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ABSTRACT  VIII 

ABSTRACT 

The thesis addresses firm-heterogeneity in micro-level panel datasets and the necessity to 

take this heterogeneity into account to obtain unbiased measures of productivity (growth) 

and technical efficiency in a parametric frontier framework. Various existing and newly 

introduced econometric specifications of stochastic frontier models are discussed. The 

focus lies on these models’ assumptions about heterogeneity and how they attempt to 

distinguish heterogeneity from inefficiency. The effects of these assumptions on the 

results of an analysis of productivity growth are examined. In addition, the thesis describes 

extensions of existing econometric models to account for unobserved heterogeneity. Two 

studies tackling empirical questions complete the thesis. Both elaborate on various forms 

of firm-heterogeneity that can complicate empirical work. In an examination of German 

breweries, a detailed decomposition of sectoral labor productivity growth into between 

and within firm effects is provided. In a productivity analysis of Bavarian dairy farms a 

group- and chain-linked multilateral productivity index is introduced, which allows to 

compare the productivity of groups of firms over time.  

 

 



ZUSAMMENFASSUNG  IX 

ZUSAMMENFASSUNG 

Die Dissertation behandelt Heterogenität in Paneldatensätzen auf Firmenebene. Es wird 

aufgezeigt, dass eine Berücksichtigung von Heterogenität unerlässlich ist, um 

Produktivität und technische Effizienz in parametrischen Frontiermodellen unverzerrt 

messen zu können. Verschiedene gängige und neu eingeführte ökonometrische 

Spezifikationen von „Stochastic Frontier“ Modellen werden diskutiert. Dabei liegt der 

Fokus auf den Annahmen der einzelnen Modelle bezüglich möglicher Heterogenität und 

darauf, inwieweit diese eine Abgrenzung zu technischer Effizienz ermöglichen. Es wird 

untersucht, inwiefern die Ergebnisse einer Analyse von Produktivitätsveränderungen 

durch diese Annahmen beeinflusst werden. Darüber hinaus beschreibt die Arbeit 

Erweiterungen bisheriger ökonometrischer Modelle, die eine Berücksichtigung von 

Heterogenität ermöglichen. Zwei empirische Studien beschließen die Arbeit. Darin wird 

auf unterschiedliche Formen von Heterogenität und die dadurch entstehenden empirischen 

Probleme eingegangen. Anhand einer Untersuchung deutscher Brauereien wird gezeigt, 

wie Arbeitsproduktivität auf sektoraler Ebene in verschiedene Effekte zwischen und 

innerhalb von Firmen zerlegt werden kann. In einer Untersuchung der Produktivität 

bayerischer Milchviehbetriebe wird zusätzlich ein Produktivitätsindex eingeführt, der es 

ermöglicht, die Produktivität von Gruppen von Firmen über die Zeit zu vergleichen. 
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1. INTRODUCTION 

1.1. Productivity and Efficiency  

The terms “productivity” and “efficiency” are commonly used in relation to the technical 

and economic performance of production units, which may include firms or plants on the 

micro-level as well as whole industries or countries on the macro-level. Despite the 

common use of these terms by economists as well as managers, auditors and controllers, 

some ambiguity exists in regard to the exact meanings associated with them. In this thesis, 

the term “productivity” denotes the ratio of a firm’s
1
 produced output over the respective 

input used in the production process, where a higher value of this ratio naturally implies a 

better performance. This concept builds an intuitive framework to monitor the 

performance of firms over time or compare the performance between firms. A firm that 

manages to increase its output by more than its input or decrease its input by more than its 

output from one time period to another will therefore exhibit positive productivity growth. 

Likewise, a firm compared to another firm in the same period will be labeled as more 

productive if it uses less input to produce the same amount of output, and vice versa.
2
 In 

contrast, efficiency compares the amounts of input and output observed for a particular 

firm to the respective optimal amounts. That is, the efficiency of a firm is obtained by 

comparing its present productivity with the best practice frontier productivity for a given 

level of output (output orientation) or input (input orientation). This highlights the key 

property of the efficiency concept – the need to determine the technical frontier production 

potential for each producer.  

