
ICT-Architecture for Multi-Modal Electric Vehicles

Oliver Horst, Patrick Heinrich, Falk Langer
Fraunhofer Institute for Embedded Systems and

Communication Technologies ESK
Munich, Germany

Email: {oliver.horst, patrick.heinrich, falk.langer}@esk.fraunhofer.de

Abstract—This paper presents a new information and com-
munications technology (ICT) architecture for future automobiles,
which enables an easy and flexible modification of its functionality
by end user, operating companies or manufactures. This enables
software-based extensions of company-specific functionality (e.g.
fleet management software) without the today’s need of additional
hardware. Through that a car is adaptable and multi-modal,
because of the change of functionality within seconds. We call
this kind of vehicle a software-defined car. New possible business
models are discussed, which occur through software-defined cars.
Companies for example would be able to share cars with other
companies to adapt the number of vehicles to the current demand
or third parties could develop and sell functionality for the car.
The ICT architecture as core of that kind of multi-modal car
defines three different levels of adaption with different restrictions
depending on the access rights of the different interest groups.
An adaption is possible from the human machine interface (HMI)
to the driving functionality like the acceleration degree. The ICT
architecture enables the influence-free execution of applications
with different safety levels, which enables aggregation of control
units within the electric and electronic (E/E) architecture as
additional advantage. Finally the prototyping vehicle is presented,
at which the ICT architecture will be realized and demonstrated.

Keywords—3.0.V. System architectures, integration and model-
ing; 3.II.0.I. Architecture; 3.II.IV. Real-time and embedded systems;
3.V.VI. Multiprocessor Systems; 4.II.XI. Software Architectures;
11.m.I. Business

I. INTRODUCTION

At the moment one of the basic problems of electric vehicles
is their acquisition costs. Even if the costs during operation are
significant smaller, the total cost of ownership (TCO) seems
to be higher than for vehicles with combustion engines. As
long as the production costs cannot be reduced, increasing the
utilization of each electric vehicle is one possibility to enlarge
their competitiveness. This paper presents a new business and
vehicle concept, which intends to increase the utilization of
the vehicle and therefore reduces the TCO. In focus is the
commercial usage and the ownership by enterprises. The key
aspect for these concepts is the multi-modal usage of one
electric vehicle, which means the easy switching between the
”modes” of the vehicle enabled by different applications, and
the possibility to share the vehicle between different companies.

The goal of the new concepts is to increase the flexibility and
adaptability of the vehicle and its services, which are offered
to the driver. For example the same vehicle shall be usable for
taxi-services, car-sharing, and city logistics. For each of these
intended usages, however, specific services and applications
has to be provided. To reach this goal a personalization is
necessary concerning the driver, its company and the specific

area of operation. Nowadays, the services and applications
provided by car are more or less static and designed by the
car manufacturer. This fits well to the private usage of cars
were the needs of consumers are relatively homogeneous and
constant, which is not the case for business use cases. The
approach presented in this paper strikes out in a new direction
by dividing this sovereignty to the three stakeholders: the car
manufacturer, the operator and the user of the car. Each of
these three parties should be able to modify the cars behavior
and the services offered to the driver.

In modern vehicles most of the new functionality is
realized within software, which means modifying the software
means modifying the range of applications. Thinking this
approach through, the objective of a totally software-defined
car came up. Basically that means that the manufacture only
provides vehicles with the basic driving functionality. All other
functionalities of the car – not essential for driving – are
provided by resellers, operators or the user. Reaching this
objective would create a flexible vehicle for every use case,
which is able to fulfill the specialized needs of different users
by simply changing the software. This concept of providing
a piece of hardware with a basic set of applications, where
users can easily extend the functionality is already exercised in
modern smartphones. In difference to smartphones, most of the
functions within a car are in a way safety critical. Through that
it is necessary to isolate applications with different safety levels
from each other to enable the execution without influences.
Such systems are called mixed-critical systems. Solving the
challenge of mixed-critical systems enables the aggregation
of several electronic control units (ECUs) to a single control
unit. Using less ECUs additionally reduces the price of electric
vehicles, i.e. the TCO.

The paper presents a new layered software architecture that
enables the described usage of the car and ensures the correct
and reliable functionality of electric vehicles. The benefits and
usage of this new architecture is shown within a case study
based on a prototype for a new small electric vehicle. Since
the proposed application of this new software architecture is
the usage in a simple and small city vehicle, the focus is not
on maximum functionality with maximum of comfort as in
premium cars. The new architecture shall provide a maximum
flexibility by minimal cost.

