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Summary

To survive in an ever-changing environment any living organism not only needs to know
how to synthesise proteins, but it also needs to be able to judge under which circum-
stances they should be produced. A single molecule present in any cell, the DNA, contains
the blueprints for proteins, yet it also has sites to which other molecules can bind in or-
der to enhance or prevent the production of these proteins. These helper molecules are
specialised proteins, called transcription factors. For the survival of a cell it is impor-
tant that their association reactions with the functional sites on DNA proceed quickly.
In the prosaic view of a theoretical physicist this reaction can be simply considered to
be a search process, but in fact, this topic is a fascinating example of interdisciplinary
research, where biology meets physics and where both fields benefit from findings of the
other.

The first chapter of this work presents a historical introduction into the topic, high-
lighting the central role of the double-helical DNA. It is described how genes are expressed
in order to build proteins, and how this expression is regulated. Here the emphasis lies
on bacterial cells, since they constitute simpler systems than plants or animals and are
often better characterised quantitatively.

Chapter two reviews how theoretical models describe the association reaction of a
transcription factor with its target sequence on DNA. Specifically, the so-called facilitated
diffusion model whose name appears in the title of this thesis is introduced. Established
in the 1970s it explains the experimentally measured high association rates as resulting
from a beneficial combination of search phases in the bulk solution and along the DNA
molecule.

The last decades saw an enormous progress in experimental techniques. Therefore,
the third chapter presents a generalisation of the classical facilitated diffusion model to
the current state of scientific knowledge. A general problem in the field is to reconcile
the fast motion of proteins along the DNA molecule with their ability to bind tightly to
the target site. Therefore we combine a common assumption that the searching protein
is present in two conformations with the full classical search model.

While this model successfully describes the situation in in vitro experiments, the model
introduced in chapter four deals with the core issue of this thesis and directly depicts
the search process in a living bacterial cell. Also based on the general concept of the
facilitated diffusion model, this semi-analytical approach importantly relies on a coarse-
grained description of the bacterial genome.

In the final chapter the real nucleotide sequence of an E. coli strain is used to paint a
more detailed microscopic picture of the search process. A continuous transition between
a model in which the particle switches blindly between its two conformational states and
a model in which this interconversion is strongly coupled to the underlying nucleotide
sequence is studied. Besides, the presence of other non-specifically bound proteins is
explicitly taken into account. Finally, we consider that some proteins are able to bind to
two operators simultaneously and loop out the intervening DNA which adds a new layer
of complexity to this search problem. Hopefully the models presented in this thesis are
steps towards the ultimate goal of a comprehensive understanding of the regulation of
prokaryotic gene expression.
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1 Introduction

1.1 Historical notes: from Plato to Watson and Crick

More than two thousand years ago Plato wrote his famous work “state” which is mostly
concerned with the design of an ideal state. However, it also contains the following
thoughts on heredity [1]:

Following the translation to German by the Danish botanist Wilhelm Johannsen, Plato
states [2]: As you are all related to each other, you will mostly have descendants which

are similar to you; sometimes, however, a silver one can derive from a gold one and vice

versa, and similarly in all others.

Obviously, he could not know that in our times the term “gene” is familiar to almost
everyone. But in fact it is derived from the ancient Greek word, which is framed in
blue in the above quotation and which can be transliterated as gennote1. Literally it
is translated as generating2. But this excerpt is also interesting because of its notions
on which traits are inherited from parents and also on what in modern times might be
called mutations. Here the precious metals “silver” and “gold” are metaphors for noble
character traits in humans. However, as Johannsen stated, the philosophy of ancient
Greece was much more evolved than the actual scientific knowledge at their time. In
particular, the notion of genes did not exist. Thus, Plato did not distinguish between
the “nature”, i.e. inner traits or in modern terms the “genotype” and external stimuli
which change the outer appearance, the “phenotype” [2].

Nowadays, due to widespread use in crime thrillers or in forensic science most people
have a notion on what DNA is. Besides, the word gene can often be found in newspapers,
be it in the context of genetically modified food and tests for hereditary diseases or even
on sports pages when it is discussed whether or not a team possesses a “winner gene”.
These terms appear natural to our contemporary ears, but it is amazing to recapitulate
how few was known scientifically about this topic 150 years ago, when the friar Gregor

1Interestingly, it was Johannsen who coined the term “gene” [3]. One may speculate if it was this very
excerpt which motivated this choice.

2Actually, the word within the red frame can be transliterated as allelon and is translated as apart. It
is the root for the word “allele” which is an important technical term in genetics as well
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1 Introduction

Johann Mendel conducted his “experiments on plant hybridization” whose results were
published in 1866 [4].

1.1.1 Mendel’s experiments

Obviously, just like Plato Mendel could not know what a gene is. But the hereditary units
which he called factors, are in fact genes. In commenting on the importance of his find-
ings, we follow the description of Ilona Miko [5]. Mendel’s choice to breed pisum sativum,
colloquially known as pea plants, was clever because they can be both self-fertilized and
cross-fertilized [5]. Only this versatility enabled him to reach his conclusions. Another
important point in his studies was that he focused on seven traits of the pea plants,
which each could attain only two “values”. For example, he studied the pod shape,
which could be either constricted or inflated [5]. This binary form enabled an analytical
or even mathematical description of the results.

His main interpretation was that factors which are responsible for the occurrence
of visible traits, are inherited from both parents. Factors can be present in different
variations and therefore it is possible that an organisms receives different sets of factors
from its parents. Importantly, he introduced the concept that these alternative variations
of a factor can be dominant or recessive. Therefore he studied what the progeny looks
like when their parents share all traits but one [5]. The result is usually that concerning
the differing trait the offspring will not look like a blend of their parents but according
to the dominant trait.

However, in the second half of the nineteenth century no one could expect that nowa-
days many people consider him the forefather of genetics. While Mendel’s observations
were truly ahead of his time, what kind of substance hosts these factors remained un-
known. Accordingly, his work only started being appreciated in the twentieth century,
when further advances in experimental techniques were made. Thus, it is no surprise that
no one noticed the relation between Mendel’s results and the ones of his contemporary,
the Swiss biologist Johannes Friedrich Miescher. He studied leukocytes in the pus3 of
bandages which he obtained from a surgical clinic in Tübingen [3]. While doing this, he
isolated the substance “nuclein”—which later was identified as DNA, i.e. the carrier of
Mendelian factors—for the first time in 1869 and published these findings in 1871 [3].

Less than hundred years later, in 1953, James D. Watson and Francis H. C. Crick
published an article entitled “Molecular Structure of Nucleic Acids - A Structure for
Deoxyribose Nucleic Acid” [6]. In this article they suggested that DNA has a double-
helical structure. We will now review which scientific findings happened between these
two events, where we follow the description presented by Ralf Dahm [3].

1.1.2 Twentieth centrury: Mendel reloaded

Nearly three decades had to pass after Mendel’s findings until around 1900 several sci-
entists, namely Carl Correns, Hugo de Vries and Erich von Tschermak rediscovered
them [3]. Already in 1902, the American physician Walter S. Sutton wrote the following

3The yellow or white substance found for example in an abscess.
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1.1 Historical notes: from Plato to Watson and Crick

sentence in an article entitled “On the morphology of the chromosome group in Brachys-

tola magna4” [7]:

“I may finally call attention to the probability that the association of paternal
and maternal chromosomes in pairs and their subsequent separation during
the reducing division as indicated above may constitute the physical basis of
the Mendelian law of heredity.”

Thus, Sutton and likewise his German contemporary, Theodor Boveri established a con-
nection between Mendel’s theory and research on chromosomes [3]. These chromosomes
had been found by the German biologist Walther Flemming several years after Miescher
had observed “nuclein”. Flemming’s experiments had yielded that cell nuclei contain
fibrous networks and he was even able to describe their motion during cell division [3].

In the following years, it was common knowledge among scientists that the Mendelian
factors which were by now called genes are to be found on chromosomes and that the
main constituents of these are proteins and DNA [8]. But among these two, proteins
were thought to be the more suitable choice for storing genetic information, since their
chemical and physical structure is far more complex than the one of DNA. However, this
assumptions was proven wrong in a series of experiments as we will recapitulate now.

In the 1920s Frederick Griffith worked with two strains of streptococcus pneumoniae,
a bacterium which—as its name already implies—causes pneumonia [9]. The r strain
(where r represents rough) was found to be less pathogenic than the s strain (where s
stands for smooth), which is covered with a protective capsule of polysaccharides [8]. If
bacteria of the dangerous s strain were killed by heating them up, their injection into
mice did not affect their health. If, however, these dead bacteria were injected alongside
living bacteria of the less dangerous r strain, the mice died. This surprising finding could
only be rationalised if one assumes that a “transforming principle” is at work. This
means that the r strain obtained the ability, i.e. was transformed, to form the protective
capsule from some component of the s strain which was not destroyed when the s strain
bacterium was killed by the heat [8]. But it was not clear how exactly to interpret these
observations and the most important question was: what exactly is the “transforming
principle”?

It took another two seminal experiments to answer this. The first one was performed
by Oswald T. Avery, Colin MacLeod and Maclyn McCarty in the middle of the 1940s.
It was a modification and extension of Griffith’s earlier experiment, this time, however,
performed in cultures [8, 10]. They used an exclusion principle, in which the original
set of s strains which had previously been heated was separated in three parts. The
first one was subsequently treated with DNase, the second one with protease and the
third one with RNase. These substances with the suffix “-ase” are known to destroy the
corresponding substances. Then the reaction products were again mixed with r strain
cells. From the observation that the DNase treated s cells did not transform the r strain,
while the other two substances still had this ability, they deduced that DNA is essential
for the transformation.

In his influential book “What is life” the Austrian physicist Erwin Schrödinger also
reasoned about the role of chromosomes as an “hereditary code-script” [11]. Importantly,
he pointed out that chromosomes are more than just a code-script [11]:

4Brachystola magna refers to a type of grasshoppers.
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1 Introduction

“The chromosome structures are at the same time instrumental in bringing
about the development they foreshadow. They are law-code and executive
power - or, to use another simile, they are architect’s plan and builder’s craft
- in one.”

Besides, by invoking an analogy to the Morse code, where a small set of letters is suffi-
cient to write complex texts, he advocated the idea that molecules with a rather simple
structure can be responsible for the formation of more complex molecules [11].

1.1.3 Hereditary information: in proteins or in DNA?

Still there were scientists who favoured the protein to be the carrier of hereditary in-
formation. The straw that broke the camel’s back was the second seminal experiment
mentioned above which was performed by Alfred Hershey and Martha Chase in 1952 [12].
They studied the phage5 T2 which infects the bacterium Escherichia coli (E. coli), named
after the paediatrician Theodor Escherich, and exploited the fact that proteins and DNA
differ chemically: namely, unlike proteins DNA contains phosphate and conversely pro-
teins have a sulphurous content, but not DNA [8]. Using radioactive isotopes of these
two elements, Hershey and Chase were able to show that the protein simply forms a coat
around the phage while its DNA is injected into the bacterium. Knowing in retrospect
how important their findings were, it is intriguing to see how cautiously they summarised
their findings, stating simply that “the DNA has some function” [8, 12].

One year before Oswald T. Avery and co-workers published their work, Max Delbrück
and Salvador E. Luria who later became the doctoral advisor of James D. Watson an-
swered a question which bothered scientists since the 1920s. Namely whether the im-
munity of some E. coli cells to a bacteriophage results from random mutations or are a
direct consequence of the interaction with the virus [14]. Backed up by a mathematical
theory they could show that the distribution of survivors they found experimentally was
not Poissonian and could only be rationalised by assuming that the mutations happened
randomly and thus independently of the presence of the phage.

In the time between the experiments of Avery and of Hershey, the Austrian biochemist
Erwin Chargaff studied the base composition of DNA in more detail. While it was known
that DNA contains the two purines adenine (A) and guanine (G) and the two pyrim-
idines cytosine (C) and thymine (T), for a long time wrong conclusions were drawn. In
particular, the biochemist Phoebus Levene had formulated the “tetranucleotide theory”:
within this theory, DNA which was called yeast nucleic acid by Levene, was supposed to
be build up of repeating units of these four bases. This implies that in any species all
four bases should appear equally often. Chargaff, however, was able to show two points:
that while every species may have a characteristic frequency with which the four bases
occur, the frequency of As is equal to the one of Ts. An analogous rule applies for Cs
and Gs [3].

Similarly important was the finding of George Beadle and Edward Tatum published in
an article in 1941, where they reasoned that genes “control or regulate specific reactions

5Nearly as important for molecular biology as bacteria themselves are the viruses that infect them,
the (bacterio-)phages. Literally, this means bacteria eaters. A whole group of biologically interested
physicists, most notably Max Delbrück, was named phage group after them [13]. We will encounter
Delbrück’s most important contribution to the topic of this thesis in section 2.2.
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1.1 Historical notes: from Plato to Watson and Crick

in the system either by acting directly as enzymes or by determining the specificities
of enzymes” [3, 15]. A statement which later was shortened to the catchy slogan: “one
gene-one enzyme hypothesis”. Furthermore, in 1949 Colette and Roger Vendrely and
André Boivin proved that somatic cells contain twice times the amount of the one found
in germ cells [3].

The importance of the scientific findings obtained in the first half of the 1950s cannot
be overstated: only one year after the experiment of Hershey and Chase, the renowned
journal Nature featured two articles on the structure of DNA in a single issue. The first
one written by Rosalind Franklin and Maurice Wilkins described X-ray studies of DNA
and contained the by-now legendary “photo 51” [3]. The second one by Crick and Watson
was the one already mentioned which is arguably one of the most important scientific
publications of the last century [6]. It set the base of what is known about the structure
of DNA and thus enabled scientists to decipher the genetic code and to understand how
gene expression works. This will be discussed in the following section, but first we make
a few general remarks.

Living organisms are usually classified as belonging to one of the following three classes
or domains: (eu)bacteria, archae(bacteri)a and eukaryotes. The first two domains to-
gether are called prokaryotes and unlike eukaryotes they do not contain a nucleus6, i.e. a
compartment of the cell which is surrounded by membranes and contains the DNA [13].
The cell nucleus was discovered by Robert Brown. This work focuses on gene regulation
in prokaryotes. The reason for that being that they constitute simpler systems compared
to higher organisms. From a technical point of view it plays a role that they usually have
short doubling times, easing the experimental analysis [16].

Out of all bacteria, the most prominent example is E. coli, which was already men-
tioned above. Mostly due to the work of Jacques Monod and co-workers its metabolism
came to the centre of attention. In 1957 Aaron Novick and Milton Weiner published
their seminal work showing that the induction of the enzyme β-galactosidase is an “all-
or-none” phenomenon [17]. This means that a colony of bacteria is very heterogeneous
concerning the rate at which individuals produce this enzyme. Some do this at full
throttle, while others nearly not at all. Such a behaviour is also called bistable, where
the prefix “bi-” indicates that there are two stable states. They further hypothesised
that the critical step for induction is the formation of a single specific enzyme. However,
this hypothesis has recently been tested and disproved using modern single molecule
techniques [18].

This closes our historical introduction which started in ancient Greece and in which
we encountered diverse living organisms ranging from pea plants, over grasshoppers to
the bacterium E. coli. For roughly six decades we know that DNA plays the central
role in cellular biology, but in the following we include two other types of molecules into
our considerations. Thus, we focus our attention on the three most important classes of
biopolymers in a cell: DNA, ribonucleic acid (RNA) and proteins.

The following sections are ordered rather topically than historically. In order to un-
derstand the importance of DNA, RNA and proteins, we study their structure, starting
with DNA and subsequently we consider how the expression of genes is regulated. This
will enable us to understand the so-called central dogma of molecular biology.

6They do, however, possess a similar object called nucleoid, which will be considered in chapter 4.
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1 Introduction

1.2 The central dogma of molecular biology

In describing the structure and function of these essential biopolymers we follow the
book “Molecular biology of the cell” and Robijn F. Bruinsma’s review article “Physics
of protein-DNA interaction” [13, 19]. The central dogma was introduced by Francis H.
C. Crick who discussed how sequential information is transferred [20].

1.2.1 The structure of DNA

One might naively ask why the structure of a particular biopolymer is of such relevance,
especially given that DNA in itself is not even very reactive [16]. The answer to this is
that this special structure enables the storage of information. All living organisms, be it
bacteria, plants or animals, store not less than their hereditary information in DNA [13].

In most general terms, one can say that DNA consists of two strands which are linear
polymer chains. These are composed of monomers, the nucleotides. In turn, a nucleotide
is composed of a backbone made up of the pentose sugar deoxyribose with an tetrahedral
phosphate group, PO3−

4 , attached to it which connects neighbouring sugars [13, 19].
Roughly, the backbones can be considered to be equivalent to the stringers of a ladder.

Most importantly the nucleotide contains one of the following four bases: the two
purines adenine (A) and guanine (G) or the two pyrimidines cytosine (C) and thymine
(T). These bases build the rungs of the ladder. Since the backbone is the same for
all monomers, the content of a single strand is completely determined by the sequence
of A,C,G and T. However, this also fixes the composition of the second strand via the
complementary rule that an A on one strand builds a base pair7 with a T on the other
strand (and vice versa). The same applies for the two bases C and G. Thus, a more
spacious purine with two rings always pairs with a smaller pyrimidine that has just one
ring. The complementary bases are connected via hydrogen bonds, two in the case of
A and T and three between C and G [19]. The complementarity is often compared to
a lock-and-key mechanism and is important for polymerase chain reactions (PCR), for
example when crime scenes are investigated.

The second force stabilizing the DNA is the stacking interaction, a hydrophobic attrac-
tion between bases [19]. The picture of a ladder-like DNA introduced above is however,
too simple a picture, since the two strains twist around one another to form the double
helix that was predicted by Watson and Crick based on Franklin and Wilkins’ observa-
tions [6] (compare Fig. 1.1).

Due to the way the two helices twist around each other two differently sized grooves
emerge, which are called major and minor groove. Finally, it is noteworthy that the back-
bone has a directionality: by convention, the carbon atoms in the sugar are numbered.
Of particular importance are the third and the fifth carbon atom which roughly denote
the orientation of the stringer of the symbolic ladder. Thus, one speaks of the 5’-end
where the chain ends with the carbon atom number five of the sugar. And accordingly,
the 3’-end consists of the hydroxyl group which is attached to the third carbon atom.
This directionality has interesting physical consequences: the differences in driving a
single-stranded DNA in either direction through an α-hemolysin pore can be explained

7Actually, the term base pair is also used to designate the length that such a unit spans on DNA. In
common units it corresponds to 0.34 nm.
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Figure 1.1: The double-helical structure of DNA (green and blue) with the dimeric lac
repressor DNA-binding domain (red) attached to it. The image was created
with the software Jmol, based on the structure (with ID 2KEI) deposited
in the Protein Data Bank (PDB) by Romanuka et al. [21, 22]. Note by
comparing the pairing bases on the blue and on the green strand that a
smaller pyrimidine on one strand always pairs with a large purine on the
other strand.

by analogy to the way a tree is brought through a door [23]. In both cases, one direction
is clearly preferred.

In a simplistic view one can say that the hereditary information in DNA is written in
a four-letter alphabet. But what exactly is this information and how is it read out and
used? This is where two other types of biopolymers besides DNA come into play, which
are important for the survival of a cell: ribonucleic acid (RNA) and proteins.

Most of the information stored in DNA are blueprints of how to build proteins. In fact,
the part of the DNA where the blueprint for a specific protein is written down is called a
gene8. A typical bacterial gene has a length of around 1000 bp, while eukaryotic genes can
be much longer. Accordingly, the process in which the protein corresponding to a certain
gene is produced, is called gene expression. However, proteins are not built directly from
DNA. In technical terms, the information has to be transcribed and subsequently it has to
be translated. Both processes can be described as templated polymerisation [13]. What
is meant by this will become clear in the following section.

1.2.2 RNA and transcription

The product of transcription, RNA, has a structure which is very similar to the one of a
single DNA strand. It is a linear polymer which involves the sugar ribose (to which its

8In some case already the RNA constructed from the DNA sequence is the final product. This type
of RNA is called non-coding RNA (ncRNA) and the corresponding DNA segments are called (RNA)
genes.
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full name ribonucleic acid is due) instead of deoxyribose. As implied by their denotations
the sugars ribose and deoxyribose differ in the presence of an oxygen atom [19]. Besides,
instead of thymine (T) RNA features uracil (U), in which a hydrogen atom is replaced
by a methyl group. In general, RNA is much less stable than DNA.

The structural similarity between DNA and RNA enables a more or less straightfor-
ward transmission of the information contained in the DNA nucleotide sequence to the
one in RNA9. The transcription of the text written in DNA language to the one in RNA
language is performed by an enzyme called RNA polymerase (RNAP). In bacteria, there
is only one type of RNAP, while in eukaryotes there are several ones. It has to bind
to a promoter which marks a point on DNA from which RNA synthesis is supposed to
start [13]. In order to bind to the promoter the RNAP has to be able to recognise the
sequence. This general problem of sequence specificity will be dealt with in a part of
the following section. Typically, promoter sequences are not symmetric, thus implicitly
telling the RNAP which of the two strands is to be read out [13]. Actually, the design of
the promoter is one of the earliest stages at which the cell can regulate gene expression
(see section 1.3) [13].

After docking to the DNA, by help of other proteins the RNAP opens the double helix
and unwinds it in order to lay open the base pairs [13]. Then the templated polymerisa-
tion takes place: one nucleotide after the other is assembled into the transcript, using the
DNA sequence as a template where the complementarity of nucleotides helps to make this
process called elongation nearly error-free. This continues at a rate of approximately 50
nucleotides per second until a terminator is encountered on the DNA [13]. This confers
a stop signal which makes the RNAP release the RNA transcript. In the “normal” case
the RNA which was created is called messenger RNA (mRNA), because its task is simply
to contain the information which protein has to be built in the subsequent translation
process. However, as already mentioned some of the RNAs produced like this are already
functional end products.

The part of DNA which is read out to produce mRNA is called transcription unit and
can contain one or several genes. Therefore depending on whether it codes for a single or
more proteins, one speaks of monocistronic or polycistronic mRNAs [13]. Many copies of
mRNA can be produced in a row and sometimes work on a new transcript begins before
the previous one is actually finished [13].

1.2.3 Proteins and translation

Translation is a more difficult process, again in the form of a templated polymerisation.
This time the mRNA is the template and the products are proteins. They actually
perform the jobs to do. In bacteria, they are often produced in bursts [24, 25]. From a
structural point of view proteins are again linear polymers whose monomers are α-amino
acids collected from a larger alphabet. The monomers are also called residues.

The genetic code The relation between the DNA language and the resulting sequence
of amino acids in a protein, is called the genetic code. Already in 1961, Francis H. C.

9We note that the RNA world hypothesis states that in early evolutionary times—before DNA assumed
the central role—RNA itself was the bearer of genetic information and induced cellular chemical
reactions [13].
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1.2 The central dogma of molecular biology

Crick and co-workers demonstrated that three consecutive nucleotides (a codon) in RNA
determine which amino acid is to be included in the protein [26]. In the same year,
the biochemist Marshall W. Nirenberg cracked the first codon by showing that RNA
solely consisting of uracil will be translated to a protein which is built up exclusively of
phenylalanine [27]. Only four years later, the whole genetic code was cracked, see e.g.
table 4 in [28], an achievement for which the main scientists in the field received the
Nobel Prize in Physiology or Medicine another three years later.

In principle, having a codon consisting of three nucleotides which are taken from a pool
of four, implies that there is a total number of 43 = 64 possible combinations. However,
under normal circumstances there are less than these 64 theoretically possible different
amino acids. Only twenty proteinogenic amino acids are encoded, showing that there
is a substantial redundancy. Conversely, it is easily understood that codons of length 2
would yield only 42 = 16 possible combinations and could not explain the presence of
the 20 natural amino acids.

Usually, translation is started at a codon which consists of the three bases AUG and
stops at one of the three stop codons: UAG, UGA or UAA. Very recently it was shown
that modifications in the stop codon are encountered more often in the wild than one
would näıvely expect [29].

Structure and function of proteins Proteins typically consist of 50 - 2000 amino
acids [13]. For example, the lac repressor which will play a central role in this thesis, has
a length of 360 amino acids and of approximately 10 nm in real space [30]. Proteins all
share the ability to bind to certain other molecules, the ligands, via a reactive portion of
their surface which is called binding site [13]. Such a ligand can be DNA, in which case
the protein is called DNA-binding protein (DNABP). There are plenty of reasons why a
protein should bind to another molecule like DNA. One which is very important for this
work is to prevent that another molecule binds to the same or a nearby position. How
exactly this happens will be detailed in section 1.5.

Summarising the last two sections one can say that if a protein is to be built the
information which amino acids need to be produced and in which order is written in
the DNA’s nucleotide sequence. The actual process of building a protein is then divided
into two steps, transcription and translation. The first refers to the construction of a
specific type of RNA called messenger RNA (mRNA) from the DNA template whereas
translation refers to the process in which the mRNA is used to build proteins.

Now, we have met the three most important classes of biopolymers in a cell and we
have seen how in the usual case the information contained in the nucleotide sequence of
DNA is transferred to a sequence of amino acids in a protein. One might be tempted
to ask if this transfer of information proceeds on a one way street or if proteins can also
influence the information content of DNA. This question is answered by the so-called
central dogma of molecular biology.

1.2.4 Scheme of the central dogma

Given that DNA, RNA and proteins are all linear polymers whose monomers are taken
from a fixed set, the sequence in which the monomers are present can be considered as
a text written in one of the three corresponding languages.

9
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DNA

RNA protein

1958:

1970:
DNA

RNA protein

Figure 1.2: Schematic illustration of the central dogma in the original version of 1958 (up-
per panel) and in its refined version of 1970 (adapted from [20]). In the upper
panel full lines correspond to “probable” processes, and dotted lines to “pos-
sible” processes. In the lower panel “general” transfers are presented with
full lines and “special” transfers are presented with dashed lines [20]. The
“impossible” or “unknown” transfers starting from protein are not shown.

Now, in principle there are nine possible ways in which the information conveyed in
such a text can be communicated to one of the other two forms of bio-polymers or
to another representative of the same class. However, the so-called central dogma of
molecular biology states that “once (sequential) information has passed into protein it
cannot get out again” [20]. This is schematically illustrated in Fig. 1.2, where both in
the original picture of 1958 (upper panel) and in the refined version of 1970 (lower panel)
the three processes forbidden by the central dogma are not shown.

The other six processes can be further classified in two groups: in 1958 it was thought
that four of them are “probable“ (shown with full lines in the upper panel of Fig. 1.2) and
the two others were estimated to be “possible“ (dotted lines). We focus on the refined
model of 1970 which is shown in the lower panel of Fig. 1.2 and in which the same
six processes are grouped slightly differently: the three which are depicted in dashed
lines are only observed under specific conditions, whereas the three processes shown with
continuous lines are the ones which were introduced as transcription and translation in
the preceding section, plus DNA replication denoted by the arrow starting and ending
at DNA.

Given that DNA contains the information about all the proteins that a living organ-
ism will produce in its lifetime, it obviously makes sense that it is attempted to keep
the information content of DNA from outer influence. Reverse transcription, that is in-
formation transfer from RNA to DNA is the usually unwanted exception from the rule,
performed by retroviruses. Ironically, many findings on DNA are due to modifying the
information content of DNA, for example by irradiating them.
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In general, the central dogma should not be taken as dogmatic as it sounds and in
the last decades more and more exceptions from the rule were found. However, since
we solely study regulation of “normal” transcription, they will not be discussed further
here.

1.3 Gene regulation in prokaryotes

In general it is customary to say that a gene is on, if it is currently being expressed,
and off if this is not the case. Since every single cell of a specific organism contains the
same DNA, in principle all genes could be on at all times. But this is not what happens,
rather they are produced only when needed. Such a need can be variable for different
cells in an organism, for example a cell in the gut has to behave differently from a cell
in a muscle. In fact, some bacterial genes are always produced at a basal rate, which
is not the case for eukaryotes. Besides, depending on temperature, the food supply or
other external stimuli different genes need to be expressed. This selective use of genes is
called regulation of gene expression or shorter gene regulation [16]. It will be considered
in this section.

Given that the production of proteins is a process composed of multiple steps, it
is clear that gene expression can be switched on and off, or in other words regulated
at various stages. The most important class of regulation of gene expression is called
transcriptional control [13]. In this case already at the stage of transcription it is decided
when a gene is expressed and if so at what rate this occurs [13]. This guarantees that
no semi-manufactured products are being built that are not needed by the cell, avoiding
unnecessary energy costs [13].

Without involving further molecules, as already mentioned the design of a promoter is
the first stage where differences in the expression of genes occur. Since not all promoters
have the same sequence, it is obvious that the genes whose promoters are ”stronger“ are
more likely to be bound and expressed by RNAP [13]. Thus, if there are several organisms
which differ in the promoter sequence for a gene whose product is often needed, the ones
with the stronger promoter have an evolutionary advantage. But before we see in a
particular example how transcriptional control works, we introduce in more detail the
arguably most important organism for molecular biology.

1.3.1 E. coli and its metabolism

The importance of the bacterium E. coli was already highlighted in the introduction. In
fact, most of our knowledge about the microscopic basics of life stem from studies of this
bacterium. Ultimately, the hope is that what is found out to be correct about E. coli

might enable scientists to draw conclusions for higher organisms, too.
One of the main characteristics of life is that living organisms metabolise. Likewise it

is obvious that these organisms are favoured which are able to control their metabolism
efficiently. E. coli is an organotrophic bacterium, which means that it lives on organic
compounds such as lactose and glucose. In order to understand why the preferred choice
for E. coli is glucose we have to consider their chemical forms.

Lactose, which is colloquially known as milk sugar, is a disaccharide characterised by
the formula C12H22O11. The prefix ”di-“ implies that it is made up of two components
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which are in this case the two monosaccharides galactose and glucose, which both have
the composition, C6H12O6. In fact, both sugars are epimers, differing in just one stereo-
genic centre. To form lactose they are linked via a β − 1, 4 glycosidic bond [31]. Thus,
from its chemical form it is obvious that in the presence of glucose it would be wasteful
to produce enzymes which cleave lactose since the glucose which results from this can
already be used directly.

However, if there is no glucose around three proteins are involved in the metabolism of
lactose: β-galactoside permease which is usually bound to the cell membrane, and which
imports lactose from the surrounding medium into the cell. Besides, β-galactosidase
cleaves the β-1,4 glycosidic bond, thus degrading lactose into its constituents glucose
and galactose [31]. The function of the third protein, β-galactoside transacetylase, is less
clear [32]. In general, it has a detoxifying function: it acetylates sugars which cannot be
metabolised, thus precluding their return into the cell [33, 34]. The genes which encode
these proteins are called lacY, lacA and lacZ. Here we follow the convention that genes
in bacteria are described by a lower-case italic symbol consisting of three letters, followed
by a italic capital [35]. The proteins they code for are written with a capitalised first
letter, i.e. LacY, LacA and LacZ.

Since at least two of these three proteins are required to metabolise lactose, it is
necessary that they are produced together when needed. This is ensured, since they are
put together in an operon. What is meant by this will be explained in the following
subsection.