Measures of productivity and efficiency, i.e., measures of the productive 

performance of all types of firms, have been used intensively to investigate a great variety 

of relevant questions concerning the production side of the economy, both on the micro as 

well as the macro level. Examples for such investigations are the effects of R&D 

(Griliches and Mairesse, 1991; Crepon et al., 1998; Kumbhakar et al., 2011), policy 

measures such as production- or export subsidies (Demidova and Rodríguez-Clare, 2009; 

                                                 
1
 Throughout the thesis, the term firm encompasses any type of decision-making unit that carries out a 

production process. In the empirical parts of the thesis we address farms and breweries; however, we can 

find empirical applications concerning the performance of almost any type of productive entity in many 

different sectors, such as manufacturing, health care provision, public transport or education. See table 1.1 in 

Fried et al. (2008) for a list of recent applications.  
2
 Balk (2003) distinguishes the comparison of a firm in the two dimensions (over time and cross-sectional) 

as “monitoring” and “benchmarking”.   
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Kumbhakar and Lien, 2010; Rizov et al., 2013), regulatory policies (Nicoletti and 

Scarpetta, 2003; Haney and Pollitt, 2009) or trade liberalization (Pavcnik, 2002; Melitz, 

2003; Hossain and Karunaratne, 2004). As Fried et al. (2008, p. 11) note, one of the 

central challenges that hampers the examination of such sources of productivity and 

efficiency differentials is “to level the playing field” and “to separate their effects from 

those of the operating environment”. That is, the empirical researcher has to ensure that 

any identified measures of productivity or efficiency (change) are not biased due to 

unobserved or unaccounted factors.  

Most empirical studies find efficiency or productivity measures to be widely 

dispersed in many economic sectors. Studies by Dhrymes (1991), Oulton (1998), and 

Syverson (2004) are examples of studies on total factor- and labor productivity, while Pitt 

and Lee (1981), Tzouvelekas et al. (2001) and Kellermann et al. (2011) examine technical 

efficiency. In the temporal dimension, substantial but unexplained productivity growth has 

been found since the early beginnings of empirical productivity analysis (Abramovitz, 

1956; Solow, 1957). Specific issues that have to be considered to be able to meaningfully 

interpret such results concern the correct measurement of inputs and outputs, unobserved 

heterogeneity in production conditions, and misspecifications of the production 

technology and others. These considerations motivate my work. Specific questions that are 

covered in this thesis include how unobserved heterogeneity can be taken into account and 

how this affects the measurement of efficiency and productivity (growth).  

1.2. Measurement of Total Factor Productivity 

The calculation of a productivity measure is a straightforward task if firms just produce a 

single output using a single input. However, this is a simplified, unrealistic setting. In 

most cases, firms use several inputs to produce several outputs, which brings up the need 

to aggregate those inputs and outputs in “some economically sensible fashion […], so that 

the productivity remains the ratio of two scalars” (Lovell, 1993 p.3). In this case, the 

concept of total factor productivity (TFP)
3
 can be useful. TFP describes the ratio of (an 

index of) total outputs produced over (an index of) total inputs used in the production 

process. It therefore has to be distinguished from partial productivity measures, which can 

also be used in a multi-input multi-output setting. The most widely used partial 

                                                 
3
 Sometimes TFP is also referred to as MFP (multifactor productivity) “to signal a certain modesty with 

respect to the capacity of capturing all factors’ contribution to output growth” (italics in original) (OECD, 

2001). 
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productivity measure is labor productivity, which is defined as the ratio of (an index of) 

total outputs over the labor input.
4
  

The measurement of productivity is based on the notion that in a given dataset, part 

of the variance in total output cannot be explained by the variance in total input. A 

fundamental prerequisite to identify this “residual” of output variance is an accurate 

measurement of inputs and outputs (Jorgenson and Griliches, 1967) and the knowledge of 

the substitutional relationship of inputs and outputs embedded in the production 

technology (Arrow et al., 1961). For the sake of consistency with seminal parts of the 

literature and simplicity in notation, I begin with the production function as representation 

of a single-output multiple-input production technology with a Hicks-neutral shift 

parameter.  

