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Abstract—This paper provides an analysis of the Dynamic
frame Aloha (DFA) protocol with frame Restart. Although a
previous work has numerically provided the best restarting
strategy when the number of tags N is known, that strategy
is represented by a table whose entries are so many to be
impractical for high values of N . Here we provide a simpler set
of equations that, besides the optimal strategy, lead to a very
simple sub-optimal strategy whose performance is practically
indistinguishable from the optimal one. Furthermore, we prove
that asymptotically the Frame Restart property is useless, being
the corresponding efficiency equal to e

−1, the same as the plain
DFA. We investigate the strategies and performance when N is
unknown, furthermore providing a procedure, called AE2, that
is able to asymptotically reach the theoretical efficiency e

−1.

Index Terms—RFID, Collision Resolution, Frame Aloha,
Frame Restart, Tag Estimation, Asymptotic Efficiency.

I. INTRODUCTION

Dynamic frame Aloha (DFA) is a collision resolution proto-

col originated in [1] and rediscovered some time ago for radio-

frequency identification (RFID) [2], [3]. In this paper we will

use terminology borrowed from RFID parlance, though the

derived results are valid in general.

In brief, DFA operates as follows: an initial number N of

users, also called tags, reply to a reader interrogation on a

slotted time axis where slots are grouped into frames; a tag is

allowed to transmit only one packet per frame in a randomly

chosen slot. In the first frame all tags transmit, but only a

part of them avoid collisions with other transmissions and get

through. The remaining number of tags n, often referred to

as the backlog, re-transmit in the following frames until all

of them succeed. Outcomes of slots, i.e., successfully used,

not used, or collided, are continuously observed to derive an

estimate of the backlog, n̂, which is used to set the length

r of the next frame till all tags have been identified. The

problem arises to get at each frame a suitable estimate n̂, and

to determine the most favorable frame length r.

The protocol performance is measured by L(N), the average

number of slots needed to identify all tags. Since in the

RFID environment the number N of tags to be identified

is a constant, the performance can also be expressed by the

protocol efficiency N/L(N).
In the original version of DFA, that we refer to as Frame

Complete (FC), a new frame is started only when the previous

is finished. Many analyses have appeared on this protocol ver-

sion, and its behavior is well understood (see for example [1],

[4]–[9]). Here we are concerned with the version of the cited

RFID standards that allow for Frame Restart (FR), i.e., the

capability to restart a new frame at any slot even though the

present frame is not finished.

Although some papers have dealt with the performance of

DFA-FR [7], [10], some basic issues are still unanswered.

None of them has attempted an analysis, in order to determine

the best frame setting and strategy, i.e., the rules that dictate

when the frame exploration should be interrupted and the

frame restarted, with the notable exception of [11]. A complete

comparison with FC is lacking, in particular when N goes to

infinity. Finally, none has thoroughly addressed the critical

issue of the initial frame size, and the strategy when N is

unlimited, a case not included in the current standard, but that

could be considered in future applications.

In this paper we address the above cited issues about

DFA-FR. On the analysis point of view we show that the

performance L(N), with N known, can be attained recursively

by the performance of a system with N − 1 tags, solving

a set of equations. In this way we are able to derive the

optimal strategy and performance up to some finite value

of N . Then we derive a very simple suboptimal strategy,

which provides a performance practically coincident with the

optimal, and that can be used for values of N where the exact

analysis is intractable. We also show that as N → ∞ the

optimal performance of FR coincides with that of FC, i.e.,

N/L(N) → e−1. Then we turn to the case were N is unknown

and analyze by simulation some estimation techniques, which

shows a remarkable efficiency loss with respect the perfect

estimation case. Finally, we address the asymptotic issue,

proposing a procedure that is proved to asymptotically reach

the theoretical efficiency e−1. On the whole, our results seems

to show that, with unknown N , the FR property does not offer

appreciable advantages over FC.

