than the
leading σN term of Eq. (4.157). As compared to next-to-next-to-leading order (N2LO),
the decrease is even faster for N3LO. These results make it questionable whether chiral
perturbation theory is still applicable to neutron matter at densities not much beyond
nuclear saturation density. However, the uncertainty bands (which originate from the
uncertainties of the cutoffs and low-energy constants) of N2LO and N3LO do not even
overlap at densities above nuclear saturation density. This might be an indication that
the perturbative expansion did not yet converge and higher orders can become important.
On the left-hand side, we show the chiral condensate computed in ChEFT [14,15] and for

comparison also the leading-order linear behavior. On the right-hand side of Fig. 26, the
chiral order parameter σ in the ChNM model is depicted, both in the mean-field approxi-
mation and with fluctuations included. We see that in the mean-field approximation the
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Figure 26: Pure neutron matter at T = 0. Left: normalized chiral condensate computed in
ChEFT (solid line [14] and gray band [15]) as compared to the linear approximation
(dotted line). Right: chiral order parameter in the MF-ChNM model (dashed) and the
FRG-ChNM model (solid line).

order parameter decreases also at a relatively strong rate. Once fluctuations are included,
the condensate is considerably stabilized. The flow equation generates higher powers in χ.
The σ is coupled via a Yukawa-type interaction to the nucleons and if the σ is integrated
out, effective many-body forces with three and more nucleons are generated. At increas-
ing energies these many-body forces become more and more important and stabilize the
condensate.
It is interesting to push the model to its limits and see when chiral symmetry gets

restored. In Fig. 27, σ is shown for high densities. In the mean-field approximation
(dashed-dotted curve), a first-order transition sets in at about 2.9 times nuclear saturation
density. The effective potential develops a new minimum at a small but yet non-vanishing
value of σ. The density also jumps discontinuously to about 3.9 times nuclear saturation
density. If the chiral order parameter is plotted as a function of density one must therefore
make a Maxwell construction as indicated by the dotted line. Chiral symmetry is only
approximately restored, reflecting the explicit symmetry breaking of the original theory.
The chiral order parameter decreases further at higher densities. In fact, also at very low
densities, a small first-order transition can be observed (not visible in the plot), which
is a remnant of the liquid-gas transition. Also for pure neutron matter there is a small
coexistence region in the mean-field approximation.
In the FRG calculation, the coexistence region ceases to exist for a proton-fraction of

x = 0.045, as was shown in Fig. 22. Therefore, no first-order transition exists for pure-
neutron matter at low densities. But also the first-order transition to the (approximate)
Wigner-Weyl phase at high densities disappears. The order parameter decreases slowly as
a continuous function of density. Only at a density of about 7n0 the expectation value of
σ drops significantly.
In our model, a vanishing σ implies also a vanishing in-medium nucleon mass, and

in early models an abnormal Lee–Wick phase [227] was postulated. Later, one-loop
corrections were included in the linear-sigma model, and the parameters were re-adjusted
in order to avoid large corrections to three-body forces in contrast to experiments. Once
these fluctuations beyond the mean-field approximation are included, it was found that
the phase transition into the Lee-Wick phase sets in only at very large densities [228–230].
In accordance with our results, fluctuations can stabilize the order parameter.
In our model, at 5n0, the value of σ is still at half its vacuum value, at 6n0 at about forty

percent. Consequently, chiral symmetry is broken and chiral models based on hadronic
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Figure 27: Pure neutron matter at T = 0: chiral order parameter in the MF-ChNM model (dashed)
and the FRG-ChNM model (solid line). The dotted line stems from a Maxwell construc-
tion.

matter are applicable. In the following section we therefore take the equation of state from
the FRG-ChNM calculation as a model for the interior of neutron stars.

4.6 neutron stars

It is so far impossible to study cold and dense matter in the laboratory. Fortunately, in the
core of neutron stars these extreme conditions can be achieved. Therefore, observations
of neutron stars are an excellent tool to extend our knowledge of nuclear matter at high
densities. Different properties of neutron stars allow us to probe different physical aspects
of dense matter, as will be explained in the following.
Neutron stars cool down because of the weak interaction. The mean free path of elec-

trons inside the core of the neutron star is very small. As a consequence, only the surface
electrons effectively contribute to the cooling process. Neutrinos, in contrast, can prop-
agate almost freely even inside the neutron star and therefore are mainly responsible for
the cooling of the neutron star. The heat capacity and the neutrino emissivity of dense
matter can be extracted.
As neutron stars get older, their spin period decreases. The spin down depends strongly

on the bulk and shear viscosity of dense matter. Spectacular phenomena related to the
spin-down phenomenon are neutron star glitches. The spin frequency of the pulsar
suddenly increases enormously and then slowly recovers. It is believed that glitches are
related to a superfluid phase of neutrons close to the crust [231]: Vortices in the superfluid
phase are pinned to the nuclei in the crust, which prevents them from spinning down.
They lag with respect to the spinning of the star, and a Magnus force acts on the vortices
and eventually breaks them free from the crust. Angular momentum is transferred from
the vortices to the crust, resulting in a sudden increase in spin frequency (see also [232]
for a recent review).
Most importantly for our purposes, observations of neutron star masses and radii

can strongly constrain the equations of state of cold and dense matter. Although heavy
neutron stars were already discussed earlier (see [233] for an overview), the uncertainties
of the observations were rather large. This changed when in 2010 the microsecond pulsar
J1614-2230 with mass M = 1.97(4) M� was observed, where M� is the mass of the sun.
The exceptionally small uncertainty results from the almost edge-on configuration of the
binary system with an inclination angle close to 90°. From the perspective of the earth,
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the companion star passes directly behind its companion star during its orbit. The grav-
itational field of the companion star affects the signal (Shapiro delay). The mass of the
companion can be deduced, and from a Keplerian analysis also the mass of the pulsar.
Subsequently, also a second star with M = 2.01(4) M� was discovered [9]. From a

nuclear physics perspective, heavy neutron stars are extremely helpful as they provide
constraints for any realistic theory of the interior of neutron stars. The equation of state
has to be stiff enough to provide enough pressure to prevent the heavy star from collapsing
into a black hole. A large class of speculative equations of state can be ruled out in this
way.

