
SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 1

Various Views on the Trapdoor Channel and an

Upper Bound on its Capacity

Tobias Lutz

Abstract

The problem of maximizing the n-letter mutual information of the trapdoor channel is considered.

It is shown that 1

2
log

2

(

5

2

)

≈ 0.6610 bits per use is an upper bound on the capacity of the trapdoor

channel. This upper bound, which is the tightest upper bound known, proves that feedback increases the

capacity. In the second part of the paper, two novel views are presented on the trapdoor channel. First,

by deriving the underlying iterated function system (IFS), it is shown that the trapdoor channel with

input blocks of length n can be regarded as the nth element of a sequence of shapes approximating a

fractal. Second, an algorithm is presented that fully characterizes the trapdoor channel and resembles

the recursion of generating all permutations of a given string.

Index Terms

Trapdoor channel, Lagrange multipliers, convex optimization, iterated function systems, fractals,

channels with memory, recursions, permutations.

I. INTRODUCTION AND CHANNEL MODEL

The trapdoor channel was introduced by David Blackwell in 1961 [1] and is used by Robert

Ash both as a book cover and as an introductory example for channels with memory [2]. The

mapping of channel inputs to channel outputs can be described as follows. Consider a box that

Submitted for publication on September 17, 2014. This paper was presented in part at the IEEE Int. Symp. Inf. Theory in

Honolulu, HI, USA, 2014.

Tobias Lutz is with the Lehrstuhl für Nachrichtentechnik, Technische Universität München, D-80290 München, Germany

(e-mail: tobi.lutz@tum.de).

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 2

0 0 0

0

1

111

xt

xt+1xt+2xt+3

st−1

yt−1 yt−2 yt−3

(a) The trapdoor channel at time t.

00

0

11

1

1 1

xt+1

xt+2xt+3xt+4

st = xt

yt−1 yt−2yt

(b) The trapdoor channel at time t+ 1. Here yt = st−1.

Fig. 1: The trapdoor channel.

contains a ball that is labeled s0 ∈ {0, 1}, where the index 0 refers to time 0. Both the sender and

the receiver know the initial ball. In time slot 1, the sender places a new ball labeled x1 ∈ {0, 1}

in the box. In the same time slot, the receiver chooses one of the two balls s0 or x1 at random

while the other ball remains in the box. The chosen ball is interpreted as channel output y1 at

time t = 1 while the remaining ball becomes the channel state s1. The same procedure is applied

in every future channel use. In time slot 2, for instance, the sender places a new ball x2 ∈ {0, 1}

in the box and the corresponding channel output y2 is either x2 or s1. The transmission process

is visualized in Fig. 1. Fig. 1a shows the trapdoor channel at time t when the sender places

ball xt in the box. In the same time slot, the receiver chooses randomly one of the two balls xt

or st−1 as channel output, in the figure the ball labeled with st−1. Consequently, the upcoming

channel state st becomes xt (see Fig. 1b). At time t+1 the sender places a new ball xt+1 in the

box and the receiver draws yt+1 from st and xt+1. Table I depicts the probability of an output

yt given an input xt and state st−1.

Despite the simplicity of the trapdoor channel, deriving its capacity seems challenging and

is an open problem. One feature that makes the problem cumbersome is that the distribution of

the output symbols may depend on events happening arbitrarily far back in the past since each

ball has a positive probability to remain in the channel over any finite number of channel uses.

Instead of maximizing I(X ; Y) one rather has to consider the multi-letter mutual information,

i.e., lim supn→∞ I(Xn;Yn).

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 3

TABLE I: Transition Probabilities of the Trapdoor Channel

xt st−1 PYt|XtSt−1
(yt = 0|xt, st−1) PYt|XtSt−1

(yt = 1|xt, st−1)

0 0 1 0

0 1 0.5 0.5

1 0 0.5 0.5

1 1 0 1

Let Pn|s0 denote the matrix of conditional probabilities of output sequences of length n given

input sequences of length n where the initial state equals s0. The following ordering of the

entries of Pn|s0 is assumed. Row indices represent input sequences and column indices represent

output sequences. To be more precise, the (i, j)th entry of
[

Pn|s0

]

, indicated as
[

Pn|s0

]

i,j
, is the

conditional probability of the binary output sequence corresponding to the integer j−1 given the

binary input sequence corresponding the the integer i− 1, 1 ≤ i, j ≤ 2n. For instance, if n = 3,

then
[

P3|s0

]

5,3
denotes the conditional probability that the channel input x1, x2, x3 = 1, 0, 0 will

be mapped to the channel output y1, y2, y3 = 0, 1, 0. It was shown in [3] that Pn|s0, s0 ∈ {0, 1},

satisfies the recursion laws

Pn+1|0 =





Pn|0 0

1
2
Pn|1

1
2
Pn|0



 (1)

Pn+1|1 =





1
2
Pn|1

1
2
Pn|0

0 Pn|1



 , (2)

where the initial matrices are given by P0|0 = P0|1 = 1. Ahlswede and Kaspi [4] derived the zero-

error capacity of the trapdoor channel, which equals 0.5 b/u. Permuter et al. [5] considered the

trapdoor channel under the additional assumption of having a unit delay feedback link available

from the receiver to the sender. They established that the capacity of the trapdoor channel with

feedback is equal to the logarithm of the golden ratio.

In this paper, we consider the problem of maximizing the n-letter mutual information of the

trapdoor channel for any n ∈ N. We relax the problem by permitting distributions that are not

probability distributions. The resulting optimization problem is convex but the feasible set is

larger than the probability simplex. Using the method of Lagrange multipliers via a theorem

presented in [2], we find explicit solutions for any n ∈ N. It is then shown that 1
2
log2

(

5
2

)

≈

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 4

0.6610 b/u is an upper bound on the capacity of the trapdoor channel. Specifically, the same

absolute maximum 1
2
log2

(

5
2

)

≈ 0.6610 b/u results for all trapdoor channels which process

input blocks of even length. And the sequence of absolute maxima corresponding to trapdoor

channels which process inputs of odd lengths converges to 1
2
log2

(

5
2

)

b/u from below as the block

length increases. Unfortunately, the absolute maxima of our relaxed optimization are attained

outside the probability simplex. Otherwise we would have established the capacity. Nevertheless,

1
2
log2

(

5
2

)

≈ 0.6610 b/u is, to the best of our knowledge, the tightest capacity upper bound.

Moreover, this bound is less than the feedback capacity of the trapdoor channel proving that

feedback increases the capacity. In the second part of the paper, we propose two different views

on the trapdoor channel. Based on the underlying stochastic matrices (1) and (2), the trapdoor

channel can be described geometrically as a fractal or algorithmically as a recursive procedure.

The organization of the paper is as follows. Section II presents the derivation of the upper

bound. In particular, the problem is set up and a useful result from the literature is reviewed.

Two recursions are then developed for the trapdoor channel based on which the main result

is derived. Section III interprets the trapdoor channel as a fractal and derives the underlying

iterated function system (IFS). To be more precise, we introduce the mathematical background

of fractals and, in particular, the notion of an IFS in Subsection III-A. In Subsection III-B,

the IFS corresponding to the trapdoor channel is derived. In Section IV, we study the trapdoor

channel as a recursive procedure. The paper is concluded with Section V.