The paper is organized as follows. In Sec. II, we discuss the

performance of the most relevant backlog estimates appeared

in literature. In Sec. III, we present an analysis of DFA assum-

ing that both the backlog and the number of colliding packets

are known. In Sec. IV, the analysis is extended to the case

where the number of colliding packets is unknown. In Sec. V,

we discuss and analyze some backlog estimation proposals,

while in Sec. VI we present a procedure able to asymptotically

reach the theoretical efficiency e−1. Concluding remarks are

given in Sec. VII.
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II. PREVIOUS WORKS

To understand identification with FR some basic issues

about FC are needed. Although many proposals have appeared

in order to estimate the number of tags at the beginning of

each frame with FC, the most appealing in our understanding

is still the original one suggested in [1] by Schoute. Here,

it has been shown that in optimal conditions, i.e., when the

average number of transmissions per slot is one, the average

number of collisions in a collided slot is 2.39. Therefore after

a complete frame exploration, a good estimate of the backlog

is provided by

n̂ = round(2.39c), (1)

where c is the number of collided slots observed. This method

is appealing because of its simplicity; it converges to the final

identification for any initial frame length r0, and it is also

quite efficient. The performance of this protocol is illustrated

in Fig. 1. Here, efficiencies are reported for different initial-

frame lengths r0, namely for the case r0 = N and for the

case with known N , which represents a benchmark. In [8] we

have proved that, with known N , the best strategy is to set

the frame length equal to the backlog, i.e., r = n, and that the

asymptotic efficiency reaches e−1 ≈ 0.367.

When starting with r0 = N , the figure shows that the

algorithm provides a performance which is practically equal to

the benchmark, reaching the theoretical asymptotic efficiency

e−1, as we have also analytically proved in [9]. However, in

practical cases r0 is set ignoring N . From the example we

see a phenomenon, common to all identification procedures,

caused by the mismatch between r0 and N , which causes

the efficiency to drop when N is not close to r0. From the

figure we also see that Schoute’s algorithm can not reach the

asymptotic efficiency e−1. Actually, in [9] we have proved that

Schoute’s asymptotic efficiency is 0.311, due to the overhead

of the convergence of the estimate from N̂ = r0 to N .

With FR, after a frame restart, the observation of the

outcomes in the frame is incomplete and, therefore, an es-

timation method such (1) can not guarantee the convergence.

An estimation and restart strategy is represented by the Q-

algorithm defined in ISO 18000-6 C [2]. It keeps a backlog

estimate n̂ at the beginning of the frame which is multiplied by

a constant β whenever a collision occurs and is divided by β
whenever an empty slot is detected. A successful slot leaves

the estimate unchanged. Although the Q-Algorithm requires

only modest computational resources, it does not specify a

method to compute the crucial control parameter β, which is

critical for the convergence.

The results we show in this section have been derived by

simulating the standard algorithm, where the adopted value of

β = 2α is indicated in [7] as the one that provides a reasonable

performance across different frame sizes. Since in the standard

the frame size must be a power of two, the current frame

length is calculated as r = 2Q where Q = round(Qfp). Qfp is

updated at each slot according to the slot outcome 0, and > 1.

If the outcome is a success the current frame size is reduced
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Fig. 1. Efficiency of Schoute’s protocol with different initial frame length
r0.
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Fig. 2. Efficiency of the Q-algorithm with different initial frame length
r = 0.

by one, otherwise the new size is computed using

Q
(0)
fp = max{0, Qfp − α}

Q
(>1)
fp = min{15, Qfp + α}

α = max{0.1,min{0.5, 0.8
log

2
(r)}}.

(2)

The frame is re-started each time the remaining length of the

current frame does not match the calculated one. Efficiency

results are shown in Fig. 2 for two initial frame sizes, namely

r0 = 1 and r0 = 16. The performance is not encouraging,

since it appears to be lower than in the FC case in Fig. 1,

although the loss of about 0.02 can be ascribed to the con-

straint on the frame length that must be a power of two, as in

the standard. Other losses are due to the error in the estimate

of the backlog, and the initial frame size r0, which causes an

efficiency loss when N is not matched with r0.