1.3.2 Lac operon and its control

Saying that several genes belong to an operon means that they are adjacent to each other
and that they share a single promoter. Thus, their corresponding proteins are built in
one go. In the paradigmatic case of the lac operon these are the genes coding for the
three proteins mentioned in the last subsection. Remembering their tasks it is obvious
that such an arrangement makes sense, since there is no point, e.g. to produce an enzyme
that imports lactose into the cell if there is no protein to digest it.

However, there is more to an operon than just the promoter and the genes. Even
without detailed biological knowledge it is obvious that other molecules can either help
or prevent the RNAP from transcribing a gene. An important observation in order to
understand this, is that not all of the information on DNA yields blueprints for proteins
or functional RNA. In between genes there are stretches of regulatory DNA, i.e. positions
where specialised proteins bind to in order to influence the rate at which transcription
occurs.

In general there is a plethora of possible ways how to design these regulatory regions
on the DNA. We first focus on the case, when a specialised protein, which is called
transcription factor (TF) prevents the expression of a gene. These TFs are repressors,
since they repress the expression and the regulatory regions which they bind to are called
operators. They also form a part of the operon and they are typically placed such that
if the repressor binds to them, it is not possible for RNAP to bind to the corresponding
promoter. This then prevents the initiation of gene expression, making regulation by
repressors a type of negative regulation. In the case of the lac operon this TF is the lac
repressor, LacI and the (main) operator is called O1. Its nucleotide sequence is given in
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Figure 1.3: Schematic depicting the state of the lac operon depending on the concentra-
tion of lactose and glucose (adapted from [38]). CRP (yellow), RNAP (blue)
and the lac repressor (dark red) can bind to their respective sites. Specific
binding of the repressor shuts off the expression, while RNAP binding starts
the expression either in an activated fashion when CRP binds as well or at a
basal rate if this is not the case.

the first row of Fig. 1.4 on page 15. The binding of lac repressor to its operator is one
example for specific binding, since it is an event in which the protein binds to a particular
sequence to perform a specific task. This is in contrast with non-specific binding which
will be detailed below.

It is interesting to note that in the middle of the 1960s it was not even clear what kind
of a molecule the operator is. It was only shown in 1967 by Gilbert and Müller-Hill that
it is in fact part of the DNA [36]. One year before that the same authors proved several
points about the lac repressor: that it is a protein whose gene lies outside the lac operon
and that it is present in low copy numbers of approximately 10 per genome [37].

However, the lac operon is also positively regulated by the catabolite activator protein
(abbreviated as CAP or CRP). In general this TF helps bacteria to use carbon sources
apart from the preferred choice glucose [13]. To fulfil this task, CRP has to bind to
cyclic adenosine monophosphate (cAMP). This enables it to bind to the DNA near the
promoter, where it acts as an activator [13].

Obviously, it would be a waste of resources if lactose-digesting enzymes were produced
in the presence of the favoured glucose. Thus, whenever glucose is present, the con-
centration of lactose is unimportant and the operon should be shut off. Conversely, if
neither glucose nor lactose are present, there is no need to produce the enzymes, too. In
other words, the operon should be expressed only when two conditions are met: lactose is
present and glucose is absent from the cell [13]. Otherwise it is the task of the repressor
to prevent the expression of the lac operon. In other words, interpreting high lactose
concentration and low glucose concentration as signals, in terms of logical operations the
lac operon plays the role of an AND gate [31]. This is schematically shown in Fig. 1.3.
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If lactose is not present in the cell, the lac repressor should bind to its operator to
shut off the expression of the lac operon irrespective of whether or not glucose is present
(first row in Fig. 1.3). The second row shows the situation when the conditions of the
AND gate are met: lactose is present, but not glucose and the lactose-digesting enzymes
should be produced. Then, CRP and RNAP bind specifically and activated expression
of the operon occurs. Finally, when both sugars are present (last row of Fig. 1.3) the lac
operon is expressed at some basal rate since even without the help of CRP an RNAP
molecule can bind to the promoter to start expression. However, since the concentrations
of sugars in the environment usually are not constant, the system must be able to respond
to changes.

Response to changes in the environment In order to sense whether the lac operon
should be on or off both TFs, the lac repressor and CRP have an activity which depends
on the concentration of environmental sugar molecules.

The molecule allolactose is an intermediate metabolite of lactose [39]. Thus, its pres-
ence implies that lactose is present in the environment. Allolactose is able to bind to the
lac repressor and if so, it reduces the repressor’s affinity for the operator [13]. Accord-
ingly, it dissociates and allolactose acts as an inducer of the operon.

The activity of the postive regulator, CRP, is modulated according to the concen-
tration of glucose. This happens indirectly via its activator, cAMP. Usually, cAMP is
produced from ATP by adenylate cyclase. However, if glucose is present, this substance
is inhibited. Thus, if the glucose concentration increases, the concentration of cAMP in
the cell decreases [13]. Then, there are not enough cAMP molecules to bind to CAP.
This reduces its affinity for DNA and the positive regulation stops [13]. Conversely, the
presence of cAMP conveys the cell that there is a glucose shortage [40].

It is important that there is a positive feedback in this system: when LacY, the per-
mease, is expressed this facilitates the uptake of lactose, which deactivates the repressor,
thus further increasing the production of permease [18]. This positive feedback leads to
the all-or-none phenomenon that was found by Novick and Weiner [17].

Lactose analogues It was noticed pretty early that not only lactose acts as an in-
ducer for the lac operon. Rather there are lactose analogues which can have experi-
mental advantages. Already in 1957 did Aaron Novick and Milton Weiner notice that
methyl-β-D-thiogalactoside (TMG) can be used as an inducer instead of lactose [17].
It is an ”gratuitous“ inducer, meaning that it is not metabolised by the bacterium.
This term was introduced by Jacques Monod [41]. Such a gratuitous inducer greatly
facilitates the experimental treatment. Another relevant lactose analogue is isopropyl
β-D-1-thiogalactopyranoside (IPTG) [39].

1.4 There is more than just O1

Even though, the preceding sections give a correct impression of the main ingredients of
the lac system, in reality the situation has even more layers. First of all, the operator
O1 does not describe the only nucleotide sequence to which the lac repressor can bind.
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Figure 1.4: Nucleotide sequences of the three natural operators O1 (first row), O2 (third
row) and O3 (last row) to which the lac repressor binds specifically. In the
second row the sequence of the artificial operator, Osym, is given. Note that
in the case of O2 the sequence of the ”lower strand“ is given for better com-
parability and that the sequence of the symmetric operator is one nucleotide
shorter than the naturally occurring ones.

There is a sequence which binds it even stronger and in the E. coli genome there are two
auxiliary operators.

1.4.1 The symmetric operator Osym

In 1983 an artificial nucleotide sequence was constructed to which the lac repressor binds
even stronger than to the naturally occurring O1 [42]. The nucleotide sequence of this
operator, which is commonly denoted as Osym is given in the second row of Fig. 1.4.
Note that it is one nucleotide shorter than the naturally occurring sequence of O1 which
is shown in the first row of this figure.

The reason for its name is its high degree of symmetry: it is an inverted repeat of the
left half of O1. This means that its right half is obtained by reflecting it with respect to
the middle and by simultaneously replacing each nucleotide with its complementary one.
For a moment we take it for granted that the repressor is able to detect the nucleotide
sequence in some way. How this is possible will be detailed in section 1.5.

1.4.2 The auxiliary operators

Apart from the main operator, there are two so-called auxiliary operators, which will
play an important role in chapter 5. Their nucleotide sequences are given in the two last
rows of Fig. 1.4. A quick inspection of this figure already tells that O2 (third row) shares
more nucleotides with the main operator O1 (first row) than O3 (last row) does. This
observation will be quantified in chapter 5.

The stronger auxiliary operator, which we nowadays know as O2, was discovered in
1974 by William S. Reznikoff, Robert B. Winter and Carolyn K. Hurley [43]. They found
that the affinity of the repressor for this site is approximately 1/30 of the affinity for the
main operator and that it lies within the lacZ gene. Erroneously, they assumed that its
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Figure 1.5: The LacI tetramer bound to DNA based on the structure obtained by the
group of Klaus Schulten and deposited in the PDB with ID 1Z04 [22, 45].
The image was created with the software Jmol.

rather high affinity can be explained by a single base pair mutation, but they deduced
correctly that it is improbable that such a strong binding site is there as though by chance.
However, they were unable to pin down its exact role and accordingly in the following O2
and the even weaker O3 were called pseudo-operators in a rather deprecatory manner.

Only 16 years after O2 was found, Benno Müller-Hill and co-workers finished a paper
with the remark that a more appropriate name for them would be auxiliary operators [44].
The full quotation will appear below, but what had happened in between? In order to
understand this, we first have to study the structure of the main actor in this study, the
lac repressor.

1.4.3 Structure of the lac repressor

In its natural form, the lac repressor is a tetramer, sometimes also called a dimer of
dimers [45]. Early on, it was noted that a single dimer, i.e. two subunits, has the ability
to bind to DNA [46]. In Fig. 1.5 the lac repressor can be seen while it is bound to DNA
and assumes a ”V“-shaped form.

Both polypeptide arms of the ”V“ are held together by a four-helix bundle domain [47].
Apart from that, each arm accommodates a core and a head group which is able to
bind to DNA [45]. Importantly, the core contains a binding site, called lactose-binding
pocket [45]. If lactose binds there, the stability of binding to DNA is reduced, such that
the repressor dissociates and the operon is induced [45]. In general, the structure is
rather flexible, allowing the repressor to search for a second operator while it is bound
to the first one. This explains why the structure of the lac repressor enables it to bind
to two stretches of DNA at the same time, folding the intervening DNA into a loop.
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However, it is a priori unclear what the biological function of such loops is. This will be
discussed in the following subsection.

1.4.4 Looping

First of all, it has to be noticed that there are many types of DNA loops. They can be
formed by two proteins which bind to different binding sites and subsequently to each
other or—as is the case for the lac repressor—they can be due to a single protein with
two binding patches [48]. In principle, there can be various biological reasons why DNA
looping mediated by a DNABP is advantageous, see e.g. the review article by Robert
Schleif [48].

The most important one for our purposes is that it increases the local concentration of a
DNABP10. This can be understood with the following observation: if a protein can bind
to two binding sites which are n base pairs apart, binding to one of them guarantees
that the maximal distance between the protein and the other binding site is n base
pairs. This distance is often shorter than a typical distance within the cell resulting in
an increase of the effective concentration. Thus, binding sites can saturated at lower
protein concentrations than the ones which would be needed with proteins lacking the
ability to form loops [48]. This is particularly important, since if all proteins that need
to perform tasks in a living cell were produced at high rates, this would inevitably lead
to jamming effects. These effects build a whole branch of biophysics under the name of
macromolecular crowding, see e.g. the reviews [50–52]. The impacts of crowding on our
model will be mainly discussed in chapter 4.

Looping in the lac operon Based on his earlier findings that dimeric lac repressors
can bind to DNA, in 1977 Jürgen Kania proposed in a joined work with Benno Müller-
Hill that the lac repressor in its tetrameric form is able to bind to two stretches of
DNA simultaneously [53]. Building on this observation, the most thorough experiment
studying the role of each of the three operators appeared in 1990. Therein, Benno
Müller-Hill and co-workers used eight plasmids in vivo, in which the repression due to all
combinations of active or inactive operators was studied [44]. Operators were inactivated
by site directed mutagenesis. They compared the expression of β-galactosidase under
induced conditions (i.e., in the presence of 1 mM IPTG) and under repressed conditions
(without inducer) and calculated their ratio.

While the intact operator region was able to repress the expression by a factor of 1300,
deleting one of the two auxiliary operators only mildly decreased the repression to a factor
of 700 or 440. However, deleting both auxiliary operators reduced this value enormously
to 18. Additionally, whenever O1 was deleted there was little to no repression potential
left [44].

They interpreted the strong repression when O1 and at least one auxiliary operator
is present as resulting from a configuration in which the lac repressor binds to two
operators simultaneously. This hypothesis was further corroborated by repeating the
experiment with dimeric repressors which are not able to form tetramers. Underlining
their expectation, repression by LacI dimers in the presence of O1 and independent of

10For this effect several denominations exist, for example cross-talk, cooperativity or recruitment. See
the discussion in [49].
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the presence of O2 and O3 was comparable to the repression by tetrameric LacI when
only O1 was present [44].

Oehler and co-workers closed their paper with a few speculations concerning the evo-
lution of the lac operon: they motivate the observation that on the one hand neither O1
nor one of the auxiliary operators evolved to Osym and that on the other hand repressors
need to be tetramers to tap their full repression potential [44]:

”Here, as elsewhere, evolution rather than favouring the perfection of a simple
system (here the dimeric Lac repressor and the dyadic symmetric operator)
has instead favoured a cooperative system (here tetrameric Lac repressor and
three lac operators). The ’pseudo-operators’ betray their name and should
be called auxiliary operators.“

Up to now, we tacitly assumed that the lac repressor is able to read out the nucleotide
sequence of DNA. But how is it made sure that a certain functional sequence only appears
once in a bacterial genome?

1.4.5 Connection to information theory

That finding a unique binding site in a genome can also be considered from an information
theoretic point of view was already recognised by Walter Gilbert and Benno Müller-Hill
in 1967. Without detailing their calculation they stated that in order to select a unique
binding site in E. coli, which was back then thought to have a genome consisting of
3 × 106 base pairs, a protein must recognise approximately a dozen bases [36]. This can
be rationalised by noting that there are 411 ≈ 4.2 × 106 ways to write a word consisting
of eleven letters with an alphabet of four letters, and 412 ≈ 1.7 × 107 ways for a twelve
letter word.

This calculation, however, relies on the assumption that the occurrence of bases is com-
pletely random and that every base is perfectly recognised. As Gilbert and Müller-Hill
noticed, if the second assumption is not true, the recognition region must be larger [36].
Related questions will be discussed in more detail in chapter 5.

1.5 Sequence specificity and non-specific binding

Above it was stated that the lac repressor is able to bind specifically to certain nucleotide
sequences. When comparing the sequences of the three natural operators with the sym-
metric operator, we already noted that even in the presence of some deviations from the
”perfect“ binding motif, the lac repressor can still be able to bind tightly to DNA. But
before we describe how DNABPs are able to interact and to detect specific nucleotide
sequences, we have to answer one fundamental question: what happens if the underlying
sequence is completely different? Will the repressor still be able to bind to DNA or will
it completely lose its affinity?

It was already recognised by Arthur D. Riggs and co-workers in an article which is
central to this study that the lac repressor has a general affinity for DNA11 [55]. This

11Even before that, it was David Pettijohn and Tomoya Kamiya who showed that RNAP can bind
non-specifically to DNA and that the affinity depends on the ionic strength [54].
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general affinity is usually referred to as non-specific binding and describes the situation
when a DNABP cannot only bind to its specific target sequence, but also to other
stretches of DNA. Riggs et al. noticed that long-ranged electrostatic forces dragged
the protein of their study towards DNA resulting in a rather weak non-specific affinity.
Besides, they interpreted specific interaction with a sequence as resulting from ”reading“
the edges of the corresponding bases in the minor and major groove, assuming that the
four possible base pairs differ enough in these edges to be distinguished.

The continuous transition from specific to non-specific binding was concisely described
by Peter H. von Hippel and Otto G. Berg [56]:

”There is some finite level of affinity of the protein for the ’correct’ site and
some lower (but non-zero) and progressively decreasing affinity for other sites
with decreasing degrees of homology with the correct one.”

This is on the whole still the current opinion in the field: non-specific binding is
mostly mediated by electrostatic forces. Conversely, for specific binding it is exploited
that the double helix’ outer part is ”studded with sequence information“ [13]. This
was affirmed by nuclear magnetic resonance (NMR) studies: comparing their chemical
shift perturbations and the broadening of lines, amino acids could be grouped two-
fold: some contact the DNA mostly with their side chains (hydrophobic interactions
and water-mediated hydrogen bonds) while others build direct hydrogen bonds with the
backbone [57]. The specific binding energy is the superposition of many weak contacts,
e.g. hydrogen bonds, ionic bonds or hydrophobic interactions, which only together yield
strong binding energies [13]. Importantly, the underlying sequences can be distinguished
without opening the helix as it was the case when the sequence is actually transcribed
by the RNAP [13]. Von Hippel and Berg also estimated the specific and non-specific
binding energy to be ≈ 17 kcal/mol and ≈ 7 kcal/mol in the physiologically relevant
regime [56]. Interestingly, this estimate is in the ballpark of earlier guesses by Gilbert
and Müller-Hill [36].

An important point for non-specific interaction is that due to its electrostatic nature,
and more exactly since it is mainly mediated by the release of many counter ions from
DNA, the binding affinity heavily depends on the ionic strength of the environment [58].
High salt concentrations imply weak non-specific binding and low salt concentrations
strong non-specific binding. However, not only the salt concentration but also the type
of salt involved matters. For example, Mg2+ ions bind more tightly to DNA than mono-
valent ions [58].

From early on, it was discussed if non-specific and specific binding occurs in different
binding modes. For example, Winter and co-workers speculated that in the absence of a
target sequence DNABPs maximize the interaction with the DNA backbone, while in the
presence of it these electrostatic interaction are reduced to have more direct interaction
with the nucleotides [59]. This will be discussed in more detail in section 2.4.4.

The significance of the occurrence of non-specific binding was in particular noted by
von Hippel and co-workers who stated that any quantitative model of repression has to
take non-specific binding into account [60]. At first sight, the huge difference in binding
affinity for specific and non-specific sites seems to imply that non-specific binding can be
ignored. However, when every base pair of the circular E. coli genome is considered as
the leftmost position for non-specific binding, it becomes obvious that there are nearly
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five million possible non-specific binding position, which compete with three specific ones.
This calls for a description in terms of a thermodynamic model which will be delivered
in the final subsection of this chapter.

1.5.1 Thermodynamic models

All thermodynamic models aiming at a description of the lac repressor system rely on the
assumption that the cell is in equilibrium. Then the expression output of the lac operon
is directly proportional to the fraction of time the main operator remains unoccupied by
the repressor which in turn depends on the concentrations of binding sites and repressors
in the cell. This was noted already by Gilbert and Müller-Hill in 1967 [36].

We now follow the description presented in 1986 by Peter H. von Hippel and Otto G.
Berg who denoted the fractional saturation of the binding site by θs and consequently the
selection factor by x = θs/(1 − θs) [56]. Here, in principle θs can attain values between
0 (low saturation) and 1 (infinitely high saturation). Experimentally, it is known that
a fully induced system produces approximately thousand times more proteins of the
lac operon as compared to a repressed one. This implies x ≈ 1000. Denoting the total
repressor concentration by RT and by Di the concentration of binding sites characterised
by a binding constant Ki, one obtains [56]:

RT = RF +
∑

i

KiDiRF

1 +KiRF
, (1.1)

where RF denotes the concentration of unbound repressors and where the sum over i
comprises non-specific and specific binding sites. With the above mentioned selection
factor x, this can be rewritten as [56]:

RT =
x

Ks
+

xDs

1 + x
+
∑

ps

xDi

x +Ks/Ki
+
∑

ns

xDi

x+Ks/Ki
, (1.2)

where Ks refers to the specific binding constant. Again, the first term corresponds to
unbound repressors. However, in this formulation the second term on the right hand side
of Eq. (1.1) was split up into three terms on the right hand side of Eq. (1.2). The first
one of those describes the TFs which are bound to the main operator, the middle one
those which are bound to pseudo-sites which have rather strong binding energies and
the last one the ones bound to non-specific sites. Using that for pseudo-sites we have
Ks/Ki ≪ x, while for truly non-specific sites x≪ Ks/Ki and that x≫ 1 and therefore
x/(x + 1) ≈ 1, yields

x ≈ Ks

1 +
∑
ns
KiDi

[RT −Ds −Dps] , (1.3)

where Dps is a short for the sum of concentrations of pseudo-sites: Dps =
∑

psDi.
This equation has a straightforward interpretation for the expression output: the se-

lection factor, x, is simply the product of an effective repressor concentration with an
effective specific binding constant. Thus, a high abundance of non-specific binding sites
can greatly reduce the effective binding constant, while strong pseudo-sites reduce the
amount of repressors which are free to find the main operator. Note that in 1986 when
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this article was published the role of the auxiliary operators was not yet fully resolved.
More recent thermodynamic models take the looped states into account, see e.g. [61] and
references therein.

In general, thermodynamic models are widely applied to describe cellular systems and
often highlight the importance of non-specific binding, see e.g. [61–64] and references
therein. Even if they are able to describe the physical situation reasonably well, one
has to keep in mind that they implicitly assume that the cell is in equilibrium which
is a questionable assumption. Furthermore, the ”occupancy hypothesis“ on which all
thermodynamic models of gene regulation rely has very recently been called into ques-
tion [65].

In the following ”transition“ chapter we describe how the binding of a DNABP to a
target sequence can be considered as a biological search process, before chapters 3, 4 and
5 describe the main findings obtained during this PhD project.
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2 Biological search processes

In the previous chapter this work focused mainly on biological issues. It was emphasised
that for the survival of a bacterial cell, it is utterly important to regulate gene expression
quickly and reliably in reaction to some signal. An important ingredient is the binding
of a TF to (one of) its target sequence(s) on DNA. But what can a theoretical physicist
contribute to this topic? The answer is that from a technical point of view, a TF searching
for a target on the DNA is nothing but a specific realisation of a search process. Of course,
there is more to gene expression and regulation than just the action of TFs, but efficient
search of TFs is a pre-requisite for it. Besides, the techniques we employ here can be
applied to other search processes as well.

In 1967 Walter Gilbert and Benno Müller-Hill published an article entitled “The lac
operator is DNA” in which they estimated—without detailing the calculation—that the
association of lac repressor to its operator is diffusion-limited and that it will occur at a
maximal rate of 108 M−1s−1 [36]. The term diffusion limit can be found basically in any
publication concerning this topic.

In the following section we clarify what is meant by this and why it is highly disputed
even nowadays (compare also subsection 2.5.2). Section 2.2 will present early theoretical
descriptions of this search process, while section 2.3 is devoted to the so-called facilitated
diffusion model introduced in 1981 by Berg, Winter and von Hippel. Then, section 2.4
will summarise experimental and theoretical approaches of the last decade and finally,
section 2.5 will describe which features all variations of the facilitated diffusion model
have in common and what is criticised about it.

2.1 The diffusion limit

To understand how Gilbert and Müller-Hill obtained their estimate, we have to travel
back in time even further. In a seminal work published nearly a century ago, the Polish
physicist Marian Smoluchowski studied a bimolecular reaction in a system in which
a substance characterised by a diffusion coefficient D3 fills the infinite space with a
homogeneous concentration [66]. If at time t = 0 a perfectly absorbing sphere of radius
a centred around the origin is introduced to the system, the rate at which the substance
diffuses to the sphere is simply given by1:

kSmol = 4πD3a. (2.1)

In terms of the biological search vocabulary this is the product of the reaction radius of
the target (a) the diffusion coefficient of the searcher (D3) and the full solid angle (4π).

1Note that this rate has the physical dimension m3/s, that is volume per time unit and is usually given
by experimentalists in units of M−1s−1 (see above). Here 1M (= “1 molar”) refers to a concentration
of one mole per litre. Besides, here and throughout this work the notation in formulae has been
adjusted to the one chosen in our publications.
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Figure 2.1: Scheme of a search process in which a TF, represented by the U-shaped
particle, is searching for a spherical target in a spherical reaction volume.

To be more precise, D3 denotes the sum of the diffusion coefficients of searcher and the
one of the target. However, in the context of protein-operator associations, usually the
diffusivity of the target is neglected, since it is part of a huge DNA molecule.

The situation is schematically depicted in Fig. 2.1 where the U-shaped TF searches
for the spherical target in a reaction volume which is spherical, too. Herein, the partially
transparent shapes represent previous positions of the TF. Before stepping further it
is important to note that this result describes a rather idealized situation. In a real
biological system, there are further influences: most importantly, both searcher and
target may have charges leading to a repulsive or attractive electrostatic interaction.
Besides, the surfaces of both particles which are in general not spherical may not be
uniformly reactive [67]. The corrections to Smoluchowski’s result which these factors
imply will be discussed in subsection 2.1.3. Before we detail this, we study how the result
can be generalised to finite systems using the so-called first passage time formalism.

2.1.1 First passage time formalism

In 1980 Attila Szabo together with Klaus and Zan Schulten discussed in terms of the first
passage time formalism how to calculate the mean time τ that a particle needs to locate a
target when it diffuses with a possibly space-dependent coefficient D(r), and experiences
a potential U at the same time [68]. For a particle starting at r0, this amounts to solving
the following equation for the mean first passage time τ :

L+(r0)τ(r0) = −1, (2.2)

which involves the adjoint operator defined via L+(r) = ∇ · D(r)∇ − βD(r)(∇U) · ∇.
Now we consider a system with spherical symmetry in d dimensions, with a reflecting
boundary at a radial distance of R [68]:

dτ(r0)

dr0

∣∣∣∣
r0=R

= 0. (2.3)
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2.1 The diffusion limit

Furthermore, at the target (radial distance a), a radiative boundary condition charac-
terised by the reaction rate, κ, is assumed [68]:

dτ(r0)

dr0

∣∣∣∣
r0=a

=
κτ(a)

D(a)
. (2.4)

Taking as initial condition the equilibrium distribution in the absence of a target,

peq(r) =
rd−1 exp(−βU(r))

R∫
a
dy yd−1 exp(−βU(y))

, (2.5)

one obtains the following general result for the mean first passage time [68]:

τ =

R∫

a

dx [D(x)peq(x)]−1




R∫

x

dy peq(y)



2

+ [κpeq(a)]−1. (2.6)

In the case of free diffusion in 3D, U = 0 and D = D3, and using the dimensionless
distance x = a/R, one obtains [68]:

τD3

R2
= (1 − x)2

5 + 6x+ 3x2 + x3

15x(1 + x+ x2)
+D3

1 − x3

3κRx2
. (2.7)

Since the system volume, V , can be written as V = (1−x3)4πR3/3, in the limit of a fast
intrinsic reaction rate (κ→ ∞) the association rate ka = V/τ results as2

ka = 4πD3a
5(1 − x3)(1 + x+ x2)

(1 − x2)(5 + 6x + 3x2 + x3)
x→0→ 4πD3a, (2.8)

where the last limit for infinite system size underlines that this result is equivalent to
Smoluchowski’s formula with all the terms involving x accounting for finite size effects.

Since it will be of use later on, we also give the result for free diffusion in the 1D interval
from a, where the absorbing boundary lies, to R, where the boundary is reflective. One
obtains using U = 0 and D = D1 in Eq. (2.6) [68]:

τD1

R2
=

(1 − x)2

3
. (2.9)

In the limit a→ 0, i.e. x→ 0, and R = L, this takes the more common form:

τ =
L2

3D1
. (2.10)

2A similar formula with appropriately adapted boundary conditions will be encountered in chapter 4.
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2.1.2 Experimental results by Riggs et al.

In 1970, Arthur D. Riggs and co-workers studied the association of lac repressor with its
operator in an in vitro experiment. Using radioactively labelled DNA from a phage called
λφ80d which contains the whole natural lac region, they measured an association rate
of 7 × 109 M−1s−1 [55]. Conversely, they compared this value to a theoretical estimate
using Smoluchowski’s result, Eq. (2.1). Plugging in the values a = 0.5 nm and D3 =
50 (µm)2s−1, they obtained kSmol ≈ 108 M−1s−1 in accordance with Gilbert and Müller-
Hill’s previous estimate [36,55].

This result came as a surprise, since the reaction apparently proceeds nearly two
orders of magnitude faster than theoretically expected. Of course, the authors tried to
explain this discrepancy. They saw the reason for this remarkable acceleration in an
electrostatic interaction between the phosphate groups in the operator DNA and some
positively charged site on the repressor [55]. Even though they did not have an extension
of Smoluchowski’s formula for charged macromolecules at hand, they supposed that it
would result in a substantial acceleration of the association. How Smoluchowski’s formula
changes when electrostatic interaction between the searching particle and the target is
taken into account will be discussed in subsection 2.1.3.

Interestingly, Riggs et al. also discussed the acceleration in terms of an “extreme model
of oriented diffusion” whose basic concept is very similar to the facilitated diffusion
model which was introduced several years later [55]. According to this model rather
than diffusing in 3D as described by Smoluchowski’s theory, the TF is drawn towards
the DNA by electrostatic forces and subsequently hops or rolls along DNA. This reduces
the dimensionality of the search process, an effect that will be discussed more generally
in subsection 2.2.1.

However, Riggs and co-workers dismissed this model for several reasons. They deemed
non-specific binding to be too weak and thought that the direct electrostatic interaction
speeds up the reaction sufficiently, such that an additional acceleration via the oriented
diffusion model was unnecessary3. The most interesting counter-argument they brought
up was that the rolling mechanism implies a dependence of the association rate on the
length of the flanking DNA which they did not detect in their earlier results, where DNA
segments with a molecular weight down to 106 were studied4 [55, 70]. At the same time
they proposed to check this with even shorter DNA segments, which was later done by
Reimund Fickert and Benno Müller-Hill [71].

2.1.3 Extension of Smoluchowski’s formula

As already mentioned, the original result of Smoluchowski was obtained for rather ide-
alised conditions. To describe more realistic situations, the fact that both searcher and
target may be charged and can have a non-uniform reactivity is often taken into account
phenomenologically by multiplying the right hand side of Eq. (2.1) with an electrostatic
and a steric factor [67, 72]. As appealing as it may seem to wrap up the steric and

3Interestingly, only two years later Lin and Riggs mentioned this model again to explain the rapidity
of the specific association [69].

4Suzanne Bourgeois and co-workers mentioned preliminary results obtained with a DNA of molecular
weight of less than 105, which still showed operator activity [70].
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electrostatic influence into simple multiplicative terms, it has to be said that a concrete
calculation appears intractable.

In the case of the steric factor, one has to note that collisions between macromolecules
are not elastic [67]. Thus, after a first contact there may be several repeated collisions
such that one can assume that a non-uniform reactivity is not decisive. Conversely,
much of the modern criticism concerning the diffusion limit comes from the fact that
this formula neglects possible charges of the particles (compare also subsection 2.5.2) [72,
73]. In fact, the non-specific interaction between the repressor and the DNA backbone
is mostly electrostatic. Such electrostatic effects can be included into Smoluchowski
theory. With an attractive interaction potential U(r) in 3D, one obtains the following
generalisation of Smoluchowski’s result [74]:

kSmol = 4πD3aeff , (2.11)

where aeff denotes the effective range of the potential for a particle starting at a radial
distance r1 and with an absorbing boundary at distance a [74]:

aeff =

r1∫

a

expU(r)

r2
dr. (2.12)

Thus, an interaction potential increases the effective size of the target which is perceived
by the searching particle. Note that Eq. (2.12) returns the classical result in the absence
of a potential, U(r) = 0, when choosing an initial condition which fulfills r1 ≫ a.