The Paper is structured as follows, Section II presents and
discusses the new business model, which is the motivation
for the proposed software architecture. In Section III a short
overview about the related work and the state of the art of
software and software development for in-vehicle applications
is provided. Section IV introduces the basic concept of the



proposed new ICT-Architecture. Core part of the technical
application of that ICT architecture is a new deterministic
communication scheme that is introduced as deterministic mes-
sage passing within Section V. To demonstrate the correlation
between the business concept and the new ICT-Architecture in
Section VI a case study for a small electric vehicle is presented.
The paper closes with a conclusion and future work in Section
VII.

II. BUSINESS MODEL

New business models are necessary to reduce the cost for
(electric) mobility by maximizing the utilization of every single
vehicle and splitting the purchase price and the operational
costs. Sharing the costs means sharing the vehicle, which seems
to be simply possible, because most of the cars are unused
outside business hours and even during a normal business day
the company cars are not utilized all the time. The problems
are coming to light looking at the details, because most of the
company cars are specialized (e.g. taxis need taximeters) or
equipped with company-specific functions (e.g. a reservation or
location discovery service for the company fleet management).
This specific functions are normally installed within the car
by installing an additional hardware, which is placed at the
car trunk or the footwell. Beside the restricted access due to
the car manufacturer, an installation of additional software is
normally not possible, because the distributed ICT architecture
does not allow this by design. This simplifies the integration
of software and the isolation of software between each other,
but means that car sharing between companies is not possible,
because every vehicle need additional installed hardware to
realize the specialized functionality. Beside the need of this
functionality, companies normally want to show the affiliation
of the car, which means very often the easily visible company
name on the car. This is realizable using electronic ink displays,
which are good readable even in sunlight and have a low energy
consumption. If there is no need for presenting the company
name, the display is usable for advertisements and enables
additional earnings. Summarized, this means from the manner
of using vehicles like these, there is no difference concerning
functionality and usability.

Through that new business models are possible. Especially
software for automobiles is a large field of development, where
companies would be able to sell own software functionality.
And operating companies are able to extend these cars with
individual functionality using own software applications. This
is a typical after-market sector, which is currently not very
common within the automobile industry. Companies using this
kind of cars, e.g. for their fleets, are able to save money, because
car sharing between companies is possible. This means cars a
shared with other companies, when they are normally unused.
This means an increase of utilization and a reduction of costs –
especially if vehicles are just needed during peak hours. The
reason for this is the disappeared need of equipping company’s
fleet to handle the maximum demand of vehicles. Companies
are able to book vehicles per hour or minute such as private
persons, which use (private) car sharing. Of course, this is
no opportunity for companies who’s cars are in operation 7
days the week, 24 hours a day. However, most companies have
unused times of their cars or peak hours. Here the potential
exist to reduce costs by getting vehicles on demand. And also
during driving it is possible to earn money, because of changing

advertisements at the vehicle allowed by electronic inc displays.
Especially location based advertisement would be profitable,
which means showing advertisements of nearby companies, e.g.
taxis could display advertisements during their wait time at
the taxi-stand. This kind of advertisement is realizable using
position data from the built in GPS sensors.

As example, a possible day of such a cross-company shared
vehicle is presented in the following: Early in the morning local
newspapers are delivered. An application shows the driver the
next destinations for the newspaper and the best driving route
to save time and energy. Some hours later the same vehicle is
used within a company’s fleet, where the employees use the
car for business purpose and need a possibility to book the
car. And if the car is used for a private trip, employee and
company need an application to differentiate the trips in a way
that also the tax office accepts it. In the evening the car is used
as taxi, which means the need for a taximeter and also the
possibility to get driving orders from the taxi control center.
During waiting periods the taxi driver uses the displays at the
outside of the car to present location based advertisement.

Today, this kind of business models are realizable within
software, but the current ICT architecture does not provide
the necessary flexibility. That is the reason we present a
new ICT architecture. Through that, every company is able
to extend the functionality of the vehicle to customize it.
Even the user itself is able to personalize the vehicle, if the
company-specific application allows these extensions. The ICT
architecture presented in Section IV enables that kind of usage
and hereby enables the described business case.

III. RELATED WORK AND STATE OF THE ART

In the last years, there is a rapid growing of software defined
functions within the car [1]. This trend is primary visible
within premium cars, which are the flagships of each car maker
and demonstrate the technologically feasible. The two most
important drivers of software functions are the infotainment
domain and the area of driver assistant systems. Especially
the ICT infrastructure of the infotainment domain has large
drawbacks in comparison to modern consumer electronics. This
is a result of longer development cycles and the need to ensure
a correct protection, because consumer electronics are not used
within safety critical applications.