The determination of neutron star radii is less straightforward and much more model-
dependent. Typical masses of neutron stars are around 1.4 M�. For these stars, the
central density is not larger than a few times nuclear saturation density. Essentially the
whole region of the equation of state needed to describe these stars is determined by
the symmetry energy and L-parameter. These parameters are experimentally accessible
as discussed in Sec. 2.6. Lattimer and Steiner performed a Monte Carlo analysis and
computed the radius of a 1.4 M� neutron star to be [171]

R1.4 = 12.1(11) km. (4.164)

The radii can also be determined from the observation of X-ray burst oscillations. A
neutron star accretes matter from its companion star and if the pressure is too high,
nuclear burning is triggered. The subsequent X-ray bursts can be energetic enough to
reach the Eddington limit. This means that gravity can be overcome and the photosphere
of the star is expelled. The flux of these photospheric radius expansion (PRE)
bursts can be measured. Under the assumption that the flux is close to the Eddington
flux, the radius of the neutron star can be deduced. The radius determined in this way is
smaller [171], since one gets

R = 10.77(65) km. (4.165)

Yet even smaller radii were deduced from measurements of quiescent low-mass X-ray bi-
naries under the assumption that all neutron star have the same radius. The motivation
was that most equations of state in general result in a mass-radius relation that is almost
mass-independent for typical medium-mass neutron stars. The analysis of five neutron
stars found an extremely small value [234]

R = 9.1+1.3
−1.5 km. (4.166)

A meta-analysis of different studies of X-ray burst oscillations, thermal emission, and stars
with largest spin frequency was performed by Trümper [235]. A rhomboid-like region is
then singled out in the mass-radius plane, which all realistic equations of state should
intersect.
We will now provide an equation of state for the interior of the neutron star. At the

surface the pressure is zero, and matter consists of a lattice of Fe56, which is the most
stable electrically neutral configuration. Going inwards, the density increases and the
iron atoms become ionized. The relativistic electron gas dominates the equation of state,
which is therefore well understood. Electron capture sets in at higher densities and the
atoms become more and more neutron rich. After crossing the neutron drip-line, neutron-
rich atoms are immerged in a (superfluid) neutron gas. In the coexistence region, exotic
extended objects, the “pasta” phases, might exist [236]. The whole crust region can be well
described by the Skyrme-Lyon (SLy) equation of state [237, 238]. Below the crust,
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Figure 28: The equation of state (pressure versus energy density) of neutron star matter with
Esym = 32MeV, taking beta equilibrium into account.

single atoms can no longer exist and the neutron star matter consists of a uniform fluid
of mostly neutrons with a small admixture of protons, electrons, and muons. Hadronic
models like the ChNM model then are applicable. We remark that the crust contributes
only a small portion of the total mass of the neutron star.
Neutron stars are electrically neutral. To compensate for the admixture of protons, our

model is extended by electrons and muons. The density of the positively charged protons
equals the density of the negatively charged electrons and muons,

np = ne + nµ . (4.167)

The chemical potentials of the different particles are not independent, but related through
the condition of chemical beta equilibrium involving the processes n↔ p+ µ− + ν̄µ and
n↔ p+ e− + ν̄e, i.e.,

µn = µp + µe , µµ = µe , (4.168)

where µe and µµ are the chemical potentials of electrons and muons, respectively. At zero
temperature, the neutron chemical potential can be eliminated, because

µn = µp +
√

(3π2np)2/3 +m2
e . (4.169)

Finally, electrons and muons with energy Ei =
√
p2 +m2

i contribute to the effective po-
tential (negative pressure) as a Fermi gas,

Ue-µ = −2
∑
i=e,µ

∑
r=±1

∫
d3p

(2π)3
p2

3Ei
nF(Ei − rµi) , (4.170)

where anti-particles do not contribute at zero temperature and the Fermi distribution
turns into a step function. In Fig. 28, we show the equation of state of neutron star
matter in beta equilibrium. The intersection point with the SLy EoS occurs at a density
of n ' 0.3 n0. From this density onward we use the FRG-ChNM model EoS for the whole
core of the neutron star.
This equation of state is then used as an input for the Tolman-Oppenheimer-Volkoff

equations (2.8). The initial energy density at the surface that enters the ToV equations is
that of iron, which is εFe = 4.4 · 10−12 MeV/fm3. The TOV equations can be solved for a
given density at the center of the neutron star. The radius is determined from ε(R) = εFe,
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Figure 30: Density profile for a neutron star with mass M = 1.97 M� and R = 12.2 km for
Gρ = 1.46 fm−2.

and the mass can be computed from Eq. (2.11). Varying the central densities therefore
results in a curve of possible masses and radii.
To account for the uncertain symmetry energy, we have varied the parameters of the

model to reproduce symmetry energies in the range of 29MeV ≤ Esym ≤ 37MeV. Figure 29
shows the corresponding mass-radius relation as a band. The highest curve corresponds
to the largest symmetry energy, as the equation of state then is stiffer (higher energy per
particle for a given density). Correspondingly, the lower curve results from the smallest
symmetry energy. We are consistent with the radius constaints (4.164) by Lattimer and
Steiner (shown as a vertical band), and the constraints by Trümper (rhomboid). Within
error bands, we are also consistent with the two-solar mass neutron star measurements.
The maximum mass in our model is 1.97M�, which is a bit smaller than the results
from other approaches based on conventional matter. For instance, the APR equation
of state [210] supports neutron stars with masses as high as 2.2M�. For densities below
3n0, our equation of state is even slightly stiffer than APR or QMC calculations (see Fig.
24). However, at higher densities above about 3.5n0 the latter equations of state become
stiffer. The behavior of the EoS at densities above 3.5n0 are in the end responsible for
the highest-mass neutron stars. We have checked that if we take the APR EoS above the
intersection point, the maximal mass is raised to 2.1M�.
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Figure 30 shows the density profile for a neutron star with maximum massM = 1.97M�.
The corresponding radius is 12.2 km. The central density is only five times nuclear sat-
uration density. Therefore, we have a posteriori justified the validity of our assumption
that the FRG-ChNM model can be used for the whole interior. At 5n0, the value of the
condensate is still at 0.45 times its vacuum value and the model is applicable. Of course,
the exact value for the maximum mass should be taken with a grain of salt. Since all
hadronic models are fitted only to experimental data in the vacuum or at saturation den-
sity, the extrapolation to high densities is always speculative. A possible way to reduce the
uncertainty is to use hadronic models only up to a certain density. Beyond, a polytropic
ansatz p ∼ nΓ is chosen, where Γ is varied in a certain range. The result is then a relatively
broad band in the mass-radius plane [220,239], with less predictive power.
It is a general observation that conventional models based on nuclei yield equations

of state that are stiff enough to support two-solar-mass neutron stars. Many different
extensions have been discussed, see, e.g., [240] for an overview. One possibility is an
admixture of hyperons at higher densities. The low-energy Λ-nucleon interaction is
repulsive, so it is in principle possible that Λ-hyperons appear in the interior of neutron
stars. However, a significant admixture of Λ-hyperons considerably softens the equation of
state and a two-solar mass pulsar can no longer be supported against gravitational collapse.
Only if additional repulsion is added at high-densities, it is possible to be consistent with
the observational constraints [241,242].
Another possibility is the onset of meson condensation, like kaon or pion condensates,

