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I would like to thank Prof. Claudia Klüppelberg and Dr. Stephan Haug for their helpful
advice, support and supervision throughout the work on this thesis.
Special thanks go to my parents, who enabled me to study.



i

Abstract

When modelling financial time series, the main difficulty consists in finding a model
that captures the so-called stylized facts. These are statistical regularities, such as lep-
tocurticity, volatility clustering or strong autocorrelations for absolute and squared re-
turns, which are common to most financial series. The most popular way to take such
characteristics into account is formed by models of generalized autoregressive conditional
heteroscedasticity (GARCH). These models, however, cannot explain the empirically of-
ten observed strong dependence in volatility. In 1996, Baillie, Bollerslev and Mikkelsen
therefore introduced the fractionally integrated GARCH (FIGARCH) model. While the
existence of a strictly stationary solution is ensured, its ability to model long range de-
pendence in volatility is controversial.

In the literature there exist serveral approaches to define a continuous-time analogue
to the discrete GARCH process. The continuous-time GARCH (COGARCH) model of
Klüppelberg, Lindner and Maller stands out as it directly generalizes the essential features
of its discrete time analogue. In this thesis we present two approaches to incorporate long
range dependence into the volatility process of the COGARCH(1,1). The first one is
based on Molchan-Golosov fractional Lévy processes (FLP), while for the second we use
a modification of the Mandelbrot-van-Ness FLP.
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Notation

Elements of Rm are marked by bold letters. The inner product of x,y ∈ Rm is de-
noted by 〈x,y〉 and |x| :=

√

〈x,x〉 stands for the Euclidean norm. Further, B(Rm) is
the Borel σ−algebra generated by the open sets of Rm, while Mm(R) denotes the set of
m×m−matrices with entries in R. We write N0 := N∪{0}, while R0 := R \ {0}. Besides,
let (an)n∈N, (bn)n∈N ⊂ R be two sequences, then by an ∼ bn we mean that an

bn
−→ 1 for

n −→ ∞.

A filtered probability space (Ω,F , P, (Ft)t≥0) is said to be complete if the σ-algebra
F0 contains all (P -)null sets. If the filtration (Ft)t≥0 additionally is right-continuous, i.e.
for all t ≥ 0 we have Ft =

⋂

s>tFs, then it fulfills the usual conditions.
Let the index set T be either given by T = R or T = Z. Then a stochastic process
X = (Xt)t∈T is said to be strictly stationary, if for t1, . . . , tn, h ∈ T the random vec-
tors (Xt1 , . . . , Xtn) and (Xt1+h, . . . , Xtn+h) have the same joint distributions. Moreover,
X is called weakly stationary, if its first two moments exist and are constant and its au-
tocovariance function (ACVF) γX(ti, tj) := Cov(Xti , Xtj) depends only on the distance
h := ti − tj. We then write γX(h) := γ(ti, tj). A weakly stationary process X such that
Cov(Xti , Xtj) = 0, i 6= j, is referred to as white noise.
Finally, a stochastic process X = (Xt)t≥0 has càdlàg paths, if the sample paths t 7→ Xt(ω)
are almost surely (a.s.) right-continuous with left limits. Jumps are denoted by ∆Xt :=
Xt −Xt− where Xt− := lims↑tXs.

iv



Chapter 1

Introduction

From the econometric point of view, modeling time series with financial background, such
as asset returns, is especially challenging. The difficulty basically consists in finding a
model, which captures the so-called stylized facts, i.e. statistical regularities shared by
many financial series. These facts include leptokurticity (i.e heavy-tailed marginal distri-
butions), volatility clustering (i.e. periods of high and low volatility are observable) and
strong autocorrelation for the squared and absolute values, while the series itself displays
only small autocorrelation. Clearly, linear time series models, as for example the class of
autoregressive moving-average (ARMA) models, are insufficient in this respect, as they
are based on the second-order structure of the underlying process.
The last two of the above mentioned stylized facts suggest models, which allow for a
non-constant conditional variance. This concept is usually referred to as conditional het-
eroscedasticity and led to the development of volatility models, where the series of obser-
vations Xn is modeled as

Xn = σnεn, n ∈ Z, (1.1)

where (εn)n∈Z denotes a sequence of i.i.d. random variables with zero mean and unit
variance, and (σn)n∈Z is a deterministic function ofXm, εm,m ≤ n−1. This class of models
should not be confused with discrete stochastic volatility models, where the sequence
(σn)n∈Z usually is assumed to be independent of the noise (εn)n∈Z, see Shephard [2008].
The random variable σn in (1.1) is referred to as volatility, but in fact its square represents
the conditional variance of Xn, i.e.

Var(Xn|Xm,m ≤ n− 1) = σ2
n, n ∈ Z. (1.2)

The basis for the development of such volatility models was laid by Engle [1982] with in-
troducing the class of autoregressive conditionally heteroscedastic (ARCH) models, which
represents the most popular and most widely used class of nonlinear time series models.
It is characterized by the conditional variance σ2

n in (1.1) being parametrized as a linear
function of finitely many X2

m,m ≤ n − 1. In applications it turned out that lags of high
orders ofX2

m needed to be included into the parametrization of σ2
n to sufficiently model the

observed dependence structure. This inconvenience was removed when Bollerslev [1986]
introduced generalized ARCH (GARCH) models, where the squared volatility σ2

n is given
as linear function of both its own past σ2

m,m ≤ n− 1 and X2
m,m ≤ n− 1.

An important characteristic of GARCH models is given by its short memory behavior.

1
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That means, the autocorrelation of its squares decays at a fast, namely exponential rate.
As a result, GARCH models are not able to capture the empirically often observed per-
sistence in volatility (cf. Baillie [1996]).
In the case of linear time series models, long-memory (understood in the sense of a non-
summable ACVF) was successfully incorporated by the introduction of fractionally in-
tegrated ARMA, shortly ARFIMA models, see Granger and Joyeux [1980] and Hosking
[1981]. However, turning to the ARCH framework things get more involved. More pre-
cisely, as we summarize below, for the broad class of ARCH(∞) processes the conditions
for weak stationarity directly rule out the possibility for long memory. However, dropping
the requirement of a finite second moment, Baillie et al. [1996] defined a fractionally in-
tegrated GARCH (FIGARCH) model, which was meant to generalize the GARCH model
in the same way as it did the ARFIMA in the ARMA case. The existence of a strictly
stationary solution was proved by Douc et al. [2008] for the FIGARCH(0, d, 0) model. We
show that their idea can be generalized by proving the existence of the FIGARCH(1, d, 0)
and FIGARCH(0, d, 1).

Especially in the last decades interest in continuous time models has increased enor-
mously. This development can be attributed on the one hand to the very successful appli-
cation of continuous time models in finance, starting with the introduction of the famous
Black-Scholes-Merton model. On the other hand, it is the result of the widespread avail-
ability of high-frequency data, which is characterized by irregular spacing in time. To avoid
a loss of information, which the application of a discrete time model to high-frequency
data would result in, continuous time parameter models can be utilized.

Regarding GARCH there exist several approaches to approximate the discrete time
model by a continuous time one, see for example Lindner [2009]. Yet, in many cases these
continuous time models lack essential features of the discrete GARCH. An example would
be the approach of diffusion approximation taken by Nelson [1990]. This basically consists
in embedding the discrete GARCH(1, 1) into a continuous time process by piecewise
constant interpolation between grid points and letting the mesh converge to zero. However,
quite counterintuitively, the limiting process (Gt)t≥0 is given by a diffusion equation of
the following type

dGt = σt dW
(1)
t ,

dσ2
t = (ω − θσ2

t ) dt+ λσ2
t dW

(2)
t , t ≥ 0,

whereW (1),W (2) denote two independent Brownian motions and ω, θ and λ are constants.
Consequently, the limiting process has lost an important feature of the discrete GARCH
process, namely the feedback mechanism. This is based on the fact that only one driving
source of randomness exists, such that an innovation in the observed process directly leads
to an innovation in the volatility process.

In contrast, Klüppelberg et al. [2004] introduced a continuous time analogue to the
discrete GARCH(1, 1), called COGARCH(1, 1), which is driven by a single Lévy process,
such that the described feedback mechanism is preserved. Moreover it directly generalizes
many essential features of its discrete analogue, such as volatility clustering, heavy tails
and uncorrelated increments. Brockwell et al. [2006] generalized the COGARCH(1, 1) by
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introducing the COGARCH(p, q) model.
The analogy between discrete GARCH and COGARCH also applies to the memory prop-
erties, meaning that the squared volatility of the COGARCH exhibits short memory, too.
This thesis deals with the resultant question of whether the COGARCH model can be
modified (probably in analogy to the FIGARCH) to allow for long range dependence.

Chapter 2 on the one hand provides the mathematical tools we need to define a frac-
tionally integrated COGARCH model. More precisely, after a review of Lévy processes
and integration with respect to Lévy processes we introduce fractional Lévy processes
(FLP), which are generalizations of fractional Brownian motions. On the other hand, we
recall discrete- and continuous-time ARMA, shortly CARMA, processes. In doing so we
are especially interested in the way long range dependence is incorporated into these mod-
els. This leads us to fractionally integrated ARMA (ARFIMA) and their continuous-time
counterpart, namely FICARMA processes.
In Chapter 3 we firstly give a detailed review of ARCH(∞) processes, introducing FI-
GARCH models as a particular subclass. Subsequently we turn to the continuous-time
setting and introduce COGARCH processes. Finally, we propose two fractionally inte-
grated COGARCH models and give the corresponding simulation results.



Chapter 2

Preliminaries

2.1 Lévy processes

This section is devoted to the introduction of Lévy processes as well as to the presentation
of two important results, the first one concerning the representation of Lévy processes,
namely the so called Lévy-Itô decomposition, the second, the Lévy-Khintchine formula,
giving a formula for the Fourier transform. Further we intend to give some insight into the
so-called Lévy measure. The presented results can be found in Protter [2004], Applebaum
[2004] and Sato [1999].

We start with the definition of Lévy processes.

Definition 2.1 (Lévy processes) A (m-dimensional) stochastic process (Lt)t≥0 is called
Lévy process if it is adapted and fulfills the following conditions.

(i) It starts in zero, i.e. L0 = 0 a.s.,

(ii) it has independent increments, i.e. for all 0 ≤ s < t the increment Lt − Ls is
independent of Fs,

(iii) its increments are stationary, i.e. for all 0 ≤ s < t we have Lt −Ls
D
= Lt−s and

(iv) and, finally, it is stochastically continuous, i.e. for all t > 0 is holds that |Lt−Ls|
P
→

0 for s→ t.

Many well-known stochastic processes turn out to be Lévy processes. Examples are the
Brownian motion, Poisson processes or compound Poisson processes. Before continuing,
note that for any Lévy process there exists a càdlàg modification, meaning, we can find a
stochastic process (L̃t)t≥0 with has right-continuous paths and left limits and satisfies

P (Lt = L̃t) = 1, for all t ≥ 0. (2.1)

The union of finitely many null sets is again a null set, consequently (2.1) implies that
(Lt)t≥0 and (L̃t)t≥0 have the same finite dimensional distributions. In this sense we lose
nothing when considering instead of (Lt)t≥0 its càdlàg modification. Hence, in the following

4



2.1. LÉVY PROCESSES 5

we will assume that the Lévy process under consideration has right-continuous paths with
left limits.

A key result in the theory of Lévy processes is that their sample paths decompose into
continuous parts and jump parts. For the representation of the jump parts we will make
use of a particular Poisson random measure (see Definition A.2) associated to the Lévy
process.

Consider a Lévy process (Lt)t≥0 . For B ∈ B(Rm
0 ) we set

νL(B) := E

[

∑

s≤1

1{∆Ls∈B}

]

. (2.2)

Recalling that L has independent increments and càdlàg sample paths, we conclude that
νL defines a σ-finite measure on B(Rm

0 ). Obviously, for B ∈ B(Rm
0 ) νL basically counts the

expected number of jumps of L in a unit interval with height lying in B. A well known
result states that

∫

Rm
0

min(|x|2, 1) νL(dx) <∞.

We now get the following result.

Proposition 2.2 (Jump measure) Let (Lt)t≥0 be a Lévy process on Rm and set
Σ := (0,∞)× Rm

0 . Furthermore, we define for S ∈ B(Σ)

µL(S, ω) := # {t > 0 : (t,∆Lt(ω)) ∈ S)} .

Then the collection {µL(S) : S ∈ B(Σ)} is a Poisson random measure on Σ with intensity
measure given by λ⊗ νL, where λ denotes the Lebesgue measure.

Proof. See Theorem 19.2 of Sato [1999]. ✷

Definition 2.3 The measures µL and νL from Proposition 2.2 are usually called jump-
and Lévy measure respectively.

We are now ready to state the above mentioned decomposition result.

Theorem 2.4 (Lévy-Itô-Decomposition) Let (Lt)t≥0 be a Lévy process. Then there
exists a nonnegative-definite and symmetric matrix AL ∈Mm(R) such that L decomposes
into

Lt = tγL+Bt+

∫

[0,t]×{|x|>1}

xµL(ds, dx)+

∫

[0,t]×{|x|≤1}

x
(

µL(ds, dx)−ds νL(dx)
)

, t ≥ 0,

(2.3)
where the constant γL ∈ Rm satisfies

γL = E[L1]−

∫

|x|>1

x νL(dx), (2.4)

(Bt)t≥0 denotes an m−dimensional Brownian motion with covariance matrix AL. Fur-
thermore, the four summands are independent.
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Proof. See [Applebaum, 2004, Theorem 2.4.16]. ✷

Remark 2.5 Obviously, the first two summands in (2.3) represent the continuous whereas
the last two represent the jump part of the Lévy process. Furthermore, it is noticeable, that
when describing the jump part one has to distinguish between “large” and “small” jumps,
as the latter ones are in general not summable. The idea is to compensate them - which
basically means substracting the mean. As a consequence the compensated sum of jumps

∫

[0,t]×{|x|≤1}

x
(

µL(ds, dx)− ds νL(dx)
)

:= lim
ε↓0

∫

[0,t]×{ε<|x|≤1}

x
(

µL(ds, dx)− ds νL(dx)
)

exists as limit in L2(Ω). In particular, in the case where the Lévy measure satisfies

∫

|x|≤1

x νL(dx) <∞,

i.e. where the “small” jumps are summable, the decomposition (2.3) simplifies to

Lt = tγ + Bt +

∫

[0,t]×Rm
0

xµL(ds, dx) t ≥ 0, (2.5)

with constant γ given by

γ = E[L1]−

∫

Rm
0

x νL(dx).

An important by-product of the Lévy-Itô decomposition is the so-called Lévy-Khintchine
formula. It is basically a result concerning the Fourier transform of a Lévy process.

Theorem 2.6 (Lévy-Khintchine formula) Let (Lt)t≥0 be a Lévy process with Lévy
measure νL. Then there exists a nonnegative-definite symmetric matrix AL ∈ Mm(R)
such that for all t ≥ 0 and u ∈ Rm

E
[

ei〈u,Lt〉
]

= etψ(u).

The function ψ : Rm → R is called Lévy symbol and satisfies

ψ(u) = i〈γL,u〉 −
1

2
〈u, ALu〉+

∫

Rm
0

[

ei〈u,x〉 − 1− i〈u,x〉1{|x|≤1}

]

νL(dx), (2.6)

where γL is given by (2.4). Moreover, given γL, AL and νL the corresponding Lévy process
is unique in distribution.

Proof. See [Applebaum, 2004, Corollary 2.4.20]. ✷
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Remark 2.7 1. Observe that the constant γL actually depends on the chosen rep-
resentation. This means, instead of x 7→ 1{|x|≤1} other so-called cut-off functions
denoted by x 7→ c(x) may be used in (2.6). Possible choices can be found in [Sato,
1999, Remark 8.4]. In fact, the crucial thing is that

x 7→ ei〈u,x〉 − 1− i〈u,x〉c(x)

is νL-integrable.

2. We also would like to remark, that the above Lévy-Khintchine formula establishes
a link between Lévy processes and infinite divisible distributions1, see [Applebaum,
2004, Theorem 1.2.14].

Usually, γL and AL are referred to as drift and diffusion coefficient, respectively. The
triplet (γL, AL, νL) is called characteristic triplet of (Lt)t≥0 . Many properties of a Lévy
process a determined by this triplet. We present some of them.

Proposition 2.8 Let (Lt)t≥0 be a Lévy process with characteristic triplet (γL, AL, νL).

(i) The sample paths t 7→ Lt(ω) are a.s. continuous if and only if νL = 0.

(ii) (Lt)t≥0 is a.s. of finite variation if and only if AL = 0 and
∫

|x|≤1
|x| νL(dx) <∞.

(iii) Let p ≥ 0. Then E[|L|p] <∞ if and only if
∫

|x|>1
|x|p νL(dx) <∞.

So far, we defined Lévy processes only on the positive real line [0,∞). Note that these
can be easily extended to the whole line R. Consider therefore a Lévy process L and
assume L′ to be an independent copy, i.e. L′ is an independent Lévy process and satisfies

L
D
= L′. Then by setting

L̃t =

{

Lt, t ≥ 0
−L′

−t−, t < 0,
(2.7)

we define a two-sided Lévy process L̃ = (L̃t)t∈R.
The next section deals with integration with respect to Lévy processes. Especially we are
interested in the question under which conditions Lévy integrals exist in L2(Ω).

2.2 Integration with respect to Lévy processes

In the following we restrict ourselves to univariate Lévy processes L and denote the
corresponding diffusion component by σ2

L := AL such that the characteristic triplet turns
into (γL, σ

2
L, νL). We are now concerned with the definition of integrals of the form

∫

R
f(s) dLs, (2.8)

1Recall that a distribution F is said to be infinitely divisible, if for all n ≥ 1 there exist i.i.d. random
variables X1, . . . , Xn such that their sum has distribution F .
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where f : R → R is a nonrandom function and L = (Lt)t∈R denotes a two-sided Lévy
process.

A very general approach was developed by Rajput and Rosinski [1989], where stochas-
tic integration of deterministic functions is defined with respect to infinitely divisible,
independently scattered (IDIS) random measures. This, in particular, includes integrals
of the form (2.8), as any Lévy process L defines an IDIS random measure Λ on B(R) by
setting

Λ([a, b]) := Lb − La, a ≤ b.

Following this concept we first define (2.8) for step functions fn,

fn(s) =
n
∑

k=1

ak1(sk−1,sk)(s), (2.9)

where s0, ai, si ∈ R for i = 1, . . . , n such that −∞ < s0 ≤ s1 ≤ . . . ≤ sn <∞, by setting

∫

R
fn(s) dLs :=

n
∑

k=1

ak(Lsk − Lsk−1
). (2.10)

Now, the stochastic integral of a measurable function f can be defined using a limit
argument.

Definition 2.9 Let L denote a Lévy process and f : R → R be measurable. Assume there
exists a sequence of measurable step functions fn : R → R, which are defined as in (2.9),
such that

(i) fn → f a.e. for n→ ∞ and

(ii)
(∫

R fn(s) dLs
)

n∈N
converges in probability.

Then f is said to be L-integrable and its integral with respect to L is defined by

∫

R
f(s) dLs := lim

n→∞

∫

R
fn(s) dLs, (2.11)

where the limit is taken in probability.

In particular, if it exists, (2.8) is independent of the approximating sequence. The fol-
lowing result characterizes the integrability of a measurable function f in terms of the
characteristic triplet of L.

Theorem 2.10 (Characterization of integrable functions) Let q > 0 and denote
by L a Lévy process with characteristics (γL, σ

2
L, νL). Then a measurable function f : R →

R is L-integrable in the sense of Definition 2.9, if and only if the following conditions hold

(i)
∫

R

∣

∣f(s)
(

γL +
∫

R0
x[1{|f(s)x|≤1} − 1{|x|≤1}] νL(dx)

)

∣

∣ ds <∞,

(ii)
∫

R

∫

R0
min(1, |f(s)x|2) νL(dx) ds <∞,
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(iii) σ2
L

∫

R |f(s)|
2 ds <∞.

Furthermore, if f is L-integrable and E[|Lt|
q] <∞, t ∈ R, then for 0 ≤ p ≤ q it holds that

E
[

∣

∣

∫

R
f(s) dLs

∣

∣

p
]

<∞

if and only if
∫

R

∫

R0

|f(s)x|p1{|f(s)x|>1} νL(dx)ds <∞. (2.12)

Proof. Theorems 2.7 and 3.3 of Rajput and Rosinski [1989].

Corollary 2.11 Let L be a Lévy process with characteristics (γL, σ
2
L, νL) and consider a

measurable function f : R → R.

(i) Let E[L1] 6= 0. Then it holds that

f is L-integrable and E
[

(
∫

R
f(s) dLs

)2
]

<∞, (2.13)

if and only if
f ∈ L1(R) ∩ L2(R) and E[L2

1] <∞. (2.14)

(ii) Let E[L1] = 0. Then the condition

f ∈ L2(R) and E[L2
1] <∞ (2.15)

is necessary and sufficient for (2.13).

