On Multicasting Prioritized Messages

Shirin Saeedi Bidokhti (Technical University of Munich)
Joint work with Vinod Prabhakaran, Suhas Diggavi, Christina Fragouli

March 5, 2014

Problem setup

Problem setup

- Ahlswede, Li, Cai and Yeung (2000)
- Avestimehr, Diggavi and Tse (2007)

Problem setup: prioritized messages

Video Streaming over Heterogeneous Networks Scalable Video Coding (SVC standard)

- Korner and Marton (1977); Nair and El-Gamal (2008)
- Ngai and Yeung (2004), Erez and Feder (2003), and Ramamoorthy and Wessel (2009)

Problem setup: objective

- A high priority (common) message of rate R_{1} and a low priority (private) message of rate R_{2}
- public receivers and private receivers
- What are the ultimate communication rates?
- Optimal or Near optimal communication schemes?

Problem setup: objective

- A high priority (common) message of rate R_{1} and a low priority (private) message of rate R_{2}
- public receivers and private receivers
- What are the ultimate communication rates?
- Optimal or Near optimal communication schemes?

Outline

(1) Combination networks
(2) The challenge
(3) Linear superposition coding
(4) More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results
(6) Why are combination networks useful?

Outline

(1) Combination networks

(2) The challenge

3 Linear superposition coding

4 More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results
(6) Why are combination networks useful?

A combinatorial network model: combination networks

A combinatorial network model: combination networks

A combinatorial network model: combination networks

- A simple combinatorial model to capture the interaction of the signals
- Connections to linear deterministic broadcast channels

A combinatorial network model: combination networks

- A simple combinatorial model to capture the interaction of the signals
- Connections to linear deterministic broadcast channels

A combinatorial network model: combination networks

- A simple combinatorial model to capture the interaction of the signals
- Connections to linear deterministic broadcast channels

A combinatorial network model: combination networks

- A simple combinatorial model to capture the interaction of the signals
- Connections to linear deterministic broadcast channels

Notation

- $m=2$ public receivers, 2 private receivers

Notation

- $m=2$ public receivers, 2 private receivers
- $\mathcal{E}_{S}, S \subseteq\{1,2\}$: the set of all resources connected to (and only to) every public receiver $i \in S$

Notation

- $m=2$ public receivers, 2 private receivers
- $\mathcal{E}_{S}, S \subseteq\{1,2\}$: the set of all resources connected to (and only to) every public receiver $i \in S$
- $\mathcal{E}_{S}^{p}, S \subseteq\{1,2\}, p \in\{3,4\}$: in \mathcal{E}_{S} but also connected to private receiver p

Outline

(1) Combination networks

(2) The challenge

3 Linear superposition coding

4 More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results
(6) Why are combination networks useful?

The challenge

Mixing of the common and private messages is necessary; but in a controlled manner

One has to reveal (partial) information about the private message to public receivers!

Main Results

(1) An achievable rate-region using a standard linear superposition encoding schemes.
capacity region for two public and any number of private receivers.

Main Results

(1) An achievable rate-region using a standard linear superposition encoding schemes.

capacity region for two public and any number of private receivers.

(2) The rate-region is enlarged by employing a proper pre-encoding at the transmitter.
capacity region for three (or fewer) public and any number of private receivers.
(3) A block Markov encoding scheme may improve both previous schemes.
capacity region for three (or fewer) public and any number of private receivers.

Outline

(1) Combination networks

2 The challenge
(3) Linear superposition coding

4 More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results

6 Why are combination networks useful?

Rate splitting and linear superposition coding

- let $W=\left[w_{1,1} \ldots w_{1, R_{1}} w_{2,1} \ldots w_{2, R_{2}}\right]^{T}$
- let $X=\mathbf{A} \cdot W$
- reveal information about the private messages to public receivers through a zero-structured encoding matrix
- a linear superposition coding scheme

Rate splitting and linear superposition coding

- let $W=\left[w_{1,1} \ldots w_{1, R_{1}} w_{2,1} \ldots w_{2, R_{2}}\right]^{T}$
- let $X=\mathbf{A} \cdot W$
- reveal information about the private messages to public receivers through a zero-structured encoding matrix
- a linear superposition coding scheme

- choose appropriate parameters, and complete the matrix

Rate-region I

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable if there exist variables $\alpha_{\phi}, \alpha_{\{1\}}, \alpha_{\{2\}}, \alpha_{\{1,2\}}$, s.t.