in the interior of the neutron stars [243]. Again, the equation of state is much too soft,
unless the parameters at high-densities are fine-tuned [244].
The strange matter hypothesis, which goes back to Bodmer [245] and Witten [246],

states that nuclear matter is only metastable and the true ground state in fact consists of
a mixture of quasi-free up, down, and strange quarks. The masses of so-called quark stars
or strange stars, which consist only of strange matter, are much too low and cannot serve
as a model for high-mass pulsars.
At some unknown density, the phase changes from hadronic matter to quark matter,

and therefore quarks can be important in the very core of the neutron star (see [247]
and references therein). The transition can be studied in simplified models, with the
finding that significant quark cores can only exist for large enough repulsive forces (see,
e.g., [220,248]).
It is certainly fair to say that the high-density regime of the QCD phase diagram is

not yet fully understood. But the observations existing so far seem to indicate that
conventional baryonic matter is prefered, even in the center of the heaviest neutron stars.
More precise astrophysical observations are needed to pin down the equation of state even
further.





5

SUMMARY AND OUTLOOK

In this thesis, a chiral nucleon-meson model has been studied in the framework of the func-
tional renormalization group. This model is perfectly suited to explore the properties of
dense nuclear matter at and around the nuclear liquid-gas phase transition. The physical
behavior of nuclear matter is based on the strong force as described by Quantum Chro-
modynamics (QCD). We have given a concise overview of QCD with particular emphasis
on its low-energy properties, which are governed by confinement and chiral symmetry
breaking. An important task for both experimentalists and theoreticians is to improve
the understanding of the behavior of QCD at finite temperatures and densities. One fre-
quently discussed scenario is the existence of a first-order phase transition from a chirally
broken phase to an unbroken phase at small temperatures and high chemical potentials. If
this were the case, there would exist a second-order critical endpoint (CEP) at the end of
the first-order line. Some models based on effective quarks predict a CEP at relatively low
temperature and at chemical potentials close to the nuclear liquid-gas transition. However,
in this region baryons cannot be ignored and they strongly influence the mechanism of
chiral restoration. Therefore, we have discussed a model based on nucleonic degrees of
freedom, with their long-range interaction dominated by pion exchange. The pions are
combined with a scalar-isoscalar field in a chirally invariant way. Interactions of nucleons
at shorter distances are modeled by an exchange of heavy vector particles. All free param-
eters of the model have been adjusted to low-energy pion dynamics as well as properties
of nuclear matter at saturation density.
In the existing literature, the model has so far only been studied in a mean-field approx-

imation, which does however not properly include the effects of pionic fluctuations. One
approach to go beyond the mean-field approximation is the functional renormalization
group (FRG) method. We have described the basic theoretical concepts of this approach,
which is based on a fully non-perturbative flow equation for a renormalization-scale depen-
dent effective action, which interpolates between the classical action and the full quantum
effective action. Subsequently, we have applied the FRG methods to the nucleon-meson
model and we have discussed its thermodynamic properties in detail. We have observed
that the description of the nuclear liquid-gas phase transition is in excellent agreement
with experimental data. We have in particular examined the influence of fluctuations
close to the critical endpoint of the liquid-gas transition. Likewise, the equation of state
of symmetric nuclear matter at vanishing temperature agrees nicely with sophisticated
many-body computations up to at least three times saturation density.
Within the nucleon-meson model, a critical endpoint of a chiral first-order transition

is excluded for symmetric nuclear matter in the range of applicability of the model. The
chiral order parameter is well above zero for temperatures up to 100 MeV and densities at
least up to three times nuclear saturation density. Consequently, chiral restoration takes
place outside this physical window, which implies that a restoration close to the liquid-gas
phase transition is strongly disfavored. At higher chemical potentials chiral restoration
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and chemical freeze-out do not take place simultaneously. Whereas both transition tem-
peratures agree at zero chemical potential, the interpolated chemical freeze-out line lies
close to the liquid-gas transition, in contrast to the chiral restoration region.
Cold and dense baryonic matter cannot be probed directly in terrestrial experiments.

However, high densities are naturally realized in the interior of neutron stars. To obtain
a model for the interior of neutron stars, we have extended our studies to asymmetric
nuclear matter with varying proton fractions. Similar to symmetric nuclear matter, the
inclusion of fluctuations greatly improves the behavior of the equation of state of pure
neutron matter in comparison with many-body calculations. In relativistic mean-field
models, the equation of state is in general too soft at low densities and too stiff at high
densities. Both effects are present also in the mean-field approach to the nucleon-meson
model, but are strongly reduced by pionic fluctuations.
We have also studied chiral restoration in the case of pure neutron matter. In chiral

effective field theory computations, the chiral condensate decreases almost linearly, which
would indeed imply a restoration of chiral symmetry at densities of only about three times
nuclear saturation density. Studies based on broken chiral symmetry then can no longer
be trusted and it seems questionable if the interior of neutron stars can be described by
conventional approaches based on nucleons and protons, extrapolated to higher densities.
In the mean-field approximation of the nucleon-meson model, the chiral order parameter
also decreases relatively strongly as a function of density. Once pionic fluctuations are
included in a non-perturbative way, the chiral order parameter is stabilized up to densities
of about seven times nuclear saturation density. Consequently, chiral symmetry is still
broken below these densities and chiral models can be applied.
After this important consistency check, we have included electrons and muons to study

beta-equilibrated neutron-star matter. Apart from the crust, which is modeled by a phe-
nomenological equation of state, the FRG-improved nucleon-meson model describes the
whole interior of the neutron star. Our model is in agreement with recent observational
constraints, in particular the precise measurements of two-solar-mass neutron stars. We
find that even for the heaviest stars, the central density is not much higher than five
times nuclear saturation density, which justifies the applicability of the model. Our re-
sults confirm that conventional equations of state based on neutrons and protons describe
the interior of neutron stars in an excellent way.
In view of future research, there are a number of possible extensions of our model:

Concerning the technical implementation, the approximations made in the treatment of
the flow equations could be relaxed, for instance by including running Yukawa couplings
or higher derivative terms. From a physical perspective, one extension would be to go
beyond the Nf = 2 case. Moreover, at sufficiently high temperatures the fluctuations of
the massive bosons also start to play a role. Finally, it would be interesting to study
the effects of an isospin chemical potential, which in particular allows a study of pion
condensates. These extensions would certainly improve our understanding of dense matter
and in particular the role of fluctuations.
To sum up, we have shown that it is important to include fluctuations beyond the mean-

field approximation to get a solid understanding of hot and dense hadronic matter. The
functional renormalization group is an excellent tool to study these effects in a systematic,
non-perturbative way.
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APPENDIX

a.1 conventions

a.1.1 SU(2)