A. Notation

The notation is as follows. The symbols N0 and N refer to the natural numbers with and

without 0, respectively. The input corresponding to the ith row of Pn|s0 is denoted as xi. Further,

In denotes the 2n× 2n identity matrix, Ĩn is a 2n× 2n matrix whose secondary diagonal entries

are all equal to 1 while the remaining entries are all equal to 0, and 1n denotes a column vector

of length 2n consisting only of ones. The vector 1T
n is the transpose of 1n. The functions exp2(·)

and log2(·) indicate the exponential function to base 2 and the logarithm to base 2. If applied

to a vector/matrix, log2(·) or exp2(·) of each element is taken and a vector/matrix results. The

symbol ◦ refers to the Hadarmard product, i.e., the entry wise product of two matrices. The

canonical basis vectors of R3 are denoted by ex, ey and ez. They are assumed to be row vectors.

Finally, the n-fold composition of a function, say Φ, is denoted as Φ◦n.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 5

II. A LAGRANGE MULTIPLIER APPROACH TO THE TRAPDOOR CHANNEL

A. Problem Formulation

We derive an upper bound on the capacity of the trapdoor channel. Specifically, for any n ∈ N,

we find a solution to the optimization problem

maximize
PXn

1

n
I (Xn;Yn|s0)

=
1

n

2n
∑

i=1

2n
∑

j=1

pi
[

Pn|s0

]

i,j
log

[

Pn|s0

]

i,j
∑2n

k=1 pk
[

Pn|s0

]

k,j

(3)

subject to

2n
∑

i=1

pi = 1 (4)

2n
∑

k=1

pk
[

Pn|s0

]

k,j
≥ 0 for all 1 ≤ j ≤ 2n. (5)

Note that PXn is a 2n-sequences (p1, . . . , p2n) where pi denotes the probability of the ith input

sequence xi, i.e., the binary sequence corresponding to the integer i−1. Constraint (5) guarantees

that the argument of the logarithm does not become negative. The feasible set, defined by (4)

and (5), is convex. It includes the set of probability mass functions, but might be larger. To see this

note that (5) is a weighted sum of all pk where each weight
[

Pn|s0

]

k,j
is non negative. Clearly, (4)

and (5) are satisfied by probability distributions. However, there might exist “distributions” which

involve negative values and sum up to one but still satisfy (5). Moreover, the objective function

n−1I (Xn;Yn|s0) is concave on the set of “distributions” satisfying (4) and (5). Consequently,

the optimization problem is convex and every solution maximizes n−1I (Xn;Yn|s0). In the

following, we use the notation

C↑
n

def
= max

PXn

n−1I (Xn;Yn|s0) .

Taking the limit of the sequence
(

C↑
n

)

n∈N
, one obtains either the capacity of the trapdoor channel

or an upper bound on the capacity, depending on whether the limit is attained inside or outside

the set of probability distributions. Since it does not matter whether the optimization is with

respect to initial state 0 or 1 (due to symmetry reasons), we do not have to distinguish between

lower capacity and upper capacity [6, Chapter 4.6]

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 6

B. Using a Result from the Literature

The reason for considering (5) and not the more natural constraints pk ≥ 0 for all k is that

a closed form solution can be obtained by applying the method of Lagrange multipliers to (3)

and (4). As a byproduct, (5) will be automatically satisfied. In particular, setting the partial

derivatives of

1

n
I (Xn;Yn|s0) + λ

2n
∑

i=1

pi (6)

with respect to each of the pi equal to zero results in a closed form solution of the considered

optimization problem.

This was done in [2, Theorem 3.3.3] for general discrete memoryless channels which are

square and non singular. Note that Pn|s0 is square and non singular (see, e.g., Lemma II.2 (b)).

Moreover, we assume that the channel Pn|s0 is memoryless by repeatedly using it over a large

number of input blocks of length n. Consequently, C↑
n might be an upper bound on the capacity of

the channel Pn|s0. The reason is that some input blocks possibly drive the channel Pn|s0 into the

opposite state s0⊕ 1, i.e., the upcoming input block sees channel Pn|s0⊕1 (whose C↑
n is equal to

C↑
n of Pn|s0 by symmetry) but not Pn|s0 . However, by assuming that the channel does not change

over time, the sender always knows the channel state before a new block is transmitted. Hence,

C↑
n might be an upper bound (even though it is attained on the set of probability distributions).

Nevertheless, this issue can be ignored if n goes to infinity because in the asymptotic regime

the channel Pn|s0 is used only once.

In summary, it is valid to apply [2, Theorem 3.3.3] which yields

C↑
n =

1

n
log2

2n
∑

j=1

exp2

(

−
2n
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

, (7)

attained at

pk = 2−C
↑
ndk, k = 1, . . . , 2n (8)

where

dk =

2n
∑

j=1

[

P
−1
n|s0

]

j,k
exp2

(

−
2n
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)

)

. (9)

Clearly, (p1, . . . , p2n) is a probability distribution only if dk ≥ 0. The Lagrangian (6) does not

involve constraint (5). However, the proof of [2, Theorem 3.3.3] shows that

2n
∑

k=1

pk
[

Pn|s0

]

k,j
= exp

(

λ−
M
∑

i=1

[

P
−1
n|s0

]

j,i
H (Yn|Xn = xi)− 1

)

(10)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 7

for all 1 ≤ j ≤ 2n. Hence, (5) is satisfied.

For computational reasons, we write (7) in matrix vector notation, which reads

C↑
n =

1

n
log2

{

1
T
n exp2

[

P
−1
n|s0

(

Pn|s0 ◦ log2Pn|s0

)

1n

]}

, (11)

where 1n is a column vector of length 2n consisting only of ones while ◦ denotes the Hadamard

product. Observe that

−
(

Pn|s0 ◦ log2Pn|s0

)

1n =
[

H (Yn|Xn = x1) , . . . , H (Yn|Xn = x2n)
]T

. (12)

In the remainder, we use (11) instead of (7). In particular, we find exact numerical expressions

for (11) in Theorem II.9 below.

C. Useful Recursions

Definition II.1. (a) The conditional entropy vector hn|s0 of Pn|s0, s0 ∈ {0, 1}, is

hn|s0

def
=
[

H(Yn|Xn = x1) . . . H(Yn|Xn = x2n)
]T

(13)

= −
(

Pn|s0 ◦ log2Pn|s0

)

1n, (14)

where n ∈ N0.

(b) The weighted conditional entropy vector ωn|s0 of Pn|s0, s0 ∈ {0, 1}, is

ωn|s0

def
= −P−1

n|s0
· hn|s0 (15)

= P
−1
n|s0

(

Pn|s0 ◦ log2Pn|s0

)

1n, (16)

where n ∈ N0.

The following three lemmas provide tools that we need in order to prove recursions for hn|s0

and ωn|s0 , as stated in Lemma II.5 and Lemma II.6.