𝑌𝑡 = 𝐴𝑡  𝐹(𝑿𝑡) (1.1) 

The function 𝐹(∙) describes the properties of the production technology, i.e., the ways in 

which the inputs in 𝑿 are combined to produce the maximum feasible output 𝑌 in period 𝑡. 

The total factor productivity of a firm in time period 𝑡 is then defined as  

𝑇𝐹𝑃𝑡 ≡ 𝐴𝑡 =
𝑌𝑡

𝐹(𝑿𝑡)
. (1.2) 

By taking logarithms
5
 of the left- and right-hand sides, equations (1.1) and (1.2) can be 

rewritten as follows:  

𝑦𝑡 = 𝑎𝑡 + 𝑓(𝒙𝑡) (1.3) 

and  

𝑡𝑓𝑝𝑡 ≡ 𝑎𝑡 = 𝑦𝑡 − 𝑓(𝒙𝑡) (1.4) 

where the lower-case letters denote the natural logarithm of the variables, i.e., 𝑡𝑓𝑝𝑡 is the 

log-measure of total factor productivity 𝑇𝐹𝑃𝑡 in time period 𝑡. Equations (1.1) to (1.4) are 

used as departure points for further investigations.  

1.2.1 Productivity growth  

Starting from equation (1.1), we can write the representation of the production process in 

the precedent time period 𝑠 as 𝑌𝑠 = 𝐴𝑠  𝐹(𝑿𝑠). This specification indicates that changes in 

the output can occur due to input changes and through the neutral shift component 𝐴, but 

                                                 
4
 The major advantages of partial productivity measures such as labor productivity are that they are simple to 

calculate (no aggregation of inputs required) and to interpret. However, the growth rate of labor productivity 

usually reflects the combined effects of productivity changes and the substitution of labor through other 

inputs. 
5
 Throughout the thesis, I only use the natural logarithm.  
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the production technology 𝐹(∙) remains unaltered. Changes in total factor productivity 

over the periods 𝑡 and 𝑠 can now be written in the following way:  

𝑇𝐹𝑃𝑡

𝑇𝐹𝑃𝑠
=

𝐴𝑡

𝐴𝑠
=

𝑌𝑡 𝐹(𝑿𝑡)⁄

𝑌𝑠 𝐹(𝑿𝑠)⁄
 (1.5) 

The first attempts to get a grasp on a measure of productivity and its development 

over time for a whole economy based on aggregated time-series data can be found in 

papers by Tinbergen (1942), Abramowitz (1956) and Solow (1957).
6
 Following Solow 

(1957) and assuming a continuous time passage, full technical efficiency and Hicks-

neutral technical change, equation (1.3) can be totally differentiated with respect to time:  

𝑦̇ = 𝑎̇ + ∑
𝜕𝑓(𝑥𝑘

𝑡 )

𝜕𝑥𝑘
𝑡

𝐾

𝑘=1

𝑥̇𝑘 (1.6) 

where the dots over a variable indicate its continuous growth rate and the subscript 𝑘 

denote different inputs in use. Assuming further homogeneity of degree one in 𝑓(∙), cost-

minimizing behavior without allocative inefficiency and perfect competition on input and 

output markets, (i.e., input factors are paid their marginal products), we can substitute the 

output elasticities by the inputs’ factor shares, and equation (1.6) can be rewritten in the 

following way: 

𝑦̇ = 𝑎̇ + ∑ 𝑠𝑘

𝐾

𝑘=1

𝑥̇𝑘 (1.7) 

In equation (1.7), 𝑠 represents the input factor shares, which are used to non-

parametrically estimate the slope of the production function at the observed input-output 

combinations.  

