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Upper and Lower Bounds to the Information Rate
Transferred Through First-Order Markov Channels

With Free-Running Continuous State
Luca Barletta, Member, IEEE, Maurizio Magarini, Member, IEEE, Simone Pecorino, and Arnaldo Spalvieri

Abstract— Starting from the definition of mutual information,
one promptly realizes that the probabilities inferred by Bayesian
tracking can be used to compute the Shannon information
between the state and the measurement of a dynamic system.
In the Gaussian and linear case, the information rate can
be evaluated from the probabilities computed by the Kalman
filter. When the probability distributions inferred by Bayesian
tracking are nontractable, one is forced to resort to approx-
imated inference, which gives only an approximation to the
wanted probabilities. We propose upper and lower bounds to the
information rate between the hidden state and the measurement
based on approximated inference. Application of these bounds to
multiplicative communication channels is discussed, and experi-
mental results for the discrete-time phase noise channel and for
the Gauss–Markov fading channel are presented.

Index Terms— Mutual information, Bayesian tracking, Kalman
filtering, particle filtering, multiplicative channels, coherent
communication, phase noise, Gauss-Markov fading channel,
channel capacity.

I. INTRODUCTION

TRACKING the state of a dynamic system from noisy
measurements is a classical problem in several fields of

science. In the Bayesian approach, probabilities are used to
model the state evolution and the measurement given the state,
and, from the model and the measurements, inference is made
on the hidden evolving state. By making inference one builds
the probability of the state given all the available measure-
ments, thus embodying all the available statistical information
in the inferred distribution. Therefore it can be said that, in
some sense, Bayesian tracking extracts the information about
the state that is brought by the measurements.

The most popular tool for Bayesian tracking of a system
with continuous state is the Kalman filter (see, e.g., [1] for a
comprehensive book on the Kalman filter). The Kalman filter
performs optimal tracking, thus leading to exact inference,
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when the equations that describe the state evolution and the
measurement are linear and the noise processes that affect
the state evolution and the measurement are additive and
independent Gaussian processes. When the state transition
and/or the measurement equations are non-linear and/or the
noise processes are non-Gaussian, the Kalman filter is no
more optimal. Among the inferential techniques proposed to
face these difficult cases, particle filters have received in the
past two decades widespread interest. The basic feature of the
particle filter is to provide a non-parametric approximation
to the exact distribution, thus making possible to accurately
infer multi-modal distributions. Particle filtering techniques
have found application in several research areas, including,
to cite just a few, communication systems, data fusion,
non-linear control, analysis of financial time series. Being a
comprehensive survey of the bibliography out of the scope
of the present paper, the interested reader is referred to the
tutorial papers [2]–[6] to take a look at the world of particle
filters and their applications.

In the following, we will focus on discrete-time systems
with continuous state. The state process is assumed to be a first
order Markov process, the measurement process is assumed
to be memoryless given the state, and the distributions of
the Markov state process and of the measurement noise are
assumed to be known. Specifically, among the broad class
of discrete-time systems with continuous Markov state, com-
munication channels with free-running hidden state will be
considered in the following.

Two prominent examples of communication channels with
free-running continuous hidden state are the multiplicative
phase noise channel and the multiplicative fading channel.
The presence of multiplicative phase noise in radio channels,
introduced by the local oscillators used in up conversion and
down conversion, is well known and studied from a long time.
Also, multiplicative phase noise is a hot topic in the context of
coherent optical transmission. Recent studies about the phase
noise that arises in optical channels and about its effects in
coherent optics can be found in [7]–[9]. It is intuitive that a
time-varying channel, as the multiplicative phase noise channel
is, can impair the information rate between the source and
channel’s output, this concept having been investigated several
times in the past. Results on the capacity of the additive white
Gaussian noise (AWGN) channel affected by memoryless
multiplicative phase noise can be found in [10], [11]. The
information rate transferred through the channel with memo-
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ryless phase noise is studied in [12], while considerations on
the model for continuous-time memoryless phase noise are
proposed in [13]. The case of Wiener phase noise, where
the phase noise process has memory and should therefore
be tracked, is considered in [14]–[21]. To fit the phase noise
affecting local oscillator from the real world, the richer ARMA
(AutoRegressive Moving Average) model is often considered.
The ARMA model better fits many cases of practical interest,
because it allows for shaping the power spectral density of
phase noise by acting on the order and on the parameters
of the model, see e.g. [22] for a second-order ARMA model
of phase noise. Working out the information rate transferred
through a channel affected by a general multiplicative ARMA
phase noise process is a challenging problem, because

• the state space is not finite and it is multidimensional,
therefore it cannot be approached by trellis-based tech-
niques based on quantization of the state space as those
used with Wiener phase noise [15], [17], because the
number of states of the trellis would be enormous, and

• the observation is a nonlinear function of the state,
therefore the linearized Kalman filter can be far from
being optimal.

The only papers studying the information rate transferred
through a channel affected by ARMA phase noise we are
aware of are [14], [23], where the method of particle filtering
is adopted. Recent investigations on the capacity of the fading
channel with hidden Markov state can be found in [24]–[27],
the most popular model for the fading spectrum being the
first-order ARMA model of [24].