Lemma II.2. (a) The trapdoor channel matrices P2n+2|0 and P2n+2|1, n ∈ N0, satisfy the

following recursions:

P2n+2|0 =















P2n|0 0 0 0

1
2
P2n|1

1
2
P2n|0 0 0

1
4
P2n|1

1
4
P2n|0

1
2
P2n|0 0

0
1
2
P2n|1

1
4
P2n|1

1
4
P2n|0















(17)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 8

P2n+2|1 =















1
4
P2n|1

1
4
P2n|0

1
2
P2n|0 0

0
1
2
P2n|1

1
4
P2n|1

1
4
P2n|0

0 0
1
2
P2n|1

1
2
P2n|0

0 0 0 P2n|1















. (18)

(b) Let M0
def
= P

−1
2n|0P2n|1P

−1
2n|0 and M1

def
= P

−1
2n|1P2n|0P

−1
2n|1. The inverses of P2n+2|0 and P2n+2|1,

n ∈ N0, satisfy the following recursions:

P
−1
2n+2|0 =















P
−1
2n|0 0 0 0

−M0 2P−1
2n|0 0 0

0 −P−1
2n|0 2P−1

2n|0 0

2M0P2n|1P
−1
2n|0 −3M0 −2M0 4P−1

2n|0















(19)

P
−1
2n+2|1 =















4P−1
2n|1 −2M1 −3M1 2M1P2n|0P

−1
2n|1

0 2P−1
2n|1 −P

−1
2n|1 0

0 0 2P−1
2n|1 −M1

0 0 0 P
−1
2n|1















. (20)

Proof: (a): Substituting P2n+1|0 and P2n+1|1 into P2n+2|0 and P2n+2|1, where the four

matrices are expressed as in (1) and (2), yields (17) and (18).

(b): Two versions of the matrix inversion lemma are [7]




A 0

C D





−1

=





A
−1

0

−D−1
CA

−1
D

−1



 (21)





A B

0 D





−1

=





A
−1 −A−1

BD
−1

0 D
−1



 . (22)

Now divide (17) and (18) into four blocks of equal size. A twofold application of (21) and (22),

first to P2n+2|0 and P2n+2|1 and, subsequently, to each of the blocks of P2n+2|0 and P2n+2|1

yields (19) and (20).

Lemma II.3. Let Ĩn be the 2n×2n matrix whose secondary diagonal entries are equal to 1 while

the remaining entries are 0. Let A be an arbitrary 2n × 2n matrix and b an arbitrary column

vector of size 2n. A left and right multiplication of A with Ĩn results in a permutation of the

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 9

elements of A. In particular, the element [A]i,j of A is shifted to position (2n+1− i, 2n+1− j)

in ĨnAĨn, 1 ≤ i, j ≤ 2n. Similarly, a left multiplication of b with Ĩn turns b upside down,

i.e., the ith entry of b is shifted to the (2n + 1 − i)th position in Ĩnb, 1 ≤ i ≤ 2n. Moreover,
(

ĨnAĨn

)

◦ log2

(

ĨnAĨn

)

= Ĩn (A ◦ log2A) Ĩn.

Proof: The first two properties follow from the rules of matrix multiplication and noting

that the ith row and the ith column of Ĩn has a one at position 2n+1− i and zeros else. The final

equality holds because it does not matter whether the Hadamard product and the elementwise

logarithm is applied before or after permuting the elements of A.

A transformation relating Pn|0 to Pn|1, P
−1
n|0 to P

−1
n|1, hn|0 to hn|1 and ωn|0 to ωn|1 is derived

next.

Lemma II.4. Let Pn|0 and Pn|1 be trapdoor channel matrices, n ∈ N0. We have the following

identities:

(a)

Pn|1 = ĨnPn|0Ĩn (23)

Pn|0 = ĨnPn|1Ĩn (24)

(b)

P
−1
n|1 = ĨnP

−1
n|0Ĩn (25)

P
−1
n|0 = ĨnP

−1
n|1Ĩn (26)

(c)

hn|1 = Ĩnhn|0 (27)

hn|0 = Ĩnhn|1 (28)

(d)

ωn|1 = Ĩnωn|0 (29)

ωn|0 = Ĩnωn|1 (30)

(e) The row sums of P−1
n|0 and P

−1
n|1 are 1.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 10

Proof: (a): The proof is by induction. For n = 0, the identities P0|1 = Ĩ0P0|0Ĩ0 and

P0|0 = Ĩ0P0|1Ĩ0 clearly hold. Now suppose that (23) and (24) are true if n is replaced by n− 1.

Then we have

ĨnPn|0Ĩn =





0 Ĩn−1

Ĩn−1 0









Pn−1|0 0

1
2
Pn−1|1

1
2
Pn−1|0









0 Ĩn−1

Ĩn−1 0



 (31)

=





1
2
Ĩn−1Pn−1|0Ĩn−1

1
2
Ĩn−1Pn−1|1Ĩn−1

0 Ĩn−1Pn−1|0Ĩn−1





=





1
2
Pn−1|1

1
2
Pn−1|0

0 Pn−1|1



 (32)

= Pn−1|1, (33)

where (31) and (33) are due to the recursive expressions (1) and (2) while (32) follows from

the induction hypothesis. It remains to show (24). But (24) is a direct consequence of the just

proven equation and using the identity ĨnĨn = In.

(b): Follows immediately from (a) and the identity ĨnĨn = In.

(c): Starting with the definition of hn|1, we have

hn|1 = −
(

Pn|1 ◦ log2Pn|1

)

1n

= −
[(

ĨnPn|0Ĩn

)

◦ log2

(

ĨnPn|0Ĩn

)]

1n (34)

= −Ĩn
(

Pn|0 ◦ log2Pn|0

)

Ĩn1n (35)

= Ĩnhn|0,

where (34) and (35) hold because of (23) and Lemma II.3, respectively.

Equation (28) follows from (27) and the identity ĨnĨn = In.

(d): Starting with the definition of ωn|1, we have

ωn|1 = −P
−1
n|1hn|1

= −ĨnP
−1
n|0hn|0 (36)

= Ĩnωn|0,

where (36) follows by replacing Pn|1 and hn|1 with (23) and (27), respectively, and using the

identity ĨnĨn = In.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 11

Equation (30) follows from (29) and the identity ĨnĨn = In.

(e): A standard way to compute P
−1
n|0 is by Gauss-Jordan elimination. That is, a sequence of

elementary row operations is applied to the augmented matrix
[

Pn|0 In

]

such that
[

In P
−1
n|0

]

eventually results. Clearly, Pn|0 and In are stochastic matrices, i.e., all row sums are equal to

one. Thus, at each stage of performing elementary row operations, the row sum of the left matrix

equals the row sum of the right matrix. In particular, P−1
n|0 has the same row sum as In. The

same arguments hold for P−1
n|1.

We can now state the recursive law for the conditional entropy vector.

Lemma II.5. For n ≥ 1, h2n+2|0 satisfies the recursion

h2n+2|0 =















h2n|0

1
2
h2n|0 +

1
2
Ĩ2nh2n|0 + 12n

3
4
h2n|0 +

1
4
Ĩ2nh2n|0 +

3
2
12n

1
4
h2n|0 +

3
4
Ĩ2nh2n|0 +

3
2
12n















. (37)

The initial value for n = 0 is given by h0|0 = 0.

Before proving Lemma II.5, we remark that in order to refer to the ith subvector, 1 ≤ i ≤ 4, of

the conditional entropy vector h2n+2|0, i.e., the subvector composed of the ((i− 1) · 22n + 1)
th

to the (i · 22n)
th

element, we use the superscript (i). For instance, h
(2)
2n+2|0 refers to 1

2
h2n|0 +

1
2
Ĩ2nh2n|0+ 12n. The same notation is used for the weighted conditional entropy vector ω2n+2|0.