In [7] Floerkemeier uses a Bayesian method to derive
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Fig. 3. Efficiency of Floerkemeier’s protocol with different initial frame
length r0.

the distribution of the backlog n at each slot, based on the

distribution at previous slot and on the observation of the

outcome, i.e., E empty, S successful, and C collided. The

distribution update equation is

pn = P (n|z1:t, o1:j) = αP (n|z1:t, o1:j−1)P (oj |n, z1:t, o1:j−1)
(3)

where α denotes a normalizing constant, o1:j represents the

outcome from the first j slots in the current frame, z1:t the

outcomes of previous frames. Since consecutive frames are

independent given the number of transmitting terminals, the

following holds

P (oj |n, z1:t, o1:j−1) = P (oj |n, o1:j−1). (4)

Relation (3) provides a recurrent expression by which the “a

posteriori” probability distribution of the original population

size n, at slot j of frame t can be derived by the same

expression at slot j−1 of frame t, starting from the “a priori”

distribution of the number of transmitting terminals. The “a

posteriori” probability pn is then used to find the frame length

r that maximizes the throughput of the next slot

E[S(r)] =
∑

n

S(n, r)pn =
∑

n

n

r

(

1− 1

r

)n−1

pn. (5)

This maximization is carried out slot by slot and a new frame

is restarted whenever the frame length so determined changes

with respect to the old one. The evaluation of (4) is rather

complex and the method suggested in the original paper is not

practical; therefore we have devised a computational method

whose details have been given in [12].

In Fig. 3 we report the calculated performance of this

procedure in three cases corresponding to three different initial

frame size, namely r0 = 1, r0 = 10, and r0 = 100,

assuming an uniform population distribution in [0; 1000]. The

case r0 = N , the ideal one, is reported as a benchmark since

N is not known in practice. The figure shows the effect of the

mismatch due to the wrong setting of the first frame, which

is even increased when the range of the initial distribution is

increased, say to 10000. In fact, with small r0 and large N we

very likely observe all collisions in the first slots of the frame,

which causes the “a posteriori” distribution to concentrate

on the maximum range values, probably far from optimal

conditions. This behavior is of great concern when N has

no limited value. The fact that the curve r = 10 is above the

r0 = N for N < 10 is due to the inaccuracy of the latter

in estimating low values of N . Even in this case, where a

powerful estimate procedure has been used, the FR procedure

seems not to perform definitely better than in the FC case.

Finally, as we have already mentioned in the introduction,

the analysis with known N proposed in [11] numerically

provides the best strategy and the best frame setting up to

N = 40. Here, the authors show that the optimal FR strategy

only depends on the three variables n, c, k, where n is the

number of unidentified tags (the backlog) at the present slot,

c is the number of slots collided up to the present slot, and k
is the number of slots remaining to the end of the frame. The

analysis is carried out showing that the process defined over

states (n, c, k) is a Markov Chain and the solution is attained

by evaluating the first passage time to the final state where all

tags are identified, which implies solving a very large system

of equations. Numerical results are provided up to N = 40,

and the optimal frame size is found to be slightly less than

the backlog n.

Interesting as it is, the analysis carried out in the cited paper

only provides numerical insights up to N = 40, because of its

complexity, and, therefore, it is of little help in understanding

the role of the parameters, and in determining the efficiency for

N > 40 and N → ∞. The optimal strategy is provided with

a table with three parameters; it must be derived off line for

each (n, r, c) and stored in the reader, which can be expensive,

if not impossible, for very large n. Again, the analysis does

not suggests a simpler and efficient alternative strategy.

In the same paper the authors propose that, when n is un-

known, an estimate n̂ should be used instead. As an example,

they use as estimate a slight modification of the one adopted in

the Q-algorithm explained above. This estimate is used to set

the frame length and to decide the frame restart according to

the optimal strategy. The resulting protocol has been referred

to as Improved Q-algorithm (IQ). Unfortunately, the authors

do not provide the details about the estimation parameters, so

that results can not be re-derived; therefore they have been

graphically reported in Fig. 2. The performance of IQ is the

best among the FR protocols cited, although, again, it seems

not definitely better than in the FC case.