In this paper, upper and lower bounds to the information rate
between the measurement and the hidden state are presented.
The upper bound, which is based on approximate Bayesian
tracking, is quite straightforward and can be found in many
already published papers, while the lower bound, which is
new, is obtained by Bayesian smoothing. From these bounds
we derive upper and lower bounds to the information rate
transferred between the input and the output of communication
channels with free-running ARMA continuous hidden state.
Specifically, the upper bound is already published in [17]
and [23], while the lower bound is new. Evaluation of these
bounds, which is presented here for the fading channel and
for the phase noise channel, is based on the Kalman filter
and on the particle filter. The novelty compared to [14],
where particle filtering techniques are used to compute the
information rate, is that we present here upper and lower
bounds, while by [14] one can compute only an approximation.
Compared to [23], here the evaluation method of the upper
bound is new, because one of the terms appearing in the
bound is based on a distribution that is allowed here to
be multi-modal, while in [23] that distribution is approxi-
mated to a Gaussian one. Also, the evaluation method of
the upper bound is different from [17], where trellis-based
techniques are adopted. Both the upper bound and the lower
bound are substantially tighter than those of [23] especially
when, as it happens with the phase noise spectrum used for
deriving the numerical results, inference becomes challenging
due to strong phase noise and to the high-dimensional state
space.

The outline of the paper is as follows. Sections II, III,
and IV, focus on the evaluation of the information rate
between the measurement and the hidden state. Specifically,
Section II is an introductory Section which shows that the
actual information rate between the measurement and the
hidden state can be evaluated from the probabilities inferred
by exact Bayesian tracking. Evaluation of the information rate
by the Kalman filter, that will find application in Section VII,
is presented as an example. In Section III the case where exact
inference is not feasible is considered. To deal with this case,
upper and lower bounds to the information rate are proposed.
Section IV shows how the bounds of Section III can be
computed by particle methods. Communication channels with
free-running hidden Markov state are considered in Section V.
In that Section upper and lower bounds to the information
rate between the source and the output of the communication
channel are derived as a by-product of the upper and lower
bounds to the information rate inferred about the hidden state
of the channel. These bounds are based on data-aided inference
for some terms, and on data-aided inference for some others.
In Section VI the multiplicative ARMA phase noise channel
is analyzed in depth, deriving for it numerical results showing
that the upper and lower bounds to the information rate pro-
posed here outperform those available in the literature. To give
a more complete view of applicability of the proposed method
to multiplicative channels, in Section VII the multiplicative
fading channel is considered. Also for this channel numerical
results are presented, taking for fading spectrum the first-order
ARMA model of [24]. While with the phase noise channel all
the terms appearing in the bounds are computed by the particle
filter, here, thanks to linearity of the data-aided measurement,
the terms based on data-aided inference are computed by
the conventional Kalman filter. Finally, in Section VIII the
conclusion is drawn.

II. EVALUATION OF THE INFORMATION RATE

BY EXACT BAYESIAN TRACKING

Let the lowercase character u denote a column vector and
let the uppercase calligraphic character U denote the space
spanned by u. Let the uppercase character U indicate a
possibly non-stationary process, U = U0, U1, . . ., where the
uppercase indexed letter Uk denotes a random vector whose
generic realization uk takes its values in U . Also, let uk

i denote
a windowed sequence of vectors between the discrete time
instant i and the discrete time instant k, that is

uk
i = (ui , ui+1, . . . , uk), 0 ≤ i ≤ k,

uk
i = empty, elsewhere.

For continuous random variables, p(uk
i ) is a shorthand

used to indicate the multivariate probability density function
p(Uk

i = uk
i ), while, when using discrete random variables, the

shorthand p(uk
i ) indicates the multivariate mass probability of

Uk
i evaluated in uk

i . The notation |U | denotes the number of
elements in the discrete set U .

Consider a dynamical system based on the state transition
equation

Sk = fk−1(Sk−1, Vk−1), (1)
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and on the measurement equation

Yk = hk(Sk, Nk ), (2)

where, here and in what follows, we let k = 1, 2, . . . In
the above equations, V is a process of independent vec-
tors called process noise, N is a process independent of V
made of independent vectors and called measurement noise,
S is the state process, Y is the measurement process, and
{ fk−1(·)} and {hk(·)} are sequences of known functions.

The dynamical system can be mapped onto the frame-
work of first-order Markov processes. The Markovian state
process S is characterized by the joint probability

p(sn
0 ) = p(s0)

n∏

k=1

p(sk |sk−1). (3)

A measurement that is memoryless given the state is charac-
terized by the conditional distribution

p(yn
1 |sn

1 ) =
n∏

k=1

p(yk|sk). (4)

From the above two equations, after straightforward passages
one gets

p(sk|sk−1
0 , yk−1

1 ) = p(sk|sk−1). (5)

The Shannon mutual information rate between the state and
the measurement, expressed in bits per measurement, is

I (S; Y ) = lim
n→∞

1

n
E

{
log2

(
p(Y n

1 |Sn
1 )

p(Y n
1 )

)}

= lim
n→∞

1

n
E

{
log2

( ∏n
k=1 p(Yk |Sk)∏n

k=1 p(Yk |Y k−1
1 )

)}
(6)

= lim
n→∞

1

n

n∑

k=1

E

{
log2

(
p(Yk|Sk)

p(Yk|Y k−1
1 )

)}
(7)

= lim
n→∞

1

n

n∑

k=1

I (Sk ; Yk|Y k−1
1 ), (8)

where I (X; Y |Z) is the conditional mutual information rate
between X and Y given Z , the numerator inside the logarithm
in (6) is obtained by (4), and the denominator inside the
logarithm in (6) is obtained by chain rule.