Structural constraints:

$$
\begin{aligned}
& \alpha_{S} \geq 0 \quad \forall S \subseteq\{1,2\} \\
& R_{2}=\sum \alpha_{S}
\end{aligned}
$$

Decoding constraints at public receiver $i \in\{1,2\}$:

$$
R_{1}+\sum_{S \ni i} \alpha_{S} \leq \sum_{S \ni i}\left|\mathcal{E}_{S}\right|
$$

Decoding constraints at private receiver p :

$$
\begin{aligned}
& R_{2} \leq \sum_{S \in \mathcal{T}} \alpha_{S}+\sum_{S \in \mathcal{T}^{c}}\left|\mathcal{E}_{S}^{p}\right| \quad \forall \mathcal{T} \subseteq 2^{\{1,2\}} \text { superset saturated } \\
& R_{1}+R_{2} \leq \sum_{S \subseteq\{1,2\}}\left|\mathcal{E}_{S}^{p}\right|
\end{aligned}
$$

The converse holds for two public and any number of private receivers, characterizing the capacity region.

Two public and any number of private receivers

Theorem

Rate $\left(R_{1}, R_{2}\right)$ is achievable if and only if

$$
\begin{aligned}
& R_{1} \leq \min \left(\left|\mathcal{E}_{\{1\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|,\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|\right) \\
& R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\phi}^{p}\right|+\left|\mathcal{E}_{\{1\}}^{p}\right|+\left|\mathcal{E}_{\{2\}}^{p}\right|+\left|\mathcal{E}_{\{1,2\}}^{p}\right|\right\} \\
& 2 R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\{1\}}\right|+2\left|\mathcal{E}_{\{1,2\}}\right|+\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\phi}^{p}\right|\right\}
\end{aligned}
$$

Two public and any number of private receivers

Theorem

Rate $\left(R_{1}, R_{2}\right)$ is achievable if and only if

$$
\begin{aligned}
& R_{1} \leq \min \left(\left|\mathcal{E}_{\{1\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|,\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|\right) \\
& R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\phi}^{p}\right|+\left|\mathcal{E}_{\{1\}}^{p}\right|+\left|\mathcal{E}_{\{2\}}^{p}\right|+\left|\mathcal{E}_{\{1,2\}}^{p}\right|\right\} \\
& 2 R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\{1\}}\right|+2\left|\mathcal{E}_{\{1,2\}}\right|+\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\phi}^{p}\right|\right\}
\end{aligned}
$$

R_{2}

Two public and any number of private receivers

Theorem

Rate $\left(R_{1}, R_{2}\right)$ is achievable if and only if

$$
\begin{aligned}
& R_{1} \leq \min \left(\left|\mathcal{E}_{\{1\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|,\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|\right) \\
& R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\phi}^{p}\right|+\left|\mathcal{E}_{\{1\}}^{p}\right|+\left|\mathcal{E}_{\{2\}}^{p}\right|+\left|\mathcal{E}_{\{1,2\}}^{p}\right|\right\} \\
& 2 R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\{1\}}\right|+2\left|\mathcal{E}_{\{1,2\}}\right|+\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\phi}^{p}\right|\right\}
\end{aligned}
$$

Two public and any number of private receivers

Theorem

Rate $\left(R_{1}, R_{2}\right)$ is achievable if and only if

$$
\begin{aligned}
& R_{1} \leq \min \left(\left|\mathcal{E}_{\{1\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|,\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|\right) \\
& R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\phi}^{p}\right|+\left|\mathcal{E}_{\{1\}}^{p}\right|+\left|\mathcal{E}_{\{2\}}^{p}\right|+\left|\mathcal{E}_{\{1,2\}}^{p}\right|\right\} \\
& 2 R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\{1\}}\right|+2\left|\mathcal{E}_{\{1,2\}}\right|+\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\phi}^{p}\right|\right\}
\end{aligned}
$$