However, the interior of a cell is definitely not a vacuum. Therefore one cannot directly
use this result. In fact, the electrostatic interaction is (partially) neutralised by the
presence of counter ions. Estimates tell that at a salt concentration of 0.1 M interactions
are screened at distances of a few nm [75,76]. Therefore it seems inappropriate to assume
that direct long-range electrostatic interaction between the target and the searching
particle speeds up the search process considerably.

2.2 Early studies

The surprise of the high association rate measured by Riggs and co-workers soon ignited
the interest of theoretical physicists. Two researchers, Peter H. Richter and Otto G.
Berg, and their co-workers had an outstanding role in developing these early studies.
While Richter and co-workers used a steady-state approach, the description of Berg
and co-workers was based on a calculation of mean association times. From a technical
point of view, both methods are equivalent and rely on the existence of a dominant
relaxation time [77]. Importantly, both are based on the notion that motion in reduced
dimensionality can be beneficial for the search process. Thus, before we present their
approaches in subsections 2.2.2 and 2.2.3, we first study this concept in general terms.

2.2.1 Reduction of dimensionality

That using the strategy to search for a target in reduced dimensionality can be advanta-
geous for target detection was discussed decades before experiments with the lac repressor
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were performed. In 1921 the Hungarian mathematician George Pólya showed that there
is a fundamental difference between random walks on lattices of different dimensionality:
while in 1D and 2D a particle will return with certainty to the point where it started its
random walk, in more than two dimensions this probability is less than unity5 [78].

In other words, a random walker on a line will often return to its starting point. This
redundancy can be made palpable by observing that for such a walker the probability to
move closer to the target is exactly as high as the one for moving further apart. Pólya
derived probabilities of return to the starting point. The explicit rates were considered
by Adam and Delbrück two years before the experimental results of Riggs et al. were
published [80].

They found that in d dimensions the mean time of diffusion to a target, τ (d), can be
written as the product of a distance factor and a tracking factor, which is a function of
the ratio of the linear size of the system, b, and the target size a [80]:

τ (d) =
b2

Dd
· f (d)

(
b

a

)
. (2.13)

As usual Dd denotes the diffusion coefficient in d dimensions. This result is equivalent
to the ones obtained with the FPT approach in the previous section.

Based on these observations, they compared diffusional association times in two sys-
tems. The first one consisted of two concentric spheres of radii a and b > a, where the
smaller sphere represents the target and the larger sphere the outer boundary of the
system. The second system consists of the same larger sphere of radius b, but now a
membrane lies in its equatorial plane. In the membrane’s centre resides the target which
again has size a (compare Fig. 2.2). In this case, the search has two phases: first the
particle has to bind to the membrane and then it diffuses in 2D on this surface until the
target is found.

The ratio between the diffusion times in both cases depends solely on the ratio of the
diffusion coefficients in 2D and 3D and on the relative size of the target with respect to
the system size. When diffusion on the membrane is not too slow and when the target
is rather small, they found that “combined space and surface diffusion is favorable” [80].
Importantly, this strategy is only advantageous in a certain parameter regime and as
evidenced by their calculations the search can even be slowed down in other regimes.
Furthermore they detailed that the strategy might be particularly important “in the
case of [...] small amounts of [...] regulators” [80]. Differences in strategy for biological
particles which are present in different concentrations to find a target as soon as possible
were indeed recently observed experimentally [81]. As a side remark we note that the
work of Adam and Delbrück was the first on this topic where the term “antenna” was
mentioned.

2.2.2 The contributions of Peter H. Richter

In 1974, Peter H. Richter and Manfred Eigen readopted the model that Riggs and co-
workers had rejected in their seminal paper [82]. They were not content with Riggs

5For example, in the relevant case of a three-dimensional cubic lattice, this probability amounts to
≈ 0.3405.
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Figure 2.2: Scheme of a search process involving motion in reduced dimensionality. The
target resides in the centre of a membrane which in turn lies in the equatorial
plane of the spherical search volume.

et al.’s explanation that the direct electrostatic interaction is the main factor for the
high association rate, and expected that it should play a more prominent role in the
inverse process when a particle dissociates from the target. Based on their opinion that
electrostatics mostly influences the non-specific association, they extended the classical
Smoluchowski ansatz to spheroidal symmetry.

They considered that the repressors diffuse in 3D and are able to bind non-specifically
to DNA. While bound non-specifically the repressor diffuses along the DNA with the
1D diffusion coefficient6 D1, but dissociation back to the solution occurs at a rate of
koff . The acceleration of the association reaction is explained by the fact that a typical
distance which is travelled during the bound phase is approximately7 ℓ =

√
D1/koff .

Thus, since the operator can be reached via 1D diffusion from both sides, its effective
size is proportional to twice this value. Because a cylinder can be approximated by a
long prolate spheroid, the relevant result for the association rate to a cylinder of length
2ℓ and radius B reads [82]:

ka = 4πD3
−lb

exp
(
− lb

ℓ ln
(
2ℓ
B

))
− 1

, (2.14)

where lb denotes Bjerrum’s length lb = −qDqR/(4πεkBT ) with the charge of the operator
qD, the one of the repressor qR and the dielectric constant ε. This length denotes the
distance at which the electrostatic interaction between two charges is kBT . For small
electrostatic forces, |lb| ≪ ℓ/ ln(2ℓ/B), an expansion of the exponential function yields:

ka ≃ 4πD3
ℓ

ln(2ℓ/B)

(
1 +

b

2ℓ
ln

(
2ℓ

B

))
. (2.15)

What is immediately apparent is that the form of this is similar to Smoluchowski’s
classical result, namely 4πD3 times an effective target size. In this case, the latter is

6Thus, unlike in Adam and Delbrück’s original work, now the second search phase does not proceed on
a two-dimensional membrane, but along the one-dimensional contour of the DNA chain.

7We note that some authors include a factor of two within the square root in the definition of ℓ.
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represented by a slightly intricate expression. But obviously for appropriately chosen
values of koff and D1, ℓ can be much larger than the “naked” target size. Thus, the non-
specific DNA next to the target acts as an “antenna” which collects incoming particles.

Importantly, Richter and Eigen were able to explain the strong dependence of the
specific association rate on ionic strength. Due to the experimental studies of Lin and
Riggs [69], it was known that a small increase in ionic strength causes a large increase of
the unspecific dissociation constant. This has an impact on the specific association rate,
since larger dissociation rates reduce the typical distance, ℓ, which is travelled along DNA.
This results in a smaller effective target size. Furthermore, Richter and Eigen rejected
the final argument of Riggs and co-workers by stating that the short DNA segments
that they mentioned as a testimony against a length dependence were simply not short
enough to see such a dependence [82].

Four years later, together with Rudi Schranner, Peter H. Richter published a refined
model, termed “guided diffusion” [83]. In this version, they accounted for the criticism
uttered by Otto G. Berg and Clas Blomberg that the original model of Richter and Eigen
did not explicitly couple one-dimensional diffusion along DNA to the bulk diffusion [82,
84]. Introducing the radius R of an outer cylinder which fills the reaction space and
where the concentration of searching particles is fixed, they obtained a result which was
again similar to Smoluchowski’s:

ka = 4πD3
ℓ tanh(L/ℓ)

ln(R/B)
, (2.16)

where 2L denotes the length of the cylinder and enters the last term which describes the
effective target size. Furthermore, applying the usual notation, β = 1/(kBT ), Schranner
and Richter considered that Eq. (2.16) has to be multiplied by −βU(b)/(1− exp[βU(b)])
to take into account electrostatic effects explicitly. Alternatively, Eq. (2.16) is multiplied
by (1 + 1/[kb ln(R/b)])−1 to consider a non-specific association which is not exclusively
diffusion-limited, but characterised by the intrinsic association rate k.

Interestingly, Schranner and Richter were the first to mention a fact which is similar to
what is nowadays known as the speed-stability paradox (compare section 2.4.4). Namely,
that it might be impossible to have a very large one-dimensional range, ℓ =

√
D1/koff ,

since the requirements of large non-specific affinity (low values of koff) and large mobility
(large values of D1) are somewhat opposite [83]. Besides, they argued that both for very
long and very short DNA segments, their result must be refined. In the first case, DNA
will no longer be adequately modelled as a cylinder, but rather as a random coil and in
the second case, the diffusion constant of the DNA cannot be neglected (compare the
discussion following Eq. (2.1).)

2.2.3 The contributions of Otto G. Berg

Responding to Peter H. Richter’s first paper published two years earlier, in 1976 Otto G.
Berg and Clas Blomberg studied the model in more detail [84]. This was actually the first
one in a whole series of papers, culminating in three papers by Robert B. Winter, Peter
H. von Hippel and Otto G. Berg published in a single issue of the journal Biochemistry
in 1981 [59, 75, 85]. The latter described the facilitated diffusion model which is the
foundation of nearly all more recent works. It will be discussed in section 2.3.
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While Berg and Blomberg agreed with the general concept of the steady-state model
proposed by Richter and Eigen, they criticized that two points were neglected which slow
down the search. First, the DNA far away from the target traps the repressor during the
search process, and second, even after landing near the target, some time will pass while
the TF moves towards the target.

Berg and Blomberg took these effects into account and made a few simplifying assump-
tions concerning the arrangement of DNA. Namely, they used a closed-cell approach, in
which several straight DNA segments of length 2L and radius b are aligned in parallel
and regularly spaced [84]. Around each DNA chain an imaginary cylinder is drawn with
radius R, such that the whole reaction volume is filled. The TF starts at a random po-
sition in the bulk solution and searches for the target, which resides at the centre of the
DNA chain. At the outer cylinder there is a reflective boundary condition, motivated by
the observation that in such a parallel arrangement statistically for every particle which
attempts to move to a neighbouring cylinder volume, there will be another one which
will move in exactly the opposite direction8. Within this model the mean time of target
association, τ , can be written as:

τ = τ1 +N(τ2 + τ3). (2.17)

These terms have a straightforward interpretation: τ1 is the mean time that passes
until the TF associates for the first time non-specifically with the DNA. After that
there are N consecutive rounds in which on average the particle diffuses in 3D for a
time span τ2 = 1/(4πD3Lbkn0) and slides one-dimensionally along DNA for a time
span τ3 = 1/koff [86]. Here n0 denotes the density of operators and the conventional
association rate can be obtained from the mean search time via ka = 1/(τn0).

We dot not discuss the individual form of the terms N and τ1 in detail, since on the
one hand we will encounter modified versions of them in chapter 3 and on the other
hand below we will give the corresponding terms which appeared in a follow-up paper
published one year later. Intriguingly, plugging in the experimental results of Riggs et

al., they were able to predict a one-dimensional diffusion coefficient of 0.3 (µm)2

s many
years before such values were directly measurable.

In the above mentioned first follow-up paper, Berg and Blomberg considered a system
with slightly different boundary conditions [86]. At the outer cylinder instead of the
reflective boundary condition, they introduced an absorbing boundary condition. How-
ever, particles which reached this radial distance from the DNA were not assumed to
be lost, but rather were reintroduced to the system with an arbitrary coordinate along
the cylinder. This means that a particle which reaches this distance loses all its memory
of where it dissociated before. Technically, the flux of particles which have dissociated,
is partitioned into those who return to the chain without ever reaching the outer cylin-
der boundary, φ(t), and those who did, ψ(t). These two functions are combinations of
modified Bessel functions. We dot not state their explicit form, but in the analogous
case of our generalised model presented in chapter 3, they will be presented. With these
assumptions the Laplace transform of the flux of particles into the target, Φ̃, is described

8In chapter 3 we will use these very boundary conditions in our generalised facilitated diffusion model
because they allow for a closed-form solution.
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by [86]:

Φ̃(u) =
LG̃(u)

1 + 2
{
u+ koff

(
1 − φ̃(u) − ψ̃(u)

)} ∞∑
n=1

(
v1(u, n) + koff

[
1 − φ̃ (v3(u, n))

])−1
,

(2.18)

where v1(u, n) = u+ D1n2π2

L2 and similarly v3(u, n) = u+ D3n2π2

L2 depend on the variable
u which is the Laplace variable complementary to time t.

Here and throughout this work, tildes denote Laplace transforms whose utility lies in
the fact that—if fluxes are considered—their value at u = 0 gives the probability with
which the target will be detected. Besides, apart from a pre-factor of −1 the value of their
derivative at the origin is the (conditional) mean first passage time to the target [84]. In
the present case, one obtains Φ̃(u = 0) = 1, which simply tells that in the finite system
with reflective boundaries at the periphery of it, the target will be found with certainty.

Calculating the first derivative of Eq. (2.18) at u = 0, one obtains that the mean target
association time τ can again be written as in Eq. (2.17), where N has the following
form [86]:

N =

∞∑

n=1

2koff

D1n2π2/L2 + koff [1 − φ̃(Dn2π2/L2)]
. (2.19)

Given that φ̃ has a rather intricate form involving modified Bessel functions, Berg
and Blomberg made the assumption that the term 1 − φ̃ can be approximated by
(1 + bk ln[R/b])−1, in close analogy to Schranner and Richter’s correction term. This
corresponds to assuming that the re-association flux to positions which are close to the
point of dissociation can be lumped together at the latter [77]. To ease the notation the
macroscopic dissociation rate Λ = koff/(1+bk ln[R/b]) was introduced. Here, macroscopic
dissociation is to be understood as opposed to the microscopic one with rate koff , in the
sense that Λ/koff describes the fraction of particles which lose correlation with their point
of dissociation [77]. In modern terminology this definition allows to distinguish between
micro- and macro-hops. One obtains for the mean number of search rounds [77]:

N ≈ koff
Λ



√

ΛL2

D1
coth



√

ΛL2

D1


− 1


 . (2.20)

Thus, the number of search rounds which is needed to find the target is mainly deter-
mined by the ratio of the half-length of DNA, L, and the effective range of the operator√
D1/Λ [77, 82]. For L ≫

√
D1/Λ, one obtains N ≈ koff ·

√
L2/(ΛD1), and in the

opposite limit
√
D1/Λ ≫ L this yields N ≈ (koffL

2)/(3D1) (compare Eq. (2.10)).
The macroscopic dissociation rate can be generalised to take electrostatic interactions

into account by redefining Λ via [77,87]:

Λ = koff



1 + bk exp(−βV (ρ))

R∫

b

1

ρ
exp(βV (ρ))dρ





−1

, (2.21)

where V denotes the electrostatic potential. For V = 0, this yields the previous result,
Λ = koff/(1 + bk ln(R/b)).
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sliding
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ciation
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Figure 2.3: Scheme of a searching TF (adapted from [67]). The blue TF slides along
DNA. The dark red TF has just dissociated from DNA and since it will re-
associate at a nearby position, this constitutes an intra-domain dissociation
and association. Conversely, the grey TF leaves the domain of this DNA
molecules after dissociation, making an inter-domain dissociation. Finally,
the green TF is bound to two stretches of DNA simultaneously, enabling it
to perform an inter-segment transfer.

2.3 The Berg-von Hippel or facilitated diffusion model

In a seminal series of papers in 1981 Otto G. Berg, Peter H. von Hippel and Robert B.
Winter combined their earlier results into a generalised model and tested its predictive
power with experiments [59,75,85].

A short note on nomenclature The model that Otto G. Berg and co-workers detailed
in this series of papers bears many names. Some refer to it as the Berg-(Winter-) von
Hippel model, while most call it the “facilitated diffusion” model. The precursor model
introduced by Schranner and Richter was named “guided diffusion”, while Riggs and
co-workers spoke of “oriented diffusion” and finally Robijn Bruisma coined the term
“mixed diffusion” [19, 83]. In the following we continue to use the term “facilitated
diffusion model”, simply because it is the most common one, even though one might
argue that the more neutral term “mixed diffusion” is more appropriate.

Importantly, Berg and co-workers introduced the concept of a “hierarchy of non-specific
dissociation rates” in which they distinguished between microscopic, intra-domain and
inter-domain dissociations [85].

After having dissociated from DNA, with a rather high probability, the TF will return
to a position near the dissociation point. This is a microscopic dissociation, mentioned
in the previous section. As implied by the dark red TF in the schematic Fig. 2.3, it
can also land on DNA which is close in 3D space, but distant along the contour of
DNA. This constitutes an intra-domain dissociation. Finally, inter-domain dissociations
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refer to events where the whole domain of a DNA molecule is left (compare the grey
TF in Fig. 2.3). Such an inter-domain dissociation is complementary to the association
described by τ1 in Eq. (2.17), which is the mean time of first non-specific association in
their previous publications.

In modern terminology, one speaks of “hops” if the re-association point is close to the
dissociation point and of “jumps” if these two position are far apart along the contour.
Berg and co-workers also introduced the concept of inter-segment transfer (IT). This
describes a mechanism, in which a protein that has two binding patches uses them to
simultaneously bind to two stretches of DNA which are close in 3D space [85], compare
the green TF in Fig. 2.3. If the binding patch which subsequently releases DNA again
is the one which was bound in the beginning while the newly built connection remains,
the protein effectively translocated along DNA without dissociation. This distinguishes
this mode of transport from inter-segmental jumps, in which the TF dissociates and
subsequently associates with another stretch of DNA. Within this full facilitated diffusion
model, the specific association rate can be written as

ka =

[
(Mk1)−1 +

(
k2DTKRD

1 +DTKRD

)−1
]−1

. (2.22)

The first term on the right hand side corresponds to the rate for the first non-specific
association with DNA, where M denotes the total number of (non-specific) sites and k1
the non-specific association rate constant [85]. The interesting part is the second term,
which gives an “effective transfer rate” [85]. It describes the translocation along DNA
towards the target after the first landing on DNA. DT refers to the total concentration
of (non-specific) base pairs and KRD to the non-specific binding constant [85].

Usually the reaction described by the first rate is very fast due to the large number
of possible non-specific binding positions, such that it can be considered as an upper
limit for ka [85]. This makes sense, since the target cannot be found faster than the
DNA as a whole. The exact form of the second term depends on which translocation
mechanisms are taken into account. In the appendix of their seminal paper, Berg and co-
workers study a discrete model of the search process [85]. They state the following form
of the rate k2 appearing in the second term on the right hand side of Eq. (2.22) which
involves the rate of inter-segment transfer to any site on DNA (ν) and the concentration
of operators9 (OT ):

k2OT =
Λ + ν

M tanh(Ω) coth(MΩ) − 1
with Ω = ln

(√
Λ + ν

4Γ
+

√
1 +

Λ + ν

4Γ

)
. (2.23)

Γ refers to the sliding rate (the discrete analogue of D1) and in deriving Eq. (2.23) it
was assumed that the fraction Λ/koff of dissociating particles re-associates to a random
position along the DNA, while the remaining fraction returns to the dissociation position.
The fluxes due to IT and macroscopic dissociation are simply additive, since for ITs it
is assumed that they lead to a random position along the DNA.

9Note that it is assumed that there is a single binding site on a single DNA molecule within the cell,
while in a real bacterial cell there is on average more than one DNA molecule and there are multiple
binding sites.
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In the specific case when the TF is not able to slide, Γ = 0, one obtains

k2OT =
Λ + ν

M − 1
. (2.24)

If additionally, the TF cannot perform ITs, ν = 0, this corresponds to a search without
any facilitating mechanism [85]. The TF lands on a random base pair, remains there
and dissociates. In this manner it has to probe (nearly) all non-specific binding positions
until it eventually finds the target. It is noteworthy that this finite limit of Eq. (2.23)
exists, since in models which a priori assume that the target is detected via sliding, as
for example Eq. (2.20), the target detection time diverges for a TF which cannot move
along DNA (compare also the discussion in [88]).

In the biologically more relevant regime, where the sliding rate is much larger than
the dissociation rate or the rate at which an IT loop is formed, Γ ≫ Λ + ν, we have [85]:

k2OT =
Λ + ν

M
√

Λ+ν
4Γ1

coth
(
M
√

Λ+ν
4Γ1

)
− 1

, (2.25)

in clear analogy to the previous result, Eq. (2.20). It is important to note that this result
does not imply per se that the target will be found quicker than with three-dimensional
diffusion alone. We will discuss this issue below.

2.3.1 How is sliding made possible biologically?

Even if one is able to show theoretically that motion in reduced dimensionality can
be beneficial, it is not yet clear if such a motion is possible biologically. How this
works out was addressed by Robert B. Winter and co-workers in 1981 [59]. Based on
earlier observations that the non-specific interaction is mainly electrostatic and mediated
by the release of counter ions, they supposed that sliding happens on an isopotential
cylinder surface [59]. This can be understood as follows: during sliding motion counter
ions in front of the repressor are displaced, but quickly replaced by others behind the
repressor [59]. Under these circumstances, it is expected that the activation barrier which
has to be expended for this kind of motion is rather small [59]. Related energy landscapes
were later discussed by Dahirel and co-workers [89] and by Bénichou and co-workers [90].
The importance of non-specific binding in vivo was highlighted for example by Bakk and
Metzler [64].

2.4 Modern studies

After the introduction of the facilitated diffusion model, there came a rather silent phase,
in which not many studies on this subject were published. This changed in recent years,
mostly due to an enormous progress in experimental possibilities: while in the 1970s
and early 1980s one-dimensional sliding of proteins along DNA had been a reasonable
assumption, by now it was possible to show that it is an experimental reality [91]. Not
only in this respect it has become possible to study biological processes on a single
molecule level, see e.g. the comprehensive review by Gene-Wei Li and X. Sunney Xie [25].
We shortly summarise the important recent experimental findings.
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2.4.1 Experimental studies

In the 1990s several groups repeated the measurements of the association of lac repressor
to the operator, yielding more [92] or less [71] the earlier results. Thereby, each of the
experimental groups criticised the techniques that previous studies used. The motion of
proteins in the cytoplasm of cells was studied, showing subdiffusion for mRNA [93] and
normal diffusion for other proteins [94]. In another context it was shown that mRNA in
bacteria can remain close to their site of transcription for rather long times [95]. Other
works focused on specific microscopic processes necessary for the facilitated diffusion
mechanism (hopping/jumping and importantly sliding): the latter has been unambigu-
ously shown to take place [96–103].

Most importantly, Johan Elf and co-workers performed single-molecule experiments
with the lac repressor in living E. coli cells. In the first study, the slightly modified
lac system was first induced by adding IPTG and subsequently anti-induced by adding
2-nitrophenyl-β-D-fucoside (ONPF) [39]. Then it was monitored at which rate the TFs
re-bind to one of the operators in the system. For the three repressors which were
typically present in the cell in their experiments, they obtained that the first one of
these will on average bind to one of the two operators after 59 s [39]. A single repressor
should then find a single operator after roughly 59 s × 2 × 3 = 354 s [39]. They also
found the residence time on DNA to be in the range of 1 ms [39]. Besides, using an
additional in vitro assay they could determine a one-dimensional diffusion coefficient of
D1 = 0.046 (µm)2/s for the repressor.

In a follow-up study, Hammar et al. used different strains of E. coli in which the
region around the main operator was modified stepwise [104]. Introducing a second
strong operator near the target and binding sites for other proteins as roadblocks near
the target, they were able to show three main points: first, that the lac repressor uses the
facilitated diffusion mechanism in living cells with sliding lengths of (45 ± 10) bp [104].
Second, that roadblocks in the form of other bound proteins cannot be by-passed by the
sliding lac repressor [104] (compare the simulations by Marcovitz and Levy [105]). And
third, that in about 90 % of the cases the repressor will overshoot the target without
detecting it [104]. In a very recent paper, Hammar and co-workers compared the binding
of lac repressor to the natural O1-operator with binding to the symmetric operator Osym,
finding that dissociation from the stronger operator is slower, while the association rate
is similar in both cases [106].

Going one step further, the group of X. Sunney Xie has published important studies
on gene expression: using fluorescent markers, they observed the expression of single
proteins [24], showed that a stochastic single-molecule event can determine the phenotype
of a cell [18] and finally they quantified the E. coli proteome and transcriptome [107].
Mostly based on thermodynamic models and using deep sequencing more and more
microscopic details of the lac system can be assessed quantitatively [40, 108, 109]. This
equips simulations with reasonable parameter values.

Some experimental as well as theoretical studies focused on the looping of DNA me-
diated by tetrameric lac repressors which are bound to two operators [110, 111], while
others drew conclusions from the organization of genes on chromosomes [112–121]. These
works often studied the co-localization effect, i.e. that some DNABPs are produced close
to the place where they have to perform their task later on [120]. In turn, the publication
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of these experimental studies led to a renewed interest of theoreticians in this subject
over the last decade.

2.4.2 Theoretical studies

In recent years an immense number of theoretical studies on the search of DNABPs for a
target sequence on DNA was published. This can already be seen by noting that there is
a whole series of related review articles, each emphasizing different aspects [72,122–125].
Therefore we only shortly mention most works, and focus on those which were particularly
influential and/or relevant for our studies. We start with those which are based on a
stochastic approach. What is common to all of them is that the rebinding position
on DNA is assumed to be uncorrelated with the position where the TF dissociated.
All two-state models and a motivation of what is meant by that will be presented in
subsection 2.4.4.

In 2004 Michael Slutsky and Leonid A. Mirny formulated a simple version of the
facilitated diffusion model [126]. Using the notation, τ̄1d and ¯τ3d for the mean times
spent on and off the DNA, they wrote the mean search time as [126]:

ts(n̄,M) =
M

n̄
[τ̄1d(n̄) + ¯τ3d] , (2.26)

where M denotes the number of base pairs in the DNA and n̄ the average number of
base pairs that is scanned during a sliding event. From this form which is equivalent
to Eq. (2.17) (apart from the term τ1), they deduced the often cited result that the
search is optimised when equal amounts of time are spent diffusing in 1D and in 3D:
τ1d(n̄opt) = τ3d [126]. Quite optimistically they predicted an in vivo search time of a
single repressor to be in the range of (1 − 10) s. More realistic was the estimation of a
sliding distance of 50 bp based on the assumption of a one-dimensional diffusion coefficient
which is two orders of magnitude smaller than the one in 3D [126]. Interestingly, they
also noted that the presence of nucleosomes which block the searching particles can even
be advantageous [126]. We return to their model in subsection 2.4.4 when we discuss
two-state models.

By the time that Mathieu Coppey and co-workers published their paper, Slutsky and
Mirny’s work was already available as a preprint. They found that when both the
dissociation and the re-association times are exponentially distributed (with rates koff
and λ′), the Laplace transform of the first passage time density to the target, F̃ (u), can
be written as [127]:

F̃ (u) =
〈j̃(koff + u|x)〉x

1 − 1−〈j̃(koff+u|x)〉x
(1+u/koff )(1+u/λ′)

, (2.27)

where j̃(koff |x) contains all the information about the one-dimensional search and 〈· · · 〉x
represents an average of some quantity over the starting position, x, on the DNA. The
function F̃ (u) is equivalent to the quantity Φ̃(u) appearing in Eq. (2.18). Again, one has
F̃ (u = 0) = 1 implying that all particles will eventually reach the target irrespective of
the exact form of j̃(koff |x). For a sliding particle, and at u = 0, this function is given
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by [127]:

〈j̃(koff |x)〉x =
1

M + L

(
2r + ℓ

[
tanh

(
L− r

ℓ

)
+ tanh

(
M − r

ℓ

)])
, (2.28)

where again ℓ =
√
D1/koff . Here 2r denotes the size of the target, and L− r and M − r

the flanking lengths of non-specific DNA to the left and to the right of the target, such
that L + M is the total length of DNA. The finiteness of the target enables a direct
target detection from the bulk solution as implied by the first term in brackets on the
right hand side of Eq. (2.28). This is a feature which many theoretical studies lack, as
criticised by Veksler and Kolomeisky [88]. The second term in brackets denotes the flux
of particles which reach the target via sliding. For the mean time of target association,
one obtains [127]:

τ =

(
1

koff
+

1

λ′

)(
1

〈j̃(koff |x)〉x
− 1

)
. (2.29)

In the case of an infinitely thin target, r = 0, which can only be found via sliding and
which lies in the middle of the DNA chain, M = L, one has

〈j̃(koff |x)〉x =
ℓ

L
tanh

(
L

ℓ

)
. (2.30)

Plugging this form into Eq. (2.29), one obtains a mean search time which is equivalent
to Eqs. (2.17) and (2.26), where the first bracket contains the mean times spent in 1D
and 3D and the second bracket the number of search rounds.

Importantly, for long DNA chains and an infinitely small target, Coppey and co-
workers were able to show that the dissociation rate which minimises the search time is
given by [127]:

koff,min = λ′ − 4
√
D1λ′

L+M
+ O((L+M)2). (2.31)

This generalises Slutsky and Mirny’s simpler result that an equipartition of times is
optimal [126]. As can be seen from Eq. (2.31) this is only valid for very long chains.
Considering a very long chain, but a finite target size, this results becomes [127]:

koff,min =

(
λ′r +

√
λ′r2 +D1λ′

)2

D1
. (2.32)

In this equation it becomes apparent that for rather large target sizes and/or slow one-
dimensional diffusion the optimal dissociation is larger than the re-association rate. Thus,
the less effective one-dimensional search is, the sooner this search mode should be left.
This underlines the statement that the “facilitated” diffusion model does not facilitate
the search for all microscopic parameters.

Subsequently, this approach was generalised by Eliazar and co-workers in order to
include anomalous transport mechanisms [128, 129]. Another route of generalisation
was realised by Bénichou and co-workers when the assumption of complete loss of cor-
relation between dissociation and re-association was abandoned. The calculated jump
distributions were compared with experiments performed with the restriction enzyme
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EcoRV [99,130]. Their two-state model introduced in [90] and extended in [124] will be
discussed below.

Alexander Y. Grosberg and co-workers wrote a series of papers shedding light on
different aspects of the target search process. These authors studied the question what
happens when the non-specific binding energies are not homogeneous [131]. In another
work the role of inter-segment transfer was discussed [132]. IT was also studied as a
means of translocation along DNA by other authors, see e.g. [133], where the problem
was treated in terms of Lévy flights. Finally, Grosberg and co-workers focused on the role
of the conformation of DNA [134], and showed an intriguing analogy of search processes
to electrostatic problems. Their result invoked a large number of different scaling regimes.
Interestingly, just like Slutsky and Mirny they found that the optimal strategy implies
to spend equal amounts of time on and off the DNA [134].

The dependence of the target association rate on the DNA’s conformation was also
studied by other authors, namely the group of Andrew J. Spakowitz [135, 136] and by
our group where the experimental results of van den Broek et al. [137] were described by
the model presented in Lomholt et al. [138]. In the experiment of van den Broek et al. a
dual optical tweezers set-up was used to study the association of the restriction enzyme
EcoRV with a single DNA molecule [137]. While van den Broek et al. found that target
association proceeds faster in a random coil than for a target on straight DNA, the gist
of the theoretical and computational study of Koslover et al. was that the geometry does
not play a decisive role [136, 137]. More details will be considered in chapter 4 which is
devoted to this issue. The role of dynamically varying DNA conformation was studied
in [136, 139]. Since in a living cell, there are way more other macromolecules than in
an in vitro experiment, these crowding effects came into attention. This was detailed in
theoretical studies [140–142] as well as in simulations (see below).

