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Abstract

For many years auctions are used as a process of buying and selling goods
or services. Often not only a single item but several ones are auctioned,
which increases, among others, the complexity in terms of computation and
communication, since more (combinations of) items have to be evaluated and
submitted. Our contribution is two fold.
First, sealed-bid procurement auctions with two different items from the
same product are tested. Since homogeneous goods are auctioned, the items
are called lots. Second, we analyze sealed-bid and dynamic combinatorial
auctions that are frequently used in practice for the sales of spectrum licenses.
The bidders’ complexity increases, since they have to evaluate a large number
of different combinations of items, so called bundles. In our environment up
to 2,400 different bundles are possible.

In the procurement context, two sealed-bid single-item multiple lot split-award
auctions are considered, namely the parallel and the Yankee auction. These
mechanisms are multi-object extensions of the first-price sealed-bid (reverse)
auction and can be found regularly in procurement practice. The split decision
for these auctions is made ex-ante. Different risk-neutral Bayes Nash
equilibrium (RNBNE) strategies are developed for the Yankee and the
parallel auction. Surprisingly, both mechanisms result in the same expected
costs for a procurement manager. We will analyze, if human bidders are able
to follow the RNBNE strategy - a question that is recently discussed in many
papers.
The strategic considerations in these auction formats are more difficult than
in single-lot first-price sealed-bid auctions. Hence, it is questionable, whether
expected utility maximization can explain human bidding behavior in such
multi-object auctions. The assumption that human bidders would be able to
mimic Bayes Nash equilibrium strategies has been challenged, and it is still
an open issue, if they explain human bidding behavior even in easy settings,
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like single-item auctions.
One main contribution is, that the predictive accuracy of equilibrium strate-
gies in the lab is examined. We find underbidding for low cost draws in
single-lot and split-award reverse auctions. Conversely, overbidding for high
cost draws can be observed. Similar results can be found in experimental
research on ”forward” first-price sealed-bid auctions. To increase the pre-
diction accuracy of the RNBNE strategies, we used the strategy method,
i.e., we elicited bidders’ bidfunctions, which we reused in a large number
of computerized auctions. By this configuration risk aversion is eliminated,
since speculation might make no sense. In addition, human bidders competed
against computerized agents to reduce other effects like spite or uncertainty
about other bidders’ behavior.
In computerized experiments, where bid functions are reused in 100 auctions,
there was actually no significant difference to the RNBNE bid function.
This was not to be expected, since previous experiments showed a consistent
pattern of overbidding in first-price sealed-bid auctions. As a consequence,
our result rules out strategic complexity as a reason for deviations from
equilibrium bidding. We attribute the results to our experimental design.
Hence, we can conclude that the cognitive complexity of deriving a RNBNE
strategy is not the right explanation for underbidding. Also when human
agents competed against other humans, the RNBNE strategies can be used
as a baseline model for bidding behavior in split-award auctions. Overall, the
experiments suggest that risk-neutral Bayes-Nash equilibrium strategies serve
as a surprisingly accurate model for human bidding behavior in split-award
auctions. Strategic complexity is an unlikely explanation for deviations from
the equilibrium strategy.

Our second contribution models the sales of spectrum licenses as it is done
in many countries worldwide, where decision makers have the choice between
a large number of bundles. In contrast to the experimental environment
in the procurement context, we do not have a theoretical baseline as point
of reference. By experimental research we give practical implications to
governmental institutions how to sell magnetic radio spectrum by auctions.
Since 1994, when the personal communication services (PCS) auction
was conducted by the Federal Communications Commission (FCC) of
the US, spectrum auctions have raised hundreds of billion dollars worldwide.
Hence, auctions have become a role model for market-based approaches in the
public and private sector.
The PCS spectrum was sold via a simultaneous multi-round auction
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(SMRA), a format that has been used for more than a decade in the US
and elsewhere. In the SMRA, bidders compete for licenses individually even
though they typically value certain combinations of licenses. Therefore, since
bundle bids are not possible, it might happen, that bidders do not win their
preferred combination but only a subset of it. Contrarily, in combinatorial
auctions (CA), where several items are sold simultaneously, bidders can
submit indivisible bundle bids on groups of items. This might improve the
performance in comparison to SMRA, since synergies between items, i.e.,
considering economies of scale and scope, can be expressed by bids. Even
because of this advantage, the first combinatorial spectrum auction only took
place in 2008.
Since that time, many countries used the combinatorial clock auction
(CCA) to sell their magnetic radio spectrum in order to increase the perfor-
mance, like the social welfare and the revenue. However, the complexity of
the auction became bigger, since many licenses have been sold simultaneously
which leads to an exponential growth of the number of possible packages.
To address this problem, we analyze in the laboratory main auction design
choices, that governments face, i.e., the selection of the auction format, bid
language and payment rule.
We focus on bid languages with different expressiveness, where the following
trade-off has to be mastered. The more complex the bid language, the
better efficiency can be reached in theory. However, the more complex the
bid language, the more combinations of items have to be considered by
humans. Contrarily, a simple bid language may not be very efficient from
a theoretical point of view, since bidders might not express their valuation
detailed. A complex language in turn is good in theory, but practically bad,
what has negative effects on the efficiency. We analyze the impact of a simple
”compact” versus complex ”fully expressive” bid language. Additionally, we
test simple ”pay-as-bid” pricing rules, which can be understood easily by
bidders, and complex “bidder-optimal core-selecting” pricing rules, which
generate good results in theory.
To widen the scope, we look at ascending, and sealed-bid, i.e., one round
formats. We find that simplicity of the bid language has a substantial positive
impact on the auction’s efficiency. Also an easy pricing rule has positive effects
on the revenue that is generated by the auction. Finally, it can be concluded
that the CCA with a complex bid language and pricing rule ends in the worst
results. This outcome has directly impact on decision makers, since the CCA
was applied in previous auctions and is supposed to be used in many countries.
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Chapter 1

Introduction

Auctions are used in many economic environments and can be found in
procurement, energy markets, transportation and the sales of spectrum
licenses.
Especially when several items are sold, bids on combinations of items, called
packages or bundles, might increase economic efficiency, since there are
often super-additivities as well as economies of scale (and scope) between
items. Bundle bids are possible in combinatorial auctions (CAs), which
are often implemented with multiple rounds. In these dynamic auctions the
auctioneer computes allocations and ask prices after each round. This would
not be possible without IT-based auction platforms which solve complex
computational problems in each auction round. This is a main reason why
CAs have been a topic in much recent Information Systems (IS) research.
Examples can be found in Guo et al. (2007), Bichler et al. (2009), and Bichler
et al. (2013b). The IS literature also proposed a lot for bidder decision
support, designs for new application domains, and the analysis of bidder
behavior in CAs (see also Adomavicius and Gupta (2005), Ausubel and
Milgrom (2006), Bapna et al. (2000)). An overview of current research in IS
can be found in Bichler et al. (2010a).

In this thesis we study experimentally, how humans behave in multi-
item auctions. First, we study a quite simple setting, namely two sealed-bid
split-award auctions with ex-ante split decisions as they can be regularly found
in procurement practice. These auction formats are multi-object extensions
of the first-price sealed-bid auction. We analyze the predictive accuracy of
risk-neutral Bayes Nash equilibrium (RNBNE) strategies by means
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CHAPTER 1. INTRODUCTION

of laboratory experiments. We conclude with suggestions for dynamic, i.e.,
multi-round, extensions of these sealed-bid formats.

Second, we analyze multi-item auctions in an environment with several
items, which can be found in the sales of spectrum licenses, and achieve a
better understanding of the design of CAs. Mainly, we accomplish the work
of Bichler et al. (2013a) in addressing some current issues, like bidders’ (com-
municational) complexity, which is determined by the degree of competition,
number of items, bidders and possible bundles. We try to solve the problem,
that bidders might not be able to submit bids on all possible combinations
which have a positive valuation as recommended in theory. On the one hand,
people do not identify the ”right bundle” they should bid for; on the other
hand, there are too many alternatives. Current research has shown, that even
with decision support, people cannot deal with a large amount of information.
This phenomenon is known as information overload in the literature and
discussed in many papers for different applications (see e.g. Maes et al.
(1994)).
A growing number of papers in recent years have focused on the design of
auctions for multiple non-identical objects. Examples can be found in the sales
of spectrum licenses and industrial procurement or logistics where multiple
heterogeneous goods or services need to be purchased (Cramton et al. (2006a)).

1.1 Split-award auctions

In the first part, we analyze two forms of sealed-bid auctions that can regularly
be found in procurement practice for dual sourcing. Two lots of a product
with different sizes are sold in one round. The lots in such auctions could
be the 30% and the 70% share of the demand for a particular raw material.
The buyer chooses the split decision ex-ante. The suppliers are restricted to
submitting either one single bid in the so called Yankee auction or two bids
on the two lots in the parallel auction.

In the Yankee auction each bidder submits only one bid as the unit
price for both lots. Then, the bidder with the lowest bid wins the large lot
and the bidder with the second lowest bid wins the small lot.
Conversely, in the parallel auction each bidder submits one bid as the unit
price of the product for each lot. The bidder with the lowest bid on each
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lot wins that lot, whereas each bidder can win at most one lot to ensure
the split outcome. If one bidder is the best bidder for both lots, he will be
awarded the large one. Such auction formats with an ex-ante split are easy
to implement for procurement managers, and it is interesting to understand
bidding strategies.

Ceylan and Guler (2005) introduce variable awards. In their model the
sourcing decision, sole source, i.e., that the best bidder wins the whole
amount, or split-awards, as well as the definition of the split parameter de-
pend on the submitted bids. Also ex-post split decisions might be interesting
to analyze but will not be the focus of this work.
Corey (1978), Woodside and Vyas (1987), and Seshadri et al. (1991) discuss
cases of split-award contracts with predefined splits in different industries.
Game theoretical analysis or experimental work is not done in these papers.
Recently, Gong et al. (2012) assume a single bid second-price split-award
auction with an ex-ante split similar to the Yankee auction in our paper.
However, their focus is different, since they analyze suppliers’ incentives to
invest and not a RNBNE strategy.

In this thesis, the theoretical analysis and the Bayes Nash characteriza-
tion of the parallel and the Yankee auction is used from Kemal Guler of
our joint work in Bichler et al. (2014a). It is analyzed to which extent such
models and the corresponding RNBNE strategy have explanatory power
in lab experiments. To our knowledge, none of the split-award auctions
discussed in the literature have been analyzed in the lab in spite of their
practical relevance. Our models are in the first-price sealed-bid auction
framework, which is straightforward to implement and reflects the real-world
practice. Previous studies in ascending auctions (Palfrey (1983)) or auctions
with complete information (Tranæs and Krishna (2002)) are not particularly
realistic and hardly used in procurement.

Bayesian Nash equilibrium analysis is the standard approach to model
sealed-bid auctions and much recent research has tried to extend this type
of analysis to multi-object auctions (Krishna (2009)). The RNBNE analysis
of multi-object auctions is technically much more challenging than that
of single-object auctions. Hence, there are only a small number of papers
deriving RNBNE strategies for specific combinatorial or non-combinatorial
multi-object auction formats (Goeree and Lien (2010b), Ausubel and Baranov
(2010), Sano (2011), Sano (2012)). Given the strategic complexity of these
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multi-object auctions, it is all but clear that RNBNE predictions explain
human behavior well.
Similar analysis are done with uniform-price auctions by Engelbrecht-Wiggans
and Kahn (1998) and for multi-unit auctions with common values by Back
(1993).
For first-price sealed-bid auctions of a single-object the bidder’s decision is
one dimensional. Only the level of bid shading, i.e., the difference between
the bid price and the costs, has to be considered. In multi-object first-price
sealed-bid auctions bidders also need to decide which objects they want to
bid on and additionally, how much they want to shade their bids.
For example, in the parallel split-award auctions not only the number of
bidders and the prior distribution, but also the split parameter determines
the level of bid shading. In the Yankee auction the bidders also need to take
into account the risk of winning the small lot rather than the large lot with a
certain bid price.

Interestingly, the predictive accuracy of RNBNE predictions for multi-
object auctions in the lab is largely unexplored. However, there is a growing
literature on first-price sealed-bid auctions of single-objects which shows
that bidding behavior in the lab deviates substantially from the RNBNE
prediction and overbidding is a common phenomenon. Engelbrecht-Wiggans
and Katok (2009) explain overbidding by risk aversion, spite, and regret.
A number of authors have challenged the overall approach of models based
on rational choice and expected utility maximization (Bourdieu (2005), Nell
et al. (2007)).
Ockenfels and Selten (2005) and Neugebauer and Selten (2006) use dynamic
concepts, such as learning, instead of the equilibrium concept as an explana-
tion. Experimental results on first-price sealed-bid auctions of a single-object
seem to confirm this criticism.
Even if bidders were able to mimic their RNBNE strategy in a single-lot
auction, it is far from obvious that RNBNE models would still be a good
predictor for multi-object auctions. In single-lot auctions, bidders might
just estimate the right level of bid shading. As described above, split-award
auctions are strategically more complex, and it is interesting to understand,
if bidders are able to mimic their RNBNE strategy.
If the RNBNE strategy does not explain bidding behavior in split-award
auctions, there is little hope that it would explain bidding behavior in more
complex multi-object auctions such as combinatorial auctions. In summary,
we try to understand if, in spite of the increased strategic complexity of
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split-award auctions, RNBNE bid functions can serve as a baseline model for
human bidding behavior.
In the procurement context, we start with the introduction of closed form
increasing Bayesian Nash bidding strategies for the Yankee and the parallel
auction. Then, welfare assumptions concerning the total procurement costs
are made. This Bayes Nash characterization has been missing in the growing
literature of multi-object auctions and is particularly relevant for procure-
ment. A main finding is that, although the parallel and the Yankee auction
mechanisms yield the same expected costs to the buyer, other aspects of the
two models, including the equilibrium bidding strategies as well as winning
bidders ex-post profits differ significantly.

Most previous studies in this area, like Armstrong (2000) and Anton
and Yao (1992), focus on the comparison of auction mechanisms in terms of
the expected revenue. We also compare the different mechanisms in terms of
other measurements like the equilibrium bidding strategies as well as winning
bidders ex-post profits, which are important considerations in real-world
procurement practice.
Chaturvedi et al. (2011) also define a optimal long-term split-award auction
that minimizes the procurement costs for a while. The difference to us is, that
the procurement costs are increased by qualification costs, i.e., the buyer has
to pay for qualifying suppliers and maintain a supply pool to avoid qualifying
new suppliers for each auction. To keep bidders motivated multi-sourcing is
necessary, since if more bidders are winning, more will be interested in future
business. Finally, they conclude that the supply base size decreases with an
increase in the cost to qualify suppliers.

One of our main contributions is that we are the first to report on lab experi-
ments with split-award procurement auctions. We designed lab experiments
with different levels of control where human bidders competed either against
other human bidders or computerized bidders. The latter are designed to
mitigate the impact of behavioral biases such as risk aversion, regret, and
spite.
We found that human subjects in experiments against computerized bidders
were actually able to mimic the RNBNE strategy surprisingly well without
knowing the strategy of the computer agents. We added experiments where we
provided the RNBNE strategy of computer agents explicitly. The differences
in bidding behavior between these two treatments were small.
Experiments with human subjects in repeated auctions are modeled after
procurement auctions as they are found in the field. We could observe
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learning in the initial rounds, but observed underbidding compared to the
RNBNE prediction for low cost draws. Although the impact of risk aversion
should be reduced with many repeated auctions, residual risk aversion, wrong
expectations about other bidders or regret can all serve as explanations
for this underbidding. The level of underbidding was comparable to the
result in single-lot reverse auctions, which we conducted as a point of reference.

In summary, the deviations from the RNBNE strategy are small in the human
subjects experiments after a few rounds. The computerized experiments show
that bidders can handle the strategic complexity well and their bid functions
are surprisingly close to the RNBNE prediction compared to earlier literature
on first-price sealed-bid auctions on a single-object. We attribute this to our
experimental design and the large number of repetitions, in which a single
bid function is used. This also shows that strategic complexity provides little
explanation for the deviations from the RNBNE in experiments with human
subjects, even though the strategic complexity is considerably higher than in
single-object auctions.

1.2 Combinatorial auctions

Nowadays, the sale of spectrum licenses is often done by complex multi-item
auctions. The amount of items is much higher than in split-award auctions
described in the last section. It is interesting, how bidding behavior changes,
when humans have to deal with more information.

Spectrum licenses are in high demand due to the variety of different
applications in industry. Especially, providers in the telecommunications
sector demand more licenses than are available in order to offer certain
services. This effect is even strengthened by the increasing demand for mobile
data, since users want to run applications with a sufficient data supply.
Several other methods different from auctions have been used to assign
licenses to companies.
Spectrum auctions with thirty or more items have been conducted or
are planned in Austria, Australia, Canada, Switzerland, the Netherlands,
Ireland, and the UK. For example, in the 2012 auction in the Nether-
lands, 41 spectrum licenses in the 800 MHz, 900 MHz and 1800 MHz bands
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were sold. Switzerland auctioned 61 licenses distributed over 11 bands in 2012.

Instead of using an auction, companies could apply for their requested
license by comparative hearings or beauty contests (see Hoffman (2011)).
However, even the preparation for such a process and the evaluation of the
selection of the right partners takes a long time. The outcome is often unclear
and not transparent, since the reasons why some companies get the license
but others do not are hardly understandable for the losers.
Another procedure consists of lotteries where all interested people would have
to apply for a ticket. Then the licenses are allocated to the applicants at
random. This might create the problem that the people/companies who really
want to use the licenses do not win - but other firms that participated only
because of fun or speculation do. Hoffman (2011) found out that many appli-
cants only take part into a lottery in the US to speculate without any interest
in using the licenses. Milgrom (2004) concluded that these speculations led to
bad results in actual allocation processes in North America. The government
earned less money and licenses were not allocated to the right provider that
could offer services to citizens in some areas. Even the introduction of a
nationwide mobile telephone service in the US was delayed.

Because of the downside of other allocation methods, auctions became
more and more popular. Already Coase (1959) suggested that market-based
mechanisms, like auctions improve the allocation of spectrum resources.
But his early advice was not taken for decades. Only since the early 90’s
spectrum auctions have been a common topic in research, after the regulatory
authority in the USA, the Federal Communication Commission (FCC),
expressed their willingness to sell spectrum licenses nationwide via auctions.
The 1994 sale of radio spectrum for personal communication services
(PCS) changed the policy of the FCC, since they finally started to run the
first auction for selling spectrum license. For the design of its PCS auction,
the FCC took the advice of several economists and game theorists. Finally,
the FCC followed the proposal of the Stanford professors Milgrom and Wilson
to run the simultaneous multi-round auction (SMRA). The success of
the PCS auction, which raised over six hundred million dollars for the US
Treasury, vindicated Coase’s vision.

The SMRA is a straightforward multi-item extension of the single item
English auction. It is frequently used in art sales, and the simplicity of its
rules has contributed to its popularity. Therefore, more than 70 spectrum
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auctions were run using the SMRA since the early 90’s with a generated for
revenue of 200 billion US dollars (Cramton et al. (2006a)).
Despite the simplicity of its rules, the strategic complexity is quite high in
the SMRA when there are synergies between licenses that cover adjacent
geographic regions or between licenses in different frequency bands. Bidders
who compete aggressively for a certain combination of licenses risk winning
an inferior subset at high prices, since they cannot place bids for indivisible
bundles. When bidders anticipate this exposure problem, competition will
decrease the auction’s performance. The exposure problem has led auction
designers to consider CAs which enable bidders to express their preferences
for an entire set of licenses directly. Baranov (2010) has shown, that in
environments with complementarities, non-package auction designs can easily
fail to achieve efficient allocations. Hence, lower revenue for the seller is
generated because bidders cannot express their synergies across items.
Chernomaz and Levin (2008) conclude that package bidding improves (hurts)
efficiency at high (low) levels of synergies. Bundle bids introduce free-riding
incentives for local bidders, i.e., small bidders force other small bidders to
overbid the large bidders. This asymmetric bidding behavior reduces efficiency
when synergies are low but increases it when those are high. Small bidders,
who either win all together or lose all together, try to motivate each other for
free-riding. As a result they win and pay less than the other (small) bidders.
This free-riding incentive lowers the incentive for bidding for both local and
global bidders. Consequently, revenue is reduced at all levels of synergies.
The effect of package bidding on revenues is negative when global bidders are
not allowed to bid on single items (a feature of the equilibrium) and positive
when this restriction is relaxed and synergies are high. In accordance with
some other results, Brunner et al. (2010) summarize that SMRA is actually
superior in value models with quite low synergies.

To avoid the problems of the SMRA CAs might be proper, since bid-
ders can express their valuations better. The design of CA, however, led to
a number of fundamental design problems, and many contributions during
the past few years have been made (see for example Ausubel et al. (1997),
Plott (1997), Banks et al. (2003), Plott and Salmon (2004), Cramton et al.
(2006b), Cramton et al. (2006a) and chapter (4.1)). Figure (1.1) summarizes
developments in the field of spectrum auction design concerning their appli-
cation in different countries. It can be seen, that licenses of different bands,
like at 700/800/900 MHz, 1800 MHz, 2600 MHz are often sold simultaneous
in a single auction.
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Country 700/800/900 MHz 1800 MHz 2600 MHz

Australia CCA (2013) - CCA (2013)
Austria CCA (2013) - CCA (2010)

Denmark - SMRA (2010) CCA (2010)
Germany SMRA (2010) SMRA (2010) SMRA (2010)
Finland - - SMRA w. switching (2009)
France Sealed-bid CA (2011) - Sealed-bid CA (2011)

Hong Kong - - SMRA
Netherlands - CCA (2012) CCA (2010)

Italy SMRA w. ranking (2011) SMRA w. ranking (2011) SMRA w. ranking (2011)
Ireland CCA (2012) CCA (2012) CCA (2012)
Norway - - SMRA w. switching (2007)
Spain SMRA (2011) Beauty contest SMRA (2011)

Sweden SMRA w. switching (2011) CCA (2011) SMRA w. switching (2008)
Switzerland CCA (2012) CCA (2012) CCA (2012)

UK CCA (2012) - CCA (2012)

Table 1.1: Developments in the field of spectrum auction design.

Cramton (2013) proposed to use a specific CA, namely the Combinatorial
Clock Auction (CCA). The CCA, based on Maldoom (2007), consists of
two rounds and has been used since 2008 in several countries.
The CCA uses in the first round an ascending auction where individual license
prices rise over time (clock phase) in response to excess demand for price
discovery. In the second round, the supplementary phase, bidders submit
sealed-bids to reach a final allocation with high efficiency. In the clock phase
a complex activity rule is used to motivate bidders to submit many bids from
the start of the auction on. Besides, they should reveal their preferences
truthfully (Bichler et al. (2013a)).

On the one hand, the CCA avoids the exposure problem, since bidders
can bid both on bundles and on individual items. On the other hand, the
complexity in terms of communication, computation, strategy, and valuation
increases significantly, since the number of possible bids grows exponentially
with the number of licenses. First, bidders have to evaluate all the possible
bundles of items (valuation complexity); second, depending on the
strategy, the ”right” bundles have to be selected (strategic complexity)
and third, all the chosen bids have to be submitted (communicational
complexity). Finally, the auctioneer has to determine both the provisional
and final allocation, as well as the ask prices at each round and the final pay
prices. However, this computational complexity is not the focus of this
study.
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The number of possible combinations is bigger than one billion, if we have
only 30 different licenses. Nisan (2000) already stated that for fully efficient
allocations in a CA the communication requirements grow exponentially.
This communication complexity can lead to inefficiencies because the winner-
determination algorithm assigns a missing bid for a possible bid the value
zero.
Milgrom (2010) proposed to simplify bidders’ message spaces such that
desirable equilibrium outcomes are not eliminated in order to face this
problem. In this manner, efficiency and revenue losses should be avoided.

In spectrum auctions it is often well known before the auction which
combinations of licenses generate the most synergies. For example, in most
European auctions there are high synergies within bands, especially at the
800 MHz band, but not between. Packages with two licenses often have a
much higher value than twice the value of a single license.
Another band, frequencies of the 2.6 GHz band, is available for mobile services
in all regions of Europe. The 2.6 GHz spectrum band includes 190 MHz which
are divided into blocks of 5 MHz. It can be used to deliver wireless broadband
services or mobile TV. In particular, there are two standards which will likely
be used in the 2.6 GHz band, LTE and WiMAX. LTE uses paired spectrum
(units of 2 blocks), while WiMAX uses unpaired spectrum (units of 1 block).
For the new LTE mobile communication standard, telecom companies even aim
for four adjacent blocks of spectrum to offer the new standard in a high quality.

Our value models are designed similar to the practice and have been
already used by Bichler et al. (2013a) who compared CCA and the SMRA
auction in the lab with two value models. In each value model, 4 bidders
participated and 24 lots were sold. The small model consisted of two bands
with 14 and 10 blocks respectively, the large one of 4 blocks with 6 bands
each. In total, in the small value model, the complexity for bidders was
substantially lower, because they needed only to calculate approximately 50
possible bundles. Conversely, in the large value model around 2,400 (74-1)
possible bundles needed to be evaluated. Mainly because of this high degree
of complexity, the efficiency of CCA in the lab was considerably lower than
that of SMRA in Bichler et al. (2013a).

In Chapter 4, a simple and a compact bid language that covers the main
synergies is examined. We see how this configuration affects the performance
in multi-band spectrum auctions. Our simple bid language allows bidders
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to specify either-or bids on packages within a band (XOR language)
and and-or bids between different bands (OR language). This way, the
number of different bids is reduced substantially from 2,400 to 12 bundles and
the recent criticism of Cramton (2013) is addressed, that bidders could not
submit enough bids in a value model consisting of 2,400 possible bundles.

Of course, we do not suggest that there is a one-size-fits-all bid language, nor
a specific bid language for a particular application. It is actually one of the
most important tasks in market design to understand the value model, like
the knowledge of super-additivity and the fixed descending complementarity
type, in order to find the right mechanism.

Milgrom (2010) concluded that a simplified bid language is superior if
it is designed right. This is in accordance with Baranov (2010) who stated
that some level of flexibility of package bids can increase the performance.
In this thesis, we want to show by examples the potential benefits of a
compact bid language over a fully expressive one.

Another important feature of the CCA is the core-selecting payment
rule. This payment rule is quite complex and not easy to understand for
bidders (see, e.g., Day and Milgrom (2008)). Even a game-theoretic analysis
is so far not possible. The outcomes can appear non-transparent because
small changes in the bids can lead to substantial variations in the payments.
The bidders do not know the payments before the auction ends. Hence,
we also use a simple pay-as-bid payment rule and analyze the changes in
bidders’ behavior. The simple payment rule is also of current interest, since
it is transparent, because bidders pay what they have bid when they win.
The pay-as-bid payment rule is easy to understand and has been currently
used in the Romanian spectrum auction. The initial design goal of the
core-selecting payment rules was to avoid low revenue like it might happen in
the second-price or Vickrey Clarke Groves (VCG) auction which is described
in detail in chapter (4.1) because of its importance.
The auctioneer’s revenue is the key result in any spectrum auction, because
efficiency can only be analyzed in the lab but not in the field. Real-world
bidders are hardly willing to reveal their true valuation of items. Transparency
of the auction process and the law of one price, i.e., one license costs the
same for all bidders, are additional goals that might not be obtained with the
complex payment rule and are partly in conflict with revenue and efficiency.
The different treatments of our experiment allow us to measure how auction
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revenue and efficiency vary when using the pay-as-bid or core-selecting
payment rule.
In summary, we consider the treatment variations, simple versus complex bid
language and simple versus complex payment rule, for both ascending and
sealed-bid formats. Then, we can analyze how bidding behavior in multi-item
auction changes with different degrees of complexity.

1.3 Research question

Our research question can be summarized of how humans behave in multi-item
auctions with practical relevance. We thereby explore current issues in exper-
imental economics.
In a split-award environment which can be found in a procurement context,
we run experiments to get insights if and/or when bidders are able to follow a
theoretical prediction.
Within the complex domain of spectrum auctions we show how bidding be-
havior is changing by different degrees of complexity and other parameters.
The research objectives can be expressed as follows:

• Does the Bayes-Nash equilibrium predict bidding behavior?

• How do the expressivity of the bid language, the payment rule and the
auction format influence the auction outcome?