The fundamental representation of the Lie algebra su(2) corresponding to the Lie group
SU(2) is generated by T a = σa

2 , where σa, a = 1, 2, 3 are the Pauli matrices, given by

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

They satisfy the important relation

σaσb = δab + iεabcσc , (A.2)

where εabc is the totally antisymmetric tensor with ε123 = 1. In isospin space, the Pauli
matrices are denoted by τa.

a.1.2 Thermodynamical distributions

Bose and Fermi distributions are defined as

nB(E) = 1
eβE −1 ,

nF(E) = 1
eβE +1 ,

(A.3)

respectively, where β = 1/T is the inverse temperature.

a.1.3 Lorentzian signature

The metric in Minkowski space is gµν = diag(1,−1,−1,−1) and the Clifford algebra is

{γµ, γν} = 2gµν . (A.4)

We choose the Weyl-representation of the Clifford algebra. In this representation the Dirac
matrices γµ have the form

γµ =
(

0 σµ

σ̄µ 0

)
, (A.5)
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with σµ = (1,σ) and σ̄µ = (1,−σ), where σ = (σ1, σ2, σ3)T are the Pauli matrices of
Eq. (A.1). In 3 + 1 dimensions there is a fifth matrix which anticommutes with all γµ,
namely γ5 = iγ0γ1γ2γ3. In the Weyl-representation chosen above, γ5 is diagonal,

γ5 =
(
−1

1

)
. (A.6)

The projectors on right- and left-handed components are of the simple form

PR = 1
2(1 + γ5) =

(
1

0

)
, PL = 1

2(1− γ5) =
(

0
1

)
, (A.7)

which is why this choice is also called the chiral representation.
All models we are interested in are based on fermions ψ, scalar fields ϕ and massive

vector bosons Aµ. The scalars are coupled to the fermions via Yukawa-type interactions
with strength gϕ. The vector bosons couple via a covariant derivative Dµ = ∂µ − igAAµ.
A generic action in Minkowski space has the following form:

SM =
∫
d4x

[
ψ̄(iγµDµ − gϕ ϕ)ψ + 1

2∂µϕ ∂
µϕ− U(ϕ)− 1

4FµνF
µν + m2

A

2 AµA
µ
]
.

(A.8)

a.1.4 Euclidean signature

Finite temperatures require a continuation to imaginary times, realized by a Wick trans-
formation. There are several different conventions and we take the one that is used in
Ref. [29]. Euclidean coordinates are defined as

τ ≡ x4
E = ix0, xiE = xi. (A.9)

As a consequence, the partial derivatives are given by

∂

∂x4
E

= −i ∂
∂x0 ,

∂

∂xiE
= ∂

∂xi
. (A.10)

Indices are raised and lowered with the Euclidean metric, so there is no distinction between
upper and lower indices. The integration measure is

∫
d4xE = i

∫
d4x. In order to get a

compact form of the Dirac operator /∂E = γ4
E∂4 + γiE∂E,i the Euclidean Dirac matrices are

defined as

γ4
E = γ0, γiE = −iγi. (A.11)

As a consequence, the Euclidean Clifford algebra is

{γµ, γν} = 2δµν . (A.12)

In particular, /p2 = p2 for any vector p. The fifth anti-commuting matrix is defined as
above, i.e., γE5 = iγ0

Eγ
1
Eγ

2
Eγ

3
E. Also the vector fields can be put into a compact form by

defining the Euclidean fields

A4
E = −iA0, AiE = −Ai. (A.13)
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With this definition, the Euclidean covariant derivative still has the form Dµ = ∂µ−igAA
E
µ .

The Euclidean action11 is defined as eiSM → e−SE and the action (A.8) transforms into

SE =
∫
d4xE

[
ψ̄(γµED

E
µ + gϕ ϕ)ψ + 1

2∂
E
µϕ ∂

µ
Eϕ+ U(ϕ) + 1

4FµνF
µν + m2

A

2 AE
µA

µ
E

]
.

(A.14)

The above notation is very compact. However, from Eq. (A.13) it follows that if A0

acquires a real expectation value, A4
E is purely imaginary. In practice, it is easier to keep

the original field A0.
At finite temperature T , the τ = x4

E dimension is compactified on a circle with radius
β = 1/T . In this case

∫
d4xE →

∫ β
0 dτ

∫
d3x.

a.1.5 Fourier transformation

To facilitate readability, in the following the momentum dependencies of the fields are
indicated by a subscript:

ϕx ≡ ϕ(x) , ψx ≡ ψ(x) , ψ̄x ≡ ψ̄(x) , (A.15)

and likewise in momentum space. Moreover we define∫
p
≡
∫

d4p

(2π)3 , (A.16)

where p are the four-momenta corresponding to Euclidean space. The Fourier transformed
fields in Euclidean space-time are defined as12

ϕx =
∫
p

eipx ϕp , ψx =
∫
p

eipx ψp , ψ̄x =
∫
p

e−ipx ψ̄p. (A.17)

We want to compute the Fourier transform of the action (A.14) for constant vector fields.
Therefore, we ignore the transformation of the field strength Fµν . The potential U(ϕ)
shall depend only on ϕ2 and is expanded around a fixed value ϕ̄2:

U(ϕ) =
∑
n

an
n!
(1

2ϕ
2 − 1

2 ϕ̄
2
)n
. (A.18)

The action in momentum space is given by

SE =
∫
p
ψ̄p iγ

µ
E pµ ψp +

∫
p1,p2

ψ̄p1

[
gϕ ϕp1−p2 − igA γµE (AE

µ)p1−p2

]
ψp2

+ 1
2

∫
p
ϕ−p p

2 ϕp +
∑
n

an
n!

∫
x

[1
2

∫
p1

∫
p2

ei(p1+p2)x ϕp1ϕp2 −
1
2 ϕ̄

2
]n
.

(A.19)

The x-integral in the last term can in principle be performed, but for our purposes the
present form is more useful. For the renormalization group equations, also the transpose
of the integrand is needed in case of the fermionic fields. For transposing, be aware of

11 A different convention also often used is eiSM → eiSE .
12 In Lorentzian signature (p.e. [249]), there appears an extra minus sign, since p = (p0,−p) → −pE =
−(p4,p).
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the minus sign, when interchanging fermions. For the kinetic term this minus sign can be
absorbed by a substitution p→ −p. The transposed version is

SE =
∫
p
ψT−p i(γµE)T pµ ψ̄T−p −

∫
p1,p2

ψTp2

[
gϕ ϕp1−p2 − igA (γµE)T (AE

µ)p1−p2

]
ψ̄Tp1

+ 1
2

∫
p
ϕ−p p

2 ϕp +
∑
n

an
n!