𝑠𝑘 =
𝜕𝑓(𝑥)

𝜕𝑥
=

𝑊𝑘𝑋𝑘

𝑌𝑃
=

𝑊𝑘𝑋𝑘

∑ 𝑊𝑘𝑋𝑘
𝐾
𝑘=1

 (1.8) 

where 𝑊𝑘 is the price of the 𝑘-th input, and 𝑃 is the output price. Slightly rearranging 

equation (1.7) in regard to (1.4) yields the familiar growth accounting formulation put 

forth by Solow (1957), Jorgenson and Griliches (1967) and others.   

𝑡𝑓𝑝̇ ≡ 𝑎̇ = 𝑦̇ − ∑ 𝑠𝑘

𝐾

𝑘=1

𝑥̇𝑘 (1.9) 

                                                 
6
 This short list is certainly not complete. For a historical overview on the early developments of this field 

see Griliches (1996) and Hulten (2001). 
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This continuous framework corresponds to a Divisia index of productivity growth 

(see, e.g., Richter, 1966). The “residual” of TFP growth results from the percentage 

growth in (aggregated) output, which remains unexplained by the percentage growth in the 

aggregated inputs. Subject to the several assumptions stated above, Solow’s approach 

allows a separation of the sources of output growth in movements along the production 

function 𝑓(∙) due to the changes in input use and the residual 𝑎̇ itself, representing “any 

kind of shift in the production function (italics in the original)” (Solow, 1957), which are 

then interpreted as “technical change”. Note that we do not have a superscript 𝑡 in the 

factor shares 𝑠𝑘 and in equation (1.8). This emphasizes the basic case of neutral technical 

change with time-constant production elasticities. However, the extension to the non-

neutral case was already mentioned by Solow and eventually introduced by Brown and 

Popkin (1962). It basically allows for changes in the production elasticities over time and 

accounts for the output changes through factor augmentation.  

An important contribution to the measurement of productivity in a non-parametric 

framework was by Caves et al. (1982). The formulation in equation (1.9) denotes 

instantaneous productivity changes. However, the data on inputs and outputs is almost 

exclusively available for discrete time periods. Based on the theory of exact and 

superlative index numbers by Diewert (1976), Caves et al. (1982) propose a Törnqvist 

TFP index, which provides a discrete approximation to the continuous Divisia index if the 

underlying production technology of 𝑓(∙) is translog. Starting from equation (1.9), the 

Törnqvist TFP index can easily be derived by taking the first differences of the logarithms 

of inputs and output instead of continuous growth rates and using arithmetic means of 

current and lagged factor shares.
7
 Then, the total factor productivity change between two 

subsequent time periods 𝑠 and 𝑡 is approximated by: 

𝑡𝑓𝑝𝑠𝑡 = (𝑦𝑡 − 𝑦𝑠) − ∑
1

2

𝐾

𝑘=1

(𝑠𝑘
𝑡 + 𝑠𝑘

𝑠) (𝑥𝑘
𝑡 − 𝑥𝑘

𝑠) (1.10) 

Note that we use the superscripts 𝑠 and 𝑡 instead of the dot (𝑡𝑓𝑝𝑠𝑡 vs. 𝑡𝑓𝑝̇ ) to indicate the 

discrete approximation to the continuous change. The Törnqvist TFP index requires a 

point of reference for its construction. In a time-series application, the choice of the 

reference point is naturally the preceding time period, with the first time period in the 

dataset as a starting point.  

                                                 
7
 The Törnqvist index allows for non-neutral technical change 
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In bilateral applications, the Törnqvist index in (1.10) can be used for base-invariant 

comparisons of two firms. In that case, the superscripts 𝑠 and 𝑡 would denote two different 

firms (in the same time period) instead of the same firm in two consecutive periods. In a 

multilateral comparison (with more than two units to be compared and no natural ordering 

as in a time-series case), however, this index is not base-invariant, and no natural 

candidate for a reference point exists. Caves et al. (1982a) provide a solution by defining a 

hypothetical representative firm (ℎ) that is used as a reference point. This hypothetical unit 

is constructed using the arithmetic means of the cost (and revenue) shares and of the log 

inputs and outputs of all units in a cross-section. Hence, a multilateral Törnqvist 

productivity index can be written as follows: 