III. ANALYSIS WITH KNOWN COLLISIONS

In order to understand the reasons that take advantage of the

frame restarting mechanism, we assume that we can exactly

track the number m(k) of tags yet to be transmitted in the next

k slots of the frame, which implies the assumption of knowing

the number of the tags colliding in a slot. This situation can be

approached in practice by mechanisms such as the Bayesian
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TABLE I
EFFICIENCY AND OPTIMAL SETTING OF DFA PROTOCOLS WITH FRAME RESTART WHEN COLLISIONS ARE KNOWN.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FR 0.6666 0.6207 0.5805 0.5523 0.5311 0.5146 0.5014 0.4907 0.4818 0.4743 0.4678 0.4621 0.4571 0.4527 0.4487 0.4452 0.4420 0.4390 0.4364

r* 2 2 3 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18

FR PC 0.0000 0.0000 0.0000 -0.0021 -0.0033 -0.0042 -0.0047 -0.0047 -0.0049 -0.0051 -0.0054 -0.0056 -0.0058 -0.0059 -0.0060 -0.0061 -0.0061 -0.0061 -0.0062

r* 2 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18

FR PT 0.0000 0.0000 0.0000 0.0000 -0.0005 -0.0005 -0.0007 -0.0007 -0.0008 -0.0010 -0.0011 -0.0011 -0.0011 -0.0011 -0.0011 -0.0012 -0.0012 -0.0011 -0.0012

r* 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FC 0.5000 0.4706 0.4533 0.4414 0.4327 0.4261 0.4208 0.4165 0.4129 0.4098 0.4072 0.4050 0.4030 0.4012 0.3996 0.3982 0.3969 0.3957 0.3947

TABLE II
STRATEGY MATRIX AND GAIN Ln(m, k)− Ln(n, r)

FOR FR WITH n = 10 AND r = 8.

m/k 1 2 3 4 5 6 7

1 -1.41 -0.91 -0.41 0 0 0 0

2 0 -0.90 -0.87 -0.54 -0.12 0 0

3 0 -0.44 -0.79 -0.76 -0.50 -0.16 0

4 0 0 -0.47 -0.69 -0.64 -0.42 -0.13

5 0 0 -0.12 -0.45 -0.58 -0.52 -0.32

6 0 0 0 -0.17 -0.39 -0.46 -0.39

7 0 0 0 0 -0.16 -0.31 -0.34

8 0 0 0 0 0 -0.12 -0.21

9 0 0 0 0 0 0 -0.06

10 0 0 0 0 0 0 0

mechanism in [7]. Anyway, here the knowledge of m(k) is a

working hypothesis.

Let Ln(m, k) be the average identification time starting

from slot k to frame’s end, when at the same slot the backlog is

n, and let r be the initial length of the frame. The advantage

of FR is that at each slot we can either decide to proceed

with the frame exploration, in that case the performance is

Ln(m, k), or to restart a completely new frame, where the

average identification time is given by Ln(n, r). The best

strategy at each slot is, of course, the one that leads to the

smallest Ln. Once the best strategy is selected, an optimal

choice of r can be determined at each new frame.

Since at the beginning of a new frame the past history does

not influence the performance other than in the variables n and

r, once the best strategy is determined for an initial number

of tags N , N ≤ n−1, then the performance with N = n only

depends on the occurrences in the first or subsequent frames

up to the first success. This leads us to the following set of

equations

Ln(n, r) = 1+p1(n, r)L
∗(n−1)+

∑

i6=1

pi(n, r)Ln(n−i, r−1)

(6)

L′
n(m, k) = 1 + p1(m, k)L∗

n−1(m− 1, k − 1)

+
∑

i6=1

pi(m, k)Ln(m− i, k − 1) (7)

Ln(m, k) = min{Ln(n, r), L
′
n(m, k)} (8)

where we have denoted with an asterisk the performance of

the best strategy and with pi(m, k) the probability that i out

of m tags choose the first slot in a frame of k slots, namely

the Binomial distribution

pi(m, k) =

(

m

i

)(

1

k

)i(

1− 1

k

)m−i

. (9)

Once the best strategy is known with N = n − 1, i.e.,

L∗(n − 1) is known, the system in (6)-(8) can be solved for

Ln(m, k) and we can find the value r = r0 that minimizes

Ln(n, r), thus determining the optimal strategy and L∗(n) =
Ln(n, r0). Then, the procedure can be repeated iteratively for

any value of n starting from L∗(1) = 1.