Two public and any number of private receivers

Theorem

Rate $\left(R_{1}, R_{2}\right)$ is achievable if and only if

$$
\begin{aligned}
& R_{1} \leq \min \left(\left|\mathcal{E}_{\{1\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|,\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\{1,2\}}\right|\right) \\
& R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\phi}^{p}\right|+\left|\mathcal{E}_{\{1\}}^{p}\right|+\left|\mathcal{E}_{\{2\}}^{p}\right|+\left|\mathcal{E}_{\{1,2\}}^{p}\right|\right\} \\
& 2 R_{1}+R_{2} \leq \min _{p \in I_{2}}\left\{\left|\mathcal{E}_{\{1\}}\right|+2\left|\mathcal{E}_{\{1,2\}}\right|+\left|\mathcal{E}_{\{2\}}\right|+\left|\mathcal{E}_{\phi}^{p}\right|\right\}
\end{aligned}
$$

Outline

(1) Combination networks

2 The challenge
(3) Linear superposition coding

4 More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results

6) Why are combination networks useful?

When there are more than two public receivers...

- $(0,2)$ is not achievable using the previous scheme!

When there are more than two public receivers...

- $(0,2)$ is not achievable using the previous scheme!

The private information revealed to different subsets of public receivers need not be independent

Appropriate pre-encoding

- pre-encode $W_{2}=\left[w_{2,1}, w_{2,2}\right]^{T}$ into $W_{2}^{\prime}=\left[w_{2,1}^{\prime}, w_{2,2}^{\prime}, w_{2,3}^{\prime}\right]$
- now use an structured encoding matrix

$$
\left[\begin{array}{l}
X_{\{1\}} \\
X_{\{2\}} \\
X_{\{3\}}
\end{array}\right]=\left[\begin{array}{l|l|l}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
w_{2,1}^{\prime} \\
w_{2,2}^{\prime} \\
w_{2,3}^{\prime}
\end{array}\right] .
$$

Rate-region II

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable if there exist variables $\alpha_{\phi}, \alpha_{\{1\}}, \alpha_{\{2\}}, \alpha_{\{1,2\}}$, s.t.

Structural constraints:

$$
\begin{aligned}
& \alpha_{S} \geq 0 \quad \forall \phi \neq S \subseteq\{1,2\} \\
& R_{2}=\sum \alpha_{S}
\end{aligned}
$$

Decoding constraints at public receiver $i \in\{1,2\}$:

$$
R_{1}+\sum_{S \ni i} \alpha_{S} \leq \sum_{S \ni i}\left|\mathcal{E}_{S}\right|
$$

Decoding constraints at private receiver $p \in I_{2}$:

$$
\begin{aligned}
& R_{2} \leq \sum_{S \in \mathcal{T}} \alpha_{S}+\sum_{S \in \mathcal{T}^{c}}\left|\mathcal{E}_{S}^{p}\right| \quad \forall \mathcal{T} \subseteq 2^{\{1,2\}} \text { superset saturated } \\
& R_{1}+R_{2} \leq \sum_{S \subseteq\{1,2\}}\left|\mathcal{E}_{S}^{p}\right|
\end{aligned}
$$

The converse holds for three (or fewer) public and any number of private receivers, characterizing the capacity region.