This leads to the effect that small and low cost cars normally
do not contain much infotainment equipment. People often use
their smartphones within those cars as compensation for the
missing infotainment system. The usefulness of this approach
is limited by the difficult and restricted connection possibilities
between car and smartphone. Most of the current solutions try
to integrate the smartphone within the car. To do so the car must
be equipped with expensive technologies like touch screens
and infotainment controllers. Another approach is the complete
replacement of the in-car infotainment by the smartphone, but
there are currently no simple solutions that car services and
internal data can be used within a smartphone. If this would be
possible, one could build a cheap car that can be easily equipped
with the newest technology from the consumer market.

The first upcoming steps towards such a solution of inte-
gration are visible within some software projects or standards,
which are driven by car makers. One important development



Save Car
Services

Back-End
Services

Car-Info
Service

Webservice
(provides Car-Data)

Basic
Car2X Services

Vehicle Control

On-board Display

55 km/h

Batt: 62%

Battery Engine AC

Taxi
App

CarSharing
App

Adaptive User Interface

Company
App

User
Partition

Operator
Partition

Manufacturer
Partition

Infotainment
Platform

Real-time
Platform

User defined Platform

Figure 1. Overview on the ICT architecture with the three partitions for the stakeholders: manufacturer, operator, and user. Each partition runs on its own
platform and is isolated through strictly defined interfaces from the others.

project that deals with this kind of problem is GENIVI [2]. This
is a Linux-based open-source in-vehicle-infotainment solution.
Within the GENIVI project there is a working group that
works on the establishment of a web service interface for the
GENIVI platforms that offer data to other applications. Another
important step is the opening of AUTOSAR to the TCP/IP
standard. Within the newest release AUTOSAR will support
the SOME/IP protocol [3], [4] that enables a remote procedure
call over TCP/IP connections. This work-in-progress shows
that there is a paradigm shift from proprietary protocols to
standardized protocols inside the car.

The ICT architecture presented in this paper opens the car to
external devices, which results in an paradigm shift. Realizing
this ICT architecture means in an extreme case no longer the
integration of the smartphone within the car, it means the car
is integrated to the smartphone. This is due to the fact that
essential functionality is executed on the smartphone and the
car is a kind of peripheral. Of course, this view is a bit black
and white, because especially the safety critical functionality
need to be ensured. This aspect is also considered within the
presented ICT architecture.

IV. ICT-ARCHITECTURE

Today, the electric/electronic (E/E) architecture of cars
follows the principle of one electronic control unit (ECU)
per function. This approach greatly simplifies the integration
of different components and the overall certification of the

vehicle. However, we assume that for small electric vehicles
this traditional concept has to evolve to a somewhat leaner
E/E architecture, to provide all the flexibility and cost savings
we discussed in the previous sections. Electric vehicles are
subject to high pressure of cost anyways and small versions of
them simply do not have enough space for up to 90 electronic
control units, as they are placed in todays traditional cars.
Thus, we postulate that the E/E architecture of small electric
vehicles will evolve to an architecture with only one, or at
most a few central electronic control units. This central electric
control unit (CECU) shall be flexible and adaptive enough to
cope with the interests of all three stakeholders of the car,
while it incorporates all functionality of all ECUs present in a
traditional E/E architecture. Even updating the software in the
field, as well as extending the functionality of a car with new
software shall be possible with the new E/E-architecture and the
new CECU respectively. This openness, however, poses strong
challenges upon the software architecture of that control unit.
Existing software/information and communications technology
(ICT) concepts cannot be deployed to such a consolidated,
but still flexible and adaptive CECU right away. The software
is designed with exclusive access to all hardware resources
in mind and expects a closed environment where all possible
interferences were known at design time of the software.