Proof of Lemma II.5: The initial value h0|0 can be computed using P0|0 = 1 in (14).

To show (37), we replace P2n+2|0 in (14) with (17) and compute each of the four entries of

the resulting vector. Clearly, h
(1)
2n+2|0 = −

(

P2n|0 ◦ log2P2n|0

)

12n = h2n|0. The three remaining

terms are

h
(2)
2n+2|0 =

[

−
1

2
P2n|1 ◦ log2

(

1

2
P2n|1

)

−
1

2
P2n|0 ◦ log2

(

1

2
P2n|0

)]

12n

=

[

1

2
P2n|1 −

1

2

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+
1

2
P2n|0

−
1

2
P2n|0 ◦ log2P2n|0

]

12n

(38)

= 12n −
1

2
Ĩ2n

(

P2n|0 ◦ log2P2n|0

)

12n +
1

2
h2n|0 (39)

=
1

2
h2n|0 +

1

2
Ĩ2nh2n|0 + 12n;

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 12

h
(3)
2n+2|0 =

[

−
1

4
P2n|1 ◦ log2

(

1

4
P2n|1

)

−
1

4
P2n|0 ◦ log2

(

1

4
P2n|0

)

−
1

2
P2n|0 ◦ log2

(

1

2
P2n|0

)]

12n

=

[

1

2
P2n|1 −

1

4

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+P2n|0

−
3

4
P2n|0 ◦ log2P2n|0

]

12n

(40)

=
3

2
12n −

1

4
Ĩ2n

(

P2n|0 ◦ log2P2n|0

)

12n +
3

4
h2n|0 (41)

=
3

4
h2n|0 +

1

4
Ĩ2nh2n|0 +

3

2
12n;

h
(4)
2n+2|0 =

[

−
1

2
P2n|1 ◦ log2

(

1

2
P2n|1

)

−
1

4
P2n|1 ◦ log2

(

1

4
P2n|1

)

−
1

4
P2n|0 ◦ log2

(

1

4
P2n|0

)]

12n

=

[

P2n|1 −
3

4

(

Ĩ2nP2n|0Ĩ2n

)

◦ log2

(

Ĩ2nP2n|0Ĩ2n

)

+
1

2
P2n|0 −

1

4
P2n|0 ◦ log2P2n|0

]

12n

(42)

=
3

2
12n −

3

4
Ĩ2n

(

P2n|0 ◦ log2P2n|0

)

12n +
1

4
h2n|0 (43)

=
1

4
h2n|0 +

3

4
Ĩ2nh2n|0 +

3

2
12n.

Observe that (38), (40), (42) follow from using (23) and

log2

(

1

2r
P2n|s0

)

= log2

(

1

2r
12n×2n ◦P2n|s0

)

= −r12n×2n + log2P2n|s0, r = 1, 2.

Summing up the scaled vectors P2n|012n and P2n|112n in (38), (40), (42) yields the first term

in (39), (41), (43). Finally, the second term in (39), (41),(43) follows because it does not matter

whether the Hadamard product and the elementwise logarithm is applied before or after permuting

the elements of P2n|0 (see Lemma II.3).

Lemma II.6. (a) For n ∈ N0, ω2n|0 satisfies the recursion

ω2n+2|0 =















ω2n|0

ω2n|0 − 2 · 12n

ω2n|0 − 2 · 12n

ω2n|0















(44)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 13

with initial value ω0|0 = 0.

(b) For n ∈ N, ω2n+1|0 satisfies the recursion

ω2n+1|0 =















ω2n−1|0

Ĩ2n−1ω2n−1|0

ω2n−1|0 − 2 · 12n−1

Ĩ2n−1ω2n−1|0 − 2 · 12n−1















(45)

with initial value ω1|0 =
[

0 −2
]T

.

Remark II.7. The weighted conditional entropy vector ωn|0 is a palindrome for even n ∈ N0,

i.e., the vector reads the same backwards as forward.

Proof of Lemma II.6: (a): We show by induction that (44) holds. The case n = 0 can be

verified using Definition II.1(b) and noting that P0|0 = P
−1
0|0 = 1. Now assume that (44) holds

for n − 1. In order to show (44) for n, we evaluate ω2n+2|0 using (15) and replacing P
−1
2n+2|0

and h2n+2|0 with (19) and (37). Then

ω2n+2|0 =

















−P−1
2n|0h

(1)
2n+2|0

P
−1
2n|0

(

P2n|1P
−1
2n|0h

(1)
2n+2|0 − 2h

(2)
2n+2|0

)

P
−1
2n|0

(

h
(2)
2n+2|0 − 2h

(3)
2n+2|0

)

M0

(

−2P2n|1P
−1
2n|0h

(1)
2n+2|0 + 3h

(2)
2n+2|0 + 2h

(3)
2n+2|0

)

− 4P−1
2n|0h

(4)
2n+2|0

















. (46)

Recall from Lemma II.5 that h
(1)
2n+2|0 = h2n|0. Hence, by definition, the first entry of (46) is

equal to ω2n|0. Replacing h
(1)
2n+2|0 and h

(2)
2n+2|0 in (46) with the corresponding expressions from

Lemma II.5, we obtain

ω
(2)
2n+2|0 = P

−1
2n|0

(

P2n|1P
−1
2n|0h2n|0 − h2n|0 − Ĩ2nh2n|0 − 2 · 12n

)

. (47)

In order to simplify (47), observe that

−Ĩ2nω2n|0 + ω2n|0 = 0 (48)

since ω2n|0 is a palindrome by hypothesis. Further, using (15), (26) and the relation Ĩ2nĨ2n = I2n,

(48) reads

P
−1
2n|0 · h2n|0 −P

−1
2n|1Ĩ2n · h2n|0 = 0, (49)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 14

which becomes, after a right multiplication with P2n|1,

P2n|1P
−1
2n|0h2n|0 − Ĩ2n · h2n|0 = 0. (50)

Finally, using (50) in (47) as well as the definition of ω2n|0 and noting that 2P−1
2n|012n = 2 · 12n

(since P
−1
2n|0 is a stochastic matrix by Lemma II.4 (e)), we obtain

ω
(2)
2n+2|0 = ω2n|0 − 2 · 12n.

We continue with the third entry of (46). After replacing h
(2)
2n+2|0 and h

(3)
2n+2|0 in (46) with the

corresponding expressions from Lemma II.5, it immediately follows that ω
(3)
2n+2|0 = ω2n|0−2·12n.

Regarding the fourth entry in (46), we start with the first term in parentheses. Observe that

− 2P2n|1P
−1
2n|0h

(1)
2n+2|0 + 3h

(2)
2n+2|0 + 2h

(3)
2n+2|0

=− 2
(

P2n|1P
−1
2n|0h

(1)
2n+2|0 − 2h

(2)
2n+2|0

)

−
(

h
(2)
2n+2|0 − 2h

(3)
2n+2|0

)

(51)

=− 3P2n|0

(

ω2n|0 − 2 · 12n

)

. (52)

Under consideration of the second and third entry of (46), the first parentheses of (51) equals

−2P2n|0ω
(2)
2n+2|0 and the second parentheses P2n|0ω

(3)
2n+2|0. Hence, equation (52) holds since

both ω
(2)
2n+2|0 and ω

(3)
2n+2|0 are equal to ω2n|0 − 2 · 12n. Using (52) in the fourth entry of (46),

replacing h
(4)
2n+2|0 with the corresponding expression from Lemma II.5 and M0 with its definition

P
−1
2n|0P2n|1P

−1
2n|0, we have

ω
(4)
2n+2|0 = P

−1
2n|0

[

−3P2n|1

(

ω2n|0 − 2 · 12n

)

− h2n|0 − 3Ĩ2nh2n|0 − 6 · 12n

]

= 3P−1
2n|0

(

−P2n|1ω2n|0 − Ĩ2nh2n|0

)

+ 6 ·P−1
2n|0

(

P2n|112n − 12n

)

−P
−1
2n|0h2n|0

(53)

= −P−1
2n|0h2n|0

= ω2n|0.