Values Ln(m, k) in (6)-(8) can be easily derived for any k
and any m starting from Ln(m, 1). Since those values can be

expressed as

Ln(m, 1) = Ln(n, r), m > 1 (10)

Ln(1, 1) = 1 + L∗(n− 1), (11)

for m > 1, the values can be attained iteratively starting from

the unknown Ln(n, r). Table I shows the results in term of

efficiency, n/L∗(n), up to n = 20, together with the optimal

setting r0 = r∗ of the frame length. The performance of DFA-

FC, is also reported for comparison, while Table II shows the

strategy matrix for n = 10 and r = 8. In this table is reported

the gain Ln(m, k) − Ln(n, r), so that when the gains are

negative the frame is further explored. We note that function

Ln(m, k) − Ln(n, r) can be seen as a plane of height 0 in

which a valley is carved along the diagonal axis that from

(n, r) leads to state (1, 1). The bottom of the valley decreases

as k decreases, reaching its minimum in (1, 1).
A suboptimal FR protocol, that performs not far from the

optimal, is the one that restarts the frame whenever a success

occurs, which means replacing L∗
n−1(m − 1, k − 1) in (7)

with L∗
n−1. We now look for the best strategy of restarting

the frame if either empty slot or a collision occurs. Denoted

by l(n, r) the average number of slots to the next success, the

equations of this protocol can be derived from (6)-(8) as

Ln(n, r) =l(n, r) + L∗
n−1 (12)

Ln(m, k) =l(m, k) + L∗
n−1 (13)

and the optimal strategy is the one that re-starts the frame if

l(n, r) < l(m, k). Making explicit only variable k, we have

lk = 1+ βklk+1 = 1 + βk(1 + β̄k−1+

+ (1 + β̄k−2 + (1 + β̄k−3 + (...(1 + β̄1ln))))). (14)

Here βk is the probability that a success does not occur in

slot k, while subsequent β̄k−i represent the probability that a
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TABLE III
EFFICIENCY AND OPTIMAL SETTING OF DFA PROTOCOLS WITH FRAME RESTART WHEN COLLISIONS ARE UNKNOWN.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FR 0.6666 0.6000 0.5549 0.5247 0.5036 0.4877 0.4754 0.4655 0.4574 0.4506 0.4449 0.4400 0.4357 0.4319 0.4286 0.4256 0.4230 0.4206 0.4184

r* 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FR PC 0.0000 0.0000 0.0000 -0.0008 -0.0009 -0.0008 -0.0007 -0.0008 -0.0009 -0.0009 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0010

r* 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FR PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0004 -0.0003 -0.0004 -0.0004 -0.0003

r* 2 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

FC 0.5000 0.4706 0.4533 0.4414 0.4327 0.4261 0.4208 0.4165 0.4129 0.4098 0.4072 0.4050 0.4030 0.4012 0.3996 0.3982 0.3969 0.3957 0.3947

success does not occur in slot k−i averaged over the different

outcomes up to k − i.

ln − lk = (βn − βk) + (βnβ̄n−1 − βkβ̄k−1)+

+ (βnβ̄n−1β̄n−2 − βkβ̄k−1β̄k−2) + . . . . (15)

The frame should be restarted whenever ln− lk < 0. However,

degree of approximation to this sub-optimum can be attained

looking only at some terms of the summation on the right.

Stopping at first term, the frame is restarted when βn−βk < 0,

i.e, when the success probability is increased restarting the

frame. This provides the sub-optimal strategy that we call

probability comparison, (PC), whose results are shown in

Table I, where the performance of this suboptimum appears

very close to the optimal one. In the same Table we also show

the performance of the strategy labeled probability threshold,

(PT), which restarts the frame when βk > (1 − p0), i.e.,

probability of success in the next slot Ps > p0, being p0
a threshold to be optimized. We see that this suboptimum

with p0 = 0.33 behaves still better than PC, and practically

coincides with the optimum.