𝑡𝑓𝑝𝑖ℎ = (𝑦𝑖 − 𝑦̅) − ∑
1

2

𝐾

𝑘=1

(𝑠𝑘
𝑖 + 𝑠𝑘̅) (𝑥𝑘

𝑖 − 𝑥𝑘̅̅ ̅) (1.11) 

where a bar over a variable indicates its arithmetic mean over all firms in the sample, i.e., 

𝑧̅ =
1

𝑁
∑ 𝑧𝑖𝑁

𝑖 . The main advantage of this index is that it is transitive because all firms are 

compared indirectly by relating them to the same hypothetical reference firm. A 

disadvantage of the index is its sample dependency. As the sample changes, the 

hypothetical firm has to be recalculated and by association the productivity measure of all 

firms. Good et al. (1997) and Delgado et al. (2002) extend the multilateral TFP index for 

comparisons over time and across groups. In chapter 5 of this thesis, I combine both 

approaches and introduce a group- and chain-linked multilateral TFP index. 

1.2.2 The econometric approach 

An alternative to the non-parametric index number approach is the econometric estimation 

of the parametric representation of the production technology 𝑦𝑡 = 𝑎𝑡 + 𝑓(𝒙𝑡). Then, the 

production elasticities can be derived directly from the parameters of the estimated 

production function as 𝜀𝑘 =
𝜕𝑓(𝒙𝑡,𝑡)

𝜕𝑥𝑘
, and the TFP level can be calculated from 𝑇𝐹𝑃𝑡 =

exp(𝑦𝑡 − 𝑓(𝒙𝑡)). One of the major advantages of the econometric approach concerns the 

data, as information on prices are not required, which is difficult to come by in many 

empirical applications. On the other hand, we only need two observed data points for the 

index number calculations, whereas the econometric estimation of the firms’ technology 

requires a large number of observations; however, with the currently increasing 

availability of firm-level panel data sets, this aspect has lost part of its pressing relevance.  
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Furthermore, the econometric estimation of the elasticities also allows for the 

relaxation of some of the aforementioned assumptions on market structure and optimizing 

behavior, which are needed to approximate the input factor elasticities by their cost shares, 

as in equation (1.8). This in turn enables researchers to identify sources of productivity 

growth other than pure technical change. The effects of economies of scale were discussed 

by Brown and Popkin (1962) in the primal framework and Otha (1975) in the dual 

framework. Other components include the effects of market power (Hall, 1988; 1990; 

Denny et al., 1981; Basu and Fernald, 2002) capacity utilization and adjustment costs 

(Morrison, 1992; Prucha and Nadiri, 1996). Another strand of the literature attempted to 

accommodate deviations from efficient production in the measurement of productivity 

growth. Nishimizu and Page (1982) distinguished effects of technical change and 

technical efficiency change, while Bauer (1990) also allowed for allocative inefficiency 

and a scale effect. The effects of non-constant returns to scale and technical inefficiency 

on productivity growth are discussed below.  

However, the advantages associated with the econometric estimation all come at 

some cost. First of all, a functional form for the representation of the production 

technology has to be specified. Several different functional forms have been proposed and 

discussed in the literature (see, e.g., Fuss et al., 1978, Berndt and Khaled 1979, Chambers 

1988, Giannakas et al., 2003). Two of the most common functional forms in empirical 

work are the “transcendental logarithmic” (Christensen et al., 1973), typically abbreviated 

as “Translog”, which is a generalization of the well-known “Cobb-Douglas” functional 

form. Fitting a function of the Cobb-Douglas form to the data yields fixed output 

elasticities across all data points. In contrast, the Translog form is flexible and allows for 

varying output elasticities. As Lau (1978) notes, the appealing feature of flexibility can 

cause major issues concerning the assumptions of monotonicity and (quasi-) convexity. 