1.4 Outline

This study has the following structure:

• Chapter 2 introduces basic theoretical concepts. Then we describe the
findings in the split-award and combinatorial auction context in detail.

• Chapter 3 tests how humans behave in a simple multi-item context. Ex-
periments are performed to analyze if bidders can mimic a theoretical
prediction (see Guler et al. (2012) and Bichler et al. (2014a)).
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• Chapter 4 deals with complex multi-object applications of auctions,
namely the sale of spectrum licenses via combinatorial auctions. We
analyze how bidders deal with a large number of items (see Mayer and
Shabalin (2013) and Bichler et al. (2014b)).

• Chapter 3 and Chapter 4 are organized in a similar manner. At the be-
ginning, we introduce the theoretical background which is indispensable
for further understanding (in section (2.2) general theoretical insights
are given; conversely, chapter (4.1) cares about combinatorial auctions.)
and explain the different auction formats (sections (3.1) and (4.2)). The
experimental setup (sections (3.2), (4.3)) and the results (sections (3.3),
(4.4)) are presented, followed by a brief outlook (sections (3.4), (4.5)) is
given.

• Chapter 5 concludes by summarizing the results of our research and
giving an outlook for future work.

The experimental instructions we gave to our participants and relevant
screenshots are summarized at Appendix A. Additional plots are pro-
vided at Appendix B for the sake of completeness.
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Chapter 2

An introduction into auction
design

In this chapter, we give a brief introduction into auction design. In economics,
a market mechanism describes the interaction between buyers and sellers in a
monetary exchange. Resources are allocated according to the given demand
and supply, whereas the price has to generate the best distribution of goods
and/or services. The design of market mechanisms is discussed in economics,
mathematics and computer science. Generally, three different types can be
distinguished.

In a free market mechanism the private sector, e.g. individuals, companies
etc., allocates all available resources. Conversely, in a planned economy, the
public sector, e.g. the government or governmental institutions, assigns the
resources to companies and/or persons. Both the private and the public
sector are responsible for the assignment in a mixed economy.

Auctions are one of several applications that can arrange the distribution of
goods and have been used for quite a long time. Herodotus, who lived from
484 to 425 BC and is described as ”The Father of History” by Cicero, reported
that people held auctions during his lifetime. Since ancient times, many
commodities like tobacco, fish and fresh flowers have been sold by auctions.
In recent history, land, factories and other assets have been auctioned in
order to privatize public holdings. Many examples can be found in the
former Soviet Union as well as their satellite states. Nowadays, rights to
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use the electromagnetic spectrum for communications are auctioned in many
countries. For example, in 2010 the German 4G auction took place, where the
government earned around AC4.4 billion for selling spectrum licenses in the 0.8
GHz, 1.8 GHz, 2.1 GHz, and 2.6 GHz bands. In an earlier auction 2000, the
income was much higher, namely around AC50 billion.

Besides the practical application, there are many theoretical contributions.
The relevant academic fields include game theory and decision theory.
Especially, combinatorial auctions (CAs) have attracted the attention
of researchers in the fields of mathematics, operations research, economics,
information systems, and computer science.

In an auction mechanism, the allocation rule, the value model, the payment
rule and the range of possible actions of all participating agents are essentially
determined. From now on we shall call the agents auctioneer(s) and
bidder(s) instead of seller(s) and buyer(s). The rest of the thesis focuses on
both forward and reverse auctions.
In a reverse, buy or procurement auction, several sellers want to sell one
or more products to a single auctioneer, who has the role of a procurement
manager. Therefore, such kinds of auctions can often be found in supply
chain or procurement departments in the G2B and B2B sector. Conversely,
different bidders try to buy good(s) that are offered by an auctioneer in a
forward or sell auction.

Auctions determine the price in a trade dynamically, which is important
for perishable goods in volatile markets (fish, flowers), scarce, exceptional
goods (arts, rare wine), goods with unknown and unpredictable value (mining
licenses) and markets with high competition. However, setting up an auction
requires higher transaction costs compared to using a simple list price.
Therefore, auctions are attractive only when the expected price is high, or the
setup costs are low. Often, auctions are used when the seller is unsure about
the value of the relevant item and about the bidders who could be attracted.
If the seller knew the values, he could offer the object to the bidder with the
highest value at or just below his willingness to pay. Uncertainty regarding
values facing both buyers and sellers is an inherent feature of auctions, i.e.,
the seller does not know the type of potential bidders and bidders know their
own type, but not the types of potential competitors. A price list might be
an alternative instead of an auction. But, setting the correct price is difficult.
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Also, lotteries or beauty contests have their downsides, because low efficiency
and/or low revenue is often generated.

A common, widespread auction format is the English auction, where a
single item is sold. The auctioneer begins by calling out a low price (reserve
price), e.g., zero, to several bidders who are invited to submit higher bids.
A new bid always has to exceed the current standing bid, i.e., the market
price. The auctioneer raises the price in small, often fixed increments until
there is only one remaining bidder. This bidder wins the item and pays his
(own) final bid.
The counterpart to the English auction is the Dutch auction. Here, the
auctioneer begins by calling out a price sufficiently high so that no bidder
is willing to purchase the item at that price. The price is reduced by a
decrement until some bidder indicates interest in purchasing the item at the
given price. The first bidder who submits a bid obtains the item and pays the
price at which he decided to enter the auction.
Another single-item auction which is similar to the English auction is the
button auction, also known as the Japanese auction. Each bidder presses
his auction button as long as he is willing to buy the item at the current price.
The termination rule is fulfilled when only one bidder holds the button down.
Alternatives to iterative versions are sealed-bid auctions. Here, each bidder
places his bid in a single round and the best bidder wins the item.

Besides these single-sided auctions, there are also double-sided auctions,
which are not the focus of this work, but have to be mentioned for the
sake of completeness. Sealed-bid double-sided auctions are famous as
call or stock markets; iterative versions are known as continuous double
auctions. In these auctions many sellers and buyers compete against each
other. Each participant can act on both sides. Hence, the auctioneer has
to be an independent person who is not interested in selling or buying an item.

Another important feature of auction mechanisms is the pricing rule. The
most important ones are the first-price and the second-price rule. The pricing
rule determines the price that has to be paid by the winning bidder. In many
applications either the amount of his own bid (first-price or pay-as-bid) or the
bid of the second highest bidder (second-price) (Davis and Holt (1992)) has
to be paid by the winner. ”The second-price auction is a sealed-bid auction
in which the buyer making the highest bid claims the object, but pays only
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the amount of the second highest bid. This arrangement does not necessarily
entail any loss of revenue for the seller, because the buyers in this auction
will generally place higher bids than they would in the first-price auction.”
Milgrom and Weber (1982b, p. 1090)
Due to its importance, the second-price, also known as the Vickrey-Clarke-
Groves (VCG) auction (see Vickrey (1961)) is described in detail in chapter
(4.1). Also other rules, like the third-price payments might be possible, but
are not discussed here.

Auction mechanisms should exhibit several properties. The auctioneer tries to
maximize the efficiency, i.e., the bidder with the highest valuation respectively
lowest production costs in reverse auctions should win the item in order to
maximize the social welfare. Additionally, strategy proofness should
be imposed. Auctions that feature this property have a dominant strategy,
i.e., bidders do not have to learn or guess other bidders’ behavior, since they
have the best possible strategy independent from their competitors. Bidders
should not achieve any advantage if they misreport their valuation for items.
If truth telling by all agents is an equilibrium, then a mechanism is incentive
compatible. Also the core property is essential, which means that bidders
cannot form any coalition with the auctioneer where anybody can achieve a
better result than in the current solution given the market prices. Finally,
bidders should not expect a negative payoff for participating (individual
rationality).

Not only one item, but several are often auctioned, whereas we describe
some terms in the following in the context of CAs. A CA is an auction
where bids are allowed on individual items, and indivisible combinations of
items, i.e., bundles or packages. Hence, especially in economies of scale
and/or scope, CAs are a good choice, since bidders can express their comple-
mentarities and submit bids for bundles. Different bidders can win item(s)
in a CA with the restriction that each item can only be assigned to one bidder.

2.1 The economic environment

There are different possible value models that characterize the market. The
default case for formulations are forward auctions in order to avoid repetitions.
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In the independent private values (IPV) model ”each individual value is
independently drawn from a known distribution, and while the distribution is
common knowledge, each individual only knows their own particular realiza-
tion from the distribution” (Lusk and Shogren (2007, p. 20)). Bidders know
exactly what values they themselves place on all items, but not the values
others place on them. Hence, bidders might evaluate with this information
their willingness to pay (WTP) 1 and/or their willingness to accept
(WTA)2

Conversely, in the common value model the valuation for some item(s)
is the same for all bidders, but the estimation can be different. ”Unlike
the private values theory, the common value theory allows for statistical
dependence among bidders’ value estimates, but offers no role for differences
in individual tastes.” (Milgrom and Weber (1982b, p. 1095)).
Common value items are dependent on the resale price or (estimated) market
value, e.g. mineral rights (McAfee and McMillan (1987)). In case of a
first-price auction with many bidders, the equilibrium price assuming common
values is a consistent estimator for the true value of the item (Milgrom and
Weber (1982b)).

According to McAfee and McMillan (1987), bidders’ behavior does not reflect
exactly one of the above mentioned value models, but is somewhere between
them. He states that bidders’ valuations are correlated to other bidders’
valuations and the true value of an item. This concept is known as affiliated
values (see Milgrom and Weber (1982b)).
The objective for bidders is to maximize his own payoff, which is the difference
between their own valuation and the pay price, and therefore, independent
from the valuation concept. In reverse auctions, valuations are often denoted
as costs, and the payoff is computed by the subtraction of the costs from the
price.
For forward auctions we denote bidder i’s valuation v for item A with vi(A);
in reverse auctions bidder i’s production costs c for item A without fixed costs
K are defined as ci(A).

1The willingness to pay” is the amount a person will pay that makes them indifferent to
improving the quality of the good or keeping the status duo quality.” (Lusk and Shogren
(2007, pp. 35 f.))

2The willingness to accept” is the compensation required to make a person indifferent to
the reduction in quality and the status duo.” (Lusk and Shogren (2007, pp. 36 f.))
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Often, not only a single item, but different ones are sold and bidders’
valuations for several items, like for item A, v(A), and item B, v(B), are
not additive. If A and B are complements, i.e., v(AB) > v(A) + v(B),
the valuations are defined as super-additive. In reverse auctions, we get
c(AB) < c(A) + c(B); such a structure can often be found in procurement
with economies of scale (and scope). Companies that aim for a horizontal
merger might be motivated by these synergies in order to save production
costs.
Also in spectrum sales, some services can only be offered when more items
are won. Like in the British 4G Auction in 2013, Vodafone and Telefonica
won a pair of 5 MHz licenses in the 800 MHz band and not a single block in
order to build a nationwide network with maximum reach (See for details 3 or
chapter (4.3).)

In case of additive valuations, i.e., v(AB) = v(A) + v(B), the valuations
of different items are independent. If items are (perfect) substitutes, the
corresponding valuations are sub-additive, i.e., v(AB) < v(A) + v(B) (re-
spectively c(AB) > c(A) + c(B)).

2.2 Theoretical background

We introduce some basic solution concept in game theory, whereas many def-
initions are based on Shoham and Leyton-Brown (2009).
Preferences are often measured by cardinal or ordinal utility functions.
Interpersonal comparisons are only possible with cardinal functions.
Most of microeconomic results hold for all monotonic transformations of uti-
lity. Social welfare functions map utility functions to allocations or social
choices. An utilitarian welfare function sums the utility of each individual in
order to obtain society’s overall welfare. In this context, we also want to de-
scribe the four axioms that describe rational behavior of individuals (see Kuhn
et al. (2007) and Holt (1986)):

1. Completeness: For any two alternatives, A and B, an individual either
prefers A over B, or prefers B over A, or is indifferent between the two;

3http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/
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therefore, one and only one of the following holds: A < B, A > B or
A = B.

2. Transitivity : In case of a third alternative, C, it holds that A < B and
B < C imply A < C.

3. Continuity : A < B < C implies the existence of an α such that:
A · α + C · (1− α) = B.

4. Independence: The preference relation between two alternatives, A
and B, holds independently of the possible existence of a third possible
(”irrelevant”) outcome: If A < B, then for any alternative C it holds
p · A+ (1− p) · C < p ·B + (1− p) · C.

A decision maker whose preferences satisfy the four axioms is said to have a
von Neumann-Morgenstern utility function (see Kuhn et al. (2007)),
which is usually used to model rational decision makers.

2.2.1 Relevant game-theoretical solution concepts

Theory is not always the proper approach to answer all questions regarding
bidding behavior and different auction formats. However, in this chapter,
we present some theoretical foundations of Bikhchandani and Ostroy (2002)
and Ausubel and Milgrom (2006) to provide understanding for equilibrium
strategies.
In game theory, researchers are mainly interested in the outcome of the game.
Participants are predefined with a set of possible strategies they can play.
Conversely, in mechanism design, the rules for a game like the auction format
are defined. The result might change due to different rules or restrictions.
Shoham and Leyton-Brown (2009) describe static games as normal-form
games, which consists of a tuple I of n players, their action profile and
utility functions. In the action profile all possible actions are summarized.
Each player will choose his actions to maximize his own utility, i.e., expected
payoff , which is common knowledge. Such games are known as complete
information games, since bidders know all possible actions including the
corresponding utility and the number of competitors.

Shoham and Leyton-Brown (2009) define a pure strategy when a player
chooses one single action to play. Conversely, in a mixed strategy a player
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chooses two or more different actions based on certain probabilities. A
temporal structure can be modeled as extensive-form game using a tree,
where you can note other bidders’ behavior. Hereby, the choice of a bidder is
represented by a tree node, the possible action by an edge. In the leaves, the
final outcome of a player is noted.
In perfect information games, nodes which contain bidders’ utility can be
seen by all players during the game. However, in auctions, bidders’ payoffs
are private, so auctions can be described as an incomplete information
game. Shoham and Leyton-Brown (2009) show that the uncertainty about
the number of competitors and their available auctions can be reduced to the
uncertainty about payoff. In a Bayesian game players’ types, i.e,. all the
private information, and the probability distribution over the players’
types are added compared to a normal form game. Bidders’ utility function
is dependent on both the action profile and the players’ types. In bidders’
private information, their own valuations and beliefs about others’ valuation
profile are summarized.

A solution concept formulates rules and predicts the result of a game (Vazirani
et al. (2007)).
The following definitions are based on Ziegler (2012). Bidder i’s objective is
to maximize his payoff, whereas his behavior is dependent from the current
prices and other bidders’ strategies. If he knows these, then he can compute
his best-reply to these strategies, i.e., to choose the payoff maximizing
decision.
We define in the following important solution concepts and provide examples
by theorems, which can be also found in Krishna (2002). Bidder types, i.e.,
their valuation v, are supposed to be private, independent and identically
distributed and bidding strategies denoted by β(v).

In a Pareto-dominated strategy profile, some player can be made better
off without making anyone else worse off. Pareto domination gives a partial
ordering over strategy profiles. Consequently, a single best outcome cannot be
identified. A strategy is Pareto-optimal, or is strictly Pareto-efficient, if
there is no strategy that dominates this strategy. Every game has at least one
optimum like this.

Definition 1. If in a strategy profile every player’s strategy is a best reply to
the strategies of the opponents, then the strategy profile is called Bayes-Nash
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equilibrium. Best responses are evaluated after a player learns his private
information, but before he learns the private information of the other players.

In a Nash equilibrium, it makes no sense for a single bidder to deviate from
the strategy if the other bidders follow the Bayes-Nash equilibrium strategy,
i.e., behave risk-neutral. If a prediction was not a Nash equilibrium, it would
mean that at least one individual will have an incentive to deviate from the
prediction and thus increase his utility.
According to Shoham and Leyton-Brown (2009) every game has at least one
Nash equilibrium, but it may not be in pure strategies. There is a considerable
amount of literature devoted to the conditions under which a pure strategy
equilibrium can be guaranteed (see (Maskin and Dasgupta (1986) or Milgrom
and Roberts (1990)).

Theorem 1. Bayes-Nash equilibrium. In the first price sealed bid auction
with n bidders, whose values are uniformly distributed on [0, 1], β(v) = n−1

n
v is

a Bayes Nash equilibrium. Hereby, β is a symmetric, strictly increasing and
differentiable strategy (see Krishna (2009) and Krishna (2002)).

A stronger concept is the Ex-Post Nash Equilibrium.
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Definition 2. Ex-Post Nash Equilibrium. Each player’s equilibrium
strategy remains an equilibrium even after learning the realization of each
player’s private information.

Theorem 2. In the English auction, β(v) = v is an Ex-Post Nash equilibrium
(see Krishna (2002)).

If every opponent behaves truthfully, each bidder will stay in the auction
until his value v is reached. It is an Ex-Post Nash equilibrium to increase
the bids gradually; however, it is not a dominant strategy. It is not always
the optimal strategy to increase the bids truthfully by the minimum amount
required unless every opponent follows it. Hence, a gradual bidding strategy
is not dominant.

In contrast, in first-price sealed-bid auctions truthful bidding always results
in a zero payoff. On the one hand, bidders know that the higher the amount
of bid shading , i.e., the difference v − b(v), the higher their payoff can get.
On the other hand, the lower the bid shading, the higher the probability of
winning. Bidders have to define their optimal level of bid shading, what is
only possible, when they know the opponents’ strategies and valuations.

The strongest solution concept is a dominant strategy equilibrium, where
bidders do not have to speculate about opponents’ strategies or types.

Definition 3. Dominant Strategy Equilibrium. Each player’s strategy is
a best response, regardless of the strategies of the other players. It is robust to
be uncertain about the strategies adopted by the other players and their private
information.

Obviously a dominant strategy equilibrium is also a Nash equilibrium.

Theorem 3. In the second-price or VCG sealed-bid auction, β(v) = v is a
dominant strategy (see Vickrey (1961)).

Bidders cannot influence the pay price by their own bid, since they always pay
the price of the second best bid. If they bid above v, they risk making a loss
when the pay price is higher than their own valuation. Conversely, bidding
less than v might result in another bid winning.
Under certain assumptions, the first-price and VCG sealed-bid auction end in
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the same revenue for the auctioneer (Revenue Equivalence Theorem).
This is the case when bidders are risk-neutral and symmetric, the number
of participants is known, the IPV condition is kept and the payment is a
function of bids alone.
However, these assumptions are not always realistic. In lab experiments and in
real-world auctions, bidders are often risk-averse. Value models are sometimes
better described as affiliated or common values. Furthermore, bidders can
often be clustered into recognizably different classes (e.g., high-price and
low-price bidders) and are not symmetric. In practice, an explicit or implicit
participation fee is a problem, and the number of auctions is unknown, for
example in online auctions.

By an auction or other allocation mechanisms, ordinal preferences have to
be aggregated. One possibility is voting rules that take as input a vector
of votes (submitted by the voters). The output contains either the winning
candidate or an aggregate ranking of all candidates. However, according to
Arrow (1950), there is no voting rule for the aggregation of preferences that is
simultaneously Pareto efficient, non-dictatorial and independent of irrelevant
alternatives. An alternative to make social choices is a market mechanism
where the price is expressed in terms of money. Here, dominant strategies can
be obtained, but preferences have to be restricted.

In mechanism design, we will assume quasi-linear bidder utilities.
We define for that purpose, that a bidder i has a type Θi. The outcome
o = (x, p) is determined by the auctioneer based on reported preferences, i.e.,
bids. The auctioneer wants to maximize the social welfare. Hereby, x is the
obtained allocation and p the price vector.
Using these definitions we can formulate a quasi-linear function as ui(o,Θ) =
ui(Θ, x) − f(pi). The function f(pi) characterizes the risk attitude and the
monetary value for bid, and the value of money. Generally, in auction theory
agents can transfer utility via money (transferable utility).
If we assume a reverse auction with a combination of items S and a risk-neutral
bidder we get as utility πi(S,Ppay) := ppay,i(S) − xi(S) and πi(∅,Ppay) := 0
4. This implies that the bidders have no budget constraints and do not care
how much others pay.
Objectives in mechanism design are efficiency , truthful revelation of

4For sales auction the utility is defined as πi(S,Ppay) := vi(S) − ppay,i(S) and
πi(∅,Ppay) := 0 vice versa.
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preferences, i.e., there is no motivation to lie about one’s own valuation,
individual rationality and budget balance, i.e., the sum of payments is
0. A direct-revelation mechanism might fulfill that goal since the optimal
strategy is to announce his private information. A mechanism is incentive
compatible if truth telling by all agents is in equilibrium.

2.2.2 Bidders’ risk attitudes

Before we start with some definitions, we introduce three types of risk
attitudes. A similar classification was developed and applied by Bernoulli
(1954), Friedman and Savage (1948) and Pratt (1964). Risk attitudes are
frequently used as an explanation in literature when bidders deviate from an
equilibrium bid prediction.

Let’s assume the following example. A person has the choice between getting
a certainty equivalent in the value of $0.5 and participating in a lottery. In
the lottery he earns at 50% $1 and at 50% nothing. The expected payoff is
the same in both scenarios, namely $0.5.
A risk-neutral person maximizes his expected earnings. Consequently, he
is indifferent to getting the certainty equivalent or taking part in the lottery.
His decision is not affected by the degree of uncertainty. In auctions, where a
risk-neutral Bayesian Nash equilibrium strategy is known, these bidders play
exactly this strategy.

If a person accepts a certainty equivalent less than $0.5 instead of playing
the lottery, he behaves risk-averse. In reverse auctions, risk-averse bidders
usually apply underbidding as opposed to the equilibrium strategy, i.e.,
they bid with a smaller margin in order to ensure that they win5. A more
detailed discussion can be found in chapter (3.2). The difference between the
expected value and the certainty equivalent is defined as insurance premium.
In first-price or Dutch auctions, risk-averse bidders will get higher expected
revenue than in second-price, Japanese or English auctions.

Risk-seeking people even disregard a certainty equivalent higher than $0.5
and prefer to play the gamble to gain a risk premium. However, we have

5Similarly, in forward auctions, overbidding is a widespread phenomenon.
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to note that the degree of risk aversion and risk taking strongly depends
on bidders’ risk profile. Generally, risk-seeking bidders achieve a higher
expected revenue second in second-price, Japanese or English auctions than
in first-price or Dutch auctions.

2.3 Classification of experimental objectives

The main findings in this thesis are based on experimental work. Roth
(1988) describes experiments as tool to study the behavior of subjects in a
controlled environment. Experiments can be held as field studies or laboratory
experiments to study human behavior in markets.

Field studies are often applied in existing applications like eBay to analyze
real-world data. According to Lusk and Shogren (2007) it can be assumed,
that the participants are aware of the rules and the environment, whereas no
additional introduction into such a framework is needed. Aronson and Carl-
smith (1968) identify the problem that external factors cannot be controlled
by the experimenter and no given assumptions can be tested explicitly.

2.3.1 Types of experiments

Davis and Holt (1992) classify experiments into the classes test of behav-
ioral hypothesis, theory stress tests and searching for empirical
regularities from a theoretical perspective.

Often, economic theories, like Bayesian Nash equilibrium strategies discussed
in this paper are evaluated in the laboratory (see Chapter 3) by the first
category. It will be checked, if certain assumptions of a theoretical model
hold up in realistic settings (Davis and Holt (1992)). The experimental
environment has to be defined as similar to the assumptions as possible in the
model to get conclusive results. Often bidders deviate from the theoretical
prediction. A discussion about that topic in the first-price sealed-bid auction
context can be found at Chapter 3. By analyzing the structural assumptions
and the experimental evidence, experiments can engender new theories,
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like the effect of risk aversion, which can lead to further theoretical and
experimental research.

Davis and Holt (1992) describe the stress test theory, where the sensitivity
of hypotheses is tested to measure the robustness of practical implications.
In such experiments, several assumptions are marginally changed and the
resulting outcome is checked. Often the amount of information is varied to
explore how bidding behavior changes with more information. If too much
information is provided, bidders might be ”overloaded”, i.e., bidders cannot
deal with a high amount of data.

In third class, experiments are hold to find empirical regularities. Frequently,
applications of auctions, like in the spectrum context are too complex for
a theoretical analysis. Therefore, experimental studies as in Chapter 4 are
made to find regularities between observed economic variables.

In contrast, Kagel and Roth (1995) distinguish different kinds of experiments
concerning their purpose and define the classes speaking to theorists,
searching for facts respectively searching for meaning and whispering
in the ears of princes.

In the first class hypotheses are falsified, in the second one sensitivity analyzes
of variables are made to widen the theoretical scope. If the experimenter finds
some regularities, follow-up experiments might be designed as ”searching
for meaning experiments”. Experiments belonging to the last class try to
explore new policies and their impact on the market. Here, the real-world
is modeled in the laboratory to give advice to responsible authorities for
designing mechanisms in certain markets.

Both Davis and Holt (1992) and Kagel and Roth (1995) define the categories,
test of a theory, and searching for empirical regulations/implications. In our
thesis, both categories are analyzed at Chapter 3 and Chapter 4.

In lab experiments, if designed well, the experimenter can control any external
effect. It is indispensable to define treatment variables, like auction, value
models, payment rules, etc. that reflect the decisive parameters (Lusk and
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Shogren (2007)). One downside is that the outcome of lab experiments might
differ from real-world behavior. Aronson and Carlsmith (1968) state that sub-
jects are likely to deviate from their natural behavior in artificial environments.

2.3.2 Validity of experiments

Aronson and Carlsmith (1968) define internal validity as the degree of
confidence concerning results that are obtained from experimental data. The
objective is to minimize systematic errors under the assumption that the
controlled independent variable is the only reason for changes in the dependent
variable. If significant systematic errors occur, the experimental design might
not reflect all impact factors. According to Aronson and Carlsmith (1968, p.
129), the ”essence of good experimental design is to control the assignment of
participants to treatment groups and the conditions of treatment delivery in
such a way as to rule out or minimize threats to the internal validity of the
study.”

In contrast, by external validity the generalization of experimental results
is checked. ”External validity refers to the robustness of a phenomenon - the
extent to which a causal relationship, once identified in a particular setting
with particular research participants, can safely be generalized to other times,
places, and people.” Aronson and Carlsmith (1968, p. 130). Lusk and Shogren
(2007) conclude the experiments with students are proper to observe general
behavioral phenomena.

Validity guarantees that the results of laboratory experiments are trustworthy.
A decisive factor is the reward mechanism to control participants’ motivation.
Fundamental work in this area was done by Smith (1976). To get reliable
results, the experimental design should induce new preferences and neutralize
humans’ individual preferences. All actions done in the experiment should
only be determined by the ”induced preferences”.
The total money holding of a participant can be defined as the sum of earn-
ings based on the experimental outcome and his private initial endowment
independent from the experiment. Subjects’ unobservable preferences are
determined by the money holding and other motives according to Smith (1976).
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Assumptions for controlling preferences are monotonicity or nonsatiation.
People should not be satiated by financial reward and their utility should be
a monotone increasing function of the payoff they get from the experiment.
Dominance means that changes in subjects’ utility are mainly based on the
earning in the lab experiment; other motives can be neglected. If monotonicity
and dominance are realized, subjects preferences are induced successfully.

Experiments with a long duration and many rounds should be avoided, since
these might be recognized as boring. Also public information about individual
payoffs can effect motives like envy, fairness and spite. Some experimenters
might give subtle hints for what subjects should do, whereas subjects want to
help or hinder the experimenter.
To avoid these problems, the performance based payment in the experiment
should be large enough and flat payment, like show up fee, quite low. Also a
neutral language in the instructions is helpful.
In a follow up paper of Smith (1976), Smith (1982) gives further suggestions in
addition to dominance and monotonicity to create a well-defined environment
in the laboratory, where the relevant variables can be measured and controlled.

Saliency means that people should understand the reward mechanism. As
we did in our instructions, the performance-based financial payment to the
subjects has to be explained in addition to the auction formats. Then, the
participants develop trust in the auctioneer and understand the impact of their
actions on the reward. When both monotonicity and saliency are fulfilled,
the participants are motivated by monetary incentives and an experimental
microeconomy is created. Within this environment hypotheses can be tested
and internal validity is given.

Privacy is realized when the participants in the experiment only know their
own valuation and payoff alternatives but not others’. Generally, information
about others’ payoffs should not become public and the purpose of the
experiments can only be explained afterwards.