By the Shannon-McMillan-Breiman theorem, one can gen-
erate a joint sequence (sn

0 , yn
1 ) according to the actual joint

state transition probability and measurement probability

p(sn
0 , yn

1 ) = p(s0)

n∏

k=1

p(sk |sk−1)p(yk|sk) (9)

and then evaluate the information rate as a sample estimate
of (7):

I (S; Y ) = lim
n→∞

1

n

n∑

k=1

log2

(
p(yk|sk)

p(yk|yk−1
1 )

)
. (10)

When the state transition probability and the measurement
probability are known and treatable, the conditional probability
p(yk|yk−1

1 ) can be worked out by Bayesian tracking. Let the

Markovian state be continuous. One can track the hidden state
by a two-step recursion that, for k = 1, 2, . . . , reads

p(sk |yk−1
1 ) =

∫

S
p(sk |sk−1)p(sk−1|yk−1

1 ) dsk−1, (11)

p(sk |yk
1) = p(sk |yk−1

1 )p(yk|sk)

p(yk|yk−1
1 )

, (12)

where p(sk|yk−1
1 ) is the predictive distribution, p(sk |yk

1) is the
posterior distribution, and the denominator of (12), that is the
probability that we want to use in (10), is a normalization
factor such that the left-hand side is a probability, therefore it
can be computed by the Chapman-Kolmogorov equation

p(yk|yk−1
1 ) =

∫

S
p(sk |yk−1

1 )p(yk|sk) dsk . (13)

The state transition probability p(sk |sk−1) appears
in (11) in place of p(sk |sk−1, yk−1

1 ) thanks to (5). Thanks
to (4), p(yk|sk) can be used in place of p(yk|sk, yk−1

1 ) in (12).
Note that the distribution p(s0) of the initial state that, for

k = 1, is the second factor inside the integral in the right
side of (11), after a transient whose duration depends on the
coherence time of the state process is forgotten. Therefore,
since we let n → ∞ in (10), we can choose p(s0) as we
want because this choice does not impact the infinite sum.
We have experimentally observed that the distribution p(s0)
can influence the speed of convergence of the sum to the limit
it achieves as n→∞. In the end, the best initial distribution
p(s0) that we have found is the Dirac delta function, hence,
in the simulation results to be hereafter presented, the first
prediction of Bayesian tracking, that is (11) with k = 1, is

p(s1) = p(s1|s0),

meaning that the tracking algorithm starts from the actual
initial state s0.

When the measurement and the state evolution are expressed
by a linear and additive noise model with Gaussian mea-
surement noise and process noise, evaluation of the actual
information rate is feasible by the Kalman filter. Specifically,
the model is

Sk = Fk−1 Sk−1 + Vk−1, (14)

Yk = Hk Sk + Nk , (15)

where the uppercase boldface character denotes matrices, and
Vk and Nk are jointly independent and white Gaussian random
vectors with zero mean and covariance matrices Qk and Rk ,
respectively. The innovation process U of process Y is a white
multivariate Gaussian process whose k-th element is

Uk = Yk − Hkμk = Hk(Sk − μk)+ Nk , (16)

where
μk = E

{
Sk

∣∣∣Y k−1
1

}

is the prediction of state Sk computed by the Kalman filter.
Since

h(Uk) = h(Yk |Y k−1
1 ), h(Nk) = h(Yk |Sk, Y k−1

1 ), (17)
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where h(Xk) denotes the differential entropy of Xk , an unbi-
ased random estimate Î (Sk ; Yk|Y k−1

1 ) of the k-th term of the
sum (10) is

Î (Sk; Yk |Y k−1
1 ) = ĥ(Uk)− ĥ(Nk )

= 1

2
log2

det(Hk�k HT
k + Rk)

det(Rk)

= 1

2
log2 det

(
I + R−1

k Hk�k HT
k

)
, (18)

where I is the identity matrix,

�k = E
{
(Sk − μk)

T (Sk − μk)
∣∣Y k−1

1

}

is the covariance matrix of the error between the state and its
prediction computed by the Kalman filter at time k, and

h(Xk) = 1

2
log2

(
(2πe)m det(�k)

)

is the differential entropy of the m-variate Gaussian random
vector Xk with covariance matrix �k .

III. UPPER AND LOWER BOUNDS TO THE INFORMATION

RATE BY APPROXIMATED BAYESIAN INFERENCE

In many cases of practical interest, although the state tran-
sition probability and the measurement probability are known
and treatable, it happens that the posterior and predictive
probabilities are not treatable due to lack of linearity and/or
Gaussianity. In these cases, one can generate a long sequence
(sn

0 , yn
1 ) according to the treatable joint probability (9) and

work out an approximation to the non-treatable probabilities
by approximated Bayesian tracking. To assess the quality of
the approximation, we propose to evaluate an upper bound
on the information rate based on the distributions inferred by
Bayesian filtering, and a lower bound below the information
rate based on the distributions inferred by Bayesian smoothing.
When the upper bound is close to the lower bound, one
can claim of having virtually computed the actual informa-
tion rate and that the inferred distributions closely fit the
actual ones.

A. An Upper Bound Based on Bayesian Filtering

The upper bound is

I (S; Y ) = h(Y )− h(Y |S) ≥ I (S; Y ), (19)

h(Y ) = lim
n→∞

1

n

n∑

k=1

log2
1

q(yk|yk−1
1 )

≥ h(Y ), (20)

where the probability q(yk|yk−1
1 ) is the approximation to

p(yk|yk−1
1 ) worked out as the normalization factor of the

update step of the approximate Bayesian tracking, and yn
1 is a

realization of the actual joint state transition and measurement
probability. The inequality in (20) follows by Gibbs’ inequal-
ity, and it holds for any probability q(yk|yk−1

1 ).