Extending the FPT approach of Szabo and co-workers, Konstantin V. Klenin and
co-workers recalculated the mean target search time under the assumptions that at all
distances from the target the one-dimensional and the three-dimensional pathways are
equilibrated [143]. They obtained a result which looks very similar to the one for a target
with the form of an oblate spheroid obtained by Richter and Eigen [82]. This was also
compared to a computational model presented in [144].

Similarly, Cherstvy et al. introduced a “correlation” term between the one-dimensional
and the three-dimensional portion of a single search round [145]. Importantly, in the
second half of this paper also the recognition of the target sequence was modelled. In the
spirit of Berg and Ehrenberg, Huan-Xiang Zhou studied the search process for a target of
finite extension on a straight cylinder in terms of a steady-state Smoluchowski equation
involving a surface potential [146–148]. Further theoretical models were introduced by
Belotserkovskii and Zarling [149], Park et al. [150] and Malherbe and Holcman [151].

2.4.3 Computational models

In parallel to the theoretical studies, the enormous increase in computational power led
to the publication of many computational models. Nicolae-Radu Zabet wrote a whole
series of papers dealing with gene regulation in prokaryotes [152–158].

Ana-Maria Florescu and Marc Joyeux showed in three papers that the facilitated
diffusion mechanism took place in their simulations, but argued that its potential to
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yield faster-than diffusion rates in living cells is limited [73, 159, 160]. We will comment
on these criticisms in subsection 2.5.2.

Davide Marenduzzo and co-workers published two Monte Carlo studies on this subject.
The first one focused on the influence of different types of confinement and of several
values of the stiffness of DNA on the search dynamics [161]. Most importantly, they also
studied different concentrations of searches, an aspect which is often overlooked, and
found that in the case of ten searchers variations of the non-specific affinity around the
optimal value do not change the search time drastically [161]. Their second publication
introduced other proteins as “crowders” and “blockers” into the system [162]. Again they
found that in their simulations which mimic the crowded interior of the cell the search
time is rather “robust” [162]. This nicely agrees with earlier experimental findings [163]
and we will find out in chapter 4 that our semi-analytical model is able to recover this
robustness.

The group of Yaakov Levy performed several numerical studies on protein-DNA search
which focused on different aspects on the problem. Lately, this was the influence of mobile
and immobile blockers for the search process on a 100 bp long stretch of DNA [105].
Finally, Yann von Hansen et al. studied the influence of hydrodynamic effects on DNA-
protein binding [164].

2.4.4 Two-state models and the speed-stability paradox

Already in 1981 it was hypothesised by Robert B. Winter and co-workers that there
might be something like a specific and a non-specific binding mode. They described
the sliding of TFs as “movement along a continuous (locally ’featureless’) cylinder” [59].
Furthermore, they supposed that unlike in binding to the target where specific hydrogen
bonding takes place, faced with non-specific DNA the TF performs a change of con-
formation, in which the hydrogen bonding groups are no longer present, but in which
the electrostatic interaction is maximised [59]. Importantly, they formulated the main
requirement for an efficient search process [59]:

“a general [...] affinity between the ’target-seeking’ moiety and the gen-
eral (nonspecific) target surface and a rapid equilibrium between the target-
specific form and a target-nonspecific form of the binding ligand.”

However, these two states were not considered explicitly in their theoretical model. Some
modern models do this because of the so-called speed-stability paradox, sometimes also
referred to as speed-selectivity paradox. What is meant by that?

Based on the quite reasonable assumption that the protein-DNA binding energy can
be well approximated by a Gaussian distribution, Slutsky and Mirny interpreted the
sliding motion as a walk in a random energy landscape. As shown in the late 1980s by
Robert Zwanzig, if the roughness of the potential is denoted by σ, the ensuing diffusion
coefficient is given by D ∝ exp(−σ2) [165]. In terms of the search process this means
that fast sliding requires the roughness of the binding energy profile to be at most in
the range of 1 kBT [126]. Conversely, since the target site is by definition the site with
the largest binding energy, it can be shown that a sufficiently high stability implies that
the roughness should be approximately 5 kBT for a genome with a size in the order
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Figure 2.4: Scheme of the two conformational states of a TF. While in the search state
(red), the particle is able to slide quickly along DNA, but it cannot detect
the target. In the recognition state (blue), the particle’s mobility is reduced,
but it is able to bind specifically to the target.

of magnitude of 1 Mbp10 [126]. Obviously, if there is just one binding mode these two
constraints cannot be fulfilled at the same time.

Therefore the existence of two different binding modes was supposed. In the first one,
often termed “search” state, the protein is only weakly bound and experiences a rather
smooth energy landscape which enables fast sliding [126]. This is illustrated by the red
particle in Fig. 2.4. The second state, named “recognition” mode, conveys a much more
rugged energy landscape, but it is in this mode that the particle binds specifically [126].
Compare the blue particle in Fig. 2.4.

Slutsky and Mirny also supposed that the conformational change between these two
states involves partial folding of the TF and extrusion of water [126]. For LacI, such
considerations were put on stable experimental grounds by NMR studies which showed
that a helix is formed in the hinge region in the specifically bound repressor, but not in
the non-specifically bound one [166]. Thus, at least this change in the hinge region must
take place when a conformational change occurs. Kalodimos et al. further stated that
such motions happen on the micro- or milli-second time scale [166].

Importantly, Slutsky and Mirny proposed that the rate at which conformational changes
occur is coupled to the underlying nucleotide sequence, in such a way that they are more
probable to occur at sites which are similar to the target site [126]. The decisive role of
the barrier height associated with the switching between conformations was highlighted:
if it is too low, at too many sites the DNA will be checked for the target, thus rendering
the two-state scheme ineffective. Conversely, if it is too high it becomes increasingly
probable to miss the target [126].

Before we continue with a descriptions of other two-state models, it is time for a
cautionary remark. It was noticed early on by Robert B. Winter and co-workers, that
mapping the conformation of the protein on the two extreme states is just an approxi-

10Later these calculations were extended by Sheinman et al. who took also gapped energetic distributions
into account [124].
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mation to the real continuum of possible binding interactions [59]. Thus, such two-state
models should only considered to be a working hypothesis.

The contribution of Longhua Hu and co-workers to the two-state models was particu-
larly important because they noted that effects similar to “impedance matching” are at
work [167]. While in the case of an infinitely fast target detection, the one-dimensional
search phase can be optimised by increasing the one-dimensional diffusion coefficient,
for a finite target detection rate an increasing of the speed of one-dimensional diffusion
brings along the risk of “overshooting” the target. This is important in light of the
already mentioned experimental findings which implied that the target will not be recog-
nised at every encounter [104]. Thus, simpler one-state models might not be able to
describe the situation appropriately. Finally, Hu et al. assumed that the interconversion
rates between the two states is fast enough to consider the system as equilibrated.

We will not detail the model described by Reingruber and Holcman, since it will be
contained as a limiting case of our model presented in chapter 3 [168,169]. However, we
report here one of their central findings which at first sight is counter-intuitive: they con-
sidered an one-dimensional interval in which a particle diffuses and meanwhile switches
randomly between two states. One of the states is characterised by a higher diffusion
coefficient, but in this state the target at the left end of the system cannot be found.
Conversely, in the slower diffusing state the target at the left end can be detected. What
they found was that this happens the fastest if most of the time is spent in the faster
state in which, however, the particle is target-insensitive [168]. This is in clear contrast
to the equilibrium assumption of Hu et al. [167].

Olivier Bénichou and co-workers introduced a two-state model which was later ex-
tended [90, 124]. Building on the stochastic approach of Coppey et al., they assumed
that probing for the target occurs rarely in comparison to sliding or dissociation. They
obtained that there are two characteristic time scales, a short one in which the recog-
nition state is never entered at a non-target site and a long one in which this happens.
This leads to differences between typical search times and the mean search time, an
effect which becomes increasingly important when several proteins are searching for the
target [90].

Further two-state models were described by Rajamanickam Murugan [170] (and refer-
ences therein) and Huan-Xiang Zhou [171] who both extended their previous one-state
models and lately by Shi Yu and co-workers [172].

2.5 General features of the model and criticism

In this final section of the present chapter, we conclude what is common to all facilitated
diffusion models. Afterwards we consider the criticism which has been uttered towards
it. As a general caveat we note that the values of most of the microscopic parameters
which enter the model are not known exactly. Since these quantities are multiplied with
each other, final results should be taken with a grain of salt, compare [67].

2.5.1 General features

The facilitated diffusion model is based on the observation that many DNA-binding
proteins have a general affinity for DNA. That this is possible at all is due to its ability
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to specifically bind its target [125]. Thus, although some proteins may bind solely to
non-specific DNA stretches without having a specific target, it is simply impossible to
have a protein which binds specifically to a target without having a non-specific binding
affinity [125].

In terms of the search process alone, this constitutes a liability because each non-
specific binding position effectively acts as a trap. It only pays off if the protein is able
to actively use this “junk DNA”, either by sliding along it or by invoking inter-segmental
transfer. In terms of sliding, the benefits can be attributed to the “antenna effect”
mentioned before: the antenna consists of the range of non-specific binding positions
near the target from which the latter can be detected via sliding. Thus, for the searching
particle the target appears to be larger. However, the facilitated diffusion model only
accelerates the search if this antenna effect is able to outperform the slow-down due to
binding to other non-specific sites far away from the target. These effects clearly depend
on the concentration of non-specific sites: when the concentration of non-specific DNA
is very high the search process can become very ineffective.

Another subtle effect is the “tethering of proteins to the DNA” [136]: in dilute con-
ditions, being bound to non-specific DNA implies that at least the DNA as a whole has
been found and the effective protein concentration near the target increases. This can be
considered to be the little sibling of the increase of local concentration due to looping.

A further important point is the concentration of searching particles. If their concen-
tration is high, the time interval between events when one of the searchers lands near
the target will be short. Then the possible acceleration due to long sliding lengths will
become increasingly unimportant. This is particularly true for RNAP, which has copy
numbers of a few thousand in a living cell, while acceleration effects are more impor-
tant for sparsely present TFs like the lac repressor [125]. Concentration effects were for
example studied by Sokolov and co-workers showing that for purely three-dimensional
search the target detection rate is directly proportional to the concentration of search-
ing particles, while for a purely one-dimensional process this rate is proportional to the
square of the concentration [97].

2.5.2 Modern criticism

As a popular theoretical approach, the facilitated diffusion model also faces some crit-
icism which should be mentioned here. Some of the authors criticise the often heard
statement, that the facilitated diffusion mechanism enables reactions above the diffusion
limit. Most notably, Stephen E. Halford wrote a critical article entitled “An end to 40
years of mistakes in DNA-protein association kinetics”, even though he himself derived
a simplified version of the facilitated diffusion model several years before [72, 173]. The
central point of his critique is that the measured high association rates are not truly
faster than the diffusion limit when taking into account the electrostatic interaction.
Consequently, in his way of speaking it is the diffusion limit itself which varies with the
salt concentration [72]. However, since there are so many non-specific sites to which the
TF can bind, he makes a statement which is close in spirit to Riggs et al.’s interpretation
of the association rate [72]:

“[...] the surprising feature of DNA-protein association is not that they are
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often rapid but rather that they are not incredibly slow.”

This is the central point. Often the observed target association rate is directly com-
pared with the corresponding rate in the hypothetical situation without interaction with
non-specific sites. Obviously, in the crowded interior of a living cell it could be faster to
“switch off” the interaction with non-specific sites, just to diffuse in 3D and to associate
with the target. However, a real protein does not have this option. As detailed above, the
ability to form a specific complex with the target site implies that there is a non-specific
interaction, at least to some extent [125]. Thus, it seems more appropriate to compare
association rates of a full model with the ones obtained with a minimal model in which
non-specific interaction occurs, but no sliding is possible. Then, however, any sliding
ability will speed up the process. In general, in a cell non-specific binding keeps the TFs
close to the genome and increases their local concentration.

Furthermore, it has been argued that facilitated diffusion might not be necessary for
all proteins, especially when they come in high copy numbers. While this is certainly
true, the statement that a fast search process could be enforced by increasing the copy
numbers of the searching proteins remains questionable [125]. In a living cell many
proteins have to find their target sequences. If all of them “chose” to increase their copy
numbers, this would aggravate crowding effects; most importantly, their self-diffusion
would slow down and it would be questionable if such a search process still was more
efficient. Thus, any study invoking more searching particles should take such effects into
account. For example, Gene-Wei Li and co-workers made the simplifying assumption that
the searching proteins constitute a fixed fraction of the total number of proteins [141].
Increasing their concentration helps if they are present in low copy numbers, but above
a certain threshold crowding effects slow down the search such that there is an optimal
crowding level in between these two regimes [141]. Furthermore, one has to note that it
is costly to produce TFs.

Alex Veksler and Anatoly B. Kolomeisky questioned the very existence of the speed-
stability paradox [88]. In their opinion, models in which the coordinate along the DNA
axis is treated as continuous are only approximate and should be replaced by discrete
models. Then, considering scanning lengths below 1 bp would yield near-optimal search
times. However, this argumentation remains elusive: on the one hand, clearly discrete
models are an approximation to the continuous reality and furthermore numerous ex-
periments show that sliding occurs on much longer length scales. Another one of their
points of critique is that continuum models with an infinitely small target disregard the
possibility of finding the target via 3D diffusion and thus assume a priori target location
by sliding. This is definitely true, but as shown already by Coppey et al. continuum
models can be combined with targets of finite extension [127].

All in all, in the theoretical description of the association of proteins with target
sequences on DNA the facilitated diffusion model is well established.
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3 Generalised facilitated diffusion model

The question how proteins are able to bind quickly to target sequences on DNA is of
paramount importance. We deal with this problem by studying the association of a
single protein with a single target. The model presented in this chapter is generic,
but whenever we perform explicit numerical calculations we will use values obtained
for the lac repressor in E. coli, because this is the system which is best characterised
quantitatively. The approach described herein is based on the formulation of the search
problem that was presented in Otto G. Berg’s first paper on this topic in 1976 [84].
However, our work goes beyond this early approach by combining this search model with
the assumption that the protein can be present in two different conformations while it
is bound to DNA. This two-state model was anticipated by Winter and co-workers in
1981 and formally introduced by Slutsky and Mirny as already described in detail in
subsection 2.4.4 [75,126].

The combination of both approaches is very helpful, because it allows a closed-form
solution of the problem. Thereby, the central quantity to be calculated is the mean search
time, τ . Its knowledge enables us to obtain what is usually measured experimentally,
the specific association rate, ka which is given in units of M−1s−1:

ka =
1

τ n0
. (3.1)

Again the operator density on the DNA is denoted by n0. We now first describe the
model in detail, before we present the results in sections 3.2 and 3.3. Section 3.4 relates
this model to previous approaches and section 3.5 will conclude this chapter by describing
its benefits and shortcomings.

The content of this chapter is an comprehensive extension of the work published before
in [174].

3.1 The model

In this model, which we call generalised facilitated diffusion model (GFDM), the DNA
is considered as a cylinder characterised by its radius R1 and its contour length 2L.
Both the situation of a straight cylinder and of a completely coiled configuration will
be considered. For straight DNA we use the closed-cell approach which was already
mentioned in section 2.2.3. It was noticed early that the difference to the related approach
in which the TF completely loses its correlation with the unbinding position at a certain
radial distance is modest [86]. In all cases, the operator which will be called target in
the following, is assumed to be infinitely thin and in the middle of the DNA, such that
the flanking length on both sides of the target amounts to L.

The situation is illustrated in Fig. 3.1, where for the sake of visibility a target of
finite extension is shown in form of the black part of the cylinder’s surface. The TF is
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Figure 3.1: Scheme of the search for a target (black stretch) on a straight cylinder in
terms of the facilitated diffusion model. The TF lands on DNA, slides along
it and dissociates again.

represented by the red U-shape. The partially transparent shapes show previous positions
of the TF.

As initial condition we put the searching TF at a random position in the bulk solution.
Note that this is not an equilibrium starting configuration, but is motivated by a typical
experimental set-up in which the timer starts after fully inducing the system, when all
TFs are unbound [39]. Of course many other experimental set-ups are possible, see for
example reference [137].

The TF diffuses with diffusivity D3 until it encounters a stretch of DNA. Upon such
an encounter it can bind to the DNA with the non-specific association rate kon

1. This
is shown in the left half of Fig. 3.1. While bound to the DNA, it can slide along the
latter which is usually modelled as one-dimensional diffusion. As a side remark we note
that there are also some studies which model it as a two-dimensional random walk on the
DNA surface [176]. Importantly, this is not directed motion as implied by the overlapping
previous positions of the TF on DNA in Fig. 3.1.

When bound to the DNA the two different states of the TF play a role. In the loosely
bound state (“search state”), the one-dimensional diffusion coefficient Ds will be much
larger than the one in the tightly bound “recognition state”, Dr. The reason for that is
that we assume that the binding energy profile along the chain is much more rugged in
the recognition state. Formally this amounts to

Di ∝ exp(−σ2i ), (3.2)

with σi, the variance of the binding potential between DNA and the TF, where i = s
refers to the search state and i = r to the recognition state [126,165].

While the TF is non-specifically bound, apart from sliding to neighbouring positions
there are two further options:

• dissociating from the DNA with rate koff or

1Note that there are different conventions in which dimensions such a binding rate is defined [175]. In
the present case kon has units of length per time unit.
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Figure 3.2: Scheme of the processes which make up the GFDM. In the bulk solution
the TF moves with the three-dimensional diffusion coefficient D3 and bind-
ing to DNA in the search state (upper rectangle) occurs on encounter with
the microscopic rate kon. In the search state the TF diffuses with the one-
dimensional coefficient Ds and dissociates with rate koff . While in the search
state, with rate ksr the TF changes its conformation to the recognition state.
Only in this state, in which the TF diffuses with a one-dimensional coefficient
Dr, the target (dark stripe) can be found. With rate krs the TF returns to
the search state. Note that search and recognition state simply reflect differ-
ent modes of the TF and positions within the two rectangles shown in this
scheme should not be considered as different positions in real space.

• making a configurational transition to the recognition state with rate ksr.

Note that for the sake of simplicity Fig. 3.1 only shows a dissociation event, but no
switching to recognition mode which was shown in blue in Fig. 2.4. The distinction
between the two conformations is more clearly illustrated in the schematic figure 3.2, in
which all dynamic processes within the GFDM are shown.

When the TF is bound in the recognition mode, we assume that the binding is so strong
that no direct dissociation is possible. Consequently, besides sliding with the (reduced)
diffusivity Dr the only option for the TF in the recognition mode is to return to the
search state with rate krs. However, unlike in the search state a TF in the recognition
mode is able to detect the target. Within this model we assume that in the search mode
the TF is completely unaware of the underlying sequence such that switching to the
recognition mode happens randomly. In particular, there is no induced switch to the
recognition mode at the target site. Such effects will be discussed in chapter 5.

Now we specify the quantities we examine in the following: the one-dimensional prob-
ability densities (per length) of the TF on the DNA, ni(z, t), where again i = r, s. Based
on the above discussion they obey the following fundamental set of coupled differential
equations, which are supplemented with boundary values below. First, for particles in
the recognition mode:

∂nr(z, t)

∂t
= Dr

∂2nr(z, t)

∂z2
− krsnr(z, t) + ksrns(z, t). (3.3)

47



3 Generalised facilitated diffusion model

Second, for particles in the search mode:

∂ns(z, t)

∂t
= Ds

∂2ns(z, t)

∂z2
+ krsnr(z, t) − ksrns(z, t) +G(z, t) − koffns(z, t)

+ koff

L∫

0

dz′
t∫

0

dτF (z, z′, t− τ)ns(z
′, τ). (3.4)

In the upper Eq. (3.3), we recognise that particles in the recognition mode can slide slowly
or convert to become a particle in the search mode. Additionally, according to the last
term whenever there is a particle in the search mode at the corresponding position, it
can also convert to become a recognising particle.

In the lower Eq. (3.4), we note terms that are equivalent to the ones just mentioned.
Apart from that, particles in the search state are allowed to dissociate (koffns(z, t)) and
there are two terms involving kernel functions. One of them, G(z, t), denotes the so-
called “virgin flux”, a term introduced in [138]. This is the influx of particles which have
not yet been bound to the DNA. The other one, appearing in the last term of Eq. (3.4)
describes particles which have dissociated from the chain at an earlier time and now
return to the DNA. Note that we do not include IT in our model, but this could be
included for the sake of completeness in future studies.

Before we continue the discussion by specifying the initial conditions, we have to admit
that the approach is not without problems: in this model the sliding motion appears in a
continuous one-dimensional space. Thus, the target has no finite extension implying that
it is not possible to detect the target directly from the bulk solution. A priori, we assume
that target detection occurs by sliding and we cannot expect to obtain meaningful results
in the limit when Dr approaches zero. Thus, within the model no direct comparison to
a purely three-dimensional search can be made.

Since we assume that initially the particle is unbound, at t = 0 there is no probability
density in either state on the DNA: nr(z, t = 0) = ns(z, t = 0) = 0. This suggests to
transform the problem to Laplace space with respect to time, yielding the following two
equations: (

u+ krs −Dr
∂2

∂z2

)
ñr(z, u) = ksrñs(z, u), (3.5)

(
u+ ksr + koff −Ds

∂2

∂z2

)
ñs(z, u) = krsñr(z, u) + koff

L∫

0

dz′F̃ (z, z′, u)ñs(z
′, u) + G̃(z, u).

(3.6)
To solve these equations, ne need to supply some boundary conditions. First, we note
that due to symmetry reasons, it suffices to consider positive values of z, i.e. only what
happens in the right half of the DNA. Then, for the particle in the search mode both
z = 0 and z = L act as reflecting boundaries, as was shown experimentally for the
endonuclease EcoRV [177]:

∂ns
∂z

∣∣∣∣
z=0

=
∂ns
∂z

∣∣∣∣
z=L

= 0. (3.7)
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For particles in the recognition mode, the boundary at z = L is also perceived as reflect-
ing, however, at z = 0 the particles will be absorbed by the target:

∂nr
∂z

∣∣∣∣
z=L

= 0 = nr(z = 0, t). (3.8)

The second part of Eq. (3.8) implies that in the recognition state the particle detects the
target with a probability of 100% when it slides to its location.

Since the mean first-passage time to the target, τ , is given by

τ = − ∂j̃(u)

∂u

∣∣∣∣∣
u=0

, (3.9)

we first have to determine the Laplace transform of the flux of particles to the target, j̃(u),
which appears on the right hand side of Eq. (3.9). Since by assumption solely particles
in the recognition mode have the ability to detect the target, in the time domain this
flux is related to their density via

j(t) = Dr
∂nr(z, t)

∂z

∣∣∣∣
z=0

. (3.10)

To solve this equation explicitly, two steps have to be made: first the kernel functions
F and G which describe the three-dimensional motion in the bulk solution have to be
determined and then these results have to be plugged into Eqs. (3.5) and (3.6).

3.1.1 3D kernel functions for the straight DNA conformation

In the following we derive the solution of F and G for straight DNA chains arranged in
parallel. The case of completely coiled DNA will be discussed in section 3.3.

In the bulk solution the TF undergoes normal diffusion. Thus, due to the symmetry of
the problem (rotational symmetry around the axis of the cylinder, which coincides with
the z-axis), we can again focus on positive values of z and one has to solve the following
cylindrical diffusion equation:

∂P (r, z, t)

∂t
= D3

(
∂2

∂z2
+

1

r

∂

∂r
r
∂

∂r

)
P (r, z, t). (3.11)

According to the closed-cell approach, we assume the outer extremities of the system to
be reflecting boundaries [84]. Technically, this implies

∂P (r, z, t)

∂z

∣∣∣∣
z=0,L

=
∂P (r, z, t)

∂r

∣∣∣∣
r=R2

= 0. (3.12)

Determination of F As mentioned above, the function F describes the return of parti-
cles to DNA which have dissociated before. In Laplace space, F̃ is given by

F̃ (z, z′, u) = 2πR1konP̃ (r = R1, z, u), (3.13)
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where P̃ denotes the solution of the cylindrical diffusion equation, Eq. (3.11), subject to
the initial condition, P (r, z, t = 0) = 0, and the additional boundary condition

D3
∂P (r, z, t)

∂r

∣∣∣∣
r=R1

= −δ(t)δ(z − z′)

2πR1
+ kon P |r=R1

. (3.14)

Here the second term involving the two delta functions describes a particle which dis-
sociated at t = 0 and augments the rest of the equation which describes just a reactive
boundary at the inner cylinder surface. The calculation proceeds analogously to the one
in Berg and Blomberg [84]. One obtains the expansion

F̃ (z, z′, u) =
∞∑

m=0

gm(u) cos(mπz/L) cos(mπz′/L). (3.15)

Here the auxiliary function, gm(u) involves the term, am = u/D3 + m2π2/L2, and is
defined via

gm(u) =
2 − δm,0

L

kon∆01(
√
amR1)

kon∆01(
√
amR1) −D3

√
am∆11(

√
amR1)

. (3.16)

The symbols ∆01 and ∆11 are defined similarly to Chechkin et al., where the general
problem of bulk-mediated transport along a cylinder was studied [178]. They denote
combinations of modified Bessel functions:

∆01(
√
amr) = I0(

√
amr)K1(

√
amR2) + I1(

√
amR2)K0(

√
amr), (3.17)

∆11(
√
amr) = I1(

√
amr)K1(

√
amR2) − I1(

√
amR2)K1(

√
amr). (3.18)

Determination of G The function G is determined similarly via

G̃(z, u) := 2πR1konP̃ (r = R1, z, u). (3.19)

Here P̃ denotes again the solution of the cylindrical diffusion equation, but now subject
to the conditions

P (r, z, t = 0) =
1

πL
(
R2

2 −R2
1

) , and (3.20)

D3
∂P (r, z, t)

∂r

∣∣∣∣
r=R1

= kon P |r=R1
. (3.21)

Unlike in Eq. (3.14), in Eq. (3.21) there is no term involving two delta functions, since
in this setting the particles start at a random position in the bulk solution as implied by
Eq. (3.20). Performing the calculation, one obtains:

G̃(u) =
2R1

L(R2
2 −R2

1)

kon
u

D3
√
a0∆11(

√
a0R1)

D3
√
a0∆11(

√
a0R1) − kon∆01(

√
a0R1)

. (3.22)
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3.1.2 Solution of the differential equations

With the explicit forms of F and G at hand, the fundamental set of differential equations,
Eqs. (3.5) and (3.6) can be solved. Analogously to Berg and Blomberg, this proceeds
with the following ansatz for the Laplace transformed probability densities [84]:

ñr(u, z) =

∞∑

n=0

fn(u) sin

(
2n+ 1

2L
π z

)
, (3.23)

ñs(u, z) =
∞∑

m=0

hm(u) cos
(mπ z

L

)
. (3.24)

In principle, we are only interested in the functions fn, since the flux to the target is
given by

j̃(u) =
Dr π

2L

∞∑

n=0

(2n+ 1)fn(u). (3.25)

We introduce the following auxiliary functions which are denoted by Greek letters and
which all have the physical dimension of a frequency: αm(u) = u+koff+ksr+Dsm

2 π2/L2,
βn(u) = u+krs+Dr(2n+1)2π2/(4L2), and γm(u) = u+krs+Drm

2 π2/L2. In the following
we omit the explicit dependence of all functions on u. Appropriately modifying Eqs. (3.5)
and (3.6), we obtain:

2L

π
γmYm + j̃ = ksrLmhm (3.26)

hmLm(αm − koffLmgm) = GLδm,0 +
2L

π
krsYm (3.27)

j̃ =
2Dr

L

∞∑

m,n=0

ksr
βn
hm

2n + 1

(2n + 1)2 − 4m2
, (3.28)

where we additionally introduced the m-dependent length scale Lm = L(1 + δm,0)/2 and

Ym(u) =
∞∑
n=0

fn(u)
2n+ 1

(2n + 1)2 − 4m2
. Finally, eliminating Ym, one obtains

j̃ = LG/

{
krs
γ0

+
ǫ0(γ0(α0 − koffLg0)) − krsksr

γ0
×

[
L2

2Dr ksr
+

∞∑

m=1

2krs/ǫm

γm(αm − koff
L
2 gm) − krsksr

]}
, (3.29)

where ǫm(u) =

(
∞∑
n=0

1

βn

(2n+ 1)2

(2n + 12) − 4m2

)−1

.

This result for j̃ looks rather involved. However, as we will see below the resulting
mean target search time can be brought into a clear form.
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3.2 Results of GFDM for straight DNA

In this section we present the result obtained with the kernel functions which were
derived for the case of straight DNA chains arranged in parallel. Before we explain the
term structure of the mean search time, we first state our reference set of parameters.
They are mostly motivated by experimental results. Following the classical experiment
of Riggs and co-workers we study an operator concentration of n0 = 10−12 M [55]. With
L = 8µm, this corresponds to R2 ≈ 5.75µm via the relation n0 = 1/(2πLR2

2). We fix

D3 = 50 (µm)2

s and kon = 5.56 × 104 m
s and the DNA-protein interaction radius, R1, is

assumed to be 6 nm [77,84].

The rates at which the TF switches between its two conformations are not known
experimentally. However, some repressor isomerisations are known to occur at rates
of approximately 104/s [179], compare also [166]. Thus, we use ksr = krs/10 = 104/s,
guaranteeing that the TF spends most of the time that it is bound in the fast search
state [171]. This assumption has been criticised by Veksler and Kolomeisky, since it seems
to be counter-intuitive that the search state should be occupied more often and thus more
stable than the recognition state [88]. However, this statement is only supposed to be true
at an average non-target site. In fact, the two-state model would be hopelessly ineffective
if the recognition state was more favourable at all sites. Related energy landscapes have
been discussed by Gerland et al. and by Mirny et al. [62, 122].

For choosing appropriate values for the two one-dimensional diffusion coefficients, it is
important to note that an experiment with a finite time resolution will yield neither Ds

nor Dr, but an apparent diffusion coefficient, Da given by

Da =
Ds/ksr +Dr/krs

1/ksr + 1/krs
≈ Ds

1 + ksr/krs
, (3.30)

where we used the assumption Dr ≪ Ds in the second step. In the following we take

Ds = 0.05 (µm)2

s , and Dr = Ds exp(−χ) with an activation of χ = 8 [169], for which the
approximation made in the second step of Eq. (3.30) can be safely applied. This leaves
only the dissociation rate koff open, which is supposed to convey the salt dependence of
the association reaction.

Therefore, we now have all parameters at hand in order to calculate the flux to the
target j̃ as given by Eq. (3.29) and from this the mean target search τ time via Eq. (3.9).
However, we first consider the resulting target association rate ka. As mentioned in the
very beginning of this chapter both quantities are simply related via Eq. (3.1).

3.2.1 Result obtained with the reference parameter values

The reason for starting the discussion of our results with ka is that this is the quantity
that is usually plotted in experimental papers, see e.g. Fig. 2 in [59], and thus enables us
to compare our model to experimental data. Using the above mentioned parameters we
obtain the central result of the present chapter: in Fig. 3.3 the target association rate is
plotted as a function of the non-specific dissociation rate koff . Its features, in particular
the non-monotonic dependence of the target detection rate on the non-specific affinity,
will be discussed in much detail below.
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Figure 3.3: Target association rate, ka, as a function of the dissociation rate, koff . The
values of all other parameters are detailed in the text. The result can be com-
pared to the estimate of 108 M−1s−1 obtained with Smoluchowski’s formula.