∫
x

[1
2

∫
p1

∫
p2

ei(p1+p2)x ϕp1ϕp2 −
1
2 ϕ̄

2
]n
.

(A.20)

At finite temperatures, the zero-component of the momentum has to be replaced by the
discrete Matsubara frequencies, ωl. Likewise, the integral is replaced by∫

p
≡ T

∑
ωl

∫
d3p

(2π)3 . (A.21)
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a.2 geometry

In this appendix, we elaborate a bit more on the underlying formalism of gauge theories.
For more detailed introductions we refer to the textbooks, e.g., [250–252].

a.2.1 Gravity

Space-time is modeled by a 3 + 1-dimensional pseudo-Riemannian manifoldM . Manifolds
are generalizations of Rn in the sense that locally they look like subsets of Rn. The precise
definition is as follows: An n-dimensional smooth manifold is a topological spaceM with
local trivializations φa : Ua → Rn, where {Ua}a is an open covering of M . The transition
functions φb ◦ φ−1

a have to be smooth on their overlap in the sense of functions from Rn
to Rn. In gravity, the manifold serves to distinguish between different space-time points.
The specific parametrization, however, cannot have a physical meaning and the theory
must be invariant under global diffeomorphisms13.
Global information is important in gravity and in quantum field theory, as in the case of

instantons, solitons, monopoles, domain walls, cosmic strings, or the appearance of Gribov
copies in the BRST quantization procedure. However, the starting point often is a study
of local properties. The linearized approximation of a manifold M at a point p ∈ M is
given by its tangent space TpM , which is the union of all vectors vp : C∞(M)→ R that
are linear maps and satisfy

vp(fg) = vp(f) g(p) + vp(g) f(p) . (A.22)

The vectors can be thought of as derivatives acting on functions at p. Similarly, one defines
the cotangent space T ∗(M) = (T (M))∗ consisting of maps from Tp(M) to R.
Fiber bundles are very powerful generalizations of manifolds. A fiber bundle is charac-

terized by a triple (E, π,M), where E and M are manifolds, the total space and the base
space, respectively, and π : E →M is the projection map which projects from E down to
M . For each point p ∈M , its fiber Fp is defined as π−1(p). Often, one speaks of the fiber
bundle E over M , or of the fiber bundle π : E →M .
Since M looks locally like U ⊂ Rn, a fiber bundle looks locally always like U × F , with

U ⊂ Rn. Globally, the fibers can be glued together in a non-trivial twisted way, as in the
case of the Möbius strip, shown in Fig. 31. If all transition functions can be chosen to be
the identity map, a fiber bundle is said to be trivial.
A section of a fiber bundle π : E → M is a continuous map s : M → E, such that

π(s(p)) = p for all p ∈M . In this sense, sections are generalizations of graphs.
One example is the tangent bundle TM over M , which is the union of all tangent

spaces TM = ⋃
p∈M Tp(M) with projection π : TpM 3 vp → p ∈M . A section is a smooth

vector field. Other important examples of sections are scalar or spinor fields in quantum
field theory.
In Yang-Mills theories, the fibers are Lie groups G, so think of a manifold M with

a copy of G glued to each point. Conceptually, this is a principal fiber bundle with
structure group G, namely a fiber bundle π : P →M , with a continuous fiber-preserving
right action P × G → P . The action is free (i.e., if g.p = h.p, then g = h, with g, h ∈ G
and p ∈ P ) and transitive (i.e., for p1,2 ∈ P there exists a g ∈ G with g.p1 = p2).

13 As was shown by Élie Cartan, this notion of “general covariance” can also be applied to classical mechanics.
What singles out general relativity is its “simplicity” in coordinate-free notation (see [17], Chapter 12), in
contrast to classical mechanics, which looks only “simple” in local coordinates.



94 appendix

projection π fiber F ' [0, 1]

basis M ' S1

bundle E

Figure 31: The Möbius strip as an example of a fiber bundle.

The fiber-preserving action therefore identifies the fiber with the Lie group G itself.
Closely related is the concept of the associated fiber bundle. Let π : P → M be a
principal vector bundle and V a k-dimensional vector space. Let ρ be a representation of
a Lie group G on V . The associated vector bundle P ×ρ V is constructed from P × V
by identifying (u, v) ∈ P × V with (ug, ρ(g−1)v) ∈ P × V for all g ∈ G.
If we denote the equivalence class of (u, v) ∈ P × V in P ×ρ V by [u, v], then from

the definition [ug, v] = [u, ρ(g)v]. Whereas the principal bundle was locally equivalent to
U × G, the associated bundle therefore is locally equivalent to U × V . The transition
functions of P ×ρ V which glue local trivializations together are ρ(tij), where tij are the
transition functions of P . Intuitively, the principal fiber bundle and its associated vector
bundle are twisted in the same way, but with different fibers G and V , respectively. Since
G is a topologically complicated group and V is a linear vector space, the associated vector
bundle is often easier to study.
We give an example. Let M be a four-dimensional Riemannian manifold with metric g.

Let {eI}I=0,...,3 be a frame which consists of linearly independent vectors at p ∈M , which
in local coordinates is given by

eI = eµI ∂µ . (A.23)

An element aJ I of the group GL(n,R) acts on a frame via eI → eJa
J
I . The action is

transitive and therefore the union of the sets of all frames LpM at all points p ∈ M is a
principal fiber bundle with structure group GL(n,R). It is called the frame bundle LM =⋃
p∈M LpM . Its associated vector bundle is the tangent bundle [250]. If an orthogonality

condition g(eI , eJ) = ηIJ is imposed on the frames, the structure group reduces to the
group of Lorentz transformations SO(3, 1), since they preserve the orthogonality. If spinors
are to be included in general relativity, one must lift the bundle to the so-called spinor
bundle [253] with structure group Spin(3, 1).
Let us go back to gravity. Observers at two different points can in principle make differ-

ent choices of reference frames. A change of reference frame (a local gauge transformation)
corresponds to an element in the restricted Lorentz group

SO+
↑ (3, 1) =

{
Λ ∈ O(3, 1)

∣∣ det Λ = 1, Λ0
0 > 0

}
. (A.24)

We associate therefore with every point a copy of the restricted Lorentz group SO+
↑ (3, 1).