As we can see by comparison with FC, the FR property

leads to a gain in the efficiency, which is remarkable for n = 2
and diminishes as n increases. For n → ∞ this gain reduces

to zero, as shown in the following

Theorem 1. The asymptotic optimal frame setting is r = n
and with such setting we have

lim
n→∞

L∗(n)

n
= e. (16)

Proof: Let consider n → ∞, and assume that the optimal

setting of r is r(n). Denoting with s(n) = n/r(n) the traffic,

we exclude that at optimal setting the traffic is zero or infinite.

Therefore, in the following we assume that n and r are related

such that n/r = s, with 0 < s < ∞. This means that

Ln(n, r) = ln(s)n+ o(n), n → ∞. (17)

Referring to any finite index i, we have also

Ln(n− i, r − 1) = ln(s)n+ o(n), n → ∞. (18)

Furthermore, {pi(n, r)}, i.e., the distribution of the number

of tags transmitting in the first slot of the frame, for n → ∞
tends to the Poisson distribution with average s = n/r,

pi(n, r) =
si

i!
e−s = pi(s). (19)

With finite traffic s, for large values of i, i.e., proportional to

the backlog i = kn for 0 < k ≤ 1, the term in the summation

in (6) becomes

pkn(s) · (ln(s)n+ o(n)) =
skn

(kn)!
e−s(ln(s)n+ o(n)) (20)

=
( se

kn

)kn e−s

ckn
√
kn

(ln(s)n+ o(n)) (21)

= o

(

( se

kn

)kn √
n

)

, (22)

where (21) comes from Stirling’s bound, with
√
2π ≤ ckn ≤ e

for any kn. From (22) we see that the terms with i = kn are

negligible, therefore the summation in (6) becomes
∑

i6=1

pi(n, r)Ln(n−i, r−1) = (ln(s)n+o(n))(1−p1(s)) (23)

and, from (6) we have for n → ∞

Ln(s) = ln(s)n =
1

p1(s)
+ L∗(n− 1). (24)

The above is minimized by maximizing p1(s), i.e., for s = 1
or r = n, which in the limit yields

L∗(n) = e+ L∗(n− 1) (25)

which is exactly the asymptotic performance of DFA-FC [9].

IV. ANALYSIS WITH UNKNOWN COLLISIONS

The result of the previous section may be too optimistic

when an estimate of m(k) is used. Here we use the less

stringent hypothesis that assumes we know the backlog n at

the beginning of the frame.

The new state, with backlog n and frame r, becomes (c, k),
where c is the number of collided slots up to the current slot,

anti-correlated with m, and k is as before. We can readily

write the equations that correspond to (6)-(8)

Ln,r(0, r) = 1+p1(n, r)L
∗(n− 1)

+p0(n, r)Ln,r(0, r − 1)

+pc(n, r)Ln,r(1, r − 1) (26)

L′
n,r(c, k) = 1+p(1)n,r(c, k)L

∗
n−1(c, k − 1)

+p(0)n,r(c, k)Ln,r(c, k − 1)

+p(c)n,r(c, k)Ln,r(c+ 1, k − 1) (27)
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Ln,r(c, k) = min{Ln,r(0, r), L
′
n,r(c, k)} (28)

where we have denoted with an asterisk the performance of the

best strategy, pi(n, r) is the binomial (9), with pc =
∑

i>1 pi,

p
(i)
n,r(c, k) is the probability that i backlogged tags transmit

when state is (c, k), and p
(c)
n,r =

∑

i>1 p
(i)
n,r. A closed-form

expression of probability p
(i)
n,r(c, k) can be found in [13].

The equations above can be solved in the same way as (6)-

(8), with initial conditions

Ln,r(cmax, k) = Ln,r(0, r), (29)

cmax = n/2, n even

cmax = (n− 1)/2, n odd

Table III shows the results in the analogous of Table I. In

the comparison we see that the loss of knowledge costs to

the efficiency about two decimal points starting from n = 3
up to n = 20. Even in this case we have evaluated the two

suboptimal policies PC and PT of the previous section. Here

the best results are again attained with policy PT if the frame

is restarted whenever Ps > 0.37. Again, policy PT practically

coincides with the optimum.