The target association rate, ka, shows a behaviour in Fig. 3.3 which is typical for
facilitated diffusion models. Namely, three different regimes can be observed. For very
small dissociation rates, the target association rate is nearly independent of the exact
value of koff . For larger values of koff , the association rate then increases and reaches a
maximum. Increasing koff even further leads to a dramatic decrease of the association
rate. Before we explain the features of this graph, it is important to note that the
maximum of the association rate, ka ≈ 5 · 109 M−1s−1, is relatively close to the value
which was measured by Riggs and co-workers [55]. Thus, our model is able to reproduce
these early experimental results fairly well.

The shape of Fig. 3.3 can be better understood when focusing on the mean search
time instead of ka, which are directly related by virtue of Eq. (3.1). The result for the
mean target association time, τ can be written as

τ = τ1 +N(τ2 + τ3) − τ4. (3.31)

This is the central result of this chapter and its individual terms will be discussed below.
Apart from the last term which is solely a small correction term, this result is similar
to the one of Berg and Blomberg [84]. The two characteristic times τ1 and τ2 are even
identical. New is the form of N and in particular the time scale τ3 due to the presence
of the two conformational states.

The first term in Eq. (3.31) is given by τ1 = −L ˙̃
G(0) and denotes the time which

passes until the first non-specific binding to the DNA occurs2

τ1 =
R2

2

2D3

{
1 −R2

1/R
2
2

konR1/D3
+

ln(R2/R1)

1 −R2
1/R

2
2

}
− R2

2

8D3

{
3 −R2

1/R
2
2

}
. (3.32)

2Note that by assumption the TF starts its search in the bulk solution and not every encounter with
the DNA leads to binding as evidenced by the finite value of kon appearing in Eqs. (3.32) and (3.33).
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3 Generalised facilitated diffusion model

Since large values of R2 correspond to large systems, this time increases with R2 and
becomes smaller if D3 is large, indicating fast three-dimensional transport.

The second characteristic time is defined as τ2 = −Lġ(0) and is evaluated as

τ2 =
R2

2 −R2
1

2konR1
. (3.33)

This is the mean time that is spent in the bulk solution after a dissociation event.
Accordingly, as in the case of τ1 it becomes larger when R2 is increased. Additionally,
its value decreases when the intrinsic non-specific reaction rate kon increases.

The next characteristic time scale, τ3, denotes the mean time that the TF spends
bound to the DNA, irrespective of whether in the recognition or search mode. It is given
by

τ3 =
1

ϑ

(
1

krs
+

1

ksr

)
. (3.34)

Our result replaces the simpler τ3 = 1/koff of Berg and Blomberg’s one-state model [84].
In Eq. (3.34), 1/krs and 1/ksr denote the mean times spent in recognition and search

mode before switching to the other. Thus, the sum in the bracket represents the mean for
once switching back and forth between the two states. Finally, ϑ is defined as ϑ = koff/ksr.
Its inverse which appears in Eq. (3.33) determines how often the TF switches back and
forth between the two conformational states before it eventually dissociates, underlining
the interpretation of τ3.

The most interesting parameter, N , denotes the mean number of search rounds con-
sisting of successive search in 1D and 3D. Using the abbreviations, xr =

√
Dr/(krsL2)

and xs =
√
Ds/(ksrL2), N is given by

N =
ϑ

xr
coth

(
1

xr

)
+

∞∑

m=1

2ϑ

pr(m)
(
pr(m)

[
ps(m) + ϑ

(
1 − Lgm(0)

2

)]
− 1
) , (3.35)

where pi(m) = 1 +m2 π2x2i , again with i = r, s.
Within this scheme, Nτ2 denotes the total time spent off the chain, and accordingly

Nτ3 the total time spent on the DNA. To be more precise, these two times are only
counted after the first non-specific binding event took place and finally the correction
term τ4 = 1/krs has to be subtracted. The reason for that is, that in the very last round
of one-dimensional diffusion, the target will be found and thus, the last configurational
change to the search state which happened in all previous rounds will not occur.

The corresponding plot of τ is depicted in Fig. 3.4, where the same data set as in
the previous Fig, 3.3 was used. In this plot optimal search conditions correspond to a
minimum in τ . For biologically relevant parameters, the mean search time τ is mainly
determined by the two terms Nτ2 and Nτ3. This can be seen in Fig. 3.4, where they
were plotted in addition to the mean total search time. For very low values of koff , the
mean search time is given to a good approximation by Nτ3, and conversely, for large
values of koff , by Nτ2.

Importantly, as is obvious from Fig. 3.4, the minimum in search time is not attained
when equal amounts of time are spent in the bulk solution and on the DNA, i.e. when the
two dashed curves for Nτ2 and Nτ3 intersect. For an optimised search, more time has to
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Figure 3.4: The mean target association time τ (blue line) as a function of the dissociation
rate koff . The dashed black line shows the contribution of the term Nτ2 and
the dashed red line the one of Nτ3. Note that compared to Fig. 3.3 this plot
shows a more restricted range of values of koff .

be spent bound to the DNA, unlike in the simpler result by Slutsky and Mirny [126]. In
fact, for the parameter values chosen here, the optimal fraction is ≈ 73%. Interestingly,
after our publication on which this chapter is based was published, Petter Hammar and
co-workers observed experimentally that the optimal bound fraction in a living E. coli

cell at room temperature is 70% [32,174].

With the above interpretations at hand, we are now able to explain the non-monotonic
feature of Fig. 3.3, and thus also of Fig. 3.4. For very small values of koff , in this case
koff < 10−2/s, the dissociation rate is more than six orders of magnitude smaller than
the switching rate from search to recognition state. Thus, it can be safely assumed that
the protein never leaves the chain after the first non-specific association. Consequently,
in this situation the exact value of koff does not matter. The search time is then simply
the sum of the time of first non-specific association and the time it takes to slide to the
target. This will be shown formally in section 3.4. For biologically relevant parameters τ1
can become negligible, such that this is an effectively one-dimensional search. However,
this is inefficient since it leads to oversampling, i.e. the particle often returns to stretches
of DNA which it already probed for the target, compare Pólya’s early results [78].

Considering high dissociation rates, koff > 102/s, this implies that the DNA chain is
left rapidly. Now, the assumption that the target can only be found by sliding impacts
the association rate negatively. At fast dissociation rates, the TF simply spends too few
time on DNA to probe for the target, an effect that becomes worse and worse, if the
residence time on DNA becomes shorter. In other words, the TF spends too much time
in 3D, where the target cannot be found.

However, in between these two extreme regimes, the target search can be optimised.
For the parameters chosen in Fig. 3.3, at koff ≈ 10/s, the particle stays long enough on
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Figure 3.5: Contour plot of the mean search time as a function of the dissociation rate
koff and the conversion rate ksr.

the DNA to look for the target, but leaves it soon enough before the one-dimensional
search becomes too redundant. Note that the peak is more pronounced when choosing
smaller values of the activation χ, i.e. when diffusion in the recognition mode is not
much slower than in the search state (compare Fig. 4 in [174]).

In the following subsection, we study how the mean target search time depends on
various parameters. Apart from the parameters which are varied in each individual
figure, the remaining parameters have the values as specified in our reference set. We
start the discussion with the conformational switching rates.

3.2.2 Dependence on the switching rates krs and ksr

As mentioned before the rates of conversion between search and recognition state are not
known experimentally. Thus, in the following we vary them in a wide range. Fig. 3.5
shows a contour plot of the mean target search time as a function of the dissociation
rate koff and the conversion rate ksr. At the same time, the other interconversion rate is
fixed to the same value as before: krs = 105/s.

Here and in the following, bright regions correspond to short search times, while dark
regions correspond to an inefficient search3. First of all, it is apparent from Fig. 3.5 that
there is a global minimum of the search time. Thus, for otherwise fixed parameters it
is possible to tune the switching rate to the target-sensitive recognition mode and the
dissociation rate from the DNA, such that the search is optimised.

3Note that throughout this work a color map has been used that is specifically designed for the needs of
colour-blind people. It was obtained from www.sron.nl/˜pault/gnuplot/gnuplot-ref-colmap.plt and is
licensed under the Creative Commons Attribution-Share Alike 3.0 Unported License.
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Figure 3.6: Contour plot of the mean search time as a function of the dissociation rate
koff and the conversion rate krs.

Furthermore, when switching to the recognition mode is very slow, ksr < 102/s, in-
creasing the dissociation rate always leads to a slower search. Thus, when this switching
is slow, as much time as possible should be spent on the DNA, since only rarely the TF
probes for the target. In general, as was already observed in Fig. 3.3, for small values
of koff , the search time becomes essentially independent of the dissociation rate. This is
indicated by the (nearly) vertical shape of the contour lines in the lower part of Fig. 3.5.

If, however, switching to the recognition mode occurs at a sufficiently high rate, there
is always an optimal residence time on DNA which minimises the search time. The
corresponding optimal dissociation rate increases with increasing values of ksr as shown
by the orientation of the “valley” towards the upper right corner in Fig. 3.5.

Fig. 3.6 shows the complementary situation when the switching rate ksr is fixed to a
value of 104/s and krs is varied. Besides, the dissociation rate is varied as in Fig. 3.5.
Again, we observe that the target search can be globally optimised. Furthermore, there
exist two qualitatively differing regimes: For very large switching rates, krs ≈ 109, the
mean search time increases monotonically with koff . This means that when the TF
returns quickly to the search state, at least it should not dissociate too soon from DNA
to ensure an effective probing for the target. For lower values of krs, there is again an
optimal dissociation rate, which increases for decreasing values of krs. This is manifested
by the valley in Fig. 3.6 which points to the upper left corner.

The observation that the target search can be optimised, when either one of the two
conformational switching rates is fixed and the other is varied, raises the question if there
is a global minimum when both rates are variable and only the dissociation rate koff is
fixed. This situation is studied in Fig. 3.7, where we chose koff = 10/s, close to the
minima in the two previous figures.
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Figure 3.7: Contour plot of the mean search time as a function of both conversion rates
ksr and krs for a fixed value of koff = 10/s.

An inspection of Fig. 3.7 shows that the search time can be optimised whenever any
one of the two switching rates is fixed. But the absolute target search time becomes
smaller and smaller, when ksr and krs are increased simultaneously, while keeping them
in a suitable relation. Here fast transitions between the two conformations make sure
that the system is equilibrated. Then the maximum amount of probability density is
supplied to the target.

In the following, we fix the switching rates krs and ksr again to their reference values
and study the dependence of the target search time on the various diffusion coefficients.

3.2.3 Dependence on the diffusion coefficients

Dependence on the three-dimensional diffusion coefficient Fig. 3.8 depicts the mean
target search time as a function of koff and the three-dimensional diffusion coefficient
D3. This dependence is of importance, especially if one wishes to describe the in vivo

situation later on, since the crowded interior of a living cell is expected to slow down the
three-dimensional diffusion of macromolecules considerably.

Deliberately, we also consider the non-physical situation when D3 is smaller than the
one-dimensional diffusion coefficient in the search state, Ds = 5 × 10−14 m2/s. In this
range, it is observed that increasing the dissociation rate always increases the mean
search time. This is no surprise, since changing to a slower transport mode which is
blind for the target cannot accelerate the search process.

Whenever 3D diffusion is considerably faster than 1D diffusion, there is a dissociation
rate which optimises the search process. Interestingly, the optimal residence time in this
regime only increases a mere factor of three when D3 is varied over nearly five orders of
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Figure 3.8: Contour plot of the mean search time as a function of the dissociation rate
koff and the three-dimensional diffusion coefficient D3.

magnitude. To understood this behaviour, it has to be stated that the beneficial influence
of the 3D search phase stems from the fact that it re-equilibrates the position along the
DNA cylinder after a dissociation event. If now diffusion in 3D is fast enough such that
the next binding event occurs at an essentially random position, there is not much to be
won by further increasing D3. This is similar to the effect observed by Reingruber and
Holcman [168]: having a searching particle which does not switch between conformations,
soon there will be a less than average probability density near the target, simply because
it already ended up in the target. However, a searcher which can switch to a faster, but
target-insensitive state, will have a much more homogeneous probability distribution. If
this particle switches back to the target-sensitive state, its probability density near the
target will be much higher [168]. Thus, for an efficient target detection it is important
that the probability distribution is homogenised when it switches back to the target
sensitive mode, but the search is not sped up if this happened even earlier. Of course,
in the present case the search state itself is not sensitive for the target. However, in
comparison to the unbound state, a particle in the search mode is one step closer to
target detection. Thus, the same line of reasoning applies.

Dependence on the one-dimensional diffusion coefficients Now, we consider the vari-
ation of the mean search time with respect to changes in the one-dimensional diffusion
coefficient Ds. In Fig. 3.9, the three-dimensional diffusivity, D3 is again fixed to its

reference value of 50 (µm)2

s and the two one-dimensional diffusion coefficients are varied.
This plot shows less interesting features than the previous ones. The search time

decreases monotonically with the two one-dimensional diffusivities. For very low values
of Dr, the search time is essentially independent of the rapidity of motion in the search
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Figure 3.9: Contour plot of the mean search time as a function of the one-dimensional
diffusion coefficients Ds and Dr.

state. However, for sufficiently large values of Dr there is a threshold value of Ds at
which the mean search time jumps from one regime in which it is nearly independent
of Ds to another one in which this is again the case, but with a reduced search time.
Importantly, we do not see an overshoot effect as in Hu et al. [167]. The reason is simply
that within our model the target detection probability in the recognition mode amounts
to 100%. Thus, increasing Dr always helps to speed up the process.

In Fig. 3.10 koff is fixed again to 10/s and the two diffusion coefficients Ds and D3 are
varied. Simultaneously with Ds, the diffusion coefficient in the recognition mode, Dr is
varied while keeping the above mentioned ratio Dr/Ds = exp(−8).

When all other parameters are fixed, the mean search time decreases when the three-
dimensional diffusion coefficient, D3, and/or the one-dimensional coefficient in the search
state, Ds, are increased. This is not surprising, since high values of these two parameters
imply a fast transport in both dimensionalities. However, the limitations of decreasing
the target search time by increasing these diffusion coefficients will be discussed after
describing the features of the following plot.

Both in Fig. 3.9 and in Fig. 3.10 we saw that increasing Ds leads to a reduced
search time. However, as noticed by Schranner and Richter for physical reasons the
one-dimensional diffusion coefficient cannot be chosen arbitrarily high when the dissoci-
ation constant is supposed to be small at the same time [83].

3.2.4 Dependence on the reaction volume

Finally, we study how the mean target search time depends on the reaction volume. For
this purpose, in Fig. 3.11 the mean search time is plotted as a function of the radius R2

60



3.3 Results for coiled DNA

10-17 10-16 10-15 10-14 10-13 10-12 10-11 10-10 10-9

Ds [m
2/s]

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7

D
3 

[m
2 /s

]

101

102

103

104

105

106

107

Figure 3.10: Contour plot of the mean search time as a function of the one-dimensional
diffusion coefficient Ds and its three-dimensional analogue D3.

and the dissociation rate koff .

Apparently, for small dissociation rates, the search time does not change much with
variations in the value of R2. This is clear, since in the case of no or just a few dissociation
events, it does not matter how large the three-dimensional volume actually is. Conversely,
when dissociations are much more frequent, i.e. for large values of koff the target search
time increases steeply when the reaction volume grows.

The results presented so far all described the situation of straight DNA segments. For
this situation we were able to find closed-form solutions for the two kernel functions F
and G which contain all the information about the DNA conformation. In the following
section, we study the situation of coiled DNA.

3.3 Results for coiled DNA

In the case of coiled DNA, it is assumed that a particle which dissociates from the
DNA immediately loses its memory of the dissociation position. Recalling the form
of Eq. (3.15), this implies, gm(u) = 0 ∀m ≥ 1. This facilitates the calculations of
the relevant quantities considerably as detailed below. However, we first note that the
function G describing the “virgin flux” remains unaffected, since in the derivation of this
function for straight DNA it was assumed anyway that the particle starts its motion
homogeneously distributed in the bulk solution, such that it binds to a random position
on DNA.

With the knowledge that nearly all functions gm vanish, the mean number of search
rounds to be performed can be determined via Eq. (3.35). Introducing the auxiliary
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Figure 3.11: Contour plot of the mean search time as a function of radius R2 which scales
with the size of the search volume and the dissociation rate koff .

functions, X and y± defined as

X =
√
x4s − 2x2rx

2
s(ϑ− 1) + x4r(1 + ϑ)2 and y± =

x2r(1 + ϑ) + x2s ±X

2x2rx
2
s

, (3.36)

one obtains

N = ϑ

(
1 +

X + (x2s − x2r(1 + ϑ))

2x2rX
f(y+) +

X − (x2s − x2r(1 + ϑ))

2x2rX
f(y−)

)
. (3.37)

Since in this limiting case our result is nearly equivalent to the one obtained by Jürgen
Reingruber and David Holcman, we used their notation f(x) = coth(

√
x)/

√
x−1/x [168,

169]. All relations to other models will be discussed in the following subsection 3.4, where
in particular we will show that this approximation corresponds to an extreme case of
coiled DNA.

Since by design the mean time after which the TF returns to the DNA, τ2, is equal
for straight DNA and for coiled DNA, it becomes obvious that the distribution of TFs
equilibrates much faster when the DNA is coiled. This is beneficial for the search process,
as becomes apparent in Fig. 3.12, where we plot the ratio of the mean target search time
obtained with the straight DNA conformation with the one obtained for coiled DNA. The
parameters used in Fig. 3.12 are as in Fig. 3.5. Bright regions correspond to parameter
values which yield similar search times, while the darker regions signify an acceleration
due to the coiled conformation of DNA. Most importantly we note that in a wide range
of parameters the conformation does not play a large role, as becomes obvious through
the white spaces in Fig. 3.12.
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Figure 3.12: Acceleration of the target search process when a coiled DNA conformation
is assumed instead of straight DNA segments. The ratio of the search time
with straight DNA segments with the corresponding times for coiled DNA,
τstraight/τcoil is plotted. The parameters are as in Fig. 3.5. In a large range of
parameter values there is very little acceleration in the coiled conformation.

In particular, when the dissociation rate koff and/or the conversion rate ksr is small the
times are similar. In the first case, this is obvious: if the particle rarely or never leaves
the chain the search time cannot depend on the conformation, since we effectively deal
with a one-dimensional system. The particle associates to a random position on DNA
and then slides towards the target.

In the second case, when the recognition state is only rarely entered, the probability
density equilibrates very fast in comparison to this slow time scale such that again
the exact conformation is not important. A similar argumentation holds for very high
dissociation rates, where the times also become similar. If the particle spends most
of the time in the bulk solution, the distribution equilibrates quickly, rendering the
conformation unimportant again.

In the biologically relevant case of intermediate rates, the faster equilibration in system
with coiled DNA can lead to target detection times which are at most a factor of ap-
proximately 6 shorter. This can be compared to the experimental results for the protein
EcoRV, where also a rather a modest yet measurable speed-up was noticed for a coiled
versus a straight DNA configuration [137,138].

3.4 Relation to previously published models

Since the approach presented in this chapter was designed as an extension of the classical
model introduced by Berg and Blomberg, we expect our model to reduce to the latter in
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some limiting case [84]. Besides, as already mentioned the model also converges to the
result obtained by Jürgen Reingruber and David Holcman [168,169]. We start with the
latter case.

Relation to the model of Reingruber and Holcman Eqs. (3.36) and (3.37) shown
above constitute the limiting case of our model which corresponds to coiled DNA. To
be able to compare our model to the approach of Reingruber and Holcman one has to
adjust the initial condition to the one they chose. Adapting the initial condition to the
situation where initially the particles are distributed homogeneously in the recognition
mode (nr(z, t = 0) = nr(t = 0) = 1/L) and where there are no particles in the bulk
solution (G(z, t) = 0), one obtains a result which coincides with the one published by
Reingruber and Holcman [169]. In our notation this reads:

τ = (N − ϑ)(τ2 + τ3). (3.38)

In fact, the result Reingruber and Holcman published one year earlier, can be obtained
by setting koff = 0 [168]:

τ =

(
1

krs
+

1

ksr

)
x2r + 3x2s f(1/x2r + 1/x2s)

3x2r(x2r + x2s)
. (3.39)

This corresponds to a one-dimensional search process, in which dissociation of the particle
is disabled.

Relation to the model of Berg and Blomberg To study the convergence of our model
the one of Berg and Blomberg [84], we study the limit of very fast switching rates between
the two conformations and/or long chains. Technically this implies: Dr ≪ krsL

2, and
Ds ≪ ksrL

2. In this limit, the correction term τ4 = 1/krs can be safely neglected and
the number of search rounds as given by Eq. (3.35) is well approximated by

N ≈
∞∑

m=1

2ϑ

ϑ(1 − Lgm(0)/2) +m2π2(x2r + x2s)
. (3.40)

Blurring the dynamical differences between search and recognition mode by setting D1 =
Ds = Dr and krs = ksr, we obtain that the mean time spent on the chain is simply
τ3 = 2/koff and that N simplifies to

N ≈
∞∑

m=1

2koff
koff(1 − Lgm(0)/2) + 2m2π2D2

1/L
2
. (3.41)

This agrees with the classical result by Berg and Blomberg if their one-state dissociation
rate koff is identified with the present koff/2 [84]. At first sight, the factor of two seems
to manifest a difference, but it is only due to our assumption krs = ksr which implies
that—neglecting the effect of the target—equal amounts of time are spent in both con-
formational states. Thus, to have the same physical picture as in the classical one-state
model, the dissociation rate which only acts on particles in the search state has to be
two times higher.
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3.4 Relation to previously published models

Of course, the approximations for coiled DNA can also be applied to the original one-
state model of Berg and Blomberg [84]. With the two characteristic times τ1 and τ2
remaining unaffected, one obtains again

τ = τ1 +N(τ2 + τ3), (3.42)

where τ3 is now simply given by 1/koff and

N =

√
koff L

2

D1
coth



√
koff L

2

D1


− 1 =

koff L
2

D1
f

(
koff L

2

D1

)
. (3.43)

Once more in the second identity we used the notation of Reingruber and Holcman [168].
Apparently, this has the same form as Eq. (2.20) and the similar result of Coppey et
al. [127]. The result coincides completely with Berg’s original result, when the macro-
scopic dissociation rate in Eq. (2.20) is equal to the microscopic one, or in other words
when every microscopic dissociation leads to a complete loss of correlation. This is an ex-
treme case of coiled DNA and in accordance with our interpretation of the disappearance
of nearly all coefficients gm.

Using an expansion for small arguments x, namely x coth(x) − 1 ≈ x2/3, one obtains
lim

koff→0
N = 0. But since τ2 is inversely proportional to koff , the mean search time τ in

the one-state model as given by Eq. (3.42) results in this limiting case as:

lim
koff→0

τ = τ1 +
L2

3D1
. (3.44)

This result4 has a straightforward interpretation. The mean search time in the absence
of dissociation is simply the sum of the mean time it takes for the first non-specific
association, τ1, and the mean search time in a one-dimensional interval of length L. In
fact, the second term is equal to Eq. (2.10) which was derived using Szabo’s first passage
time formalism [68].

We are now able to compare the results of our full model with three limiting cases which
correspond to previously published models. These are the original one-state model by
Berg and Blomberg and its limiting case for coiled DNA as well as the same limiting
case for our two-state model. Identical parameters were taken for all four cases, but
apparently in the case of the one-state models, the two conformational switching rates
are no longer present and there is a single one-dimensional diffusion coefficient, D1. For

the latter we use a value of D1 = 0.0455 (µm)2

s —close to the experimental value reported
by Elf and co-workers [39]—such that D1 = Da with the apparent diffusion coefficient
Da defined via Eq. (3.30).

In Fig. 3.13 the target association rates obtained with these four models are plotted as
a function of the dissociation rate koff . The blue lines show the results of the two-state
model, while the dark red lines the corresponding ones of the one-state model. In both
cases, full lines are for straight DNA segments, and dot-dashed lines for coiled DNA.

4In fact, the result of Reingruber and Holcman, Eq. (3.39), generalises Eq. (3.44) to the two-state
model [169].
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Figure 3.13: The target association rate ka in four models as a function of the dissociation
rate koff . Blue lines refer to the two-state model, while red lines represent
the one-state model. In both cases full lines correspond to a straight DNA
conformation and dot-dashed lines to coiled DNA.

The most important observation is, that in all four cases the three typical regimes
are observed. Besides, as already mentioned in section 3.3 for very high and very low
dissociation rates, the target association rate in the two-state model becomes independent
of the underlying DNA conformation. This can be seen from the convergence of the blue
lines in both extreme regimes. As evidenced by the red lines in Fig. 3.13, this is also
true for the one-state model. In fact, for koff → 0 the corresponding mean search time is
given by Eq. (3.44).

A closer inspection of Fig. 3.13 shows that in this limit, although we chose the one-
dimensional diffusion coefficients such that both effective diffusivities are the same, the
target association rates in both models are not the same. In the one-state model target
association happens faster, since every target encounter leads to detection, which is not
the case in the two-state model. In the opposite limit of high dissociation rates, all target
detection rates decrease. However, in the case of the two-state models this decrease is

more severe (ka ∝ k−1
off ), than for the one-state model, where ka ∝ k

−1/2
off . The reason

for this is that in the two-state model after re-association the particle is initially in the
target-insensitive search mode, which is left quickly in this regime. Conversely, in the
one-state model the full bound time can be used to probe for the target. This different
scaling behaviour can in principle be used to distinguish experimentally between both
types of models.

Again in accordance with the findings of section 3.3 the target is more quickly found on
coiled DNA, since equilibration is obtained faster. Apart from this general observation,
one notices that the dissociation rate which optimises the search is smaller in the case of
coiled DNA. Since the equilibration is more efficient, less time in the bulk is needed and
more time can be spent sliding.
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3.5 Summary and outlook

Finally, target search in the two-state model is always slower than in the corresponding
one-state model. This does not contradict the result of Reingruber and Holcman who
proved that introducing a second state in which a particle diffuses faster decreases the
search time, even if the particle is not able to detect the target in this new state [168]. In
the present case, the comparison is between two states whose effective one-dimensional
diffusivities are the same, but the particle in the one-state model has better chances to
actually detect the target.

3.5 Summary and outlook

In this chapter it was shown that it is possible to generalise the classical facilitated
diffusion model of Otto G. Berg and co-workers to the case when two conformations of the
searching particle are explicitly taken into account. Introduced by other authors in order
to resolve the speed-stability paradox, these two conformations differ in the way binding
to the DNA is concerned. While it is in the “search” state, the particle can quickly
slide along DNA, but it cannot detect the target. Conversely, in the “recognition” mode
sliding motion is very slow, but the particle is able to detect the target. Importantly, this
model assumes a priori that the target is detected by sliding in the recognition mode
and not by direct detection from the bulk solution.

Just like in the original one-state model one observes the typical three regimes of fa-
cilitated diffusion models and accordingly our generalised approach converges to these
previously published models in appropriately chosen limiting cases. In particular the tar-
get detection rate is a non-monotonic function of the non-specific dissociation rate from
DNA. This represents a trade-off between spending too much time with redundant one-
dimensional search or spending too much time in the bulk solution where by definition
the target cannot be found.

Unlike in simplified versions of the model, we can rationalise that it is beneficial for
the repressor to spend more than half of the search time on DNA. The exact value of the
optimal partition is, of course, dependent on the choice of system parameters, but for
the values chosen in Fig. 3.3 our result is close to the experimental result by Hammar
and co-workers [32].

A weak spot of the model is that switching between the two states occurs stochasti-
cally. Such blind switching is definitely not an efficient means to detect the target as is
evidenced by reduced target detection rates with respect to the corresponding one-state
models (compare Fig. 3.13). However, our two-state model is able to satisfy simultane-
ously the complementary demands of tight binding to the target and fast sliding along
the DNA, while the classical one-state models assume that this can be achieved with a
single state. The extension step to the case when a switch of conformation is coupled to
the underlying nucleotide sequence will be undertaken in chapter 5.

Within our blind switching approach it was observed that the search can be optimised
by appropriately choosing one interconversion rate, if the other one has a fixed value.
As we assume that target detection occurs with 100% efficiency in the recognition mode,
there is no “overshooting” effect and the detection rate increases with the diffusivity in
the recognition mode. The same applies for the diffusion coefficients in the search mode
and in 3D since they convey faster transport. In the same way smaller system sizes via a
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reduced value of the outer cylinder’s radius are beneficial. Finally, when comparing the
search for a target on straight DNA segments to an extreme model of coiled DNA, it was
observed that in the latter case search can be moderately sped up in a certain range of
parameters.

The assumption of a reflecting boundary condition at the outer cylinder has already
been criticised in 1977, since it introduces correlations along the cylinder [86]. But in
the dilute in vitro situation that this model aims to describe the outer boundary is so
far away from the DNA chain that this effect is not important. This is different in the
crowded interior of a living cell. The following chapter is devoted to the question how
the search of a TF in such an environment can be modelled, when neighbouring DNA
segments are way closer.
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4 In vivo facilitated diffusion model

In the following chapter we are still concerned with the generic problem of the association
of proteins with a specific target on DNA. If necessary, we will use parameter values for
the lac system in E. coli. The model presented in the last chapter and most of the
other published models aim at describing the situation in an in vitro experiment. But
apparently, this can only be an intermediate step, because in the long run one wishes to
explain the behaviour in living cells. To do this, we will partition the cell volume and
especially the genome it contains in structural subunits. In each of these we will solve
analytically a microscopic facilitated diffusion model. These solutions will be used as an
input for the numerical description of the search process in the whole living cell. This
hybrid semi-analytical approach bridges the gap between purely theoretical models which
can only be solved in simple geometries on the one side and purely numerical approaches
on the other side.

In general, when trying to describe the search problem in a living cell, one has to
answer two fundamental questions:

1. What is different in living cells? and

2. Is it possible to translate or rather transcribe previous models to account for these
changes?

To answer the first question, we note that unlike in controlled in vitro experiments, a
living cell contains many other molecules. This macromolecular crowding was already
mentioned in chapter 1 and influences chemical reactions in cells in many ways. For
example, it shifts equilibria of reactions towards the associated state and importantly
for this study, the diffusion of proteins in such crowded solutions will be slowed down.
The question whether or not the resulting motion of macromolecules is still Brownian or
anomalous, is highly debated, since there is evidence for both interpretations [39,93,94].
For the moment, we will assume herein that the motion of the lac repressor in a living
E. coli cell is still Brownian, but characterised by a reduced diffusion coefficient1. The
effect of anomalous transport mechanisms on the search efficiency will be briefly discussed
towards the end of this chapter. Since we saw in the previous chapter that a reduced
diffusion coefficient in 3D slows down the motion, this is a negative effect in terms of
the search efficiency. But as pointed out by Tabaka et al. more crowding implies that
the DNA inside the cell is confined to a smaller volume such that the search volume
is reduced [142]. This is expected to reduce the search time. Roughly speaking, these
crowding effects concern the three-dimensional part of the search process in a cell.