Observe that the first parentheses of equation (53) evaluates to 0 since it is equal to the left

hand side of (50). Similarly, the second parentheses in (53) evaluates to 0 because P2n|1 is a

stochastic matrix.

(b): Recall the recursions

P2n+2|0 =





P2n+1|0 0

1
2
P2n+1|1

1
2
P2n+1|0



 (54)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 15

P
−1
2n+2|0 =





P
−1
2n+1|0 0

−P−1
2n+1|0P2n+1|1P

−1
2n+1|0 2P−1

2n+1|0



 , (55)

which follow from (1) and (21). Computing the first 22n+1 entries of ω2n+2|0 (i.e., the first half),

using Definition II.1(b), (54) and (55), we obtain




ω
(1)
2n+2|0

ω
(2)
2n+2|0



 = P
−1
2n+1|0

(

P2n+1|0 ◦ log2 P2n+1|0

)

12n+1. (56)

By definition, the right hand side of (56) is ω2n+1|0. Hence, under consideration of (44), we

have

ω2n+1|0 =





ω2n|0

ω2n|0 − 2 · 12n



 . (57)

It remains to express ω2n|0 in (57) in terms of ω2n−1|0. By the same argument as just used,

the first half of the vector ω2n|0 equals ω2n−1|0. Since ω2n|0 is a palindrome, the second half

of ω2n|0 equals Ĩ2n−1 · ω2n−1|0. Hence,

ω2n|0 =





ω2n−1|0

Ĩ2n−1 · ω2n−1|0



 . (58)

By replacing ω2n|0 in (57) with (58), we get (45). The initial value ω1 =
[

0 −2
]T

follows

from (57) and noting that ω0|0 = 0.

Remark II.8. The recursions derived in Lemma II.5 and II.6 are with respect to initial state s0 =

0. They can be transformed to recursions with respect to initial state s0 = 1 using (27) and (29).

D. Proof of the Main Result

In this section, we evaluate (11) based on Lemma II.6. In particular, we find exact solutions

to the optimization problem (3)-(5) for every n ∈ N.

Theorem II.9. Consider the convex optimization problem (3) to (5). The absolute maximum for

input blocks of even length 2n is

C
↑
2n =

1

2
log2

(

5

2

)

b/u, (59)

where n ∈ N. For input blocks of odd length 2n− 1, the absolute maximum is

C
↑
2n−1 =

1

2n− 1

[

log2

(

5

4

)

+ (n− 1) · log2

(

5

2

)]

b/u, (60)

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 16

where n ∈ N.

Proof: Without loss of generality, we assume that the initial state is s0 = 0. Recall (11),

which for input blocks of length 2n− k reads

C
↑
2n−k =

1

2n− k
log2

[

1
T
2n−k exp2

(

ω2n−k|0

)]

b/u, (61)

where n ∈ N and k = 0, 1. For n = 1, a straightforward computation shows using (44) and (45)

in (61), that C
↑
1 = log2

(

5
4

)

b/u and C
↑
2 = 1

2
log2

(

5
2

)

b/u. Now assume that (59) and (60) hold

for some n. In particular, suppose that

1
T
2n exp2

(

ω2n|0

)

=

(

5

2

)n

(62)

and

1
T
2n−1 exp2

(

ω2n−1|0

)

=
5

4

(

5

2

)n−1

. (63)

We now show that (59) and (60) hold if n is replaced by n+1. Using the recursions derived in

Lemma II.6, we have

1
T
2n+2 exp2

(

ω2n+2|0

)

= 1
T
2n

[

2 exp2

(

ω2n|0

)

+ 2 exp2

(

ω2n|0 − 2 · 12n

)]

=
(

2 + 2 · 2−2
)

1
T
2n exp2

(

ω2n|0

)

(64)

and

1
T
2n+1 exp2

(

ω2n+1|0

)

= 1
T
2n−1

[

exp2

(

ω2n−1|0

)

+ exp2

(

Ĩ2n−1ω2n−1|0

)

+exp2

(

ω2n−1|0 − 2 · 12n−1

)

+ exp2

(

Ĩ2n−1ω2n−1|0 − 2 · 12n−1

)]

= 1
T
2n−1

[

2 exp2

(

ω2n−1|0

)

+ 2 exp2

(

ω2n−1|0 − 2 · 12n−1

)]

(65)

=
(

2 + 2 · 2−2
)

1
T
2n−1 exp2

(

ω2n−1|0

)

. (66)

Equation (65) holds since 1
T
2n−1 exp2

(

Ĩ2n−1ω2n−1|0

)

= 1
T
2n−1 exp2

(

ω2n−1|0

)

due to the fact that

a multiplication with Ĩ2n−1 just permutes the entries of ω2n−1|0 (see Lemma II.3). Finally, using

(64), (66) and the induction hypotheses (62), (63) in (61), we obtain

C
↑
2n+2 =

1

2n+ 2
log2

[

1
T
2n+2 exp2

(

ω2n+2|0

)]

=
1

2n+ 2
log2

[(

2 + 2 · 2−2
)

1
T
2n exp2

(

ω2n|0

)]

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 17

=
1

2
log2

(

5

2

)

b/u

and

C
↑
2n+1 =

1

2n+ 1
log2

[

1
T
2n+1 exp2

(

ω2n+1|0

)]

=
1

2n+ 1
log2

[(

2 + 2 · 2−2
)

1
T
2n−1 exp2

(

ω2n−1|0

)]

=
1

2n+ 1

[

log2

(

5

4

)

+ n · log2

(

5

2

)]

b/u.

Remark II.10. Observe that limn→∞C
↑
2n+1 =

1
2
log2

(

5
2

)

b/u where convergence is from below.

Hence, we have

max
n∈N

C↑
n =

1

2
log2

(

5

2

)

b/u.

Unfortunately, the distributions corresponding to (59) and (60) involve negative “probabilities”

— otherwise the capacity of the trapdoor channel would have been established. We elaborate

this issue in the following remark.

Remark II.11. Note that the non-negativity of condition (9) does not hold for all k = 1, . . . , 2n.

This can be verified as follows. For a trapdoor channel Pn|0, condition (9) reads in matrix vector

notation as
[

dk

]

1≤k≤2n
=
(

P
−1
n|0

)T

exp2 (ωn) . (67)

We now compute the second last row of
(

P
−1
n|0

)T

by the following recursive scheme. Applying the

matrix inversion lemma in the form of (21) to Pn|0, which is written as in (1), and subsequently

taking the transpose, then replacing the right bottom block of this matrix, which is 2
(

P
−1
n−1|0

)T

,

with the just obtained matrix times two (where n−1 is replaced by n−2), then applying the same

procedure to the right bottom block of 2
(

P
−1
n−1|0

)T

and so on until the right bottom block equals

2n−1
(

P
−1
1|0

)T

shows that the second last row of
(

P
−1
n|0

)T

equals
[

0 · · · 0 2n−1 −2n−1

]

.