Proof. Let us assume that (2.14) is satisfied. Clearly condition (iii) of Theorem 2.10
holds. For condition (i) we make use of γL = E[L1]−

∫

|x|>1
x νL(dx) and find that

∫

R

∣

∣

∣

∣

f(s)

(

γL +

∫

R0

x
[

1{|f(s)x|≤1} − 1{|x|≤1}

]

νL(dx)

)∣

∣

∣

∣

ds

=

∫

R

∣

∣

∣

∣

f(s)

(

E[L1] +

∫

R0

x
[

1{|f(s)x|≤1} − 1
]

νL(dx)

)∣

∣

∣

∣

ds

≤
∣

∣E
[

L1

]∣

∣

∫

R
|f(s)| ds+

∫

R

∫

R0

|f(s)x|1{|f(s)x|>1} νL(dx) ds

≤
∣

∣E
[

L1

]∣

∣ ||f ||L1(R) +

∫

R

∫

R0

(f(s)x)2 νL(dx) ds

=
∣

∣E
[

L1

]∣

∣ ||f ||L1(R) + ||f ||2L2(R)

∫

R0

x2 νL(dx),

which is finite due to our assumption. Obviously, we can draw the same conclusion in the
case where E[L1] = 0 and (2.15) holds.
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Observe that the double integrals of Theorem 2.10 (ii) as well as that of condition
(2.12) (for p = 2) are bounded, as

∫

R

∫

R0

|f(s)x|2 νL(dx) ds ≤ ||f ||2L2(R)

∫

R0

|x|2 νL(dx) <∞,

such that both (2.14) and (2.15) are sufficient for (2.13).

To show the necessity of the conditions we assume that (2.13) is satisfied. Now, the
condition (ii) of Theorem 2.10 and (2.12) imply

∞ >

∫

R

∫

R0

min(1, |f(s)x|2) νL(dx) ds+

∫

R

∫

R0

|f(s)x|21{|f(s)x|>1} νL(dx)ds

≥

∫

R

∫

R0

|f(s)x|21{|f(s)x|≤1} νL(dx) ds+

∫

R

∫

R0

|f(s)x|21{|f(s)x|>1} νL(dx)ds

=

∫

R

∫

R0

|f(s)x|2 νL(dx)ds

= ||f ||2L2(R)

∫

R0

x2 νL(dx),

(2.16)

which means (assuming that f 6= 0 as well as νL 6= 0) that f ∈ L2(R) and E[L2
1] < ∞.

Besides, again using γL = E[L1]−
∫

|x|>1
x νL(dx) we have from condition (i) of Theorem

2.10

∞ >

∫

R

∣

∣

∣

∣

f(s)

(

γL +

∫

R0

x
[

1{|f(s)x|≤1} − 1{|x|≤1}

]

νL(dx)

)
∣

∣

∣

∣

ds

=

∫

R

∣

∣

∣

∣

f(s)

(

E[L1]−

∫

R0

x1{|f(s)x|>1} νL(dx)

)∣

∣

∣

∣

ds

≥ |E[L1]|

∫

R
|f(s)| ds−

∫

R

∫

R0

(f(s)x)2νL(dx)ds

≥ |E[L1]| ||f ||L1(R) − ||f ||2L2(R)

∫

R0

x2 νL(dx).

From (2.16) we know that ||f ||2L2(R)

∫

R0
x2 νL(dx) < ∞, such that f additionally satisfies

f ∈ L1(R). ✷

Having established the well-definedness of (2.9), we obtain the following useful result
on its distribution.

Proposition 2.12 Let L be a Lévy process with characteristic exponent given by

ψL(u) = iuγL −
1

2
σ2
Lu

2 +

∫

R0

(

eiux − 1− iux1{|x|≤1}

)

νL(dx), u ∈ R. (2.17)

If f : R → R is L-integrable, then (2.8) is infinitely divisible and its characteristic func-
tions satisfies

E[eiu
∫
R
f(s) dLs ] = e

∫
R
ψL(uf(s)) ds, u ∈ R. (2.18)
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Proof. Proposition 2.6 of Rajput and Rosinski [1989].

In the following we will see that integration with respect to Lévy processes may also be
defined in L2(Ω)-sense. Before considering the general case we restrict ourselves to driving
Lévy processes L without Brownian motion component satisfying E[L1] = 0 and E[L2

1] <
∞, such that the corresponding Lévy-Itô-decomposition turns into

Lt =

∫

[0,t]

∫

R0

x (µL(dx, ds)− νL(dx)ds).

Theorem 2.13 (Existence in L2(Ω)-sense) Let f ∈ L2(R) and denote by L a square
integrable, zero mean Lévy process without Brownian motion component. Then the stochas-
tic integral (2.8) exists as L2(Ω)-limit of approximating step functions and does not depend
on the approximating sequence.

Proof. Proposition 2.1 of Marquardt [2006]. ✷

In the case where L also has a Brownian motion component σ2
L, we can apply the

Lévy-Itô-decomposition to represent L as

Lt = L̃t + σ2
LBt, t ∈ R,

where the characteristic triplet of L̃ is given by (γL, 0, νL) and B denotes a standard
Brownian motion. If f ∈ L2(R) the Itô-integral is well-defined (in the L2(Ω)-sense), which
shows that the above theorem also holds in this case. We summarize this result in the
subsequent corollary.

Corollary 2.14 Let f ∈ L2(R) and denote by L a square integrable, zero mean Lévy
process. Then the stochastic integral (2.8) exists as L2(Ω)-limit of approximating step
functions and does not depend on the approximating sequence.

Finally, the following result shows that the condition of a centered driving Lévy process
may be relaxed if the kernel function f is both integrable and square integrable.

Corollary 2.15 Let f ∈ L1(R)∩L2(R) and denote by L a square integrable Lévy process.
Then the stochastic integral (2.8) exists as L2(Ω)-limit of approximating step functions
and does not depend on the approximating sequence.

Proof. Firstly, we denote by H the space L1(R)∩L2(R) eqipped with the norm ‖·‖H =
‖ · ‖L1(R) + ‖ · ‖L2(R). Observe that H defines a Banach space. Further, the space of simple
functions is dense in H. Consequently, let (fn)n∈N be a sequence of simple functions
satisfying fn → f in H. Now, using the decomposition

Lt = t E[L1] + L̃t, t ∈ R,

where L̃t = Lt − E[Lt], we obtain for m,n ∈ N
∥

∥

∥

∥

∫

R
(fn(s)− fm(s)) dLs

∥

∥

∥

∥

L2(Ω)

≤

∥

∥

∥

∥

∫

R
(fn(s)− fm(s))dL̃s

∥

∥

∥

∥

L2(Ω)

+E[L1]

∫

R
(fn(s)−fm(s)) ds.

(2.19)
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The terms on the right-hand side of (2.19) tend to zero for m,n→ ∞ (such that
∫

fn dL
constitutes a Cauchy-sequence in L2(Ω)) due to the previous corollary and the observation
that fn −→ f in H and therefore in L1(R) . Hence,

∫

R
f(s) dLs = E[L1]

∫

R
f(s) ds+

∫

R
f(s) dL̃s

exists as limit in the L2(Ω)-sense. ✷

Remark 2.16 Notice that the previous corollary also applies to the case where f ∈ L2(R)
is compactly supported. As we will see later, this allows for Molchan-Golosov FLPs with
non-centered driving Lévy process to be defined in L2(Ω)-sense (cf. Fink [2013]).

Remark 2.17 We saw that for f ∈ L1(R) ∩ L2(R) and a square integrable Lévy process
L the integral

∫

R f(s) dLs exists both as limit in probability and in L2(Ω). Clearly, the
limits agree, as L2(Ω)-convergence implies convergence in probability and the limit in the
latter case is unique.

We conclude this section by calculating the first two moments of (2.8).

Proposition 2.18 Consider a function f ∈ L1(R)∩L2(R) and let L be a square integrable
Lévy process. Then it holds that

E
[

∫

R
f(s) dLs

]

= E[L1]

∫

R
f(s) ds,

and

E
[

(
∫

R
f(s) dLs

)2
]

= Var(L1)

∫

R
f 2(s) ds. (2.20)

Observe that in the case where the driving Lévy process has zero mean and unit
variance the equation (2.20) shows that f 7→

∫

f dL is a linear isometry between L2(R)
and L2(Ω), more precisely

∥

∥

∥

∥

∫

R
f(s) dLs

∥

∥

∥

∥

L2(Ω)

= ‖f‖L2(R).

We now turn to the proof of the above proposition.

Proof. The fact that the integral is defined as L2(Ω)-limit of integrals of approximat-

ing simple functions fn =
∑n

k=1 a
(n)
k (Lsk − Lsk−1

) implies that also fn −→ f in L1(Ω).
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Consequently,

E
[

∫

R
f(s) dLs

]

= lim
n→∞

E
[

∫

R
fn(s) dLs

]

= lim
n→∞

n
∑

k=1

a
(n)
k E[Lsk − Lsk−1

]

= lim
n→∞

n
∑

k=1

a
(n)
k (sk − sk−1)E[L1]

= E[L1]

∫

R
f(s) ds.

Analogously, using fn −→ f in L2(Ω), we find that

E
[

(
∫

R
f(s) dLs

)2
]

= lim
n→∞

E
[

(
∫

R
fn(s) dLs

)2
]

= lim
n→∞

n
∑

k=1, j=1

a
(n)
k a

(n)
j E[

(

Lsk − Lsk−1

) (

Lsj − Lsj−1

)

]

= lim
n→∞

n
∑

k=1

(a
(n)
k )2(sk − sk−1)Var(L1)

= Var(L1)

∫

R
f 2(s) ds.

✷

2.3 Fractional Calculus

In this section we will give a brief overview over fractional integrals and derivatives. Details
on the concept of fractional calculus can be found in Samko et al. [1993]. We start by
introducing fractional integrals.

Definition 2.19 Let α ∈ (0, 1) and consider a finite interval (a, b). Then the integrals

(Iαb−f)(x) =
1

Γ(α)

∫ b

x

f(t)(t− x)α−1dt, s ∈ (a, b), (2.21)

and

(Iαa+f)(x) =
1

Γ(α)

∫ x

a

f(t)(x− t)α−1dt, s ∈ (a, b), (2.22)

where Γ denotes the Gamma-function, are called right- and left-sided fractional Riemann-
Liouville integrals of order α, if they exist almost everywhere.

Remark 2.20 As can be found in Zähle [1998], the integral (2.21) and (2.22) exist almost
everywhere if f ∈ L1([a, b]).
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We now turn to fractional derivatives, which may be introduced as inverse operation.
Let us therefore define the following set of functions,

Iαb−(L
1) = {f ∈ L1([a, b]) : It exists φ ∈ L1([a, b]) with f = (Iαb−φ)},

and let Iαa+(L
1) be defined analogously.

Definition 2.21 Let α ∈ (0, 1) and f ∈ Iαb−(L
1)
(

f ∈ Iαa+(L
1)
)

. Then the unique function
φ ∈ L1([a, b]) satisfying f = Iαb−(φ)

(

f = Iαa+(φ)
)

is called right-(left-)sided fractional
Riemann-Liouville derivative of f of order α and is almost everywhere given by

(Dα
b−)(x) = −

1

Γ(1− α)

d

dx

∫ b

x

f(t)(t− x)−αdt (2.23)

(

(Dα
b−)(x) = −

1

Γ(1− α)

d

dx

∫ b

x

f(t)(t− x)−αdt

)

. (2.24)

Remark 2.22 1. The convergence of the integrals (2.23) and (2.24) at the singularity
t = x holds pointwise for almost every x.

2. Fractional Riemann-Liouville integrals and derivatives can analogously be defined
on the whole real line, i.e. for a = −∞ and b = ∞. In this case, we write

(Iα−f)(x) =
1

Γ(α)

∫ ∞

x

f(t)(t− x)α−1dt, s ∈ R, (2.25)

and

(Iα+f)(x) =
1

Γ(α)

∫ x

−∞

f(t)(x− t)α−1dt, s ∈ R.

3. As it is common in the literature, we write

I−αb− = Dα
b− and I−αa+ = Dα

a+.

2.4 Fractional Lévy processes

Having seen how stochastic integrals with respect to Lévy processes can be defined, we are
now prepared to introduce the class of fractional Lévy processes (FLPs), which represents
a generalization of the class of fractional Brownian motions (FBMs). Hence, we start by
introducing the latter.

Definition 2.23 (Fractional Brownian motion) A two-sided Gaussian process (Bd
t )t∈R

is called fractional Brownian motion (FBM) with fractional difference parameter2 d ∈
(−0.5, 0.5) if it has zero mean and covariance structure defined by

Cov(Bd
t , B

d
s ) =

1

2

(

|t|2d+1 + |s|2d+1 − |t− s|2d+1
)

. (2.26)

2Usually, the FBM is defined using the so-called Hurst parameter H ∈ (0, 1). In this case, H = d+ 1

2
.
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In contrast to the ordinary Brownian motion B (which is obtained by setting d = 0),
the FBM Bd has dependent increments for d 6= 0. This feature makes it attractive for
applications, where a dependence structure in continuous time is to be modeled. The fol-
lowing result shows that increments of FBMs may even exhibit long memory for particular
values of d.

Proposition 2.24 The increments of a FBM Bd as defined in Definition 2.23 are posi-
tively correlated and exhibit long memory if d ∈ (0, 0.5). In contrast, if d ∈ (−0.5, 0), then
the increments are negatively correlated.
Furthermore, denote by ρhd the covariance function of the increments of length h, i.e.

ρhd(s) = Cov(Bd
t+s+h − Bd

t+s, B
d
t+h −Bd

t ), t ∈ R, s, h > 0.

Then we have
ρhd(s)

s2d−1
−→ d(2d+ 1)h2, as s −→ ∞.

Proof. Let t ∈ R and h, s > 0. Then it holds

Cov(Bd
t+s+h − Bd

t+s, B
d
t+h −Bd

t ) = Cov(Bd
t+s+h, B

d
t+h)− Cov(Bd

t+s+h, B
d
t )

− Cov(Bd
t+s, B

d
t+h) + Cov(Bd

t+s, B
d
t )

=
1

2

[

(s+ h)2d+1 + (s− h)2d+1 − 2s2d+1
]

=
1

2
s2d+1

[

(

1 +
h

s

)2d+1
+
(

1−
h

s

)2d+1
− 2

]

.

(2.27)

Note that by applying Taylor expansion we can rewrite

(1 + x)α + (1− x)α = 2 + α(α− 1)x2 +O(x4).

Consequently, the covariance (2.27) is positive as long as 2d(2d + 1) > 0, i.e. d > 0.
Moreover, concerning the asymptotics of (2.27) we find

Cov(Bd
t+s+h −Bd

t+s, B
d
t+h −Bd

t ) =
1

2
s2d+1

[

2d(2d+ 1)
h2

s2
+O(

1

s4
)

]

= d(2d+ 1)h2 s2d−1 +O(s2d−3).

✷

As pointed out by Tikanmäki and Mishura [2011], a FBM Bd may also be represented
as integral transformation in the sense of

Bd
t =

∫

R
f(t, s) dBs, t ∈ R,

where B denotes an ordinary Brownian motion. Possible kernels f(t, s) for such a repre-
sentation are given in the following.
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Definition 2.25 (i) The so-called Molchan-Golosov (MG) kernel fMG
d is defined for

each t > 0 in the case d ∈ (0, 0.5) by

fMG
d (t, s) = cd

∫ t

s

(u− s)d−1
(u

s

)d

du 1[0,t](s), s ∈ R,

and for d ∈ (−0.5, 0] by

fMG
d (t, s) = cd

(

d

(

t

s

)d

(t− s)d − s−d
∫ t

s

(u− s)dud−1 du

)

1[0,t](s), s ∈ R,

where the constant cd satisfies

cd = d

(

(2d+ 1)Γ(1− d)

Γ(1 + d)Γ(1− 2d)

)
1
2

. (2.28)

(ii) The Mandelbrot-van-Ness (MvN) kernel is defined for t ∈ R by

fMvN
d (t, s) = c̃d

(

(t− s)d+ − (−s)d+
)

1(−∞,t](s), s ∈ R, (2.29)

with constant

c̃d =
1

Γ(d+ 1)
. (2.30)

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.1: Molchan-Golosov kernel fMG
d (10, ·) for positive integration parameter d = 0.25.

Remark 2.26 Note that the above defined kernels may also be represented using fractional
integrals. To put it more concretely, Fink [2013] uses the following representation for the
Molchan-Golosov kernel,

fMG
d (t, s) = cdΓ(d+ 1)s−dIdt−

(

(·)d 1[0,t)(·)
)

(s) 1[0,t)(s), t > 0, (2.31)
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where the constant cd is given by (2.28) and Idt− denotes the Riemann-Liouville fractional
integral, see (2.21). Moreover, Marquardt [2006] shows that the Mandelbrot-van-Ness ker-
nel can be rewritten as

fMvN
d (t, s) = Id−(1(0,t](·))(s), t ∈ R, (2.32)

with Id− being defined as in (2.25).

−20 −15 −10 −5 0 5 10
−3

−2

−1

0

1

2

3
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t = −10

−20 −15 −10 −5 0 5 10
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 

 
t = 10
t = −10

Figure 2.2: Mandelbrot-van-Nes kernel fMvN
d (t, ·) for positive integration parameter d =

0.25 (left) and negative integration parameter d = −0.25 (right) with t = 10 (solid line)
and t = −10 (dashed line).

An obvious difference between these two kernels is that the MG-kernel has a finite
support, while the MvN-kernel is infinitely supported. Moreover, we get the following
important distinction.

Proposition 2.27 Consider the kernels in Definition 2.25. Then the following holds.

(i) If d ∈ (−0.5, 0.5) then fMG
d (t, ·) ∈ L1(R) ∩ L2(R) for all t > 0.

(ii) Let t ∈ R. Assume that d ∈ (0, 0.5), then fMvN
d (t, ·) ∈ L2(R) but fMvN

d (t, ·) /∈ L1(R).
Moreover, if d ∈ (−0.5, 0) then fMvN

d (t, ·) ∈ L1(R) ∩ L2(R).

Proof. For part (i) see [Jost, 2007, Remark 3.3]. For the proof of the second part see
[Engelke and Woerner, 2013, Proposition 2]. ✷

By means of the MG- and MvN-kernel the FBM can now be represented as integral
transformation.

Proposition 2.28 Let d ∈ (−0.5, 0.5) and denote by (Bd
t )t∈R the FBM according to Def-

inition 2.23. Then it holds
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(i)

(Bd
t )t≥0

D
=

(
∫

R
fMG(t, s) dBs

)

t≥0

,

and

(ii)

(Bd
t )t∈R

D
=

(
∫

R
c∗df

MvN(t, s) dBs

)

t∈R

where the constant is given by c∗d = [Γ(2d+ 2) sin(π(d+ 0.5))]
1
2

Remark 2.29 We directly could have defined the constant in (2.30) as

[

Γ(2d+ 2) sin(π(d+ 0.5))
]

1
2

Γ(1 + d)
,

as it is for example done by Tikanmäki and Mishura [2011]. In this case the constant c∗d
would drop out in the above proposition. In defining (2.30) we followed Marquardt [2006],
as we will refer to her paper several times.

Notice that being a Gaussian process the distribution of a FBM is uniquely deter-
mined by its covariance structure (2.26). Hence, it is desirable to drop the assumption
of gaussianity to allow for a more flexible distribution while keeping the second order
structure. A natural approach to achieve this is to substitute the Brownian motion B in
the integral representations of Proposition 2.28 by a Lévy process, leading to the concept
of fractional Lévy processes.

2.4.1 Definition by Mandelbrot-van-Ness

We start with the Mandelbrot-van-Ness representation of fractional Lévy processes, which
was originally introduced by Benassi et al. [2004] and further studied by Marquardt [2006].
The following definition is due to Tikanmäki and Mishura [2011].

Definition 2.30 (Mandelbrot-van-Ness FLP) Let L denote a Lévy process without
Brownian motion component that satisfies E[L1] = 0 and E[L2

1] < ∞. Furthermore, let
fMvN
d be given as in (2.29). Then the stochastic process defined for d ∈ (−0.5, 0.5) by

Ldt =

∫

R
fMvN
d (t, s) dLs, t ∈ R, (2.33)

is called Mandelbrot-van-Ness fractional Lévy process (MvN-FLP).

Remark 2.31 1. As we have seen in Corollary 2.11 and Theorem 2.13 the stochastic
integral (2.33) can be understood as limit in probability of elementary integrals or
in L2(Ω)−sense.

2. As fMvN
d /∈ L1(R) for d ∈ (0, 0.5), Corollary 2.11 implies that the MvN-FLP cannot

be defined for a driving Lévy process with nonzero expectation as long as d ∈ (0, 0.5).
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The subsequent results shows that MvN-FLP is indeed a generalization of FBM in
the sense that it shares the covariance structure (2.26). Futhermore, we give some other
useful properties.

Proposition 2.32 Let d ∈ (−0.5, 0.5) and denote by Ld a MvN-FLP with driving Lévy
process L. Then the following holds.

(i) The increments of Ld are stationary,

(ii) the covariance structure of Ld coincides with (2.26) up to a constant, i.e. for s, t ∈ R
it holds

Cov(Ld(s), Ld(s)) =
E[L2

1]

2Γ(2d+ 2) sin(π(d+ 0.5))

(

|t|2d+1 + |s|2d+1 − |t− s|2d+1
)

,

(iii) and Ld is not adapted to the filtration generated by its driving Lévy process L.