Parallelism describes the situation when the experimental environment
models the real-world well, i.e., propositions about the market mechanism
and the behavior of subjects are fulfilled. This condition is important when
results that are obtained by experiments are supposed to be transferred to
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reality (external validity).

There is always a trade-off between internal and external validity. ”Where
internal validity often requires abstraction and simplification to make the
research more tractable, these concessions are made at the cost of decreasing
external validity.” Schram (2005, p. 130). Good experimental design balances
this tension in order to achieve meaningful results that can be applied to
real life settings. If the abstraction is high and the complexity of the reality
is reduced, e.g., when fewer items are sold, the internal validity increases,
since experimental results are more tractable and reproducible. Smith (1985)
states, that in some situations experimental results with high external validity
can differ fundamentally from the predicted results. Conversely, findings of
experiments with high internal validity can be transferred back to complex
real-world applications.

The construction of validity refers to both the correct identification of
independent and dependent variables and the underlying relationship between
them. Another necessary but not sufficient condition for validity is reliability,
which describes how repeated measurements of values relate to each another
(Lusk and Shogren (2007)).
To sum it up, internal validity is provided if robust and replicable results can
be produced. External validity checks if findings from the lab environment
can be transferred.

When the focus of experiments is on a practical application, Friedman and
Sunder (1994) state that it is natural to reward subjects with money. Read
(2005) concludes that humans behave rationally, if they are motivated by
monetary rewards. A mixture between fixed and performance-based income
might make sense as applied in chapters (3.2) and (4.3.4). On the one hand,
people get some show-up fee, so that they are compensated for their effort; on
the other hand they are extrinsically motivated to perform at a high level.
For testing a theoretical model, the validity is determined by the reconstruc-
tion in the laboratory.

If it is not possible to reflect the reality in the lab, it is rather a problem
of the economic model, which should be orientated closer to reality and not
of the experimenter (see Guala (2005)). When the complexity of the target
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environment is too high to model in detail, the experimental environment
might be too abstract and hence the results leave some room for interpretation
(Friedman and Sunder (1994)). For example, in chapter (4.3.4), a specific
market was not modeled, but a general structure which can be found in the
sales of spectrum licenses. However, the implementation is in each market
different. Hence, we can not give recommendations to decision makers in one
specific country, but define guidelines that should be considered when auctions
are designed.
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Chapter 3

Split-award auctions

In this chapter which is based on joint work of Bichler et al. (2014a), a simple
setting in the reverse auction context is introduced. The formulation of the
equilibrium strategy was done by Kemal Guler. Conversely, the implementa-
tion of the auction platform, the experiments and the data analysis were my
key part and are described detailled in this thesis.

Split-award auctions are a simple but wide-spread type of multi-object
auction which is often used for multi-sourcing. Companies like Sun and
HP procure products valued at several million Dollars using different types
of multiple sourcing auctions (Tunca and Wu (2009)). Elmaghraby (2000)
gives a literature overview on sourcing strategies and recommendation for the
supplier selection process.
According to Major (2005) online procurement auctions can result in an
average price reduction from 10 to 30 percent in comparison to traditional
pricing methods.

Allowing access to a larger supplier base, reducing the procurement time cycle
and achieving competitive market prices are factors that contribute to the
rapid spread of reverse auctions. Similar mechanisms can be found in the sales
of frequency licenses (Wambach (2002)) and electricity (Luiz et al. (2011)).
In real-world business, more and more firms are using auctions with non-
identical objects to procure raw materials. These firms usually want to have
more than just one supplier for risk considerations, to reduce safety stocks
and therefore, the total inventory-system costs. An efficient supply chain is
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crucial for companies’ success. Especially in manufacturing, procurement costs
are the main cost driver (see Cavinato (1994)). Good practical reports about
current applications of reverse auctions and corresponding (dis-) advantages
can be found within Wyld (2012a) and Wyld (2012b).

3.1 Auction formats

We introduce two sealed-bid single-item multiple lot split-award auctions
which are multi-object extensions of the first-price sealed-bid auction. In this
environment 2 items, from now on called lots, of the same raw material are
bought via split-award auctions.
The setting for all auctions we focus on is the same and based on our joint
work in Bichler et al. (2014a).

A procurement manager buys a given volume of a product using an auction.
The total required amount is ex-ante divided into into two lots with a share of
q in lot 1 and (1− q) in lot 2. We further assume that q > 0.5 , whereas lot
1 is the large lot and lot 2 the small lot. For our theoretical consideration
the whole volume is normalized to one unit. An amount of n risk-neutral
bidders competes for the m = 2 lots. Bidder i’s private constant marginal
production costs ci are identically and independently distributed according to
a uniform distribution with F (ci) = ci−c

c−c and the density function f(ci) = 1
c−c

with support [c, c].
Besides the per-unit production costs ci, each supplier must also incur fixed
costs K to complete the production, which are equal and public information
for all bidders. Finally, we assume that there is no reservation price.

3.1.1 The single-lot auction

Before we describe the split-award outcome, we consider the single-lot case
with q = 1, which is a standard sealed-bid first-price auction with n bidders
competing for the single-lot. In this winner-takes-all format one bidder
wins the whole amount and a split outcome is excluded. Hence, in theory, the
procurement costs for the buyer might be lower in a short-term view, since the
bidder with the lowest ci might win the full amount. The difference between the
procurement costs in the single-lot and split-award auction can be interpreted
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as price for the insurance premium. Especially, risk-averse companies might
be willing to pay these higher costs.

The equilibrium strategy can be denoted as the standard Bayesian Nash equi-
librium strategy by

β(ci) = ci +K +

∫ c

ci

(
1− F (x)

1− F (ci)

)n−1
dx. (3.1)

In this case, the boundary condition has to be kept so that the bid does not
exceed the highest costs a bidder can receive β(c) = c+K.

3.1.2 The parallel auction

The first split-award auction introduced is the parallel auction. The rules
of the sealed-bid parallel auction are as follows:
After having observed his private per-unit constant marginal production costs
ci each bidder can submit two bids for the different lots.
Hereby, b1i is bidder i’s per-unit price for the large lot and b2i for the small lot.
The lots are awarded to the lowest bid on each lot and the winning bidder gets
the contract at his bid price. If one bidder has the lowest bids on both lots,
he will only win the large lot. We will denote the expected payoff of bidder i
whose bids are b1i and b2i by Π(b1i , b

2
i , ci).

Then

π(b1i , b
2
i , ci) = Pr(bidder i wins both lots) ·

[(
b1i − ci

)
q −K

]
+ Pr(bidder i wins lot 1 and loses lot 2) ·

[(
b1i − ci

)
q −K

]
+ Pr(bidder i loses lot 1 and wins lot 2) ·

[(
b2i − ci

)
(1− q)−K

]
.

(3.2)

The three terms in equation (3.2) reflect the three possible outcomes of the
auction game. Losing the game is not considered in the equation, but if a
bidder gets no lot, there is no payment for him (individual rationality). The
first possibility is that a bidder submits the lowest bid on each lot and hence,
he could win both lots. But, if we consider the auction rule, he is only awarded
the large lot to ensure the split-award outcome. The second possibility is that
he only wins the large lot and the last term describes the situation, where
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he only wins the small lot. Conditional on other bidders behavior, bidder i
chooses the bidding strategy by maximizing the expected payoff.

In Bichler et al. (2014a) Bayesian Nash equilibrium strategies are developed
for the Yankee and also the parallel auction. In these strategies bids are sup-
posed to be continuous, strictly increasing and almost everywhere differentiable
functions of costs. It is not the focus of this work to derive the strategy. The
detailed assumptions and proofs can be found at Bichler et al. (2014a). The
equilibrium strategies for the small and the large lot are defined as β2(c) and
β1(c). Bidders receive what they bid, since we assume a simple first-price
payment rule.

Proposition 1: In the parallel sealed-bid first-price procurement auction
model with two lots and n risk-neutral bidders, the symmetric Bayesian Nash
equilibrium bidding strategies for the large β1(c) or small lot β2(c) are given by:

β1(ci) =ci +
K

q
+

1

q[1− F (ci)]
·
∫ c

ci

(
1− F (x)

1− F (ci)

)n−2
·

[
q [1− F (x)]

+(1− q)(n− 1)[F (x)− F (ci)]

]
dx

(3.3)

with the boundary condition β1(c) = c+ K
q

.

β2(ci) = ci +
K

1− q
+

∫ c

ci

(
1− F (x)

1− F (ci)

)n−2
dx (3.4)

with the boundary condition β2(c) = c+ K
(1−q) .

Besides, β1(ci)q > β2(ci)(1 − q) and β2(ci) > β1(ci) under the condition that
K is bigger than a threshold K0.

K0 :=
(1− q)
(2q − 1)

·
∫ c

ci

(
1− F (x)

1− F (ci)

)n−2
[

[nq − (n− 1)] [F (x)− F (c)]

1− F (c)

]
dx.

(3.5)
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In our experiments with the parallel auction, we tested if subjects were able
to follow the equilibrium strategy defined in proposition 1. It is not obvious
that humans can mimic the Risk-Neutral Bayesian Nash Equilibrium
Bidding Strategy (RNBNE) given the distribution of the variable costs,
their variable costs, the number of participants and the fixed costs.

However, proposition 1 calls for a few comments. First, as we have seen above,
the equilibrium bidding function for the small lot is the same as the bidding
strategy in a standard sealed-bid first-price auction with n bidders competing
for the small lot (see equation (3.1)). Second, the bidders bid less aggressively
than the equilibrium bid they submit in a standard sealed-bid first-price auc-
tion with bidders competing for the large lot. This is because the bidders need
to take into account the possible loss from losing the large lot and winning the
small lot when they submit bids for the large lot. Third, ex-post, the winning
bidders make positive profits no matter which lot they get. The detailed proof
for the RNBNE can be found at Bichler et al. (2014a) and would be beyond
the scope of this thesis.

Proposition 2: In the parallel sealed-bid first-price procurement auction model
with two lots and n risk-neutral bidders,
(i) As n increases, bidding becomes more aggressive for both lots:
∂β1(c)
∂n

< 0 and ∂β2(c)
∂n

< 0.
(ii) As q increases, bidding becomes more (less) aggressive for the large lot 1
(the small lot 2):
∂β1(c)
∂q

< 0 and ∂β2(c)
∂q

< 0.

Proposition 2 is partly proven within this thesis, since we ran experiments
both with q = 0.7 and q = 0.9. In further research, it would be interesting to
vary the number of bidders.

3.1.3 The Yankee auction

After having discussed the parallel auction, we focus now on the second
format, the Yankee auction.

In contrast to the parallel auction, each bidder i can only submit one bid bi
as the per-unit price for both lots of the product in the sealed-bid Yankee
auction. The large lot is awarded to the bidder with the lowest bid and the
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small lot to the bidder with the second lowest bid. If both bidders submit
exactly the same bid, the winner will be determined at random. As for the
parallel auction, the first-price payment rule is used. In this auction model,
the expected payoff for bidder i is denoted by

π(bi, ci) = Pr(bidder i wins lot 1) · [(bi − ci) q −K]

+ Pr(bidder i loses lot 1 and wins lot 2) · [(bi − ci) (1− q)−K] .
(3.6)

Conditional on other bidders behavior, bidder i chooses the bidding strategies
by maximizing the expected payoff (see equation (3.6)). As for the parallel
auction, this work is restricted to strictly increasing differentiable symmetric
RNBNE strategies.

Proposition 3: In the Yankee sealed-bid first-price procurement auction
model with 2 lots and n risk-neutral bidders, the increasing symmetric
Bayesian Nash equilibrium bidding strategy is given by:

β(ci) =ci +

∫ c
ci

[1− F (x)]n−1 q + (n− 1) · F (x) [1− F (x)]n−2 (1− q)dx
[1− F (ci)]

n−1 q + (n− 1) · F (ci) [1− F (ci)]
n−2 (1− q)

+K · 1 + (n− 2) · F (ci)

[1− F (ci)] q + (n− 1) · F (ci)(1− q)

(3.7)

with the boundary condition β(c) = c+ K
1−q .

Corollary 1: In the Yankee sealed-bid first-price procurement auction model,
ex-post,
(i) the winner of the large lot always makes a positive profit and
(ii) the profit for the winner of the small lot can be either positive or negative.

Corollary 1 reveals an important difference between the two models. In the
parallel auction mechanism, bidders bid in such a way that, ex-post, they
always make a positive profit no matter which lot is awarded.

Conversely, in the Yankee mechanism, ex-post, the bidder who wins the small
lot will earn either a positive or negative profit depending on his private
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production costs. This implies that bidders with high production costs will
probably refrain from participating into such auctions since they are not likely
to win the large lot. If they win the small lot, the probability of losing money
will be high.
An analogy between the Yankee auction and the war of attrition is obvious
(see Krishna and Morgan (1997b)).

In the war of attrition or second-price all-pay auction, each participant has to
pay his bid except for the winning bidder who pays the second highest bid.
Although this concept was originally formulated in the context of animal con-
flicts (see Smith (1974)), the behavior patterns and the models were adapted
to auction theory. Such competitive situations occur when participants efforts
are quite costly, and losers are not compensated for these efforts (Gneezy
and Smorodinsky (2006)). Such situations can be found in various settings,
e.g., in politics, decision making in committees and oligopolies (see for more
details Bulow and Klemperer (1999)).

Figure 3.1: Similarities of the Yankee and the Dollar auction.

The Dollar auction is a famous example for wars of attrition in auctions
(Shubik (1971)). The auctioneer offers $1 to two bidders with a starting price
of zero. Each bidder can decide if he bids more than the current price or
drops off the auction by paying the market price. The auction terminates
when no bidder is willing to bid more than the previous bidder. Then, the
bidder with the highest bid wins the Dollar note for his bid price, but also
the second highest (loosing) bidder has to pay. If the price is lower than $0.5,
both players could cooperate and share the profit. By this strategy, both
bidders would get a positive payoff.
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Similarly in the Yankee auction, when bidders’ average costs, i.e., the variable
costs and the normalized fixed costs, for the small lot are higher than the bid,
then they definitely end up in a profit. But if the bid is between the average
costs for the small and the large lot, bidders might either make a loss if they
get the small lot or a profit if the large lot is assigned to them. In the $
auction, this situation occurs when the price is between $0.5 and $1.0 because
there is no motivation to cooperate any more. Bidders who bid lower than the
average costs for the large lot always make a loss. In the $ auction, nobody
has a positive earning, when the price gets higher than $1. The analogy is
summarized in figure (3.1).

Besides the similarities, there are two main differences between the Dollar
and the Yankee auction.
First, subjects in the Dollar auction are completely informed about the value
of the auctioned object, namely $1. In our setting, they only know the
common fixed costs but not the others’ variable costs.
Second, in the Dollar auction, after having agreed to participate in the
auction, there is no way to leave the auction out without making a loss
(Mayer and Louca (2013)). In the Yankee auction, the winner can avoid
making a loss if he never bids below his average variable costs for the small lot.

Krishna and Morgan (1997a) compare equilibrium strategies in all-pay
auctions as well as in wars of attrition with affiliated values where losing
bidders are also required to pay positive amounts. Thereby, they extend the
work of Milgrom and Weber (1982a) for the sealed-bid case. Hoerisch and
Kirchkamp (2009) also analyze equilibrium strategies in all-pay auctions and
wars of attrition for both sealed-bid and iterative auction mechanisms.

Proposition 4: In the Yankee sealed-bid first-price procurement auction model
with two lots and n risk-neutral bidders,
(i) As n increases, bidding becomes more (less) aggressive if the fixed cost K
is greater than (smaller than) a threshold
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K1:
∂β(c)
∂n

> 0(< 0) if K > (<)K1(n, c, F ), where

K1(n, c, F ) =

∫ c
ci
A+B +D dx

[1− F (ci)]nF (ci)(2q − 1)
, and

A = [F (ci)− F (x)][1− F (x)]n−1[1− F (ci)]q
2,

B = [F (ci)− F (x)][1− F (x)]n−2F (x)F (ci)(1− q)2,
D = [F (ci)− F (x)][nF (ci)− 2(n− 1)F (ci)F (x) + nF (x)− 1]

[1− F (x)]n−2q(1− q).

(ii) As q increases, bidding becomes more (less) aggressive if the fixed cost K
is greater than (smaller than) a threshold

K2:
∂β(c)
∂q

> 0(< 0) if K > (<)K2(n, c, F ), where

K2(n, c, F ) =
1

1 + (n− 2)F (c)

n− 1

n(F (c)− 1)

∫ c

ci

(
1− F (x)

1− F (c)

)n−2
[F (x)− F (c)]dx.

In chapter (3.3) our experiments only partly support proposition 4.

Figure 3.2: Bidding functions for the standard uniform distribution in the parallel
and in the Yankee auctions in a market with 4 bidders and a split
parameter of q=0.7 or 0.9.

The Bayesian Nash equilibrium bidding functions for the parallel and the Yan-
kee auction are visualized in figure (3.2). It shows how the bids are modified
depending on different cost draws.
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3.1.4 Procurement cost comparisons

Having derived the symmetric equilibrium bidding strategies for both the pa-
rallel and the Yankee auctions, the implications of the two mechanisms on
expected cost can now be compared. The proof for Proposition 5 can be found
at Bichler et al. (2014a) and it also follows from Engelbrecht-Wiggans (1988).

Proposition 5: Suppose that the private production costs are independently
and identically distributed and all bidders are risk-neutral. Then, the sealed-
bid first-price parallel procurement auction and the sealed-bid first-price Yankee
procurement auction yield the same expected costs to the buyer.

The equivalence result is a useful piece of information for business decision-
makers. They can now look into other dimension of the differences between
the two formats and recommend which format to adopt in practice without
worrying about the expected costs concerns by using different auctions.

3.2 Experimental design

In our thesis, we tested on the one hand 128 participants in the context of
forward auctions, but far more, namely 209, were in sealed-bid procurement
auctions. By means of this method, our study’s main contribution is to deter-
mine whether the Bayesian Nash equilibrium is a good predictor for bidding
behavior. Before we describe the experimental environment, we give a brief
summary about related research in this area, like at Bichler et al. (2014a).

3.2.1 The underbidding puzzle in sealed-bid auctions

Kagel (1995) tested single-lot first-price sealed-bid auctions in the laboratory.
They found out that humans overbid significantly, which means, that their
bid was higher than the prediction of the risk-neutral Bayes Nash equilib-
rium. Most of other research papers also tested forward auctions and got
similar results. In our thesis we consider sealed-bid procurement auctions in
which underbidding, i.e., bidding less than the equilibrium prediction, is a
phenomenon. Interestingly, there is hardly any research in this area.

There are several theories that explain the deviation from the equilibrium
strategy. Cox et al. (1982) analyze bidding behavior in both single-object
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English and Dutch auctions. For the theoretical research, they assume that
bidders have identical risk preferences and state that the risk attitude is the
decisive parameter for the actual bid. In the experiments they find out that
the risk-neutral Bayesian Nash equilibrium function is not a good predictor
for human behavior.
Cox et al. (1988) include in their first-price auction model heterogeneous
bidders, i.e., bidders can be characterized by a different risk attitude. In their
experiments they show that bidders behave risk-averse.
Cox et al. (1992) also support that risk aversion is the main driver that
motivates bidders to apply underbidding.
However, it is very difficult to measure risk aversion in the laboratory. Kagel
and Levin (2012) proof experimentally that bidders are risk-averse, especially,
if the bidder submodularity condition (see a good definition for example at
Bikhchandani and Ostroy (2002) respectively Ausubel and Milgrom (2002))
is observed. In such an environment bidders are more valuable when added
to a smaller coalition. Hence, risk aversion might be a better predictor
than risk-neutrality for bidding behavior in reality. It is quite realistic that
a human might prefer to get 10 million Dollars without any risk than to
participate in a lottery which yields 100 million Dollar with a probability 10%
and otherwise zero.
Rabin (2000) showed that anything but virtual risk neutrality over modest
stakes implies unrealistic risk aversion over large stakes.

An interesting approach is done by Isaac and James (2000). They compare
estimates of risk preferences from first-price sealed-bid auctions to the Becker-
DeGroot-Marshak (BDM) procedure for different risky choices. Aggregate
measures of risk preferences under the two procedures showed that bidders
were risk-averse in the first-price auction but risk-neutral, or moderately
risk-loving, under the BDM procedure. Overall, risk attitudes not only
differed across assessment methods, but also varied within the same method
(Payne et al. (1980)). This result is also supported by MacCrimmon and
Wehrung (1990).
Krahnen et al. (1997) ran experiments to proof if bidders risk attitude can
be elicited by certainty equivalents. They found out that the risk attitude
between subjects differs a lot and that this individual behavior might be
the reason for over- or underbidding. Also, Schoemaker (1993) finds that
by testing certainty and probability equivalents, bidders react differently.
Therefore, it is hardly possible to characterize bidders’ risk attitude. Paired
lottery choices, which have been defined by Holt and Laury (2005) became
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more popular recently, but risk aversion is still recognized as a complex and
context specific phenomenon (Dohmen et al. (2005)).

Besides risk aversion, regret is a common reason to explain bidders’
underbidding. It has been discussed as an effect in many papers; funda-
mental research is provided at Bell (1982) and Loomes and Sugden (1982).
Engelbrecht-Wiggans (1989) state that bidder regret the auction outcome
when they see the results. Therefore, they have an incentive to overbid in
first-price sealed-bid forward auctions or underbid in reverse auctions. In
another paper, they analyze regret experimentally, since they give the bidders
different kinds of feedback after the auction. Engelbrecht-Wiggans and Katok
(2009) conclude that the more information the bidders get after an auction,
the more they regret the result and therefore, deviate from the RNBNE.
Filiz-Ozbay and Ozbay (2007) also assume that deviations from the RNBNE
strategy are due to regret. They differentiate between loser regret, i.e., bidders
see after the auction the actual winning bid, and winner regret, where bidders
see the best loser bid.
Loser regret is defined as a function of the difference between bidders’
valuation and the winning bid if the winning bid is affordable. Conversely,
winner regret is a function of the difference between actual payment and the
minimum amount that would preserve her winning position after she learned
the other bids (see also Bell (1982)). They test three different treatments
separately. In the first treatment, bidders see only whether they have won or
not, in the second one winner regret and in the third looser regret is tested.
Their main result is that especially bidders that lost in a previous auction
are motivated to underbid to win in one of the following auction. They even
resign themselves to making a modest profit, only to expire the joy of winning.

Also wrong expectations about other bidding behavior (see
Kirchkamp and Reiß (2011)) or problems in computing a best response to
other bidding behavior (strategic complexity) might serve as explanations
for underbidding. As we have seen, the derivation of a RNBNE, especially in
the split-award context is very complex. Therefore, it might not be realistic
that bidders can select the risk-neutral bidding strategy in a short span of
time in the laboratory. In the literature, there are contradictory claims as
to whether people reason according to Bayesian inference (Gigerenzer and
Hoffrage (1995)). We will refer to the problem of deriving the RNBNE bid
function based on given prior distributions about valuations as the strategic
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complexity of the auction. Morgan et al. (2003) show that bidders bid more
aggressively when they have spiteful incentives.

Eyster and Rabin (2005) and Crawford and Iriberri (2007) also realize a gap
between the bid prediction and the actual behavior of humans in experiments.
They state that bidders’ expectations about others’ preferences are wrong,
but the reply due to an expectation is correct. Conversely, Goeree and Holt
(2002) assume that the expectations are correct, but bidders do not reply
correctly. One reason could be, that they make quantal-response errors.
Kirchkamp and Reiß (2011) also argue in the same way.

For Ockenfels and Selten (2005) and Neugebauer and Selten (2006), the
main reasons is the experimental structure. Often, participants play many
subsequent auctions, whereas they get different kinds of feedback after the
termination. This ex-post learning leads to deviations from the RNBNE
equilibrium strategy.

Davis et al. (2011) analyze if alternative models other than the RNBNE
explain better experimental data in the context of setting an optimal reserve
price. Especially, they test risk aversion, anticipated regret, and probability
weighting which describes that the human seller might fail to calculate
expected utilities correctly. So the number of bidders is changed between the
different treatments. They report that risk aversion explains the underbidding
for only a few bidders. However, it does not predict a dependence between
the reservation prices and the number of bidders. Regret describes most of
the qualitative aspects of their data. This phenomenon even explains that
the optimal reserve price increases with the number of bidders. Probability
weighting explains the behavior worse than risk aversion or regret, but better
than the RNBNE prediction.

The literature on explaining underbidding and on risk aversion is huge and
beyond the scope of this section. In general, cognitive bias arises from various
processes that are sometimes difficult to distinguish. These include information
processing heuristics, limited information processing capacity of humans, emo-
tional and moral motivations, or social influence. In the auction literature, risk
aversion, regret, spite, and wrong expectations about the bids of others are the
most common hypotheses for underbidding in first-price sealed-bid auctions.
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We do not intend to discuss and define all the possible behavioral reasons for
underbidding in detail, but propose experimental designs with different levels
of control for these hypotheses. In our computerized experiments, expected
utility maximization should be the dominant force.

3.2.2 Treatment combinations

In our experiments we tested if bidders were able to mimic the theoretical
predictions in the laboratory. In order to get robust results, we tested different
designs and varied the level of control. Humans had to play both against
other humans and computers. The computerized experiments are conducted
to understand whether bidders are able to mimic their RNBNE strategy
or whether the strategic complexity is too high and bidders deviate from
this model. Conversely, in human subject experiments, we test real-world
situations. Since we played 16 auctions in each session, bidders had the chance
to learn and adapt their behavior. So we could find out, how well the RNBNE
strategy explained bid functions in realistic environments with human bidders.

In our treatments, we did not ask bidders to place bids for individual cost
draws, but for several possible costs to elicit their bidding function. This
strategy method is similar to Selten (1999), Pezanis-Christou et al. (2003)
and Güth et al. (2003). For example, in Kirchkamp and Reiß (2011), bidders
had to submit bids for six hypothetical valuations in each of the 12 auctions
to elicit their bid functions. In each of the treatments, two participants
competed for a single-lot. Other experiments show that bidding behavior that
is observed with the strategy method is very similar to the behavior observed
with alternative methods (Kirchkamp and Reiss (2006)). They explore the
approach of playing multiple auctions with a given bidding function and
find that playing multiple auctions induces bidders to behave in a more
risk-neutral way. They find that a small number of auctions played already
eliminate a substantial part of risk.

In the following, we describe the four different treatments, starting with the
one with the most control. In C100+, one human bidder played against three
computerized agents, which used the RNBNE strategy. We let the participants
know the computerized competitors had been programmed to bid in a way that
would maximize their expected earnings when they bid against competitors
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programmed in the same way. Their bidding strategies are only based on
their cost draw, the distribution of costs, the fixed costs, and the number of
competitors, which are known to all bidders. Before each auction, they draw
new variable costs. Additionally, we show the RNBNE bid function to the
participants as decision support. We tested computerized experiments to avoid
wrong expectations about other bidders’ behavior, which in the literature is
sometimes told as reason why humans are not able to mimic a RNBNE strategy
(Kirchkamp and Reiß (2011)). The bid function was used in 100 auctions,
where the single human bidder competed against the three computerized agents
in each round. As a matter of course, the strategy of the computerized agents
did not change across the different auctions. Bidders earned the average payoff
over all auctions. By this configuration we tried to induce risk neutrality. For
each new auction, we drew a cost value randomly and determined the bid based
on the bid function of a bidder. Effects like joy of winning (see for example
Dohmen et al. (2011)) and regret (Loomes and Sugden (1982)) were minimized,
since bidders did not learn about the outcome of individual auctions or the
actual bids depending on the cost of others.

Bidders only had to mirror the RNBNE of their computerized opponents.
Since the bidders are all ex-ante symmetric, the information in C100+
implicitly tells the subjects what their equilibrium bidding function would be.
Therefore, the participants’ task is only, to copy the computer agents’ strategy.
We consider deviations from the RNBNE in this case as ground noise or irra-
tionality, which provides a baseline for other experiments. We cannot expect
subjects in experiments with less control to be closer to the RNBNE prediction.