Further, by Lemma II.6, the second to last entry and the last entry of ωn equals −2 and 0 if

n ∈ N is even, and −4 and −2 if n ∈ N is odd. Inserting into (67) yields

d2n−1 =











−3 · 2n−3 if n is even

−3 · 2n−5 if n is odd.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 18

Hence, condition (9) does not hold for all k = 1, . . . , 2n.

III. THE TRAPDOOR CHANNEL AS A FRACTAL

Unlike in Section II, we do not focus on the problem of deriving and attaining the capacity

of a given problem in this section. We rather reinterpret a given information theoretic model,

namely the trapdoor channel, in various ways by intentionally not using information theoretic

tools. The approach is motivated by the fact that the capacity of the trapdoor channel, an open

problem since 1961, seems to be difficult to solve using standard tools from information theory.

The considerable effort, e.g. taken in Section II, to solve the optimization problem (3) to (5)

resulted only in an upper bound on the capacity of the trapdoor channel. On the other hand,

the trapdoor channel exhibits lots of structure (see Lemma II.5 and Lemma II.6), which might

give the capacity if exploited properly. In the following, we present two novel views on the

trapdoor channel. Based on the underlying stochastic matrices (1) and (2), the trapdoor channel

is described geometrically as a fractal or algorithmically as a recursive procedure. By deriving

the underlying iterated function system (IFS), we show that the trapdoor channel with input

blocks of length n can be regarded as the nth element of a sequence of shapes approximating a

fractal.

A. Prerequisites

We review the idea of iterated function systems and fractals. For a comprehensive introduction

to the subject, see e.g. [8]. A fractal is a geometric pattern which exhibits self-similarity at every

scale. A systematic way for generating a fractal starts with a complete metric space (M, d).

The space to which the fractal belongs is, however, not M but the space of non-empty compact

subsets of M , denoted as H(M). A suitable choice for a metric for H(M) is the Hausdorff

distance hd(A,B)
def
= max{d(A,B), d(B,A)} where d(A,B)

def
= maxx∈Aminy∈B d(x, y) and

d(B,A)
def
= maxx∈B miny∈A d(x, y), A,B ∈ H(M). It is then guaranteed that (H(M), hd) is a

complete metric space and that every contraction1 ϕ :M → M on (M, d) becomes a contraction

mapping ϕ : H(M) → H(M) on (H(M), hd) defined by ϕ(A) = {ϕ(x) : x ∈ A} for all

A ∈ H(M).

1Let (M,d) be a metric space. Recall that a mapping ϕ : M → M is a contraction if there exists a contractivity factor s,

0 < s < 1, such that d (ϕ(x), ϕ(y)) ≤ s · d(x, y) for all x, y ∈ M .

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 19

The following definition and theorem provides a method for generating fractals.

Definition III.1. [8, Chapter 3.7] A hyperbolic iterated function system (IFS) consists of a

complete metric space (M, d) together with a finite set of contraction mappings ϕn :M →M ,

with contractivity factors sn for n = 1, 2, . . . , N . The notation for the IFS is {M ;ϕn n =

1, 2, . . . , N} and its contractivity factor is s = max{sn : n = 1, 2, . . . , N}.

The fixed point of a hyperbolic IFS, also called the attractor or self-similar set of the IFS, is

a (deterministic) fractal and results from iterating the IFS with respect to any A ∈ H(M). This

is the content of the following theorem.

Theorem III.2. [8, Chapter 3.7] Let {M ;ϕn n = 1, 2, . . . , N} be an IFS with contractivity

factor s. Then the transformation Φ : H(M)→H(M) defined by

Φ(A) =

N
⋃

n=1

ϕn(A) (68)

for all A ∈ H(M), is a contraction mapping on the complete metric space (H(M), hd) with

contractivity factor s. Its unique fixed point, A⋆ ∈ H(M), obeys

A⋆ = Φ(A⋆) =

N
⋃

n=1

ϕn(A
⋆),

and is given by A⋆ = limk→∞Φ◦k(A) for any A ∈ H(M).

Many well-known fractals, e.g., the Koch snowflake, the Cantor set, the Mandelbrot set, etc.,

can be generated using Definition III.1 and Theorem III.2. A segment of the Mandelbrot set

is shown on the cover of the information theory book by Cover and Thomas [9]. Another

representative, the Sierpinski triangle, is introduced in the following example. We will later see

that this fractal is related to the trapdoor channel.

Example III.3. (Sierpinski triangle) Consider the IFS
{

[0, 1]2;ϕ1(x, y) =

(

x+ 1

2
,
y

2

)

, ϕ2(x, y) =

(

x

2
,
y + 1

2

)

, ϕ3(x, y) =
(x

2
,
y

2

)

}

. (69)

The affine transformations ϕn, n = 1, 2, 3, scale any A ∈ H([0, 1]2) by a factor of 0.5.

Additionally, ϕ1 and ϕ2 introduce translations by 0.5 into the x- and y-direction, respectively. The

Sierpinski triangle is approximated arbitrarily close by iterating Φ(A) for any A ∈ H([0, 1]2).

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 20

Fig. 2 shows the result after performing four iterations of (69). The initial shape A in Fig. 2a

is a triangle with corner points (0, 0), (1, 0), (0, 1) and in Fig. 2b a triangle with corner points

(0, 0), (1, 1), (1, 0). As one performs more and more iterations, both sets converge to the same

attractor A⋆.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) The initial shape is a triangle with corner points (0, 0), (1, 0), (0, 1).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) The initial shape is a triangle with corner points (0, 0), (1, 1), (1, 0).

Fig. 2: Sierpinski triangle after four iterations.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 21

B. The Underlying Iterated Function System

In this section, we derive a hyperbolic IFS for the trapdoor channel. Instead of working with

Pn|s0, we take a geometric approach, i.e., Pn|s0 will be mapped to the unit cube [0, 1]3 ⊂ R
3.

Definition III.4. LetM denote the set
{

Pn|s0 : n ∈ N0, s0 = 0, 1
}

of trapdoor channel matrices.

The function ρ :M→ [0, 1]3 represents each Pn|s0 as a shape in [0, 1]3 according to

Pn|s0 7→
(

x, y,
[

Pn|s0

]

i,j

)

, for all 1 ≤ i, j ≤ 2n (70)

where (i− 1) · 2−n < x < i · 2−n and 1− j · 2−n < y < 1− (j − 1) · 2−n.

Each entry
[

Pn|s0

]

i,j
of Pn|s0 is identified with a square of side length 2−n, which lies at a

distance of
[

Pn|s0

]

i,j
from the xy-plane. The alignment of the square corresponding to

[

Pn|s0

]

i,j

with respect to the other squares in ρ(Pn|s0) is in accordance with the alignment of
[

Pn|s0

]

i,j
with

respect to the other entries of Pn|s0. Fig. 3 depicts the representations ρ(P1|0) and ρ(P1|1). Each of

the four regions within ρ
(

Pn|0

)

and ρ
(

Pn|1

)

corresponds to one of the conditional probabilities

0, 0.5 and 1. The following proposition expresses ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

recursively in terms

of ρ
(

Pn|0

)

and ρ
(

Pn|1

)

.