B. A Lower Bound Based on Bayesian Smoothing

The lower bound is

I (S; Y ) = h(S)− h(S|Y ) ≤ I (S; Y ). (21)

Invoking the Shannon-McMillan-Breiman theorem (22), the
chain rule (23), the known initial state discussed before the
end of Section II (24), the Markov property (25), and Gibbs’
inequality (26), we have

h(S|Y ) = lim
n→∞

1

n
log2

1

p(sn
1 |yn

1 )
(22)

= lim
n→∞

1

n
log2

1

p(s1|yn
1 )

∏n
k=2 p(sk |yn

1 , sk−1
1 )

(23)

= lim
n→∞

1

n

n∑

k=1

log2
1

p(sk |yn
1 , sk−1

0 )
(24)

= lim
n→∞

1

n

n∑

k=1

log2
1

p(sk |yn
k , sk−1)

(25)

≤ lim
n→∞

1

n

n∑

k=1

log2
1

q(sk |yk+l
k , sk−1)

(26)

= h(S|Y ), (27)

where the probability q(sk|yk+l
k , sk−1) is the approximation

to p(sk |yn
k , sk−1) worked out by a lag-l Bayesian smoother

initialized from the state sk−1 visited by the realization at time
k−1, the time lag l being up to the user. If the state sequence
is a reversible function of the process noise V given the initial
state s0, then

I (S; Y ) = I (V ; Y ) ≥ h(V )− h(V |Y ), (28)

where the upper bound on the conditional differential entropy
rate can be evaluated as

h(V |Y ) = lim
n→∞

1

n

n∑

k=1

log2
1

q(vk−1|yk+l
k , vk−2

0 , s0)
(29)

= lim
n→∞

1

n

n∑

k=1

log2
1

q(vk−1|yk+l
k , sk−1)

. (30)

IV. COMPUTING THE BOUNDS BY PARTICLE METHODS

As the measurement equation is nonlinear in the state
variable, we need to provide non-parametric approximations
to the true distributions, that in general can be multimodal.
Particle methods are practical tools for estimating distributions
in a non-parametric way, and in this section we use these
techniques for computing the upper bounds h(Y ) and h(S|Y )
introduced in the previous section.

Let P be the number of particles, s(i)
k the state visited by

the i -th particle at time k, w
(i)
k the weight of the i -th particle

at time k, and π(sk |sk−1, yk) the importance density at time k,
which is up to the user. Starting from uniform initial weights
{w(i)

0 = P−1, i = 1, 2, . . . , P} and from an initial set of
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particles {s(i)
0 = s0, i = 1, 2, . . . , P}, the predict step of

particle tracking is

s(i)
k ∼ π(sk |s(i)

k−1, yk), i = 1, 2, . . . , P, (31)

where ∼ means drawn with probability. The update step of
particle tracking is

w
(i)
k = w

(i)
k−1

p(yk|s(i)
k )p(s(i)

k |s(i)
k−1)

αkπ(s(i)
k |s(i)

k−1, yk)
, i = 1, 2, . . . , P, (32)

where αk is a normalization factor such that
∑P

i=1 w
(i)
k = 1.

Given the set of weights and particles one has the
approximation

p(sk
0 |yk

1) ≈
P∑

i=1

w
(i)
k δ(sk

0 − sk,(i)
0 ), (33)

where δ(·) is the Dirac delta function. From (33) one has

p(sk |yk
1) =

∫

Sk−1
0

p(sk
0 |yk

1) dsk−1
0

≈
∫

Sk−1
0

P∑

i=1

w
(i)
k δ(sk

0 − sk,(i)
0 ) dsk−1

0

=
P∑

i=1

w
(i)
k δ(sk − s(i)

k ). (34)

After updating the particles with (32), a resampling proce-
dure may be necessary to prevent particles from collapsing
onto one particle of weight 1. Commonly used resampling
procedures are described in [1].

In the experimental results presented in the following we
adopt π(sk |sk−1, yk) = p(sk |sk−1). With this choice of the
importance function, the normalization factor of (32) is

αk =
P∑

i=1

w
(i)
k−1 p(yk|s(i)

k ), (35)

and the predict step is

s(i)
k = fk−1(s

(i)
k−1, v

(i)
k−1), i = 1, 2, . . . , P, (36)

where {v(i)
k−1, i = 1, 2, . . . , P} is a set of independent samples

of process noise.

A. Evaluation of h(Y )

As in [14], the probability q(yk|yk−1
1 ) used in the upper

bound is obtained as the factor that normalizes the weights of
the particles in the update step:

q(yk|yk−1
1 ) =∑P

i=1 w
(i)
k−1 p(yk|s(i)

k ). (37)

The entire procedure for Monte-Carlo evaluation of h(Y )
is reported in Algorithm 1. The initial state is selected as
s0 = 0m , where 0m is a vector of m zeros.

Algorithm 1 Calculate h(Y )

Generate samples:
(sn

0 , yn
1 ) ∼ p(sn

0 , yn
1 ) = δ(s0)

∏n
k=1 p(sk |sk−1)p(yk|sk)

s(i)
0 ← 0m for i = 1, . . . , P

w
(i)
0 ← P−1 for i = 1, . . . , P

for k = 1, . . . , n do
Generate v

(i)
k−1 ∼ p(vk−1) for i = 1, . . . , P

s(i)
k ← fk−1(s

(i)
k−1, v

(i)
k−1) for i = 1, . . . , P

w
(i)
k ← w

(i)
k−1 p(yk|s(i)

k ) for i = 1, . . . , P

αk ←∑P
i=1 w

(i)
k

w
(i)
k ← w

(i)
k /αk for i = 1, . . . , P

if
∑P

i=1(w
(i)
k )2 > (0.3P)−1 then(

{s(i)
k }, {w(i)

k }
)
← resample

(
{s(i)

k }, {w(i)
k }

)

end if
end for
h(Y )←−n−1 ∑n

k=1 log2 αk

B. Evaluation of h(S|Y )

At time instant k and lag � = 0 the particles for
i = 1, . . . , P are initialized as

s(i)
k,0 = fk−1(sk−1, v

(i)
k−1,0)

with weight

w
(i)
k,0 =

p(yk|s(i)
k,0)