We propose the software architecture shown in Figure 1 as
possible solution for consolidated electronic control units. It is a
flexible ICT architecture that on the one hand provides flexible



and highly adaptable environments for the three different
stakeholders: the manufacturer, the operator and the user of a
car. And on the other hand strongly encapsulates each of the
environments and guarantees a safely execution of all software
components according to applicable regulations. In accordance
with the common sense in the field of virtualization technologies
we call each of the stakeholder environments a partition of the
overall system. Each of the three system partitions has its own
properties and usage scenarios, which reflect the requirements of
the intended audience. The manufacturer partition provides the
core functionality of the car. It executes tasks such as the engine
control, the body domain control, and driver assistance systems.
Generally, the manufacturer partition hosts safe, trustworthy,
and probably even vital software components that require a
certain real-time behavior. The operator partition hosts software
components that provide services to the car or its user. Such
services could be e.g. a provider of car status information, a
audio/video sink provider, but also components like a taximeter
or a electronic drivers logbook. All those software components
and services have in common that they need to be protected
against manipulation and do not assume any particular real-time
behavior. As discussed in Section II the operator partition can
be used to extend the ICT system of the car with additional
functionality precisely tailored to a specific use case, without
influencing the core functions of the car. The applications
within the user partition are build upon the services provided
by the operators partition and the back-end services to provide
a front-end for the different car functionalities and use cases
(e.g. taxi-app or car-sharing-app – cf. Figure 1). Thus, the only
difference between conventional smartphone apps and the user
applications from our concept is the employed interface.

The advantage of our concept is that the user partition,
and with it the human machine interface (HMI) and the
infotainment system, is completely decoupled from the in-
car system components (cf. Figure 1). Each user is thus offered
with the opportunity to use or even build his very own user
interface perfectly suited to his habits and needs. Furthermore,
by relying on user hardware for the infotainment system and
the HMI, we implicitly solve the problem of adapting the in-car
infotainment system to the fast paced development cycles of
modern consumer electronics. The user can benefit from the
latest features of his hardware and use the car only as a “simple”
input/output device, while the core functions of the car can
be developed with the same conscientious approach as before.
Thus, the final functionality of the car is just defined by the
users software; we call it the software defined car.

Figure 2 illustrates our technical application of the presented
ICT architecture. In Figure 2a our first prototype is shown
and in Figure 2b our planned solution. The prototypical
implementation is based on our automotive prototyping platform
ARTiS-XT [5], a flexible electronic control unit suitable for
in-car applications based on two processor-boards: a Freescale
MPC5554 for real-time applications and a Intel Atom Z520PT
for infotainment applications. The advantage of a prototypical
implementation on two processor boards is that initially no
efforts are required to isolate the manufacturer and the operators
partitions from each other, as they are already separated physi-
cally. Nevertheless, the two boards need to communicate with
each other. We solved this with an interprocess communication
(IPC) that utilizes a isochronous USB connection between the
two boards.

MPC5554 Intel Atom Z520PT

FreeRTOS Android

Lighttpd ezC2X

Webservice

GPS GSM/LTEBT

Manufacturer
Applications

Operator
Applications

(a)

AndroidFreeRTOS

Hypervisor

Multi-core Hardware

GPS GSM/LTEBT

Lighttpd ezC2X

Webservice

Manufacturer
Applications

Operator
Applications

(b)

Figure 2. Overview on the planned ECU transition from a two processor
board based version (a) to a multi-core platform based version (b). Shown are
the individual components of our technical application of the ICT architecture
presented in Section IV and their placement.

The manufacturer partition is classically realized on the
PowerPC based real-time platform and as operating system we
utilize FreeRTOS. The operator partition is deployed on the
Intel Atom board, here we use Android as operating system.
The interconnect to the user partition, on e.g. a smartphone or
tablet, is set up through a web service that runs on top of a
Lighttpd1 instance within the operator partition. The connection
itself is established via HTTPS over Bluetooth with help of
the Personal Area Networking Profile (PAN). Each operator
application can provide its own web service to extend the usable
feature set of the user applications, however, one general vehicle
web service is provided by default. The default web service
provides all basic information about the car and its current state,
examples are the current speed, the GPS position, or charging
status. Furthermore, the default web service offers control over
the user controllable hardware of the car, like the windshield
wipers, the speakers, or the air conditioning, however not over
the safety critical parts. These parts are strongly separated
within the manufacturer partition. To simplify the development
of web services and to give other applications in the operator
partition the capabilities to access the vehicle functions and
information we employ our car-to-X framework ezCar2X [6].