Proof. The proof of the first two parts can be found for the case d ∈ (0, 0.5) in [Mar-
quardt, 2006, Theorem 4.4], but can be exercised analogously for the case d ∈ (−0.5, 0).
Finally, observe that for t < 0 the kernel fMvN

d (t, ·) has support (−∞, 0], such that

σ(Ls, s ∈ (−∞, 0]) ⊆ σ(Ld(s), s ≤ t) * σ(Ls, s ∈ (−∞, t]).

Consequently, Ld cannot be adapted to the filtration generated by L. ✷

Remark 2.33 1. Marquardt [2006] points out that a MvN-FLP Ld = (Ldt )t∈R for d ∈
(0, 0.5) has a continuous modification. More specifically, for all t ∈ R Ldt is almost
surely equal to an improper Riemann integral, see [Marquardt, 2006, Theorem 3.7].

2. Further it is shown by Marquardt [2006] that a MvN-FLP must not necessarily have
the semimartingale property. A complete characterization of MvN-FLPs being semi-
martingales is given in the long memory case, i.e. d ∈ (0, 0.5), by Bender et al.
[2012].

Finally, notice that the equation (2.32) implies that for d ∈ (0, 0.5)

∫

R
Id−(1(0,t](·))(s) dLs = Ldt =:

∫

R
1(0,t](s) dL

d
s, t ∈ R.

Marquardt [2006] shows that this equation holds in a more general setup, too. More
precisely, define H to be the completion of L1(R) ∩ L2(R) with respect to the norm

||g||H =

[

E[L2
1]

∫

R

(

Id−g
)2

(u) du

]
1
2

.

Then the following theorem holds.
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Theorem 2.34 (Integration with respect to MvN-FLP) Denote by Ld = (Ldt )t∈R
a MvN-FLP and let g ∈ H. Then the integral

∫

R
g(s) dLds

exists as limit in L2(Ω). Further it holds that

∫

R
g(s) dLds =

∫

R
(Id−g)(s) dLs.

Proof. See [Marquardt, 2006, Theorem 5.3]. ✷

For more theory on MvN-FLP (at least in the long memory case d ∈ (0, 0.5)) see
Marquardt [2006]. We now turn the representation using the MG-kernel.

2.4.2 Definition by Molchan-Golosov

Fractional Lévy processes of Molchan-Golosov type were introduced in Tikanmäki and
Mishura [2011] by integrating the Molchan-Golosov kernel fMG

d (see (2.25)) with respect
to a zero mean Lévy process without Brownian motion component. This approach was
further developed by Fink [2013] by considering the multivariate case as well as allowing
for non-centered driving Lévy processes, which may have a Brownian motion component.
In the following we restrict ourselves to the case where the driving Lévy process has no
Brownian motion component.

Definition 2.35 (Molchan-Golosov - FLP) Let L denote a Lévy process without Brow-
nian motion component that satisfies E[L2

1] < ∞. Furthermore, let fMG
d be given as in

(2.25). Then the stochastic process defined for d ∈ (−0.5, 0.5) by

Ldt =

∫

R
fMG
d (t, s) dLs, t ≥ 0, (2.34)

is called Molchan-Golosov fractional Lévy process (FLP-MG).

Remark 2.36 1. As in the case of MvN-FLPs one can understand the integral (2.34)
as limit in probability of elementary integrals or in L2(Ω)−sense (see Corollary 2.11
and Theorem 2.13).

2. In contrast to MvN-FLPs, the MG-representation allows for non-centered driving
Lévy processes. This is due to the MG-kernel fMG

d (t, ·), which is both integrable and
square integrable, see section 2.2. Bender and Marquardt [2009], for example, make
use of so-called fractional subordinators, i.e. MG-FLPs driven by subordinators.

In the following we summarize some useful or important properties of MG-FLP.

Proposition 2.37 For d ∈ (−0.5, 0.5) let Ld = (Ldt )t≥0 be a MG-FLP with driving Lévy
process L =(Lt)t≥0 . Then the following holds.
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Figure 2.3: Simulated Molchan-Golosov (dotted) and Mandelbrot-van-Ness FLPs (dashed)
with fractional integration parameter d = 0.25 driven by a compound Poisson process
(solid) with rate 0.5 and standard normally distributed jump sizes

(i) The second order structure coincides with (2.26) up to a constant, i.e. for t, s > 0
it holds

Cov(Ldt , L
d
s) =

Var(L1)

2

(

|t|2d+1 + |s|2d+1 − |t− s|2d+1
)

,

(ii) Ld is adapted to the filtration generated by its driving Lévy process,

(iii) and Ld has for d ∈ (0, 0.5) a continuous modification.

Proof. The proof of (i) can be found in [Fink, 2013, Proposition 3.1]. Parts (ii), (iii)
are due to [Tikanmäki and Mishura, 2011, Proposition 3.11 and Proposition 3.7]. ✷

Remark 2.38 An important drawback to MG-FLPs is that in general their increments
are not stationary. More precisely, in [Tikanmäki and Mishura, 2011, Proposition 3.11] it
is shown, that the increments of a MG-FLP driven by a compound Poisson process L with
Lévy measure νL := 1

2
(δ1 + δ−1), where δ· denotes the Dirac measure, are non-stationary.

2.5 Discrete ARMA models

The next two sections are devoted to discrete and continuous ARMA processes. We will
see, how the memory of these models can be increased by means of fractional integration.
Throughout this section, we assume as given a probability space (Ω,F , P ). Following
Beran et al. [2013], we start by introducing the simplest class of time series models.

Definition 2.39 (MA(∞)) Let (εn)n∈Z be a white noise process. An infinite moving-
average (MA(∞)) process (Xn)n∈Z is defined by

Xn =
∞
∑

j=0

ajεn−j, n ∈ Z, (2.35)
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with so-called moving-average coefficients aj ∈ R, j ∈ N0.

Remark 2.40 In the literature processes with representation (2.35) are said to be causal.

We immediately get the following result concerning the existence of MA(∞) processes.

Theorem 2.41 Consider a MA(∞) process (Xn)n∈Z as defined in (2.35) with square-
summable moving-average coefficients, i.e

∑∞
j=0 a

2
j <∞. Then for all n ∈ Z

Xn =
∞
∑

j=0

ajεn−j

exists as limit in L2(Ω)−sense.

Proof. Recall that the space L2(Ω) is complete. Using
∑∞

j=0 a
2
j < ∞ it is straightfor-

ward to see that for all n ∈ Z th process (Xm
n )m∈N0 given by Xm

n :=
∑m

j=0 ajεn−j,m ∈ N0,

defines a Cauchy sequence in L2(Ω). ✷

Consider a MA(∞) process (Xn)n∈Z with square summable moving-average coefficients
aj. Then its ACVF satisfies

γX(k) = Cov(Xn+k, Xn)

= σ2
ε

∞
∑

j=0

ajaj+k, k ∈ N.
(2.36)

In particular, we see that (Xn)n∈Z is weakly stationary.

Definition 2.42 Let X = (Xn)n∈Z be a weakly stationary MA(∞) process with ACVF
γX(·) and denote by C 6= 0 a constant. Then we say that

(i) X has long memory if
∞
∑

k=1

|γX(k)| = ∞.

(ii) X has short memory if
∞
∑

k=1

|γX(k)| <∞.

In view of (2.36), it is clear that the second order structure of X is determined by the
rate of decay of the MA-coefficients aj, j ∈ N0. The subsequent proposition describes this
relationship in more detail and shows that we could have defined the properties of long
and short memory by means of the rate of decay of the MA-coefficients, too. This is for
example done in [Beran et al., 2013, section 2.1.1.3].

Proposition 2.43 Let X = (Xn)n∈Z be a weakly stationary MA(∞) process as given by
(2.35).
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(i) If the MA-coefficients satisfy for C 6= 0

aj ∼ Cjd−1 for d ∈ (0, 0.5),

then
γX(k) ∼ C k2d−1.

In particular, X has long memory.

(ii) If the MA-coefficients satisfy

∞
∑

j=0

|aj| <∞ and
∞
∑

j=0

aj 6= 0,

then
|γX(k)| ≤ C ρk, ρ ∈ (0, 1),

where C > 0. In particular, X has short memory.

Proof. See [Beran et al., 2013, Lemmas 4.13-4.15]. ✷

We now take a closer look at a fundamental example of MA(∞) processes.

2.5.1 ARMA(p, q) processes

The popularity of the ARMA class of models is due to its simplicity and flexibility. It was
originally introduced by Box and Jenkins [1970].

Definition 2.44 (ARMA(p, q) processes) Let p, q ∈ N0 and (εn)n∈Z be a white noise
process. A stochastic process X = (Xn)n∈Z is called auto-regressive moving-average pro-
cess of order p and q, shortly ARMA(p, q), if it is the causal stationary solution of the
difference equation

φ(L)Xn = θ(L)εn, n ∈ Z, (2.37)

where φ, θ given by

φ(z) = 1−

p
∑

j=1

φjz
j ,

θ(z) =

q
∑

j=1

θjz
j, z ∈ C,

(2.38)

are polynomials in the backshift or lag operator L defined by LXn = Xn−1.

The next result deals with the existence of ARMA processes.

Theorem 2.45 Assume that X = (Xn)n∈Z satisfies the difference equation (2.37), where
the lag polynomials φ, θ have no common roots. Then X is an ARMA(p, q) process if and
only if φ(z) 6= 0 for all z ∈ C, |z| ≤ 1.
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Proof. See [Brockwell and Davis, 1991, Theorem 3.1.1]. ✷

Remark 2.46 An ARMA(p, q) process X is said to be invertible, if there exists an ab-
solute summable sequence of coefficients (ψ̃j)j∈N0 ,

∑∞
j=0 |ψ̃j| <∞, such that

εn =
∞
∑

j=0

ψ̃jXn−j, n ∈ Z.

In the situation of Theorem 2.45, this is equivalent to θ(z) 6= 0 for all z ∈ C, |z| ≤ 1, see
[Brockwell and Davis, 1991, Theorem 3.1.2].

Using the classification in Definition 2.42 we can now characterize the memory of
ARMA processes. This is done in the following remark.

Remark 2.47 (Memory of ARMA processes) Let X = (Xn)n∈Z be an ARMA(p, q)
process as defined in (2.37). Then its MA(∞) representation is given by

Xn = ψ(L)εn =
∞
∑

j=0

ψjεn−j n ∈ Z, (2.39)

with lag coefficients ψj, j ∈ N0, determined by

ψ(z) =
θ(z)

φ(z)
, |z| ≤ 1. (2.40)

It is well-known, that these lag coefficients decay exponentially. We conclude using Propo-
sition 2.43 that ARMA processes have short memory in the sense of Definition 2.42. In
particular, its ACVF is bounded exponentially.

Before we end this section, we would like to remark that Box and Jenkins [1970]
extended their ARMA definition to include integrated processes, leading to the notion of
ARIMA(p, d, q) processes.

Definition 2.48 Let p, q, d ∈ N0. Then a process X = (Xn)n∈Z is called integrated
ARMA(p, q) with integration parameter d, shortly ARIMA(p, d, q), process, if

Yn := (1− L)dXn, n ∈ Z,

defines an ARMA(p, q) process.

Let X denote an ARIMA(p, d, q) process with d ≥ 1. Then it clearly satisfies the
difference equation

φ(L)(1− L)dXn = θ(L)εn, n ∈ Z,

where φ, θ, (εn)n∈Z are defined as in Definition 2.44 and φ, θ have no common zeroes. Now,
the autoregressive polynomial is given by

z 7→ φ(z)(1− z)d, z ∈ C,

and obviously has a unit root. Theorem 2.45 therefore implies that X is not weakly
stationary. For this reason ARIMA(p, d, q) processes with d ≥ 1 are also called unit root
non-stationary.
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2.5.2 ARFIMA(p, d, q) processes

The short memory property of ARMA(p, q) processes as mentioned in Remark 2.47 raises
the question whether it is possible to modify these processes to capture long range de-
pendence. Granger and Joyeux [1980] and Hosking [1981] independently addressed this
issue. Considering the ARIMA(p, d, q) model (see Definition 2.48), they proposed to allow
for noninteger values of d, leading to the class of fractionally integrated ARMA processes.
Before we give the definition, we introduce an important linear time-invariant filter. The
following definition stems from [Brockwell and Davis, 1991, section 13.2]

Definition 2.49 Let d > −1. Then the operator (1 − L)d, which can be rewritten by
means of a binomial expansion as

(1− L)d =
∞
∑

j=0

πdjL
j (2.41)

with coefficients satisfying

πdj =
Γ(j − d)

Γ(j + 1)Γ(−d)
, j ∈ N0, (2.42)

and where Γ denotes the Gamma-function,

Γ(x) =







∫∞

0
tx−1e−tdt, x > 0,

∞, x = 0,
x−1Γ(1 + x), x < 0,

is called fractional difference operator.

Remark 2.50 According to [Brockwell and Davis, 1991, section 13.2] the coefficients πdj
can be rewritten as

πd0 = 1,

πdj =
∏

0<k≤j

k − 1− d

k
, j ≥ 1.

In particular, if d ∈ (0, 1) then πdj < 0 for all j ≥ 1, while for d ∈ (−1, 0) it holds that
πdj > 0, j ≥ 0.

The relevance of the filter (1−L)d is due to the asymptotic behavior of the coefficients
(2.42) in its series expansion. These decay by a slow hyperbolic rate, as shown in the
following proposition.

Proposition 2.51 Let d > −1 and consider the fractional difference operator (2.41).
Then the coefficients (2.42) satisfy

πdj ∼
1

Γ(d)
j−1−d, for j −→ ∞. (2.43)
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Proof. See [Brockwell and Davis, 1991, Remark 4 in section 13.2]. ✷

We are now prepared to state the definition of the ARFIMA model.

Definition 2.52 (ARFIMA(p, d, q)) Let d ∈ (−1, 0.5). Then the weakly stationary and
causal solution of the difference equation

φ(L)(1− L)dXn = θ(L)εn, n ∈ Z, (2.44)

where the lag polynomials φ and θ as well as the sequence (εn)n∈Z are defined as in Defini-
tion 2.44, is called fractionally integrated ARMA(p, q) process with fractional difference
parameter d, or shortly ARFIMA(p, d, q).

Remark 2.53 (Admissible values of d) Note that the range of admissible values for
the fractional difference parameter d is limited in the above definition to (−1, 0.5). Ac-
cording to [Beran et al., 2013, section 2.1.1.4] this way the well-definedness of the filter
(1− L)−d =

∑∞
j=0 π

−d
j Lj is ensured. To see this, recall that (2.43) implies

π−d
j ∼

1

Γ(d)
jd−1 as j −→ ∞.

Applying [Brockwell and Davis, 1991, Theorem 4.10.1], (1 − L)−d thus defines a valid
filter in the L2(Ω)-sense, i.e. when being applied to a weakly stationary sequence, say
ε = (εn)n∈Z, then the random variables

Yn := (1− L)−dεn, n ∈ Z,

are well-defined as limit in L2(Ω) and the process Y is again weakly stationary.
In the literature, however, the ARFIMA model is usually defined for values of d in
(−0.5, 0.5), as in this case by the same argumentation also the “inverse” filter (1−L)d is
well defined, such that the difference equation (2.44) does not only admit a causal station-
ary solution but also an invertible one (cf. [Brockwell and Davis, 1991, Remark 7, section
13.2]).

The subsequent result characterizes the existence of ARFIMA processes.

Theorem 2.54 Let d ∈ (−1, 0.5) and consider the difference equation (2.44), where the
lag polynomials φ, θ are assumed to have no common zeroes. Then the solution X is causal
and weakly stationary if and only if φ(z) 6= 0 for all z ∈ C, |z| ≤ 1.

Proof. See [Brockwell and Davis, 1991, Theorem 13.2.2]. ✷

Before we finish this section, we summarize the memory properties of the ARFIMA
model in the following remark.



2.6. CONTINUOUS ARMA MODELS 27

Remark 2.55 (Memory of ARFIMA) Let X denote an ARFIMA(p, d, q) process sat-
isfying the difference equation (2.44). Recall that the process

X̃n := (1− L)−dεn =
∞
∑

j=0

ψ̃jεn−j, n ∈ Z,

has lag coefficients ψ̃j decreasing by ψ̃j ∼
1

Γ(d)
jd−1. Following Beran et al. [2013] the crucial

point is that additionally applying the ARMA filter θ(L)
φ(L)

does not change the asymptotics

of the lag coefficients. In particular, for d ∈ (0, 0.5) we find that the lag coeffcients ψj of

Xn = (1− L)−d
θ(L)

φ(L)
=

∞
∑

j=0

ψjεn−j, n ∈ Z

again decline by

ψj ∼
1

Γ(d)
jd−1,

implying that they are not summable. In the sense of Definition 2.43 this means that X
has long memory. In contrast, for a fractional difference parameter d < 0, the coefficients
ψj are summable, i.e. X has short memory.

2.6 Continuous ARMA models

We now turn to the continuous time analogue of ARMA processes, which are usually re-
ferred to as CARMA processes. A detailed introduction can be found in Priestley [1981].
See also Brockwell [2001a], were properties such as conditions for stationarity are dis-
cussed. As it is pointed out there, CARMA processes were originally defined with Brow-
nian motion as driving noise. Yet, in particular for financial applications the gaussianity
of a CARMA driven by a Brownian motion is too restrictive. A natural approach to in-
corporate more flexibility into the model, consists in substituting the driving Brownian
motion by a Lévy process. This for example allows for much richer marginal distributions,
such as more heavy-tailed ones.

2.6.1 Lévy-driven CARMA processes

Following Brockwell [2001b], Lévy-driven CARMA(p, q) processes with q < p can be
introduced in analogy to the linear ARMA(p, q) difference equation (2.37) by the following
pth-order linear differential equation

b(D)Xt = a(D)DLt, t ≥ 0, (2.45)

where D denotes the differential operator (with respect to t) and b(·), a(·) denote polyno-
mials given by

b(z) = zp + β1z
p−1 + . . .+ βp (2.46)

a(z) = α0 + α1z + . . .+ αpz
p,
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with αj = 0, q < j ≤ p. This representation is purely formal, as in general the derivative
DLt does not exist in the usual sense. Yet, transforming (2.45) into a system of obervation
and state equations, Lévy-driven CARMA processes may be defined in the following way.

Definition 2.56 (Lévy-driven CARMA(p, q) process) Let (Lt)t≥0 denote a Lévy pro-
cess. Then (Xt)t≥0 is called Lévy driven CARMA(p,q) process with location parameter c,
moving-average coefficients αi, i = 0, . . . , q and autoregressive coefficients βi, i = 1, . . . , p
with p > q if

Xt = c+ a′Yt, t ≥ 0, (2.47)

where a′ = [α0, . . . , αp], αi = 0, i > q and (Y t)t≥0 is the strictly stationary solution of the
SDE

dY t = BY t dt+ e dLt, t > 0, (2.48)

with

B =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . . 0
0 0 0 . . . 1

−βp −βp−1 −βp−2 . . . −β1















and e =















0
0
...
0
1















, (2.49)

and assuming Y 0 to be independent of {Lt, t ≥ 0}.

In the following we assume without loss of generality that the location parameter c
equals zero. The solution to the state equation (2.48) is given by

Y t = eBtY 0 +

∫ t

0

eB(t−u)edLu, t ≥ 0. (2.50)

The subsequent theorem gives conditions ensuring the state process and therefore the
CARMA process itself to be stationary.

Theorem 2.57 (Existence of Lévy-driven CARMA processes) Let (Lt)t≥0 be a Lévy
process with E[|L1|

r] < ∞ for some r > 0. Assume that all the roots of the autoregres-
sive polynomial b(z) in (2.46) have negative real parts. Further, let X0 be independent of
(Lt)t≥0 with distribution

X0
D
=

∫ ∞

0

eBue dLu. (2.51)

Then the strictly stationary solution to (2.47) and (2.48) is given by

Xt = a′eBtX0 +

∫ t

0

a′eB(t−u)e dLu, t ≥ 0. (2.52)

If the driving Lévy process L additionally satisfies E[L2
1] <∞, then the solution given

by (2.51) and (2.52) is also weakly stationary.
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Proof. See [Brockwell, 2001b, Theorem 2.2]. ✷

A Lévy-driven CARMA process can also be defined on the whole real line. This leads
to the following definition.

Definition 2.58 Consider a two-sided Lévy process L satisfying E[L2
1] < ∞ and denote

by f : R → R a measurable function with f ∈ L1(R)∩L2(R). Then the process defined by

Zt =

∫ ∞

−∞

f(t− u)dLu, t ∈ R, (2.53)

is called (continuous-time) moving-average process with kernel f . If additionally f(u) =
0, u < 0, then Z is said to be causal.

Remark 2.59 1. According to Corollary 2.11 the stochastic integral in (2.53) is well-
defined as limit in probability of integrals of step functions approximating the kernel
f .

2. As proved in [Applebaum, 2004, Theorem 4.3.16], a continuous-time moving average
process is indeed strictly stationary.

To obtain a causal moving-average representation, let L = (Lt)t∈R be a two-sided
Lévy process as defined in (2.7) and assume that E[L1] = 0 and E[L2

1] < ∞. As shown
by Marquardt [2006], the CARMA kernel g(t) := a′eBte is exponentially bounded, such
that g ∈ L1(R) ∩ L2(R).
Now assume that all the roots of the autoregressive polynomial b(·) have negative real
parts and consider the strictly stationary solution as given by (2.51) and (2.52). Due to
the construction of L we find

X0
D
=

∫ ∞

0

eBue dLu
D
=

∫ 0

−∞

e−Bue dLu. (2.54)

Therefore the solution X can be rewritten as

Xt =

∫ t

−∞

g(t− u) dLu, t ∈ R, (2.55)

with deterministic kernel
g(t) = a′eBte, t ≥ 0. (2.56)

Before we give a result conderning the memory properties of CARMA processes, we
define what we understand under short and long memory in the continuous-time setting.