∑P
j=1 p(yk|s( j )

k,0)
,

where the set {v(i)
k−1,0, i = 1, 2, . . . , P} is a set of independent

samples of process noise, and sk−1 is the state visited at time
k−1 by the realization (sn

0 , yn
1 ). For each time lag � = 1, . . . , l

the particles and their weights are updated as

s(i)
k,� = fk−1+�(s

(i)
k,�−1, v

(i)
k−1,�)

w
(i)
k,� =

w
(i)
k,�−1 p(yk+�|s(i)

k,�)
∑P

j=1 w
( j )
k,�−1 p(yk+�|s( j )

k,� )
,

where {v(i)
k−1,�, i = 1, 2, . . . , P} for � = 1, . . . , l are sets

of independent samples of the process noise. After l steps,
using (33) one gets

p(sk |yk+l
k , sk−1) =

∫

Sk+l
k+1

p(sk+l
k |yk+l

k , sk−1) dsk+l
k+1

≈
∫

Sk+l
k+1

P∑

i=1

w
(i)
k,lδ(s

k+l
k − s(i)

k,0:l ) dsk+l
k+1

=
P∑

i=1

w
(i)
k,lδ(sk − s(i)

k,0), (38)

where s(i)
k,0:l =

(
s(i)

k,0, s(i)
k,1, . . . , s(i)

k,l

)
. Since the evaluation

of (38) in the point sk visited by the realization requires that the
inferred distribution is actually a probability density function,
a smooth kernel should be used in place of the Dirac delta,
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leading to

q(sk|yk+l
k , sk−1) =

P∑

i=1

w
(i)
k,lκ(s(i)

k,0; sk), (39)

where the kernel κ(μ; x) is a probability density function over
the space spanned by x with mean vector μ. In the numerical
examples to be presented in the following, the state sequence
is a reversible transformation of the process noise given the
initial state, therefore the wanted bound can be evaluated
by (30) with

q(vk−1|yk+l
k , sk−1) =

P∑

i=1

w
(i)
k,lκ(v

(ρ(i))
k−1,0; vk−1), (40)

where ρ(·) is a function used in the resampling procedure and
discussed later. The kernel that we adopt is

κ(μ; x) = (1− α)g(μ, σ 2 I; x)+ αu(μ,
; x), (41)

where g(μ, σ 2 I; x) is a multivariate Gaussian probability
density function with mean vector μ and covariance matrix
σ 2 I over the space spanned by x , u(μ,
; x) is a uniform
distribution over a hypercube of center μ and side 
 over the
space spanned by x , and 0 < α < 1. We take α small and

 large enough to prevent problems of numerical stability that
occur with the pure Gaussian kernel when q(vk−1|yk+l

k , sk−1)
is evaluated in a point vk−1 that falls far from all the samples of
the set {v(i)

k−1,0, i = 1, 2, . . . , P}. To optimize the bound, (30)
is computed for several values of σ 2 and then the minimum
is taken.

It is worth mentioning that, when using the particle
resampling procedure, it is important to consider the right
particles, and in the right order, of the set {v(i)

k−1,0, i =
1, 2, . . . , P} in such a way that, after l steps, the i -th
particle s(i)

k,l was generated by v
(ρ(i))
k−1,0. For example, if

P = 4 and the particles {s(1)
k,l , s(2)

k,l , s(3)
k,l , s(4)

k,l } are generated

by {v(2)
k−1,0, v

(2)
k−1,0, v

(1)
k−1,0, v

(4)
k−1,0}, respectively, then ρ(1) =

ρ(2) = 2, ρ(3) = 1, and ρ(4) = 4 in (40).
The entire procedure for Monte-Carlo evaluation of h(S|Y )

is reported in Algorithm 2, again for s0 = 0m .

V. INFORMATION RATE TRANSFERRED THROUGH

CHANNELS WITH FREE-RUNNING STATE

In this section we show how to use the bounds proposed
in Section III in order to derive bounds on the information
rate transferred through channels with free-running state and
without channel state information at the transmitter. In order
to relate the notation used in Section III to the one used in
this section, we introduce the concepts of data-aided and blind
inference.

Consider a communication channel described by the state
transition probability (3) and by the channel probability

p(rn
1 |xn

1 , sn
1 ) =

n∏

k=1

p(rk |xk, sk), (42)

where R is the channel output process and X is the source
process made of discrete random variables. Equation (42) says

Algorithm 2 Calculate h(S|Y )

Generate samples:
(sn+l

0 , yn+l
1 ) ∼ δ(s0)

∏n+l
k=1 p(sk |sk−1)p(yk|sk)

Compute vn+l−1
0 from sn+l

0
for k = 1, . . . , n do

Generate v
(i)
k−1,0 ∼ p(vk−1) for i = 1, . . . , P

ρ(i) = i for i = 1, . . . , P
s(i)

k,0 ← fk−1(sk−1, v
(i)
k−1,0) for i = 1, . . . , P

w
(i)
k,0 ← p(yk|s(i)

k,0)/
∑P

j=1 p(yk |s( j )
k,0) for i = 1, . . . , P

for � = 1, . . . , l do
if

∑P
i=1(w

(i)
k,�−1)

2 > (0.3P)−1 then(
{s(i)

k,�−1}, {w(i)
k,�−1}, {ρ(i)}

)
←

resample
(
{s(i)

k,�−1}, {w(i)
k,�−1}, {ρ(i)}

)

end if
Generate v

(i)
k−1,� ∼ p(vk−1+�) for i = 1, . . . , P

s(i)
k,� ← fk−1+�(s

(i)
k,�−1, v

(i)
k−1,�) for i = 1, . . . , P

w
(i)
k,� ← w

(i)
k,�−1 p(yk+�|s(i)

k,�)/
∑P

j=1 w
( j )
k,�−1 p(yk+�|s( j )

k,� )
for i = 1, . . . , P

end for
q(vk−1|yk+l

k , sk−1)←∑P
i=1 w

(i)
k,lκ(v

(ρ(i))
k−1,0; vk−1)

end for
h(S|Y )←−n−1 ∑n

k=1 log2 q(vk−1|yk+l
k , sk−1)

that the channel output process is memoryless given the source
and the state. Also, consider the case of free-running state,
where the source is memoryless and independent of the state,
that is

p(xn
1 |sn

1 ) =
n∏

k=1

p(xk). (43)

Examples of channels with free-running state are multiplica-
tive channels as the phase noise channel and the fading
channel.