However, those assumptions have to be met to exploit the duality theorems of production 

theory and for a meaningful economic interpretation of estimated elasticities.
8
 Hence, the 

specification of a flexible functional form requires either to impose restrictions on the 

estimated parameters to ensure the validity of the production technology or to test the 

theoretical consistency after the estimation at all data points.
9
 Other concerns relate to the 

                                                 
8
 For example, violations of monotonicity cause incorrectly signed elasticities. As a consequence, a firm 

could improve its (measured) productivity by increasing its input usage with fixed outputs.  
9
 O’Donnell and Coelli (2005), Sauer et al. (2006) and Henningsen and Henning (2009) discuss implications 

of violations of the monotonicity and curvature conditions, in particular in a stochastic frontier framework 

and provide possible solutions.  
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reliability of the econometric estimates themselves. Endogenous decisions on input factor 

usage by a firm that observes its productivity and/or is aware of its probability to cease 

production give rise to the so-called “simultaneity” and “attrition” bias. Unobserved price 

dispersion across firms may also bias the results of the econometric models. A broad body 

of literature has emerged around these issues, providing a theoretical analysis of their 

effects and a variety of techniques to address them. Marschak and Andrews (1944), Hoch 

(1962) and Mundlak and Hoch (1965) discuss why OLS single equation estimates of 

production functions may be biased and offer some alternatives, such as fixed-effects 

estimation (see also Mundlak, 1961), while Zellner, Kmenta and Dreze (1966) provide 

conditions under which the OLS estimates are tenable. Further approaches include 

dynamic panel models (Chamberlain, 1982; Griliches and Hausman, 1986; Blundell and 

Bond, 2000). More recently, Olley and Pakes (1996) approached the simultaneity problem 

from a completely different angle. One major contribution of their article is the attempt to 

find a proxy for the unobservable (to the econometrician, but not to the firm) productivity 

component of the error term. They use the firms’ observed investment decisions as a 

proxy. In addition, they also approach the attrition bias related to firm exits. Their proxy 

approach was pursued by Levinsohn and Petrin (2003), Wooldridge (2009) and more 

recently by De Loecker (2011), who, following Klette and Griliches (1996), also accounts 

for unobserved price dispersion. Because the main focus of this thesis lies in the 

parametric methods that take technical inefficiency into account, I do not elaborate on this 

strand of the literature and refer to Griliches and Mairesse (1998) and Van Beveren (2012) 

for survey articles. 

1.2.3 The micro-macro linkage of productivity measures 

Regardless of whether index number techniques or econometric estimations are used, 

having micro-level data available makes it possible to measure firm-specific levels of 

productivity. Compared to the results from macro-level studies based on time-series data, 

these data can provide valuable information on the sources and components of the 

(aggregate) industry productivity level and its development. An aggregated measure of 

sectoral productivity, for example, can be obtained from a weighted average of the single 

firms’ productivity levels: 

𝑇𝐹𝑃𝐼
𝑡 = ∑ 𝜑𝑖

𝑡

𝑁

𝑖=1

 𝑇𝐹𝑃𝑖
𝑡   ∀ 𝑡 (1.12) 
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where the superscript 𝐼 signifies the aggregated “industry” productivity for period 𝑡, and 

the subscript 𝑖 now denotes the individual firm.  

Depending on which weights (𝜑) are used in (1.12), the interpretation of aggregate 

productivity changes. In the simplest case, each firm is assigned the same weight, and we 

obtain the arithmetic mean of productivity over all firms in the sample. This measure 

corresponds to the productivity of the representative average firm in the sample. Olley and 

Pakes (1996) provide a decomposition of aggregated productivity levels that has been 

used for the analysis of patterns in sectoral productivity in many empirical studies 

(Nishimura et al. 2005; De Loecker and Konings, 2006; Eslava et al. 2004; Bartelsman et 

al., 2009). Assuming a Cobb-Douglas production function, they calculate the firms’ 

productivity level from 𝑇𝐹𝑃 = exp(𝑦 − 𝑓(𝒙)) after econometrically estimating the 

parameters of 𝑓(∙). In the following, they decompose aggregated productivity in two 

components: the average, unweighted productivity of the representative firm and a 

covariance term that reflects how output shares are allocated across the distribution of 

differently productive firms:  