The full set P of manifold plus groups glued to each point has mathematically the structure
of a principal bundle over M with structure group SO+

↑ (3, 1). Note that in contrast to a
global symmetry, gauge symmetries are not related to conserved charges or new symmetries
of nature [254].
It is easier to study the associated vector bundle P ×ρ V with metric η, where V is

Minkowski space and ρ the representation of the Lorentz group on V . To get an intuitive
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picture of P ×ρ V , imagine that a copy of Minkowski space V is glued to each point
p ∈M on which the group of Lorentz transformations acts on. In the following the indices
µ, ν refer to curved space and I, J to flat Minkowski space attached to a given point.
P is trivial in the sense that P ×ρ V admits a section XI such that the metric is flat:
η(XI , XJ) = diag(1,−1,−1,−1). The physical interpretation follows from the equivalence
principle, which lies at the heart of Einstein’s theory: physical measurements of an observer
in free fall will agree exactly with experiments in flat space-time. A free-falling observer is
described by the so-called vierbein (or moving frame) e, which maps the tangent bundle
TM to P ×ρ V . The vierbein has components eIµ, so it converts tangent space indices µ
and Lorentz space indices I into each other. The linearized neighborhood of a point – its
tangent space – is therefore mapped to a Lorentz space (a system in free fall). Moreover,
the vierbein equips the manifold M with a metric g via the pullback, namely

g(X,Y ) = η
(
e(X), e(Y )

)
, (A.25)

for vector fields X and Y in TM . Two observers at different points want to know how to
compare their measurements. The internal spaces can be related to each other with the
spin-connection ω, a Lie-algebra so(3, 1)-valued one-form with components ωµIJ . Under
a local gauge transformation h in the Lie group so(3, 1) acting on the vierbein e, the
connection ω transforms as

ω → h−1(d+ ω)h , (A.26)

where d is the exterior derivative. The spin-connection defines a covariant derivative of an
object XI with an internal Minkowski index, namely14

DµX
I =

(
δIJ ∂µ + ωµ

I
J

)
XJ . (A.27)

The connection describes how the components in the internal Lorentz space change as we
move along a section in P ×ρ V . An object is transported parallely along a path γ in M
if its covariant derivative vanishes along γ. In GR the connection ω has to be torsion-free
and compatible with the metric. It gives rise to the curvature tensor

Ω = dω + ω ∧ ω , (A.28)

where ∧ is the wedge-product. In local coordinates, Ω has components Ωµν
I
J .

The field equations follow now from an action principle. We start from the Palatini
action,

SP[e, ω] = 1
8πG

∫
M
εIJKLη

LM eI ∧ eJ ∧ ΩK
M , (A.29)

which depends on the vierbein e and on the connection ω, where G is the gravitational
constant. The Palatini action describes the dynamics of gravity in the absence of matter.
An action

Smatter =
∫
d4x Lm (A.30)

14 Space-time and Lorentz indices are related via the vierbein eIµ and its inverse eµI . From an object with
Lorentz index XI one can construct Xµ = eµIX

µ with a space-time index. The covariant derivative of the
latter reads DµXν = (δνσ∂µ − Γνµσ)Xσ. The Christoffel symbols Γνµσ can be computed from ω and the
vierbein.
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of matter described by a Lagrangian density Lm can be added to the action. From the
matter Lagrangian, one defines the energy-momentum tensor as follows:

Tµν = 2√
−g

∂Lm
∂gµν

, (A.31)

where gµν are the components of the metric (A.25). The full action SP + Smatter is varied
with respect to e and ω. Let Rµν = gνρ η

JK eσK e
ρ
I Ωµσ

I
J be the Ricci tensor and R =

gµνRµν the Ricci scalar. Einstein’s field equations are then (see e.g. [17])

Rµν −
1
2gµνR = 8πGTµν . (A.32)

a.2.2 Instantons

As another application of the fiber bundle formalism, we describe how to construct in-
stantons. These are special field configuations in Euclidean space-time with finite action.
As a consequence, the field strength must vanish at a distance larger than a certain radius,
say R, which defines a sphere S3 ⊂ R4. Space-time gets compactifed to a four-sphere
R4 ∪{∞} ∼= S4 by an identification of the points at infinity. The origin is mapped to the
south pole, {∞} to the north pole and the sphere S3 to the equator of the four-sphere,
as shown in Fig. 32. Instantons are now principal fiber bundles (gauge configurations)
on S4, which can be constructed via the clutching construction [250]. We start with
trivial bundles with fibers F ∼= C3 on the southern and northern hemispheres, D− and
D+, respectively (i.e. the bundle is globally isomorphic to a simple product D± × F ,
see also Appendix A.2.1). The bundles overlap at the equator S3. The fibers therefore
have to be identified (possibly in some twisted way) along the equator with help of the
clutching map U : S3 → SU(3). In local trivializations, the points (x, v) ∈ D+ × F and
(x, U(x) v) ∈ D− × F are identified as shown in Fig. 32. We can still perform gauge trans-
formations h+ on D+ and h− on D−. The function U(x) is therefore defined only up to
the equivalence relation

U(x) ∼ h+(x) U(x) h−(x) . (A.33)

Two functions U(x) and Ũ(x) defined on S3 are called homotopic if Ũ(x) U−1(x) can be
extended to a ball with boundary S3. If this is the case, h+(x) := Ũ(x) U−1(x) can be
extended to a function on D+ and can be taken as a gauge transformation. Therefore
U(x) and Ũ(x) give rise to the same bundle (gauge field configuration up to gauge trans-
formations). Hence, principle fiber bundles on S4 are described by the equivalence classes
obtained in this way. These equivalence classes build the third homotopy group π3(SU(3))
and gauge field configurations are divided into sectors according to

π3
(

SU(3)
) ∼= π3

(
SU(2)

) ∼= π3(S3) ∼= Z , (A.34)

where any SU(2) subgroup was selected. In terms of the gauge bosons, the connection A+
and A− can be defined locally on D+ and on D−. We assumed that the field strength
vanishes in the southern hemisphere. Since D− is topologically trivial, the flat connection
is unique and we can therefore choose the gauge A− ≡ 0 on D−. The whole topological
information is now encoded in the transition function. On the overlap S3, A+ must satisfy

A+(x) = U(x)−1
( i
g
d+A−(x)

)
U(x) = i

g
U(x)−1 dU(x) . (A.35)
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R

S3 {0}

{∞}
R4

(x, v)

(x, U(x) v)
{0}

{∞}

S3

S3

D−

D+

fiber F

Figure 32: The original R4 on the left-hand side is compactified to a four-sphere. Instantons are
principal bundles on the sphere S4. They are constructed by gluing trivial bundles
defined on the two hemispheres D+ and D− along the equator S3 in a non-trivial way.

Translated back into the original R4, this is precisely the condition that the field strength
vanishes at a distance R.