C100 is almost identical to C100+, but we do not show the RNBNE strategy
in the decision support. However, we tell the participants, that all comput-
erized competitors play the same risk-neutral RNBNE strategy. If bidders
behave differently to C100+, we explain it by wrong expectations about
others. Additionally, the strategic complexity might be too high to deviate
a RNBNE strategy in the laboratory. In C100 it is less obvious that bidders
would bid their RNBNE bid function. This treatment is similar to Walker
et al. (1987), because they also ran experiments with computerized bidders.
However, the participants have not been informed about their opponents’
strategy like in C100.

For the first two treatments the same bid function was used for 100 auctions,
but for C1 only in a single auction. A different bidding behavior might be
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due to risk aversion.

In H, humans play against each other, whereas we applied random remachting,
which means, that they did not know who the opponent was. Such a situation
models quite realistic procurement practices. After having assigned the cost
draw to the bidders, they were matched to a group of four opponents. Before
each of the 16 auctions, different bidders played against each other. In this
way, we could exclude collusion and signaling. After each auction, bidders got
to know their own cost draw and all bids of other bidders, but not their costs.
Similar applications can be found in public sector auctions to combat collusion
or bribery (Thomas (1996)). Participants can learn in the 16 played auctions
and risk aversion is a pattern, which can be motivated by real-world tenders.
Bidders could adapt their bidding costs after each repetition. Conversely to the
computerized experiments, which were designed to understand the potential
impact of risk aversion or wrong expectations on underbidding, the results of
the treatment combination H should have external validity as they are close
to real-world practices.

Our hypotheses sum up the discussion above and are explained in detail to
comprehend the experimental contribution of this work:

Hypothesis 1: Bidders in human subject experiments will underbid below
the RNBNE bid function due to reasons such as risk aversion, regret, wrong
expectations, or strategic complexity.

As we indeed found underbidding in line with earlier experiments on single-lot
auctions, we introduced additional treatments to control for different conjec-
tures why bidders underbid. A second group of treatment combinations (C1)
had human subjects compete against computerized agents, which played their
RNBNE strategy. Bidders did not learn about other bids in the auction, just
whether they won or lost an auction, which should minimize the impact of
regret. Of course, risk aversion and wrong expectations can still be a driver
for deviations from the RNBNE.

Hypothesis 2: Bidding against computerized agents without information
about the bids of others after the auction mitigates regret and eliminates
underbidding.
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The third group of treatment combinations (C100) is identical to C1, but the
bid function of a user is reused in a 100 auctions, which should mitigate risk
aversion. For each new auction, we drew a cost value randomly and determined
the bid based on the bid function of a bidder to participate in an auction
against computerized bidders. The subject was then paid the average of his
winnings in the 100 auctions. The impact of regret should also be minimal,
because bidders did not learn about the outcome of individual auctions or the
bids of others. The difference between C100 and C1 provides an estimate for
the impact of risk aversion in these auctions.

Hypothesis 3: Bidding against computerized agents without information
about the bids of others, where bid functions are reused in 100 auctions
mitigates regret and risk aversion and eliminates underbidding.

The fourth group of treatment combinations (C100+) uses the same exper-
imental design as C100, but we also provide explicit information about the
RNBNE function of the computerized agents. Since the bidders are all ex-
ante symmetric, the information in C100+ tells the subjects implicitly what
their equilibrium bidding function would be. Bidders should just replicate the
RNBNE strategy of others. Here we control for wrong expectations about the
computerized bidders, which might be different from wrong expectations that
bidders have in human subject experiments. It is still valuable to understand
which impact explicit information about the bidding strategies of others has
on bidders compared to a treatment where this information is not available
in C100. We consider deviations from the RNBNE in C100+ as ground noise
or irrationality, which provides a baseline for other experiments. We cannot
expect subjects in experiments with less control to be closer to the RNBNE
prediction.

Hypothesis 4: Bidding against computerized agents without information
about the bids of others, where bid functions are reused in 100 auctions, and
bidders see the equilibrium bid functions of their computerized opponents
mitigates regret, risk aversion, and wrong expectations about the others, and
eliminates underbidding.

Table (3.1) provides an overview of how we control for different hypotheses for
deviations from the RNBNE in the four different treatment combinations. A
+ signs, if this effect might be a reason for deviations in a certain treatment.
If a field is marked with a -, we indicate that a certain reason might note
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serve as reason for a deviation from the RNBNE strategy.

C100+ C100 C1 H
Strategic complexity + + + +
Wrong expectations - + + +
Risk aversion - - + +
Regret - - - +

Table 3.1: The control for reasons of deviations from the RNBNE in different
treatment combinations.

Although the strategic complexity in C100+ is limited to imitating the
RNBNE of others, this might not be obvious to some, so we marked this cell
with a + suggesting that strategic complexity can still be an explanation
for deviations from the RNBNE. In C100 bidders only get the prior cost
distributions. Here wrong expectations and strategic complexity can both
explain deviations. The difference to C1 is only the number of times in which
the bid function is reused. Therefore, a difference between C1 and C100 can be
explained by risk aversion. Treatment combination H allows for all explana-
tions, although the 16 repetitions should mitigate risk aversion to some extent.

The individual treatment combinations are described in table (3.2). Overall,
209 students in the area of mechanical engineering, computer science and
information systems took part in our experiments. 152 participants played
treatments with q=0.7. In all treatment combinations variable costs per
unit, ci, were i.i.d. and random variables drawn from a uniform distribution
with a support of [0.0,...,10.0]. The fixed cost K was 1 for all bidders in all
experiments. The split parameter in the experiments reported in the following
with treatment combinations H, C100, and C100+ was q=0.7.

In addition, we performed experiments with single-lot auctions (q=1) to
understand how the results compare with traditional reverse auctions. This
was necessary, because we are not aware of similar experiments with a
reverse first-price sealed-bid auction. Overbidding on high cost draws in sales
auctions might just be different from underbidding for low cost draws in
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reverse auctions.
In table (3.2) we describe all treatment combinations. The first column Bid

Treatment Bid fct.
reused

Opponents Information Split Auction
format

No. of
Subjects

C100+.S 100 Computer Prior & RNBNE bid fct. 1.0 single-lot 10
C100+.P 100 Computer Prior & RNBNE bid fct. 0.7 Parallel 11
C100+.Y 100 Computer Prior & RNBNE bid fct. 0.7 Yankee 11
C100.S 100 Computer Prior distribution 1.0 single-lot 11
C100.P 100 Computer Prior distribution 0.7 Parallel 13
C100.Y 100 Computer Prior distribution 0.7 Yankee 13
C1.S 1 Computer Prior distribution 1.0 single-lot 12
C1.P 1 Computer Prior distribution 0.7 Parallel 12
C1.Y 1 Computer Prior distribution 0.7 Yankee 11
H.S 1 Human Prior & bids of past auctions 1.0 single-lot 16
H.P 1 Human Prior & bids of past auctions 0.7 Parallel 16
H.Y 1 Human Prior & bids of past auctions 0.7 Yankee 16

Table 3.2: Overview of treatment combinations in the experiments.

fct. reused describes if the same bid function, that the participants submit-
ted was used once or 100 times. On the second one you find against which
kind of Opponents, the humans played; then, the degree of Information is
noted. Finally, the Split, the Auction format and the No. of Subjects,
that participated in experiments for the relevant treatment can be found.

We also ran additional computerized experiments of C100+ and C100 with a
split parameter of q = 0.9 to make sure that the high predictive accuracy of
the RNBNE function that we found for the split of q=0.7 is robust against
changes of the split parameter. This could be confirmed.

3.3 Experimental results

We will now describe bidder behavior for the parallel and the Yankee auction
in the lab. It is tested how well the RNBNE bid function explains the empirical
observations. Before this, we will analyze underbidding in single-object pro-
curement auctions in which the entire quantity goes to one supplier. This will
provide us a baseline against which to compare bidding behavior in split-award
procurement auctions. It is important, since most of the empirical literature
deals with sales auctions. Complementray plots are provided in the Appendix
B.
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3.3.1 The single-lot auction

Result 1: The RNBNE strategy explains the empirical data in C100 and
C100+ in the single-lot auction well. This suggests that wrong expectations
and strategic complexity of the parallel auction have little impact on the
bidding behavior. In C1 we found underbidding on low cost draws showing that
risk aversion has substantial impact on bidder behavior. There was learning
in treatments H, and the level of underbidding decreased after a few rounds.
However, the underbidding is still significantly higher compared to C100+.
We fail to reject Hypothesis 1, 3 and 4 but can reject Hypothesis 2.

Support: We analyze the outcome of linear regression models in the different
treatments and compare it with the equilibrium bid functions for the small and
the large lot 1. As a matter of course, for the single-lot respectively Yankee
auction we compare single bids. We use a fixed effects model with a dummy
variable ui to estimate the unobserved heterogeneity of bidders, namely

yit = α + ui + βcit + γrit + δwi(t−1) + εit.

The dependent variable yit describes the bids of bidder i. The unit costs
cit were used as the main independent variable. Table (3.3) summarizes the
intercept α, the regression coefficient β for the unit cost parameter, and the
multiple R2 of the linear regression. The coefficients ui for the bidder ID
of all the bidders describe bidder idiosyncrasies, which are omitted from the
table. Variable r describes the number of the auction, which is relevant only
in H. Variable wi(t−1) describes whether a bidder won in the previous auction
and δ the impact of winning in the last round.

We also compute the mean squared error (MSE) of the RNBNE function to
understand how well the model explains the data in the different treatment
combinations. This metric is lowest in C100+, indicating that the variance
around the RNBNE bid function is low. Additional plots of the empirical bid
functions can be found at Appendix B. We compare the MSE of the linear
RNBNE function against the MSE of a LOESS estimation of the data (see

1 Seemingly unrelated regression (SUR) is one possibility to deal with these two sources
of data. However, because each equation contains exactly the same set of regressors, the
estimators of a SUR are numerically identical to ordinary least squares estimators, which
follows from Kruskal’s theorem (Davidson and MacKinnon (1993)).
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α β (unit
cost)

Std. er-
ror β (p-
value)

Mult.
R2

MSE
RNBNE

MSE
LOESS

# bids/
bidders

RNBNE 2.53 0.748

C100+.S 2.08 0.797 0.008
(0.000)

0.991 0.104 0.083 100/10

C100.S 2.53 0.727 0.033
(0.000)

0.922 0.415 0.392 110/11

C1.S 1.92 0.767 0.039
(0.000)

0.862 4.828 4.740 120/12

H.S 2.11 0.821 0.005
(0.000)

0.923 0.854 0.676 2560/16

H.S (# 1) 1.51 0.869 0.028
(0.000)

0.897 2.127 1.936 160/16

H.S (# 7) 1.87 0.793 0.016
(0.000)

0.952 0.587 0.387 160/16

H.S (# 16) 1.70 0.829 0.014
(0.000)

0.966 0.699 0.353 160/16

Table 3.3: Regression coefficients for the empirical bid functions (w/o bidder ID) of
the single-lot auction.

Cleveland and Devlin (1988)). LOESS is also known as locally weighted
polynomial regression, which can be considered a best case model for the
empirical data. At each point in the data set, a low-degree polynomial is
fitted to a subset of the data. The value of the regression function for the
point is obtained by evaluating the local polynomial using the explanatory
variable values for that data point.

The line H.S in table (3.3) describes the regression coefficients of all the bid
functions with the number of the auction (r) as an additional covariate. This
additional covariate had a small significant negative effect on the regression
(-0.0377). The subsequent lines describe the results of the regression for the
empirical bid functions in individual auctions (number 1, 7, and 16) in H. The
low intercept α together with a higher β compared to the RNBNE function in-
dicates that there is underbidding on average on low cost draws in H compared
to the RNBNE bid function. In auction 7, for example, there is an underbid-
ding of 18.7% at a unit cost of 1 compared to the RNBNE bid function, while
there was underbidding of 2.75% for high-cost draws of 9 Francs.

The value of intercept α which can be used as an estimator for underbidding
on low value draws, was at a mean value of 1.74. The intercept decreased
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Figure 3.3: The the intercept α (right) across different auction runs in a session in
H for the single-lot auction.

Figure 3.4: Scatter plot of bids and the optimal bid functions for C100 (left) and
C100+ (right) for the single-lot auction.
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Chow test p-value

C100.S 0.988
C1.S 0.000
H.S 0.035

Table 3.4: The p-values of a Chow test for equivalence of the RNBNE bid function
and the regression for the single-lot auction.

slightly in the last six rounds from a value of 1.81 to a value of 1.70. This can
be explained by some bidders who became more aggressive on low-cost draws
in order to become winners before the experiment was over. More aggressive
bidding across rounds overall is also illustrated by a significantly negative,
but low, coefficient γ = −0.04. We found a small but significantly negative
impact of winning in the last round (δ = −0.06), which cannot be explained
by regret. This small negative impact can also be observed in the different
split-award auctions. Note that in this paper we want to analyze when the
RNBNE can explain bidding behavior in first-price auctions. This allows us
to rule out explanations such as strategic complexity or wrong expectations as
reasons for underbidding. The question, whether risk-aversion or rather regret
determine the underbidding in our experiments may be a fruitful exercise to
look at in the future.

The high MSE in treatment combination C1.S is due to a single bidder who
bid substantially above the RNBNE bid function. Without this bidder, the
MSE was 0.589. The average underbidding at a unit cost of 1 is 18.02% below
the RNBNE bid function.

The Chow test is an econometric test of whether the coefficients in two
linear regressions on different data sets are equal, which allows for another
comparison of the RNBNE bid function and the regression results on the
empirical data. Table (3.4) shows the p-values for the Chow test. The
Chow test is based on squared residuals, and therefore, does not allow for
a comparison of the regression results with the RNBNE bid function, which
does not have any residuals. Treatment C100+ is, however, a good baseline
for other treatments to compare against, because the treatment exhibits a
high level of control for and the results are very close to the RNBNE bid
function. The Chow tests show that we cannot reject the hypothesis of
equivalence between the regression coefficients of the empirical bid functions
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of C100 and C100+ while the bid functions of C1 were significantly different
from C100+. This means, even without information about the bid functions
of computerized agents, the empirical bid functions in C100 are very close to
C100+ and the RNBNE bid function. We will see this pattern as well in the
split-award auctions. There was no significant difference of C100+ and H in
spite of the underbidding observed in this treatment.

Kirchkamp and Reiß (2011) see in their experiments a median underbidding
of up to 30% over the RNBNE on high value draws. In Pezanis-Christou
et al. (2003), an average relative underbidding over the RNBNE prediction of
34-37% for their experiments with symmetric bidders. It is remarkable, that
both Pezanis-Christou et al. (2003) and Kirchkamp and Reiß (2011) used
the strategy method like we did. However, the bids were only valid for one
auction and not 100 like we did in C100 and C100+. Besides, they tested
sales rather than procurement auctions and and the number of competitors
was different. The number of played auctions was also not the same. Hence,
it is not trivial to compare the level of underbidding in their experiments with
the degree of underbidding in ours. On the one hand, in Kirchkamp and Reiß
(2011), two bidders competed for 1 item in 12 different auctions, on the other
hand, in our treatments four bidders tried to sell the single-lot respectively 2
lots in 16 iterations . We observed on average underbidding of 18-19% for low
unit costs of 1 Franc in treatments C1 and H. In the following, we show that
the underbidding in treatments C1 and H will increase for split-award auctions.

As point of reference, Shachat (2009) reports high underbidding for low cost
draws in reverse auctions and many outliers. This might be due to the fact
that they did not use the strategy method, but bidders had to place bid for
actual costs draw. Bidders could speculate which results in a deviation from
the RNBNE strategy up to 40%. The common knowledge was similar to our
design, since bidders knew the distribution and the corresponding range of the
costs, the number of competitors and repetition. Besides, the participants got
to know the amount of the winning bid after each repetition.

The underbidding in single-object reverse auctions with human bidders in H
can be explained by residual risk aversion or some of the other behavioral
theories that have been used to explain bidding behavior in single-object first-
price sealed-bid auctions such as regret or wrong expectations about other
bidders.
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Figure 3.5: Scatter plot of bids and the optimal bid functions for H for the 1st

auction (left) and the 7th auction (right) in the single-lot context.

Figure 3.6: Scatter plot of bids and the optimal bid functions for H for the 16th

auction in the single-lot context.
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Large lot Small lot
α β (unit

cost)
Mult.
R2

Std. error
β(p-value)

α β (unit
cost)

Mult.
R2

Std. error
β(p-value)

# bids/
bidders

RNBNE 3.59 0.643 3.37 0.67

C100+.P 3.49 0.626 0.963 0.008
(0.000)

3.39 0.621 0.957 0.009
(0.000)

220/11

C100.P 3.70 0.697 0.966 0.008
(0.000)

3.67 0.680 0.977 0.007
(0.000)

260/13

C1.P 1.48 0.854 0.938 0.022
(0.000)

1.81 0.805 0.947 0.019
(0.000)

120/12

H.P 1.70 0.778 0.951 0.004
(0.000)

2.68 0.735 0.929 0.004
(0.000)

2560/16

H.P (# 1) 1.45 0.777 0.937 0.017
(0.000)

2.07 0.765 0.950 0.015
(0.000)

160/16

H.P (# 7) 1.74 0.772 0.961 0.013
(0.000)

2.79 0.722 0.940 0.016
(0.000)

160/16

H.P (# 16) 1.28 0.785 0.963 0.013
(0.000)

1.85 0.731 0.950 0.015
(0.000)

160/16

RNBNE,
q=0.9

2.80 0.721 3.44 0.67

C100.P9 2.16 0.753 0.972 0.009
(0.000)

2.90 0.729 0.952 0.011
(0.000)

240/12

C100+.P9 2.85 0.711 0.971 0.008
(0.000)

3.42 0.679 0.985 0.005
(0.000)

280/14

Table 3.5: Regression coefficients for the empirical bid functions of the parallel
auction.

3.3.2 The parallel auction

The following result 2 refers to tests of the equilibrium bidding strategy in
Proposition 1, while result 3 refers to Proposition 2. Complementary plots
that support our results can be found in the Appendix B.

Result 2: The RNBNE strategy explains the empirical data in C100 and
C100+ in the parallel auction well. Again, like in the experiments with a
single-lot, wrong expectations and strategic complexity have little impact on
the bidding behavior. Also, underbidding in C1 and learning in treatments H
have been observed. Again, we fail to reject Hypothesis 1, 3 and 4 but can
reject Hypothesis 2.

Support: We have added additional statistics to compare the RNBNE
against the predictive power of a model with a constant profit margin and
the RNBNE of a single-lot FPSB. This should help explain how sensitive the
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Large lot Small lot
MSE
LOESS

MSE
RNBNE

MSE
single-
lot
RNBNE

MSE
Con-
stant
Factor

MSE
LOESS

MSE
RNBNE

MSE
single-
lot
RNBNE

MSE
Con-
stant
Factor

C100+.P 0.141 0.175 0.464 1.337 0.206 0.260 0.542 1.441
C100.P 0.269 0.328 0.406 1.037 0.187 0.192 0.443 1.055
C1.P 0.827 1.668 0.948 1.234 0.682 1.057 0.730 1.129
H.P 0.329 1.160 0.449 1.124 0.403 0.607 0.484 1.089
H.P (# 1) 0.578 1.107 0.629 1.165 0.568 0.708 0.690 1.059
H.P (# 7) 0.269 1.037 0.386 1.059 0.319 0.496 0.424 1.050
H.P(# 16) 0.319 1.340 0.508 1.223 0.453 0.750 0.539 1.234

C100.P9 0.312 0.327 0.330 0.864 0.387 0.448 0.736 1.090
C100+.P9 0.163 0.235 0.244 0.860 0.095 0.102 0.350 0.981

Table 3.6: MSE of the RNBNE in the parallel auction, the RNBNE of a single-lot
auction, and the MSE of a constant profit margin model. The MSE of

the LOESS estimate serves as a baseline to compare against.

predictions are.

The model assuming bidders had a constant profit margin had the worst MSE
in all treatments because this model used the average markup of the RNBNE
function across all draws as the profit margin. For the treatment combinations
C100 and C100+ the RNBNE clearly had the lowest MSE (marked in bold
in table (3.6)). The treatment combinations C1 and H the RNBNE of the
single-lot auction has a lower MSE than the RNBNE of the split-award
auction. This can easily be explained by the underbidding observed in these
treatments. In a single-lot auction with the same number of bidders the
competition is higher which brings down the bid prices in equilibrium below
that of the RNBNE in the split-award auction. Again, the MSE for the
treatment C1 is highest, which can be explained by risk aversion and the
differences in how bidders respond to risk aversion. A few bidders deviated
substantially from the RNBNE prediction, which led to a high MSE. In ta-
ble (3.6), we have provided the MSE of all three models for the parallel auction.

The line H.P in table (3.5) describes the relevant regression coefficients of all
human subject experiments where we control for bidder idiosyncrasies and
the number of the auctions. The subsequent lines describe the results of the
regression for the empirical bid functions in individual auctions (number 1,
7, and 16) in treatment combination H. The low intercept α together with a
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Large lot Small lot

H 0.000 0.000
C1 0.000 0.000
C100 0.172 0.176

C100, q=0.9 0.506 0.434

Table 3.7: The p-values of a Chow test for equivalence of the RNBNE bid function
and the regression for the parallel auction.

higher β compared to the RNBNE function indicates that there is underbidding
on average on low cost draws in H compared to the computerized treatments
in C100 and C100+. However, there is even more underbidding in C1.
Note that in the initial sealed-bid treatments with C100 and C100+, we have
elicited the bid function for 20 unit costs from 0.5 to 10 Francs, while for the
human subjects’ experiments where students had to submit their bid function
multiple times, we reduced this to 10 parameters. In test experiments with
treatment combination C1, we did not find that this had an impact on the
shape of the bid function in the experiments.
The intercepts of both C1.P and H.P are much lower than those of the RNBNE
bid function for the large and the small lot. Underbidding below the RNBNE
for low costs of 1 Franc on the large lot was on average 40.63% for treatment H
(auction #7) and 44.79% for C1. On the small lot, we observed underbidding
of 13.07% for treatment H (auction #7) and 35.27% for C1. In comparison, in
the single-lot reverse auction we observed around 18-19% for both treatments.
Risk aversion can serve as a natural explanation for the underbidding in C1.P.
In H.P the residual risk aversion in spite of the 16 repetitions but also other
possible explanations such as regret can be potential reasons for underbidding
on low cost draws.

The underbidding in these reverse auctions with human bidders in H can be
explained by remaining risk aversion, regret, or some of the other behavioral
theories that have been used to explain bidding behavior in single-lot first-
price sealed-bid auctions. The phenomenon is similar to overbidding for large
valuations in first-price sealed-bid sales auctions on single-lots, which has been
reported also by Kirchkamp and Reiß (2011). Note that we conducted reverse
auctions and the overbidding on large values in a sales auction might not be
easily comparable with the underbidding on small values in reverse auctions
that have usually been analyzed in experiments. Table (3.7) shows the p-
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values for the Chow test which indicate that the null hypothesis of equivalence
between the regression coefficients and the coefficients of the RNBNE function
cannot be rejected for C100 and C100+.

The Chow test shows equivalence between the bid functions in C100+ and
C100 for the large and the small lot. The test shows that the bid functions in
C1 and H are both significantly different from C100+ (p=0.000).

Figure 3.7: Scatter plot of bids and the optimal bid functions for H on the large lot
for the 1st auction (left) and the small lot (right) for the parallel
auction (q=0.7).

Result 3: Bidders’ learning is shown in the initial two auctions of a session
in H. In the last auctions, some bidders started to decrease their bids on the
small lot.

Support: Figure (3.9) plots the intercept α across all rounds to better under-
stand underbidding relative to the RNBNE. The intercept α was low around
a mean level of 1.56 and decreased slightly in the last rounds for the large lot.

In contrast, the intercept for the small lot was at 3.14 in round 2 after the initial
round of learning and came down to a value of 1.84 in round 16 indicating
more and more underbidding on low cost draws in the small lot. Bidders
competed aggressively on the large lot and tried to achieve higher payoffs on
the small lot in the initial rounds. In the last five rounds there was increased
underbidding also on the small lot. Also the coefficient of r in the regression
was significant and negative for the large and the small lot (-0.0167 and -0.0146,

61



CHAPTER 3. SPLIT-AWARD AUCTIONS

Figure 3.8: Scatter plot of bids and the optimal bid functions for C100+ on the
large lot (left) and for the small lot (right) for the parallel auction

(q=0.7).

Figure 3.9: Intercept α for the large (left) and the small (right) lot across different
auction runs in a session for the parallel auction.
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resp.) indicating more aggressive bidding across rounds. As in the single-lot
auction, there was a small but significant positive impact of winning in the
last round δ = −0.09, which could rather be explained by joy of winning than
regret. Also Kirchkamp and Reiß (2011) found significant learning in the first
two out of 12 rounds of single-lot auctions.

Result 4: The correlation between the markups of bidders in the large and
in the small lot was high, and on average the markup in the small lot was
significantly higher than in the large lot as, theory predicts.

Support: We found the markups between the large and the small lot to be
highly correlated (H (ρ=0.981), C1 (ρ=0.968), C100 (ρ=0.977), and C100+
(ρ=0.973)). In other words, bidders with a high markup on the large lot also
have a high markup on the small lot. The differences in the markup between
the large and the small lot in all treatments were significant throughout (paired
t-test, α=0.01). This means that bidders’ behavior was consistent with the
RNBNE strategy in both, the large and the small lot and they understood
that they faced less competition in the small lot.

Discussion: Overall, the results from the computerized experiments C100+.P
and C100.P confirm rational bidding behavior according to the theory. Wrong
expectations or strategic complexity do not seem to impact bidding behavior
much. Underbidding in C1.P on low cost draws can again be explained by
risk aversion. This underbidding was higher than in the single-lot auction, in
particular in the large lot. We conjecture that bidders tried to win the large
lot with low prices, because it promised a higher total payoff with 70 as well
as 90 units.
Risk aversion can also serve as one of the reason for underbidding in H.P.
Bidders were again aggressive on the large lot, but they started with a higher
bid on the low cost draws on the small lot. However, in the last rounds the
bidding also became aggressive on the small lot with lower bids on the low cost
draws.

Result 5: As q increases, bidding becomes more (less) aggressive for the large
lot (small lot), as theory predicts (Proposition 2). Only for the small lot, where
the differences between the equilibrium bid function are small, the theoretical
prediction does not hold.

Support: For the large lot the intercept in q=0.9 is lower for C100 and
C100+ and both regression lines are close to the equilibrium bid function (see
table (3.5)). The equilibrium bid function for q=0.9 is lower than for q=0.7
until high unit costs between 8 and 9 monetary units. This is reflected in the
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Figure 3.10: Scatter plot of bids and the optimal bid functions for C100 on the
large lot (left) and for the small lot (right) for the parallel auction
(q=0.9).

Figure 3.11: Scatter plot of bids and the optimal bid functions for C100+ on the
large lot (left) and for the small lot (right) for the parallel auction
(q=0.9).
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regression lines of C100+, where both regressions intersect at a unit cost of 8.
In C100, the regression line for q=0.7 is always above q=0.9, i.e., bidders bid
more aggressive in q=0.9 throughout.

For the small lot the equilibrium bid function for q=0.9 is always below q=0.7
by a small number of 0.08. Also in C100+ the regression line for q=0.9 is
slightly below q=0.7, in C100 it is the opposite. The differences between the
C100 and the C100+ regression line are less than 1 monetary unit, however.
You can see these differences also if you compare the figures (3.10) and (B.3)
respectively (3.8) and (3.11).
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3.3.3 The Yankee auction

In addition to the parallel auction, we also analyzed how well equilibrium
bidding strategies explain bids in the different treatment combinations in the
Yankee auction. The strategic complexity is higher, because bidders do not
know if an aggressive bid will actually win the large lot, and if they are not
winning the large lot, they might have won the smaller lot with a higher bid.

Again, we provide the results in table (3.8) and all relevant scatter plots.
Result 6 refers to the equilibrium bidding strategy in Proposition 3, while
Result 7 refers to Proposition 4. We have included the MSE for the single-lot
RNBNE and that of a constant profit factor model in table (3.8). In the Yankee
auction, the RNBNE model had the lowest MSE in treatments C100+.Y, and
C100.Y. For H.Y and C.1 (w/o the outlier) the single-lot RNBNE had a lower
MSE, which can again be explained by the fact that the single-lot RNBNE
model leads to higher competition with the same number of bidders and lower
equilibrium bid price, which better fits the average behavior of risk-averse
bidders.