As for the asymptotic performance we still have:

Theorem 2. The asymptotic optimal frame setting is r = n
and with such setting we have

lim
n→∞

L∗(n)

n
= e. (30)

The proof comes immediately by observing that the perfor-

mance must be no better than the previous case and no worse

than with the entire exploration of the frame.

As already mentioned in Section II the results above have

already been derived in [11], though the Markovian framework

there adopted appears rather more complicated than equations

(6)-(8).

V. UNKNOWN BACKLOG

In practical cases N , and the backlog at each frame, are

unknown, and the analysis carried out in the previous sections

does not apply. If N is known in probability, i.e., is regarded as

a random variable, an optimal strategy based on the outcomes

observation is still possible. In [12] we have considered the

case where N is Poisson distributed, with small average

E[N ] ≤ 2. In that case we have been able to attain the best

strategy by exhaustive search.

However, if N is large exhaustive search is practically

impossible. Furthermore, N can hardly be regarded as a

random variable, and must be considered as a constant of

possibly infinite range. Therefore, the only way, as suggested

in [11], seems to derive an accurate estimate of the backlog n
at the beginning of the frame and then using the FR optimal

strategy theoretically derived for known N .

In Fig. 4 we have reported the efficiency curve IQ, taken

from [11]. For comparison purposes we have also reported the

theoretical efficiency with known N , derived mathematically

up to N = 50 as seen in the previous section, and that we

know asymptotically reaching e−1, as stated in Theorem 1.

We have also reported the efficiency limit curve attained with

Schoute’s protocol in the FC case with r0 = N , which also

reaches e−1 in the limit. We can see that, at least for moderate

values of N , not only the efficiency loss of the proposed

protocol with respect to the known-N case is remarkable, but

it also presents losses with respect to the FC limit. This must

in part be ascribed to the mismatch between r0 and N , but in

greater part to the imprecision of the Q-algorithm in estimating

the backlog in this range of N .

We have not been able to replicate the curve IQ, because

of lack of details. Therefore, we have devised a procedure

able to assess the validity of the sub-optimal PT procedure

of Section IV. At each slot of frame i the estimate n̂i at

the beginning of the frame is updated with the Q-algorithm

algorithm illustrated in Sec. II and parameters in (2). This

estimate is used to evaluate the average number of collided

tags in a collided slot, h, assuming the traffic in the slot is

Poisson distributed with average γ̂ = n̂i/ri:

h = γ̂
1− e−γ̂

1− e−γ̂ − γ̂e−γ̂
.

Then the number of tags m that remain to be transmitted in

the subsequent k slots of the frame is evaluated as

m̂ = n̂− hc− s,

where c and s are respectively the number of collided and

successful slots of the frame up to the current slot. The success

probability Ps in the next slot is evaluated by the binomial (9)

and the frame is restarted whenever it is Ps < p0, where

p0 is a prefixed threshold. The protocol is started by setting

n̂ = N̂ = r0. This procedure is labeled Q1 and its best

performance is reported in Fig. 5, which is an enlargement

part of Fig. 4, with parameters r0 = 16 and p0 = 0.37. As

we can see, the performance of this procedure has a shape

close to IQ, although somewhat lower. Changing to r0 = 8
provides a higher peak, of about 0.42, but with narrower shape

and shifted to the left. The steep descent beyond the maximum

must be probably ascribed to an imprecise estimate when N
is mismatched with respect r0.

To avoid the above effect, we have reverted to the Bayesian

estimate, as explained in Section II, the FR strategy remaining

the same. Its efficiency is shown in the figure with label

Bayesian, where the best performance has been attained with

parameters r0 = 8, and p0 = 0.37. To avoid the negative

effects on the “a posteriori” distribution already mentioned

in Sec. II, we initially restart on the first slot as long as a

collision is observed by doubling the frame length, turning to

the standard procedure when a non-collision is observed at the

beginning of the frame. The efficiency peak is lower but the

descent is more favorable, as expected. In fact, we expect that

as N → ∞, the Bayesian estimate becomes exact, and the

efficiency reaches the Schoute’s limit e−1.