Definition 2.60 A stochastic process X = (Xt)t∈R is said to have long memory if its
ACVF γX satisfies

∫ ∞

0

γX(h) dh = ∞.

Otherwise we say that X has short memory.
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Recall that for a discrete ARMA model both the lag coefficients as well as the ACVF
decay by an exponential rate. An analogous result can be shown in the continuous-time
setting.

Proposition 2.61 Let the roots λ1, . . . , λp of the autoregressive polynomial of a CARMA(p, q)
process X as defined in Definition 2.56 have negative real parts and be distinct, then the
kernel g in (2.56) satisfies

g(u) =

p
∑

r=1

a(λr)

b′(λr)
eλru 1(0,∞),

and the ACVF γX is given by

γX(h) = Cov(Xt+h, Xt) =

p
∑

r=1

a(λr)a(−λr)

b′(λr)b(−λr)
eλr|h|.

In particular, X is a short memory process.

Proof. See Brockwell [2004]. ✷

2.6.2 Lévy-driven FICARMA processes

In the last section we saw that (Lévy-driven) CARMA processes have exponentially de-
caying ACFs. In order to incorporate long memory into CARMA models, Brockwell [2004]
substituted the kernel g in the causal CARMA representation (2.55) by the correspond-
ing fractional Riemann-Liouville integral. This leads to the class of fractionally integrated
CARMA (FICARMA) processes. We will see that it is important to distinguish between
centered, i.e. E[L1] = 0, and non-centered driving Lévy processes.

2.6.2.1 Centered driving Lévy process

Following Brockwell [2004] we calculate the fractional Riemann-Liouville integral of the
CARMA kernel g(t) = a′eBte 1[0,∞)(t), t ∈ R. We get

gd(t) = (Id+g)(t) =

∫ t

−∞

g(u)
(t− u)d−1

Γ(d)
du

=

∫ ∞

0

g(t− u)
ud−1

Γ(d)
du

=

∫ t

0

g(t− u)
ud−1

Γ(d)
du.

(2.57)

Proposition 2.62 The asymptotic behavior of the fractionally integrated kernel gd is
given by

gd(t) ∼
td−1

Γ(d)

a(0)

b(0)
, t −→ ∞.

In particular, if d ∈ (0, 0.5), then gd ∈ L2(R), but gd /∈ L1(R).
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Proof. See [Brockwell, 2004, p. 381]. ✷

We are now in the position to give the definition of FICARMA processes.

Definition 2.63 (FICARMA(p, d, q)) Let d ∈ (0, 0.5) and denote by L a two-sided
Lévy process with E[L1] = 0 and E[L2

1] < ∞. Let a, B, e be given as in Definition 2.56.
Then the stationary process defined by

Xt =

∫ t

−∞

gd(t− u) dLu, t ∈ R, (2.58)

with kernel gd defined as in (2.57), is called Lévy-driven FICARMA(p, d, q) process.

Before we turn to the memory properties of FICARMA processes, we summarize two
observations.

Remark 2.64 1. In view of Corollary 2.11 and the fact that the kernel gd is not in-
tegrable, the condition E[L1] = 0 is necessary to ensure the stochastic integral in
(2.58) to be well- defined as limit in probability of integrals of approximating simple
functions. Due to Corollary 2.14 it is even well-defined as limit in L2(Ω).

2. Let d ∈ (0, 0.5). The discrete ARFIMA(p, d, q) process can be represented as moving-
average process by

Xn =
∞
∑

j=0

ψjεn−j = (1− L)−d
θ(L)

φ(L)
εn, n ∈ Z,

where (εn)n∈Z is a white noise process and φ, θ are polynomials of degrees p, q. Ob-
serve that the lag coefficients ψj are given as convolution of exponentially decaying

ARMA coefficients ψ̃j, determined by
∑∞

j=0 ψ̃j =
θ(L)
φ(L)

, and hyperbolically decreasing

coefficients π−d
j ,

∑∞
j=0 π

−d
j = (1 − L)−d, which satisfy π−d

j ∼ jd−1/Γ(d). Conse-
quently, fractionally integrating the CARMA kernel in the sense of (2.57) directly
corresponds to the approach taken in the discrete case.

When it comes to the memory structure of fractionally integrated CARMA processes,
the analogy to the discrete case again becomes apparent.

Proposition 2.65 Let d ∈ (0, 0.5) and X be a FICARMA(p, d, q) process as defined in
Definition 2.63. Denote by γX its autocovariance function. Then

γX(h) ∼ h2d−1E[L
2
1]Γ(1− 2d)

Γ(d)Γ(1− d)

[

a(0)

b(0)

]2

, h −→ ∞.

Consequently, X is a long memory process.

Having successfully defined integration with respect to MvN-FLP (see Theorem 2.34),
Marquardt [2006] proves that long memory can be incorporated into CARMA models
in to ways: Either by fractionally integrating the CARMA kernel as we did above, or
by integrating memory into the driving Lévy process. We summarize this result in the
following theorem.
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Theorem 2.66 Consider a FICARMA(p, d, q) process X as defined in Definition 2.63
and additionally assume the driving Lévy process L to have no Brownian motion compo-
nent. Then X can be represented as

Xt =

∫ t

−∞

g(s) dLds, t ∈ R,

where Ld = (Ldt )t∈R denotes the MvN-FLP driven by L and g is the CARMA kernel as
defined in (2.56).

Proof. See [Marquardt, 2006, Theorem 6.5]. ✷

2.6.2.2 Non-centered driving Lévy process

As mentioned in the previous section the non-integrability of the kernel gd /∈ L1(R)
requires the driving Lévy process to have zero mean. However, allowing for the possibility
of a non-decreasing driving Lévy process L implying E[L1] ≥ 0 is desirable, as this way
the non-negativity of the resulting FICARMA can be ensured. Consequently, FICARMA
processes could be applied when modeling volatility.
In view of the asymptotic behavior

gd(t) ∼ Ctd−1, t→ ∞,

the tail of gd can be made integrable by restricting the parameter d to be negative. In this
case, however, gd fails to be integrable at t = 0. Brockwell and Marquardt [2005] therefore
suggest to modify the Lévy-driven FICARMA process in Definition 2.63 by substituting
the kernel gd with

ga,d(t) =

∫ t

0

g(t− u)ha,d(u)du, a > 0, d < 0, (2.59)

where

ha,d(u) = Ka,dmin(ad−1, ud−1)1(0,∞)(u),

and Ka,d is a constant3. Clearly, ga,d is now both integrable and square integrable, such
that the driving Lévy process is not restricted to have zero mean. This leads to the
following definition.

Definition 2.67 Let d < 0 and L be a two-sided Lévy process with E[L2
1] <∞. Then the

stationary process

Xt =

∫ t

−∞

ga,d(t− u)dLu, t ∈ R,

where the kernel ga,d is given by (2.59), is referred to as non-centered Lévy driven FICARMA(p, d, q)
process.

3Brockwell and Marquardt [2005] suggest to choose Ka,d = a|d|
|d|

1+|d| , such that ha,d constitutes a

probability density.
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Proposition 2.68 For d < 0 consider a non-centered Lévy driven FICARMA(p, d, q)
process X as defined above and denote by γX its ACVF. Then it holds that

γX(h) ∼ Ka,d

[

a(0)

b(0)

]2

td−1. (2.60)

Proof. See Brockwell and Marquardt [2005]. ✷

Obviously, a non-centered Lévy driven FICARMA(p, d, q) process does not exhibit
long memory in the sense of an integrable ACVF, see Definition 2.60. Yet, observe that
for d tending to zero in (2.60), the ACVF approaches non-integrability.



Chapter 3

ARCH models and fractional
integration

This chapter constitutes the main part of this thesis. First, we give a review of ARCH(∞)
processes and their abilities to incorporate long range dependence. This leads us to FI-
GARCH processes. Secondly, we present the COGARCH model and address the question,
whether there exists a continuous-time analogue to the FIGARCH.

3.1 Discrete Time Models

3.1.1 ARCH(∞) processes

We start with the definition of ARCH(∞) models.

Definition 3.1 (ARCH(∞)) Let (εn)n∈Z be a sequence of i.i.d random variables with
zero mean. Then (Xn)n∈Z is said to be an ARCH(∞) process, if it satisfies the system of
equations

Xn = σnεn,

σ2
n = ω +

∞
∑

i=1

ψiX
2
n−i, n ∈ Z,

(3.1)

with ω ∈ (0,∞) and ψi ≥ 0 for i ∈ N.

Remark 3.2 Obviously, the famous ARCH(p) model of Engle [1982] is comprised by the
class of ARCH(∞) models. It can be obtained by setting ψi = 0 for all i > p.

A solution (Xn)n∈Z of the ARCH(∞) model (3.1) is called causal, if Xn is measurable
with respect to the σ-algebra generated by εu, u ≤ n. The latter is denoted by

Fn := σ(εu, u ≤ n). (3.2)

An important question is, what conditions need to be imposed on the lag coefficients
ψi, i ∈ N, as well as on the distribution of the noise εn to ensure the existence of stationary
and causal solutions to (3.1). Douc et al. [2008] addressed this question by establishing

34
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sufficient conditions for the strict stationarity and showed the uniqueness of the corre-
sponding solution. Giraitis et al. [2000] considered the squares (X2

n)n∈Z of an ARCH(∞)
model giving sufficient conditions for weak and strict stationarity. Finally, necessary and
sufficient conditions for weakly stationary solutions of (3.1) are provided by Zaffaroni
[2004] for both the levels Xn and the squares X2

n. We present their results in the follow-
ing.

Theorem 3.3 (Stationarity of ARCH(∞) models) There exists a strictly stationary
and causal solution to the ARCH(∞) model (3.1), if there is an s ∈ (0, 1] such that

E[|εn|
2s]

∞
∑

i=1

ψsi < 1. (3.3)

The solution is then given by

Xn = σnεn,

σ2
n = ω + ω

∞
∑

k=1

∑

i1,...,ik≥1

ψi1 . . . ψikε
2
n−i1

. . . ε2n−i1−···−ik
, n ∈ Z, (3.4)

and it represents the unique strictly stationary and causal solution such that E[|Xn|
2s] <

∞.

Proof. See [Douc et al., 2008, Theorem 1]. ✷

In the literature the equation (3.4) is known as Volterra expansion, cf. Giraitis et al.
[2000].

Remark 3.4 Obviously, if (3.3) is satisfied with s = 1, then the solution (3.4) is also
weakly stationary. On the other hand, given a weakly stationary ARCH(∞) process (Xn)n∈Z,
by applying expectations on both sides of (3.1) and rearranging terms, we obtain

E[σ2
n] =

ω

1− E[ε2n]
∑∞

i=1 ψi
, n ∈ Z. (3.5)

Consequently,

E[ε2n]
∞
∑

i=1

ψi < 1 (3.6)

is a necessary and sufficient condition for the weak stationarity of the ARCH(∞) model
(3.1).

As already mentioned, a typical observation for financial time series, such as series of
price returns is the absence of autocorrelations, whereas the corresponding squared series
is characterized by strong autocorrelation. This fact is captured by ARCH(∞) models.
Right from the definition (3.1) it follows (assuming weak stationarity) for all k ∈ N, that

E[Xn+kXn] = E[σn+kσnεnE[εn+k|Fn+k−1]]

= 0, n ∈ Z,
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since εn+k is centered and independent of Fn+k−1.
To analyze the second order structure of a squared ARCH(∞) process, consider the model

Yn = σ2
nε

2
n, σ2

n = ω +
∞
∑

j=1

ψjYn−j, (3.7)

with (εn)n∈Z as before a zero mean, i.i.d. sequence of random variables and ω ∈ (0,∞).
While [Giraitis et al., 2000, Theorem 2.1] provided the sufficient condition

E[ε4n]
1/2

∞
∑

j=1

ψj < 1 (3.8)

for weak stationarity of (3.7), the latter was completely characterized by Zaffaroni [2004].

Theorem 3.5 (Weak stationarity of squared ARCH(∞) processes) Consider the
model (3.7) and assume that

ξ(z) := 1− E[ε2n]
∞
∑

j=1

ψjz
j (3.9)

is invertible, that means, it exists a sequence δn, n ∈ N0 with δ0 = 1 and
∑∞

j=0 δ
2
j < ∞

such that
1

ξ(z)
=

∞
∑

j=0

δjz
j. (3.10)

Then the model (3.7) admits a weakly stationary solution, if and only if

Var(ε2n)
∞
∑

u=−∞

χδ(u)χψ̃(u) < 1, (3.11)

where ψ̃0 = 0, ψ̃k = ψk, k ≥ 1 and χc(u) =
∑∞

k=0 ckck+u, u ∈ Z, for a square summable
sequence (cn)n∈N0.
In this case, it holds for vn := E[Yn]− E[Yn|Fn−1] that

Cov(Yn, Y0) = E[v2n]χδ(n), n ∈ Z, (3.12)

where

E[v2n] = Var(ε2n)

(

E[Yn]

E[ε2n]

)2
1

1− Var(ε2n)
∑∞

u=−∞ χδ(u)χψ̃(u)
.

Proof. See [Zaffaroni, 2004, Theorem 1].

Remark 3.6 Note that if the invertibility condition (3.10) holds, then the volatility pro-
cess

σ2
n = ω +

∞
∑

j=1

ψjYn−j
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can be rewritten as
(

1− E[ε2n]
∞
∑

j=1

ψjL
j

)

Yn = E[ε2n](ω − σ2
n) + Yn,

where L denotes the backshift operator, defined by LYn = Yn−1. Using the martingale
difference sequence vn = Yn − σ2

nE[ε
2
n], n ∈ Z, we finally obtain the linear representation

Yn = E[ε2n]ω
∞
∑

j=0

δj +
∞
∑

j=0

δjvn−j, n ∈ Z. (3.13)

Due to the empirical relevance of long memory, the question arises, if ARCH(∞) mod-
els are capable of capturing this property. Recall that for MA(∞) models the memory was
determined by the MA-coefficients (see Proposition 2.43). The results [Giraitis et al., 2000,
Proposition 3.1] and [Kokozka and Leipus, 2000, Theorem 3.1] indicate that this relation-
ship also holds in the case of ARCH(∞) models. Subsequently, we present a fundamental
theorem in this respect which basically refines the two just mentioned findings.

Theorem 3.7 Consider the model (3.7). Assume that the invertibility condition (3.10)
as well as (3.6) hold. If the coefficients ψn, n ∈ N, tend to zero exponentially or more
slowly than exponentially, i.e. if for c ∈ (0, 1)

ψn/c
n −→ ∞, n −→ ∞,

then
χδ(n) ∼ Cψn, n −→ ∞, (3.14)

where C ∈ (0,∞) and χδ as defined in Theorem 3.5.

Remark 3.8 (Memory of ARCH(∞) processes) 1. ARCH(∞) models are inca-
pable of modeling long memory (in the squares) in the sense of a non-summable
ACVF. Indeed, denote by X = (Xn)n∈Z an ARCH(∞) process. Then the condition
(3.6) implies that the lag coefficients ψj are summable. Consequently, it follows from
Theorem 3.7 that

∞
∑

j=1

|Cov(X2
n+j, X

2
n)| <∞.

This is in contrast to MA(∞) models, where it is possible to model long memory by
considering non-summable MA-coefficients, see Remark 2.55.

2. As implied by (3.12) and (3.14), the lag coefficients ψj essentially determine the
degree of memory of the squares of an ARCH(∞) process X. Furthermore, this de-
gree of memory is already imparted by the condition (3.6), which ensures covariance
stationarity of the levels Xn but not that of the squares X2

n.

As covariance stationarity and long memory (in the sense of a non-summable ACVF)
are not compatible, one may take into consideration to allow for an infinite second moment.
This leads to the following subclass of ARCH(∞) models.
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Definition 3.9 (IARCH(∞)) A process is said to be an integrated ARCH(∞) process,
if it satisfies the equations (3.1) with additional restriction

E[ε2n]
∞
∑

i=1

ψi = 1. (3.15)

Definition 3.10 Following Davidson [2004], we refer to the product E[ε2n]
∑∞

i=1 ψi as
amplitude.

Remark 3.11 Remark 3.4 implies that any strictly stationary IARCH(∞) process has
an infinite second moment.

Although no weakly stationary IARCH(∞) exists, conditions for strict stationarity can
be established. Recall therefore the corresponding condition (3.3) for ARCH(∞) models.
Douc et al. [2008] used this result to prove the existence of IARCH(∞) processes.

Corollary 3.12 (Strict stationarity of IARCH(∞)) Consider an IARCH(∞) model
as given by Definition 3.9 and assume E[ε2n] = 1. Then the condition (3.3) is satisfied, if
and only if there is a p ∈ (0, 1] such that

∑∞
i=1 ψ

p
i <∞ and

∞
∑

i=1

ψi log(ψi) + E[ε2n log(ε
2
n)] ∈ (0,∞]. (3.16)

In this case, the strict stationary solution of the model is given by (3.4) and satisfies
E[|Xq

n|] <∞ for q ∈ [0, 2) and E[X2
n] = ∞.

Proof. See [Douc et al., 2008, Corollary 2]. ✷

The second result, which is available in the literature, stems from Kazakevicius and
Leipus [2003]. They weakened the conditions on the sequence (εn)n∈N, but asssumed the
lag coefficients to decay at an exponential rate. This suggests that conditions ensuring
strict stationarity represent a compromise between conditions on the driving noise and
summability conditions on the lag coefficients.

Proposition 3.13 (Strict stationarity of IARCH(∞)) Assume that ε2n is nondegen-
erate, E[| log ε2n|] <∞ and that there is a q > 1 such that

∞
∑

i=1

ψiq
i <∞.

Then, the IARCH(∞) model, as given by Definition 3.9, has a strictly stationary and
causal solution given by (3.4).

Proof. See [Kazakevicius and Leipus, 2003, Theorem 2.1]. ✷

In the next section we will consider another important ARCH(∞) model, namely the
well-known GARCH model.
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3.1.2 GARCH(p, q) processes

We now turn to the most popular model in financial econometrics, namely the univari-
ate GARCH model, originally introduced by Bollerslev [1986]. Before we give the usual
GARCH(p, q) representation, we define it as an ARCH(∞) process.

Definition 3.14 (GARCH(p, q)) For p ∈ N0 and q ∈ N let α and β denote two poly-
nomials given by

α(z) =

q
∑

j=1

αjz
j , β(z) =

p
∑

j=1

βjz
j, z ∈ C, (3.17)

with 1 − β(z) 6= 0, |z| ≤ 1. Then (Xn)n∈Z is called GARCH(p, q) process, if it is an
ARCH(∞) process according to (3.1) with lag coefficients ψi, i ∈ N, defined by the equation

∞
∑

i=1

ψiz
i =

α(z)

1− β(z)
, z ∈ C, |z| ≤ 1. (3.18)

Remark 3.15 (Standard and ARMA-type representation) 1. To obtain the rep-
resentation, which is common in the literature, let (Xn)n∈Z be a GARCH(p, q) process
as in Definition 3.14. Consequently, the volatility process satisfies

σ2
n = ω +

∞
∑

i=1

ψiX
2
n−i

= ω +

(

∞
∑

i=1

ψiL
i

)

X2
n

= ω +
α(L)

1− β(L)
X2
n.

Now, applying the operator (1 − β(L)) on both sides, we arrive at the usual repre-
sentation

Xn = σnεn,

σ2
n = ω̃ + α(L)X2

n + β(L)σ2
n, n ∈ Z,

(3.19)

with ω̃ = ω(1− β(1)).

2. Assume that X = (Xn)n∈N denotes a GARCH(p, q) process such that the squared
process X2 is covariance stationary. Then it is straightforward to see that

νn : = X2
n − E[X2

n|Fn−1]

= X2
n − σ2

n E[ε
2
n], n ∈ Z,

defines a white noise sequence, i.e. it is uncorrelated with zero mean and finite
variance. Consequently, substituting σ2

n = (X2
n − νn)/E[ε

2
n] in (3.19) we obtain the

ARMA representation

[

1−
(

E[ε2n] α(L) + β(L)
)]

X2
n = ω∗ + (1− β(L))νn n ∈ Z. (3.20)
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Being a particular ARCH(∞) model, for a GARCH(p, q) process the necessary and
sufficient condition for weak stationarity (3.6) turns into

E[ε2n]

q
∑

i=1

αi +

p
∑

j=1

βj < 1. (3.21)

As we have seen in Theorem 3.3, the condition (3.21) also implies the existence of a
strictly stationary solution to the GARCH(p, q), however, this condition is not necessary.
But unlike for general ARCH(∞) models, a necessary and sufficient condition for strict
stationarity is available in literature for GARCH models. This can be found, for example,
in [Bougerol and Picard, 1992, Theorem 2.5].

Finally, notice that analogously to the IARCH(∞) model we can define an integrated
GARCH(p, q) model.