In a second step we plan to utilize virtualization concepts
and techniques to integrate both the manufacturer and the
operator partition on one multi-core platform (cf. Figure 2b).
For the integration purposes we already built and presented
a flexible operating system concept [7], which we like to
extend with virtualization support. The flexible operating system

1Open-source web server – http://www.lighttpd.net/



concept bridges the gap between symmetric multiprocessing
(SMP) and asymmetric multiprocessing (AMP). The design
provides for a single-core operating system which is deployed
in an AMP configuration. Each core executes its own instance
of the kernel; there are no shared data structures within the
kernel. This significantly reduces run-time complexity, and thus
facilitates analysis of timing behavior and resource usage. The
kernel of our operating system is flexibly configurable, the
overall concepts is expandable by multiple front-ends like e.g.
a POSIX compatibility layer, or an AUTOSAR RTE. Thus,
our concept is not purposed to replace existing concepts, but
to complement them and make them more flexible. To enable
cooperation of the independent OS kernel instances we provide
a message-based mechanism for inter-process communication
(IPC). For the present application of a electronic control unit,
with a mixed criticality software stack, a reliable message
transfer algorithm is needed to guarantee a reliable spatial and
temporal isolation of the manufacturer and operator partition on
a multi-core platform. We developed such an algorithm in form
of a deterministic message passing approach, which is discussed
in the following section. With the reliable communication
mechanism in place and the virtualization support at hand
it is even possible to provide individual containers within
the manufacturer’s and operator’s partition for each individual
software supplier [8]. Thus, suppliers could continue their
independent development processes and the manufacturer would
still retain the sovereignty over the software integration in the
manufacturer partition.

V. DETERMINISTIC MESSAGE PASSING

To support a reliable communication mechanism, we refined
the original operating system concept presented in [7] by
introducing categories for tasks and processor cores. Tasks are
categorized into five types: real-time (hard and soft), best-effort,
kernel(-service), or interrupt service routines (ISR). Processor
cores are differentiated into: one communication core and
several processing cores. The communication core is a dedicated
core that processes all incoming interrupt requests and manages
the communication infrastructure. The processing cores, on the
other hand, simply execute tasks from different partitions and of
different criticality. However, both processor core types execute
best effort tasks during spare time. Figure 3 illustrates this task
assignment model.

On top of the extended architecture we propose a time-
triggered and message based communication scheme: the
deterministic message passing. A time-triggered communication
scheme has the advantage of being easier to certify and prove
correct [9]. In our setup, the communication core determines the
sequence of task execution and message exchange phases and
thus the timing of the communication, which is also illustrated
in Figure 5. The task execution on the processing cores is split
up into schedule frames, which are oriented to the message
exchange phases on the communication core. A schedule frame
itself consists out of one schedule container per system partition
and a single message exchange phase at the end. A schedule
container in turn is an excerpt from the schedule plan for the
tasks of the system partition that is associated to the schedule
container. This kind of scheduling enables a fine grained control
over the resource assignment per system partition and is known
as hierarchical scheduling [10], [11].

Hardware

RTC Shared Memory MMU / MPU

Kernel

Best E�ort Best E�ort

Soft Real-Time

Hard Real-Time
...

Best E�ort

Kernel Services

Soft Real-Time

Hard Real-Time

Communication Core Processing Core #1 Processing Core #n

Kernel Kernel

Kernel Services
(e.g. IPC Message Relay)

Interrupt Service Routines

IPC IPCKernel Services

Figure 3. Illustration of the task and processor categories, as well as of
the task-assignment model of the proposed deterministic message passing
architecture.

The message exchange phase at the end of each schedule
frame ensures the transmission of all message that were send
during that communication interval. A communication interval
is defined as the time between two message exchange phases,
which matches a schedule frame except for the final message
exchange phase (cf. Figure 5). Transmitted messages are always
delivered in the second schedule frame that follows the frame
in which they were send. Thus, when a task sends a message
in schedule frame (n − 2) this message is processed by the
communication core in schedule frame (n− 1) and delivered
to its destination task or core in schedule frame n. The overall
process that leads to this delay can be tracked in Figure 4.

As stated before, the communication core determines
the timing of the communication, this is done by actively
triggering the processing cores for new messages within the
message exchange phases. Precisely, we differentiate between
the following five phases, as illustrated in Figure 4:

1) Send phase. Each message an application sends
is composed from destination information (core or
task), the payload, and credentials. Ready assembled
messages are placed into the core’s send buffer. The
credentials are later used in the inspection phase to
legitimate the message transfer.

2) Exchange phase. The communication core acquires the
messages from the send buffer of one processing core
after the other and replaces the current send buffer
with an empty one and the current receive buffer is
supplemented with the composed messages for that
core from the previous composition phase.

3) Inspection phase. After acquiring all message buffers
the communication core checks the individual mes-
sages for validity and legitimation. In case the pro-
vided credentials do not legitimate a message transfer
the message is discarded.