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?
- $\left(R_{1}=0, R_{2}^{\prime}=3\right)$ is achievable using the linear superposition encoding scheme, over the extended channel

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?
- $\left(R_{1}=0, R_{2}^{\prime}=3\right)$ is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair $(0,2)$ over the original network: block Markov encoding and backwards decoding

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?
- $\left(R_{1}=0, R_{2}^{\prime}=3\right)$ is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair $(0,2)$ over the original network: block Markov encoding and backwards decoding

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?
- $\left(R_{1}=0, R_{2}^{\prime}=3\right)$ is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair $(0,2)$ over the original network: block Markov encoding and backwards decoding

Beyond pre-encoding: dependency through time

- how to achieve rate pair ($R_{1}=0, R_{2}=2$)?
- $\left(R_{1}=0, R_{2}^{\prime}=3\right)$ is achievable using the linear superposition encoding scheme, over the extended channel
- use it to achieve rate pair $(0,2)$ over the original network: block Markov encoding and backwards decoding

Rate-region III

A rate pair $\left(R_{1}, R_{2}\right)$ is achievable if there exist $\alpha_{\phi}, \alpha_{\{1\}}, \alpha_{\{2\}}, \alpha_{\{1,2\}}$, s.t.

$$
\begin{aligned}
& \alpha_{\{1,2\}} \geq 0, \quad \alpha_{\{1\}}+\alpha_{\{1,2\}} \geq 0, \quad \alpha_{\{2\}}+\alpha_{\{1,2\}} \geq 0 \\
& \alpha_{\{1\}}+\alpha_{\{2\}}+\alpha_{\{1,2\}} \geq 0 \\
& \alpha_{\phi}+\alpha_{\{1\}}+\alpha_{\{2\}}+\alpha_{\{1,2\}} \geq 0 \\
& R_{2}=\sum \alpha_{S}
\end{aligned}
$$

Decoding constraints at public receiver $i \in\{1,2\}$:

$$
\begin{aligned}
& \sum_{S \ni i} \alpha_{S} \leq \sum_{S \in \mathcal{T}} \alpha_{S}+\sum_{S \in \mathcal{T}^{c}, S \ni i}\left|\mathcal{E}_{S}\right| \quad \forall \mathcal{T} \subseteq\{\{i\} \star\} \text { superset saturated } \\
& R_{1}+\sum_{S \ni i} \alpha_{S} \leq \sum_{S \ni i}\left|\mathcal{E}_{S}\right|
\end{aligned}
$$

Decoding constraints at private receiver p :

$$
\begin{aligned}
& R_{2} \leq \sum_{S \in \mathcal{T}} \alpha_{S}+\sum_{S \in \mathcal{T}^{c}}\left|\mathcal{E}_{S}^{p}\right| \quad \forall \mathcal{T} \subseteq 2^{\{1,2\}} \text { superset saturated } \\
& R_{1}+R_{2} \leq \sum_{S \subseteq\{1,2\}}\left|\mathcal{E}_{S}^{p}\right|
\end{aligned}
$$

The converse holds for three (or fewer) public and any number of private receivers, characterizing the capacity region.

Outline

Combination networksThe challengeLinear superposition coding4 More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results

6 Why are combination networks useful?

Optimality results

Discussions delegated to the end of the presentation, if of your interest!

Outline

Combination networksThe challengeLinear superposition coding(4) More than two public receivers...

- A pre-encoding approach
- A block Markov encoding scheme
(5) Optimality results
(6) Why are combination networks useful?

Connections with linear deterministic broadcast channels

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1}
\end{array}\right] \\
& Y_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \\
& Y_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right] \\
& Y_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right]
\end{aligned}
$$

Connections with linear deterministic broadcast channels

$$
\begin{aligned}
& Y_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{ll}
x_{1}
\end{array}\right] \\
& Y_{2}=\left[\begin{array}{llll}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
x_{3}
\end{array}\right] \\
& Y_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2}+x_{3} \\
x_{4}
\end{array}\right] \\
& Y_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{1}+x_{2} \\
x_{2}+3 x_{3}+2 x_{4}
\end{array}\right]
\end{aligned}
$$

Connections with linear deterministic broadcast channels

$Y_{1}=\mathbf{H}_{1}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{ll}x_{1}\end{array}\right]$
$Y_{2}=\mathbf{H}_{2}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1}+2 x_{2} \\ x_{3}\end{array}\right]$
$Y_{3}=\mathbf{H}_{3}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2}+x_{3} \\ x_{4}\end{array}\right]$
$Y_{4}=\mathbf{H}_{4}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2}+3 x_{3}+2 x_{4}\end{array}\right]$