A. Data-Aided Inference

Putting together (42) and (43) one finds that the joint source
and channel model is memoryless given the state:

p(rn
1 , xn

1 |sn
1 ) =

n∏

k=1

p(rk, xk |sk), (44)

hence putting the pair (R, X) in place of Y in Sec-
tions III and IV we have I (R, X; S) from exact Bayesian
inference, while we have the upper and lower bounds to
I (R, X; S) from approximated Bayesian inference. By inde-
pendence between X and S we have

I (R, X; S) = I (R; S|X). (45)

The above equation, which read as “given X ,” shows that
inference can be based on the knowledge of X , as if X were
part of the observation. Therefore, drawing from the parlance
of channel estimation, we hereafter call data-aided inference
the one that is performed when the measurement Y is the pair
(R, X), and call data-aided channel probability the probability
p(rk |xk, sk).



3840 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 7, JULY 2014

B. Blind Inference

Using (44) one finds that channel’s output is memoryless
given the state:

p(rn
1 |sn

1 ) =
∑

xn
1∈X n

1

p(rn
1 , xn

1 |sn
1 ) =

∑

xn
1∈X n

1

n∏

k=1

p(rk, xk |sk)

=
n∏

k=1

∑

xk∈Xk

p(rk, xk |sk) =
n∏

k=1

p(rk |sk). (46)

Since Bayesian inference, that is performed using R as a
measurement process, is not aware of channel’s input, drawing
again from the parlance of channel estimation, we call it blind
inference. We call the channel transition probability p(rk |sk)
blind channel probability. The blind information rate is not
greater than the data-aided information rate:

I (R; S) ≤ I (R; S) + I (X; S|R) = I (R, X; S) = I (R; S|X)

(47)

where (47) follows by nonnegativity of mutual information,
chain rule, and independence between X and S.

C. Information Rate

Since

I (X; R) = I (X; R|S) + I (S; R) − I (S; R|X) (48)

one can sandwich the information rate transferred through the
channel as

I (X; R) = I (X; R|S) + I (S; R)− I (S; R|X) (49)

≥ I (X; R)

≥ I (X; R|S) + I (S; R)− I (S; R|X) = I (R; X),

(50)

where, using differential entropy rates, one has

I (X; R) = h(R)+ h(S|X, R)− h(S|X) − h(R|X, S) (51)

≥ I (X; R)

≥ h(S)+ h(R|S)− h(S|R)− h(R|X) = I (R; X).

(52)

The expression of the upper bound is the same as [17], [23],
while the lower bound is new. To compute the differential
entropy rates appearing in (51) and (52), we need to work
out h(R) and h(R|X) by Bayesian filtering, and h(S|R) and
h(S|R, X) by Bayesian smoothing. Recall that h(S) = h(S|X)
is known and that h(R|S) and h(R, X |S), which are those of
the memoryless channel, are also assumed to be known. The
gap between the upper bound (49) and the lower bound (50)
is equal to the gap between upper and lower bounds of blind
inference (I (S; R)− I (S; R)) plus the gap between upper and
lower bounds of data-aided inference (I (S; R|X)−I (S; R|X)).
Also, it holds that

I (X; R) ≥ h(R)− h(R|X) ≥ I (X; R), (53)

where the sandwiched term is the approximation to the infor-
mation rate proposed in [14]. We also mention the demodula-
tion lower bound of [23], that we will use as a competitor of
(52) in the sections devoted to experimental results. It reads as

I (X; R) = H (X)− H(X |R) ≤ I (X; R), (54)

where H (X) is the entropy rate of process X and

H (X |R) = lim
n→∞

1

n

n∑

k=1

log2
1

q(xk|rk
1 , xk−1

1 )
(55)

≥ lim
n→∞

1

n

n∑

k=1

log2
1

p(xk|rk
1 , xk−1

1 )

≥ lim
n→∞

1

n

n∑

k=1

log2
1

p(xk|rn
1 , xk−1

1 )
(56)

= lim
n→∞

1

n
log2

1

p(xn
1 |rn

1 )
= H (X |R),

where q(xk|rk
1 , xk−1

1 ) is the approximation to p(xk|rk
1 , xk−1

1 )
obtained by a demodulator aware of past data.

VI. DISCRETE-TIME ARMA PHASE NOISE CHANNEL

The concepts developed so far are applied in this section
to the ARMA multiplicative phase noise channel. The k-th
output of the channel is

Rk = Xke j�k + Nk , (57)

where j is the imaginary unit, R is the complex channel
output process, X is the channel complex input modulation
process made by i.i.d. random variables with zero mean and
unit variance, N is the complex AWGN process with zero
mean and variance SNR−1, and � is the phase noise process
which is assumed to be independent of X and N .