4) Composition phase. After verifying the messages the
communication core composes an individual receive
buffer per processing core, containing all messages
addressed to that specific core or tasks that run on it.

5) Receive phase. Finally, after a second exchange phase,
the messages are delivered and tasks on the destination
processing core can access the transmitted information.
In the proposed communication scheme, applications
are not explicitly informed about the arrival of new
messages. Instead, applications are intended to poll the
receive buffer on their own if they expect a message



Sender Task

Message C
Send Bu�er

Recv. Bu�er

Processing Core #1 (Sender)

...

Communication Core

Compose

In
sp

ec
t ...

Receiver Task

Message

Send Bu�er

Recv. Bu�er

Processing Core #n (Receiver)

Incomming
Messages

Outgoing
Messages

1

2

3

4

2
5

Figure 4. Illustration of the five-phases of the proposed deterministic message passing concept, exemplified by the transfer of a single message from processing
core #1 to processing core #n. The five phases are: 1. send phase, 2. exchange phase, 3. inspection phase, 4. composition phase, 5. receive phase.

to be delivered.

As a consequence of the described process, processing cores
can continue task execution concurrently, while the messages
are exchanged by the communication core. Ideally, acquiring
the send buffers and transferring the receive buffers could be
realized with a single atomic operation that interchanges the
buffers. Thus, causing no locks or waits on the processing
cores. However, this depends on the properties of the targeted
hardware platform.

Various researchers already presented approaches to ex-
ecute software with concurrent operations in a predictable
and repeatable manner. For example, [12] and [13] suggest
runtime environments that guarantee a deterministic execution
of concurrent programs with the help of a code instrumentation
done by the compiler [12], or with the help of a specification
language and a suitable virtual machine [13]. Both approaches
have in common that in contrast to our approach they rely on
the shared memory programming model. However, a reliable
isolation of system partitions in a shared environment in
space and time cannot be guaranteed with the shared memory
approach. In contrast, our time triggered message passing
programming model allows commitments to upper bounds for
run-times and issue times of individual tasks. Other researchers
focus on solving the same issue in hardware by extending
the instruction set of the processor with specific deadline
management instructions [14]. As an alternative approach,
researchers suggest to build a time-triggered communication
on-chip to allow a deterministic communication between the
individual components of a System-on-a-Chip platform [15].
Our approach, however, focuses a solely software based solution
which is suitable for commercial off-the-shelf (COTS) hardware.
We think that this is an important point in terms of the reduction
of the overall production costs of a vehicle.

The approach of dedicating a single processor core for
specific tasks, like our communication core, is also a well known
concept, especially to reduce the costs of context switches
and interrupt handling in virtualized environments [16]–[18].
Nonetheless, the presented concept of a deterministic message
passing is the first that is especially suited for mixed-criticality
systems and simultaneously guarantees upper bounds for the
time until a interrupt is processed, as well a deterministic
execution of concurrent tasks.

WCET
ACET

Communication
Core

Processing
Core

Communication Interval
Interrupt Service

Routines
Message

Exchange and Compose

Schedule Container

Schedule Frame

Figure 5. Link between the schedule plan of the communication core with
that of a processing core. Shown are the different message exchange phases on
the communication of which one (highlighted with a slightly darker yellow) is
correlated to the shown processing core. On the processing core the relationship
between schedule frames, schedule containers, and the final message exchange
phase is shown. After the three message exchange phases on the communication
core a message composition phase follows. All yellow marks correspond to
communication related tasks, the black marks correspond to interrupt service
routines, and the green and red marks correspond to soft and hard real-time
tasks.

VI. CASE STUDY: ADAPTIVE CITY MOBILITY

The ICT-architecture described in the previous sections is
currently being realized within the research project “Adaptive
City Mobility” 2. The objective of this project is the realization
of a small electric vehicle, which distinguishes itself by
providing a simple and flexible design. The vehicle itself is
manufactured using lightweight materials, i.e. carbon fiber
reinforced plastics, and has a modular construction to be flexible
even with the vehicle body. Through that different variants are
feasible, e.g. for passenger transport, city logistic or other

2http://www.adaptive-city-mobility.de



Figure 6. Design study of the multi-modal vehicle, which shows a version without doors. The design of the car is derived from the saint Bernard dog and shall
indicate the helpful character of the vehicle. The interior is simple and well structured to enable an easy use for everybody. Just the absolutely necessary driving
elements are realized within hardware - all other functionality is realized within software.

applications. The drive train of the vehicle consists of two
electric engines at the rear axle, which are positioned near to
the wheels. Electrical energy for the engines is provided by
a rechargeable battery, which is also designed modular. This
enables the possibility to equip the vehicle with more or less
capacity depending on the trip or the load of the vehicle. To
realize that modularity the battery consists of up to 8 identical
battery modules, which are individually replaceable. However,
the main advantage of this realization of the battery is the
possibility to “refill” the battery within minutes, because it is
not necessary to wait until the build-in battery is recharged.
Every module weighs about 10 kilogram, so that a change of
battery modules by hand is possible. This is done at specific
battery exchange stations. Nevertheless, it is still possible to
charge the battery using a recharger cable.