In trying to raise the peak we have introduced an initial

phase that uses the Q-algorithm with the above parameters,

switching to the Bayesian when Ps < p0 and at least one
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Fig. 5. Efficiencies of different FR protocols.

success has been observed up to the present slot. In the

figure we report the curves, labeled as Q-Bayes, obtained

with parameters r0 = 8 and r0 = 16 with p0 = 0.37. The

former is always better than IQ while the latter presents the

best performance for high N , due to the good estimate of the

Bayesian method. All these figures are congruent with the IQ

and shows the optimal performance of the PT strategy.

In concluding this section, we can not avoid to note that,

unlike FC, practical implementations of the FR strategy are

very far from the ideal case where N is known.

VI. ASYMPTOTIC BEHAVIOR

We have already mentioned that the Bayesian estimate is

expected to converge to n as n → ∞ and to efficiency e−1.

However, for large n the Bayesian estimate is not practical.

On the other side the simpler Q-algorithm is not proven

to converge. Fortunately, a simple and converging protocol

exists. In [9] we have analytically proved that a simple pro-

cedure, called Asymptotically Efficient Estimate (AE2), based

on Schoute’s mechanism, is able to reach the asymptotic

e−1 limit. This procedure can also be integrated with the

mechanisms shown in the previous section and used when n̂
becomes large.

AE2 works as follows. The backlog estimate is updated at

the end of frame i, either complete or not, as follows

n̂i+1 = round

(

H(n̂i)ci
ri
li

)

, ci > 0,

n̂i+1 = n̂i − si, ci = 0,

ri+1 = n̂i+1.

(31)

where ci and si are respectively the number of collided and

successful slots observed in frame i, ri is the frame length, li
is the number of observed slots when a new frame is restarted,

and

H(n̂i) =
1− (n̂i/ri)e

−1

1− 2e−1
. (32)

As for the increase in li, we asymptotically use the law

li = min{round((i + 1)b), ri}, (33)

with b > 0. This setting has been proved sufficient to let the

estimate converge asymptotically to the true n. We explicitly

note that the above strategy completely replaces the optimal

strategies considered up to now.

Briefly, the meaning of the above algorithm is as follows.

Law (31) is used to predict the backlog based on the observed

collided slot ci, which is resized to the frame length ri. The

multiplier H(n̂i) takes the role of the constant 2.39 in (1).

When some convergence is achieved and n̂i ≈ ri we get,

in fact, H(n̂i) = 2.39. At the beginning of the convergence

phase, where all collisions are observed, n̂i grows very rapidly,

with geometric law, but the frame length (33) increases much

more slowly, with a quadratic law if we use b = 2, and this

assures that the number slots C(N) spent in the convergence

phase are of lower order than N , so that C(N)/N → 0 as

N → ∞. In the end n̂i stabilizes, round((i + 1)b) in (33)

reaches n̂i and we get li = ri and H(n̂i) = 2.39. At this

point, and for large N we have n̂ ≈ n, and the procedure

proceeds exactly as in Schoute with r0 = N (the convergence

phase has negligible overhead), thus reaching efficiency e−1.

In Fig. 6 we have reported both analytical and simulated

values (dots) attained averaging 104 simulation samples, in

the case N = 103 and r0 = 1. The red dash-dotted line

represents the relative error multiplied by 103, still very small.

For comparison purposes we have also reported the curve

referring to Schoute’s algorithm. We clearly see the advantage

of AE2: the estimate N̂i at first rises sharply reaching N
with some overshoot, and right after begins a steady decline

with rate e−1. The convergence is reached higher and sooner

with respect to Schoute’s case, which, in fact, is proven to

asymptotically reach efficiency 0.311 [9].
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VII. CONCLUSIONS

We have presented an analysis of DFA with Frame Restart

that provides the optimal FR strategy when the tag population

size N is known. The analysis also provides simple sub-

optimal mechanisms that do not loose efficiency. Furthermore

it shows that asymptotically the FR property presents the same

performance as with the plain DFA.

When N is unknown, the performance is determined by the

precision of the procedure used to estimate N . Unfortunately,

the lack of precision at low and moderate values of N makes

the performance comparable with the one of the plain DFA.

Furthermore, we provide a procedure that exploits FR to

reduce the overhead asymptotically, reaching efficiency e−1,

as in case of known N .
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