The measurement probability in data-aided inference is

p(rk, xk |sk) = p(rk, xk |φk) = p(xk|φk)p(rk |xk, φk)

= p(xk)p(rk |xk, φk) = p(xk)gc(xke jφk , SNR−1; rk), (58)

where gc(μ, σ 2; x) indicates a circular symmetric Gaussian
probability density function over the complex plane spanned
by x with mean μ and two-dimensional variance σ 2. The
measurement probability in blind inference is

p(rk |φk) =
∑

xk∈X
p(xk)gc(xke jφk , SNR−1; rk). (59)

Process � is hereafter modelled as accumulation of
frequency noise, that is

�(z) = z−1

1− z−1 (z), (60)

where the frequency noise process  is the sequence of
coefficients of the polynomial of complex variable z

(z) = c(z)V (z) (61)

where V is white Gaussian noise with zero mean and vari-
ance γ 2, and

c(z) =
∏m

k=1(1− βkz−1)∏m
k=1(1− αk z−1)

= 1+∑m
k=1 bkz−k

1−∑m
k=1 akz−k

, (62)
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Fig. 1. Block diagram of the system given in equations (57)-(63) with m = 1.

where |αk | < 1, |βk| ≤ 1, therefore the transfer function
c(z) is causal, monic, and minimum phase. Since the phase
is observed through the complex exponential, to prevent the
overflow in the accumulation one can periodically reduce it
modulo 2π .

The ARMA phase noise can be cast in the framework of
dynamical systems [1, Sec. 7.2] by defining the state at time
k as the (m + 1) column vector

Sk = (�k,�
k−1
k−m )T , (63)

where, modelling the filter with transfer function (62) as a shift
register with feedback taps am

1 and forward taps bm
1 , �k−1

k−m is
the content of the shift register at the k-th channel use, that is

�(z) = V (z)

1− a(z)
.

Figure 1 shows the block diagram of the channel model given
by equations (57) to (63) with m = 1.

The state transition equation is

Sk = FSk−1 + (Vk−1, Vk−1, 0T
m−1)

T ,

where the state transition matrix is

F =
⎡

⎣
1 (am

1 + bm
1 )T

0 (am
1 )T

0m−1 Im−1 0m−1

⎤

⎦,

with Im denoting the identity matrix of size m × m. Given
Sk−1, Sk is determined if also Vk−1 is known, hence the
covariance matrix of the state transition probability has unit
rank. Specifically,

p(sk |sk−1) = g(Fsk−1,�v ; sk), (64)

where

�v =
⎡

⎣
γ 2 γ 2 0T

m−1

γ 2 γ 2 0T
m−1

0m−1 0m−1 0(m−1)×(m−1)

⎤

⎦, (65)

where 0m×m is an all-zero m×m matrix. Note that, while the
state transition equation is linear, the measurement equation
is nonlinear both in data-aided tracking and in blind tracking,
hence we have to renounce to exact Bayesian tracking with the
Kalman filter. For sufficiently small phase noise and data-aided
tracking, one can linearize the complex exponential and use
the linearized Kalman filter to perform approximated Bayesian
tracking as in [23], [28]–[30].

Fig. 2. Power spectral density of phase noise generated by accumulating
white Gaussian noise with zero mean and unit variance filtered through a
causal, monic, and minimum phase transfer function. Solid line: phase noise
model of [22]. Dash-dotted line: phase noise generated by (66) with m =
4 followed by accumulation. Dashed line: Wiener phase noise. Dotted line:
white phase noise.

A. Numerical Results

As a representative case of a class of frequency noise spectra
that are difficult to deal with we take

c(z) =
m∏

i=1

1− (1− 3 · 4−2i+1)z−1

1− (1− 3 · 4−2i )z−1 . (66)

The m poles and m zeros in the right side of (66) are
interleaved and spectrally spaced of two octaves from each
other. Starting from low frequency, one finds for i = m the
pole at z = 1− 3 · 4−2m. This pole is followed by pairs of the
type zero-pole, and the sequence of zeros and poles terminates
when i = 1 with the zero at z = 0.25. Denoting by T the time
delay represented by z−1, the transfer function (66) is that of
a low-pass filter with −3 dB normalized frequency

f−3T ≈ 3 · 4−2m

2π

determined by the pole at z = 1 − 3 · 4−2m . Figure 2 reports
the power spectral density of four different spectra of phase
noise.

From Fig. 2 one appreciates that the spectrum of phase noise
obtained by frequency noise generated by (66) closely fits
the slope of −30 dB/decade at normalized frequency higher
than f−3T , a slope that is often encountered in real world
oscillators. The frequency noise that generates a phase noise
whose spectrum is a slope of −30 dB/decade is called Flicker
frequency noise, or pink frequency noise, and its spectrum
shows a slope of −10 dB/decade.

Upper and lower bounds to the information rate between the
state and the measurement for blind and data-aided tracking
are worked out by the particle filter. The results for 4-QAM
and 16-QAM with γ = 0.5, m = 4, and 104 particles are
reported in Fig. 3.

The upper and lower bounds of Fig. 3 are used to draw
the upper and lower bounds to the information rate between
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Fig. 3. Phase noise channel. Mutual information I (S;Y ) computed by
the particle filter with 104 particles versus SNR with data-aided tracking
(I (S; X, R)) and blind tracking (I (S; R)). Dashed line: upper bound. Solid
line: lower bound.

Fig. 4. Phase noise channel. Mutual information I (X; R) versus SNR.
Dashed line: upper bound with, from the upper to the lower curve, 104 parti-
cles, 5·104 particles. Solid line: lower bound with, from the lower to the upper
curve, 104 particles, 5 ·104 particles. Asterisks: sandwiched term in (53) with
5 · 104 particles. Circles: upper bound of [23] with 104 particles. Squares:
demodulation lower bound (55) based on data-aided linearized Kalman filter.

the input modulation and the output of the channel reported
in Fig. 4. Figure 4 shows that the upper bound (51), when
evaluated as proposed here, is substantially tighter than when
it is evaluated as proposed in [23]. The reason is that,
although also the bound of [23] is based on particle techniques,
the inferred probability in [23] is assumed to be Gaussian,
the mean and variance of the Gaussian distribution being

computed from the particles, while here the inferred distri-
butions are allowed to be multi-modal. Concerning the lower
bounds of Fig. 4, we see that the lower bound (52) outperforms
the lower bound proposed in [23], [28], and [29] which relies
upon demodulation performed by a linearized Kalman filter.