The core of the vehicle is the open information and
communication technology (ICT) architecture that enables
the flexible and multi-modal usage of the electric vehicle as
described in the sections before. A central electronic control
unit (CECU), which uses a multi-core processor, enables this
ICT architecture with multiple virtual partitions that ensure the
integrity of the safety-relevant software functions. User interface
and user interaction are realized by an app on the personal
smartphone or tablet computer, which is connected to the
vehicle (e.g. the CECU) and placed near the steering wheel of
the vehicle. The central electronic control unit is also connected
to backend servers to exchange information, for example
the current position or other application specific information.
Applications installed at the CECU and communicating with
the user tablet/smartphone and the backend servers are for
example a taxi or car sharing application, as visualized within
Figure 1.

To show the different functionality of the vehicle, different
applications will be realized within the project. Using the
vehicle as Taxi, the driver needs to know the next driving orders
from the taxi control center or the distance to the next battery
exchange station. These functions are realized and placed at
the Android partition of the central electronic control unit and
the user interface at the smartphone or tablet of the driver. This
enables the taxi control center to get information direct from the

vehicle, such as speed, state of charge of the battery or location
of the vehicle. Changing the mode of the vehicle, for example
after the shift of the taxi driver, to the mode ”Car Sharing”,
other functions are necessary. A car sharing customer wants
to book a car with her/his smartphone and after that wants to
entry and start the car using the smartphone. This means the
car has to send its position to the back-end servers and has
to open the doors and start after the valid identification of the
customer. The communication between smartphone and vehicle
is realized using near-field communication (NFC) and Bluetooth.
Using the car within a fleet makes it necessary to differentiate
between private and business trips, and also need an exact time
scheduling for the vehicles. These functions are also placed
at the central electronic control unit and are activated after
the mode change of the vehicle. Through that every operating
company (e.g. taxi companies, car sharing services or even food
delivery services) has the possibility to provide application- or
company-specific functionality, which covers more than just the
adaption of the graphical user interface, and allows the vehicle
to be operated for different purposes. On the other hand, the
user of the vehicle has the possibility to personalize the vehicle
to her/his demand.

Figure 6 shows the current design of the vehicle. The vehicle
is optimized to attain the objectives of the future applications
with minimal weight, costs and energy consumption. Through
that the chosen vehicle category is the German ’L7e’, which
is the same category as quad bikes. The reduction of weight,
cost and energy consumption is realized by implementing the
previous described ICT- and E/E-architecture. This means that
just one main electronic control unit is installed - beside some
specialized controllers for example for engine control or battery
monitoring. The reduction to a minimum is also reflected in
the fact that there are just three seats within the vehicle. The
reason for this is that most of the time not more than three
persons are within a vehicle. And for using the vehicle as taxi
it is required by law to be able to transport minimum two
passengers, which results in the design of one central driver
seat and two back seats. The battery modules are not visible
within the shown design, but it is planned to place them at the
bottom of the vehicle with access from the left and right side.



Also not shown are the displays for example at the outside of
the doors, which enables to customize the vehicle depending
on the current mode (e.g. Taxi) or to place advertisement. The
displays shall be realized using electronic ink technologies, so
that there is no additional energy consumption - except in the
case of changing the display content.

VII. CONCLUSION AND FUTURE WORK

An information and communications technology architecture
for future automobiles was presented, which allows manu-
facturers, operating companies and end users to extend the
functionality of the vehicle by adding software applications.
This enables different new business models, e.g. sharing
vehicles between companies, because every company is able
to activate their functionality within second and satisfy the
need of vehicles on demand. The different levels of the ICT
architecture for the three interest groups were presented and
a deterministic message passing to allow a reliable technical
application on multi-core processors discussed. The next steps
are the realization of the presented ICT architecture within the
shown vehicle prototype. After that an in-depth evaluation of
the architecture is possible and the results demonstrable.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the German Federal Ministry for Economic Affairs and
Energy (BMWi).