However, also the one-dimensional search phase will be affected, since the particles
which bring about the crowding effects, the so-called crowding agents, will bind to the

1The general question how the diffusional behaviour of particles changes in a structured environment
was studied by the author of this thesis in two other works [180,181].
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DNA. This has two main consequences: the amount of base pairs to which the searching
protein can bind is reduced and since it is usually assumed that such a bound protein
cannot be by-passed by the searcher, the sliding motion is hindered [122, 140–142]. We
will approach these issues mainly in the next chapter 5, while the present one focuses
on another important difference to the dilute in vitro situation: the conformation of
DNA in a bacterial cell. We will try to shed light on this in the following section, before
section 4.2 aims at answering the second of the above questions. Namely, it describes
how we adapt the facilitated diffusion model to describe the in vivo situation.

This chapter reviews and extends the results which have been published previously
in [182].

4.1 Organisation of bacterial DNA

There are at least two fundamental differences between the conformation of DNA that
is studied in in vitro experiments and the one that is encountered in living cells. First,
they are confined to the cell body, which is much smaller than the volume that a relaxed
DNA coil would require. This can be understood by noting that the contour length of
the E. coli genome consisting of approximately 4.6 million base pairs, is 4.6 × 106 ×
3.4 × 10−10 m ≈ 1.6 mm, while the longest axis of a bacterial cell is in the micrometer
range. Thus, the genome is packaged in the cell volume. Even more severely, although we
were right to characterise prokaryotes as living organisms that do not have a cell nucleus
in the introductory chapter 1, they do have a similar object, the nucleoid2. Unlike
nuclei in eukaryotes, nucleoids in prokaryotes do not have a nuclear membrane. The
second difference with respect to DNA in in vitro experiments is that several proteins
act together in the compaction of bacterial DNA, giving it an internal structure.

Let us summarise what is currently known about the structural organisation of bacte-
rial DNA in living cells [183]. The bacterial DNA making up the genome can be thought
of as existing in connected subunits, which we call blobs. They can change their form
in time. By means of atomic force microscopy, their size in E. coli cells was estimated
to be in the range of several tens of nanometers [184]. Other experiments yielded ev-
idence for subunits containing several tens of kilobasepairs which have a diameter of
(70 ± 20) nm [185, 186]. These data sets will be used as an quantitative input for our
semi-analytical model.

Complementary results obtained with the bacterium Caulobacter crescentus, whose
genome spans a similar amount of base pairs like E. coli, are even more relevant for
the design of our approach. Using carbon copy chromosome conformation capture, com-
monly denoted as 5C, several research groups obtained a three-dimensional model of
Caulobacter’s genome [187]. In fact, 5C is an extension of 3C which is short for chromo-
some conformation capture. These results further substantiated earlier findings that the
position of genes in real space along the long axis of the cell correlates strongly with the
position of the corresponding gene on the chromosome map [188].

The growing amount of experimental knowledge, of course, found the interest of
scientists aiming to model bacterial genomes. Some studied the organisation under
the premise that regulatory interactions are responsible for the positioning of genetic

2We note that for some species the nucleoid can fill the entire cell volume.
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4.1 Organisation of bacterial DNA

Figure 4.1: Scheme of the model genome. The red spheres show the nucleoid volume,
while the green spheres represent the rest of the cell volume. Within the
nucleoid, blue spheres denote blobs which contain (non-target) DNA, and
the single white sphere is the target blob.

loci [117,118]. Other researchers modelled bacterial DNA as a ring polymer and focused
on the role of entropy [189, 190]. In the following we adapt the simple, yet convincing
model proposed by Mathias Buenemann and Peter Lenz [191]. Their geometric model is
based on a self-avoiding walk (SAW) description of the structural subunits of DNA. It
will be presented in more detail in the following subsection.

4.1.1 Model genome

The bacterial genome is modelled as a sequence of spheres, in the following also called
“blobs”, which reside on a lattice. The spheres represent the structural subunits men-
tioned before and the lattice represents the volume of the nucleoid3. To mimic the
rod-like shape of the bacterial cell, the underlying lattice is assumed to have two short
axes of equal length and one longer axis. The genome is modelled as a closed SAW, and
a small piece of it can be seen as the blue (and white) spheres in the schematic Fig. 4.1.

Herein, the green spheres represent the volume of the cell which does not contain DNA,
while the red spheres stand for the nucleoid volume. Blue spheres denote the blobs within
the nucleoid, which actually contain DNA, but not the target DNA. The single white
sphere represents what is called the target blob in the following. It is simply the blob
which contains—alongside many non-specific base pairs—the target sequence. Note that
Fig. 4.1 is a slice through the real situation, in which spheres in the foreground would
block the view on the nucleoid blobs and particularly the target blob.

The “pearl necklace” of DNA-containing blobs (shown in blue in Fig. 4.1) is in this
work obtained similarly to the original treatment by Buenemann and Lenz [191]: one
starts with a closed loop oriented along the cell’s long axis which starts at the bottom of
the cuboid, reaches the top and subsequently returns to the bottom. Initially, such a loop
with minimal contour length is chosen and then the necklace is extended by inserting

3This constitutes a difference to the treatment of Buenemann and Lenz who took the whole cell vol-
ume [191]. But as mentioned before for some species the nucleoid fills the whole cell volume.
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hooks of minimal length at random positions. This continues until the predefined contour
length is reached. Throughout this procedure elongation steps which leave the volume of
the nucleoid are rejected. These preliminary conformations are subsequently equilibrated
via transformations taken from the algorithm introduced by Madras, Orlitsky and Shepp
(MOS) [192]. Only transforms which do not destroy the SAW nature of the necklace are
performed and counted are only transformations after which the genome still resides
within the nucleoid volume.

The search space is finalised by putting the nucleoid volume and the DNA conformation
it contains in the centre of the larger cell volume. Even though the DNA conformation
may vary dynamically in a real cell, we keep this conformation fixed throughout the
target search simulation. This latter assumption is motivated by recent findings that the
influence of DNA dynamics on the search process is not too large [136].

In a simplistic view, we observe that for the target search process it only matters if a
lattice site is occupied by a blob or if it is empty. Before we detail how the target search
is modelled, we emphasise that two parameters were introduced within this model: first,
the radius of gyration of one blob, rg, which fixes the lattice spacing to twice this value,
d = 2rg and second, Nb which denotes the number of base pairs which are found in one
blob. Both will attain values which we take from experimental studies.

4.2 General search model

We now present our general model for the target search of a TF in a living cell, which we
subsequently call in vivo facilitated diffusion model (IVFDM). As our previous GFDM,
it describes the search process of a single searching particle and again we assume that
the target lies in the middle of one “blob” in our model genome. To be more precise, a
blob in the middle of the pearl necklace is designated to be the target blob, such that it
will be typically close to one of the ends along the longest axis of the nucleoid. Before we
describe the details of our model, it is appropriate to ask if one cannot directly extend
the previous model to the in vivo situation. At least such a straightforward extension
was possible in other approaches [122,141].

Direct extension of GFDM? In principle, one can rescale the lengths, diffusion coef-
ficients and reaction rates which enter the GFDM to approach the situation in a living
cell. This straightforward method, however, has some limitations. First of all, it is highly
questionable to approximate the DNA in a living cell as a straight DNA or a random
coil. Besides, even if this approximation can be applied, when one plugs in typical values
for the nucleoid volume, one obtains that the outer effective cylinder radius of GFDM,
R2, which denotes a typical distance between vicinal DNA segments, becomes smaller
than the DNA-protein contact radius, R1. In this case, GFDM can no longer be applied
as becomes obvious e.g. in Eqs. (3.32) and (3.33).

4.2.1 Details of the search model

In a rough scheme, the target search of the TF is a random walk on the lattice of spheres
as shown in Fig. 4.1 which was described in the previous section. However, it is not a
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Figure 4.2: Scheme of the search process within a non-target blob (left panel) and within
the target blob (right panel). B represents TFs which are bound to the DNA
inside the blob, U denotes TFs which are unbound, but within the blob and S
those who are searching outside the blob. In the right panel which describes
the situation in the target blob, the new state T represents a particle which
has detected the target. That is why not all particles return to state B, as
implied by the grey arrow from B to U which is thinner as the grey arrow
from S to U (compare also the explicitly given probabilities).

simple random walk in the sense that not all lattice sites are equivalent. Namely, there
are three types of sites: empty sites, sites with a blob but without the target and finally
a single blob containing the target. The two latter types are exclusively found within the
nucleoid volume, even though this volume also contains empty sites. In the remaining cell
volume there are only empty sites. Importantly, unlike the DNA the searching particle
can be located outside the nucleoid. Thus, the cell volume is roughly divided in two
parts: the inner part with the nucleoid, containing DNA, and an outer part void of
DNA.

As in GFDM the process starts unbound, at a random position in the volume. Ne-
glecting the presence of the target in a first theoretical step, the state of the searching
particle can be classified into three groups (see the left panel of Fig. 4.2).

If it is on a lattice site without DNA, it has no other options than being unbound. Since
it is searching for some stretch of DNA, we denote this state by S. Because it performs
a random walk in a confined volume, with certainty, i.e. probability one, at some point
it will encounter a blob which contains DNA. This is represented in the left panel of
Fig. 4.2 by the thick dark grey arrow4 down to the right. As in a simple random walk,
a single step starting from an empty lattice site, takes a time span, τ3D = (2rg)2/(6D3).
Since the particle will enter a blob with DNA in the unbound state, we denote this state
by the letter U.

Once inside this blob, there are two possible outcomes: either the particle binds to the

4The thickness of an arrow in Fig. 4.2 is proportional to the probability with which the corresponding
event occurs. The corresponding probability additionally appears next to an arrow. While in the left
panel both arrows pointing towards state U have the same size, this is no longer the case in the right
panel.
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DNA inside the blob, or it leaves the blob without attaching to DNA. In the following
section we will present a microscopic model for these mutually exclusive processes, but
for the moment we will just denote the probability that a first binding event occurs by pr
(compare the left panel of Fig. 4.2). This bound state is represented by the letter B. As
we assumed that the blob does not contain the target, with certainty (again probability
1) after some time the particle will dissociate and return to the unbound state inside the
blob, U. Then the particle faces the same question as before: will it bind again (with
probability pr) or will it leave the blob (with probability 1 − pr). Thus, typically the
particle will undergo several rounds of binding and unbinding before it eventually leaves
the blob. Obviously, the number and duration of such rounds will be determined by the
microscopic parameters.

So far, we excluded the blob containing the target from our considerations. Inside this
blob the scheme of states as depicted in the left panel of Fig. 4.2 has to be extended.
The states S, U and B are still present. However, when the TF binds to the DNA
inside the target blob, now it is possible that it detects the target before it dissociates.
This successful event is shown in the right panel of Fig. 4.2, where the new state T was
introduced.

As in GFDM we assume a priori that the target can only be found via sliding, or
in the parlance of the present model: state T is only entered from the bound state
B. This happens with a probability pt to be detailed in subsection 4.3.1. With the
complementary probability (1−pt) the particle will dissociate from DNA before detecting
the target (compare the right panel of Fig. 4.2). Accordingly, also in the target blob
typically several rounds of binding and unbinding occur, before either the target is found
or the particle leaves the target blob. Motivated by the set-up of many experiments, the
simulation stops when the target is detected, and we do not consider what happens after
an eventual dissociation from the target. We now discuss how to obtain the probabilities
pr and pt and the corresponding time scales in terms of a microscopic model which is
based on the general facilitated diffusion scheme.

4.3 Microscopic model

The microscopic model describes the situation within a DNA-containing blob. We start
its description with the simpler derivation of the target detection probability, pt, before
we detail the calculation of the probability to attach to DNA, pr in subsection 4.3.2.

4.3.1 Derivation of the target detection probability, pt

Inside a blob we invoke the usual assumption that the DNA of contour length 2L forms
a random coil and that the target is located exactly in the middle of the chain. Then,
the first binding position on DNA is completely random and the site where the particle
dissociated and where it re-associated are practically uncorrelated, compare [127] and
section 3.3. Some computational studies focused on more detailed local structures, e.g.
rosettes and studied different positions of the target within a rosette [162]. For our
present semi-analytical model we invoke a more coarse-grained picture.

Again denoting the one-dimensional diffusion coefficient by D1 and the microscopic
dissociation rate by koff , the following simple differential equation for the density of
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bound TFs at time t and position z, c(z, t), holds:

∂c(z, t)

∂t
= D1

∂2c(z, t)

∂z2
− koffc(z, t). (4.1)

Note that this corresponds to a one-state model. In principle, it could be extended to a
two-state model but we chose to keep the number of free parameters as low as possible.

The assumption of a random first binding position translates to c(z, t = 0) = 1/L.

The boundary conditions c(z = 0, t) = 0 and ∂c(z,t)
∂z

∣∣∣
z=L

= 0 assume a perfect target

detection on encounter and that the end of the DNA is reflecting [127]. The latter choice
is on the one hand not important, since the DNA inside a blob is rather long, and on the
other hand motivated by the observation that the compaction of the genome has to be
brought about by some structural proteins which cannot be by-passed. Importantly, for
the search process it implies that one cannot slide to a neighbouring blob. Apart from
that the DNA is assumed to be void of other bound particles. While this is certainly not
true in a living cell for the biologically relevant short sliding lengths this assumption is
not too wrong [104]. This is in agreement with the theoretical prediction that in vivo

sliding will not play a role on length scales of more than “a few tens of base pairs” [140].
The consequences of the presence of other non-specific binders will be studied in more
detail in chapter 5.

Again, Eq. (4.1) is most conveniently solved in Laplace space with respect to time,
yielding:

c̃(u, z) =
1

L(u+ koff)


1 −

cosh((L− z)
√

u+koff
D1

)

cosh(L
√

u+koff
D1

)


 . (4.2)

As usual u denotes the variable complementary to time. The flux of particles into the

target, jtarget(t) = D1
∂c(z,t)
∂z

∣∣∣
z=0

, then follows in Laplace space as:

j̃target(u) ≃ tanh(L/ℓ)

L/ℓ
+

u

2koff

(
1

cosh2(L/ℓ)
− tanh(L/ℓ)

L/ℓ

)
, (4.3)

where the Taylor series in u was expanded up to linear order and again ℓ =
√
D1/koff .

While in the previously studied cases the 0th order term was always equated to be 1,
for the first term in Eq. (4.3) this is in general not the case. The term linear in u will
be discussed below. In fact, the first term is the first quantity we wanted to derive: the
probability to detect the target before dissociating, pt:

pt =
tanh(L/ℓ)

L/ℓ
. (4.4)

This probability solely depends on the ratio between the half-length of DNA within a
blob, L, and the typical sliding length, ℓ. Fig. 4.3 shows pt as a function of this ratio.

Since for small arguments L/ℓ, tanh(L/ℓ) ≈ L/ℓ, pt approaches unity if the sliding
length is much larger than the DNA length. This is clear, since in this case the total
length of DNA will be explored before dissociation and combined with an infinitely fast
target detection on encounter, one can be sure to detect the target. In the opposite limit
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Figure 4.3: The target detection probability pt (blue line) as a function of the ratio L/ℓ.
For long DNA chains, pt is well approximated by 1/(L/ℓ) (dashed black line).

of large DNA lengths, one has tanh(L/ℓ) ≈ 1, such that pt ≈ ℓ/L. This limit has been
drawn as a dashed black line in Fig. 4.3. Thus, when the DNA is sufficiently long, the
probability to detect the target converges to the ratio of the typical sliding length and
the DNA half-length. In between these two extreme regimes pt decreases monotonically
as a function of L/ℓ.

Up to a factor of u/pt, the second term in Eq. (4.3) is the conditional target detection
time τt. Here, conditional detection time means the mean target detection time given
that the target is detected at all. One obtains:

τt =
1 − 1/

(
pt cosh2

(
L
ℓ

))

2koff
=

1 − L
ℓ /
(
sinh

(
L
ℓ

)
cosh

(
L
ℓ

))

2koff
. (4.5)

Conversely, the probability to dissociate before the target is detected is given by 1−pt.
This can be obtained by calculating the Laplace transform of the global dissociation flux

which is defined as koff
L∫

z=0

c̃(u, z)dz. The associated conditional dissociation time τd is

given by

τd =
1

2koff

(
3 − tanh2(L/ℓ)

1 − tanh(L/ℓ)/(L/ℓ)

)
. (4.6)

In blobs which do not contain the target, the DNA is simply left after an average
time span of 1/koff . This can also be seen by letting L → ∞ in Eq. (4.6). In refer-
ence [182] a differing convention was applied: namely, for τd the time span 1/koff was
always used instead of Eq. (4.6). However, we checked that this only slightly modifies the
results for biologically relevant values. In particular, the qualitative conclusions drawn
in reference [182] are still true.
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4.3 Microscopic model

Thus, we derived the “one-dimensional” probabilities and their corresponding time
scales. But before we can detail the calculation of the mean target search time in sec-
tion 4.4, we first have to calculate the DNA association probability, pr and its associated
time scales.

4.3.2 Derivation of the non-specific association probability, pr

In order to derive pr, i.e. the probability to bind to DNA instead of leaving the blob
via diffusing out with diffusivity D3, we again have to solve a diffusion equation. This
time, however, in three dimensions and in a spherical domain. More explicitly, we study
two concentric spheres: an inner one with radius rg which corresponds to the radius of
gyration of the blob and an outer one with radius r2. The latter radius marks a cut-off,
i.e. when a particle reaches this radial distance, it is assumed that it “forgot” where it
came from and continues its search in a neighbouring blob. For the ease of notation we
introduce the dimensionless parameter α via r2 = α · rg, where α > 1, but otherwise
a priori arbitrary. We will detail below which value of α we will use for the numerical
evaluation. Within the inner sphere of radius rg there is a homogeneous distribution of
DNA to which the particle can bind.

The following derivation of pr is similar to a calculation in [86]. Since we assume
spherical symmetry, the functions solely depend on r = |r| and not on the full vector r.
Introducing the non-specific association rate kass per base pair, which is measured in units
of M−1s−1, we have to solve the following differential equation for the three-dimensional
density of particles, c(r, t):

∂c(r, t)

∂t
=

{
D3∆c(r, t) − κc(r, t), 0 < r < rg
D3∆c(r, t), rg < r < r2

, (4.7)

where ∆ denotes the Laplace operator and κ = nkassNb. As before Nb denotes the
number of base pairs within a blob and n stands for the density of DNA such that κ has
the physical dimension of 1/time unit.

Since we assume that after dissociation the particle immediately loses track of its point
of dissociation and that the same is true for a particle entering the blob from outside,
this corresponds to the following initial condition:

c(r, t = 0) =

{
c0, 0 < r < rg
0, rg < r < r2

. (4.8)

As we study the case of a single searching particle in a blob, we use c0 = n = 3/(4πr3g),
where n denotes the density of DNA within a blob. Finally, we use the boundary condi-
tion, c(r = r2, t) = 0, to take into account that particles which reach this cut-off distance
leave the blob and thus the microscopic system.

Again going to Laplace space with respect to time and exploiting the spherical sym-
metry of the system, the differential equation (4.7) becomes:

uc̃(u, r) =

{
c0 +D3∆c̃(r, u) − κc̃(r, u), 0 < r < rg
D3∆c̃(r, u), rg < r < r2

. (4.9)

There are two possible ways for the particle to leave the three-dimensional domain of the
system:
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4 In vivo facilitated diffusion model

1. it can dissociate away by reaching the radial distance r = r2. In Laplace space, the
corresponding flux, j̃out(u), is given by

j̃out(u) = −4πr22D3
∂c̃(u, r)

∂r

∣∣∣∣
r=r2

, or (4.10)

2. within the inner sphere, i.e. within the blob, it can bind non-specifically to the
DNA. In Laplace space, this flux, j̃bind(u), is given by

j̃bind(u) = 4πκ

rg∫

0

dr r2c̃(u, r). (4.11)

Plugging in the solution of Eq. (4.9), one obtains

j̃out(u) =
3

r3gq
3
1

r2q2
sinh(q2δr)

q1rg coth(q1rg) − 1

coth(q1rg) + q2
q1

coth(q2δr)
, and (4.12)

j̃bind(u) =
3

r3gq
3
1

κ

u+ κ

[
r3gq

3
1

3
− (q1rg coth(q1rg) − 1)(1 + rgq2 coth(q2δr))

coth(q1rg) + q2
q1

coth(q2δr)

]
, (4.13)

where we introduced the notation q1 =
√

u+κ
D3

, q2 =
√
u/D3 and δr = r2 − rg. Due to

the relations

j̃bind(u) ≃ pr(1 − τbu), and j̃out(u) ≃ (1 − pr)(1 − τeu), (4.14)

expanding the Maclaurin series up to linear order yields after a lengthy but straightfor-
ward calculation for the association probability:

pr = 1 − 3αφ(γ)

α+ (α− 1)γ2φ(γ)
. (4.15)

In Eq. (4.15) we used the auxiliary function φ(γ) = (γ coth(γ) − 1)/γ2 in analogy to
the function f introduced by Reingruber and Holcman and on page 62 in the previous
chapter [168]. In the present case, this function involves the dimensionless quantity
γ = rg/

√
D3/κ. The term in the denominator,

√
D3/κ, has the physical dimension of

a length and corresponds roughly to the distance the particle diffuses in 3D within the
blob before it is captured by DNA. Importantly, pr solely depends on γ and on the fixed
parameter α.

Fig. 4.4 shows pr as a function of γ for the dimensionless parameter α =
√

23/5 which
denotes the system’s cut-off distance. As mentioned above, α is a parameter which can in
principle attain any value larger than 1. However, as we will detail in a specific paragraph
below in the numerical evaluation of the mean search time, we choose the above value.

An expansion for small arguments γ, yields lim
γ→0

φ(γ) = 1/3. Thus, lim
γ→0

pr(γ) = 0 as

expected since this limit corresponds to a vanishing association rate kass. For increasing
values of γ, Fig. 4.4 shows that the non-specific association probability grows monotoni-
cally. In the limit of large values of γ, one obtains lim

γ→∞
pr(γ) = 1. This is coherent since
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Figure 4.4: Association probability pr as a function of the dimensionless parameter γ for
α =

√
23/5.

large values of γ correspond to fast non-specific association. However, this limit is also
reached for vanishing D3 where the interpretation is not that straightforward. Obviously,
an immobile TF cannot leave a blob (as implied by 1 − pr = 0), but if such a particle is
able to bind to DNA is a priori unclear. For the finite values of γ studied herein, it does
not make a difference.

In the general case, the conditional mean time for non-specific binding is given by the
following rather lengthy expression:

τb =
α

2κ

{
5α+

(
4γ2(α− 1) − 15α

)
φ(γ) +

(
12 − 15α+ 2γ2(1 − α)2

)
γ2φ2(γ)

}

×
(
α+ (α− 1)γ2φ(γ)

)−1 ×
(
α+ (γ2(α − 1) − 3α)φ(γ)

)−1
. (4.16)

Conversely, the conditional mean time it takes for a TF to leave the environment of a
blob is given by:

τe =
1

2κ

{
α(3 − φ−1(γ)) + γ2

(
(3α− 2)φ(γ) +

2 + α

3
(1 − α)2

)
− γ4

3
(1 − α)3φ(γ)

}

× (α+ (α− 1)γ2φ(γ))−1. (4.17)

Derivation of α =
√

23/5 We now comment on the choice α =
√

23/5 in our numerical
evaluations. As already mentioned, the only hard restriction on α is that it should be
larger than unity: α > 1. Thus, we decided to choose the convention that in the limit
where the TF has no affinity at all for DNA, κ → 0, the escape time as given by
Eq. (4.17) should be equal to the time a random walk step takes in a region void of
DNA, τ3D. Formally, this implies

lim
κ→0

τe(κ) =
r2g

30D3
(5α2 − 3) =

4r2g
6D3

= τ3D. (4.18)
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4 In vivo facilitated diffusion model

Solving for α, one obtains: α =
√

23/5 ≈ 2.14. Importantly, we note that this value was
simply taken in order to obtain a meaningful scaling behaviour, but it should not be taken
literally. Comparing with Fig. 4.1, one notices that for such a value of α neighbouring
blob regions would overlap. Thus, its value is not dogmatic, but as we will see below it
leads to a very reasonable agreement with experimental data. We now derive an explicit
formula for the mean search time within our model.

4.4 Derivation of the mean target search time

Since the particle starts its search at a random position in the cell, the total search time
can be divided into three parts:

1. the time that passes until the target blob is encountered for the first time, then

2. since not every encounter with this blob leads to a successful target detection, the
second part comprises the product of how often the target blob is encountered in
vain and the time it takes to return to the target blob after a missed chance to
detect it and finally

3. the time it takes to actually detect the target in the final stage of the search process.

In all three phases we can act on the assumption that irrespective of whether or not a
blob that is encountered en route contains the target, usually several rounds of binding
and subsequent unbinding events occur. In fact, a blob without target can be considered
to be a target-containing blob, in which, however, the target detection probability is
zero, see Eq. (4.19) below.

In the absence of a target, a single round of binding and unbinding on average takes
τc = τb+1/koff , where τb is given by Eq. (4.16). As mentioned previously, in the presence
of the target, the term 1/koff has to be replaced by τd as given by Eq. (4.6). In both cases
the number of rounds or loops involving binding and unbinding is given by the function

g(χ) =
χ

1 − χ
, (4.19)

where χ = pr(1 − pt) denotes the probability of binding, but not finding the target.
Without the presence of the target, one has pt = 0, such that g(χ) = pr/(1 − pr),

underlining the meaningfulness of Eq. (4.19). Since leaving the blob consumes on average
τe as given by Eq. (4.17), in a blob without target on average the following time span is
spent:

τblob = τe +
pr

1 − pr
τc. (4.20)

Here the second term is the product of the average number of search rounds and of the
duration of a single round. In the presence of the target, the combined probability of
not detecting it before the blob is left, is given by

puns =
1 − pr
1 − χ

. (4.21)

Here the index “uns” alludes to the fact that this an unsuccessful event in terms of the
target search. Conversely, the combined probability of successfully detecting it, is given
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4.5 Results of the IVFDM

by 1 − puns. Note that without target, pt = 0 and therefore χ = pr, such that puns = 1,
i.e. an unsuccessful event happens with certainty, as it should be. Successfully finding
the target on average takes a time span of τsuc = τb + τt + g(χ)τc. Here the third term
is the total time which is spent in unsuccessful search rounds, while the first two terms
correspond to the time for binding and subsequently detecting the target. Conversely,
leaving the target blob empty-handed spoiled a mean time of τuns = τe + g(χ)τc.

With the just mentioned microscopic probabilities and time spans at hand, just four
other parameters are needed to determine the mean search time. They are obtained
from the numerical simulations. Both for the initial phase of the trajectory leading to
the first encounter with the target blob and for a trajectory which starts at the target
blob and returns to it, the number of random walk steps has to be counted (nf,3D and
nr,3D) together with the number of non-target containing blobs encountered while doing
this (nf,enc and nr,enc). Here the index “f” denotes that it concerns the first part of the
trajectory. Similarly, the index “r” describes the return to the target blob.

With this notation the mean target search time becomes:

τ = (nf,3D − nf,enc)τ3D + nf,encτblob

+
puns

1 − puns
(τuns + (nr,3D − nr,enc)τ3D + nr,encτblob)

+τsuc. (4.22)

In this central result of this chapter, the ordering in three lines is according to the three
phases mentioned at the beginning of this section. In reference [182] the term ni,enc was
not subtracted from ni,3D (where in both cases i = f, r representing the first encounter
and return trajectories). However, this only shifts the results slightly without changing
any of the conclusions.

The following section is devoted to the results for the mean search time which are
obtained with Eq. (4.22).

4.5 Results of the IVFDM

In the following subsection we state our reference set of parameters that are kept un-
changed throughout the simulations if not stated otherwise. As before they are motivated
by the lac repressor system in E. coli.

4.5.1 Reference set of parameters

As mentioned we use an outer cut-off radius r2 = α ·rg with α =
√

23/5. Based on exper-
imental observations we use the following diffusion coefficients to describe the situation

in a living cell: D1 = 0.046 (µm)2

s and D3 = 3 (µm)2

s [39]. Apart from the dissociation rate
koff and the non-specific association rate kass which both are the main variables in the
following, this leaves two further microscopic parameters to be determined: the radius of
gyration of a blob rg and the number of base pairs such a blob contains. Note that both
are in fact average values and the latter is related to the half-length of DNA, L, that a
blob contains via L = Nbb/2, where b = 0.34 nm denotes the length unit base pair. For
these two quantities we employ two parameter sets based on different experiments. The
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4 In vivo facilitated diffusion model

Parameter set nf,3D nf,enc nr,3D nr,enc

a 31514 766.41 18689 463.48

b 2594.7 175.63 1291.9 90.848

Table 4.1: Simulation results obtained with IVFDM using the parameter sets a and b.

first one, denoted by a: rg = 15 nm and Nb = 104 [185, 191]. The second one, denoted
by b: rg = 35 nm and Nb = 5 · 104 [186]. Thus, we deal with a finer model (a) and with
a coarser one (b). This also determines our lattice spacing and hence our search space.
For the size of the nucleoid and the cell volume we use the experiments of Suckjoon Jun
and Andrew Wright [189]: the nucleoid volume is approximately a cylinder of length
lnuc = 1.39µm and of diameter dnuc = 240 nm. The cell volume is approximated by a
larger cylinder of length lcell = 2.5µm and of diameter dcell = 500 nm.

In our simulation we approximate the nucleoid cylinder by a cuboid with edge lengths
lz = lnuc (long axis) and lx = ly =

√
πd2nuc/4 (short axes) and similarly for the cell

volume. For the parameter set a, one then has a nucleoid lattice5 of size 7 × 7 × 46
within the cell lattice of size 15 × 15 × 83. For parameter set b, we have a lattice
of size 6 × 6 × 36 hosting a sublattice of size 3 × 3 × 20. Because there is no exact
central positioning with (sub)lattices of this size, equivalent ensembles were introduced
and the results were subsequently averaged over these. Since the genome of E. coli has
approximately 4639 kbp, the pearl necklace modelling it has a length of 464 blobs for
parameter set a and a length of 92 blobs for set b6.

These values enable us to calculate what fraction of lattice sites is occupied by a blob.
Using the whole cell volume, one obtains ≈ 2.5 % with parameter set a. However, since
all the blobs are in the smaller nucleoid volume, there the fraction of occupied sites is
approximately 20.6 %. Using parameter set b, these values become 7.1 % and 51.1 %. At
first sight, it might be surprising that the values obtained with the two sets differ so
much. However, one has to notice that while the fraction of occupied sites is higher in
set b, the actual density of basepairs in a blob is smaller. Apart from round-off errors
due to the discreteness of our system, the volumes and the DNA content coincide.

The simulation results for ni,3D and ni,enc are stated in table 4.1. Note that these
are ensemble-averaged values, but as we will detail below results obtained with single
conformations do not differ much among one another.