VII. DISCRETE-TIME GAUSS-MARKOV FADING CHANNEL

Another example of communication channel with free-
running hidden state is the multiplicative fading channel. The
k-th output of the channel is

Rk = Xkk + Nk , (67)

where X is the same as in Section VI,  is the complex fading
process which is assumed to be independent of X and N , and
N is complex white Gaussian noise with zero mean and two-
dimensional variance E

{|k|2
}

SNR−1. A convenient model
for process  is again the ARMA model, where the state of the
ARMA model and the state transition equation are defined in a
straightforward way following the line of the previous section.
Blind inference is performed with the particle filter/smoother
taking process R as the measurement process and

p(rk |sk) =
∑

xk∈X
p(xk)gc(xkλk , SNR−1; rk) (68)

as the measurement probability. Exact data-aided Bayesian
filtering is feasible with the Kalman filter, therefore the data-
aided information rate I (S; R, X) can be exactly evaluated
using (18) in (8) and substituted in (49) and (50) in place of
the bounds, leading to

I (X; R) = h(R)+ h(S|X, R) − h(S|X)− h(R|X, S)

= h(R)− h(R|X) (69)

≥ I (X; R)

≥ h(S)+ h(R|S) − h(S|R)− h(R|X) = I (R; X).

(70)

Since h(R) is worked out by the particle filter, the upper
bound (69) coincides with the approximation of [14] and with
the upper bound of [23]. Conversely, the lower bound (70) is
still different from (55).

A. Numerical Results

A first-order model is assumed in [24] for the power spectral
density of , while in [25] a brickwall spectrum is considered.
In what follows, we will take for  the first-order model
of [24], that is

(z) =
√

γ z−1V (z)

1−√1− γ z−1
, (71)

where the complex process noise V has zero mean and unit
two-dimensional variance, and 0 < γ < 1 is a parameter that
determines the bandwidth of the fading process. The frequency
response of the filter has unit energy, therefore the additive
white Gaussian channel noise has two-dimensional variance
SNR−1. Upper and lower bounds to the information rate
between channel’s input and output for 4-QAM and 16-QAM
with γ = 0.1 are reported in Fig. 5. Note that, in contrast to
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Fig. 5. Gauss-Markov fading channel. Mutual information I (X; R) versus
SNR. Dashed line: upper bound with, from the upper to the lower curve,
104 particles, 105 particles. Solid line: lower bound with, from the lower to
the upper curve, 104 particles, 105 particles. Squares: demodulation lower
bound (54) based on data-aided linearized Kalman filter.

the case of phase noise, here, since exact data-aided Kalman
filtering is performed, the probability q(xk|rk

1 , xk−1
1 ) appearing

in (55) is equal to the actual p(xk|rk
1 , xk−1

1 ). Therefore the
inaccuracy of the bound (55) is due only to the conditions rn

k+1
that are removed in inequality (56). These conditions bring a
contribution of non data-aided type to demodulation which,
at low SNR, seems to have minor impact on the information
rate extracted by demodulation. In contrast, in the phase noise
channel, the inaccuracy introduced in (55) by linearizing the
measurement equation can be large, especially at low SNR.
Also note that the lower bound (54) is remarkably tight with
4-QAM, while it is less tight with 16-QAM, especially at
intermediate-to-high SNR. Again, this can be explained by
observing that, with 16-QAM, discarding the conditions rn

k+1
can impact the quality of demodulation much more than with
4-QAM. This can be seen by noting that, at high SNR, the
decision error probability is small, therefore the quality of
blind, e.g. decision-directed, smoothing is virtually equal to
the quality of data-aided filtering. When the fading coefficient
is small and the pattern of input data shows symbols with
low amplitude up to time k and symbols of high amplitude in
the future time instants, then future measurements, although
non data-aided, can potentially contribute more than the past
data-aided measurements to the inference made on the fading
coefficient. Therefore, in these conditions, renouncing to blind
smoothing means renouncing to substantial information about
the fading coefficient, hence to substantial information rate.

VIII. CONCLUSION

In the paper, Shannon information between the hid-
den Markov state process of a dynamical system and the

measurement process has been evaluated by the probabilities
inferred by Bayesian tracking. When the state transition and
measurement models are known and treatable but the system is
non-linear and/or non-Gaussian, exact inference is not feasible.
The main achievements of the paper are upper and lower
bounds to the information rate between the hidden state and
the measurement that can be computed from approximate
Bayesian tracking. The upper bound is based on filtering while
the lower bound is based on smoothing. Also, the quality
of the approximation to the wanted distributions obtained by
approximated inference can be assessed from the bounds.
Specifically, if the upper and lower bounds based on the
inferred distributions are close to each other, then the inferred
distributions are close to the true ones, while if this does
not happen then the fit between the inferred distributions
and the actual distributions is questionable. Application of
the mentioned upper and lower bounds to the information
rate transferred through channels with free-running hidden
Markov state has been proposed, and specific results have been
derived for the phase noise channel. These results show that,
compared to the existing literature, our proposed approach
allows to better deal with strong phase noise generated by a
state space with high dimensionality. The picture is completed
by numerical results that show application of our method to
the Gauss-Markov fading channel.

REFERENCES

[1] D. Simon, Optimal State Estimation. New York, NY, USA: Wiley, 2006.
[2] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial

on particle filters for online nonlinear/non-Gaussian Bayesian tracking,”
IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174–188, Feb. 2002.
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