REFERENCES

[1] H. Ulrich Michel, “Taming multicores for safe transportation – ARAMiS
in the automotive domain,” presented at the Workshop for Integration of
mixed-criticality subsystems on multi-core processors held in conjunction
with the 8th HiPEAC Conf., 2013.

[2] GENIVI Alliance, “Automotive infotainment software architecture
report,” 2010. [Online]. Available: http://www.genivi.org/sites/default/
files/GENIVI IVI Software Architecture Report.pdf

[3] AUTOSAR development cooperation, “AUTOSAR specification,” v4.1.
[4] L. Völker, “SOME/IP - Die Middleware für Ethernetbasierte Kommuni-

kation,” Hanser-Automotive Networks Spezial 2013, pp. 17–19, 2013.
[5] Fraunhofer Institute for Embedded Systems and Communication

Technologies ESK, “ARTiS-XT: Automotive telematics and
infotainment prototyping system,” Jan. 2013. [Online]. Avail-
able: http://www.esk.fraunhofer.de/content/dam/esk/en/documents/PDB
ARTiS-XT en web neu.pdf

[6] ——, “ezCar2X: Streamlining application development for networked
vehicles,” Oct. 2012. [Online]. Available: http://www.esk.fraunhofer.de/
content/dam/esk/en/documents/PDB ezCar2X en web neu.pdf

[7] O. Horst and A. Schmidt, “Operating system concepts for embedded
multicores,” in Proc. of the embedded world Conf. WEKA Fachmedien,
2014, p. 5.

[8] O. Horst and C. Prehofer, “Multi-staged virtualization for embedded
systems,” in Proc. of the Work in Progress Session held in connection
with the 37th Conf. on Software Eng. and Advanced Applicat. and
the 14th Conf. on Digital Syst. Design, ser. SEA-Publications of the
Institute for Systems Engineering and Automation, E. Grosspietsch and
K. Klöckner, Eds., no. SEA-SR-30. Linz, Austria: Johannes Kepler
University, Sep. 2011.

[9] H. Kopetz, “Event-triggered versus time-triggered real-time systems,”
in Operating Systems of the 90s and Beyond, ser. Lecture Notes in
Computer Science, A. Karshmer and J. Nehmer, Eds. Springer Berlin
/ Heidelberg, 1991, vol. 563, pp. 86–101.

[10] L. Almeida and P. Pedreiras, “Scheduling within temporal partitions:
response-time analysis and server design,” in Proc. of the 4th Int. Conf.
on Embedded Software, ser. EMSOFT. New York, NY, USA: ACM,
2004, pp. 95–103.

[11] R. Davis and A. Burns, “Hierarchical fixed priority pre-emptive
scheduling,” in Proc. of the 26th Int. Symp. on Real-Time Systems,
ser. RTSS, Dec. 2005, pp. 10 pp. –398.

[12] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman,
“CoreDet: A compiler and runtime system for deterministic multithreaded
execution,” in Proc. of the 15th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). New York,
NY, USA: ACM, 2010, pp. 53–64.

[13] C. Farcas and W. Pree, “Virtual execution environment for real-time
TDL components,” in Conf. on Emerging Technologies and Factory
Automation (ETFA), 2007, pp. 93–100.

[14] M. Zimmer, D. Broman, C. Shaver, and E. A. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” Electrical Engineering
and Computer Sciences, University of California, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2013-172, Oct. 2013.

[15] M. Schoeberl, “A time-triggered network-on-chip,” in Proc. of the Int.
Conf. on Field Programmable Logic and Applications (FPL), 2007, pp.
377–382.

[16] K. Tian, Y. Dong, X. Mi, and H. Guan, “sEBP: Event based polling
for efficient I/O virtualization,” in Proc. of the Int. Conf. on Cluster
Computing (CLUSTER), 2012.

[17] J. Liu and B. Abali, “Virtualization polling engine (VPE): using dedicated
CPU cores to accelerate I/O virtualization,” in Proceedings of the 23rd
international conference on Supercomputing, ser. ICS. New York, NY,
USA: ACM, 2009, pp. 225–234.

[18] S. Kumar, H. Raj, K. Schwan, and I. Ganev, “Re-architecting VMMs for
multicore systems: The sidecore approach,” in Proc. of the Workshop on
the Interaction between Operating Systems and Computer Architecture
(WIOSCA) held in conjunction with the 34th Int. Symp. on Computer
Architecture (ISCA), 2007.