Result 6: The RNBNE strategy explains the empirical data in C100 and
C100+ in the Yankee auction well. This suggests that wrong expectations and
strategic complexity have little impact on the bidding behavior, even in this
strategically more complex split-award auction format. In C1 we found again
underbidding on low cost draws showing that risk aversion has substantial im-
pact on bidder behavior. There was learning in treatments H, and the level of
underbidding increased in the final rounds. The difference of the bid functions
in H and C100+ was not significant, even though there was more underbidding
in H as in the other treatments. Like for the other auction formats, we fail
to reject Hypothesis 1, 3 and 4 but can reject Hypothesis 2. The impact of
winning a lot in the last round was again significant (δ = −0.22).

Support: We provide the same statistics as for the parallel auction in ta-
ble (3.8). The line H again describes the regression coefficients of all the bid
functions with the number of the auction as an additional covariate. This ad-
ditional covariate had a small negative, but significant effect on the regression
(-0.0295). As in the parallel auction, we find a low intercept α together with a
higher β compared to the RNBNE function in the analysis of auctions 1, 7, and
16 in H. This means, that also in the Yankee auction, bidders in H with human
subjects underbid on low cost draws compared to the RNBNE function, which
we cannot observe in C100 and C100+. The MSE values are comparable to
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α β (unit
cost)

Std.
error
β (p-
value)

Mult.
R2

MSE
LOESS

MSE
RNBNE

MSE
single-
lot
RNBNE

MSE
Con-
stant
factor

#
bids/
bidders

RNBNE 3.53 0.647

C100+.Y 3.66 0.682 0.008
(0.000)

0.972 0.148 0.166 0.342 0.995 220/11

C100.Y 3.21 0.684 0.007
(0.000)

0.973 0.192 0.213 0.396 1.039 260/13

C1.Y 2.05 0.783 0.028
(0.000)

0.860 3.191 3.372 3.531 3.647 110/11

H.Y 2.49 0.756 0.004
(0.000)

0.941 0.475 0.766 0.532 1.062 2550/16

H.Y (# 1) 2.68 0.724 0.018
(0.000)

0.930 0.907 0.989 1.297 1.623 160/16

H.Y (# 7) 2.19 0.743 0.012
(0.000)

0.963 0.317 0.573 0.360 0.941 160/16

H.Y(# 16) 1.92 0.800 0.011
(0.000)

0.975 0.355 0.914 0.418 0.892 160/16

RNBNE,
q=0.9

2.82 0.735

C100.Y9 2.42 0.786 0.010
(0.000)

0.961 0.572 0.612 0.671 0.966 300/15

C100+.Y9 2.95 0.699 0.007
(0.000)

0.970 0.140 0.160 0.236 0.896 320/16

Table 3.8: Coefficients for average cost of the linear regression for the Yankee
auction.
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the parallel auction. The lowest MSE values were again achieved for C100+
and C100. C1.Y has also a significantly lower intercept that can be attributed
to risk aversion. In C1.Y, there was a clear outlier, a bidder who submitted
very high bid functions leading to a high MSE of 3.372. Without this bidder
the MSE was 1.024, which we included in brackets.

The Chow test, summarized in table (B.1), yields that there is no significant
difference between the bid functions in C100+ and C100 (p=0.985), and be-
tween C100+ and H (p=0.770), but there is a difference between C100+ and
C1 (p=0.000). The comparison between C100+ and H provides evidence for
the predictive accuracy of the RNBNE for human subject experiments, even
though we do find underbidding on low cost draws here as well. Underbidding
below the RNBNE for low costs of 1 Franc was on average 29.78% for treat-
ment H (auction #7) and 32.18% for C1. This was less than in in the parallel
auction.

Result 7: There was also learning of bidders in the initial auctions of a session
in H for the Yankee auction.

Figure 3.12: The intercept α across different auction runs in a session in H for the
Yankee auction.

Support: Figure (3.12) shows the intercept for all 16 auctions showing an
increasing trend in the first six auctions. We conjecture that the increased
strategic complexity has led to a longer learning period.

The regression coefficient for the number of the auction in a session was also
significant and negative at γ=-0.04, showing that across the auctions bidders
became slightly more aggressive. A look at the development of the increment
α across the 16 auctions in treatment H reveals that the level of underbidding
below the RNBNE bid function on low cost draws increased. At the same
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time the coefficient β of the unit cost parameter increased at levels above the
coefficient of the RNBNE bid function. In auction number 16 the average bid
after the regression for unit costs of 10 Francs was 1% below the RNBNE bid,
but 34.9% below the RNBNE bid for unit costs of 1 Franc only. In figure
(3.12), the changes of α are shown according to the auction number.

Discussion: In the Yankee auction bidders do not know a priori if they win
the large lot or the small lot with their single bid price. The high predictive
accuracy of the RNBNE function in all treatment combinations is therefore
an interesting result. In particular, there was no significant difference between
C100 and C100+ and no significant underbidding indicating that strategic
complexity had little impact. In line with what we have seen in the single-
lot and in the parallel auction, we found significant underbidding below the
RNBNE bid function in C1, which can be explained by risk aversion. In
the treatment combinations H the level of underbidding on low cost draws
increased slightly across the 16 auctions in a session.

Result 8 As q increases, bidding becomes more aggressive for our experimental
environment with fixed costs of 1 and uniformly distributed unit costs in the
Yankee auction, which is in line with Proposition 4.

Figure 3.13: Scatter plot of bids and the optimal bid functions for C100 (left) and
C100+ (right) for the Yankee auction (q=0.9).

Support: The intercept in q=0.9 is below that of q=0.7 (see table (3.8)). The
equilibrium bid function of q=0.7 is higher than q=0.9 up to a unit cost of

69



CHAPTER 3. SPLIT-AWARD AUCTIONS

Treatment α β (RNBNE) Std. Error (β) p-value (β)
C100+ 0.139 0.980 0.006 < 2e-16
C100 -0.460 1.060 0.009 < 2e-16
C1 -2.151 1.268 0.052 < 2e-16
H -1.867 1.188 0.005 < 2e-16

Table 3.9: Regression coefficients of the RNBNE prediction across auction formats.

9. The difference between both regression lines in C100 is small. In C100+
the regression line of q=0.9 is always below that of q=0.7. Overall, the data
from the lab confirms the theoretical prediction in Proposition 4. You can also
compare the figures (B.6) and (3.13).

Corollary 1 states that if bidders submitted their RNBNE bid function in a
Yankee auction, then they always make a positive payoff if they win the large
lot, but they could also make a loss in the small lot. Losses are more likely
with high fixed costs. In our experiments fixed costs were low, and the lowest
payoff that we encountered was zero. Possible losses due to high fixed costs are
another phenomenon to be analyzed in the future, but losses in experiments
are difficult as in most experiments it is considered unethical to have bidders
pay a loss and external validity of the experiments becomes an issue.

3.3.4 Predictive accuracy across auction formats

In order to analyze the predictive accuracy of the RNBNE model across auc-
tion formats and split parameters, we have pooled all observations (Parallel
and Yankee auction) within each of the four treatment combinations, as well
as the observations for different split parameters (0.7 and 0.9). We have then
used the RNBNE prediction as right-hand side variable for the bids in a regres-
sion. A coefficient on the RNBNE prediction close to 1 is strong evidence for
the RNBNE model, and it demonstrates that subjects understand the strate-
gic differences across the auction sessions. Again, for C100+ and C100 we
find evidence for the RNBNE model, while the results in table (3.9) indicate
underbidding in the treatments C1 and H.

We summarize the results across all auction formats.

• There was underbidding in treatment H. We fail to reject Hypothesis 1.
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• The RNBNE strategy explains the empirical data in C100 and C100+
in the single-lot auction well. We fail to reject Hypothesis 3 and 4.

• In C1, we found underbidding on low-cost draws, showing that risk aver-
sion has substantial impact on bidder behavior. We can reject Hypothesis
2.

3.3.5 Procurement cost comparisons

The final result of our theoretical analysis is that the expected costs of the
parallel and the Yankee auction are the same. In this subsection, we report on
three different metrics, allocative efficiency, the average procurement costs in
a treatment, and a cost ratio, which normalizes the procurement costs by the
costs of the bidders in the optimal solution. This allows for easier comparison
across different cost draws in the auctions, because average costs can differ
significantly due to the cost draws of individual auctions.

Allocative efficiency is defined as E =
c∗1+c

∗
2+2K

ci1+c
j
2+2K

∈ [0, ..., 1], where c∗1 and c∗2
are the variable costs in the efficient allocation for the large and the small lot
and ci1 and cj2 are the costs of those bidders i and j, who won the auction. Cost

ratio is defined as C =
c∗1+c

∗
2+2K

bi1+b
j
2

∈ [0, ..., 1], where bi1 and bj2 describe the bids

of the winning bidders i and j on the large and the small lot respectively. If
bid prices in the winning allocation decrease, this ratio increases, i.e., a higher
number is better for the buyer.
Table (3.10) provides the values for E, C and the average costs.

Result 9: The parallel auction and the Yankee auction exhibit no significant
differences in efficiency and cost ratio as predicted by Proposition 5.

Support: Overall, efficiency is high in all experimental treatments. We did
not find a significant difference in efficiency E and cost ratio C within the same
treatment combination between the parallel and the Yankee auction using a
Wilcoxon rank sum test (α=0.01). There was a significant difference in average
costs for C100 and C100+, when the split was at q=0.9, but this is difficult to
interpret as the cost draws were different in these auctions.

There are significant differences between the treatment combination H and
C100 or C100+ for both split parameters based on a Wilcoxon rank sum test
(α=0.01). H has lower efficiency and a higher cost ratio, which means a lower
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Efficiency E Cost ratio C Average costs
H.P, q=0.7 96.17% 83.63% 588.70
C1.P, q=0.7 99.01% 51.91% 506.26
C100.P, q=0.7 99.39% 51.63% 514.94
C100+.P, q=0.7 96.62% 71.32% 556.39
C100.P, q=0.9 97.87% 51.71% 500.86
C100+.P, q=0.9 98.79% 52.16% 494.35
H.Y, q=0.7 96.49% 79.62% 602.32
C1.Y, q=0.7 98.63% 51.66% 515.05
C100.Y, q=0.7 98.78% 51.60% 502.15
C100+.Y, q=0.7 99.24% 67.48% 584.80
C100.Y, q=0.9 98.09% 51.64% 430.63
C100+.Y, q=0.9 99.50% 52.19% 443.57
H.S 86.00% 71.33% 382.57
C1.S 99.42% 54.68% 441.53
C100.S 99.70% 54.81% 440.45
C100+.S 94.70% 57.13% 462.85

Table 3.10: Efficiency and auctioneer’s costs.

cost, in both the parallel and the Yankee auction. The lower cost in H can
be attributed to the underbidding that we described earlier in human subject
experiments. Note that in H we have seen convergence after several auctions.

3.4 Further work

In this chapter, we tested how human bidders behave in a simple multi-
item sealed-bid auction. A natural extension would be to examine the
dynamic version of the parallel and the Yankee auctions. Hence, we provide
suggestions how to formulate of the multi-round extensions of the two formats.

Three different dynamic procurement auctions can be found in Cramton and
Ausubel (2006). In their simultaneous descending auction all the goods are
purchased at the same time, each with a price associated with it. Bidders can
bid on any of the items, but not on packages. Bapna et al. (2000) and Bapna
et al. (2001) defined a similar mechanism as multi-item progressive auctions,
where multiple units of the same product are sold to multiple bidders but
each bidder cannot win more than one item. In the second auction format
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of Cramton and Ausubel (2006), the simultaneous descending clock auction,
bidders reply with quantities according to the price. The final prices of
the auction correspond to the competitive equilibria and the allocations are
efficient. The difference to our parallel auction is that we have two different
sized, predefined lots. Bidders know the exact amount they bid for in advance,
and each bidder can submit two bids for each lot given the current prices. It
is not possible to answer to the auctioneer with a suggestion for the size of
the lots.

Besides, the authors discuss a two stage clock-proxy auction for complex
environments, which consists of a simultaneous clock auction followed by
a last-and-final proxy round similar to the CCA. Mishra and Garg (2006)
analyze a multi-item generalization of descending price auctions. The different
items of the multi-unit auctions can be compared to the different splits in our
format. According to the authors there is no possibility for bidders to increase
their surplus by aberration for their developed, greedy strategy. Interestingly,
to the best of our knowledge there is no research on dynamic split-award
auctions so far, though they are frequently used in practice. Therefore, we fill
this gap by introducing the dynamic Yankee and parallel auction.

Figure 3.14: The sequence of the dynamic parallel auction.

An formulation of the dynamic parallel auction is visualized in figure (3.14)
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and described below.

There are several rounds in the dynamic parallel auction. Bidders see
current prices for all lots and can submit bids for any of them, but are only
allowed to win at most one lot. In order to maintain eligibility, bidders have to
submit at least one bid in each round; otherwise they quit the auction. If there
is at least one (minimal) overdemanded set, a new round starts and prices for
the lots in this set are reduced. If there is no (minimal) overdemanded set,
the auction terminates. We use the definition of Demange et al. (1986) and
describe a minimal overdemanded set as a set that is itself overdemanded, but
none of its proper subsets is overdemanded.

The dynamic parallel auction can be seen as a reverse assignment game with
a single buyer and multiple sellers. An assignment can be interpreted as an
injective function µ : n

′ → m, and n
′ ⊆ n, whereas n

′
is a subset of all

bidders n and m the amount of lots.

The assignment problem corresponds to a maximum weighted bipartite match-
ing, which is a special case of the transportation problem and, in turn of the
minimum cost flow problem. This problem can be reduced to a linear program
(LP). Figure (3.16) summarizes the classification of the assignment problem.
Related problems are job matching (Kelso and Crawford (1982)) or the college
admissions and the stability of marriage (Gale and Shapley (1962)). Here, a
matching of men and women has to be found such that there is no pair of
a man and a woman who both prefer each other above their partners in the
matching. Roth and Peranson (1999) assign medical students to hospitals for
internships in the USA.

Shubik (1971) showed that the core of an assignment game is precisely the
set of dual optimal solutions to the assignment optimization problem on the
matrix of pairwise profits. The dual variables describe the payoff vectors of
the assignment game. The existence of optimal solutions to the assignment
problem and strong duality show that the set of stable payoff vectors is
non-empty.

Demange et al. (1986) proof that versions of the “Hungarian algorithm” (a
primal/dual method) yield this Walrasian equilibrium, i.e., a vector of linear
prices. In each round, the auctioneer announces the tuple of ask prices (p1, p2)
with a price for each lot. The exact progressive auction algorithm of Demange
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Figure 3.15: Classification of the assignment problem.

et al. (1986) corresponds to our dynamic parallel auction. Bidders follow a
dominant straightforward strategy, i.e. they bid on those lots which maximize
their payoff at the given prices. The bids can be defined as bidder’s demand
set Db(p), namely

Db(p) = {m : p(m)−K − ci = maxηεm [p(η)−K − cηi ]}

Hereby, p(m) denotes the ask price for lot m, and η any lot within m. A
price is called competitive if there exists an assignment µ : n

′ → m such that
µ(b) ∈ Db(p).

Bertsekas (1981), Bertsekas (1985), Bertsekas (1988) and Bertsekas and Cas-
tanon (1989) discuss variations of an auction algorithm.

Proposition 6: The parallel auction is a primal dual algorithm that results
in VCG prices.
Since our dynamic auction is a descending version of the exact algorithm by
Demange et al. (1986), it is a primal dual algorithm that results in a core
outcome 2.

Since bidders are not allowed to submit package bids, the core prices resemble
the VCG prices.

Also for the Yankee auction, we formulate a multi-round mechanism.

2 See, for more details about the ”core” at chapter (4.1)
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Figure 3.16: The dynamic parallel auction as primal dual algorithm (see
Papadimitriou and Steiglitz (1998)).

Figure 3.17: The sequence of the dynamic Yankee auction.
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Figure (3.17) explains the mechanism well, where the unit price is the same
for all lots. The current bid price can be written as: P0 − a · t, where P0

denotes the initial price vector, a the fixed decrement, and t the number of
decrements. If the number of active bidders is larger or equal to the number
of lots m = 2, the auctioneer reduces the price per unit and a new round
starts. Otherwise, the auction terminates. Then, the last active bidder wins
the large lot and the bidder who dropped out of the auction in the last round
wins the small lot. The common final ask price is the last price the (n− 1)-th
best bidder accepts. Ties are broken at random (see figure (3.17)). At every
point, bidders try to maximize their payoff.

If we consider besides several lots also more than one item, the Reverse Com-
binatorial Clock (RCC), a reverse implementation of a CA, might be the right
choice 3. Mayer and Louca (2013) performed simulations in this context. These
results should be interpreted with care, since the definition of the value models
and the bidding strategies of computerized bidders determine the results deci-
sively. Because of these and other reasons, the simulations are not presented
within this thesis.

3 See Chapter 4
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Chapter 4

Combinatorial auctions

In Chapter 3, we analyzed sealed-bid auctions with two lots. In spite of the
higher complexity in comparison to single item auctions, the equilibrium
strategy was a good predictor for bidding behavior in the laboratory, if
external effects have been controlled. We saw that strategic complexity might
not serve as explanation for deviations; however, we saw, that risk aversion
might affect bidders in their behavior. We emphasize that this finding only
holds for this restricted setting.
In many applications like in the sales of spectrum license far more items
are sold simultaneously. The value model and the auctions are much more
complex - even too complex to analyze it in theory. Hence, simulations or expe-
riments are a proper tool to find out how different auction formats might work.

We test by human subject experiments the impact of a simple ”compact”
versus complex “fully expressive” bid language specifically a “pay-as-bid”
and “bidder-optimal core-selecting” pricing rule in sales auctions. Hence,
all definitions are given in the context of forward auctions. The number of
possible bids increases from two in Chapter 3 to 2,400. The main findings
are published in Bichler et al. (2014b). The value model and basic theoretical
considerations go back to Bichler et al. (2013a). My main contribution was
the experimental part.

Spectrum auctions are often sold via combinatorial auctions (CA), whereas we
introduce some theoretical background.
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4.1 Combinatorial auctions

In CAs, bidders can place bids on indivisible combinations of items. By means
of these ”bundles” bids synergies between items can be expressed which in-
creases economic efficiency, especially in the presence of super-additivities.
Hence, a bid languages has to be defined. On the one hand, bidders should
be able to express their valuations as precisely as possible. On the other hand,
the message space should be restricted.

4.1.1 Bid languages

In any auction bidders express their preferences to the auctioneer by a bid
language (see Nisan and Segal (2006)).

Definition 4. An atomic bid bi(S) = (S, pbid,i(S)) is defined as a tuple of
a bundle S of several items and a corresponding bid price pbid,i(S) which was
submitted by the bidder i. A set of atomic bids is overlapping if at least one
item is included in more than one bid.

The following two definitions are often used.

• The additive-OR (OR) bid language allows the bidder to win any
non-overlapping combination of his atomic bids.

• The exclusive-OR (XOR) bid language implies that the bidder can
win at most one of his atomic bids.

In this chapter we use the term bid instead of atomic bid. In CAs and a
number of applications in high stakes auctions for industrial procurement,
logistics, energy trading, and the sale of spectrum licenses both the XOR and
the OR bid language can be found. However, the OR bid language is less
expressive than the XOR bid language.

A downside of the XOR bidding is that bidders have to evaluate and express
2m − 1 bundles, if we consider a market with m different items. This
phenomenon is called bidders’ complexity1.

1Nisan and Segal (2001) was the first to point out that for fully efficient allocations the
communication requirements grow exponentially.
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All bundles have to be evaluated by the bidders. This phenomenon is known
as strategy complexity . Bidders have to deal with the communicational
complexity , since they are supposed to submit bids for all bundles that
generate a positive payoff in some auction formats. In addition valuation
complexity summarizes the process of selecting the ”right” bundle for the
next bid.

Actually, it is one of the most important challenges in market design to
formulate the adequate bid language and to provide sufficient space of
information.
An approach to reduce bidders’ complexity, is to simplify the bid language
(see Perez-Richet (2011)). Milgrom (2010) proposes simplifications of bidders’
message spaces that do not eliminate high-revenue equilibria. To solve
the winner determination problem efficiently, the auctioneer needs as much
information as possible about bidders’ value models. Therefore, the right bid
language is crucial to obtain a good result in terms of revenue and efficiency.
On the one hand, the bid language should be fully expressive. Bidders should
be able to express their valuations completely for every possible value model.
On the other hand, the bid language should be sufficiently simple to allow
the bidders to represent their valuations precisely and completely for every
possible value model.

Besides the above mentioned bid languages there are also many more complex
concepts. A more expressive bid language is, e.g., the matrix bid language
developed by Day and Raghavan (2007b) or the tree-based bid language of
Cavallo et al. (2005). In our thesis, we only deal with the OR as well as XOR
bid language.

4.1.2 Combinatorial allocation problem (CAP)

CAs support negotiations on multiple items, especially in the case of comple-
mentarities or substitutes. Bundle bids avoid the exposure problem, i.e., that
bidders only win a fraction of their requested items.

As shown at figure (4.1), in CAs I ∈ {1, ..., n} bidders are competing for
subsets of K ∈ {1, ...,m} indivisible non-identical items. Each bidder i has a
valuation vi(S) for each subset S of any item k ∈ K. Hereby, vi(∅) = 0 and
vi(S) is non-decreasing, i.e., vi(S) ≤ vi(T ) for S ⊆ T . The indicator variable,
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Figure 4.1: Items, bundles and bidders in CAs.

if bidder i places the bid on bundle S or not, is xi(S).
The allocation X is a tuple (S1, . . . , Sn), that describes the distribution of
goods to the bidders after the auction. In an allocation all bundles have to be
non-intersecting and can be empty: ∀ i, j : Si ∩ Sj = ∅.
Furthermore, we define all possible and feasible allocations by X .
In iterative auctions, we have during the auction intermediate results, namely
provisional allocations, and at the end a final allocation.

In this context, we also define the term price more precisely. A bid price
pbid,i(S) is the price submitted by a bidder in an auction. The pay price
ppay,i(S) is computed by the auctioneer at the end of the auction and paid
by the winner for bundle S. As in the second-price auction, the pay price
can be lower for the bidder than the price he suggested at the auction but
never higher: ppay,i(S) ≤ pbid,i(S). Obviously, in first-price auctions we have
ppay,i(S) = pbid,i(S).

In order to find an efficient allocation in a CA that maximizes the social welfare
the Combinatorial Allocation Problem (CAP), also called the Winner
Determination Problem (WDP) has to be solved:

max
∑
S⊆K

∑
i∈I

xi(S)vi(S) (CAP-I) (4.1)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀ i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≤ 1 ∀ k ∈ K

xi(S) ∈ {0; 1} ∀ i ∈ I, S ⊆ K
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The objective function maximizes the sum of valuations of the winning
bundles, namely the overall revenue. In the first constraint, it is ensured that
at most one bundle can be allocated to each bidder, which is a condition
for the XOR bid language. The second set of constraints ensures that each
item is sold once at most. For the solution of the CA, we use a CAP in the
form of an integer linear program (ILP), known as (4.1) which was originally
formulated by Rothkopf et al. (1998). In our work CAP always refers to the
CAP-I.

The formulation of the WDP and the corresponding interpretation of the CC
as LP provide the possibility to add allocation rules, which is not a focus of
our work, but needs to be mentioned for the sake of completeness. By these
rules restriction can be formulated. For example the number of winners can
be limited to a maximum of 7 or one bidder can win a maximum of 30% of the
items. In this way, unintended results like monopoly or oligopoly structures
can be avoided. A good example for allocation rules is the supplier quantity
selection problem in Bichler et al. (2011). Here a procurement manager mini-
mizes his procurement costs and can define a minimum/maximum number of
winners, a lower/upper limit for overall quantity per winner, a lower/upper
bound for overall quantity per winner and item and a lower/upper bound for
overall spending per winner or group of bidders. Simulations are run to see
how constraints affect the outcome.

Exact solutions to the full problem can be obtained by integer programming
(see e.g. Sandholm (2006)), but scalability is a problem. Branch-and-bound,
cutting-plane and branch-and-cut algorithms are alternatives. The WDP
modeled as multi-dimensional knapsack problem is an instance of the
Weighted Set-Packing Problem, which is known to be NP-complete. When
bids are submitted on all bundles, which is rarely realistic, and certain other
restrictions are met, Rothkopf et al. (1998) provide a polynomial algorithm
for solving the CAP. Additionally, Rothkopf et al. (1998) state, that the WDP
can be solved in polynomial time if bundles consist of a maximum of two
items. This is equivalent to finding a maximum-weight matching in a graph.
If the bundle size is enlarged to three or more items, the WDP is NP-hard.

To deal with the complexity, bids can be restricted so that the WDP becomes
solvable in polynomial time. In Bichler et al. (2014b) and later in this
thesis, we simplified the bid language and reduced the complexity, both
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for the bidders and the WDP. The complexity for the bidders is different
from the issue of computational complexity for the auction designer, i.e.,
how to determine which bids are winning. Often the number of possible
bids per bidder have to be capped to a few hundred in order to keep the
winner-determination problem feasible.

Another approach to deal with the complexity is hierarchical package
bidding (HPB), where bidders can only submit OR bids on those (non-
overlapping) packages that are explicitly stated in the hierarchy (see Jacob
et al. (2012) and Goeree and Holt (2010)).

Figure 4.2: The tree structure in HPB.

The winner determination is strongly NP-hard in case of an XOR bid
language, in spite of the tree structure which can be seen in figure (4.2).
The HPB structure was applied by the US FCC in 2008 in the sales of
regional 700MHz spectrum licenses. The structure can be considered as
simplification of a fully expressive bid language. In the 700MHz auction,
the complementarities between licenses are mostly geographic. Potential
bidders are mainly interested in obtaining a nationwide coverage. For this
reason, the FCC offered a nationwide package in addition to individual licenses.

An approximation of the solution would also be a solution to reduce the
complexity. However, there is no polynomial-time algorithm that guarantees
an approximate solution to the WDP within a factor of l1−ε from optimal,
where l is the number of submitted bids (see Rothkopf et al. (1998)) and ε
the residuum.
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4.1.3 The Vickrey-Clarke-Groves (VCG) auction

The VCG auction, also known as second-price auction, was generalized by
Clarke (1971) and Groves (1973) to a generic competitive process, which
includes the concept of a CA as a special case. Ausubel et al. (2006) and
Ausubel and Milgrom (2006) state that the VCG payment rule has many
advantages, mainly based on his dominant strategy. Hence, no bidder can
obtain a better result by speculation, i.e., bidding anything else as the
valuation.

After each bidder has reported his valuation vi(S) on all bundles S ⊆ K, the
auctioneer determines the revenue-maximizing allocation. Then the pay prices
are computed, where the winners pay their bid price, which are reduced by

ppay,i(S) = pbid,i(S)−
(
w(CI)− w(CI\i)

)
(4.2)

We explain it more detailed by the following example. Let’s assume, that we
have 3 bidders b1, b2 and b3 and 2 items, namely A and B.

Bidder/combination A B AB
b1 300
b2 100
b3 100

Table 4.1: Bidders’ valuations and the winning allocation in the example for the
VCG payment rule.

In table (4.1) we see that b1 submits the highest bundle bid (bold print) for
both items, whereas he wins. Now his payment has to be calculated. We
insert into equation (4.2) and get as VCG payment 200 = 300− (300− 200).
According to Green and Laffont (1979) and Holmstrom (1979), there is
no other mechanism that has a dominant strategy resulting in an efficient
outcome without any additional payment to losers.

Unfortunately the VCG auction has some problems (see e.g. Ausubel and
Milgrom (2006)) Here, we use the example of Ausubel and Milgrom (2006) in
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Bidder/combination A B AB
b1 0 0 2
b2 2 2 2
b3 2 2 2

Table 4.2: Bidders’ valuations and the winning allocation in the modified example
for the VCG payment rule.

table (4.2) to show weaknesses. Let us again look at the same simple market
with 3 bidders and 2 items but with different valuations.
Again, the efficient outcome, where A is allocated to b2 and B to b3, is in bold
print. When we insert the values into equation (4.2) we get as VCG payment
0 = 2 − (4 − 2). Hence, any bidder get his item for free and the auction
revenue is 0. This is the biggest problem of the VCG auction, since there is
no motivation for an auctioneer to select this format when receiving low or
zero revenue.
Another downside is the monotonicity problem, i.e., removing bidders
from the auction might increase the revenue and adding bidders might reduce
the auctioneer’s revenue. If we remove at table (4.2) b3, b1 will win the bundle
AB at the price of 2 = 2− (2− 2), which is the overall revenue.
There are possibilities for collusion. Imagine there are complementarities
and b2 and b3 have only the valuation of 0.5 for A or B, but still 2 for the
bundle. Then, b1 would win the bundle. However, if they collude and bid 2
instead of 0.5, they win by paying nothing. This phenomenon is called shill
bidding , when bidders overbid their valuation to obtain better results.