Definition 3.16 A process (Xn)n∈Z is called integrated GARCH(p, q), shortly IGARCH(p, q),
process, if it is GARCH(p, q) according to Definition 3.14 with additional amplitude re-
striction

E[ǫ2n]

p
∑

i=1

αi +

q
∑

j=1

βj = 1 (3.22)

Originally, the observation that when the GARCH model is applied to financial data
the estimates for the model parameters αi, i = 1, . . . , q and βj, j = 1, . . . , p often sum up
to a value close to unity - the so called IGARCH-effect - led Engle and Bollerslev [1986]
to introduce this model.

Remark 3.17 Note that we can establish a purely formal analogy between integrated
ARMA and integrated GARCH models. Although being meaningless (as no second moment
exists), consider therefore the ARMA-type representation (3.19) of an IGARCH model.
Then as ARIMA models, its autoregressive polynomial 1− (E[ε2n] α(z) + β(z)) has a unit
root.

3.1.3 FIGARCH(p, d, q) processes

As in the ARMA case, the lag coefficients ψj in (3.18) of the GARCH model decay
exponentially, resulting in short memory. In order to allow long range dependence, Baillie
et al. [1996] introduced the class of fractionally integrated GARCH (FIGARCH) models,
intending to mimic the successful generalization of ARMA to ARFIMA models. Although
they defined FIGARCH processes by some ARMA-type representation, we follow Douc
et al. [2008] embedding it into the class of ARCH(∞) models.

The structure of this section is as follows. Firstly, we will present the definition and
give the proof for the existence. Subsequently, we discuss the model structure and memory
properties. In doing so, we will be particularly concerned with its connection to ARFIMA
models.
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3.1.3.1 Definition and existence

As mentioned above, we follow Douc et al. [2008] by defining the FIGARCH as particular
ARCH(∞) model.

Definition 3.18 (FIGARCH(p, d, q)) Let d ∈ (0, 1) and p, q ∈ N. Denote by α(z), β(z)
two polynomials

α(z) = 1 + α1z + α2z
2 + · · ·+ αpz

p, and

β(z) = 1 + β1z + β2z
2 + · · ·+ βqz

q, z ∈ Z.
(3.23)

where β(z) 6= 0, |z| ≤ 1. Then (Xn)n∈Z is said to be a fractionally integrated GARCH(p, q)
process, or FIGARCH(p, d, q) process, if it is an ARCH(∞) process (3.1) with E[ǫ2n] = 1
and where the lag coefficients (ψn)n∈N of the squared volatility process

σ2
n = ω +

∞
∑

j=1

ψjX
2
n−j, n ∈ Z, (3.24)

are defined by

ψ(z) :=
∞
∑

j=1

ψjz
j = 1− (1− z)d

α(z)

β(z)
, |z| ≤ 1. (3.25)

Remark 3.19 (Non-negativity of variance process) In order to ensure the
FIGARCH(p, d, q) model as given by Definition 3.18 to be well-defined, conditions need
to be imposed on the coefficients of the polynomials α(z), β(z) in (3.23) to ensure non-
negativity of the variance process (3.24). Conrad and Haag [2006] provide necessary and
sufficient conditions for FIGARCH models of orders q ≤ 2 as well as sufficient conditions
for the general case.

In particular, for the FIGARCH(0, d, 1) model, where the lag polynomial ψ(z) due to
(3.25) is given by

ψ(z) = 1− (1− z)d
1

1 + β1z
, |z| ≤ 1, (3.26)

the variance process is non-negative (see [Conrad and Haag, 2006, Corollary 3]) if and
only if

−d ≤ β1 ≤

√

2(2− d)− d

2
. (3.27)

For the FIGARCH(1, d, 0) process (3.25) turns into

ψ(z) = 1− (1− z)d(1 + α1z), |z| ≤ 1,

such that due to [Conrad and Haag, 2006, Corollary 2] σ2
n is well-defined if and only if

d− 1

2
≤ α1 ≤ d. (3.28)

We now turn to the question of the existence of a (strictly) stationary solution of
the FIGARCH model. When introducing the model, Baillie et al. [1996] claimed that
the “coefficients ψj in the infinite lag polynomial ψ(z) [in (3.25)] are dominated by the
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lag coefficients in the ARCH(∞) representation of an appropriately defined high-order
IGARCH model”. Therefore the stationarity of FIGARCH would be implied by the sta-
tionarity of the IGARCH model.
Now, observe that the lag coefficients ψj in (3.25) analogously to the ARFIMA case (see
Remark 2.55) satisfy for C 6= 0

ψj ∼ Cj−1−d, j −→ ∞ d ∈ (0, 1). (3.29)

On the other side, the lag coefficients (3.18) in the GARCH case decay exponentially,
which holds, being a special GARCH model, in particular for an IGARCH process. The
question therefore arises, how to bound coefficients that decline hyperbolically by expo-
nentially decaying ones. Yet, in the literature there seems to be general agreement that
the argumentation of Baillie et al. [1996] is incorrect, see for example Douc et al. [2008]
and Mikosch and Starica [2003].

Subsequently, the “FIGARCH problem” remained unsolved for a long time, until Douc
et al. [2008] managed to show the existence of FIGARCH processes. More precisely, the
authors were able to prove the existence of strictly stationary FIGARCH(0, d, 0) processes.
In doing so, they used the fact, that any FIGARCH process belongs to the IARCH(∞)
class, as the amplitude restriction (3.15),

E[ǫ2n]
∞
∑

j=1

ψj =

[

1− (1− z)d
α(z)

β(z)

]

z=1

= 1,

(3.30)

is obviously satisfied.
In the following we present their result and demonstrate that their approach can also

be applied to obtain the existence of higher order FIGARCH models.

Theorem 3.20 (Existence of FIGARCH) Consider the FIGARCH(p, d, q) model as
given by Definition 3.18 and assume the squared noise ǫ2n, n ∈ N, to be non-degenerate.

(a) There exists a d∗ ∈ (0, 1) such that for all d ∈ (d∗, 1) the FIGARCH(0, d, 0) model
has a strictly stationary solution.

(b) There exist d∗ ∈ (0, 1) and α∗ > 0 such that the FIGARCH(1, d, 0) model with lag
polynomial

ψ(z) = 1− (1− z)d(1 + α1z), |z| ≤ 1, (3.31)

has a strictly stationary solution for all d ∈ (d∗, 1) and

α1 ∈
(

0,min(α∗, d)
)

∪
(

1− α∗, d
]

, (3.32)

where in case that 1− α∗ ≥ d we set (1− α∗, d] := ∅.

(c) There exist d∗ ∈ (0, 1) and β∗ > 0 such that the FIGARCH(0, d, 1) model with lag
polynomial

ψ(z) = 1−
(1− z)d

1 + β1z
, |z| ≤ 1, (3.33)
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has a strictly stationary solution for all d ∈ (d∗, 1) and

β1 ∈
(

max(−β∗,−d), 0
)

. (3.34)

The solution (Xn)n∈Z in each of these three cases is given by (3.4) and satisfies E[|Xs
n|] <

∞ for s ∈ (0, 2).

Proof. Recall that for the FIGARCH(p, d, q) model (see Definition 3.18) the lag poly-
nomial ψ(z) is defined by

ψ(z) =
∞
∑

j=1

ψjz
j

= 1− (1− z)d
α(z)

β(z)
, |z| ≤ 1, d ∈ (0, 1).

(3.35)

To stress the dependence of the coefficients ψj on d, in the following we write ψj(d).
Moreover, we set

λ(z) =
∞
∑

j=0

λjz
j

:=
α(z)

β(z)
, |z| ≤ 1.

(3.36)

Douc et al. [2008] introduced the function H defined for d ∈ (0, 1) by

H(s, d) = log

(

∞
∑

j=1

ψsj (d)

)

. (3.37)

As outlined above, the asymptotic behavior of the lag coefficients ψj(d), j ∈ N, is given
by ψj(d) ∼ O(j−1−d), such that

∞
∑

j=1

ψsj (d) <∞, d ∈ (0, 1),

and H(·, d) is well-defined as long as s ∈ ( 1
d+1

, 1]. Furthermore, observe that H(·, d) is

convex. To see this, let δ ∈ (0, 1) and define the parameters r1 := 1
δ
and r2 := 1

1−δ
such

that r1, r2 ≥ 1 and

1

r1
+

1

r2
= 1.
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Now, for s1, s2 ∈ ( 1
1+d

, 1] we apply the Hölder inequality and obtain

H
(

δs1 + (1− δ)s2, d
)

= log

(

∞
∑

j=1

ψj(d)
δs1ψj(d)

(1−δ)s2

)

≤ log

(

( ∞
∑

j=1

(ψj(d)
δs1)r1

)
1
r1

( ∞
∑

j=1

(ψj(d)
(1−δ)s2)r2

)
1
r2

)

= δ log

(

∞
∑

j=1

ψj(d)
s1

)

+ (1− δ) log

(

∞
∑

j=1

ψj(d)
s2

)

= δ H(s1, d) + (1− δ) H(s2, d).

We further have due to the unit amplitude (see (3.30))

H(1, d) = log

(

∞
∑

j=1

ψj(d)

)

= 0,

while for s ↓ 1
1+d

the lag coefficients ψsj (d), having rate of decay ψsj (d) ∼ O(j(−1−d)s),
approach non-summability, such that for all d ∈ (0, 1) it holds

H(s, d) → ∞, for s ↓
1

1 + d
.

Consequently, the above derived convexity implies that H(·, d) is decreasing. Further the
derivative of H with respect to s is given by

∂

∂s
H(s, d) =

∑∞
j=1 e

s log(ψj) log(ψj)
∑∞

j=1 ψ
s
j

.

In particular, the left-sided derivative L(d) at s = 1 satisfies

L(d) := lim
s↑1

H(s, d)−H(1, d)

s− 1

=
∞
∑

j=1

ψj(d) log(ψj(d)),

which corresponds to the sum on the left of condition (3.16). As H(·, d) is decreasing and
convex, its derivative ∂

∂s
H(·, d) is negative and increasing, such that we end up with the

following bounds for L(d),

0 ≤ −L(d) ≤ −
H(s, d)

s− 1
, for d ∈ (0, 1) and s ∈

(

1/(1 + d), 1
)

. (3.38)

We now show that the upper bound in (3.38) independently of the parameter s can get
arbitrarily small. Using the notation in (3.35) and (3.36) the lag coefficients ψj(d) of the
FIGARCH model are given by the convolution

ψj(d) =

j
∑

k=0

−πk(d)λj−k, j ≥ 1, (3.39)
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where the coefficients πk(d), k ∈ N0, are defined as in (2.42) and satisfy according to
[Brockwell and Davis, 1991, p. 520] π0 = 1, π1 = −d and

πj =
−d(1− d) · . . . · (j − 1− d)

j!
, j ≥ 2. (3.40)

In particular, for d ↑ 1 we have that π1(d) → −1 and πj(d) → 0, j ≥ 2, such that

lim
d↑1

ψj(d) = λj−1 − λj, j ≥ 1.

Further note that for j ≥ 0 the quotient
|πj(d)|

d
is non-increasing in d ∈ (0, 1), which will

be used in the following.
In order to apply the dominated convergence theorem, observe that for all d ∈ [0.5, 1)

|ψj(d)| ≤

j
∑

k=0

|πk(d)||λj−k|

≤

j
∑

k=0

∣

∣

∣

∣

πk(
1
2
)

1
2

∣

∣

∣

∣

|λj−k|

= 2

j
∑

k=0

|πk
(

1/2
)

||λj−k|

:= bj.

Since |πj(1/2)| ∼ C j−1.5, the sequence (bj)j∈N is summable, such that we have found an
upper bound for (ψj(d))j∈N, that is, for all d ∈ [0.5, 1)

∞
∑

j=1

ψsj (d) ≤
∞
∑

j=1

bsj <∞, s ∈
(

1/(1 + d), 1
)

. (3.41)

Thus, we can apply the dominated convergence theorem and obtain

lim
d↑1

H(s, d) = log

(

∞
∑

j=1

(λj−1 − λj)
s

)

, s ∈ (2/3, 1). (3.42)

Summing up, we have found that

0 ≤ lim sup
d↑1

−L(d) ≤
log
(

∑∞
j=1 (λj−1 − λj)

s
)

1− s
, s ∈ (2/3, 1). (3.43)

In order to prove part (i), consider the lag polynomial of the FIGARCH(0, d, 0) model,
i.e.

ψ(z) = 1− (1− z)d, |z| ≤ 1.

Obviously, the coefficients λj as defined in (3.36) satisfy

λ0 = 1, λj = 0, j ≥ 1,
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such that (3.43) turns into

0 ≤ lim sup
d↑1

−L(d) ≤
log(1)

1− s
= 0. (3.44)

Now, using the convexity of the mapping x 7→ x log(x), Jensen‘s inequality implies

E[ǫ2n log(ǫ
2
n)] > E[ǫ2n] log(E[ǫ

2
n]) = 0,

where the strict inequality is due to ǫ2n being non-degenerate. As L(d) → 0 for d ↑ 1 (see
(3.44)), there exists a d∗ ∈ (0, 1) with

E[ǫ2n log(ǫ
2
n)] + L(d) > 0, for all d ∈ (d∗, 1),

and part (i) follows from Corollary 3.12.

For higher order FIGARCH(p, d, q) models, i.e. where not both p and q are equal
to zero, additional conditions need to be imposed on the coefficients of the polynomials
α(z), β(z) in (3.35), which will be illustrated when proving the parts (b) and (c). In the
former case the lag polynomial ψ(z) has the representation (3.31), implying that

λ0 = 1, λ1 = α1 and λj = 0, j ≥ 2.

Let ζ > 0 be arbitrary. Then from (3.43) it follows that there exists a d∗ ∈ (0, 1) such
that for all d ∈ (d∗, 1)

0 ≤ −L(d) <
log((1− α1)

s + αs1)

1− s
+ ζ, s ∈ (2/3, 1), α1 > 0. (3.45)

Obviously, the quotient on the right-hand side tends to zero for α1 → 0 as well as for α1 →
1. In particular, we can find an α∗ > 0 such that for all α1 ∈ Dα1 := (0, α∗) ∪ (1− α∗, 1]

0 ≤ −L(d) < 2ζ.

Taking the condition (3.28) for the non-negativity of the variance process into account,
the range Dα1 of admissible values for α1 reduces to (3.32). Now, since ζ > 0 was assumed
to be arbitrary, we set

ζ :=
E[ǫ2n log(ǫ

2
n)]

2
> 0

and therefore obtain the claim by Corollary 3.12.

On the other hand, in the case of the FIGARCH(0, d, 1) model with

λ(z) =
1

1 + β1z
, |z| ≤ 1,
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we have λj = (−β1)
j, j ≥ 0. Again for arbitrary ζ > 0 there exists a d∗ ∈ (0, 1) such that

for all d ∈ (d∗, 1)

0 ≤ −L(d) <
log
(

∑∞
j=1

(

(−β1)
j−1 − (−β1)

j
)s
)

1− s
+ ζ

=
log
(

(

1− (−β1)
)s∑∞

j=1

(

(−β1)
j−1
)s
)

1− s
+ ζ

=
log
(

(1 + β1)
s
)

+ log
(

∑∞
j=1

(

(−β1)
j−1
)s
)

1− s
+ ζ

=
log
(

(1 + β1)
s
)

− log(1− (−β1)
s)

1− s
+ ζ, s ∈ (2/3, 1), β1 ∈ (−1, 0).

Analogously to the previous case the quotient on the right-hand side tends to zero for
β1 ↑ 0, that means there exists a β∗ > 0 such that for all β1 ∈ Dβ = (−β∗, 0)

0 ≤ −L(d) < 2ζ.

Taking (3.28) into account, the range of possible values for β1 is given by (3.34) and the
result follows with Corollary 3.12. ✷

Finally, observe that the FIGARCH model comprises both the GARCH and the
IGARCH model. We summarize this result in the following remark.

Remark 3.21 (GARCH as subclass of FIGARCH) Consider a GARCH model as

defined in Definition 3.14 with lag polynomial ψ(z) = α(z)
1−β(z)

.

1. Let d = 0 and define the following polynomials,

α∗(z) = 1− β(z)− α(z),

β∗(z) = 1− β(z).

Then the above GARCH can be rewritten as FIGARCH model by defining its lag
polynomial ψ̃ as

ψ̃(z) = 1− (1− z)d
α∗(z)

β∗(z)

= 1−
1− β(z)− α(z)

1− β(z)

=
α(z)

1− β(z)
.

2. Now, we consider the corresponding IGARCH model, i.e. we assume that α(1) +
β(1) = 1. Then there exists a polynomial λ such that 1 − α(z) − β(z) = λ(z)(1 −
z). Consequently, this IGARCH model may be represented as FIGARCH with lag
polynomial

ψ(z) = 1− (1− z)d
λ(z)

1− β(z)
,

and d = 1.
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3.1.3.2 Discussion

Now that the existence is ensured, we want to gain a deeper understanding of the structure
of the FIGARCH model and analyze if and in what way it improves the memory properties
of the GARCH model. Concerning the first issue, it is worthwile to revise its relationship
to the class of ARFIMA models, as this was the starting point of Baillie et al. [1996],
when defining the model.

Relationship between FIGARCH and ARFIMA. An ARMA(p, q) process X =
(Xn)n∈Z may be represented as

Xn =
θ(L)

φ(L)
εn, n ∈ Z,

where φ, θ denote finite lag polynomials and ε = (εn)n∈Z denotes a white noise sequence.
In particular,

Xn = ψ0εn + ψ1εn−1 + ψ2εn−2 + . . . , n ∈ Z,

with exponentially decaying lag coefficients ψj, j ∈ N. Note that these can be interpreted
as being measures of sensitivity to changes in the innovation sequence ε. More precisely,
ψj gives the impact of a unit innovation εn−j in period n− j on the level of X in period
n. For this reason the sequence (ψj)j∈N is also referred to as impulse response coefficients
(IRC). In this sense shocks to the process X dissipate at an exponential rate.

In contrast, assume nowX to denote the corresponding non-stationary ARIMA(p, d, q)
process with d = 1, i.e.

(1− L)Xn =
θ(L)

φ(L)
εn,

= ψ0εn + ψ1εn−1 + ψ2εn−2 + . . . , n ∈ Z,
(3.46)

with θ(1) 6= 0. We write its MA(∞)-representation as

Xn = ψ̃0εn + ψ̃1εn−1 + ψ̃2εn−2 + . . . , n ∈ Z.

Now, the impact of a unit innovation in period n − j on the level Xn is given by ψ̃j =
∑j

k=0 ψk, such that

lim
j→∞

ψ̃j =
∞
∑

k=0

ψk =
θ(1)

φ(1)
6= 0.

The interpretation is that shocks to the ARIMA(p, d, q) process do not dissipate, but
persist indefinitely. Finally, allowing in (3.46) for fractional values d ∈ (0, 0.5), leads to
the long-memory ARFIMA(p, d, q) model with representation

(1− L)dXn =
θ(L)

φ(L)
εn.

We have seen that the corresponding MA(∞) coefficients ψ̃dj satisfy ψ̃dj ∼ C jd−1, i.e.
shocks dissipate by a slow hyperbolic rate. Thus, from this point of view the ARFIMA
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model fills the gap between short memory or short persistence on the one side and com-
plete persistence on the other side.

Now, we turn to the ARCH(∞) framework. The ARMA-type representation of the
GARCH model is given by

(1− α(L)− β(L))X2
n = ω + (1− β(L))νn, n ∈ Z, (3.47)

with notation as in Remark 3.15. This indeed defines an ARMA process if the squared
GARCH X2 is covariance stationary. The corresponding IGARCH is obtained by addi-
tionally imposing the condition α(1) + β(1) = 1, such that the autoregressive polynomial
in (3.47) has a unit root,

λ(L)(1− L)X2
n = ω + (1− β(L))νn, n ∈ Z. (3.48)

with λ(L) appropriately defined. Baillie et al. [1996] take this representation as a reason for
considering the IGARCH as analogue to the ARIMA model. As a consequence, they mimic
the generalization of ARMA to ARFIMA by allowing fractional differences in (3.48), thus
defining the FIGARCH model by the difference equation

λ(L)(1− L)dX2
n = ω + (1− β(L))νn, n ∈ Z. (3.49)

Precisely this approach is criticized in the literature. Both Davidson [2004] and Mikosch
and Starica [2003] point out that the above drawn connection to the MA(∞) class is
purely formal. The crucial point is the non-stationarity of the IGARCH model. Clearly,
one may represent the IGARCH model using the ARMA-type representation (3.48), yet
it is not meaningful as the driving process νn is not white noise.

A further point criticized by Mikosch and Starica [2003] concerns the defining equations
(3.49), as the driving process νn = X2

n−σ
2
n depends on the process, which is being defined.

This is why in the literature the FIGARCH model is usually defined as ARCH(∞) process
and only afterwards (having ensured its existence) the equivalent representation (3.49) is
derived.

Memory properties. When introducing the model, Baillie et al. [1996] justified their
view of the FIGARCH as intermediate case (concerning memory) between GARCH and
IGARCH by comparing their IRCs. See above, where we proceeded analogously when
comparing the memory properties of ARMA and ARFIMA. Due to the ARMA-type
representations (3.47)-(3.49) it is straightforward to see that the IRC of GARCH and
FIGARCH decline exponentially and hyperbolically while those of the IGARCH do not
even tend to zero. Thus Baillie et al. [1996] interpreted the memory properties analogously
to the ARFIMA case. Again the question arises, whether it is reasonable to apply impulse
response analysis, where the possibly correlated sequence νn is interpreted as innovation
to the process.