Lemma III.5. The representations ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

of Pn+1|0 and Pn+1|1 satisfy the

recursion laws

ρ
(

Pn+1|0

)

=
1

2
·
{

ρ
(

Pn|0

)

+ ex, ρ
(

2 ·Pn|0

)

+ ey, ρ
(

Pn|1

)}

(71)

ρ
(

Pn+1|1

)

=
1

2
·
{

ρ
(

2 ·Pn|1

)

+ ex, ρ
(

Pn|1

)

+ ey, ρ
(

Pn|0

)

+ ex + ey

}

(72)

for all n ∈ N0.

Proof: Recursions (71) and (72) are a consequence of the structure of (1) and (2). We just

outline the derivation of (71). The first term 1
2
·
{

ρ
(

Pn|0

)

+ ex

}

on the right hand side of (71)

represents the lower right corner of (1). Observe that
[

Pn+1|0

]

i,j
is equal to 1

2

[

Pn|0

]

i−2n,j−2n

for all 2n < i, j,≤ 2n+1. Hence, scaling the three dimensions of ρ
(

Pn|0

)

by a factor of 1
2

and

shifting the result by 1
2

along the x-direction yields a representation of the lower right corner

of (1) according to Definition III.4. Similarly, the second term 1
2
·
{

ρ
(

2 ·Pn|0

)

+ ey

}

of (71)

represents the upper left corner of (1). Note that each entry
[

Pn+1|0

]

i,j
is equal to

[

Pn|0

]

i,j
for

all 1 ≤ i, j,≤ 2n. Hence, scaling the x- and y-coordinates of ρ
(

Pn|0

)

by a factor of 1
2

and

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 22

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0

0.2

0.4

0.6

0.8

1

Fig. 3: Color map of ρ(P1|0) and ρ(P1|1).

shifting the resulting figure by 1
2

along the y-direction yields a representation of the upper left

corner Pn|0 of (1) according to Definition III.4. The last term 1
2
· ρ
(

Pn|1

)

of (71) represents

the lower left corner of (1). Clearly, each entry
[

Pn+1|0

]

i,j
is equal to 1

2

[

Pn|1

]

i−2n,j
for all

2n < i ≤ 2n+1 and 1 ≤ j ≤ 2n. Hence, scaling all coordinates of ρ
(

Pn|1

)

by a factor of 1
2

yields a representation of the lower left corner of (1) according to Definition III.4.

Recursions (71) and (72) are used below to obtain an IFS for the trapdoor channel. Recall

from Theorem III.2 that an IFS is initialized with a single shape. Hence, it would be desirable

that the right hand side of (71) depends only on Pn|0 and the right hand side of (72) only on

Pn|1. The following proposition introduces an affine transformation which turns ρ
(

Pn|0

)

into

ρ
(

Pn|1

)

and vice versa.

Lemma III.6. Let τ : [0, 1]3 → [0, 1]3 be defined as τ(x, y, z) = (−x+ 1,−y + 1, z). Then

ρ
(

Pn|1

)

= τ ◦ ρ
(

Pn|0

)

(73)

ρ
(

Pn|0

)

= τ ◦ ρ
(

Pn|1

)

, (74)

for all n ∈ N0.

Proof: Equation (74) follows from (73) by noting that τ ◦ τ = (x, y, z). It remains to prove

(73), which is done by induction. Observe that the affine transformation τ corresponds to a

counter-clockwise rotation through 180 degrees about the z-axis and a translation by 1 along

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 23

the x- and y-direction. Using this property, (73) for n = 1 is readily verified from Fig. 3. Now

assume that the assertion holds for some n > 1. A direct computation of τ ◦ ρ
(

Pn+1|0

)

, using

the right hand side of (71) and the induction hypotheses (73) and (74), shows that τ ◦ρ
(

Pn+1|0

)

is equal to ρ
(

Pn+1|1

)

. This is demonstrated for the first function in (71). Observe that

τ ◦
1

2

{

ρ
(

Pn|0

)

+ ex

}

=
1

2

{(

−x+ 1,−y + 1,
[

Pn|s0

]

i,j

)

+ ey

}

=
1

2

{

τ ◦ ρ
(

Pn|0

)

+ ey

}

=
1

2

{

ρ
(

Pn|1

)

+ ey

}

,

where the last step follows from the induction hypothesis.

We can now state the final recursion laws. A combination of Lemma III.5 and Lemma III.6,

i.e., replacing ρ
(

Pn|1

)

in (71) with (73), ρ
(

Pn|0

)

in (72) with (74) and using Definition III.4,

yields the following theorem.

Theorem III.7. The representations ρ
(

Pn+1|0

)

and ρ
(

Pn+1|1

)

of Pn+1|0 and Pn+1|1 satisfy the

following recursions:

ρ
(

Pn+1|0

)

=

{

φ1(x, y, z) =

(

x+ 1

2
,
y

2
,

[

Pn|0

]

i,j

2

)

,

φ2(x, y, z) =

(

x

2
,
y + 1

2
,
[

Pn|0

]

i,j

)

, (75)

φ3(x, y, z) =

(

−
x− 1

2
,−

y − 1

2
,

[

Pn|0

]

i,j

2

)}

,

ρ
(

Pn+1|1

)

=

{

ψ1(x, y, z) =

(

x+ 1

2
,
y

2
,
[

Pn|1

]

i,j

)

,

ψ2(x, y, z) =

(

x

2
,
y + 1

2
,

[

Pn|1

]

i,j

2

)

, (76)

ψ3(x, y, z) =

(

−
x

2
+ 1,−

y

2
+ 1,

[

Pn|1

]

i,j

2

)}

,

where (i− 1) · 2−n < x < i · 2−n and 1− j · 2−n < y < 1− (j − 1) · 2−n and 1 ≤ i, j ≤ 2n.

Remark III.8. The restrictions of φi and ψi, 1 ≤ i ≤ 3, to the x- and y-dimensions are contrac-

tion mappings resulting in two hyperbolic IFS with a unique attractor each. An approximation

of the attractor for s0 = 0 is shown in the plots on the right side of Fig. 4. There is also a

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 24

relation to the Sierpinski triangle. Observe that φi and ψi, 1 ≤ i ≤ 2, when restricted to the

xy-plane, are equal to ϕ1, ϕ2 in (69).

Remark III.9. Recall that P0|0 = 1 and P0|1 = 1. Then limn→∞ ρ
(

Pn|s0

)

for s0 = 0 can be

approximated arbitrarily close by iterating (according to Theorem III.2)
{

[0, 1]3;φ1 =

(

x+ 1

2
,
y

2
,
z

2

)

, φ2 =

(

x

2
,
y + 1

2
, z

)

, φ3 =

(

−
x− 1

2
,−

y − 1

2
,
z

2

)}

(77)

and for s0 = 1
{

[0, 1]3;ψ1 =

(

x+ 1

2
,
y

2
, z

)

, ψ2 =

(

x

2
,
y + 1

2
,
z

2

)

, ψ3 =
(

−
x

2
+ 1,−

y

2
+ 1,

z

2

)

}

, (78)

where the initial shape can be any A ∈ H([0, 1]3) such that the restriction of A to the z-

dimension equals one. Fig. 4 depicts three, four, and five iterations of (77) with an initial shape

{(x, y, z) ∈ [0, 1]3 : z = 1}.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(a) Three iterations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(b) Four iterations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

(c) Five iterations.