Gauge configuration can therefore be classified by integers, namely the second Chern
class (which is a topological invariant) of the corresponding principal bundle, defined as

n = g2

64π2

∫
d4x εµνρσGaµνG

a
ρσ = g2

32π2

∫
d4x ∂µJ

µ
CS =

= − i

96π2

∫
S3
d3x fabcεijk(U−1∂iU)a(U−1∂jU)b(U−1∂kU)c ,

(A.36)

with the Chern-Simons current

JµCS = εµνρσ
(
AaνG

a
ρσ −

g

3f
abcAaνA

b
ρA

c
σ

)
|x|→∞−−−−→ i

3g2 f
abcεµνρσ(U−1∂µU)a(U−1∂ρU)b(U−1∂σU)c .

(A.37)

The integrand of the last expression in Eq. (A.36) is identified as the Jacobian of the
map U from S3 to SU(3) and counts how often the configuration winds around an SU(2)
subgroup of SU(3). The index n is therefore called winding number.
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a.3 flow equations

To compute the right-hand-side of Wetterich’s flow equation, the effective action (4.97)
with the ansatz (4.99) for the bosonic part of the potential is written in momentum space.
The Fourier transformation is defined in Appendix A.1. The momentum dependence of
the fields is indicated as an index. Moreover, we abbreviate∫

p
=
∫

d4p

(2π)4 (A.38)

The effective action then can be written down in momentum space:

Γk =
∫
p
ψ̄p iγ

µ
E pµ ψp +

∫
p1,p2

ψ̄p1gs
(
σp1−p2 + iγ5 πp1−p2 · τ

)
ψp2

+
∫
p
ψ̄pγ

0(µ− gω ω0 − gρ ρ3
0τ

3)ψp
+ 1

2

∫
p
φa−p p

2 φap +
∑
n

an,k
n!

∫
x

[1
2

∫
p1

∫
p2

ei(p1+p2)x φap1φ
a
p2 − χ0

]n
+
∫
p

[
m2
πfπ(fπ − σp)−

1
2m

2
ωω

2
0 −

1
2m

2
ρ(ρ3

0)2
]
.

(A.39)

For simplicity, we do not write down the dependence of the coefficients an,k on T , µp,
µn, ω0, and ρ3

0 explicitly. In Wetterich’s equation, the mixed derivatives of the effec-
tive action Γk with respect to both bosons and fermions are needed for the flow of the
Yukawa couplings. Because this flow is neglected, only the diagonal terms in superspace
(only bosonic or only fermionic derivatives) are needed. The matrix Γ(1,1)

k is diagonal,
Γ(1,1)
k = diag

(
Γ(1,1)
bos,k,Γ

(1,1)
fer,k

)
, and can be inverted in bosonic and fermionic subspaces sepa-

rately:

1
2 Tr

[
k
∂Rk
∂k
·
(
Γ(1,1)
k [Φ] +Rk

)−1]
= 1

2 Tr
[
k
∂Rbos

k

∂k
·
(
Γ(1,1)
bos,k[Φ] +Rbos

k

)−1
]
− 1

2 Tr
[
k
∂Rfer

k

∂k
·
(
Γ(1,1)
fer,k [Φ] +Rfer

k

)−1
]
,

(A.40)

where the fermionic loop comes with an additional minus-sign. The bosonic and fermionic
loops are calculated in the following section.

a.3.1 Bosonic part

According to Eq. (3.50), the second derivative with respect to the bosonic fields is given
by

Γ(1,1)
bos,k(p, p

′) =
→
δ φa−p Γk

←
δ φb

p′
, (A.41)
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with φa = (σ,π). Inserting the effective action (A.39) gives

Γ(1,1)
bos,k(p, p

′) = p2 δp−p′ δ
a
b

+
∑
n

an+1,k
n!

∫
x

[1
2

∫
p1

∫
p2

ei(p1+p2)x φcp1φ
c
p2 − χ0

]n
· ei(p′−p)x δab

+
∑
n

an+2,k
n!

∫
x

[1
2

∫
p1

∫
p2

ei(p1+p2)x φcp1φ
c
p2 − χ0

]n
×
(∫

p3
ei(p3−p)x φap3

)
·
(∫

p4
ei(p4+p′)x φb,p4

)
.

(A.42)

Because we are interested in the thermodynamics of nuclear matter, the fields are homo-
geneous. In momentum space they therefore have a sharp momentum and we set (by a
slight abuse of notation) φp = φ · δp. Then, the effective action simplifies to

Γ(1,1)
bos,k(p, p

′) = p2 δp−p′ δ
a
b +

∑
n

an+1,k
n!

(1
2φ

cφc − χ0
)n
· δp−p′ δab

+
∑
n

an+2,k
n!

(1
2φ

cφc − χ0
)n

φaφb · δp−p′

=
[
(p2 + U ′) δab + U ′′ φaφb

]
· δp−p′ .

(A.43)

After adding the regulator Rbos
k = p2rbos, the bosonic part can be diagonalized in complete

analogy to the matrix Ma
b in Eq. (4.44):(

Γ(1,1)
bos,k +Rbos

k

)
(p, p′)

∼=
(
p2(1 + rbos) + U ′ + 2χU ′′

(p2(1 + rb) + U ′) · 13×3

)
· δp−p′ ,

(A.44)

where 13×3 is the unit matrix in three dimensions. The inverse of the matrix (in a distri-
butional sense) is given by

(
Γ(1,1)
bos,k +Rbos

k

)−1(p, p′) =

 1
p2(1+rbos)+U ′+2χU ′′

13×3
p2(1+rb)+U ′

 · δp−p′ . (A.45)

According to Eq. (3.60), the optimal regulator at finite temperature is

Rbos
k = p2 rbos = (k2 − |p|2) · θ(k2 − |p|2) . (A.46)

Moreover, the four-component is replaced by the discrete Matsubara frequencies p4 → −ωl
and the Euclidean integral

∫
p turns into a three-dimensional integral and a Matsubara sum.

Taking the trace of the inverse propagator also yields a delta function evaluated at zero,
which gives a volume factor βV . The bosonic contribution to Wetterich’s equation is

1
2 Tr

[
k
∂Rbos

k

∂k
·
(
Γ(1,1)
bos,k[Φ] +Rbos

k

)−1
]

= βV · T
∑
ωl

∫
d3p

(2π)3
p2k

2
∂rbos
∂k

[
1

p2(1 + rbos) + U ′ + 2χU ′′ + 3
p2(1 + rbos) + U ′

]

= βV ·
∫

d3p

(2π)3k
2 · θ(k2 − |p|2) · T

∑
l

[
1

ω2
l + k2 + U ′ + 2χU ′′ + 3

ω2
l + k2 + U ′

]
.