For a general (weakly stationary) ARCH(∞) model we saw that the rate of conver-
gence of the lag coefficients essentially determine the dependence structure of the process.
Following Davidson [2004] we therefore assess in the following by means of this rate the



50 CHAPTER 3. ARCH MODELS AND FRACTIONAL INTEGRATION

memory properties of the FIGARCH. Recall that the FIGARCH(p, d, q) model is a par-
ticular ARCH(∞) model with lag polynomial given by

ψ(z) =
∞
∑

j=1

ψjz
j = 1− (1− L)d

α(L)

β(L)
, d ∈ [0, 1],

with α, β given by (3.25). The case d = 1 corresponds to the IGARCH model, which in
the above sense has exponential memory. For d ∈ (0, 1) we saw that the lag coefficients
ψj decline hyperbolically, namely

ψj ∼ Cj−1−d.

Firstly and quite counterintuitively, for decreasing d the memory increases. Particularly
for d → 0, the lag coefficients approach non-summability. Yet, due to the amplitude
restriction

ψ(1) =
∞
∑

j=1

ψj = 1,

while approaching non-summability, the individual ψj all tend to zero. In the limit d = 0,
however, when obtaining the GARCH, we again have exponential memory. Davidson
[2004] therefore concludes that “the characterization of the FIGARCH model as an in-
termediate case between the stable GARCH and the IGARCH [...] is misleading. In fact,
it has more memory than either of these models but behaves oddly owing to the rather
arbitrary restriction of holding the amplitude to one.”

3.2 Continuous Time Models

3.2.1 COGARCH processes

Referring to Brockwell et al. [2006], we now introduce the continuous time analogue of
the discrete GARCH(p, q) model. Before giving its precise definition, we take a closer look
at the idea the continuous approach is based on.

We start with a discrete GARCH(p, q) process X. Denote by σ2
0 the initial value of its

volatility process, such that X is given by

Xn = σnεn,

σ2
n = ω + α(L)X2

n + β(L)σ2
n, n ≥ r,

where r := max(p, q), α(z) =
∑q

j=1 αjz
j and β(z) =

∑p
j=1 βjz

j, (εn)n∈N0 denotes the

driving i.i.d. noise sequence and σ2
0, . . . , σ

2
r−1 are i.i.d. and independent of (εn)n∈N0 . In

particular, (σ2
n)n∈N0 fulfills

σ2
n(1− β(L)) = ω + (ε2nσ

2
n)α(L), n ≥ r. (3.50)

Brockwell et al. [2006] conclude that the squared volatility process can be seen as a
“self-exciting” ARMA(p, q− 1) process, the term self-exciting emphasizing the particular
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relationship between (σ2
n)n∈N and its driving noise (ε2nσ

2
n)n∈N. Consequently, the basic idea

consists in modeling σ2
n as CARMA process, with appropriately defined driving noise.

What remains is the question how to construct a continuous time noise process, which
is equivalent to the discrete one given by (ε2nσ

2
n)n∈N.When introducing the COGARCH(1, 1)

model, Klüppelberg et al. [2004] substituted the discrete innovations εn by the jumps of
a Lévy process (Lt)t≥0 . Applying this idea to the integrated discrete noise

R(d)
n =

n−1
∑

k=0

ε2kσ
2
k, n ≥ 1,

Brockwell et al. [2006] defined the continuous-time analogue by

Rt =
∑

s≤t

σ2
s−(∆Ls)

2

=

∫

(0,t]

σ2
s−d[L,L]

(dis)
s , t ≥ 0,

(3.51)

where [L,L]
(dis)
t =

∑

s≤t(∆Ls)
2 denotes the discrete part of the quadratic variation of the

Lévy process (Lt)t≥0 .
Defining the squared volatility process as CARMA process, where in (2.48) the Lévy

noise is substituted by (3.51), we arrive at the COGARCH model.

Definition 3.22 (COGARCH(p, q)) Let p, q ∈ N with p ≥ q > 0. For α0 > 0, α1, . . . , αq ∈
R and β1, . . . , βp ∈ R such that αq 6= 0, βp 6= 0 we define the right-continuous (squared)
volatility process (σ2

t )t≥0 by

σ2
t = α0 + a′Y t, t ≥ 0, (3.52)

where a′ = [α1, . . . , αp], αi = 0, i > q and (Y t)t≥0 is the unique solution of the SDE

dY t = BY t−dt+ e(α0 + a′Y t−)d[L,L]
(dis)
t , t > 0, (3.53)

with Y 0 independent of (Lt)t≥0 and B, e defined as in (2.49). If (σ2
t )t≥0 is strictly station-

ary and a.s. nonnegative, then the process (Gt)t≥0 defined by G0 = 0 a.s. and

dGt = σt−dLt, t > 0, (3.54)

is called COGARCH(p, q) process.

Remark 3.23 (Definition of p and q) Notice that compared to Brockwell et al. [2006]
we interchanged the definition of the model parameters p and q. This way the resulting
COGARCH model is in line with the discrete GARCH model defined in Definition 3.14.

For simplicity, in the following we consider the COGARCH(1, 1) model. In this case
the solution of (3.52) and (3.53) can be stated explicitly.
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Proposition 3.24 (COGARCH(1, 1)) Consider a COGARCH process (Gt)t≥0 as given
by Definition 3.22 and let p, q = 1. Then G satisfies

dGt = σt−dLt, t > 0, with G0 = 0,

σ2
t = e−Xt

(

σ2
0 + α0β1

∫

(0,t]

eXs ds

)

, t ≥ 0,
(3.55)

where
Xt = β1t−

∑

s≤t

log(1 + α1(∆Ls)
2), t ≥ 0, (3.56)

with α0, α1, β1 > 0.

Remark 3.25 When originally introducing the COGARCH(1,1), the approach taken by
Klüppelberg et al. [2004] was based on an explicit representation of the discrete GARCH(1, 1),
and in particular differed from the one presented above. Nevertheless, it lead to the same
defining equations (3.55) and (3.56), such that it is consistent with Definition 3.22.

For a proof of Proposition 3.24 we need to introduce an important class of processes.

Definition 3.26 (Generalized Ornstein-Uhlenbeck process) Consider a bivariate
Lévy process (ξt, ηt)t≥0. Then the process (Vt)t≥0 given by

Vt = e−ξt
(

V0 +

∫

(0,t]

eξs−dηs
)

, t ≥ 0, (3.57)

with initial value V0 being independent of (ξt, ηt)t≥0, is called (univariate) generalized
Ornstein-Uhlenbeck process (GOU) driven by (ξt, ηt)t≥0.

Observe that the squared volatility process (σ2
t )t≥0 in (3.55) represents an example of

a GOU process. For a general COGARCH(p, q) model, i.e. where not both p and q are
equal to one, this does not hold. Yet, due to [Behme and Lindner, 2012, Example 3.6] the
state process (3.53) is always given as a multivariate GOU process.

Proof of Proposition 3.24. First note that for p, q = 1 the equations (3.52) and (3.53)
turn into the system

σ2
t = α0 + α1Yt,

dYt = −β1Yt−dt+ σ2
t−d[L,L]

(dis)
t , t ≥ 0.

Using Yt− =
σ2
t−−α0

α1
for α1 6= 0 we find that (σ2

t ) satisfies the following SDE

dσ2
t = α1dYt

= −β1α1

σ2
t− − α0

α1

dt+ α1σ
2
t−d[L,L]

(dis)
t

= σ2
t−d
(

− β1t+ α1[L,L]
(dis)
t

)

+ d(α0β1t)

= σ2
t−dUt + dMt, t > 0,

(3.58)
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with
(

Ut
Mt

)

=

(

−β1t+ α1[L,L]
(dis)
t

α0β1t

)

= t

(

−β1
α0β1

)

+
∑

s≤t

(

α1(∆Ls)
2

0

)

, t ≥ 0. (3.59)

According to (3.59), (Ut,Mt)t≥0 is given as the sum of a linear drift and a compound
Poisson process. Hence, (Ut,Mt)t≥0 represents a bivariate Lévy process and we are able
to apply Theorem 3.4, part b), of Behme and Lindner [2012]. There it is shown, that if
the Lévy measure of the process U satisfies νU({−1}) = 0 (which in our case is fulfilled,
as Ut = −β1t +

∑

s≤t α1(∆Ls)
s has only positive jumps), then the solution of (3.58) is a

GOU process driven by the following bivariate Lévy process
(

ξt
ηt

)

=

(

− log(E(Ut))
α0β1t+

[

− log(E(Ut)), α0β1t
]

)

, t ≥ 0, (3.60)

where the so-called stochastic exponential E(Ut) is defined by

E(Ut) = eUt−
1
2
[U,U ]

(con)
t

∏

s≤t

(

1 + ∆Us
)

e−∆Us , t ≥ 0. (3.61)

Since Ut = −β1t+
∑

s≤t α1(∆Ls)
2 is given as the sum of a (deterministic) drift and a pure

jump process, the continuous part of its quadratic variation equals zero, i.e. [U,U ]
(con)
t = 0,

for all t ≥ 0. Thus we obtain

ξt = −Ut −
∑

s≤t

[

log(1 + ∆Us)−∆Us
]

. (3.62)

Note that the jumps of (Ut)t≥0 are given by ∆Ut = α1(∆Ls)
2 such that (3.62) turns into

ξt = β1t− α1[L,L]
(dis)
t −

∑

s≤t

log(1 + α1(∆Ls)
2) +

∑

s≤t

α1(∆Ls)
2

= β1t−
∑

s≤t

log(1 + α1(∆Ls)
2), t ≥ 0.

We now consider the second component, namely (ηt)t≥0, which is given by

ηt = α0β1t+ α0β1

[

β1t−
∑

s≤t

log(1 + α1(∆Ls)
2), t
]

= α0β1t− α0β1

[

∑

s≤t

log(1 + α1(∆Ls)
2), t
]

= α0β1t, t ≥ 0.

Hence, we see that ηt = α0β1t. Summing up, (σ2
t )t≥0 is a GOU driven by

(

ξt
ηt

)

=

(

β1t−
∑

s≤t log(1 + α1(∆Ls)
2)

α0β1t

)

, t ≥ 0, (3.63)
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which yields the assertion. ✷

The following result ensures the existence of the COGARCH(1, 1) model.

Theorem 3.27 Let (Gt)t≥0 denote a COGARCH(1, 1) process given by (3.55) and assume
that

∫

R
log(1 + α1x

2) νL(dx) < − log(β1), (3.64)

where νL denotes the Lévy measure of the driving Lévy process (Lt)t≥0 . Then the squared
volatility process (σ2

t )t≥0 with initial value satisfying

σ2
0

D
= α0β1

∫ ∞

0

e−Xs ds, (3.65)

independent of (Lt)t≥0 , is strictly stationary. Furthermore, (Gt)t≥0 has strictly stationary
increments.

Proof. See [Klüppelberg et al., 2004, Theorem 3.2, Corollary 3.1]. ✷

As its discrete counterpart the COGARCH model is characterized by short memory.
More precisely, the autocovariance function of the squared volatility (as well as the one of
the squared increments of the COGARCH process itself) decays by an exponential rate.
For the subsequent result we define for r > 0

G
(r)
t := Gt+r −Gt =

∫ t+r

t+

σs dLs, t ≥ 0.

Proposition 3.28 Consider the COGARCH(1, 1) model according to (3.55), (3.56) and
assume that the condition (3.64) is satisfied, such that (σ2

t )t≥0 with initial value (3.65) is
stationary. Denote by ψ the log-Laplace transform of X1, i.e.

ψ(u) = log
(

E[e−uX1 ]
)

, u > 0.

Then we have that

Cov(σ2
t , σ

2
t+h) = β2

1

(

2

ψ(1)ψ(2)
−

1

ψ2(1)

)

ehψ(1), t, h ≥ 0.

Assume furthermore that the driving Lévy process has zero mean and no Brownian motion
component. If E[L4

1] <∞ and ψ(2) < 0 then for any t ≥ 0 and h ≥ r > 0

Cov(G
(r)
t , G

(r)
t+h) = 0, (3.66)

but

Cov((G
(r)
t )2, (G

(r)
t+h)

2) =

(

e−rψ(1) − 1

−ψ(1)

)

E[L2
1]Cov(G

2
r, σ

2
r)e

hψ(1). (3.67)

Proof. See [Klüppelberg et al., 2004, Corollary 4.1, Proposition 5.1].
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3.2.2 Fractionally integrated COGARCH

As seen in the last section, the COGARCH preserves the short memory property of the
GARCHmodel. In the following we modify the volatility process σ2

t of the COGARCH(1, 1)
to allow for long range dependence. In view of the fact that the COGARCH(1, 1) was ob-
tained by modeling σ2

t as “self-exciting” CARMA(1, 0) process, a natural approach to
incorporate long range dependence consists in assuming σ2

t to follow some kind of “self-
exciting” FICARMA process.
We start by recalling that the squared volatility σ2

t of the COGARCH(1, 1) satisfies

dσ2
t = −β1(σ

2
t− − a0)dt+ α1σ

2
t−d[L,L]

(dis)
t , t > 0, (3.68)

with parameters α0, α1, β1 > 0 and where L is a Lévy process. Whereas the solution of
the CARMA(1, 0) model is given by an ordinary OU process, the solution of the above
SDE constitutes a generalized OU process, namely

σ2
t = e−Xt

(

σ2
0 + α0β1

∫ t

0

eXsds

)

, t ≥ 0, (3.69)

where X is defined as in (3.56). In particular, no moving-average representation of σ2
t is

available. As a consequence the FICARMA approach of Brockwell [2004] (see Definition
2.63), which is essentially based on the moving-average representation of an OU process,
cannot be applied here.
However, Marquardt [2006] showed that the (centered) FICARMA model alternatively
can be obtained by substituting the driving Lévy process with the corresponding MvN-
FLP (see Theorem 2.66). At first glance, this approach also seems to be inappropriate.

More precisely, the driving Lévy process of σ2
t is given by

(

[L,L]
(dis)
t

)

t≥0
, which is a

subordinator, such that the corresponding MvN-FLP is not well-defined, as mentioned in
Remark 2.31. In the following we show how to cope with this problem.

3.2.2.1 MG-FLP driven volatility

While the MvN-FLP driven by the subordinator
(

[L,L]
(dis)
t

)

t≥0
is not well-defined, the

corresponding MG-FLP is, as long as E[([L,L]
(dis)
1 )2] <∞. This is due to the MG-kernel,

which unlike the MvN-kernel is both integrable and square integrable, such that the
resulting FLP is well-defined also for driving Lévy processes with non-zero expectation,
see Corollary 2.11. In the following we therefore denote by Ld the FLP given by

Ldt =

∫ t

0

fMG
d (t, u) d[L,L](dis)u , t ≥ 0, d ∈ (0, 0.5). (3.70)

Proposition 3.29 Let L = (Lt)t≥0 be a Lévy process satisfying E[L4
1] < ∞. Then Ldt as

defined in (3.70) exists for all t ≥ 0 as limit in L2(Ω)-sense.
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Proof. Clearly, the discrete part [L,L](dis) of the quadratic variation of L is itself a
Lévy process. Its Lévy measure ν[L,L] satisfies for A ∈ B(R \ {0})

ν[L,L](A) = E
[

∑

s≤1

1
{∆[L,L]

(dis)
s ∈A}

]

= E
[

∑

s≤1

1{(∆Ls)2∈A}

]

= E
[

∑

s≤1

1{∆Ls∈{x∈R:x2∈A}}

]

= νL({x ∈ R : x2 ∈ A}),

where νL denotes the Lévy measure of L. That means, ν[L,L] is the image measure of νL
under the mapping x 7→ x2. Consequently, [L,L](dis) has a finite second moment, since

∫

|x|>1

x2 ν[L,L](dx) =

∫

|x|>1

x4 νL(dx) <∞,

which is equivalent to E[([L,L]
(dis)
t )2] <∞, t ≥ 0. The assertion now follows from Propo-

sition 2.27 and Corollary 2.15. ✷

According to Proposition 2.37 Ld has a continuous modification. It is this version of
Ld we will always consider. The following result shows that Ld additionally constitutes a
semimartingale (see Definition A.1).

Proposition 3.30 Let L be a Levy process with E[L4
1] <∞. Then the FLP Ld defined by

(3.70) is a continuous finite variation process. In particular, it constitutes a semimartin-
gale with characteristics given by (Ld, 0, 0).

Proof. Observe that for t ≥ 0 the Molchan-Golosov kernel satisfies for s ∈ [0, t]

fMG
d (t, s) = cds

−d

∫ t

s

(u− s)d−1ud du ≥ 0.

Further, fMG
d (·, s) is increasing for each s > 0 and [L,L](dis) is a subordinator such that

Ld is obviously a.s. increasing.
Now, being a.s. increasing, Ld has paths of finite variation. Further Ld is adapted to the
filtration generated by L (see Proposition 2.37) such that [Protter, 2004, section II, The-
orem 7] implies the semimartingale property. ✷

We are now in a position to modify the squared volatility process of the COGARCH(1, 1)
process. That is, in analogy to Marquardt [2006] modifying the CARMA process (see also
Theorem 2.66) we substitute the driving Lévy process [L,L](dis) in (3.68) by the corre-
sponding MG-FLP (3.70), leading to the following definition.

Definition 3.31 (MG-FICOGARCH(1, d, 1)) Let α0, α1, β1 > 0 and d ∈ (0, 0.5). As-
sume L to be a Lévy process with E[L4

1] < ∞. Then the process G satisfying G0 = 0 a.s.
and

dGt = σtdLt t > 0,
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where the squared volatility (σ2
t )t≥0 is given as the solution of the SDE

dσ2
t = −β1(σ

2
t − a0) dt+ α1σ

2
t dL

d
t , t > 0, (3.71)

with the MG-FLP Ld given by (3.70), is called Molchan-Golosov fractionally integrated
COGARCH(1, 1) with fractional integration parameter d, shortly MG-FICOGARCH(1, d, 1).

Remark 3.32 In Proposition 3.30 we saw that the paths t 7→ Ldt (ω) of the MG-FLP
(3.70) are almost surely of bounded variation and continuous, i.e. in particular predictable.
Consequently, integration with respect to Ld is understood in the Stieltjes-sense.

The subsequent result shows that the structure of the COGARCH(1, 1) model is pre-
served.

Proposition 3.33 Consider the MG-FICOGARCH(1, d, 1) model as defined above. Then
the solution of the SDE (3.71) with initial value σ2

0 is given by

σ2
t = e−Xt

(

σ2
0 + α0β1

∫ t

0

eXs ds

)

, t ≥ 0,

with
Xt = β1t− α1L

d
t , t ≥ 0.

Proof. Recall that Ld and therefore X = (Xt)t≥0 has paths which are a.s. continuous
and of bounded variation. Consequently, we can apply integration by parts, which leads
to

dσ2
t =

(

σ2
0 + α0β1

∫ t

0

eXs ds

)

d(e−Xt) + e−Xt d

(

σ2
0 + α0β1

∫ t

0

eXs ds

)

= σ2
t d(−β1t+ α1L

d
t ) + e−XteXtα0β1 dt

= −β1(σ
2
t − α0) dt+ α1σ

2
t dL

d
t .

✷

However, the basic problem of this approach lies in the complexity of the Molchan-
Golosov kernel fMG

d : Neither we were able to compute moments of the MG-FICOGARCH
or its volatility process, nor could we derive conditions ensuring stationarity. Basically,
such conditions cannot be expected to exist as the MG-kernel in general does not allow
the corresponding FLP to have stationary increments.

3.2.2.2 Modified MvN-SIMA driven volatility

Recall that whereas the centered FICARMA process was defined in analogy to the long
memory (i.e. d ∈ (0, 0.5) ARFIMA(p, d, q) process X (cf. Remark 2.64),

Xn = (1− L)−d
θ(L)

φ(L)
εn, n ∈ Z, 0 < d < 0.5, (3.72)
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the non-centered Lévy driven FICARMA is basically obtained by restricting d to be
negative, which corresponds to inverting the fractional difference operator in (3.72). This
is in analogy to the FIGARCH, where according to Definition 3.18 the volatility is modeled
as

σ2
n = ω +

(

1− (1− L)d
α(L)

β(L)

)

ε2nσ
2
n, n ∈ Z,

i.e. in comparison with the ARFIMA process (3.72) the fractional difference operator is
again applied being inverted.

To mimic this approach, we consider the MvN-kernel fMvN
d (t, ·) for d restricted to be

negative, that is

fMvN
d (t, s) =

1

Γ(1 + d)

(

(t− s)d+ − (−s)d+
)

, d < 0. (3.73)

Proposition 3.34 Let δ > 0 and consider the kernel fMvN
d (t, ·) for d < 0 and t ∈ R.

Then |fMvN
d (t, ·)|δ is integrable

(i) at −∞ if and only if δ > 1
1−d

,

(ii) at s = 0 and s = t if and only if δ < 1
−d

.