Fig. 4: Three, four, and five iterations of (77) and its projections onto the xy-plane. The initial

shape is {(x, y, z) ∈ [0, 1]3 : z = 1}. The color scale is the same as in Fig. 3.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 26

IV. ALGORITHMIC VIEW OF THE TRAPDOOR CHANNEL

A. Remarks on the Permutation Nature

The trapdoor channel has been called a permuting channel [4], where the output is a permu-

tation of the input [5]. We point out that in general not all possible permutations of the input

are feasible and that not every output is a permutation of the input. The reason that not all

permutations are feasible is that the channel actions are causal, i.e., an input symbol at time n

cannot become a channel output at a time instance smaller than n. Consider, for instance, the

string 101 which, when applied to a trapdoor channel with initial state 0, cannot give rise to

an output 110. Next, not every output is a permutation of the input because at a certain time

instance the initial state might become an output symbol and, therefore, the resulting output

sequence might not be compatible with a permutation of the input. For illustration purposes,

consider again the string 101 and initial state 0. Two feasible outputs are 010 and 001, which

are not permutations of 110.

B. The Algorithm

We now present an algorithm that fully characterizes the trapdoor channel and resembles the

recursion of generating all permutations of a given string.The following recursive procedure

GENERATEOUTPUTS computes the set of feasible output sequences and their likelihoods given

an input sequence and an initial state. It gives a complete characterization of the trapdoor channel.

Generating outputs and their corresponding likelihoods for a particular input sequence might be

instrumental for designing codes. In the following, we adopt the standard convention that the

first element of a string corresponds to index 0.

procedure GENERATEOUTPUTS(in, out, state, prob)

if in = ∅ then

set ← {out, prob}

else if in[0] = state then

out← out+ in[0]

set← GENERATEOUTPUTS(in.substr(1), out, state, prob)

else

out← out+ in[0]

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 27

set← GENERATEOUTPUTS(in.substr(1), out, state, 0.5 · prob)

out[out.length()− 1]← state ⊲ in[0] is removed from the end of out

set← GENERATEOUTPUTS(in.substr(1), out, in[0], 0.5 · prob)

end if

return set

end procedure

The four variables in, out, state, prob have the following meaning: in denotes the part of

the input string that has not been processed yet, out indicates the part of one particular output

string that has been generated so far, state refers to the current channel state, prob denotes the

likelihood of out. The procedure is initialized with the complete input string and the initial state

of the channel; out is initially empty while prob equals 1. The first if statement checks the simple

case of the recursion, namely whether the input string has been processed completely. If yes, the

corresponding output out and its likelihood prob is stored and returned in set. Otherwise, we

have to distinguish whether the next input symbol in[0] is equal to the current state or not. If

yes, the next output takes the value of in[0] with probability 1 (or of state, but both are equal),

i.e., out ← out + in[0], and the procedure GENERATEOUTPUTS is applied recursively to the

unprocessed part in.substr(1) of the input string, i.e., the substring of in with indices greater

than 0. Clearly, state and prob do not change and are passed directly to the recursive call. In

the other case, namely when in[0] is not equal to the current state, the next output symbol will

have a probability of 0.5 to be either in[0] or state. If in[0] becomes the next channel output,

the following state remains the same. Then the remaining input string in.substr(1) is processed

by the recursive call GENERATEOUTPUTS(in.substr(1), out, state, 0.5 ·prob). However, if state

becomes the channel output, then the following state will be in[0] and the remaining input string

is processed by GENERATEOUTPUTS(in.substr(1), out, in[0], 0.5 · prob).

Observe that a recursive implementation of the algorithm is needed to process inputs of any

length, which is not the case if only iterative control structures are used. We emphasize that each

of the three recursive calls of the algorithm resembles a recursion for generating all permutations

of a string (see, e.g., [10, ch. 8.3]). This gives an algorithmic justification why some output

sequences are permutations of the input sequence.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 28

V. DISCUSSION

We focused on the convex optimization problem (3) to (5) where the feasible set is larger than

the probability simplex. An absolute maximum of the n-letter mutual information was established

for any n ∈ N by using the method of Lagrange multipliers via [2, Theorem 3.3.3]. The same

absolute maximum 1
2
log2

(

5
2

)

≈ 0.6610 b/u results for all even n and the sequence of absolute

maxima corresponding to odd block lengths converges from below to 1
2
log2

(

5
2

)

b/u as the

block length increases. Unfortunately, all absolute maxima are attained outside the probability

simplex. Hence, instead of establishing the capacity of the trapdoor channel, we have shown

only that 1
2
log2

(

5
2

)

b/u is an upper bound on the capacity. To the best of our knowledge, this

upper bound is the tightest known bound. Notably, this upper bound is strictly smaller than the

feedback capacity [5]. Moreover, the result gives an indirect justification that the capacity of

the trapdoor channel is attained on the boundary of the probability simplex. Subsequently, two

different views on the trapdoor channel were presented. We first derived the IFS of the trapdoor

channel, which was motivated by the observation that standard approaches from information

theory have failed so far to derive its capacity. Subsequently, we described the trapdoor channel

by means of a recursive procedure. The procedure, which generates all feasible output sequences

and their likelihoods given a particular input sequence, might be helpful to construct codes for

the trapdoor channel.

ACKNOWLEDGMENT

The author is supported by the German Ministry of Education and Research in the framework

of the Alexander von Humboldt-Professorship and would like to thank Prof. Haim Permuter

who suggested to use [2, Theorem 3.3.3]. Moreover, the author wishes to thank Prof. Gerhard

Kramer and Prof. Tsachy Weissman for helpful discussions.

REFERENCES

[1] D. Blackwell, Information Theory, E. F. Beckenbach, Ed. McGraw-Hill Book Co., New York, 1961, vol. Modern

Mathematics for the Engineer.

[2] R. Ash, Information Theory. Interscience Publishers, 1965.

[3] K. Kobayashi and H. Morita, “An input/output recursion for the trapdoor channel,” in Proc. IEEE Int. Symp. Inf. Theory,

Lausanne, Switzerland, Jun. 30–Jul. 5 2002, p. 423.

September 20, 2014 DRAFT

SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 29

[4] R. Ahlswede and A. H. Kaspi, “Optimal coding strategies for certain permuting channels.” IEEE Trans. Inf. Theory, vol. 33,

no. 3, pp. 310–314, 1987.

[5] H. H. Permuter, P. Cuff, B. VanRoy, and T. Weissman, “Capacity of the trapdoor channel with feedback,” IEEE Trans.

Inf. Theory, vol. 54, no. 7, pp. 3150–3165, Jul. 2008.

[6] R. G. Gallager, Information Theory and Reliable Communication. John Wiley & Sons, Inc., 1968.

[7] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. The John Hopkins University Press, 1996.

[8] M. Barnsley, Fractals Everywhere. Academic Press, Inc., 1988.

[9] T. M. Cover and J. Thomas, Elements of Information Theory. New York: Wiley, 1991.

[10] E. Roberts, Programming Abstractions in C++. Prentice Hall, 2014.

September 20, 2014 DRAFT