The data presented in table 4.1 shows that as expected parameter set a constitutes a
more detailed model of DNA, as more individual steps are registered. One can directly
calculate the fraction of sites occupied by a blob that a particle encounters on its tra-
jectory. For parameter set a, one obtains 2.4 % for the first search phase and 2.5 % for
return trajectories. In the case of parameter set b, one obtains 6.8 % (first encounter) and
7.0 % (return). Two points are striking: first, for both sets the measured values are close
the fraction of occupied sites in the whole cell that we calculated above. Thus, during
its trajectory the particle seems to explore the whole cell volume. Or in other words, it

5This parameter set was used for the illustration presented in Fig. 4.1
6Note that by design of our algorithm, we can only study even numbers of blobs. This is however, not
too much of a restriction.

82



4.5 Results of the IVFDM

102 103 104 105 106 107 108 109 1010

kass [1/(Ms)]

10-2

100

102

104

106

108

k o
ff 

[1
/s

]

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Figure 4.5: Fraction of time during which the TF is bound to DNA as a function of the
non-specific association rate (kass) and the dissociation rate (koff). The result
was obtained with parameter set a. The contour lines are for fb = 0.5, 0.6,
0.7, 0.8 and 0.9.

diffuses through an effective medium [136]. Second, the values obtained for return tra-
jectories are marginally larger than the ones characterising the first search phase. This
can be understood as follows: while the first search phase starts at a random position,
and thus with substantial probability outside the nucleoid volume, in the case of return
trajectories it is known that the search starts in the nucleoid and thus in a region with
an elevated DNA density.

In the next subsections we study results obtained with parameter set a. Subsec-
tion 4.5.5 will be devoted to results obtained with the alternative parameter set b.

4.5.2 Bound fraction of time

Before we actually consider the mean target search time, we first study the fraction of
the total search time during which the TF is bound to the DNA, because this will ease
the discussion of the following results. This value is denoted by fb and technically it is
obtained by summing up only the terms proportional to 1/koff , τd and τt in Eq. (4.22)
and subsequently dividing the result by the total search time obtained with the same
equation. This preparatory result obtained with parameter set a is plotted in Fig. 4.5
as a function of the dissociation rate koff and the non-specific association rate kass. All
other parameters are chosen as described in the previous subsection.

Bright regions in this figure correspond to trajectories in which the particle is predom-
inantly unbound, while dark regions mark trajectories in which it is mostly bound. As
expected, when considering any vertical slice through Fig. 4.5, one sees that when the dis-
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fb c0 c1

0.5 1.0228 1.9495

0.6 1.0229 2.1298

0.7 1.0229 2.3258

0.8 1.0230 2.5653

0.9 1.0231 2.9258

Table 4.2: Fit parameters for the bound fraction of time, fb as given by Eq. (4.23).

sociation rate grows, the particle spends less time bound to DNA. Conversely, when look-
ing at a horizontal slice: increasing the non-specific association leads to a larger bound
fraction. Furthermore, as is apparent from Fig. 4.5, contour lines of fb = 0.5, 0.6, · · · , 0.9
are parallel, straight lines with a positive slope. More explicitly, lines of constant fb can
be fitted with the following linear equation:

log10(kass[1/(Ms)]) = c0 + c1 × log10(koff [1/s]). (4.23)

The fit values of c0 and c1 are presented in table 4.2. Thus, as already observed directly,
that contour lines are parallel is expressed in the fact that c0 is nearly independent of
fb. The second parameter, c1 is an increasing function of fb and illustrates that each
contour line has a different axis intercept. Importantly, the fit values of c0 are close to
unity. This is not surprising, since the ratio of kass and koff is simply the non-specific
binding constant.

With this picture in mind, the Figs. 4.6, 4.8 and 4.9 below can be interpreted more
easily, since they show the same range of values of koff and kass and it is clear which parts
of these figures correspond to parameter regimes in which the particle is predominantly
bound or unbound.

4.5.3 Mean search time

We now turn the attention to the most important quantity, the mean target search time
which is defined in Eq. (4.22). It is shown in Fig. 4.6 as a function of the dissociation rate
koff and the non-specific association rate kass. The result was obtained using parameter
set a.

As usual for facilitated diffusion models, the mean search time depends non-monotoni-
cally on both rates that are varied in Fig. 4.6. This means, that in the range of rates
studied here, when one of the two rates is fixed, the other one can be chosen to minimise
the search time. Following the course of local minima along the descending “valley”
towards the upper right corner of Fig. 4.6, one sees that the search time can be reduced
by increasing the non-specific association rate, but at the same time the dissociation rate
has to be chosen appropriately.

At first sight these local minima seem to lie on a straight line, in similarity to the
lines of constant fb seen in Fig. 4.5. If this were the case, there would be a global value
of fb that would optimise the search process. We test this hypothesis in the following
subsection. There the result will also be compared to the recent experimental findings by
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Figure 4.6: Mean target search time as a function of the dissociation rate koff and the
non-specific association rate kass. The results were obtained with parameter
set a.

Elf and co-workers [39]. Qualitatively, our result is in agreement with the observations
of Koslover et al. that the search time can be minimised when off- and on-rates are
increased while keeping them in a appropriate ratio [136].

4.5.4 Searching at near optimal conditions

In the case of the lac repressor it was recently measured experimentally, that it spends
approximately 87% of the time bound to DNA [39]. Of course, this value does not
constitute a dogma, however the consensus both from experimental as well as from
theoretical studies seems to be that the repressor spends more than half of the search time
non-specifically bound to DNA. Thus, in the following we study the five equidistantly
distributed values of fb in the range [0.5, 0.9] which were already highlighted as contour
lines in Fig. 4.5. The mean target search times along these lines are depicted in Fig. 4.7
as a function of the dissociation rate koff . Equivalently, they could have been presented
depending on the association rate kass, since there is a simple linear relation between
these two rates (compare Eq. (4.23)).

An inspection of Fig. 4.7 shows that for a wide range of dissociation rates, koff < 104/s
the search times with different values of fb do not differ much. We note that a similar
conclusion has been drawn in a numerical study by Foffano et al. for ten proteins which
search simultaneously [161]. In this regime of rather rare dissociations, the yellow curve
represents the fastest search time, implying that spending a large fraction of time bound
to DNA is beneficial. In turn, this implies that the association rate should be rather
large. Conversely, for larger values of the dissociation rate the ordering of the curves is
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Figure 4.7: Mean target search time as a function of the dissociation rate for five differ-
ent values of fb: α = 0.5 (black, continuous), α = 0.6 (blue, long dashes),
α = 0.7 (dark red, short dashes), α = 0.8 (red, dots) and α = 0.9 (dark
yellow, dot-dashed). The curves in this plot are slices through Fig. 4.6 at the
corresponding contour lines. Results with parameter set a.

inverted. Thus, when dissociation occurs often, it is advantageous to spend most of the
time unbound.

In general this figure shows, that within our model if one of the microscopic rates is
fixed, for example due to physical or biological reasons, there is an optimal fraction of
time the particle should spend on the DNA. However, there is no global value of fb that
optimises the search.

Within our model, at koff ≈ 200/s, the minimal search time which can be reached by
choosing a non-specific association rate of kass ≈ 2.5 × 105M−1s−1, is τ ≈ 302 s. Such
a dissociation rate was discussed in Koslover et al. [136] and importantly this result is
close to the experimental result of 354 s which was obtained by Elf and co-workers [39].

In general, at this value of koff Fig. 4.7 shows that for the values of fb studied here, the
search times do not differ very much. A similar conclusion has been drawn by Foffano
et al. in the case of ten particles which search simultaneously [161]. This nicely agrees
with early experimental results which showed that unlike in in vitro studies, in living
cells the dependence on the ion concentration and thus on the dissociation rate is not
that pronounced [163].

4.5.5 Influence of different parameter sets

The results shown so far were all obtained with parameter set a. In Fig. 4.8, we now
compare them to the results obtained with the alternative parameter set b, while all
other parameters remained unchanged. We plot the ratio of the mean search times with
set a with the ones obtained with set b as a function of koff and kass.
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Figure 4.8: Ratio of the mean search time obtained with parameter set a with the ones
obtained with set b.

In a wide range of the two parameters which are varied here, the mean search times
are comparable. This is particularly true for the “interesting” regime, for example seen
in Fig. 4.6, where the search time is minimised for a fixed value of the association rate.
Only in the bottom left corner notable differences between the two parameter sets can be
seen. In this regime, where both binding and unbinding are slow, the different amounts
of base pairs a single blob contains make the difference.

Globally speaking, in terms of the mean search time, the results obtained with the two
parameter sets do not differ much. One can go one step further, and ask if results using
single conformations differ considerably. However, when comparing the mean search
times obtained at kass = 105 M−1s−1, it appears that they all are within one percent
of the ensemble averaged value (data not shown), see supporting information of [182].
Thus, it seems to be fair to limit ourselves to considering the ensemble averaged values.

Likewise, it was shown by Koslover et al. in a combined theoretical and numerical
study that different DNA conformations yielded similar search times [136]. Their inter-
pretation was that within a short time span a motion arises which is characterised by
an effective three-dimensional diffusion coefficient [136]. Motion is slowed down due to
binding events, but the exact conformation is not too important [136]. This agrees with
our observation that the medium that the particle experiences on first encounter and
return trajectories has the same fraction of DNA-occupied blobs as the whole cell.

4.5.6 Acceleration due to local searches

Finally, one may relax the assumption that the search process is started at a random
position in the cell. There are two reasons for doing this. First, biologically relevant is not
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Figure 4.9: Ratio of the mean search times for a particle starting its search already in the
target blob, but unbound, and for a particle starting at a random position in
the cell volume. All other parameters are equal.

only the time it takes for a TF to find the operator from a random starting position, but
also the time it takes to return to the target sequence after dissociating from the target7.
Second, the co-localisation effect which was mentioned in subsection 2.4.1 [114, 115]:
many TFs are expressed in the vicinity of where they later on have to perform their
tasks. For example, the gene lacI encoding the lac repressor is near the lac promoter
and its genes. It seems obvious, that a search process starting closer to the target should
be faster than an equivalent one whose starting position is more distant. However, this
is not true when (a) the dimensionality of the system is larger than two and (b) the
starting position of the searcher is not too close to the target [74]. In this case the search
time is independent of the initial separation [74]. Thus, as in Pólya’s classical result, 2
is the critical dimension. Note that distance effects in gene regulation were also studied
in [120].

In Fig. 4.9 we study the influence of the starting position on the search times within our
model. This figure shows the ratio of the mean search time for a particle which starts its
search unbound, but in the target blob, with the mean search time for the conventional
random starting position. Dark regions in this figure correspond to similar search times,
while bright regions show an acceleration due to the better starting position.

We observe just like in Fig. 4.5 that there are two main regimes. In a wide range of
parameters the mean search time does not change much if the starting position is already
close to the target. However, for increasing values of the non-specific association rate
kass, there is a rather sharp transition to a regime where the local searcher finds the

7This will be discussed in more detail in the following chapter.
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target much faster. This is best understood by looking at the relation between kass and
pr, see the discussion following Eq. (4.15).

Large values of kass imply a large probability to bind to the DNA inside a blob. For a
local searcher, already starting in the target blob, this implies that it will often “choose”
to bind to DNA and thus have a chance to detect the target. The combined probability
to detect the target before leaving the target blob will increase and the corresponding
search time will remain short. Conversely, for a global searcher, a particle starting at
a random position, increased values of pr imply that it will bind repeatedly to blobs
without the target on the way. These purely non-specific blobs then act as traps, slowing
down the search, before it reaches the target blob, when the increased value of pr finally
becomes advantageous for this searcher as well.

By considering vertical slices through Fig. 4.9, one can obtain a pedestrian derivation
of the above mentioned independence of the search time on the starting position in 3D.
The higher the dissociation rate koff becomes, the more time will be spent with three-
dimensional diffusion. Accordingly, for increasing values of koff the search times for global
and local searches approach each other.

Implications of possible anomalous transport mechanisms Within our model, the
increase in the target detection rate at conditions which we deem to be biologically
relevant seems to be small. This is in line with the model of “geometry-induced kinetics”,
introduced by Olivier Bénichou and co-workers who showed that the starting position of
a searching particle is rather unimportant, if the medium is explored in a “non-compact”
fashion [193,194].

As mentioned in the introductory section of this chapter, the motion of the lac repressor
was modelled as normal Brownian motion. While in normal diffusion the mean-squared
displacement of a particle grows linearly in time, 〈x2(t)〉 ∝ t, subdiffusion is characterised
by the behaviour 〈x2(t)〉 ∝ tα with α < 1. Given that for several particles it was shown
that they perform subdiffusion in a crowded environment [93], we shortly comment on
implications of such transport mechanisms on the protein-DNA association. The sub-
linear dependence on t for subdiffusion implies that the probability distribution of a
particle spreads more slowly. One negative consequence of this is obvious: motion to
a far-away place is slowed down. This seems to make an efficient search impossible.
However, there is the other side of the coin: particles stay longer at (or close to) their
initial position [195]. Thus, if a subdiffusive particle has just dissociated from the target,
it does not leave the vicinal region too quickly. As discussed in the literature recently, in
such a situation subdiffusion can even become beneficial for certain search processes [195,
196]. However, single particle tracking for small proteins appears to be not yet possible
experimentally.

4.6 Summary and outlook

The version of the facilitated diffusion model presented in this chapter was specifically
designed to describe the situation in a living bacterial cell. Therefore the simple DNA
conformations studied in chapter 3 in terms of GFDM were replaced by a more realistic
model. Based on the experimental observation that the genome consists of structural
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subunits, DNA was modelled as a SAW of DNA blobs in the finite cell volume [191]. In
each of these blobs a local facilitated diffusion model was solved in order to obtain the
system’s global target association rate.

As in conventional facilitated diffusion models, it was found that the search time
depends non-monotonically both on the non-specific dissociation rate and the comple-
mentary association rate. This illustrates again that both the one-dimensional and the
three-dimensional search phase on their own are disadvantageous, while their combi-
nation can yield an efficient search process. An investigation of the simulation results
showed that the particle experiences the nucleoid as an effective medium through which
it diffuses with a reduced three-dimensional diffusion coefficient.

It was found that details such as the individual conformation of DNA or parameters
describing the structure did not influence the mean search time significantly. Moreover,
the obtained search time was close to the experimentally measured value. Interestingly,
within our model starting the search process already in the target blob did not greatly
reduce the search time. This was due to the fact that for typical parameter values
most of the search time was spent returning to the target blob after dissociating from it
without having detected the target. Accordingly, getting rid of the initial search phase
which leads to the first encounter with the target only modestly increases the target
association rate. One has to note, however, that this “local” setting is rather soft. The
particle was assumed to be in the three-dimensional space within the target blob which
contains several kbps of DNA.

In the following chapter we focus on a different question. Concurrently, we take into
account two aspects which were neglected in this chapter in order to reduce the number
of parameters: the occurrence of search and recognition state of the TF and the presence
of other non-specifically bound particles on the DNA.
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5 Target search in a real sequence

The way how the search of a protein for a target sequence on DNA was treated in the two
previous chapters was based on several assumptions concerning the interaction energy
between TF and DNA. In the in vivo model we assumed that there is just one binding
mode and that on encounter the target is detected with certainty. Conversely, in the
model presented in chapter 3 it was assumed that there are two binding modes but that
the switching between these two occurs independently from the underlying sequence.
Both assumptions allowed a thorough theoretical treatment, but recent experimental
findings gave new insights. Indeed, blind switching cannot be a good strategy, since such
a change of conformation towards the recognition mode should only happen when the
underlying sequence is similar to the target sequence.

In the present chapter we use an approach which is based on the one introduced in
reference [197]. Therein the search of a two-state protein in a random energy landscape
was described and effects of correlated rebinding were taken into account [197]. We de-
velop this model considerably further by using the real nucleotide sequence of a common
laboratory strain of E. coli. Furthermore to model the situation in a living cell, we take
the presence of other non-specifically bound proteins into account.

Apart from the “searching” protein we usually study, in a living bacterial cell there
is a plethora of other macromolecules both in the cytoplasm and bound to DNA. That
molecules in the cytoplasm cause a reduced mobility of the searching particles in 3D was
already taken into account in the previous chapter. However, a large number of DNA-
bound proteins will obviously also influence the sliding motion of a searching TF. First,
they could block the target by binding to it, and second they constitute “roadblocks” if
one assumes that a sliding TF cannot by-pass them [141].

Already in 1974, James D. McGhee and Peter H. von Hippel noticed the importance of
binding of large ligands to a DNA chain [198]. They calculated the probability that a gap
of certain length remains free as a function of the size and number of non-specifically
bound proteins [198]. These calculations of this “parking lot problem” were recently
renewed by Henrik Flyvbjerg et al., leading them to the negative conclusion which we
already mentioned that it is “impossible, in vivo, for any protein to rapidly conduct
random one-dimensional diffusional sliding along DNA over a distance exceeding a few
tens of base pairs” [140]. Based on the more recent experimental findings that the sliding
lengths of lac repressor in a living E. coli cell are just a few dozen bps [104], this might
not be too harsh a restriction, but it affects the search process nevertheless. In fact,
Gene-Wei Li, Otto G. Berg and Johan Elf were the first who explicitly coupled these one-
dimensional crowding effects to a facilitated diffusion model [141]. Most importantly they
found that bound roadblocks reduce the effective antenna size from which the searcher
can slide into the target [141]. But at the same they decrease the amount of non-specific
DNA which traps the searcher on its way to the target [141].

In the first part of this chapter we focus on the final stage of the search for the target,
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i.e. when the TF has just landed at a position near the main operator O1. Here the
presence of other non-specifically bound proteins becomes important. The result of both
a numerical model and an approximate theoretical model in this local setting will be
discussed in section 5.2. In section 5.3 the full search model is introduced including
looping between two operators. Finally, section 5.4 presents the results of this model.

5.1 Search in the target region

In the present model, we assume that a certain number of non-specific proteins has bound
to the DNA and that they cannot be by-passed by the searching protein. For the sake
of simplicity, we assume that these “blockers” are immobile, although including their
mobility might be important in some cases [141,156]. Thus, when speaking of the target
region we mean the possible binding positions between the nearest blocker to the left
and the nearest blocker to the right of the target1.

Importantly, unlike in the two previous chapters we study a discrete model. Within the
model, at each of the discrete binding sites the particle can be either in the search or in
the recognition mode. While in the loosely bound search state at position i, four events
are possible: the particle can slide to the neighbouring positions i−1 or i+1 while staying
in the search mode. Furthermore it can dissociate or it can perform a conformational
switch to the recognition mode at position i. As a boundary condition we apply that a
particle which is at the end of the target region, i.e. at a site adjacent to a blocker, and
which tries to move further in that direction will be kept at the present position. In the
recognition mode, we assume that binding is so tight that no sliding is possible, such
that returning to the search state at the same position is the only option. All dynamic
processes within this discrete state model are shown in the schematic figure 5.1.

In this simplified version of the search model, we are only interested in the probability
to detect the target before dissociation from the DNA occurs. Thus, the simulation is
stopped when either the particle dissociates from DNA or when it detects the target. In
the present case, target detection constitutes in making a conformational switch from
the search mode to the recognition mode at the position of the main operator O1. This
deviates from the treatment of Hu et al., where an additional detection step is needed
at the position of the target [167, 199]. It also deviates from the treatment in terms of
GFDM as presented in chapter 3, where target detection occurred via slow sliding in the
recognition mode.

In simulating the system we apply the standard Gillespie algorithm [200], as the con-
ventional model for activated transport, compare [126,201]. Thus, the rates at which the
events mentioned above occur depend on the energetic barriers between the correspond-
ing states. In general terms. the rate kab for going from state a (energy Ea) to state b
(energy Eb) is given by

kab = λ0 ·
{

exp(−(Eba − Ea)/(kBT )) if Eba > Ea,

1 else,
(5.1)

1Here we make the same assumption as others [122], that the target is not occupied by non-specific
blockers. Of course, in reality this can happen, but in the case of immobile blockers, there is no point
in simulating a search process in which the target cannot be found.
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i

sear state

recognition state

Figure 5.1: Scheme of the search process within the discrete state model. At any position
the TF can be in the search state (upper row) or in the recognition state
(lower row). Interconversion between these states occurs at rate krs (from
recognition to search state - dark grey arrows) and at rate ksr (from search
to recognition state - light grey arrows). Note that these rates depend on
the underlying sequence and can be different for any site. Only in the search
state, the TF can slide (with rate Γ) to neighbouring sites as depicted by the
green arrows. From the search state dissociation to the bulk solution (with
rate koff - blue arrows) is possible.

where Eba denotes the energetic barrier between these two states. The inverse of the
attempt rate, λ0, denotes the fundamental time scale of the system.

In the following we assume that the binding energy in the search state, Es, is the same
for all binding positions. This assumption which can be traced back to the classical work
of Winter et al. was rationalised via Monte Carlo simulations by Dahirel et al. [59, 89].
Besides, a similar energy landscape was discussed in [122].

Es and all other energies are measured relative to the energy of the unbound state
which is set to zero. We assume that the energetic barrier, Ebs, to be crossed for sliding
to a neighbouring position is sequence-independent as well. This is in contrast to the
treatment of Zabet and Adryan, in which the specific binding energy has to be brought
up for each sliding step [155].

However, we assume that the binding energy in the recognition mode and the energetic
barrier which has to be crossed to get there from the search state at the same position
depend on the underlying nucleotide sequence. The following treatment is based on the
assumption that this switching should occur more easily when the sequence is similar to
the target sequence. We will now detail how this “similarity” can be quantified.

5.1.1 Score matrix

In Fig. 1.4 we already saw qualitatively that the three naturally occurring operators
are similar and have a length of 21 base pairs2. The DNA can be considered as a one-
dimensional array, in which w = 21 adjacent nucleotides correspond to a possible binding
site for the lac repressor. Based on the knowledge that the repressor binds strongly to

2Note that the symmetric operator Osym is one nucleotide shorter and cannot be dealt with using the
methods described in this section.
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5 Target search in a real sequence

its three operators, one usually calculates the position weight matrix (PWM) score, S
for each of these putative sites. The higher the score is, the stronger the repressor will
bind to the corresponding site. It is calculated via [202]:

S =

w∑

j=1

loga

(
1

p(lj)

flj ,j + s(lj)

Nbs +
∑

b s(b)

)
. (5.2)

In this general form pb denotes the background frequency of base b, lj denotes which
nucleotide is found on position j of the putative sequence and Nbs the number of binding
sites. Finally, s(b) is a pseudo-count function in order to avoid a divergence of the term
when flj ,j = 0. In the present case, we have Nbs = 3 and we apply the simple convention
used by José M. G. Vilar in order to obtain comparable results [203]. Namely, we use
the natural logarithm, i.e. a = e, for the sake of simplicity a homogeneous background
sequence, p(lj) = 0.25∀ lj and s(b) = 1∀ b. Then Eq. (5.2) simplifies to

S =

21∑

j=1

ln
(
4(flj ,j + 1)/7

)
. (5.3)

In agreement with the result of Vilar we obtain the following scores for the three known
natural operators [203]: SO3 = 10.95, SO2 = 12.17 and SO1 = 13.38. But how can this
score be connected to the binding energy at the corresponding position?

5.1.2 Relation between scores and energies

In order to establish such a connection, in the following all energies and scores are
related to a hypothetical average binding position which has the mean score of all binding
positions, 〈S〉, and is characterised by the specific binding energy, Er. Introducing
∆Si = Si − 〈S〉, the difference between the score at position i and the average score and
assuming a linear relationship between scores and specific binding energies (compare
[62,204]), one obtains:

Er,i = Er + γ × ∆Si. (5.4)

Here, γ is simply a proportionality factor which can be deduced from experimental data.
Based on the assumed linear relation between scores and energies, we obtain the correct
order in terms of binding strength as measured in the 1990s by Stefan Oehler et al. or
more recently by Hernan G. Garcia et al. [205,206].

As a central element of this model, we furthermore assume that the energetic barrier
between the energy in search and recognition mode at position i is given by a similar
relation:

Ebc,i = Ebc + α× γ × ∆Si. (5.5)

In analogy to Eq. (5.4), Ebc denotes the mean value of the barrier height between search
and recognition state. The parameter α will be called “volatility parameter” in the
following. This can be understood by considering two specific cases:

• α = 0 implies that the barrier height is independent from the nucleotide sequence.
In particular, at the target site it is as high as at any other binding site. Thus, in
this limiting case the particle probes blindly for the target.
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• α = 1 describes the situation in which the barrier height varies as much around its
mean value as the specific binding energy. Accordingly, the barrier height at the
target site is the smallest one in the system and an induced switch mechanism is
at work.

In the following we use intermediate values of α to interpolate between these two limiting
cases. The reasons why we call α volatility parameter is that the higher the value of α
is, the more probable it becomes that the TF probes for the target at a non-target site.
Note that in principle we could also study values of α larger than unity or smaller than
zero. We do not apply them, however, since they appear to be unphysical. Recently, it
was found experimentally that the association rates to Osym and O1 are similar, while
dissociation occurs more rapidly from the natural operator O1 [106]. In terms of our
present model this implies rather large values of α, since then the barrier at the target
site is small for both operators and the dissociation rate depends on the absolute value
of the binding energy which is minimised for Osym.

In addition, when the barrier height at a position calculated via Eq. (5.5) is smaller
than the energy of the final state, the latter is inserted into Eq. (5.1) for calculating the
corresponding rate in the Gillespie scheme.

5.1.3 Reference set of parameters

In the following we state the reference set of parameters that we employ. Most impor-
tantly, we take an excerpt of the real nucleotide sequence of the E. coli strain K-12 MG
1655: the base pairs 359, 990-370, 010 which comprise the genes lacA, lacY and lacZ and
the three natural operators of the lac repressor were imported from ecocyc.org, i.e. Ke-
seler et al. [30]. As the binding motif of the lac repressor has a length of 21 nucleotides,
this implies that our system comprises 10, 021 − 21 + 1 = 10, 001 possible binding posi-
tions in both orientations. A histogram of scores obtained for this set of putative sites
is shown in Fig. 5.2.

While most of the scores in both orientations have similar intermediate values, the
three scores corresponding to the three natural operators can be found at the upper end
of the score distribution. A thorough discussion of the influence of such gaps on the
stability of binding can be found in Sheinman et al. [124].

Here and throughout this chapter, energies are measured in units of kBT . We chose
Er = 0, Es = −7, Ebs = −6 and γ = −1.3378 such that the energy difference between
the binding energy at the main target site and the one in the search state is 15.3 [206].
Besides, we put Nblock = 71 non-specific binders as roadblocks at non-overlapping, but
otherwise random positions. This yields the same level of site occupation as in Tabaka
et al. [142]. Finally, each time 50, 000 simulation runs are performed for each blocker
configuration and in each case it is recorded whether and when the target is reached.
This result is then compared to a theoretical model which we describe in the following
subsection.

5.1.4 Theoretical model

To determine the events in the target region, we focus on the N binding positions around
the target which lie between the two blockers which are nearest to the target. We only
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Figure 5.2: Histogram of score values calculated with Eq. (5.3) for the 10, 001 putative
binding positions surrounding the main operator in E.coli K-12 MG 1655.
Red and blue bars refer to the two different orientations of binding positions.
At the upper end of the spectrum the three natural operators can be found.
Note the logarithmic scaling of the y-axis.

consider the binding energies in the correct orientation and N denotes an odd number,
such that there is a central site, but the conclusions we draw do not depend on this
assumption. The situation is simplified with respect to the model which we simulate
numerically, in that we assume that the rates for conformational switching events are
equal at all positions but the target. This simplification enables an analytical solution
of the problem and in the following we will assess if this still accurately describes the
situation.

We study the probability densities of particles on base pair j at time t both in the
search state, denoted by cN,j(t), and in the recognition state, pN,j(t). Assuming that the
target is on node m, they are subject to the following differential equations:

∂cN,j

∂t
= Γ [cN,j−1(t) + cN,j+1(t) − (2 − δj,1 − δj,N )cN,j(t)] − koffcN,j(t)

− [ksr + δj,m(kst − ksr)] cN,j(t) + krs(1 − δj,m)pN,j(t), (5.6)

where Γ denotes the sliding rate to the next site (the discrete analogue to D1), koff the
dissociation rate and krs the switching rate from the recognition state to the search state
(at all non-target sites). Finally, ksr denotes the rate of changing from search state to
recognition state away from the target and kst the one for doing this at the target site.
Obviously, only densities at neighbouring sites are coupled, such that the matrix to be
solved is tridiagonal.

The corresponding equations for the density probabilities in the search state follow as:

∂pN,j

∂t
= [ksr + δj,m(kst − ksr)] cN,j(t) − krs(1 − δj,m)pN,j(t). (5.7)
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If the particle’s initial position is in the search state at an arbitrary position in the
interval, initially there is no probability density in the recognition mode. Then, it is
advantageous to go to Laplace space with respect to time, which yields

p̃N,j = c̃N,j
ksr + δj,m(kst − ksr)

u+ (1 − δj,m)krs
, (5.8)

where here and in the following the explicit dependence on the Laplace variable u was
omitted. In other words, at all non-target sites, one has p̃N,j 6=m = ksrc̃N,j 6=m/(u + krs),
while at the main operator, p̃N,m = kstc̃N,m/u, is valid.

The Laplace transform of the flux of particles to the target follows readily:

j̃N,m = kstc̃N,m = up̃N,m. (5.9)

We now focus on the situation when the particle starts its search on site n which is
indicated by the third index of the quantities below. Later on, we will assume that the
search in the target region is started on a random position and thus we will average
over all starting positions. Then we will drop this third index again. It is convenient to
introduce the auxiliary function, ζ(u) = u + koff + kst. For the flux into the target on
site m in a system of N sites, where the particle starts on node n, we obtain

j̃N,m,n = kstc̃N,m,n = up̃N,m,n =

N−1∑
i=0

k̂stai,N,m,nΓ̂i

N−1∑
i=0

((
ζ̂ − 1

)
ai,N,m,m +

N∑
n′=1

ai,N,m,n′

)
Γ̂i

. (5.10)

Here the hat over a function means that the corresponding quantity was divided by yet
another auxiliary function, defined as ξ(u) = koff+u[1+ksr/(u+krs)]. As seen throughout
this work, for our present purposes the Laplace transforms contain the most important
information at the origin, u = 0. In particular, one has ξ(u = 0) = koff . Therefore, as
another short notation, a bar over a quantity denotes that it was divided by koff . Namely,
we will use Γ̄ = Γ/koff and k̄st = kst/koff . The expansion coefficients in Eq. (5.10) are
defined as

ai,N,m,n =





n+min(−1,i−m)∑
j=max{0,n+i−N}

(
2(n − 1) − j

j

)(
2(N −m) − (n −m+ i− j)

n−m+ i− j

)
if n ≤ m,

min(N,i+m)−n∑
j=max{0,i−n+1}

(
2(N − n) − j

j

)(
2(m− 1) − (m− n+ i− j)

m− n+ i− j

)
if m ≤ n.