Proof. See [Engelke and Woerner, 2013, Proposition 2]. ✷
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Figure 3.1: Simulated Mandelbrot-van-Ness FLP (dashed line) with fractional integration
parameter d = 0.25 (left) and d = −0.25 (right) driven by a compound Poisson process
(solid line) with rate 0.4 and standard normally distributed jump size.
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Clearly, if follows that fMvN
d (t, ·) ∈ L1(R) ∩ L2(R) as long as d ∈ (−0.5, 0), such that

the MvN-FLP Ld driven by [L,L](dis),

Ldt =

∫

R
fMvN
d (t, u) d[L,L](dis)u , t ∈ R, d ∈ (−0.5, 0), (3.74)

is well-defined. However, having the same covariance structure as fractional Brownian
motion, Ld has negatively correlated increments for d ∈ (−0.5, 0), see Proposition 2.24.
Further, due to the singularity at t = s the function fMvN

d (·, s) is discontinuous for all
s ∈ R, such that Ld has discontinuous sample path with positive probability (cf. [Rosinski,
1989, Theorem 4]).
To overcome these drawbacks, it is worth remembering that when modifying the CARMA
kernel to allow for a non-centered driving Lévy process, Brockwell and Marquardt [2005]
proceeded in two steps: Firstly, they restricted the fractional integration parameter d to
negative values, as we have done in (3.73). Secondly, they bounded the resulting kernel
at its singularity.
Observe that the MvN-kernel fMvN

d (t, ·) up to a constant is given by s 7→ gd(t − s) −
gd(−s) where the function gd is defined by gd(x) := xd+. This suggests to bound gd at the
singularities s = 0 and s = t by incorporating a shift, leading to

ga,d(x) := (a+ x+)
d, d < 0, a > 0. (3.75)

In the following we give the definition of the resulting modification of the Mandelbrot-
van-Ness kernel.

Definition 3.35 Let d < 0 and a > 0. For each t ∈ R the modified MvN-kernel is given
by

fa,d(t, s) = ca,d (ga,d(−s)− ga,d(t− s))

= ca,d

(

(a+ (−s)+)
d − (a+ (t− s)+)

d
)

, s ∈ R,
(3.76)

where ca,d is a normalizing constant possibly depending on a and d (see subsequent remark).

Remark 3.36 By including the constant ca,d in the previous definition, we would like to
draw attention to the fact, that it might be appropriate or even necessary to normalize
the kernel function for several applications. However, at this point, we do not yet see this
necessity, such that in the following we set ca,d = 1 and consequently

fa,d(t, s) = (a+ (−s)+)
d − (a+ (t− s)+)

d .

Remark 3.37 Observe that besides substituting gd by ga,d, we changed the signs. This
way we ensure fa,d(t, ·) to be non-negative for t ≥ 0.

Proposition 3.38 For a > 0 and d < 0 consider the modified MvN-kernel fa,d and let
t ∈ R. Then the following holds.

(i) fa,d(t, ·) is continuous,
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Figure 3.2: Comparison of Mandelbrot-van-Ness kernel fMvN
d (t, ·) and modified

Mandelbrot-van-Ness kernel fa,−d(t, ·) for d = 0.25, a = 0.1 (left) and Mandelbrot-van-
Ness kernel fa,d(t, ·) for d = −0.25 and different values of the shift parameter a (right).

(ii) bounded by ad, i.e.

|fa,d(t, s)| ≤ ad, s ∈ R,

(iii) and for s −→ −∞ its asymptotics are given by

|fa,d(t, s)| ∼ |s|d−1.

In particular, the kernel satisfies

fa,d(t, ·) ∈ L1(R) ∩ L2(R).

Proof. The first two claims are obvious. Further note that for d < 0

lim
s→−∞

|fa,d(t, s)|

|s|d−1
= lim

s→−∞

(a− s)d − (t+ a− s)d

|s|d−1

= lim
v→−∞

(−v)d − (t− v)d

|v + a|d−1

= lim
v→−∞

|fMvN
d (t, v)|

|v + a|d−1
.

In [Engelke and Woerner, 2013, Proposition 2] it is proved that

|fMvN
d (t, v)| ∼ |v|d−1, v −→ −∞,
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such that the assertion follows. ✷

By substituting the MvN-kernel fMvN
d (t, ·) in (3.74) with fa,d(t, ·), we define the process

Ma,d as

Ma,d
t =

∫

R
fa,d(t, u) d[L,L]

(dis)
u , t ∈ R, (3.77)

where d < 0 and a > 0.

Proposition 3.39 Let a > 0 and d < 0. Further denote by L = (Lt)t∈R a two-sided Lévy
process satisfying E[L4

1] <∞. Then Ma,d
t as defined in (3.77) exists for all t ∈ R as limit

in L2(Ω)-sense.

Proof. The proof is similar to the one of Proposition 3.29. ✷

The advantages of the new defined kernel fa,d towards the MG-kernel fMG do not
only lie in its much simpler structure. In contrast to Ld in (3.70) the convolution Ma,d

does also have stationary increments. This will be especially important when it comes to
modifying the squared volatility of the COGARCH(1, 1) process.
Apart from this the question arises if fa,d serves its purpose in the sense that the increments
of Ma,d exhibit an appropriate dependence structure. We address these issues in the
subsequent result.

Proposition 3.40 Let a > 0 and d ∈ (−0.5, 0). Denote by Ma,d the process as defined in
(3.77), where the driving Lévy process L satisfies E[L4

1] <∞. Then the following holds.

(i) Ma,d has stationary increments, i.e. for all s, t ∈ R, s < t, we have

Ma,d
t −Ma,d

s
D
=Ma,d

t−s.

(ii) The covariance γh of two increments Ma,d
t+h−M

a,d
t and Ma,d

s+h−M
a,d
s of length h > 0,

where s+ h ≤ t such that t− s = rh,

γh(r) := Cov
(

Ma,d
s+(r+1)h −Ma,d

s+rh,M
a,d
s+h −Ma,d

s

)

,

satisfies for r −→ ∞

γh(r) ∼ Var
(

[L,L]
(dis)
1

)

(−d)adh2 (rh+ a)d−1. (3.78)

Before we give the proof, we need the following lemma.

Lemma 3.41 Let a > 0 and d ∈ (−0.5, 0). Then the modified MvN-kernel fa,d satisfies
for t > 0

∫

R
f 2
a,d(t, u) du = a2d t−

2ad

d+ 1
(t+ a)d+1 +

1

2d+ 1
(t+ a)2d+1 + c(t) t2d+1 + C,

with C = a2d+1
(

2
d+1

− 1
2d+1

)

and

c(t) −→
Γ(d+ 1)

Γ(2d+ 2) sin(π(d+ 0.5))
+

1

2d+ 1
, t −→ ∞. (3.79)
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Proof. By substituting y := u−a
t

we obtain

∫

R
f 2
a,d(t, u) du =

∫ 0

−∞

[

(a− u)d − (a+ t− u)d
]2
du+

∫ t

0

[

ad − (a+ t− u)d
]2
du

=

∫ 0

−∞

t2d

[

(

1−
u− a

t

)d

−

(

−
u− a

t

)d
]2

du+

∫ t

0

[

ad − (a+ t− u)d
]2
du

= t2d+1

∫ −a/t

−∞

[

(1− y)d − (−y)d
]2
dy +

∫ t

0

a2d − 2ad [t+ a− u]d + [t+ a− u]2d du

= t2d+1c(t) + a2d t+
2ad

d+ 1
[t+ a− u]d+1

∣

∣

∣

t

0
−

1

2d+ 1
[t+ a− u]2d+1

∣

∣

∣

t

0
,

where c(t) =
∫ −a/t

−∞

[

(1− y)d − (−y)d
]2

dy. Further note that using equation (2.34) it
holds

∫ 1

−∞

[

(1− y)d+ − (−y)d+
]2
dy = Γ(d+ 1)

∫ 1

−∞

(

fMvN
d (1, y)

)2
dy

=
Γ(d+ 1)

Γ(2d+ 2) sin(π(d+ 0.5))
.

Consequently,

c(t) =
Γ(d+ 1)

Γ(2d+ 2) sin(π(d+ 0.5))
−

∫ 0

−a/t

[

(1− y)d − (−y)d
]2
dy −

∫ 1

0

(1− y)2d dy

=
Γ(d+ 1)

Γ(2d+ 2) sin(π(d+ 0.5))
−

∫ 0

−a/t

[

(1− y)d − (−y)d
]2
dy +

1

2d+ 1
.

Since
∫ 0

−a/t

[

(1− y)d − (−y)d
]2
dy −→ 0 for t −→ ∞, the assertion holds. ✷

We are now ready to give the proof of Proposition 3.40.

Proof. For any s, t ∈ R, s < t we find using the stationarity of the increments of
[L,L](dis) that

Ma,d(t)−Ma,d(s) =

∫

R
(a+ (s− u)+)

d − (a+ (t− u)+)
d d[L,L](dis)u

D
=

∫

R
(a+ (−v)+)

d − (a+ (t− s− v)+)
d d[L,L](dis)v

=Ma,d(t− s).

In order to prove the second part, let us introduce the following notation, namely
L̃t := [L,L]

(dis)
t − E

[

[L,L]
(dis)
t

]

and M̃a,d
t :=

∫

R fa,d(t, u) dL̃u. For t, s ≥ 0 it then holds
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that

Cov(Ma,d
t ,Ma,d

s ) = Cov(M̃a,d
t , M̃a,d

s )

= E
[

M̃a,d
t M̃a,d

s

]

=
1

2

(

E
[

(

M̃a,d
t

)2
]

+ E
[

(

M̃a,d
s

)2
]

− E
[

(

M̃a,d
t − M̃a,d

s

)2
]

)

=
1

2

(

E
[

(

M̃a,d
t

)2
]

+ E
[

(

M̃a,d
s

)2
]

− E
[

(

M̃a,d
t−s

)2
]

)

.

In the last step we used that the increments are stationary. Furthermore, applying (2.20),
we find that

E
[ (

M̃a,d
t

)2 ]

= Var
(

[L,L]
(dis)
1 − E

[

[L,L]
(dis)
1

]

)

∫

R
f 2
a,d(t, u) du

= Var
(

[L,L]
(dis)
1

)

∫

R
f 2
a,d(t, u) du,

such that the covariance between increments of length h > 0 satisfies

γh(r) = Cov
(

Ma,d
s+(r+1)h,M

a,d
s+h

)

− Cov
(

Ma,d
s+(r+1)h,M

a,d
s

)

− Cov
(

Ma,d
s+rh,M

a,d
s+h

)

+ Cov
(

Ma,d
s+rh,M

a,d
s

)

=
1

2

(

E
[

(

M̃a,d
(r+1)h

)2
]

+ E
[

(

M̃a,d
(r−1)h

)2
]

− 2E
[

(

M̃a,d
rh

)2
]

)

=
1

2
Var

(

[L,L]
(dis)
1

)

[
∫

R
f 2
a,d

(

(r + 1)h, u
)

du+

∫

R
f 2
a,d

(

(r − 1)h, u
)

du− 2

∫

R
f 2
a,d(rh, u) du

]

.

Now, using Lemma 3.41 we obtain

γh(r) =
1

2
Var

(

[L,L]
(dis)
1

) [

−
2ad

d+ 1

(

((rh+ a) + h)d+1 + ((rh+ a)− h)d+1 − 2(rh+ a)d+1
)

+
1

2d+ 1

(

((rh+ a) + h)2d+1 + ((rh+ a)− h)2d+1 − 2(rh+ a)2d+1
)

+ c(rh+ h)(rh+ h)2d+1 + c(rh− h)(rh− h)2d+1 − 2c(rh)(rh)2d+1
]

,

where c(t) is defined as in Lemma 3.41 and according to (3.79) converges for t −→ ∞ to
a constant, which will be denoed in the following by C. Consequently, Taylor expansion
and the fact that c(rh±h)

c(rh)
−→ 1 gives for r −→ ∞

γh(r) =
1

2
Var

(

[L,L]
(dis)
1

) [

−
2ad

d+ 1
(rh+ a)d+1

(

(d+ 1)d
h2

(rh+ a)2
+O

(

1

(rh+ a)4

))

+
(rh+ a)2d+1

2d+ 1

(

(2d+ 1)2d
h2

(rh+ a)2
+O

(

1

(rh+ a)4

))

+ C

(

(2d+ 1)2d
h2

(rh)2
+O

(

1

(rh)4

))

]

∼ Var
(

[L,L]
(dis)
1

)

(−d)adh2 (rh+ a)d−1.

✷
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Remark 3.42 The increments of Ma,d do not have long memory in the sense of Defini-
tion 2.60. However, for d close to zero we approximately obtain long memory. This is in
analogy to the asymptotic rate of decay of the modified CARMA kernel ga,d in the case of
non-centered Lévy-driven CARMA processes, see section 2.6.2.2.

Remark 3.43 The result (3.78) implies that asymptotically the increments of Ma,d are
positively correlated. Further, defining the mapping

If (t) :=

∫

R
f 2
a,d(t, u) du,

we get from the proof of Proposition 3.40 that

γh(t, s) : = Cov
(

Ma,d
t+h −Ma,d

t ,Ma,d
s+h −Ma,d

s

)

=
1

2
Var

(

[L,L]
(dis)
1

) [

∫

R
f 2
a,d

(

t− s+ h, u
)

du+

∫

R
f 2
a,d

(

t− s− h, u
)

du

− 2

∫

R
f 2
a,d(t− s, u) du

]

=
1

2
Var

(

[L,L]
(dis)
1

)

[

(If (t− s+ h)− If (t− s))− (If (t− s)− If (t− s− h))
]

.

Consequently, if t 7→ If (t) is convex, then the increments are always positively correlated.
We conjecture that the convexity holds, but could not proof it. However, several plots of
If support this hypothesis.

Both the MvN-FLP as well as the new process Ma,d are members of the large class
of stationary increment moving-average, shortly SIMA, processes. These are stochastic
processes, which can be represented in the form

Xt =

∫

R
f(t− s)− f0(−s) dLs, t ≥ 0, (3.80)

where f, f0 : R −→ R are measurable functions, satisfying f(x) = f0(x) = 0 as soon as
x < 0, and L denotes a Lévy process, such that (3.80) is well-defined in probability (see
Theorem 2.10). By setting

f(x) = f0(x) := xd+, d ∈ (0, 0.5)

we obtain the MvN-FLP, while

f(x) = f0(x) := ad − (a+ x+)
d, a > 0, d ∈ (−0.5, 0),

leads to the SIMA Ma,d. SIMA processes are studied concerning their finite variation and
semimartingale property in O’Connor and Rosinski [2013] and O’Connor and Rosinski
[2014] respectively as particular subclass of stationary increment infinitely divisible pro-
cesses. The subsequent result characterizes SIMA processes, which have the semimartin-
gale property.
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Figure 3.3: Simulated sample paths of SIMAs with modified MvN-kernel fa,d with a = 1
and different fractional integration parameters d driven by a compound Poisson process
with rate 0.2 and standard normally distributed jumps sizes.
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Figure 3.4: Increments and corresponding sample ACF for the SIMAs shown in Figure 3.3
for fractional integration parameter d = −0.05 ((a), (b)), d = −0.2 ((c), (d)), d = −0.45
((e), (f))



66 CHAPTER 3. ARCH MODELS AND FRACTIONAL INTEGRATION

Theorem 3.44 Let X = (Xt)t≥0 be a SIMA process of the form (3.80) driven by the Lévy
process L = (Lt)t∈R. Then X is a semimartingale with respect to the filtration generated
by L if and only if

Xt = X0 +Mt + At, t ≥ 0,

where M = (Mt)t≥0 is the Lévy process given by Mt = f(0)Lt, t ≥ 0, and A = (At)t≥0 is
a predictable process of finite variation given by

At =

∫

R
f(t− s)− f(−s)dLs − f(0)Lt, t ≥ 0.

Proof. See [O’Connor and Rosinski, 2014, Theorem 4.1]. ✷

Furthermore, O’Connor and Rosinski [2014] establish sufficient conditions on f and
the driving Lévy process L for a SIMA to be a semimartingale. Recall therefore that a
function h : I → R, where I ⊂ R is an interval, is said to be absolutely continuous, if
there exists a locally integrable function ḣ such that

h(t)− h(s) =

∫ t

s

ḣ(u) du, s < t.

Theorem 3.45 Let X = (Xt)t≥0 be a SIMA process of the form (3.80) driven by the Lévy
process L = (Lt)t∈R with characteristic triplet (γL, σ

2
L, νL). Suppose that f is absolutely

continuous on [0,∞) with derivative ḟ satisfying

∫ ∞

0

|ḟ(s)|2ds σ2
L <∞,

and
∫ ∞

0

∫

R
min

(

|xḟ(s)|, |xḟ(s)|2
)

νL(dx)ds <∞.

Then X is a semimartingale with respect to the filtration generated by L.

Proof. See [O’Connor and Rosinski, 2014, Theorem 4.2]. ✷

Using these results it is straightforward to show that the SIMA process Ma,d is a
semimartingale. We summarize this result in the subsequent Corollary.

Corollary 3.46 Let Ma,d be the process as defined in (3.77) with driving Lévy process
L = (Lt)t∈R, satisfying E[L

4
1] < ∞. Then (Ma,d)t≥0 is predictable and has path of finite

variation.
In particular, it constitutes a semimartingale (with respect to the filtration generated by
L) with characteristics given by (Ma,d, 0, 0).

Proof. Recall that the discrete part of the quadratic variation [L,L](dis) is itself a Lévy
process with characteristics (γ[L,L], 0, ν[L,L]), where ν[L,L] is the image measure of νL under
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the mapping x 7→ x2. Consequently,

∫ ∞

0

∫

R
min

(

|xḟ(s)|, |xḟ(s)|2
)

ν[L,L](dx)ds ≤

∫ ∞

0

∫

R
|x||ḟ(s)| ν[L,L](dx)ds

=

∫

R
x2νL(dx)

∫ ∞

0

−d(a+ s)d−1 ds

<∞.

Consequently, Ma,d is a semimartingale. Now, it follows from Theorem 3.44 that its char-
acteristics are given by (Ma,d, 0, 0). ✷

Due to Corollary 3.46 integration with respect to Ma,d can be defined in the Stieltjes-
sense. Thus, by substituting the driving noise [L,L](dis) in the squared volatility process
(3.68) with Ma,d, we are now in the position to introduce a further fractionally integrated
COGARCH(1, 1) process.

Definition 3.47 (Modified-MvN FICOGARCH(1, d, 1)) Let α0, α1, β1 > 0 and d ∈
(−0.5, 0). Assume L to be a Levy process with E[L4

1] <∞. Then the process G satisfying
G0 = 0 a.s. and

dGt = σt−dLt t > 0,

where the squared volatility (σ2
t )t≥0 is given as the solution of the SDE

dσ2
t = −β1(σ

2
t− − a0) dt+ α1σ

2
t− dM

a,d
t , t > 0, (3.81)

with the modified MvN-SIMA Ma,d given by (3.80), is called Modified-MvN fractionally
integrated COGARCH(1, 1) with fractional integration parameter d, shortly modified-MvN
FICOGARCH(1, d, 1).

Again, due to the finite variation property of Ma,d, we can state the solution of the
SDE (3.81) explicitly. This is shown in the following proposition.

Proposition 3.48 Consider the modified MvN-FICOGARCH(1, d, 1) model as defined
above. Then the solution of the SDE (3.81) with initial value σ2

0 is given by

σ2
t = e−Xt

(

σ2
0 + α0β1

∫ t

0

eXs ds

)

, t ≥ 0, (3.82)

with

Xt = β1t− α1M
a,d
t , t ≥ 0.

Proof. As Ma,d is a semimartingale, we can apply integration by parts. Thus, taking
the finite variation property of Ma,d into consideration, (3.82) fulfills the SDE (3.81) as
shown in the proof of Proposition 3.33. ✷
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3.2.2.3 Simulation

Before we turn to the simulation of the FICOGARCH, we are concerned with the simu-
lation of convoluted Lévy processes, such as MG-FLPs or Lévy driven SIMAs.
For T > 0 we consider therefore the process M = (Mt)t∈[0,T ] given by

Mt =

∫

R
f(t, s) dLs, t ∈ [0, T ],

where f denotes a deterministic kernel with f(t, s) = 0, s ≥ t, and L = (Lt)t∈R is a Lévy

process. For n ∈ N we set ∆n := T/n, f
(n)
i,k := f (i∆n, k∆n) and approximate the paths

of M at the grid points i∆n, i = 1, . . . , n by the Riemann sums

M
(n)
i∆n

=
i−1
∑

k=−n

f
(n)
i,k

(

L(k+1)∆n
− Lk∆n

)

.

This leads to the following simulation routine for a path of (Mt)t∈[0,T ].

(i) Generate the increments of the driving Lévy process ∆L
(n)
k := L(k+1)∆n

− Lk∆n
,

k = −n, . . . , n− 1.

(ii) Calculate the kernel matrix K ∈M(n× 2n), which is given by K
(n)
i,j := f

(n)
i,j−1−n,

i = 1, . . . , n, j = 1, . . . , 2n. Note that f
(n)
i,k = 0 for k ≥ i.

(iii) Calculate the discretized path M (n) = (M
(n)
i∆n

)i=1,...,n by

M (n) = K(n) (∆L(n))′.

Remark 3.49 When simulating paths of the MG-FLP with fractional integration param-
eter d ∈ (0, 0.5), then the kernel f , given by

f(t, s) = cd d

∫ t

s

(u− s)d−1
(u

s

)d

du 1[0,t](s), t > 0,

has to be evaluated numerically. Hence, the calculation of the kernel matrix K(n), which in
this case reduces to K

(n)
i,j = f

(n)
i,j−1, i, j = 1, . . . , n is very time-consuming. However, some

calculation time can be saved by using that

f
(n)
i,k = f

(n)
i−1,k + cd d

∫ i∆n

(i−1)∆n

(u− s)d−1
(u

s

)d

du, i > k.