In addition, there are difficulties concerning truthfulness and privacy. In
reality, bidders fear that they have to pay more if they bid their valuation.
Therefore, for the implementation of an auction platform cryptographic proto-
cols should be used to ensure fairness (see Brandt (2003)). A problem what we
have seen in many experiments is that each bidder should submit all possible
bundles, namely 2m − 1 bids. In practice, bidders do not submit bids for less
profitable bundles, which are considered as zero in the winner-determination
problem. This effect might lower the auctioneer’s revenue significantly.

Nevertheless, the VCG auction is an important theoretical construct and used
as a reference point for many auctions, especially for CAs. In many appli-
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cations, there are complementarities, a situation where the main weaknesses
of the VCG auction are strengthened (see Rothkopf (2007) and Ausubel and
Milgrom (2006)). Therefore, it is hardly used in a real-world context.

To avoid this problem among others, the bidder-optimal core-selecting pay-
ment rule was developed. Day and Raghavan (2007a) suggested a procedure
to calculate bidder-Pareto-optimal payments from sealed-bids right away.
Given all total payment minimizing core points, that one is selected that
minimize the sum of square deviations from the VCG payments (minimal
Euclidean distance). The objective is to minimize the incentive to misreport
ones valuations. Therefore, the core for package allocation problems has a
competitive auction interpretation:
An individual rational allocation is in the core, if there is no group of bidders
who could all do better for themselves and for the seller by raising some of
their losing bids.

A good example of how core payments are computed is given by Day and
Cramton (2012). This example was also shown to our participants in the
experiments. Imagine an easy market with 5 bidders, b1, b2, b3, b4 and b5, and
2 items, namely A and B.

Bidder/combination A B AB
b1 28
b2 20
b3 32
b4 14
b5 12

Table 4.3: Bidders’ valuations and the winning allocation in the example for the
core-selecting payment rule (Day and Cramton (2012)).

Valuations and the winning allocation are given in table (4.3). Since b1 and
b2 submit the highest bids, they win both items. Now the pay prices will
be reduced. If we choose the VCG payment rule, b1 and b2 would only pay
14 + 12 = 26. Bidder b3 could pay more, namely 32 and make a sub-coalition
with the auctioneer. Hence, b1 and b2 have to pay at least 32 to avoid such
problems. In the core payment rule, from the price pairs that add up to
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Figure 4.3: Exemplary computation of core payments (Day and Cramton (2012)).

32, the pair is selected that is closest to the second-prices. So, b1 pays 17
and b2 15. However, we have to mention that there might be some room for
speculation.
Bidder b1 will never pay more than its bid price of 28. Only when he bids
less than 14, he won’t win. For all bids in the range [17, ..., 28], b1 cannot
reduce his pay price of 17. If his bid is higher than 14 but less than 17, he
still wins, but pays less at the expense of b2. Let us assume, that b1 bids 15,
then he could reduce his payment to 15 instead of the original 17; b2 would
have to pay 17 instead of 15. This example shows that speculation is difficult
to accomplish, since you have to know others’ bids, but possible.
For further details, Maldoom (2007), Day and Cramton (2012) and Day and
Raghavan (2007a) should be read to understand the payment rule in detail.
Hereby, an algorithm is introduced to determine a payment, which guarantees
a unique outcome. The achieved prices ensure that no coalition can prefer an
alternative outcome.
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The VCG and the core-selecting payment rule share the revenue non-
monotonicity (see Lamy (2009)), i.e., revenue can decrease with additional
bids in the auction. However, the core-selecting payment rule has no dominant
strategy. Hence, bidders might apply bid shading to reduce their payment, as
seen in the example above. Goeree and Lien (2010b) show in a Bayesian-Nash
equilibrium analysis that in a private values model with rational bidders,
auctions with a core-selecting payment rule are on average further from the
core than auctions with a VCG outcome. They also proof that there is no
Bayesian incentive-compatible core-selecting auction, when the VCG outcome
is not in the core. For a simplified setting, Goeree and Lien (2012) state that
the “core selecting” payment rule may result in prices that are further from
the core than VCG prices.

If auctions that use the core-selecting payment rule are defined as a complete
information game, the prices resemble the VCG outcome when it is in the core.
According to Day and Cramton (2012) the revenue is even higher, when the
VCG outcome is outside the core. Here bidders follow a truncation strategy,
where all reported values of non-null goods assignments are reduced by a non-
negative constant.

4.1.4 Iterative combinatorial auctions (ICAs)

To reduce value uncertainty and increase transparency, iterative com-
binatorial auction (ICA) are frequently used. In ICAs the auctioneer
collects bids from all bidders, evaluates them and provides feedback. There
are different kinds of feedback possible, but at least the new ask prices have
to be reported. In addition, provisional allocations, a bid history about
own and others’ submitted bids might be reported. The prices are increased
until the demand equals supply. In such a tatônnement process, which was
firstly described by Marie-Esprit-Léon Walras, a Walrasian equilibrium can
be achieved. This result is per se Pareto optimal and therefore, efficient.

As in other formats bidders should be motivated to bid truthfully, which can
be done by low ask prices. However, we have to note that is not a dominant
strategy to express his valuation, since strategy proofness is not ensured.
Among others Milgrom and Weber (1982a) and Elmaghraby and Keskinocak
(2002) show, that ICAs perform better than sealed-bid mechanisms when

89



CHAPTER 4. COMBINATORIAL AUCTIONS

there are no private valuations. Porter et al. (2003a) state “Experience in
both the field and laboratory suggest that in complex economic environments
iterative auctions, which enhance the ability of the participant to detect keen
competition and learn when and how high to bid, produce better results than
sealed-bid auctions”.

As with other dynamic auctions, the ICAs take place in different rounds. At
the beginning of a new round, bidders receive their updated feedback. After
each round new prices and provisional allocations are computed.
Generally, bidders report their demand depending on the given ask prices.
In some implementations of the ICAs, jump bids are possible. These bids
are usually much higher than the current price level. Auctions that allow
jump bids terminate faster, but bidders might apply strategies like signaling
(see Cramton et al. (2006a)), which effects the efficiency negatively. Bidders
signal by high bids even in an early auction stage that they are willing to win
certain items. By this strategy, bidders can implicitly communicate between
each other and share the items between each other.
Different price formats, i.e., linear, non-linear, and non-linear personalized
prices are applied in ICAs (Xia et al. (2004)).

Linear (additive) prices, describe a structure, where the price for a
combination of items is exactly the sum of the price for each single item.
In contrast, non-linear ask prices are known as bundle prices, because
the price for a bundle is different from the aggregation of the different unit
prices. Prices are anonymous if the price is the same for every bidder,
whereas discriminatory or personalized ask prices are dependent on the
participant.

Personalized prices are only common if a XOR bidding auction is used, which
is the case in CAs. The problem is that bidders might see personalized prices
as unfair, since the value for similar items can differ significantly. Additionally,
the computational effort increases linearly to the number of participants. In
OR bid languages anonymous prices are always sufficient since bidders cannot
express bundle bids and it does not matter who actually wins.

Linear prices provide many advantages. Obviously, they are easy to explain;
each bidders can understand it easily and compute the prices for a combination
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of items intuitively. The auctioneer can also provide price updates to the
bidders quickly. Kwon et al. (2005) conclude that bidders can get a market
overview with respect to competitors and possible bundles quickly with linear
prices, which often leads to high efficiency. However, the problem is that
such prices are not accurate enough and can also not reflect synergies that
might be in bidders’ valuations due to the environment. For example, there
might be situations in that the calculated bundle price is too high. Hence, a
bidder might not bid since the ask price is above his valuation. But due to
his valuation, he might be the bidder in the efficient allocation.

Parkes (2001) and others state that non-linear prices should be preferred
in ICAs, because they support competitive equilibrium prices. Further-
more, many ICAs with non-linear prices are analyzed in game theory
with the outcome that they result in an efficient outcome if bidders ap-
ply their straightforward strategy. However, the problem remains that
such a price structure is difficult to communicate and understand. Which
pricing format should be chosen depends strictly on the needs and the context.

We have seen that non-linear personalized prices are often requested; however,
the CAP-I supports linear anonymous dual prices which can obtained from
the corresponding dual problem. A weakness in this case is that the optimal
solutions of primal and dual problems might be not the same when integral-
ity constraints are added, which affects the duality gap. The CAP-I does not
enable bundle bids and non-linear prices.
Therefore, Bikhchandani and Ostroy (2002) developed the CAP-III (4.3).
They introduce the additional variables δX , which measure the “weight” of
every allocation X ∈ X . Correspondingly, in the second constraint we have
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now pairs of bidders and bundles. Each bidder can only win a single bundle.

max
∑
i∈I

∑
S⊆K

vi(S)xi(S) (CAP-III) (4.3)

s.t.

xi(S) =
∑

X:Xi=S

δX ∀ i ∈ I, S ⊆ K∑
S⊆K

xi(S) = 1 ∀ i ∈ I∑
X∈X

δX = 1

0 ≤ xi(S) ∀ i ∈ I, S ⊆ K
0 ≤ δX ∀ X ∈ X

The first constraint ensures that the weight of bidder i who receives S matches
the sum of weights over all allocations where bidder i gets the bundle S. The
third constraint is formulated to set the total weight of all selected alloca-
tions to one. In the remaining constraints, negative weights or assignments of
bundles to a bidder with a negative weight are excluded.

4.1.5 Performance metrics

There are several metrics to measure the performance of an auction mechanism.
In the following, we describe the most important ones in detail. The social
welfare is usually measured by (allocative) efficiency, whereas a value of 100%
describes the best result. Auctioneer’s revenue measures the distribution of
the earnings between bidders and the auctioneer (see for example Riley and
Samuleson (1981)).

The bidder payoff πi(S,Ppay) is the result of a bidder i who wins an item
or bundle S. It is computed by the difference of valuation and the pay price.

πi(S,Ppay) = vi(S)− ppay,i(S)

For rational, risk-neutral bidders, their independent private valuation de-
fines the upper limit for a possible bid in a sales auctions. In procurement
costs bidders might not accept a price that is lower than their production costs.
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The auctioneer revenue as well as the procurement costs is the sum of
all pay prices:

Π(X,Ppay) =
∑
i∈I

ppay,i(Si)

Therefore, the total revenue of the auctioneer and all bidders in the final
allocation X with the final pay prices Ppay can be summarized as:

Π(X,Ppay) + πall(X,Ppay) =

=
∑
i∈I

ppay,i(Si) +
∑
i∈I

(vi(Si)− ppay,i(Si)) =
∑
i∈I

vi(Si) (4.4)

The formulation for reverse auctions is vice versa.

Allocative efficiency can be measured as the ratio of the value of the final
allocation X to the value of the efficient allocation X∗ (Kwasnica et al. (2005)).
Therefore, the efficiency depends only on the allocation not on prices and
the bidder who values the item the most will win the auction (McAfee and
McMillan (1987)).

E(X) :=

∑
S⊆K

∑
i∈I

xi(S)vi(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)
∈ (0, ..., 1]

We define the auctioneer revenue share by

R(X) :=

∑
S⊆K

∑
i∈I

xi(S)ppay,i(S)∑
S⊆K

∑
i∈I

x∗i (S)vi(S)
∈ [0, E(X)] ⊆ [0, ..., 1]

If the allocation remains the same, increasing bidder revenue decreases the
auctioneer revenue the same amount.
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Besides these two most important performance metrics, low transaction costs
for bidders, transparency, fairness et cetera (Pekec and Rothkopf (2003)) are
also important.
For the auctioneer or if you run simulation, the duration of an auction is
also decisive, which is known as Speed Of Convergence. Here, the time
as well as the amount of rounds is important. The duration depends on the
(minimum) increment, i.e., how much the prices are updated after each round,
if there is overdemand. The auctioneer has to master a trade-off. If the
increment is too large, the auction will terminate quite quickly, but efficiency
might be lost, because bidders cannot submit bids accurately depending on
their valuation accurately. We set the increment in that way, that the auctions
terminated always in average in less than 30 rounds, which is quite fast.
Other factors that determine the speed of convergence are the activity rules
and the start prices. Our stacked activity rule motivated the bidders to
submit as many bids as possible, but did not motivate for too aggressive
bidding. The start prices are set at the lower limit of potential value draws.
However, we have to note, that this might not be possible in practice when
valuations are unknown.

Another important issue is the robustness of an auction format. It describes
how stable an auction format is under different circumstances. This can hardly
tested by simulation, since by predefined assumptions you cannot identify prob-
lems that might arise. Therefore, we run experiments which might be a better
tool in this context, since you cannot predict by simulations precisely how
humans behave.

4.2 Auction formats

In our work, we focus on auctions that are frequently used in practice for the
sales of spectrum licenses. Hereby, we refer to Bichler et al. (2013a), Mayer
and Shabalin (2013) and Bichler et al. (2014b).

4.2.1 The simultaneous multi-round auction (SMRA)

The simultaneous multi-round auction (SMRA) is a generalization of
the English auction for more than one item. This iterative mechanism ”was
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first introduced in 1994 to sell licenses to use bands of radio spectrum in the
United States” Milgrom (1998, p. 1). The auction consists of multiple rounds
during which bidders submit bids simultaneously for any item they want.
Each item has his individual price. The bidding continues until no bidder is
willing to raise the bid on any of the items. Each bidder wins the item where
he is the best bidder and pays his bid (Milgrom (2000)).

The degree of information, the price update and the activity rule depends on
the implementation of the auction format. In some versions all the information
collected during the rounds is made public. This can be, for example, the
number of active bidders and the bid history, i.e., all submitted bids of any
bidder. Sometimes only the best bid for each item is known to the participants.

New bids have to exceed the current market price by a predefined minimum
increment. In some versions, bidders can increase their bids as much as they
want. Bidders might signal their preferences by using the trailing digits of the
bid price to transmit information (see Niemeier (2002) and Weber (1997)).
Therefore, in practice, the price update is often restricted to predefined levels
at which value a new bid can be.

In addition, it is very important to define bidders’ possible activities. It should
be prevented, that some bidders speculate and wait for other participants to
shade their preferences. This behavior can cause delays in the auction and
lead to an inefficient outcome when some bidders do not enter the auction or
do not submit all the bids they are interested in. To avoid these problems,
eligibility rules can be defined. By these rules the number of items a bidder
is allowed to bid in the current round is determined. At the beginning of
an auction, a bidder usually gets full eligibility so that he might bid on any
item. From the first round on the eligibility is non-increasing and depends on
the number of different bids in the round before. The advantage of eligibility
rules is that bidders are motivated to bid proactively from the first round on,
because lost eligibility can never be recovered. As a consequence, bidders’
participation will decrease as the auction proceeds. Bidders might stop
bidding when the ask prices rise above their valuations.
Bichler et al. (2013a) implemented a ”stacked” activity rule. At the beginning
each bidder was eligible to bid on all items at sale. In the first three rounds
bidders were required to use only 50% of their eligibility to maintain all
eligibility points for the next round. From the fourth round on, bidders had
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to use 100% of their eligibility.

There is limited theoretical research on the SMRA. If bidders have substitute
preferences2 and bid straightforwardly, then the SMRA terminates at a
Walrasian equilibrium (Milgrom (2000)), i.e., an equilibrium with linear prices
(Gul and Stacchetti (1999); Kelso and Crawford (1982)). In case of substitute
valuations the marginal product of any set of bidders exceeds the sum of
the marginal products of its members. Straightforward bidding means, that
bidders only bid on these items that maximize the payoff given the market
prices. However, Milgrom (2000) has shown that with more than three bid-
ders and at least one non-substitute valuation no Walrasian equilibrium exists.

The SMRA generates several disadvantages and strategical problems for
bidders (Cramton (2013)). Brusco and Lopomo (2002) demonstrate the
possibility of collusive demand reduction equilibria in the SMRA. In addition,
in order to maintain eligibility bidders temporarily bid for packages they are
not interested in which can provide less efficient outcomes. Bidders can also
use signaling such as jump bidding to cooperate in SMRA.
In case of substitutes and complements, bidders run the risk of winning only
a part of a complementary collection of items in an auction without package
bids. This phenomenon is known as exposure problem.

A simple example describes the problem. Assume a bidder, who has a
valuation of 1 for the items A and B; however, due to complementarities his
valuation is 3 for the bundle of A and B. If he aims to win the bundle, he
might bid more than 1 for each item. If prices get higher than 1 and he wins
only one item, he will make a loss.
Many experiments show the negative impact of the exposure problem on the
performance of the SMRA (Brunner et al. (2010); Goeree and Lien (2010b);
Kagel et al. (2010); Kwasnica et al. (2005)). Goeree and Lien (2010a) analyzed
a Bayes-Nash equilibrium of SMRA considering complementary valuations.
They proved that due to the exposure problem, the SMRA may result in
non-core outcomes. The revenue of the auctioneer decreases depending on
the number of bidders similar to the Vickrey-Clarke-Groves auction (VCG)
(see Ausubel and Milgrom (2006)). CAs avoid the exposure problem, since

2Good definitions about bidders’ preferences can be found within Bikhchandani and
Ostroy (2002)
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bidders can submit bids on indivisible combinations of items.

Some bidders might use budget binding in the SMRA, i.e., bind budgets of
other budget-constrained bidders, resulting in high prices for everyone. Bidders
might maintain their eligibility in part by parking in spots other bidders are
not interested in, and then move to true interests later. Waivers and bid
withdrawals open up more options for the bidding strategy. We have seen this
strategy in the recent Czech auction. Furthermore, bidders make clear that
they are difficult to outbid and resell the blocks after the auction. But, the
auctioneer could forbid resale after the auction.

4.2.2 The combinatorial clock (CC) auction

The Combinatorial clock (CC) auction was originally proposed by Porter
et al. (2003b). In this multi-unit auction several homogeneous units of
heterogeneous items are sold simultaneously and bidders can bid on partial
quantities.
The CC auction starts with sufficiently low linear ask prices. Each bidder
submits a bid, where he expresses the amount of each item he wants to buy
given the current ask prices. Normally, bidders can only accept the current
prices and not submit jump bis. After each round the prices for overdemanded
items, i.e., where the demand exceeds supply, are increased and the winner
determination problem, the CAP, has to be solved. All bids remain active
throughout the auction. The bids that are submitted at the current ask prices
are called standing bids. Therefore, the number of standing bids includes
all bids from the current round t and those standing bids from the previous
round t− 1, for which the ask price did not change. Each bidder with one or
more standing bids is standing .
Different activity rules can be applied for the CC. One alternative is given by
Porter et al. (2003b), which says that demand in items cannot increase and is
restricted by the current amount of requested units within an item. Ausubel
et al. (2006) state that only the overall quantity across all items is decisive.
For our experiment we chose this rule. If all bidders active in the last round
are included in the allocation, the auction terminates. Otherwise, the prices
on those items that have not been allocated to an active bidder are increased
and the auction continues.
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The CC is quite simply to understand for the bidders due to the intuitive
rules. Additionally, price discovery works quite efficiently, transparency is
increased and there are hardly any possibilities for bidders to collude. The
main advantages are that the exposure problem is prevented by bundle bids
and that strategies like jump bidding and signaling are not possible. Because
of these and other reasons, the CC is frequently used in practice. A detailed
discussion about CAs can be found in Bichler et al. (2010b).

However, there are also some downsides. Bidders can only accept the current
prices and not state the bids more precisely. In addition, there is no equilibrium
strategy known, that can be a baseline for bidding behavior, since the CC is
too complex to analyze theoretically. Gul and Stacchetti (1999) have proven,
that there is no ascending auction format known which results in an efficient
outcome using linear prices. Also, bidders might have incentives for demand
reduction. Bichler et al. (2010b) have even shown that there might be zero
efficiency with straightforward bidding and quite low efficiency with powerset
bidding, i.e., bidders bid on all items that generate positive payoff. To avoid
some of these and other problems, the Combinatorial Clock Auction with a
core payment rule was developed.

4.2.3 The two-phase combinatorial clock auction (CCA)

After having considered the CC, we now take a closer look at a two-phase CA
format, the combinatorial clock auction (CCA), which is tested in the
laboratory by Bichler et al. (2013a) and is our point of reference.
Ausubel et al. (2006) and Cramton (2009) proposed a early version of this
format. Maldoom (2007) published a mechanism which is now used in
spectrum auctions across Europe. This part of the study is based on his
proposal.

The first phase of this auction consists of a CA to enable price discovery
and transparency. In the second phase a sealed-bid auction is held to obtain
results in core outcomes with high efficiency.
In the primary bid rounds (first phase), bidders submit their bids depending
on the current market prices. If there is overdemand within an item or band,
prices are increased by a fixed increment. This process continues until there
is no overdemand. Bidders can only submit a bid on one package per round,
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which is different from earlier proposals of Cramton (2009) and Ausubel et al.
(2006). The right payment rule can motivate bidders to bid truthfully, i.e.,
bid their true valuation. In the supplementary bids round (second phase),
bidders can submit multiple bids on arbitrary bundles, whereby the bid price
is limited by the anchor activity rule3. This rule prevents bidders from
holding back their demand in the first round. It is implemented to motivate
them on their payoff maximizing item from the first round on in the clock
phase. The non-increasing eligibility points activity rule induces the bidders
to stay active in the first phase.
The anchor rule has the following underlying logic.

If a bidder wants to bid on a bundle X, which is not the last bundle from
the first phase, the round have to be found in which the bidder had enough
activity points to bid on X. This round is called is the anchor round. It
determines on which bundle the bidder bid instead. This bundle is called the
anchor combination. Therefore, the bidder preferred anchor combination to
the bundle X at prices of the anchor round. This statement remains valid for
the rest of the auction. Hence, the highest price which the bidder can bid on
bundle X is limited by the sum of the highest bid on the anchor combination
and the price difference between X and the anchor combination at the prices
of the anchor round.
For the winner determination, all bids are considered for selecting the revenue
maximizing allocation, which can be submitted in any phase. In the CCA the
XOR bid language is used.

The core-selecting payment rule was actually developed for the CCA, mainly
to avoid the problems due to the Vickrey-Clarke-Grove (VCG) prices (see
Ausubel and Milgrom (2006)).
In the first round of the CCA bidders are motivated to bid straightforward, in
the second round to bid truthful. Bidders are supposed to bid on all bundles
that have a positive valuation.
To generate straightforward bidding, the anchor rule is implemented so that
for all bids submitted in the first round, they can bid on every bundle in
the supplementary bids round at their true valuation (see Bichler et al.
(2013a)). The incentives for bid shading are reduced by the closest-to-Vickrey
core-selecting payment rule.
Due to that fact the law of one price is not valid, since bidders might pay

3see for details Bichler et al. (2013a)
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different prices for the same items. This criterion is quite often important
for efficient markets and is seen as fairness among the participants which
is often seen desirable in market design (Cramton and Stoft (2007)). Papai
(2003) states that in this way the goal of envy-freeness of an allocation for
general valuations is violated. Such a situation occurred in the recent Swiss
auction, where two bidders obtained nearly the same spectrum licenses, but
the payment differed at more than 100 million Swiss Franc. It is very difficult
to justify this outcome to the companies and the public.

Let’s assume a simple market with two bidders, b1 and b2, and two units of
item A to underline the problem.

Bidder/combination 1*A 2*A
b1 5
b2 5 9

Table 4.4: Bidders’ bids and the winning allocation for two units of the item A.

At table (4.4) we see, that each bidder wins one unit, but bidder 1 pays $4
and the bidder 2 pays zero. Due to the asymmetry of bidders the price for
the same item differs.

Additionally, spiteful bidders have to be considered in real-world auctions,
since bidders might prefer an outcome where their opponents get fewer
earnings. Suppose that there is b3 in the above example, who has a good
estimate, what b1 and 2 b3 are willing to pay for the individual units so that he
can safely submit a bundle bid of $3 for 2 ∗ A. Now, bidder 2 would actually
have a payment of $3 instead of zero.

Morgan et al. (2003) and Brandt et al. (2007) analyzed situations when
bidders did not behave as (expected) utility maximizers. They showed
that the revenue equivalence theorem of the first-price and the second-price
sealed-bid auction is violated with spiteful bidders, since the VCG results
in higher revenue with spiteful bidders. Bichler et al. (2013a) provided
examples that the CCA provides possibilities to submit spiteful supplemen-
tary bids with no risk of actually winning such a bid, if all blocks are sold
after the primary bid rounds and the standing bidders only want to win
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their standing bid in the supplementary bids round with a small bid increment.

Another issue for auctioneers in ascending auction formats is tacit collusion,
i.e., bidders cooperate with each other and reduce demand jointly to ensure
that they pay relatively low prices for what they win. Bajari and Yeo (2009)
report that in real-world auctions, tacit collusion is a common phenomenon.
In SMRA, bidders see the others’ actions and therefore, can learn about oth-
ers’ intention. Brusco and Lopomo (2002) analyzed theoretically how bidders
can observe others behavior and coordinate their actions. The CCA reveals
much less information after each round, and bidders only know if there is still
overdemand, which makes tacit collusion harder.

4.3 Experimental design

First, we describe the value model before we continue with the treatment
structure and the experimental procedures. Our value model does not model
a certain situation in a specific country. It is a generalization of the sales of
spectrum licenses as it occurs in many countries.

4.3.1 Real-world value models

By the beginning of the 21th century UMTS spectrum licenses have been
allocated worldwide. A good review is made by Klemperer (2002). He
reported that most of the countries applied auctions; however in France and
Poland, beauty contests still took place. In 2000 and 2001 Austria, Germany,
Italy, Netherlands, Switzerland, UK, Belgium, Denmark and Greece sold their
licenses via auctions. Since the real valuation of each bidder is not made
public, the efficiency could not be measured. The revenues ranged between
from £650 per capita in the UK to only AC20 per capita in Switzerland.
Mainly due to the high competition - 13 companies competed for 5 licenses -
the revenue was so high in the UK. All of the countries except Denmark used
the SMRA auction, which generated a value of AC95 per capita. Generally,
the revenue in all auctions was quite high since there was a hype for the 3G
sector. Del Monte (2003) stated that the participants paid far too much for
the licenses and a winner’s curse could be recognized. The telecommunication
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companies overestimated the technology and spent too much money, which led
to less investment for basic services within the countries. Also the exposure
problem worsened the situation for the companies.

Hence, CAs became more and more popular and finally, in 2008, the FCC
allowed package bids for the sales of 700MHz spectrum licenses. To avoid
the threshold problem, i.e., many small providers having to cooperate to
get competitive towards a large bidder, the HPB auction was used, which
generated almost $ 20 billion revenue.

In the German 4G auction in 2010 four bidders, Deutsche Telekom (DT),
Vodafone (VF), Telefonica O2 (O2), and Eplus (E+) competed for 41 blocks
in four different bands, namely 0.8 GHz, 1.8 GHz, 2.1 GHz, and 2.6 GHz.
Each band was divided into paired (10 MHz) or unpaired spectrum (5
MHz) blocks. Every bidder aimed for at least two adjacent blocks to realize
synergies. The complexity was increased since the players already owned
licenses in the 1.8 GHz and 2.1 GHz bands based on prior allocations.

Each band can support different technologies that implement voice or data
services, e.g., GSM, UMTS, LTE, WiMAX, etc.. Frequencies in 0.8 GHz
respectively 2.6 GHz are mainly used for LTE in Germany. DT and E+ also
use 1.8 GHz for LTE. With just a little bit of theoretical background on
radio waves, it is obvious that different frequencies of the bandwidths which
were sold impact the way blocks can be used. A frequency of 800MHz is
comparatively low and therefore allows for wide reach at medium speed. The
2.6GHz band, on the other hand, promises a higher transfer rate but requires
more cell towers to cover a certain area. Therefore, the combination of blocks
from both bands allows telcos to provide full 4G coverage across the country
while handling the peak load in densely populated urban areas.