Connections with linear deterministic broadcast channels

$Y_{1}=\mathbf{H}_{1}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{ll}x_{1}\end{array}\right]$
$Y_{2}=\mathbf{H}_{2}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1}+2 x_{2} \\ x_{3}\end{array}\right]$
$Y_{3}=\mathbf{H}_{3}\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2}+x_{3} \\ x_{4}\end{array}\right]$
$Y_{4}=\mathbf{H}_{4}\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{1}+x_{2} \\ x_{2}+3 x_{3}+2 x_{4}\end{array}\right]$

Capacity result

The capacity region of a linear deterministic broadcast channel with two public receivers and any number of private receivers is given by

$$
\begin{aligned}
R_{1} & \leq \min _{i \in I} r_{\{i\}} \\
R_{1}+R_{2} & \leq \min _{i \in I_{2}} r_{\{i\}} \\
2 R_{1}+R_{2} & \leq \min _{i \in I_{2}}\left\{r_{\{1\}}+r_{\{2\}}+r_{\{1,2, i\}}-r_{\{1,2\}}\right\},
\end{aligned}
$$

where the size of \mathbb{F} is larger than K. The rates given above are expressed in $\log _{|\mathbb{F}|}(\cdot)$.

- $r_{\{i\}} \triangleq \operatorname{rank}\left(\mathbf{H}_{i}\right)$
- $r_{\left\{i_{1}, \cdots, i_{|\mathcal{S}|}\right\}} \triangleq \operatorname{rank}\left[\begin{array}{c}\mathbf{H}_{i_{1}} \\ \vdots \\ \mathbf{H}_{i_{|\mathcal{S}|}}\end{array}\right]$

Example

$$
\begin{aligned}
\mathbf{H}_{1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \\
\mathbf{H}_{2} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] \\
\mathbf{H}_{3} & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{array}{lll}
\mathbf{H}_{1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] & r_{1}=r_{2}=2 \\
\mathbf{H}_{2} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] & r_{3}=3 \\
\mathbf{H}_{3} & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] & r_{12}=3 \\
r_{123}=3
\end{array}
$$

Example

$$
\begin{array}{rll}
\mathbf{H}_{1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] & \\
\mathbf{H}_{2} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] & r_{1}=r_{2}=2 \\
r_{3}=3 \\
\mathbf{H}_{3} & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] & r_{12}=3 \\
r_{123}=3
\end{array}
$$

Example

$$
\begin{array}{lll}
\mathbf{H}_{1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] & \\
\mathbf{H}_{2} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] & r_{1}=r_{2}=2 \\
r_{3}=3 \\
\mathbf{H}_{3} & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] & r_{12}=3 \\
r_{123}=3
\end{array}
$$

$$
\begin{aligned}
& R_{1} \leq 2 \\
& R_{1}+R_{2} \leq 3 \\
& 2 R_{1}+R_{2} \leq 4
\end{aligned}
$$

Example

$$
\begin{array}{rlr}
\mathbf{H}_{1} & =\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] & \\
\mathbf{H}_{2} & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0
\end{array}\right] & r_{3}=3 \\
\mathbf{H}_{3}= & =\left[\begin{array}{llll}
1 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1
\end{array}\right] & r_{12}=3 \\
r_{123}=3
\end{array}
$$

$R_{1} \leq 2$
$R_{1}+R_{2} \leq 3$
$2 R_{1}+R_{2} \leq 4$

Summary

- Studied the problem of multicasting prioritized messages over combination networks

Summary

- Studied the problem of multicasting prioritized messages over combination networks
- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels

Summary

- Studied the problem of multicasting prioritized messages over combination networks
- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels
- Discussed three encoding schemes, and their regimes of optimality

Summary

- Studied the problem of multicasting prioritized messages over combination networks
- Combination networks turn out to be a rich class of networks and a rich class of linear deterministic broadcast channels
- Discussed three encoding schemes, and their regimes of optimality
- Generalizing these schemes to linear deterministic broadcast channels seems very promising