We now turn to the simulation of processes (σ2
t )t≥0 satisfying

dσ2
t = −β1(σ

2
t− − a0) dt+ α1σ

2
t− dMt, t > 0. (3.83)

Observe that by setting Mt := [L,L]
(dis)
t , where [L,L](dis) denotes the discrete part of

the quadratic variation of a Lévy process L, we obtain the squared volatility process of
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the COGARCH(1, 1) model, see (3.58). Moreover, Mt = Ldt with Ld given by (3.70) and
Mt = Ma,d

t with Ma,d defined as in (3.77) leads to the FICOGARCH models given in
Definition 3.31 and Definition 3.47, referently.
Applying Euler-discretization, the following recursion gives a disretized path of σ2,

σ2
(i+2)∆n

= σ2
(i+1)∆n

−β1(σ
2
(i+1)∆n

−α0)∆n+α1σ
2
i∆n

(

M(i+2)∆n
−M(i+1)∆n

)

, i = 0, . . . , n−2,

where we set σ2
0 = σ2

∆n
= α0.

Remark 3.50 If the driving process M in (3.83) is given by the MG-FLP (3.70), then
its a.s. continuity implies

dσ2
t = −β1(σ

2
t − a0) dt+ α1σ

2
t dMt, t > 0. (3.84)

In this case, we shall use the following recursion for the simulation of a path of σ2, namely

σ2
(i+1)∆n

= σ2
i∆n

− β1(σ
2
i∆n

− α0)∆n + α1σ
2
i∆n

(

M(i+1)∆n
−Mi∆n

)

, i = 0, . . . , n− 1,

with σ2
0 = α0.
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Figure 3.5: Simulation of the modified MvN-FICOGARCH process (top) with correspond-
ing volatility process σ (middle) and ACF of σ (bottom) driven by a compound Poisson
process with rate 1 and standard normally distributed jump sizes. The model parameters
were α0 = 19.4957, α1 = 0.0105, β1 = 0.0513, d = −0.1 and a = 1.



Chapter 4

Conclusion

In this thesis we successfully generalized the ideas, which were used by Douc et al.
[2008] to show the existence of the FIGARCH(0, d, 0), and proved the existence of the
FIGARCH(1, d, 0) and FIGARCH(0, d, 1).
In the continuous-time setting we proposed two approaches to incorporate long range
dependence into the COGARCH model. For the first one we substituted the driving sub-
ordinator of the COGARCH volatility with the corresponding Molchan-Golosov fractional
Lévy process (MG-FLP). However, due to the complexity of the MG-kernel, we neither
were able to analyze the memory structure of the resulting Molchan-Golosov fraction-
ally integrated COGARCH model (MG-FICOGARCH), nor to derive results concerning
stationarity. In the light of the fact that MG-FLPs in general do not have stationary
increments, the question arises if the latter is to be expected at all.
For the second approach we introduced a modified Mandelbrot-van-Ness (MvN) kernel.
In its structure this new kernel is as simple and flexible as the ordinary MvN-kernel. In
contrast, however, it allows for integration with respect to non-centered Lévy processes.
We showed that the convoluted Lévy process resulting from our modified MvN-kernel
belongs to the class of stationary increment moving averages (SIMA). Further, we proved
that its increments decay by a slow hyperbolic rate.
Conclusively, we simulated the resulting Modified MvN-FICOGARCH. The simulation
results suggest that the memory properties of the modified MvN-SIMA propagate to the
volatility process of the FICOGARCH model.
Concerning the proposed Modified-MvN-FICOGARCH many questions remain open.
Firstly, conditions ensuring the stationarity of the model need to be derived. Further-
more, the second order structure of both the FICOGARCH volatility process as well as
that of the squared FICOGARCH increments need to be analyzed in detail.
Finally, the modified MvN-kernel SIMA raises the question, whether it can be used to
define a non-centered FICARMA process in analogy to Marquardt [2006] deriving the
centered FICARMA by substituting the zero-mean driving Lévy process of the CARMA
model by the corresponding MvN-FLP.
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Appendix A

Semimartingales

Among all stochastic processes the class of semimartingales plays a very special role.
This is due to the fact that it is the most general class of processes with respect to which
stochastic integration can be defined in a meaningful way. See, for example, Protter [2004],
where semimartingales are in fact defined this way. For the subsequently presented results
we refer to Jacod and Shiryaev [2002].
Before we give its definition, recall that a process (Xt)t≥0 is called local martingale, if there
exists an increasing sequence of stopping times (τn)n∈N with τn → ∞ a.s. for n → ∞,
such that for all n ∈ N the stopped process (Xmin(t,τn))t≥0 is a martingale.

Definition A.1 Consider a stochastic process X = (Xt)t≥0 on a filtered probability space
(Ω,F , P, (Ft)t≥0). Then X is a semimartingale if it has a decomposition

Xt = X0 + At +Mt, t ≥ 0, (A.1)

where A = (At)t≥0 is a càdlàg adapted process with paths of finite variation, M = (Mt)t≥0

is a local martingale, X0 is F0-measurable and A0 =M0 = 0.
If A is additionally predictable, then X is called special semimartingale. In this case the
decomposition (A.1) is unique up to P -null sets and is called the canonical decomposition.

Notice that Lévy processes, introduced in section 2.1, belong to the class of semimartin-
gales. According to [Jacod and Shiryaev, 2002, Theorem 4.18], the local martingale M in
(A.1) can be uniquely (up to P -null sets) decomposed into M =M c+Md, where M c is a
continuous local martingale and Md denotes a purely discontinuous local martingale, i.e.
it is a local martingale such that for all continuous local martingales N the productMdN
is again a local martingale. Consequently, we can rewrite the decomposition (A.1) into

Xt = X0 + At +M c
t +Md

t , t ≥ 0. (A.2)

When describing the jump behavior of semimartingales the concept of random measures
is very useful.

Definition A.2 Let (Σ,S) be a measurable space. Then a mapping

µ : Ω× Σ −→ [0,∞) (A.3)

is called random measure if
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(i) ω 7→ µ(ω, S) is a random variable for each S ∈ S,

(ii) S 7→ µ(ω, S) is a measure for all ω ∈ Ω.

Assume further that there exists a σ-finite measure ν on (Σ,S) and let S, S1, . . . , Sn ∈ S
be disjoint such that ν(S) < ∞ and ν(Si) < ∞, i = 1, . . . , n. Then we say that µ is a
Poisson random measure on Σ with intensity measure ν if it additionally holds that

(ii) the random variable µ(S) is Poisson distributed with intensity ν(S), and

(ii) µ(S1), . . . , µ(Sn) are independent.

With a semimartingale X we can associate a random measure by setting for any
measurable subset S ⊂ R0

µX(ω, [0, t]× S) := # {0 ≤ s ≤ t : ∆Xs(ω) ∈ S)} . (A.4)

If the closure S of S does not contain 0, then the process µX(t, S) defined by t 7→
µX(ω, [0, t]× S) is càdlàg, adapted and non-decreasing. [Jacod and Shiryaev, 2002, The-
orem 1.18] implies that there exists a unique random measure νX on (0,∞)× R0, called
compensator of µX , such that µX(t, S) − νX(t, S) (with t 7→ νX(t, S) being defined as
µX(t, S)) is a local martingale. This leads to the following definition.

Definition A.3 Denote by X = (Xt)t≥0 a special semimartingale with canonical decom-
position

Xt = X0 + At +M c
t +Md

t , t ≥ 0.

Then the triplet ((At)t≥0, (Ct)t≥0, νX) is called characteristics of X, where

(i) C = [M c,M c] with [·, ·] denoting the quadratic variation, and

(ii) νX denotes the compensator of the random measure µX associated to jumps of X,
see (A.4).
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MATLAB-Code

B.1 Main classes

classdef LP
properties

% Structure containing the name and the parameters
% specifying the distribution of the increments of the Levy p rocess
% E.g.: distribution.Name = 'poisson', distribution.Para m = 1
Distribution

end

methods
function this = LP(varargin)

% Default distribution = Poisson(1)
if nargin < 1 | | ~ischar(varargin {1})

this.Distribution.Name = 'poisson' ;
this.Distribution.Param = 1;

else
this.Distribution.Name = varargin {1};
varargin(1) = [];
this.Distribution.Param = cell2mat(varargin);

end
end

function [paths, discQuadVariationPaths] = simulate(this, T, ...
numPaths, numSteps, seed)

%> function simulates path of the Levy process

% Default seed
if nargin < 5

seed = 1;
end

rand( 'seed' , seed);
randn( 'seed' , seed);
deltaT = T / numSteps;
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% Simulation of increments of Levy Process
switch this.Distribution.Name

case 'compPoisson' % Compound Poisson process with
%normally distributed jumps

% jumps ~ Normal(mean,variance)
lambda = this.Distribution.Param(1);
mean = this.Distribution.Param(2);
variance = this.Distribution.Param(3);

% Number of jumps is Poisson distributed
numJumps = poissrnd(lambda * deltaT, numPaths, numSteps);

% Construct increments
increments = zeros(numPaths, numSteps);
incrementsQuadVar = zeros(numPaths, numSteps);
for i=1:numPaths

for j=1:numSteps
jumps = normrnd(mean, variance, numJumps(i,j), 1);
increments(i,j) = sum(jumps);
incrementsQuadVar(i,j) = sum(jumps.ˆ2);

end
end

case 'varGamma' % variance gamma process
% Vol of Brownian motion
volatility = this.Distribution.Param(1);
% Variance rate of the gamma time change (Mean rate = 1)
varRate = this.Distribution.Param(2);
% Drift of the Brownian motion
drift = this.Distribution.Param(3);

% Generate Gamma and Normal random variables
gammaRV = gamrnd(deltaT/varRate, varRate, numPaths, numS teps);
normalRV = normrnd(0, 1, size(gammaRV));

% Construct increments of the variance gamma process
increments = drift * gammaRV + volatility ...

* sqrt(gammaRV) . * normalRV;
incrementsQuadVar(i,j) = increments .ˆ 2;

end

% Construct paths using the simulated increments
paths = [zeros(numPaths, 1), cumsum(increments, 2)];
discQuadVariationPaths = [zeros(numPaths, 1), ...

cumsum(incrementsQuadVar, 2)];
end

end

methods (Static)
function path = twoSidedPath(pathsLeft, pathsRight)

pathsLeft = -pathsLeft;
path = [pathsLeft(:, end:-1:2) pathsRight];

end
end

end
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classdef FLP new
properties

Type

Kernel

% Instance of a L évy Process (LP)
DrivingLevyProcess

% Fractional integration parameter
FracDiffParam

% a -> see modified MvN-Kernel
ShiftParameter

end

methods
function this = FLP new(drivingLevyProcess, d, type, a)

this.DrivingLevyProcess = drivingLevyProcess;
this.FracDiffParam = d;
if nargin < 4

a=0.5;
end
if nargin < 3

type = 'MG' ;
end
this.Type = type;
this.ShiftParameter = a;
this.Kernel = this.setKernel;

end

function kernel = setKernel(this)
switch this.Type

case 'MG'
kernel = @(uBound,lBound,param)MolchanGolosovKernel ...

(uBound,lBound,param,this.FracDiffParam);
case 'mMvN'

kernel = @(t,s,d,a)ModifiedMandelbrotVanNess(t,s,d,a) ;
case 'MvN'

kernel = @(t,s,d)MandelbrotVanNess(t,s,d);
end

end

function [pathsFlp, pathsLp, pathsDiscQuadVar, incDrivingProces s, kernelMat] ...
= simulate(this, T, numPaths, numStepsTime, numStepsPath , ...

seed, isDrivenByQuadVar, negativeStartTime)
%
% INPUT Parameters
% @isDrivenByQuadVar: Is a boolean. If isDrivenByQuadVar= =true,
% then the FLP is driven by the discrete
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% part of the quadratic variation of
% this.DrivingLevyProcess
% @numStepsPath: Determines the times where the FLP is
% simulated, i.e. FLP is simulated on the
% grid [0:T/numStepsPath:T]
% @numStepsTime: Determines the grid on which the L évy and
% the kernel is calculated;
% Must be a multiple of numStepsPath.
%
% Example: T=10, numStepsTime = 100, numStepsPath = 10
% Path is simulated on the grid 1:1:10.
% Therefore, for t=1:1:10
% the kernel f(t,.) and the L évy process is calculated
% on the grid
% 0:1/100:t

if nargin < 6
isDrivenByQuadVar = false;

end

if nargin < 8
negativeStartTime = -T;

end

deltaT = T/numStepsTime;
quot = numStepsTime/numStepsPath;
negativeStartTime = -deltaT * floor(-negativeStartTime/deltaT);

switch this.Type
case 'MG'

calcTime = zeros(2,numStepsTime-1);

% kernelMat(i,j) = MolchanGolosovKernel(delta * i, delta * j)
if T <= 8500 && ~mod(T,1) && T == numStepsTime && ...

T == numStepsPath && sum(this.FracDiffParam == ...
[0.1 0.2 0.3 0.4]) == 1

% If available, load precalculated values of the kernel
switch this.FracDiffParam

case 0.4
data = load( 'kernelData d0.4 8500.mat' );

case 0.3
data = load( 'kernelData d0.3 5000.mat' );

case 0.2
data = load( 'kernelData d0.2 5000.mat' );

case 0.1
data = load( 'kernelData d0.1 5000.mat' );

end
kernelMat = data.kernelMat(1:numStepsTime, 1:numStepsT ime);

else
kernelMat = zeros(numStepsPath, numStepsTime);
tol = 10e-16;
counter = 0;
for j = 1:(numStepsTime-1)

%tic
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if j >= counter * quot
counter = counter + 1;

end
for i = (quot * counter):quot:numStepsTime

int = this.Kernel(deltaT * i, ...
deltaT * max(i-quot, j), deltaT * j);

if i/quot==1
kernelMat(i/quot,j) = int;

else
kernelMat(i/quot,j) = kernelMat((i/quot-1),j)+int;

end
end
disp( '------------------------------------------------' );

end
end

% Simulation of paths of driving process
[pathsLp, pathsDiscQuadVar] = ...

this.DrivingLevyProcess.simulate(T, numPaths, ...
numStepsTime, seed);

if isDrivenByQuadVar == false
incDrivingProcess = pathsLp(:, 2:end) - ...
pathsLp(:, 1:( end -1));

else
incDrivingProcess = pathsDiscQuadVar(:, 2:end) ...

- pathsDiscQuadVar(:, 1:( end -1));
end

pathsFlp = [zeros(numPaths, 1), (kernelMat * incDrivingProcess')'];

case {'MvN' , 'mMvN' }

% kernel matrix
time = negativeStartTime:deltaT:T;
kernelMat = zeros(numStepsPath, length(time));
if strcmp(this.Type, 'MvN' )

for i=1:numStepsPath
kernelMat(i,:) = this.Kernel(i * quot * deltaT, time, ...

this.FracDiffParam);
end

else
for i=1:numStepsPath

i
kernelMat(i,:) = this.Kernel(i * quot * deltaT, ...

time, this.FracDiffParam,this.ShiftParameter);
end

end

% Simulation of two-sided driving process
[pathsLpRightSide, pathsDiscQuadVarRightSide] = ...
this.DrivingLevyProcess.simulate(T, numPaths, numStep sTime, seed);

[pathsLpLeftSide, pathsDiscQuadVarLeftSide] = ...
this.DrivingLevyProcess.simulate(-negativeStartTime , numPaths, ...
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-negativeStartTime/deltaT, seed+1000);

pathsLp = LP.twoSidedPath(pathsLpLeftSide, pathsLpRigh tSide);

pathsDiscQuadVar = LP.twoSidedPath(pathsDiscQuadVarRi ghtSide, ...
pathsDiscQuadVarLeftSide);

if isDrivenByQuadVar == false
incDrivingProcess = pathsLp(:, 2:end) - pathsLp(:, 1:( end -1));

else
incDrivingProcess = ...

pathsDiscQuadVar(:, 2:end) - pathsDiscQuadVar(:, 1:( end -1));
end

% paths of FLP
pathsFlp = [zeros(numPaths, 1), ...

(kernelMat(:,1:( end -1)) * incDrivingProcess')'];
end

end
end

end

classdef FICOGARCH
properties

% Instance of a L évy process
DrivingLevyProcess

% d
FracDiffParam

% Model Parameters: [alpha 0 alpha 1 beta 1]
Parameter

end

methods
function this = FICOGARCH(levyProcess, d, params)

this.DrivingLevyProcess = levyProcess;
this.FracDiffParam = d;
this.Parameter = params;

end

function [pathsFicogarch, pathsSquaredVol, pathsReturns]= ...
simulate(this, V0, T, numPaths, numStepsTime, numStepsPa th, ...
seed, type,a,negativeStartTime)

if nargin < 10
negativeStartTime = -T;

end

if nargin < 8
type = 'MG' ;

end
if nargin < 9
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a=1;
end

alpha0 = this.Parameter(1);
alpha1 = this.Parameter(2);
beta1 = this.Parameter(3);

if strcmp(type, 'mMvN' ) | | strcmp(type, 'MG' )
isDrivenByQuadVar = true;
flp = FLP(this.DrivingLevyProcess, this.FracDiffParam, type, a);
[pathsFlp, pathsLp, pathsDiscQuadVar, incDrivingProces s, kernelMat] ...

= flp.simulate(T, numPaths, numStepsTime, numStepsPath, seed, ...
isDrivenByQuadVar,negativeStartTime);

incrementsFLP = pathsFlp(:, 2:end) - pathsFlp(:, 1:( end -1));
else

% For the COGARCH the increments (subsequently called
% incrementsFLP) are given by the discrete
% part of the quadratic variation
[pathsLp, discQuadVariationPaths] = this.DrivingLevyPr ocess.simulate ...

(T, numPaths, numStepsPath, seed);
incrementsFLP = discQuadVariationPaths(:,2:end) ...

- discQuadVariationPaths(:, 1:end-1);
end
deltaT = T / numStepsPath;

pathsSquaredVol = zeros(numPaths, numStepsPath + 1);
pathsSquaredVol(:, 1:2) = ones(numPaths, 2) * V0;

if strcmp(type, 'mMvN' ) | | strcmp(type, 'COGARCH')
for i = 1:(numStepsPath-1)

% Euler Step
pathsSquaredVol(:,i+2) = pathsSquaredVol(:,i+1) ...

+ (beta1 * alpha0 * ones(numPaths, 1) ...
- beta1 * pathsSquaredVol(:,i+1)) * deltaT ...
+ alpha1 * pathsSquaredVol(:,i) . * incrementsFLP(:,i+1);

end
else

for i = 1:numStepsPath
% Euler Step
pathsSquaredVol(:,i+1) = pathsSquaredVol(:,i) ...

+ (beta1 * alpha0 * ones(numPaths, 1) - beta1 ...

* pathsSquaredVol(:,i)) * deltaT ...
+ alpha1 * pathsSquaredVol(:,i) . * incrementsFLP(:,i);

end
end

if strcmp(type, 'COGARCH')
incLp = pathsLp(:,2:end)-pathsLp(:,1:end-1);

elseif strcmp(type, 'MG' )
quot = numStepsTime / numStepsPath;
pathsLp = [pathsLp(1) pathsLp((1+quot):quot:end)];
incLp = pathsLp(:,2:end)-pathsLp(:,1:end-1);

elseif strcmp(type, 'mMvN' )
quot = numStepsTime / numStepsPath;
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pathsLp = pathsLp( end -numStepsTime:end);
pathsLp = [pathsLp(1) pathsLp((1+quot):quot:end)];
incLp = pathsLp(:,2:end)-pathsLp(:,1:end-1);

end
pathsReturns = sqrt(pathsSquaredVol(:,1:( end -1))) . * incLp;

pathsFicogarch = cumsum(pathsReturns);
end

end
end

B.2 Auxiliary functions

function value = PositivePart(x,d)
value = x.ˆd;
value(isinf(value))=0;
value( ~imag(value)==0)=0;
value = value . * (x >0);
end

function output = MolchanGolosovKernel(uBound, lBound, param, d)
% Calculation of:
% constant * int lBoundˆuBound((u-param).ˆ(d-1). * (u/param).ˆd) du

tol = 10e-8;
if uBound<0 | | ~(d >0 && d<0.5)

warning( 'Kernel is not well defined' );
output=-1;

elseif param>uBound | | param<0 | | param == uBound | | uBound < tol
output = 0;

else
constant = dˆ2 * (2 * d+1) * gamma(1-d) / gamma(1+d) / gamma(1-2 * d);
constant = sqrt(constant);

kernel = @(u)((u-param).ˆ(d-1). * (u/param).ˆd);
int = quadgk(@(u)kernel(u),lBound,uBound, 'RelTol' ,0, ...

'AbsTol' ,1e-12, 'MaxIntervalCount' , 1886);

output = constant * int;
end

end

function f = MandelbrotVanNess(t,s,d)
const = 1/(gamma(1+d));
f = (PositivePart(t-s,d) - PositivePart(-s,d)) * const;
end

function f = ModifiedMandelbrotVanNess(t,s,d,a)
if d>=0 | | a<0
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warning( 'Kernel is not well defined' );
exit function ;

end
const = gamma((-d)ˆ0.8);
f = ((a+max(-s,0)).ˆd - (a+max(t-s,0)).ˆd). * const;
end
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