The German 2.6 GHz band reflects the value model ”Base”’ analyzed at
Bichler et al. (2013a). The spectrum is divided into blocks for the use
of Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
FDD means that the transmitter and receiver operate at different carrier
frequencies. It is mainly used for ADSL, VDSL, most cellular systems,
UMTS/WCDMA, IEEE 802.16 and WiMax. TDD is the application of
time-division multiplexing to separate outward and return signals. It emulates
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full-duplex communication over a half-duplex communication link. Typical
area of application are the UMTS 3G supplementary air interfaces TD-CDMA
for indoor mobile telecommunications, DECT wireless telephony, Wireless
local area networks and Bluetooth, IEEE 802.16 WiMAX, etc..

Most of the revenue was generated by the sales of licenses in the 2.6 GHz
spectrum, You see the allocation according to Bundesnetzagentur (2010) at
figure (4.4)4.

Figure 4.4: The final allocation of the German 4G auction in 2010 of the 2.6GHz
band.

The whole auction took 27 days during which 224 rounds have been played.
The total revenue was according to the Bundesnetzagentur AC4.4 billion. VF
got 12 blocks for AC1.4 billion, O2 11 blocks for AC1.4 billion, DT 10 blocks for
AC1.3 billion and E+ 8 blocks for AC0.3 billion.

The first CCA took place in the UK in 2008, where 17 licenses have been sold.
However, the bidders submitted only between 0 and 15 out of 217 −1 possible
bids in the supplementary phase, which is too less to get an efficient solution.
According to Cramton (2008) a single bidder won all the licenses with a bid of
£20 million, but he had only to pay £8.334 million due to the payment rule.
The Switzerland also held a CCA in 2012. According to BAKOM
(2012) 61 licenses in the 800MHz, 900MHz, 1.8GHz, 2.1GHz, 2.6GHz
were sold. The Netherlands auctioned 41 separate licenses in the
800MHz/900MHz/1.8GHz/1.9GHz/2.1GHz/2.6GHz bands (see Minister
van Economische Zaken (2012)). In the spectrum auction in Canada, 98
licenses were sold. We have to note here that even with 30 licenses the
complexity is higher than 1 billion.

In the Austrian auction in 2013, the Rundfunk und Telekom Regulierungs-
GmbH (2013) sold 28 blocks for the 0.8 GHz, 0.9 GHz and 1.8 GHz band to

4The original figure can be found at http : //de.wikipedia.org/wiki/LongTermEvolution
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three providers, namely A1Telekom Austria, T-Mobile Austria and Hutchison.
Bidders could participate by entering their bids on a web platform. All
blocks were sold in units of paired blocks of 2x5MHz, which means that each
block included 5MHz of uplink and downlink. The whole auction took 22
days. Altogether, 216 bids were submitted during the 72 rounds in the clock
phase. In the supplementary phase, additional 4032 bids were submitted,
which resulted in high revenue (around AC2 billion) and probably an efficient
allocation. From the whole market share of licenses, 44.2 % was allocated to
A1 Telekom Austria, 30.9% to T-Mobile Austria and the remaining 24.9% to
Hutchison.

Another important application for the CCA was the British 4G auction in
2013, where the 0.8 GHz and 2.6 GHz band was sold 5. Seven bidders, namely,
Vodafone, Telefonica, EverythingEverywhere, Hutchison 3G, Niche Spectrum
Ventures, MLL Telecom and HKT Company competed for the licenses. Each of
the companies won at least one license. As expected, the most valuable target
- a pair of 0.8 GHz blocks for building a nationwide network with maximum
reach - was won by the two big providers Vodafone and Telefonica. Both
in the 0.8 GHz and 2.6 GHz band, 2x5MHz and 2x10 MHz paired spectrum
were sold. In addition, 2x20 MHz paired and 5MHz unpaired spectrums was
auctioned in the 5 GHz. The CCA achieved only 2.23 billion GBP revenue.
This was far below below the expectations, which led to an investigation by
the UK National Audit Office 6.

4.3.2 The value model

The value model used in our experiments tries to model the German auction
in 20107. However, the structure is similar in almost each country.

In this paper we will draw on the multi-band value model used in earlier
experiments of Bichler et al. (2013a), which has four bands with 6 licenses
each (see figure (4.5)). This value model reflects quite closely the German
market, where 4 bidders also competed for licenses within 4 bands. We can
directly compare our results with the older ones.

5See for details http://stakeholders.ofcom.org.uk/spectrum/spectrum-awards/
6see http://www.theguardian.com/technology/2013/apr/14/4g-auction-national-audit-

office
7The data is published at http://www.bundesnetzagentur.de
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Figure 4.5: The design of the value model.

Within a band, each individual block has the same value for bidders. For
example, item A1 has the same value as A5 for a bidder. Therefore, bidders
had to evaluate 74−1 = 2400 different packages. In practice, the complexity is
even much higher. For example, in the Canadian auction, 98 licenses were sold.

The structure of the value model and the distribution of the block valuations of
all bands are known to all bidders, i.e., it is common knowledge. In particular,
band A is of high value to all bidders and bands B, C, and D are less valuable.
Bidders receive base valuations for items in each band. Base valuations are
uniformly distributed: vA was in the range of [100, ..., 300] while vB, vC , and vD
were in the range of [50, ..., 200]. Furthermore, bidders have complementary
valuations for bundles of blocks within bands, but not across bands. In all
bands, bundles of two blocks resulted in a bonus of 60% on top of the base
valuations, while bundles of three or more blocks resulted in a bonus of 50%
for the first three blocks. For example, if the base value was 100, then the
valuation for two blocks was 320, for three blocks 450, and for four blocks 550.
Although the value models resemble characteristics of actual spectrum sales,
this was not communicated to the subjects in the lab to maintain a neutral
framing. Also in practice, synergies are important and crucial for a company’s
success. Some high speed services can only be offered if more than 1 license is
won.

4.3.3 Bid languages

It is one of the most important tasks in market design to design the right bid-
ding language. Under the fully expressive bid language (see figure (4.5)), bids
can be placed on any of the 2,400 different packages with the understanding
that at most, one of the bids can win (XOR). This causes a high complexity
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Figure 4.6: The design of the compact bid language.

for the bidders. The first simplification at figure (4.6) is that we do not
distinguish between blocks within a band. Hence, we note each block within
a band only with the name of the band. Quite often, there are synergies
for adjacent blocks within a band. For example to provide a LTE standard
in large cities, 2 or more blocks within the 2.6 GHz band are important. If
providers establish a nationwide network, adjacent licenses in the 0.8 GHz
are necessary. These synergies are not common between bands. In many
countries, the situation concerning the synergies is like those in our value
model. In addition, blocks in different bands are often sold simultaneously.

Under the compact bid language, bids can be submitted on 2, 4, and 6 lots
only in each of the bands and at most one of the bids within a band can be win
(XOR). However, a bidder can win multiple bids in different bands, i.e. we use
an OR bid language across bands. Overall, bidders can submit 3 ∗ 4 = 12 bids
in each round, and win a maximum of 4 bids (one bid per band), see figure
(4.6). As in practice, in our value model there are no cross-band synergies
since such synergies, are less pronounced than those within a band for many
spectrum auctions. If this would be the case, another simplification might
be the better choice. As already mentioned in the motivation, choosing the
right bid language is actually one of the most crucial parts for auctioneers or
governments. Although the bid language and the value model might differ
in the field, the experiments allow us to estimate the differences in efficiency
compared to an XOR bid language. However, our work can give estimates for
decision makers.
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4.3.4 Treatment structure

We analyze two variations, simple (S) and complex (C), of both, the bid
language and payment rule. In particular, we consider a compact bid language
versus a fully expressive bid language, and a pay-as-bid versus a bidder-optimal
core-selecting payment rule. That means on the one hand, an intuitive and
easily understandable concept that has some downside in theory. On the other
hand, a fully expressive bid language and a core-selecting payment rule is good
in theory, but is difficult to understand for humans. We tested both ascending
(A) and sealed-bid (SB) auction formats. The different treatments are denoted
FLP where F = A, SB denotes the format and the subscripts L = S,C and
P = S,C indicate the bid language and payment rule respectively.

Treatment Auction format Bid language Payment rule Auctions

1 (SMRA) ascending single-item simple 16
2 (ACC) two-stage complex complex 16
3 (SBSC) sealed-bid simple complex 16
4 (SBSS) sealed-bid simple simple 16
5 (SBCS) sealed-bid complex simple 16
6 (SBCC) sealed-bid complex complex 16
7 (ASC) ascending simple complex 16
8 (ASS) ascending simple simple 16

Table 4.5: The treatment structure.

The treatments are summarized in figure (4.5). For example, the combina-
torial clock auction, using the expressive bid language and complex payment
rule, is defined as ACC . SBSS denotes a sealed-bid auction with a compact bid
language and a pay-as-bid payment rule. The only ascending auction format
with a fully expressive bid language we consider is the ACC (and not ACS)
since it is the incumbent standard.8 Instead of the ACS we include the SMRA,
which used to be the standard and also has a simple pay-as-bid payment rule
and a (super) compact bid language, i.e., OR bidding within and across bands.

8Ascending auction formats with an XOR bid language, a pay-as-bid payment rule and
non-linear and personalized ask prices have already been tested in the lab Scheffel et al.
(2011), but the number of auction rounds renders them impractical for larger auctions with
more than 10 items.
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In the sealed-bid formats bidders can submit their bids in a single round.
After the round is over, the winner-determination problem is solved and the
pay prices are computed.
In contrast, the ascending auctions consist of an unknown number of rounds
and at the start of each round ask prices for all licenses are announced. Based
on these ask prices, bidders report whether they are interested in 0, 2, 4, or 6
licenses in each of the four bands. If there is overdemand in at least one band,
a new round starts with higher ask prices for the bands with excess demand.
Prices in the first round are set to 100 for items in the A band and to 50 in
the B, C, and D bands. The price increment in the A band is 20 while in the
B, C and D bands it is set to 15. A bidder has to submit at least one bid in
each round to bid again for bundles in the next round. When there is no more
overdemand in any of the bands, the winner determination problem is solved
considering all bids submitted during the entire auction. If the computed
allocation does not displace an active bidder from the last round the auction
terminates, otherwise the price is incremented in those bands where a bidder
was displaced.9

4.3.5 Procedures and organization

We used the same sets of value draws (“waves”) across treatments to reduce
performance differences due to the random draws. Each wave was used to
run four different auctions, which when combined define one session. We ran
between subjects experiments with four bidders in each session. The ex-
periments were conducted from June to December 2012 with subjects from
computer science, mathematics, physics, and mechanical engineering. The
subjects were recruited via e-mail. Each subject participated in a single ses-
sion only.

The sessions with the ascending auction took around four hours and the sealed-
bid auctions between 1.5 and 2.5 hours. At the start of each session, the
environment, the auction rules and all other relevant information was explained
to the participants. The instructions were read aloud and participants had to
pass a test before they were admitted to start the experiment.

A spreadsheet tool was provided to subjects to analyze payoffs and valuations
in each round. This tool showed a simple list of available bundles, which could
be sorted by bundle size, bidder individual valuations, or payoffs based on

9A theoretical analysis of this auction format can be found in Bichler et al. (2013b).
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current prices in the ascending auction formats. At the start of each auction,
subjects received their individual value draws, information about the value dis-
tributions and their synergies for certain bundles. Each round in the ascending
auction took 3 minutes. The time given to the subjects in the sealed-bid for-
mats varied between 20 and 25 minutes (although subjects could always ask
for more time when needed).

After all four auctions were completed, subjects were paid. The total com-
pensation consisted of a AC10 show-up fee and an auction reward, which was
calculated as a AC3 participation reward plus the auction payoff converted to
Euros at a 12:1 ratio. Negative payoffs were deducted from the participa-
tion reward. To compensate for the different durations of the ascending and
sealed-bid auction formats, and for the differences in earnings stemming from
the payment rules, we paid two out of four randomly drawn auctions in ASC ,
three out of four in ASS, 1.5 out of four auctions in SBCS and SBSS, and one
out of four auctions in SBCC and SBSC . (To pay 1.5 auctions means that the
first auction that was drawn was paid fully and for the second auction only
half the payoff.) On average, each subject earned AC70.94 in ASC and AC69.75
in ASS, AC37.69 in the sealed-bid auction with compact bid language (SBSC ,
SBSS) and AC42.16 in the sealed-bid expressive auction (SBCC , SBCS).

4.4 Experimental results

In the following, we report first high level performance metrics. Then, we
continue with detailed bidding behavior.

4.4.1 Efficiency and revenue

We compare auction formats in terms of allocative efficiency E, and re-
venue distribution R, which shows how the resulting total surplus is dis-
tributed between the auctioneer and the bidders. For the pairwise comparisons
of these metrics, we use the rank sum test for clustered data by Datta and Sat-
ten (2005) to reflect that the auctions were conducted in sessions with the same
set of subjects.

Result 10: (i) Formats with a compact bid language are more efficient than
those with a fully expressive language. To some extent the efficiency loss with
a fully expressive bid language is due to the fact that items remain unsold,
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Auction E R Unsold licenses
SMRA 98.51% 81.96% 0
ASS 95.92% 86.62% 0
ASC 97.26% 78.96% 0
ACC 89.33% 37.41% 1.25 (5.2%)
SBSS 94.33% 91.05% 0
SBSC 97.21% 77.28% 0
SBCS 88.56% 89.62% 0.82 (3.4%)
SBCC 91.76% 65.53% 0.31 (1.3%)

Table 4.6: Aggregate measures of auction performance.

Coefficients Estimate Pr(> |t|)
Intercept 0.9759 < 2e− 16
XOR bid language -0.0728 1.36e− 15
Pay-as-bid payment rule -0.0104 0.165
Auction format -0.0081 0.279

Table 4.7: Impact of bid language, payment rule, and auction format on efficiency
(adjusted R2 = 0.4239).

which does not happen with a compact bid language. (ii) Among the formats
with a fully expressive bid language, there are no efficiency differences. (iii)
Among the formats with a compact bid language, only the SMRA yields
significantly, albeit not substantially, higher efficiency.10

Result 10 is illustrated in figure (4.7) and table (4.6). The intuition behind
the efficiency loss with fully expressive bid languages is that few bids among
the 2,400 possible bids are selected. The environment is too complex for
bidders to select the right bids. Therefore, auctions with many bundles suffer
from ”too less bids” (see Cramton (2013)).
The winner determination algorithm assigns zero value to all packages not
bid for, which distorts the optimal allocation especially when the submitted
bids create a fitting problem.

Somewhat surprisingly, the SMRA comes out ahead despite the substantial

10In more detail, SMRA �∗ ASC ∼ SBSC ∼ ASS ∼ SBSS �∗ SBCC ∼ ACC ∼ SBCS ,
where ∼ indicates an insignificant order, � indicates significance at the 10% level, �∗ indi-
cates significance at the 5% level, and �∗∗ indicates significance at the 1% level.
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Figure 4.7: Efficiency and Revenue in the different auction formats.

complementarities within bands. Bidders did a good job in dealing with the
resulting exposure risk, with high-value bidders taking more exposure risk
and low-value bidders less.

Coefficients Estimate Pr(> |t|)
Intercept 0.6656 < 2e− 16
XOR bid language -0.1738 3.93e− 14
Pay-as-bid payment rule 0.1794 7.58e− 13
Auction type 0.1435 2.89e− 09

Table 4.8: Impact of bid language, payment rule, and auction format on
auctioneer’s revenue (adjusted R2=0.5827).

A multiple linear regression confirms the impact of bid language (compact or
fully expressive) on efficiency, while the payment rule (core-selecting or pay-
as-bid) and the format (ascending or sealed-bid) have no significant effect (see
table (4.7)).
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Result 11: Formats with a pay-as-bid payment rule yield higher revenue than
those with a core-selecting payment rule. Among the formats with a pay-as-bid
payment rule, only the SMRA yields significantly and substantially less reve-
nue. Among the formats with a core-selecting payment rule, those with a fully
expressive bid language yield significantly and substantially less revenue.11

Support for result 11 can be found in figure (4.7) and table (4.6). The higher
revenue for pay-as-bid sealed-bid auction formats might be explained by risk
aversion. Bidders often preferred a ”safe” earning to a high profit. In the
complex payment rule, bidders often had to pay less than their actual bid,
which results in a lower revenue. Each of the auction parameters affects the
auctioneer’s revenue. In table (4.8), you can have a look at the the impact of
the auction format, bid language, and payment rule. After having presented
the high level results, we continue now with the detailed biding behavior be-
havior in both the sealed-bid and the ascending format. The detailed analysis
for the SMRA and the ACC can be found in (Bichler et al. (2013a)).

Figure 4.8: Distribution of bids by payoff in the ASS (left) and ASC (right)
auction.

4.4.2 Bidder behavior in ascending auctions

Result 12: Bidders in an ascending auction with a compact bid language
select their bundles mainly based on payoff. Bidders did not only bid on their

11In more detail, SBSS ∼ SBCS ∼ ASS �∗ SMRA � ASC ∼ SBSC �∗ SBCC �∗ ACC .
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highest valued bundles, but on 72.9% of all bundles with a positive payoff. The
payment rule did not have an impact on bundle selection. A fraction of 7.83%
of all bids were above value in the ASC auction compared to only 0.32% in
the ASS auction. In the supplementary phase of the two-stage combinatorial
clock auction (ACC) only a small fraction (0.06%) of the 2,400 possible bids
is submitted.

Note that in the clock phase of the combinatorial clock auction, bidders are
only allowed to submit a single package bid per round. Figure (4.8) shows how
many bids were submitted on the bundle with the highest payoff (dark grey),
the second and third highest payoff, and on how many bundles with a positive
payoff were not bid on (light grey). The three bars summarize the distribution
of such bids in the first, middle, and final third of all auction rounds (recall
that the number of rounds varies across auctions). The two panels highlight
that bidders did not only bid on the payoff maximizing bundle. Initially, they
even submitted more bids on bundles with the second or third highest payoff.
We conjecture that bidders compared valuations rather than payoffs in the
initial rounds.

Bids were frequently above value with the core-selecting payment rule, which
might be due to the fact that the payment is lower than the submitted bid
in this case. We cannot find a difference in bundle selection depending on
different bands. In figure (4.9), we see, that bidders behaved similarly in band
A and C. This was also the same for band B and D.

Figure 4.9: Bundle selection for band A (left) and band C (right).

We ranked the payoff of every bundle in each band and each round and clas-
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sified them as the bundle with the highest, second highest, or third highest
payoff. In addition, we used the size of the bundle as a proxy for the value of
the bundle, as the largest bundle of licenses in a band has the highest value
overall, followed by bundles of 4 and 2 licenses. Note that the highest synergy
was for a bundle with two licenses in each band. Bidder IDs were used as ad-
ditional covariates to control for unobserved heterogeneity among bidders. In
addition, we used the payment rule and the round no. as additional covariates.
Then we generated a table with all possible bids with a positive payoff that a
bidder could submit in each round and analyzed the impact of these covariates
on the bundle choice in the ASS and ASC using a binary logit model (see table
(4.9)).

Estimate Std. Error z value Pr(> |z|)
(Intercept) -1.7050 0.1191 -14.31 0.0000

2nd highest payoff 0.3358 0.0631 5.32 0.0000
3rd highest payoff 0.4845 0.0512 9.45 0.0000

4 licenses 0.2587 0.0685 3.78 0.0002
6 licenses 0.6630 0.0505 13.13 0.0000

Pay-as-bid 0.1329 0.1358 0.98 0.3278
Round no. 0.1563 0.0045 34.99 0.0000

Auction no. in session 0.1914 0.0174 10.98 0.0000
Bidder IDs ... ... ... ...

Null deviance 21,141
Residual deviance 16,459

AIC 16,535

Table 4.9: Logistic regression of the bidders’ likelihood to bid on a bundle.

Round number was significant, which can be explained as the number of
bundles with a positive payoff decreased with an increasing number of rounds.
Also the number of the auction in a session had a significant positive impact
on the likelihood of selecting a bundle, which might have to do with learning
effects. In contrast, the payment rule did not have a significant impact on the
bundle selection. Higher valued bundles (with 4 or 6 licenses) had a positive
impact on the probability of a bundle being chosen, and so did a lower payoff.

We can categorize bidders if they have drawn a high base value for a cer-
tain item compared to the opponents or not. The bidder with the highest
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Figure 4.10: Distribution of bids by payoff in the ASC for the strongest bidder
(left) and and the weakest bidder (right).

Figure 4.11: Distribution of bids by payoff in the ASS for the strongest bidder
(left) and and the weakest bidder (right).

valuation within a band is called ”strongest” bidder, with the second highest
one ”medium strong”, then ”medium weak” and finally the weakest bidder.
There is nothing special for the ”medium strong” and ”medium weak” bid-
der. However, at figure (4.10), we see for ASC that at the beginning of an
auction, when the ”strongest” and ”weakest” bidder are able to place bids on
any bundle, they behave similarly. However, the longer the auction takes and
prices increase, the number of possible bids decreases for the weakest bidder.
Therefore, he bids on almost any item at the end of the auction. Conversely,
the strongest bidder declines to bid on a lesser amount the longer the auction
takes (see figure (4.10)). An explanation could be that he wants to concentrate
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on his most preferred bundle at the end of the auction.
A similar result can be seen in ASS at figure (4.11), with the difference, that
the weakest bidder also concentrates in the end of the auction on his most
valuable item.
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4.4.3 Bidder behavior in sealed-bid auctions

Figure 4.12: Bid shading in the auctions with core-selecting (left) and pay-as-bid
auction (right) with a fully expressive bid language (top) and a
compact language (bottom).

Result 13: Bidders in core-selecting sealed-bid auctions with a compact bid
language bid on all possible bundles. Bidders in sealed-bid auctions with a
fully expressive bid language bid only on 2.42% of all 2,400 possible packages.
There was more bid shading with the pay-as-bid payment rule compared to the
core-selecting payment rule.

Figure (4.12) and table (4.10) provide support for this result.

We also estimated a linear regression with valuation as a covariate to explain
bid prices (and bidder ID to control for unobserved heterogeneity among bid-
ders). The intercept (α) and the slope (β) of the bidding function can be found
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Format truthful overbidding underbidding
SBSS 0% 0.99% 99.01%
SBCS 0% 1.23% 98.77%
SBSC 32.34% 22.05% 45.61%
SBCC 18.11% 4.55% 77.34%

Table 4.10: Truthful bidding in sealed-bid auctions.

Format α β p-value adjusted R2

SBSS 0.5601 0.8834 0.0086 0.917
SBCS -0.0129 0.953 0.0033 0.986
SBSC -76.3868 0.9921 0.0056 0.975
SBCC -0.5637 0.9736 0.0029 0.986

Table 4.11: Estimated bid functions.

Figure 4.13: Distribution of bids by payoff in the SBCC (left) and and the SBCS
(right).

in table (4.11). The β coefficients are lower for pay-as-bid auctions, which in-
dicates higher bid shading for higher valuations. The estimation results are
shown by the dashed lines in figure (4.12). In the formats with the simple
bid language, bidders submit all possible bids. For the complex bid language,
there was no difference between bands but within them. The bundle selec-
tion within a band can be seen in figure (4.13). There was also no difference
depending on bidders’ strength due to the large amount of possible bundles.

118



4.5. FURTHER WORK

4.5 Further work

There are different approaches to model bidders’ preferences in spectrum
auctions. Many assumptions of the IPV model are violated in spectrum
auctions. Frequently, bidders cannot be categorized as (ex-ante) symmetric.
Although bidders are quite often defined as risk-neutral utility maximizers,
this is not true in practice. In spectrum auctions, the market position will
be defined for the next decade(s) and motives like spite, regret and other
behavioral reasons influence the behavior. Hence, the utility might be not
quasi-linear, because there are far more impact factors. Also the values are
not independent, since it is of interest how many licenses opponents win.
A new way might be to use an affiliated values environment. Besides, the
individual budget determines bidding behavior. However, the theory does not
include budget constraints.

For future work, on the one hand, bidders’ working memory and possible effects
on the bidding behavior could be analyzed. It is also interesting to test the
Reverse Combinatorial Clock in complex procurement markets with several
items and lots.

4.5.1 Cognitive limits

Participants’ working memory could be measured by experiments. Accord-
ing to Baddeley (1983) and Baddeley and Hitch (1994) the working memory
describes the temporary storage of data in connection with the performance
of other cognitive tasks. In our context, differences in bidding behavior
depending on individual working memory are of interest.

Using a pretest, we could measure the working memory and then test if there
is a correlation to the auction performance. However, it has to be proven
whether the outcome of two separate experiments can be transformed.
Chen et al. (2011) tested the impact of working memory on the performance
in double auctions. Over 500 subjects had to take five working memory
tests before entering the auction. They showed that a high working memory
capacity leads to a better auction outcome. Chen et al. (2009) analyze if
cognitive ability affects the auction outcome. They conclude that individual
cognitive capacity has (positive and significant) influences on the performance
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in profits in certain markets.

However, we have to interpret these results with care because information
overload might be due to several reasons.
Anderson et al. (1996) conclude that a limit of cognitive capacity cannot be
defined by an exact number since it is depending on the context. Just and
Carpenter (1992) assume that individual differences in working memory are
the dominating effect, whereas universal results cannot be obtained. Other
psychologists follow the theory that there is a fixed capacity humans can deal
with, but the actual limit is different (Miller (1956) and Halford et al. (1998)).
Schweickert and Boruff (1986) suppose that the cognitive limit is based on
the race between decay of memory traces and rehearsal.
Oberauer and Kliegl (2006) and Barrouillet et al. (2004) support the in-
terference model. The mutual degradation of memory traces that are held
in working memory simultaneously is, according to that theory, the most
important reason for cognitive limits.

In future work interference between some attributes can be examined. The
similarity between items might influence the bidding behavior, e.g., bidders
might better remember goods within, but not outside the same band. As a
consequence, it can hardly tested by laboratory experiments up to how many
possible bids, the bidders may submit the ”right” bids respectively and can
evaluate different alternatives.

Another possibility other than the measurement of working memory is
diffusion tensor imaging .
Here we can check if professional traders who take part in an experiment
behave better than other human subjects since they are familiar with infor-
mation overload. The same analysis could be performed by a longitudinal
design, where human bidders are trained during a long span of time. Before,
during and after training certain areas of the brain are measured to find out
possible changes. Depending on different kinds of training the performance,
i.e., in our context the selection of the ”right” bundles, gets better or not. A
similar approach is done by Adomavicius et al. (2009).

Dalén et al. (2013) test how humans deal with a different amount of informa-
tion when they deal with the electricity consumption in private households.
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They define three treatments, with a high, medium and a low degree of
information. Then, the participants solve a complex knapsack problem,
since they have to maximize the value of using an item while considering
the electronic consumption. They conclude that an intermediate degree of
information generates the best results, since people can still define their
preference quite precisely but are not overloaded with (too) much information.

Following this method we could define different bid languages for a value model.
A simple language has to be formulated which is theoretically bad, but practi-
cally simple. This might not be very efficient from a theoretical point of view.
A complex language in turn is good in theory, but practically bad, what has
negative effects on the efficiency. Therefore, a language with medium com-
plexity might provide the best practical efficiency.
In addition, bidders’ stress could be measured by scanning the skin conductiv-
ity to find out a correlation of stress and performance. In this case, a pretest
might be helpful to show that bidders stress increases by the amount of possi-
ble bundles. The hypothesis would be that a treatment with a medium degree
of information results in the best outcome.

4.5.2 The reverse combinatorial clock auction

As already mentioned in chapter (3.4) the reverse combinatorial clock
auction (RCC), the reverse implementation of the CC might be proper
in case of a multi-item multi-lot procurement environment. An important
issue in reverse combinatorial auctions is setting the start price. In forward
auctions, the initial price vector is set as zero to guarantee a feasible start
solution. Conversely, the start price in a reverse auction should be set at ∞
to obtain prices in the equilibrium. However, this is not practicable, since
the auction duration would be too long. Therefore, we can choose the start
price sufficiently high, i.e., on the upper limit of the cost interval, so that
even bidders with high costs could take part in the relevant auction. In
practice, this is very difficult since bidders’ valuations and in this context
the costs are not know up front. In each round bidders submit bundle
bids based on the current unit prices. If a lot in any item is demanded
by multiple bidders, it is overdemanded and its unit price is reduced.
This process continues until there is no overdemanded lot in any band.
Then, in case of termination, the auction ends and the procurement cost
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minimization allocation is computed based on all submitted bids in each round.