(5.11)

In the following we consider the situation of a random starting position and accordingly
we drop the third index again:

j̃N,m =
1

N

N∑

n=1

j̃N,m,n. (5.12)
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As in the previous chapters, the 0th order of j̃ yields the probability to detect the target
before dissociation occurs, pt(N,m), where the first argument denotes the number of
sites in the target region and the second one on which one of those the target resides.
Rearranging the terms, one obtains:

[Npt(N,m)]−1 = k̄−1
st +

[
1 +G(Γ̄)

]−1
. (5.13)

Here the auxiliary function G, which is independent of kst and of krs/sr is given by

G(Γ̄) =

N−1∑
i=0

(
∑
n 6=m

aN,i,m,n

)
Γ̄i

N−1∑
i=0

aN,i,m,mΓ̄i

. (5.14)

Thus, G solely depends on the renormalised sliding rate, Γ̄, the size of the system and the
position of the target. Eq. (5.13) together with Eq. (5.14) represents the central result
of this chapter.

Writing ε = 1/(2Γ̄) and y = 1+ε−
√
ε(2 + ε), the second term on the right hand side of

Eq. (5.13) is equivalent to the result obtained by Kolomeisky and co-workers [88,207,208]:

(1 +G(Γ̄))−1 = tanh

(
ln[y]

2

)
cosh([N − (m− 1

2)] ln[y]) cosh([m− 1
2 ] ln[y])

cosh(N ln[y]/2) sinh(N ln[y]/2)
, (5.15)

or upon substituting ς = − ln[y] [209]:

(1 +G(Γ̄))−1 = tanh
( ς

2

) cosh([N − (m− 1
2 )]ς) cosh([m− 1

2 ]ς)

cosh(Nς/2) sinh(Nς/2)
. (5.16)

In other words, our Eq. (5.13) generalises the result of Kolomeisky and co-workers to the
biologically relevant regime when not every target encounter leads to detection. In the
specific case of a target on the central node, i.e. m = (N + 1)/2, and when k̄st ≫ 1, one
obtains

pt(N, (N + 1)/2) =
tanh

(
N
2 ς
)

N tanh
(
1
2ς
) , (5.17)

which has the typical tanh-dependence of sliding models, compare Eqs. (2.30) and (4.4)
or reference [128].

Introducing q, which denotes the ratio of the conformational switching rates, q =
ksr/krs, one obtains for the conditional mean search time:

koff τN,m =
1 + (1 + q)

[
G+ k̄stΓ̄

1+G
∂G
∂Γ̄

]

k̄st + 1 +G
. (5.18)

For a target on the middle site and considering the limiting case of vanishing dissociation
rate, the function G approaches N − 1 and its derivative with respect to Γ approaches
N(N2 − 1)/(12Γ2). This leads to

τN,N+1
2

=
1

kst
+ (1 + q)(N − 1)

[
N + 1

12Γ
+

1

kst

]
. (5.19)
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In this equation, the role of the ratio q is most apparent. The fact that the particle can
switch to the recognition mode at sites away from the target implies that the second term,
which roughly describes the time spent on the way to the target, has to be multiplied by
1 + q. Stated differently, this simply means that probing for a target where it cannot be
found, slows down the search in comparison to an “informed” particle which only probes
at the target site. However, the target detection probability as given by Eq. (5.13) does
not depend on these switching rates.

When q approaches zero, that is when there is no switching to the recognition mode
on non-target sites, our result converges to results obtained in the theory of incoherent
exciton hopping, where the impurity quenching of molecular excitons was studied [210,
211], yielding:

τ q=0

N,N+1
2

=
N

kst
+
N2 − 1

12Γ
. (5.20)

In terms of exciton transport τ represented the mean de-excitation time of the molecular
aggregate [210]. In the following numerical results for the search in the target region
obtained within the Gillespie scheme are compared to this simplified theoretical model.

5.2 Results for the search in the target region

5.2.1 Probability to detect the target

For 500 configurations it was simulated whether the target was detected on DNA or
the particle dissociated first. The resulting probability to detect the target prior to
dissociation is shown in Fig. 5.3 for three different values of α and as a function of the
size of the target region, N . This size N is simply the number of possible binding sites.

Blue symbols correspond to simulations with α = 0.1, black ones to α = 0.3 and
red ones to α = 0.5. The lines of corresponding colour show results obtained with the
simplified theoretical model as given by Eq. (5.13), where full lines are for a target exactly
in the centre of the region and dashed lines for the opposite case when the target is at
the boundary of the region.

For the two larger values of α the results of the simulation are in complete agreement
with the simplified theoretical model. Also in the case of α = 0.1 (blue line and symbols)
the simulation results are close to the theoretical result. The small deviations are simply
due to the finite sample size. Overall, for all values of α the target detection probability
decreases with increasing values of N . This is expected as in a more spacious system
with homogeneous initial distribution of particles the mean distance to the target is larger
than in a smaller system. And a larger distance to the target implies more chances or
risks to dissociate.

At the same time, at a fixed value of N larger values of α guarantee a higher detection
probability. Clearly, at small values of α the barrier at the target is only marginally
smaller than at any other site, resulting in many undesired overshoots at the target.
However, as implied by the form of Eq. (5.1) increasing α above a certain threshold does
not increase the detection probability. If there is no longer a barrier to be crossed, target
detection on encounter occurs with the attempt rate λ0 no matter if α is increased even
further.
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Figure 5.3: Probability to detect the target prior to dissociation as a function of the target
region size N . Results from numerical simulations (symbols) are compared
to the theoretical result, Eq. (5.13). Parameters: Es = −7, Ebs = −6, Er = 0
and Ebc = 4. Dashed lines correspond to a target at the boundary of the
system, while full lines to a centred target. Colours: blue (α = 0.1), black
(α = 0.3) and red (α = 0.5).

A more subtle influence of different values of α is seen when comparing results for
different target positions, but otherwise fixed parameters. To do this dashed and full
lines of matching colour in Fig. 5.3 have to be compared. The fact that for the two
larger values of α, a centred target leads to a more reliable detection is again explained
by the reduced mean distance to the target in that case. For α = 0.1 (blue lines and
symbols) no such difference is observed. Here, the detection probability on an individual
encounter is so small that the optimised position of the target does not ameliorate the
search.

Thus, in terms of the target detection probability the simplified theoretical result nicely
agrees with the numerical simulations. However, as we will see below in the case of the
detection time the assumption that all non-target sites can be replaced by an average
site will no longer be valid.

Influence of the target region size In the previous subsection it was found that the
target detection probability pt decreases with N . However, it also makes sense to consider
the product N ·pt. This is roughly the number of nucleotides from which target detection
via sliding is certain and is similar to the antenna length encountered in previous chapters.
While in general a larger target region will attract more particles, the individual detection
probability is smaller.

In analogy to the discussion following Eq. (4.4), the numerator in Eq. (5.17) converges
to 1 for large N . Thus, Npt converges to the constant value coth(ς/2). This implies that
a target region which is much larger than the sliding length will not lead to an increased
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Figure 5.4: Target detection probability as a function of the energetic barrier for sliding,
Ebs, and the energetic barrier for target detection, Ebc,t. Parameters: N =
101, m = 51, koff = exp(−7).

antenna size, since particles are more likely to dissociate before they arrive at the target.

5.2.2 Impedance matching

It was noted by Hu and co-workers and similarly by Bénichou et al. that for a finite
target detection rate too high sliding rates become disadvantageous [167,212]. While for
an infinite detection rate, it is obvious that having a high mobility in 1D implies that
the target will be found quickly and reliably, in the finite case fast sliding can lead to
overshooting the target. We invoked this effect which is similar to impedance matching
already to explain the features of Fig. 5.3, but present it in more detail in Fig. 5.4.
Based on the observation that the theoretical result given by Eq. (5.13) nicely reproduces
the numerical results, we plot the target detection probability for various values of the
energetic barrier which has to be crossed for sliding and for target detection. We study
a system with N = 101, a centred target (m = 51) and koff = exp(−7).

As is apparent from Fig. 5.4, in a horizontal slice the detection probability always
decreases from left to right. Thus, it is always beneficial for a reliable target detection
to have a low barrier to the recognition mode at the target site. However, the detection
probability depends non-monotonically on the sliding rate. For any fixed value of the
barrier for target detection, there is an optimal barrier for sliding. The higher the
rate at which particles are drawn into the target, the higher the optimal sliding rate
is. Roughly, one can say that it is advantageous to supply the target with exactly the
amount of particles it can absorb, but not more.
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Figure 5.5: The conditional target detection time as a function of the length of the target
region. Lines: theoretical model (full: centred target, dashed: target at the
boundary). Symbols: numerical results. Colours as in Fig. 5.3. Note that
due to the presence of the auxiliary operator O3 in the target region a second
branch of results appears for large values of N .

5.2.3 Conditional target detection time

We now turn our focus to the mean first passage time to the target. Unlike in the
previous chapters, this is now a conditional detection time. The corresponding results
are presented in Fig. 5.5, where symbols are results obtained in numerical simulations
and lines show the theoretical results. The meaning of colours and line types is the same
as in Fig. 5.3, while the range of N has been extended for a better visibility of the trends.

For N . 100, the simplified theoretical model again is able to reproduce the numerical
results reliably. Particles characterised by a larger value of α on average detect the target
faster. Even more striking than for the detection probability, for the conditional detection
time only in the case α = 0.5 (red) the position of the target makes a difference. This
can be seen by observing that in both other cases the straight lines and the dashed lines
lie on top of each other. For α = 0.5 a centred target leads to a faster target detection,
again due to shorter mean distances to the target.

Conversely, for N & 100 we observe that there are two branches of conditional search
times. While the lower one can be considered to be the continuation of the results for
short target regions, the upper branch shows target detection times which are consid-
erably larger. These results are due to the auxiliary operator O3 which has the same
orientation as O1 and is at a distance of 92 nucleotides from the main operator. Thus,
whenever the target region extends over more than 92 nucleotides there is the possibility
that both O1 and O3 are in the target region. If the TF finds and “detects” the auxiliary
operator, this represents a trap on the way to detecting the main target. Since the aux-
iliary operator conveys a rather strong binding site, this severely impacts the detection
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time leading to the upper branch in Fig. 5.5. Obviously, for such a strong binding site it
is no longer appropriate to assume that it can be represented by an average non-specific
binding site.

The probability to detect the target is, however, not influenced by the presence of the
auxiliary operator (compare Fig. 5.3). As a side remark, we note that since we assume
that during sliding the TF cannot change its orientation in this simplified model the
presence or absence of O2 in the target region is unimportant.

When studying the features of the upper branch of detection times in Fig. 5.5, two
facts are striking. First, there are hardly any detection times for α = 0.1. In Fig. 5.3 it
can be seen that already the probability to detect the main operator is rather small for
this value of α. This is even more pronounced in the case of the weaker operator O3.
Thus, for these particles it is very unlikely that they will be trapped at O3. However,
this comes at the price that the detection of the main operator will be rather unlikely
as well. In fact, in subsection 5.2.4 we will study the ability of the TF to distinguish
between the two operators.

The second striking fact, is that for α = 0.5 and intermediately sized target regions
(100 . N . 150) the target detection time slightly decreases for increasing values of
N . Again this is due to differences in the mean distance from the target. In regions
which are only slightly longer than 92 nucleotides and which comprise both O1 and O3,
these two operators both lie near to the two boundaries, which was already diagnosed as
leading to longer search times. In longer target regions more central operator positions
are possible, leading to reduced search times. For even longer regions, the search time
levels off but showing large scatter.

5.2.4 Probability of first detecting O1

The volatility parameter α can be considered to be a measure to make sure that a switch
of conformation only occurs when the underlying nucleotide sequence is equal or similar
to the target sequence. In the following we study whether it is possible to choose α such
that it is more probable to detect the main operator O1 than the auxiliary operator O3.
We define the preference of O1 over O3 as the probability of detecting O1 first minus
one half. Thus, the preference will attain values between minus one half and plus one
half and when it is more probable to detect O1 first, this preference will be positive.

Apart from the binding strength, the geometry of the target region also plays a role.
For example, in the previous subsections it was shown that a central position within the
target region is beneficial. To compare the centrality of both operators we introduce the
variable x defined as:

x = |x3 − 0.5| − |x1 − 0.5|. (5.21)

Here xi stands for the relative positive of the respective operator in the target region
(i = 1, 3). xi = 0 signifies that operator i is at the left end of the target region, and
xi = 1 that it is at the right end. xi = 0.5 refers to a central position of the corresponding
operator.

We comment on three special cases for the variable x: x = 0 refers to the situation
when both operators are at the same distance from the middle of the target region.
x = −.5 is obtained when O3 lies in the middle and O1 at the very boundary of the
system. Conversely, x = 0.5 implies that O1 is in the optimal central position, while O3
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lies at the boundary. Therefore as in the definition of the preference, positive values of
x imply that the position of O1 is advantageous.

Using the data obtained in the numerical simulations, Fig. 5.6 shows the preference
as a function of x, where due to the scatter in the data we actually present a moving
average of each time 21 data points. The top panel shows the data for α = 0.5 and α
decreases in steps of 0.1 each panel downwards.

Starting the discussion with the lowest panel (α = 0.1), we observe that in this case
the preference hardly depends on x, i.e. the position of both operators. However, for all
values of x the main operator is preferentially detected. Since this corresponds to nearly
blind searching, the energetic barrier at the auxiliary operator is nearly as large as at an
average site and only at the main operator its size is slightly reduced. This preference
for O1 in the absence of large geometrical effects is even more pronounced for α = 0.2
and 0.3 as manifested in the larger average values of the preference.

If α is increased further, this preference is less strong, but the positioning of both
operators becomes increasingly important. This can be seen from the positive slope of
the curves in the upper two panels. Note that in the top panel the y-axis has been
shifted and that the preference attains negative values. Thus, in this parameter range
the individual detection probability on encounter is so high for both operators that it
becomes more probably to detect the weaker operator first if it is on average closer to
the starting position of the searcher.

Therefore, intermediate values of the volatility parameter enable the particle to dis-
criminate between the two operators. While checking too rarely implies that one often
misses the main target, checking too often leads to the detection of the auxiliary opera-
tor. However, so far we treated O3 as a pseudo-operator whose detection slows down the
target search for the main operator. To see how O3 turns from a pseudo- to an auxiliary
operator [44], we have to take events after the dissociation of a TF and its ability to form
loops into account.

5.3 Full search model

In the following full search model we consider that the lac repressor in its natural tetra-
meric form is able to form loops between two operators. However, in our setting of
immobile blockers it might be that they are occupied and cannot be bound by the
repressor. Thus, we distinguish between six types of configurations. They differ mainly
in whether or not O2 is occupied and whether or not O3 is free. Finally, for those
configurations in which O3 is open for binding, it makes a difference whether it lies in
the target region.

So far, we focused on the events in the target region and simulations ended whenever
the target was found or the searcher dissociated. Obviously, the full model has to en-
compass events after dissociation from DNA. We assume that the time spent in 3D is
exponentially distributed with mean time τb. For the distance between dissociation and
re-association points we assume the following cumulative distribution:

C(xjump) =
1 −

(
xjump

xmin

)1−β

1 −
(
xmax

xmin

)1−β
. (5.22)

104



5.3 Full search model

 0

 0.1

 0.2

-0.4 -0.2  0  0.2  0.4

x

pr
ef

er
en

ce
 o

f O
1 

ov
er

 O
3

 0

 0.1

 0.2

     

 0

 0.1

 0.2

     

 0

 0.1

 0.2

     

-0.1

 0

 0.1

     

Figure 5.6: Preference of detecting the main operator O1 before the auxiliary operator
O3 as a function of the proximity of both operators to the middle of the
target region. Plots are moving averages for α = 0.5 (top panel), α = 0.4,
0.3, 0.2 and 0.1 (bottom panel). Note that the y-axis shows a different range
in the top panel.
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Here, xmin denotes the minimum of the jump length which we fix arbitrarily to a value
of 0.01. Here and throughout this chapter distances are measured in units of base pairs.
Conversely, the maximum of the jump length is given by xmax = 2.3 × 106 (half the size
of the E. coli genome) and we chose β = 1.2 as in Priest et al. [213]. Therein it referred
to the power law for looping distances, but we assume here that it similarly holds for
hopping and jumping lengths. If the distance drawn from this distribution implies that
the particle left the range of the 10, 001 binding positions we focus on, we reintroduce it
at a random position in the system.

Since we are ultimately only interested in the events in the target region, we coarse-
grain all events in other regions. Therefore, we simulate the mean dissociation times from
all the regions which do not contain the target. The number of runs was at least twenty
times the length of a region in order to obtain reliable statistics. In the main simulation,
which is executed for a total time of τmax, it is then assumed that each jump ending in
one of those regions consumes an amount of time which is exponentially distributed with
this mean dissociation time.

Whenever the particle “detects” one of the two auxiliary operators we include the
option to form a loop with the main operator (and vice versa3). In the case of looping
an initiation time is drawn (exponentially distributed with mean τinit). This represents
the time it takes to bind non-specifically to the target region and we assume that it is
equal for both auxiliary operators. Furthermore, to this initiation time we add a time lag
which represents the search in the corresponding target region. This is again determined
in advance by simulating the target search in the corresponding region.

Finally, the un-looping times are determined by yet another simulation in which the
particle starts on the target site and the mean dissociation time from the target region
is determined. Note that in this case, the TF can return to the target site several times
before it eventually dissociates.

5.4 Results for the full search model

In the following we present results for one representative of each of the six classes of
blocker configurations mentioned above. To ensure a comparability of the results, they
were chosen to have a similar length of N ≈ 180. Keeping the biological role of the
lac repressor in mind as detailed in the introductory chapters, we now focus on the
distribution of times during which the main operator is not bound by the repressor.
Exactly in these time spans RNAP is able to bind to the promoter in order to express
the genes. In the following we study the dependence of this quantity on the various
system parameters.

5.4.1 Dependence on α

In the first case we focus on a configuration in which none of the auxiliary operators
is open for binding. In this system without looping we study the dependence on the
volatility parameter α. The distribution of time spans in which the main operator is

3For the sake of simplicity, we do not include direct looping between the two auxiliary operators. As
we will see below, when O3 lies within the target region, they appear nevertheless.
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Figure 5.7: Distribution of periods in which the main operator is not bound by the re-
pressor. Note that looping is excluded in this system and we employ: the
mean time spent in 3D, τb = 50 e, the loop initiation time τinit = 10 τb and
the total simulation time τmax = 3 · 1013. Full dark green line (α = 0.3),
blue dashed line (α = 0.4), red dashed line (α = 0.5), black dot-dashed line
(α = 0.6).

not bound by the repressor is shown in Fig. 5.7. For all four values of α studied herein,
two peaks are observed. When α attains larger values, the size of the first peak grows
relative to the size of the second one, compare e.g. the dark green line to the black line.
At the same time, the total number of events grows with α. This is simply due to the
fact that τmax was kept fixed in all four cases. Both peaks are shifted to shorter search
times for increasing values of α, in particular in the case of the first peak.

The behaviour of the two peaks as a function of α suggests the following interpretation.
The first peak describes events in which the repressor slides only shortly or not at all prior
to returning to the target. Importantly, during this excursion it does not dissociate from
the DNA. The second peak represents longer-lasting events in which the TF dissociates
at least once.

Now, for larger values of α the individual detection probability on encounter increases.
Thus, it becomes increasingly probable for the particle to quickly return to the target and
if it happens, this occurs faster (compare Figs. 5.3 and 5.5). This explains the relative
and absolute growth of the first peak which is also shifted to the left.

While the quick rebinding events are a result of our study, one has to keep in mind
that they can be so fast that a real cell as a whole does not “perceive” them. Only if the
operator remains free long enough for an RNAP molecule to bind to the promoter, the
biological state of the cell changes. Stated differently, if the repressor remains associated
with the target for a given time span or if it shortly dissociates away from the target,
but returns before an RNAP can bind to the promoter makes no difference for the cell.
Such effects were discussed in much detail in the literature, for example by Pieter Rein
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Figure 5.8: Distribution of time spans during which the main operator is not bound by
the repressor in a system where the main operator and the auxiliary operator
O2 are accessible. Thus unlike in the situation depicted in Fig. 5.7 looping
between O1 and O2 is possible. Full line: τb = 50 e. Dashed line: τb = 5000 e.
In both cases τinit = 10 τb.

ten Wolde and co-workers [214].

5.4.2 Looping effects

Next we focus on a configuration in which looping is possible since O2 is accessible. We
study again the distribution of times during which the main operator is free for a fixed
value of α = 0.6 and two different binding times τb. The results are shown in Fig. 5.8.

We first study the features of the full line which was taken with the same microscopic
parameters as Fig. 5.7, compare the black line therein which also shows the case α = 0.6.
Again there are two peaks at log10(τfree) ≈ 0 and at log10(τfree) ≈ 6 which represent the
same events as before. But between these two, there is now a third peak. It corresponds
to events in which the TF returns to the target via looping. This is underlined by the fact
that the peak is close to the time scale τinit which for this parameter set is τinit ≈ 1.4×103.
In fact, the peak is at slightly larger times since the loop initiation time is just a part of
the whole time needed for forming a loop.

We have to comment on the reduced size of the peak for fast rebinding events. This is
due to the way our algorithm treats quick rebinding in a looped state. While these events
were counted explicitly in the system without looping, in a looped state only the times
when the particle dissociates from the target region are counted. This already takes into
account the biological interpretation mentioned above. Effectively, looping introduces
a new time scale for rebinding in comparison to long-lasting events involving complete
dissociation from the target region. This re-establishes the experimental findings of Paul
J. Choi et al. that in a system with looping gene expression is regulated on different time
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Figure 5.9: Distribution of periods in which the main operator is not bound by the re-
pressor for different blocker configurations. In all configurations looping is
possible. Black: only O2 is accessible. Blue: only O3 is accessible. Green:
both O2 and O3 are accessible. Dashed lines: O3 is within the target region,
full lines: O3 is outside the target region. In all cases α = 0.6.

scales [18]. More explicitly, they found small expression bursts occur when a loop opens
shortly at the main operator, while large bursts happen when a complete dissociation
from both operators occurs.

This interpretation is further substantiated by looking at the dashed line which shows
results from simulations in which single bulk excursions on average last ten times longer
as well as looping does. While the position of the first peak is unaffected by this change,
the other two peaks are shifted to the right as expected.

5.4.3 Blocker conformation effects

Finally, we study the influence of different blocker configurations which all allow looping.
The black line in Fig. 5.9 corresponds to the case where only O2 is accessible and is
equal to the blue line in the previous Fig. 5.8. Conversely, the blue lines correspond
to the situation when only the weaker O3 can be bound. The mixed case, when both
auxiliary operators can be bound are shown in green. In both cases when O3 is accessible,
it is further distinguished whether or not O3 lies within the target region. If so, it is
represented by a dashed line in Fig. 5.9, if not by a full line.

We observe that all curves have at least three peaks, and two of the curves have four.
The three peaks which are always present have the same interpretation as before. The
fourth peak only shows up if the auxiliary operator O3 is present, but not in the target
region. We interpret these very persistent events as repeated binding to the auxiliary
operator, but unlike in the case when it lies in the target region after leaving O3 the
particle cannot slide towards the main target since there is a roadblock in between.
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5.5 Summary

The model presented in this chapter is meant to describe the association between the
lac repressor and its main operator O1 in a living E. coli cell. Unlike the treatment in
previous chapters we assumed that non-specifically bound proteins act as roadblocks and
partition the one-dimensional search space on DNA into a set of intervals. In the first
part of this chapter we studied the last search phase when a TF has just landed at a
random position in the target region, i.e. between the two roadblocks which are closest
to the main operator.

This was done in terms of a numerical simulation and a simplified theoretical model.
In both cases, the protein could be present in the two conformations which had been
introduced before, the search state and the recognition state. To get more realistic
results, in this chapter the interconversion rates between these states at all positions—
in particular at the target—depended on the underlying nucleotide sequence. For the
probability to detect the target before dissociation, the numerical results agreed very well
with the theoretical model in which all non-target sites were assumed to be equivalent.
However, for the calculation of the conditional search times, this assumption breaks down
if binding to an auxiliary operator is possible. Such calculations of the target detection
probability for a starting position which is already close to the target, are also important
in light of the co-localisation effect which was discussed in section 2.4 [114,115,212].

In the simplified setting focusing exclusively on what happens in the target region such
an auxiliary operator behaves as a trap for the searcher. In the chapter’s second part it
was established that a TF which is able to form DNA loops by binding simultaneously
to two operators can turn this liability into an asset. For the loop-forming tetrameric
repressor the auxiliary operator is a short-cut from which it can quickly bind the main
operator. Depending on which auxiliary operators were accessible and whether direct
sliding from one operator to another was possible, we obtained a rich behaviour on many
different time scales.

When studying a histogram of the biologically relevant time spans during which the
main operator is free of repressor, the number of peaks follows a simple rule: two peaks
are always present, representing quick returns to the target without dissociation and
long-lasting return events which involve several dissociations. Whenever an auxiliary
operator is present, a third peak appears indicating rebinding events by looping. For
reasonable parameter values this happens on a scale shorter than the event involving
complete dissociation. The peak of time-consuming return splits into two when the
weaker auxiliary operator is not in the same interval between roadblocks as the main
operator. In general, this model underlines that looping is a measure of the cell how
a small number of TFs can efficiently locate a main operator without being present in
large copy numbers, since this would contribute to crowding effects [141].
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How seemingly simple living organisms like bacteria are able to survive in adverse con-
ditions is a fascinating question in biology. Partly, this is due to the efficient way in
which they make use of their genes. This gene expression can—to some extent—be de-
scribed with physical theories. By default, the focus of experiments which concerned
the association reaction of transcription factors with their operator sequences on DNA
and which were performed in the last century, was on in vitro studies. The facilitated
diffusion model introduced by Berg, Winter, von Hippel and co-workers was able to
explain the observed high association rates as a result of a beneficial combination of
three-dimensional search phases in the bulk solution with one-dimensional sliding along
DNA. The interest of theoreticians increased in recent years when more and more ex-
periments with single-molecule resolution became possible, in some cases even in living
bacterial cells.

Obviously, it is by far more important to describe this biological search process in a
living cell than to explain high association rates in a petri dish. However, the crowded
interior of a living cell is a completely different search space than the one encountered
in a dilute in vitro assay. This observation and the fact that an increasing number of
microscopic parameters is known constitute a challenge to adapt the long-established
theoretical models which were described in the second chapter of this work to these new
insights.

The approach presented in chapter 3 therefore combined the original facilitated dif-
fusion model with the common concept that the searching particle is present in two
conformations. These two conformations enable the particle to translocate quickly along
DNA while retaining the ability to bind strongly to the target sequence. Importantly,
our result reproduces the early measured operator association rates and as usual, the
rate at which the target is detected depends non-monotonically on the non-specific bind-
ing affinity. This underlines that in general only an appropriately chosen composition
of both search mechanisms is an efficient strategy. Going beyond simpler models, our
model shows that for relevant parameter values more search time should be spent sliding
than in the bulk solution—as recently found in experiments.

Chapter 4 directly approached the situation in a living cell. A simple model of the
bacterial genome was taken from the literature and coupled to a compound of microscopic
facilitated diffusion models. Again, the result showed an excellent agreement with recent
experimental in vivo findings. Interestingly, within our model the search time did not
depend strongly on the exact parameter values showing that the operator association
reaction occurs at nearly optimal search conditions. Yet, the search could not be sped
up much by choosing a starting position for the particle within the subunit of the genome
which hosts the target sequence. However, the subunit in this setting represented a rather
large volume, motivating an even more local consideration as presented in chapter 5.

Here the probability was calculated to detect the target before dissociation from DNA
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occurs when the search starts on a non-specific binding site which is already very close
to the target. An impressive accord of a simplified theoretical model with numerical sim-
ulations involving the real nucleotide sequence of a common E. coli strain was observed.
Advancing from probabilities to search times, the presence and accessibility of auxiliary
operators becomes increasingly important, in particular when the ability of the searcher
to simultaneously bind to two operators is taken into account.

Roughly, the fraction of numerical results increased from chapter to chapter at the
cost of the fraction of analytical results. However, as seen in the last chapter theoretical
models still have quite some descriptive power when it is assured that the assumptions
they rely on are meaningful. Accordingly, each chapter presented its own model which
highlighted specific aspects of the search process.

The general consensus in the field seems to be that invoking the facilitated diffusion
mechanism of sliding and relocations via the three-dimensional space makes sense for
searching particles which are present in rather low copy numbers [125]. Other proteins
which are non-specifically bound can be perceived as roadblocks for the sliding motion
of the particle [141]. While roadblock a priori is a term with a rather bad connotation,
under certain circumstances they can have a beneficial influence, for example when they
block non-specific regions on DNA where searching would be a waste of time [122].
However, they should not be too close to the target in order not to cut off too much
of the “antenna” of non-specific sites near the operator. There are some hints that this
dual role is indeed observed in some eukaryotes [122].

In many instances it is advisable to take a down-to-earth approach. From the obser-
vation that sliding along DNA is an experimental reality and induces a larger effective
target size, one should not automatically infer that the facilitated diffusion mechanism
enables association rates above the diffusion limit. Rather the conclusion should be that
DNA-binding proteins make the best of their general affinity for non-specific DNA.

In general, no premature conclusions should be drawn. Apparently, nature often pre-
ferred to choose a solution to a problem which at first sight does not seem to be the
easiest way. For example, in the lac system one might expect that increasing the con-
centration of searching particles and maximising the binding affinity for the target is
the straightforward way to achieve fast and reliable gene regulation [44]. However, the
natural main operator is not the strongest possible one and the concentration of search-
ing repressors is rather low. Instead the repressor is usually present in its tetrameric
form and forms DNA loops between operators whose specificities are not optimised [44].
Thus, it is not the global concentration of TFs which is maximised, but only the local

concentration close to the target sequence via looping [49].
While the models presented in this work successfully describe many of the experimental

findings, they are obviously not yet the end of the line. Many more factors or boundary
conditions can play a role, since for example, a cell has only finite resources. Additionally,
for a complete description of gene regulation the rates at which mRNA molecules and
proteins are degraded have to be taken into account and some proteins need to undergo
dimerisation before they can perform certain tasks. Anomalous transport mechanisms
were neglected so far, even though some proteins in crowded solutions show such a
behaviour [93]. Furthermore, we usually modelled the behaviour of a single searcher and
therefore no dependence on the concentration of searchers was discussed. However, for
example the results presented in the last chapter can be used as input for thermodynamic

112



models which are generally very successful in describing the gene expression output and
which automatically take concentration effects into account [61]. Besides, one has to
note that while this work focused on the association of TFs with their target sequence,
the related question how accurate or noisy the expression of a gene under regulation of
such a TF is, represents a stand-alone research topic [214, 215]. A more or less direct
extension of the models presented herein into this direction would be to calculate higher
moments of the first passage time distribution to the target.

There are hints that the paradigmatic lac repressor which also in this work was taken
again and again as an example of use might not be a typical representative of DNA-
binding proteins [125]. After all, there might be more important tasks to be carried
out than to make sure that glucose is metabolised instead of lactose. However, it is
improbable that the lac repressor should be the only protein to make direct use of its
non-specific affinity for DNA. Therefore, it is highly desirable to have more detailed
experimental data also for other DNA-binding proteins. Based on nature’s ability to
surprise scientists, one can be sure that in the future many more interesting results in
theory, simulations and experiments will be found.
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