(A.47)
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With help of the identities
∞∑

l=−∞
f(l) = −π

∑
res ai

Res(f, ai) · cot(πai) ,

i cot(ix) = coth(x) = 1 + 2
e2x−1 ,

(A.48)

the Matsubara sums over the momenta ωl = 2lπT can be performed, with the result

T
∞∑

l=−∞

1
ω2
l + E2 = 1

2E
[
1 + 2nB(E)

]
, (A.49)

with the Bose distribution nB defined in Appendix A.1. Finally, putting all parts together,
one gets

1
2 Tr

[
k
∂Rbos

k

∂k
·
(
Γ(1,1)
bos,k[Φ] +Rbos

k

)−1
]

= βV · k5

12π2

{
1 + 2nB(Eσ)

Eσ
+

3
[
1 + 2nB(Eπ)

]
Eπ

}
,

(A.50)

with E2
π = k2 + U ′ and E2

σ = k2 + U ′ + 2χU ′′.

a.3.2 Fermionic part

According to Eq. (3.50), the second derivative of the effective action with respect to the
fermionic fields is the following matrix

Γ(1,1)
fer,k (p, p′) =


→
δ ψT−p

Γk
←
δ ψp′

→
δ ψT−p

Γk
←
δ ψ̄T−p′→

δ ψ̄p Γk
←
δ ψp′

→
δ ψ̄p Γk

←
δ ψ̄T−p′

 ≡ ( 0 A

B 0

)
, (A.51)

where the diagonal terms vanish for the nucleon-meson model. They are non-vanishing only
if higher powers in the fermionic fields are present. The matrix elements are computed from
the effective action (A.39) and a version with transposed integrand, which was discussed in
Eq. (A.20). First, we only consider one chemical potential, µ, and ignore the background
fields ω0 and ρ3

0. In this case, the non-vanishing matrix elements are

A = i(γµE)T pµ δp−p′ − gs
(
σp−p′ + i(γ5)T πp−p′ · τT

)
− (γ0)T µ δp−p′ ,

B = iγµE pµ δp−p′ + gs
(
σp−p′ + iγ5 πp−p′ · τ

)
+ γ0 µ δp−p′ .

(A.52)

The fields are again homogeneous, so we set

φp = φ · δp , ψp = ψ · δp , ψ̄p = ψ̄ · δp . (A.53)

The regulator Rfer
k =

 0 ipi(γiE)T

ipiγ
i
E 0

 · rfer is added and the matrix is inverted to yield

(
Γ(1,1)
fer,k +Rfer

k

)−1(p, p′) =
(

0 C

D 0

)
· δp−p′ , (A.54)
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where the matrix elements are

C =
−i(p4 − iµ)γ0 − ipi(1 + rfer) γiE + gs(σ − iγ5 π · τ )− γ0 µ

(p4 − iµ)2 + |p|2(1 + rfer)2 + 2g2
sχ

,

D =
−i(p4 + iµ)(γ0)T − ipi(1 + rfer) (γiE)T − gs(σ − iγ5 π · τT ) + (γ0)Tµ

(p4 + iµ)2 + |p|2(1 + rfer)2 + 2g2
sχ

.

(A.55)

According to Eq. (3.60), the optimal Litim regulator at finite temperatures is

Rfer
k =

 0 ipi(γiE)T

ipiγ
i
E 0

 rfer =

 ipi(γiE)T

ipiγ
i
E

(√ k2

|p|2 − 1
)
θ(k2 − |p|2) .

(A.56)

The fourth component of the momentum is again replaced by Matsubara frequencies,
p4 → −ωl. A multiplication with k ∂R

fer
k

∂k and tracing over isospin space (factor two), Dirac
space (factor 4), and momentum space (three infinite dimensions plus a Matsubara sum)
yields the fermionic contribution to Wetterich’s equation

− 1
2 Tr

[
k
∂Rfer

k

∂k
·
(
Γ(1,1)
fer,k [Φ] +Rfer

k

)−1
]

= −βV · 2 · 4 · T2
∑
r=±1

∑
l

∫
d3p

(2π)3 |p|
2(1 + rfer)

× ∂rfer
∂k

1
(ωl + riµ)2 + |p|2(1 + rfer)2 + 2g2

sχ

= −βV · 2 · 4 ·
∫

d3p

(2π)3k
2θ(k2 − |p|2) · T2

∑
r=±1

∑
l

1
(ωl + riµ)2 + k2 + 2g2

sχ
.

(A.57)

Because the fermionic Matsubara frequencies ωl = (2l + 1)πT are summed over both pos-
itive and negative values and r → −r can be absorbed by l→ −l, the sum over r = ±1
gives the same contribution twice. The Matsubara sum can be evaluated using Eq. (A.48)
and

i cot
(
π

2 + ix

)
= tanh x = 1− 2

e2x +1 , (A.58)

which gives after a short computation

T
∑
l

1
(ωl + riµ)2 + E2 = 1

2E
[
1− nF(E + µ)− nF(E − µ)

]
, (A.59)

where the Fermi distribution nF is defined in Appendix A.1. The nucleonic contribution
to Wetterich’s equation is given by

− 1
2 Tr

[
k
∂Rfer

k

∂k
·
(
Γ(1,1)
fer,k [Φ] +Rfer

k

)−1
]

− βV · k5

12π2
2 · 4

[
1−∑r=±1 nF(EN − rµ)

]
EN

,

(A.60)

with E2
N = k2 + 2g2

sχ. Protons and neutrons enter in the same way. If the chemical
potentials are different and the vector bosons are reinserted, the chemical potentials are
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replaced by the effective chemical potentials µi,eff. Adding the bosonic contribution (A.50),
the right-hand-side of Wetterich’s equation is

1
2 Tr

[
k
∂Rk
∂k
·
(
Γ(1,1)
k [Φ] +Rk

)−1]

= βV · k5

12π2

{
1 + 2nB(Eσ)

Eσ
+

3
[
1 + 2nB(Eπ)

]
Eπ

−
∑
i=n,p

4
[
1−∑r=±1 nF(EN − rµi,eff)

]
EN

}
.

(A.61)

For an evaluation of the effective action as a Taylor expansion around the minimum, it
is useful to work with the expression where the Matsubara sums are not yet computed.
We define the threshold functions (because they describe the decoupling of modes as the
renormalization group scale varies):

lbos0 (E) = k5

6π2T
∑
l

1
ω2
l + E2 , ωl = 2lπT ,

lfer0 (E,µ) = k5

6π2T
∑
l

1
(ωl + iµ)2 + E2 , ωl = (2l + 1)πT .

(A.62)

In terms of these threshold functions, the flow equation takes the form

1
2 Tr

[
k
∂Rk
∂k
·
(
Γ(1,1)
k [Φ] +Rk

)−1]
= βV ·

[
lbos0 (Eπ) + lbos0 (Eσ)−

∑
i,n,p

lfer0 (EN, µi,eff)
]
.

(A.63)
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