For the procurement context the CAP-I has to be adapted, since now not the
overall value is maximized, but the overall production costs and auctioneer’s
payment, i.e., the procurement costs, are minimized. Therefore, we replace
in the reverse auction vi(S) by ci(S), since we do not consider fixed costs for
now. Again, ci(�) = 0 and ci(S) is non-decreasing, i.e., ci(S) ≤ ci(T ) for
S ⊆ T .

max
∑
S⊆K

∑
i∈I

−xi(S)vi(S) ≡

≡ min
∑
S⊆K

∑
i∈I

xi(S)ci(S) (CAP-I-REV ) (4.5)

s.t. ∑
S⊆K

xi(S) ≤ 1 ∀ i ∈ I∑
S:k∈S

∑
i∈I

xi(S) ≥ 1 ∀ k ∈ K

xi(S) ∈ {0; 1} ∀ i ∈ I, S ⊆ K

In the resulting allocation each bidder can win at most one bundle bid and
pays the given bid price. The second set of constraints is modified and ensures
that each item is purchased at least once.
This constraint is actually a problem which might lead to infeasibility. We
can solve this problem with artificial OR-bids. The assumption is that at
the price of these bids, the procurement manager can buy products on the
market. Hence, a feasible allocation always exists.
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Conclusions and outlook

In this thesis we tested bidding behavior in multi-item auctions by laboratory
experiments with different levels of complexity. We found out that bidders
are able to derive the equilibrium bid prediction in a simple setting with two
items and intuitively add the right markups to their cost if we control for
risk aversion, regret, and other behavioral influences in experiments against
computerized agents. Hence, the RNBNE strategy can act as a guideline
for practitioners. Moreover, in multi-object auctions with several items, a
compact bid language can recover most of the efficiency losses compared to a
fully expressive combinatorial auction.

First, we analyzed two split-award auctions with two lots. These game
theoretical auction mechanisms for sealed-bid procurement auctions are a
fundamental part of this work. The sealed-bid Yankee and the sealed-bid
parallel auction are regularly used in procurement practice. We obtained
closed-form Bayes Nash equilibrium bidding strategies and several interesting
model implications.
Given the recent experimental literature on single-lot first-price auctions,
however, we wanted to find evidence that human subjects are actually able to
derive their equilibrium bid functions even without these added complexity.
The two lot split-award auction is particularly interesting as it is cognitively
more complex than single-lot auctions, but less challenging than first-price
combinatorial auctions, where a Bayesian Nash equilibrium strategy is not
yet known.
Experimental work on the first-price sealed-bid auction has shown a consistent
pattern of overbidding in sales auctions. There is far less work on reverse
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auctions. Different reasons for over- or underbidding, such as risk aversion,
regret, wrong expectations about own and others’ bids and the complexity
of deriving the RNBNE bid function have been discussed in literature since
decades. Hence, it is questionable whether RNBNE strategies are a good
predictor for split-award procurement auctions. The complexity is much
higher than in single-lot reverse auctions. In our contribution we bridge the
gap, in that there has been almost no experimental work testing RNBNE
predictions for multi-object auctions in the lab.

We provide the results of lab experiments with different levels of control. The
experiments against computerized bidders are meant to limit the influence of
risk aversion as far as possible. Interestingly, there is no significant difference
between the average bid function of bidders in the lab and the RNBNE bid
function. This is new compared to earlier experiments of first-price sealed-bid
auctions, and we attribute the result to our experimental design. Our
experiments provide evidence that bidders are able to mimic their RNBNE
bid function even in strategically complex split-award auctions.

We also provide results of repeated human subject experiments which resemble
procurement auctions in the field. We found underbidding for low cost draws
compared to the RNBNE bid function, which typically increased in the latter
auction rounds. The level of underbidding is comparable to what we found in
single-lot reverse auctions. Still, the RNBNE bid function provides a fairly
good approximation of the average bid function of bidders in the lab. When
taking some level of underbidding into account, the RNBNE bid function can
be a helpful guideline for practitioners.

The results should also be interpreted with care. Even though we provide
evidence that expected utility maximization can serve as a meaningful model
to explain bidder behavior in two-lot auctions, this does not necessarily carry
over to more complex multi-lot or combinatorial auction environments with
many lots or items. Experiments have shown, for example, that a main
driver for inefficiencies in larger combinatorial auctions with 18 items is
the restricted bundle selection of bidders in the lab (Scheffel et al. (2012)
and chapter (4.4)). This is in line with Kurz-Milcke and Gigerenzer (2007),
who argue that when small worlds are studied, optimization can well guide
human decision behavior. If there are more items and more complex cost
functions, simple heuristics and cognitive biases rather than expected utility
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maximization might dominate bidder behavior. Therefore, our contribution
can only be a first step in modeling and understanding bidder behavior in
split-award procurement auctions.
There are various ways to develop the model further. Asymmetry and risk
aversion are two obvious extensions. Also, more complex cost functions could
be modeled.
In addition, a regret parameter could be added to our model as it is done in
Davis et al. (2011).

Another possibility would be that we do not focus on a predefined split and so
widen the scope. That means on the one hand that the auctioneer can decide
after the auction on sole sourcing or a split-award outcome. On the other
hand, the true value of the split parameter is not known to the participants
before the termination. A model might be possible where the buyer selects
between single and dual sourcing based on an assurance of supply related
criterion. This uncertainty will influence the suppliers’ bidding strategy and
behavior. The procurement costs for the buyer might be as low as in a pure
single source strategy because he can decline to pay any premium to assure
supply. However, it will affect the supply chain in a long-term view if only one
supplier provides the full amount. A monopoly structure might be generated,
which can result in higher procurement costs in the future and eventually
cause disruptions in supply.

Second, we tested human behavior in a complex environment with many
possible bundles. Bichler et al. (2013a) analyzed the CCA which has been
introduced in the past few years by regulators worldwide to sell spectrum
licenses. Increasingly, the auction is being used for multi-band auctions which
allows bidders to submit bids on thousands of packages. Recent research
showed that the auction format suffers from communication complexity and
with larger multi-band value models, the efficiency can be substantially lower
than that of a SMRA. Regulators face a trade-off between the exposure
problem and communication complexity, which both negatively impact
efficiency. This trade-off arises with all combinatorial auctions that use a fully
XOR expressive bid language.
That raises the question whether regulators can find a design to mitigate the
exposure problem and the communication complexity to achieve high efficiency.

Therefore, we developed a bid language that drastically reduces the number
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of possible bids that a bidder can submit. First, the bid language assumes
that bids in different bands are additive and like in SMRA bidders can win
bids in multiple bands in each round. The remaining exposure problem might
often be manageable for bidders.1 In addition, we allowed bidders to submit
bids only on packages of 2, 4, or 6 licenses. Bidders can only win one of these
packages per band. This reduced the number of bids a bidder could submit in
each round to 12. The experiments showed that much of the efficiency losses
of the CCA could be recovered with ascending or sealed-bid auction formats
and a compact bid language.

Still in our value model, SMRA came out with the highest efficiency, as
bidders handled the exposure problem well. Although, the synergies in
our value model were substantial, this result might not carry over to other
applications, where the exposure problem could outweigh the simplicity of
SMRA. We do not aim to propose a specific bid language to be used in
spectrum auctions. The design of the right bid language is actually one of the
most important questions in market design. It should help bidders to express
their preferences, but at the same time limit the number of parameters a
bidder needs to specify his preferences. Surprisingly, this topic has received
little attention in the design of spectrum auctions in the field.

Apart from the bid language, regulators have a number of other design choices
that might matter. Arguably, the auction format (ascending or sealed-bid)
and the payment rule (pay-as-bid or bidder-optimal core-selecting payments)
can play a significant role in the efficiency of an auction. These topics have
been central issues in auction design. In addition to the bid language, we
also analyzed these design choices. Our experiments showed that indeed
bidders bid close to their true valuation in core-selecting auctions, while they
shaded their bid in pay-as-bid auctions. Both the payment rule and the
auction format had a significant impact on revenue, but not on efficiency.
In some applications, bidders might have much more information about
their competitors than what we assumed in the lab, and such information
can provide possibilities for speculation and resulting inefficiency in a CCA
(see Goeree and Lien (2012) and Bichler et al. (2013a)). The choice of
the payment rule and the auction format therefore depends on the informa-
tion available to bidders in an application and the design goals of the regulator.

1There could also be a possibility for bidders to specify either-or-constraints to avoid
winning packages that are substitutes in the bid language.
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Appendix A

Experimental instructions

In Appendix A, we present the experimental instructions that have been used
to prepare the participants. After having explained all the rules and shown
examples we asked pre-questions to ensure a deep understanding and ran test
auctions to identify possible problems.

A.1 Experimental instructions for split-award

auctions

We have run several experiments in the split-award context (see chapter (3.2)).
Now, we provide examples of the bidder instructions for the parallel auction.
The text was identical across the various treatments, but some numbers dif-
fered according to the specific treatment combination. For example, in C1 the
bid function was only used in a single computerized auction, whereas in C100
and C100+ it was reused in 100 auctions.

A.1.1 Computerized experiments

This is an experiment on decision making. The following instructions are
simple, and if you follow them carefully and make good decisions, you may
earn a considerable amount of money.

During the experiment your payoff will be in experimental Francs that will be
converted into Euro at the end of the experiment at the following rate:
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16 Experimental Francs = 1 Euro

Payments will be made privately at the end of the experiment. If you have a
question at any time, please raise your hand and the monitor will answer it.
We ask that you not talk with one another for the duration of the experiment.
On your desks you should have a checkout form, a pen, and a copy of the
consent form.

Your Experimental Task

In each round of today’s session you will be bidding against three computerized
competitors. The computerized competitors have been programmed to bid in
a way that would maximize their expected earnings when they bid against
likewise programmed competitors. Their bidding strategies are only based on
the cost draw, the distribution of costs, the fixed costs and the number of
competitors, which are public to all bidders.The bids of the computerized bid-
ders have also been determined, and they cannot be affected by your decisions
today.

At the beginning of the experiment, you will receive a sheet of paper on which
you will see a list of 20 numbers. Each number is between 0 and 10 Experi-
mental Francs (randomly drawn with equal probability) and has been rounded
to one decimal place. Each number represents a possible unit cost that you
may have to produce a fictitious commodity. The process of selecting possible
unit costs is exactly the same for everyone.

You can either win a contract on a small lot with 30 units of the commodity
or on a large lot for 70 units of the commodity. You can bid on both lots. The
unit costs determine the total cost for the small and large lot, which you can
also find on the sheet. For each of your 20 possible cost values, you should
write down a bid for the small lot and a bid for the large lot in the space
provided on the sheet of paper for the small and the large lot. Then, bids are
connected with a line to determine bids for all possible variable costs. We will
call this your bid function. After all of the participants have chosen their bids
for each of the 20 possible cost values, the lists will be collected.

The bids function will then be used in 100 auctions, where you compete
against the three computerized agents in each round. The strategy of the
computerized agents does not change across the different auctions. However,
in each of these auctions, your variable costs and also those of your competitors
will be randomly drawn from a uniform distribution between 0 and 10.

130



A.1. EXPERIMENTAL INSTRUCTIONS FOR SPLIT-AWARD
AUCTIONS

The bidder in each auction with the lowest bid for each lot wins this lot and
pays the exact amount of his or her bid. If a single bidder wins both lots,
he will get the large lot and the second best bidder on the small lot will win
this lot. In the case of a tie, the winner will be determined randomly by the
software. Winners in an auction will earn the difference between their bid and
their true costs. If you are not a winner, you will not earn any money. You
will be paid an average of your winnings in the 100 auctions. After the auction
you will participate in a brief survey.

Before you submit the bid sheet, you should think about your bid strategy for

1. High and low cost draws, and

2. The small and the large lot.

3. Would your strategy change, if a certain bid was only valid for 1 and not
for 100 auction?

Results of both sessions will be e-mailed to you together with information
about how much money you have won. You will not learn information about
other bids in the auction, just whether you won or you lost. Are there any
questions?

A.1.2 Human subject experiments

This is an experiment on decision making. The following instructions are
simple, and if you follow them carefully and make good decisions, you may
earn a considerable amount of money.

During the experiment your payoff will be in experimental Francs that will be
converted into Euro at the end of the experiment at the following rate:

16 Experimental Francs = 1 Euro

Payments will be made privately at the end of the experiment. If you have a
question at any time, please raise your hand and the monitor will answer it.
We ask that you not talk with one another for the duration of the experiment.
On your desks you should have a checkout form, a pen, and a copy of the
consent form.
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Your Experimental Task

In each round of today’s session you will be bidding against three other human
bidders. These bidders will be determined randomly in each of 16 rounds from
the pool of participants.

At the beginning of the experiment, you will receive a sheet of paper on which
you will see a list of 10 numbers. Each number is between 0 and 10 Experi-
mental Francs (randomly drawn with equal probability) and has been rounded
to one decimal place. Each number represents a possible unit cost that you
may have to produce a fictitious commodity. The process of selecting possible
unit costs is exactly the same for everyone.

You can either win a contract on a small lot with 30 units of the commodity
or on a large lot for 70 units of the commodity. You can bid on both lots. The
unit costs determine the total cost for the small and large lot, which you can
also find on the sheet. For each of your 10 possible cost values, you should
write down a bid for the small lot and a bid for the large lot in the space
provided on the sheet of paper for the small and the large lot. Then, bids are
connected with a line to determine bids for all possible variable costs. We will
call this your bid function. After all of the participants have chosen their bids
for each of the 10 possible cost values, you can upload the sheet on a server.
In the auctions, your variable costs and also those of your competitors will
be randomly drawn from a uniform distribution between 0 and 10, and the
computer determines the bids based on the randomly drawn costs. Next you
will be randomly matched to three of the other players in the room and the
bids of all bidders will enter the auction. The bidder in each auction with the
lowest bid for each lot wins this lot and pays the exact amount of his or her
bid. If a single bidder wins both lots, he will get the large lot and the second
best bidder on the small lot will win this lot. In the case of a tie, the winner
will be determined randomly by the software. Winners in an auction will earn
the difference between their bid and their true costs. If you are not a winner,
you will not earn any money. After each round you get the following feedback:

1. Your own cost draw,

2. Your bid for the small and the large lot according to your bid function,

3. The bids of your competitors of both lots, and

4. If you have won or not.
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Additionally, the mean and all winning bids of each round will be shown ag-
gregated on the web-page. Please consider both the feedback of the previous
round and the aggregated winning bids.

Before you submit the bid sheet, you should think about your bid strategy for

1. High and low cost draws, and

2. The small and the large lot.

Results of the whole session will be e-mailed to you together with information
about how much money you have won.

Are there any questions?

After the participants read the instructions, a short presentation was given to
ensure a deep understanding of the auction mechanisms and the environment.
Then, in a demo auction, remaining questions have been answered.
We print here exemplary the slides for the first-price parallel auction in the
treatment C100+.

A.1.3 Exemplary presentation slides

The slides are modified depending on the treatment combination.

A.1.4 Exemplary bid sheet

Here, we provide you a typical sheet, where we picked out bidders’ bidfunctions.
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Figure A.1: Explanation of the auction rules for the parallel auction in treatment
C100+ for q=0.7 to the participants in laboratory experiments.
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A.1.5 Screen-shots of the bidding interfaces

In each treatment in the procurement context, bidders had to submit a filled
bid sheet before we ran simulations. Bidders had to upload it on our platform
”procurement auction implementation” at ”http://dss.in.tum.de/exper/”.

Figure A.3: The bidding interface in the procurement context.
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A.2 Combinatorial auctions

For our experiments with the combinatorial auctions we used different instruc-
tions than for the split-award auctions.

A.2.1 Exemplary instructions

The bidders were instructed as follows. At the beginning, the auction rules
were explained and examples provided. Especially, the complex payment was
described in detail. Afterwards, anyone could read the instructions by his own
and ask questions. As soon as all participants have been familiar with the auc-
tion rules, we introduced them into the software platform. In order to ensure a
deep understanding of the auction format and the environment, a test auction
was played before the start of the experiment.
Below the auction rules of the ASS and the SCC are presented. The intro-
duction differed according to the specific treatment combination. Due to its
complexity the core selecting payment rule was introduced by an example that
is based on Day and Cramton (2012).
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Similar to Bichler et al. (2013a) we prepared the slides in German, since all
participants were native German speakers.
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Figure A.4: Explanation of the auction rules for the ASS to the participants in
laboratory experiments.
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Figure A.5: Changes in the explanation of the auction rules for the SCC to the
participants in laboratory experiments compared to the ASS .
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A.2.2 Exemplary valuation sheet

Depending on the expressivity of the bidding language, we printed different
valuation sheets for the bidders. Before each auction, participants received
their new valuation for each band.

Figure A.6: Valuation sheet in experiments with the simple bidding language.

A.2.3 Screen-shots of the bidding interfaces

Bidders could either bid on 12 predefined bundles or select 1 possible bundle
out of 2,400. For the simple bidding language we present the whole introduc-
tion we gave to the participants. In order to avoid repetitions, we print for
treatments that used the complex bid language only the slides that changed
due to the increased expressivity.
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Figure A.7: Valuation sheet in experiments with the complex bidding language.
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Figure A.8: Bidding interface with the simple bidding language.
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Figure A.9: Changes in the bidding interface with the complex bidding language.
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Appendix B

Further figures and tables

In Appendix B, we present additional figures and tables that underline the
results in Chapter 3.

B.1 Figures for the parallel auction

Figure (3.8) already shows the scatter plots for the first auction in treatment
H. In addition, the corresponding plots for the 7th and 16th auction can be seen
at the figures (B.1) and (B.2). The scatter plots visualize that there is learning
in the first round, but no big difference between the 7th and 16th auction

Figure (B.3) supports result 2 and accomplishes figure (3.8). It can be seen,
that there is not much difference in bidding behavior between the treatments
C100 and C100+.

B.2 Figures and tables for the Yankee auction

In Chapter 3 only scatter plots of the single-lot and the parallel auction are
provided. To show, that there was actually no difference between auction
formats (see also table (3.9)), we print figure (B.4) as counterpart for figures
(3.5) and (3.7).

Figure (B.5) accomplishes (B.2) and (3.6), (B.6) complements (B.3), (3.8) and
(3.4).
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Figure B.1: Scatter plot of bids and the optimal bid functions for H on the large
lot for the 7th auction (left) and the small lot (right) for the parallel
auction (q=0.7).

Figure B.2: Scatter plot of bids and the optimal bid functions for H on the large
lot for the 16th auction (left) and the small lot (right) for the parallel
auction (q=0.7).
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Figure B.3: Scatter plot of bids and the optimal bid functions for C100 on the large
lot (left) and for the small lot (right) for the parallel auction (q=0.7).

Figure B.4: Scatter plot of bids and the optimal bid functions in H for the 1st

(left) and the 7th auction (right) for the Yankee auction.
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Figure B.5: Scatter plot of bids and the optimal bid functions in H auction for the
16th auction for the Yankee auction.

Figure B.6: Scatter plot of bids and the optimal bid functions for C100 (left) and
C100+ (right) for the Yankee auction (q=0.7).
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p-value

H 0.770
C1 0.000
C100 0.985

C100, q=0.9 0.000

Table B.1: The p-values of a Chow test for equivalence of the RNBNE bid function
and the regression for the Yankee auction.

The Chow test for the Yankee auction (table (B.1) provides similar results as
for the single-lot (3.4) and the parallel auction (3.7).
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B.3 Significance tests

In table (3.10) the high level results are shown. For these benchmarks, we did
significance tests (see table (B.2)).
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Güth, Werner, Radosveta Ivanova-Stenzel, Manfred Königstein, Martin Stro-
bel. 2003. Learning to bid - an experimental study of bid function ad-
justments in auctions and fair division games. The Economic Journal 113
477–494.

Halford, Graeme S, William H Wilson, Steven Phillips. 1998. Processing ca-
pacity defined by relational complexity: Implications for comparative, devel-
opmental, and cognitive psychology. Behavioral and Brain Sciences 21(06)
803–831.

Hoerisch, H., O. Kirchkamp. 2009. Less fighting than expected: experiments
with wars of attrition and all-pay auctions. Working paper, Jena economic
research papers.

Hoffman, K. 2011. Spectrum auctions. Jeff Kennington, Eli Olinick, Dinesh
Rajan, eds., Wireless Network Design, International Series in Operations
Research and Management Science, vol. 158. Springer New York, 147–176.

Holmstrom, B. 1979. Groves’ scheme on restricted domains. Econometrica 47
1137–1144.

Holt, Charles A. 1986. Preference reversals and the independence axiom. The
American Economic Review 76(3) 508–515.

169



BIBLIOGRAPHY

Holt, Charles A, Susan K Laury. 2005. Risk aversion and incentive effects: New
data without order effects. The American economic review 95(3) 902–904.

Isaac, R., D. James. 2000. Robustness of the incentive compatible combinato-
rial auction. Experimnetal Economics 3 31–53.

Jacob, Riko, Tobias Scheffel, Georg Ziegler, Martin Bichler. 2012. Hierarchical
package bidding: Computational complexity and bidder behavior. Auctions,
Market Mechanisms, and Their Applications . Springer, 36–37.

Just, Marcel Adam, Patricia A Carpenter. 1992. A capacity theory of com-
prehension: Individual differences in working memory. Psychological review
99 122–149.

Kagel, J., Y. Lien, P. Milgrom. 2010. Ascending prices and package bids: An
experimental analysis. American Economic Journal: Microeconomics 2(3)
160–185.

Kagel, J. H. 1995. Auctions: A survey of experimental research. J. H. Kagel,
A. E. Roth, eds., The Handbook of Experimental Economics . Princeton Uni-
versity Press, Princeton, 501–587.

Kagel, J. H., D. Levin. 2012. Auctions: A survey of experimental research,
1995-2010. Handbook of of Experimental Economics 2.

Kagel, John H., Alvin E. Roth. 1995. The Handbook of Experimental Eco-
nomics . Princeton University Press, Princeton, NJ, USA.

Kelso, A. S., V. P. Crawford. 1982. Job matching, coalition formation, and
gross substitute. Econometrica 50 1483–1504.

Kirchkamp, Oliver, J Philipp Reiss. 2006. Another explanation for overbidding
and another bias for underbidding in first-price auctions . University of St.
Andrews.

Kirchkamp, Oliver, J Philipp Reiß. 2011. Out-of-equilibrium bids in first-
price auctions: Wrong expectations or wrong bids*. The Economic Journal
121(557) 1361–1397.

Klemperer, P. 2002. How (not) to run auctions: the european 3g telecom
auctions. European Economic Review 46(4-5) 829–848.

170



BIBLIOGRAPHY

Krahnen, Jan Pieter, Christian Rieck, Erik Theissen. 1997. Inferring risk
attitudes from certainty equivalents: Some lessons from an experimental
study. Journal of Economic Psychology 18(5) 469–486.

Krishna, V., ed. 2002. Auction Theory . Elsevier Science, San Diego, CA, USA.

Krishna, V., J. Morgan. 1997a. An analysis of the war of attrition and the
all-pay auction. Journal of Economic Theory 72(2) 343–362.

Krishna, Vijay. 2009. Auction theory . Academic press.

Krishna, Vijay, John Morgan. 1997b. An analysis of the war of attrition and
the all-pay auction. journal of economic theory 72(2) 343–362.

Kuhn, H.W., J. von Neumann, O. Morgenstern, A. Rubinstein. 2007. Theory
of Games and Economic Behavior (Commemorative Edition). Princeton
Classic Editions, Princeton University Press. URL http://books.google.

de/books?id=jCN5aNJ-n-0C.

Kurz-Milcke, Elke, Gerd Gigerenzer. 2007. Heuristic decision making.
Marketing-JRM 1 48–60.

Kwasnica, T., J. O. Ledyard, D. Porter, C. DeMartini. 2005. A new and
improved design for multi-objective iterative auctions. Management Science
51(3) 419–434.

Kwon, R. H., G. Anandalingam, L. H. Ungar. 2005. Iterative combinatorial
auctions with bidder-determined combinations. Management Science 51(3)
407–418.

Lamy, L. 2009. Core-selecting package auctions: a comment on revenue-
monotonicity. International Journal of Game Theory 37.

Loomes, Graham, Robert Sugden. 1982. Regret theory: An alternative theory
of rational choice under uncertainty. The Economic Journal 92(368) 805–
824.

Luiz, T, Luiz A Barroso, et al. 2011. Electricity auctions: An overview of
efficient practices . World Bank-free PDF.

Lusk, Jayson L., Jason F. Shogren. 2007. Experimental Auctions: Methods
and Applications in Economic and Marketing Research. 1st ed. Cambridge
University Press, The Edinburgh Building, Cambridge CB2 8RU, UK.

171

http://books.google.de/books?id=jCN5aNJ-n-0C
http://books.google.de/books?id=jCN5aNJ-n-0C


BIBLIOGRAPHY

MacCrimmon, Kenneth R, Donald A Wehrung. 1990. Characteristics of risk
taking executives. Management science 36(4) 422–435.

Maes, Pattie, et al. 1994. Agents that reduce work and information overload.
Communications of the ACM 37(7) 30–40.

Major, Cornelia. 2005. Reverse auctions - a suitable procurement tool for the
wa public sector? .

Maldoom, D. 2007. Winner determination and second pricing algorithms for
combinatorial clock auctions. Discussion paper 07/01, dotEcon.

Maskin, E., P. Dasgupta. 1986. The existence of equilibrium in discontinuous
economic games, part i (theory). Review of Economic Studies 53 1–26.

Mayer, Stefan, Pasha Shabalin. 2013. Simplified bid languages-a remedy to
efficiency losses in large spectrum auctions. Wirtschaftsinformatik . 104.

Mayer, Stefan Karl, Lucas Louca. 2013. Procurement sales with (homogeneous
and) heterogeneous goods. IEEE 15th Conference on Business Informatics
(CBI). IEEE, 190–197.

McAfee, R. Preston, John McMillan. 1987. Auctions and bidding. Journal of
economic literature 25(2) 699–738.

Milgrom, P. 2000. Putting auction theory to work: The simultaneous ascending
auction. Journal of Political Economy 108(21) 245–272.

Milgrom, P. 2004. Putting Auction Theory to Work . Cambridge University
Press.

Milgrom, P. 2010. Simplified mechanisms with applications to sponsored search
and package auctions. Games and Economic Behavior 70(1) 62–70.

Milgrom, P., J. Roberts. 1990. Rationalizability, learning, and equilibrium in
games with strategic complementarities. Econometrica 58(6) 1255–77.

Milgrom, P. R., R. J. Weber. 1982a. A theory of auctions and competitive
bidding. Econometrica 50(5) 1089–1122.

Milgrom, Paul, Robert J Weber. 1982b. The value of information in a sealed-
bid auction. Journal of Mathematical Economics 10(1) 105–114.

172



BIBLIOGRAPHY

Milgrom, Paul Robert. 1998. Putting auction theory to work: The simulta-
neous ascending auction. 1986, World Bank, Private Sector Development
Department, Private Participation in Infrastructure Division.

Miller, G. A. 1956. The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review 63 81–97.

Minister van Economische Zaken. 2012. Regeling aan-
vraag - en veilingprocedure vergunningen 800, 900
en 1800 MHz. URL http://www.rijksoverheid.nl/

documenten-en-publicaties/regelingen/2012/01/06/

regeling-aanvraag-en-veilingprocedure-vergunningen-800-900-en-1800-mhz.

html.

Mishra, D., R. Garg. 2006. Descending price multi-item auctions. Journal of
Mathematical Economics 42(2) 161–179.

Morgan, John, Ken Steiglitz, George Reis. 2003. The spite motive and equi-
librium behavior in auctions. Contributions in Economic Analysis & Policy
2(1).

Nell, Edward J, et al. 2007. Rational economic man. Cambridge University
Press.

Neugebauer, Tibor, Reinhard Selten. 2006. Individual behavior of first-price
auctions: The importance of information feedback in computerized experi-
mental markets. Games and Economic Behavior 54(1) 183–204.

Niemeier, S. 2002. Die deutsche UMTS-Auktion. Deutscher Universitätsverlag.
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