𝑇𝐹𝑃𝐼
𝑡 = ∑ 𝜑𝑖

𝑡

𝑁

𝑖=1

 𝑇𝐹𝑃𝑖
𝑡 = 𝑇𝐹𝑃̅̅ ̅̅ ̅̅ 𝑡 + ∑(𝜑𝑖

𝑡 − 𝜑̅𝑡)

𝑁

𝑖=1

(𝑇𝐹𝑃𝑖
𝑡 − 𝑇𝐹𝑃̅̅ ̅̅ ̅̅ 𝑡)  ∀ 𝑡 (1.13) 

This cross-sectional decomposition shows that aggregate productivity only equals the 

unweighted average productivity if: all firms hold the same share of the industry; all firms 

exhibit the same productivity; the firms’ productivities and shares are uncorrelated. In all 

other cases, the average productivity over- or underestimates industry productivity. The 

average measure (over-) underestimates the aggregate measure if larger (smaller) firms are 

more productive and smaller (larger) firms are less productive. In their initial application 

of this decomposition, Olley and Pakes (1996) use output (market) shares as weights and 

identify significant productivity gains in the US telecommunications industry due to a 

reallocation of output from less productive to more productive firms. It has remained a 

question of interest how the aggregating weights should be constructed. As a general 

statement, Bartelsman and Doms (2000) note that the weights should mirror the 

importance of each firm in the industry. While e.g., Griliches and Regev (1995) and Olley 

and Pakes (1996) use output shares, others such as Bartelsman and Dhrymes (1998) and 

Bartelsman et al. (2013) use input shares. Van Biesebroeck (2008) and Fox (2012) discuss 

the effects of aggregation weights and the resulting effects on the monotonicity and 

interpretation of aggregated productivity measures.  
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Moving from productivity levels to productivity growth, the issue of aggregation 

naturally applies as well. Following Olley and Pakes’ (1996) line of thought, the 

development of the aggregate productivity of an industry can be attributed to the 

individual productivity change of each firm, shifts in the firms’ relative contribution to the 

industry as well as the entry and exit of firms to and from the industry. Baily et al. (1992), 

Griliches and Regev (1995) and Foster et al. (2001), among others, propose a 

decomposition of aggregate productivity growth into these four components. Baily et al. 

(1992) express the aggregated log industry productivity level as the weighted average of 

the log productivity measure 𝑡𝑓𝑝𝑖𝑡 similar to equation (1.12) in the following way:  

𝑡𝑓𝑝𝐼
𝑡 = ∑ 𝜑𝑖

𝑡

𝑁

𝑖=1

  𝑡𝑓𝑝𝑖
𝑡  ∀ 𝑡 (1.14) 

The sole difference between equations (1.12) and (1.14) is that productivity is defined in 

logs such that the productivity change between periods is measured in percentage changes. 

The change in aggregated industry productivity is then:  

𝑡𝑓𝑝𝐼
𝑠𝑡 = 𝑡𝑓𝑝𝐼

𝑡 − 𝑡𝑓𝑝𝐼
𝑠 = ∑ 𝜑𝑖

𝑡

𝑁

𝑖=1

  𝑡𝑓𝑝𝑖
𝑡 − ∑ 𝜑𝑖

𝑠

𝑁

𝑖=1

  𝑡𝑓𝑝𝑖
𝑠 (1.15) 

From here, as a common starting point, the approaches by Baily et al. (1992), Griliches 

and Regev (1995) and Foster et al. (2001) keep track of the changes in the individual 

firms’ productivity as well as its contribution (share) to the industry. They differ, however, 

in their exact construction, mainly in regard to the reference point of comparison.
10

 The 

decomposition by Griliches and Regev (1995) is employed in chapter 4 of this thesis and 

can be written as follows: 

𝑡𝑓𝑝𝐼
𝑠𝑡 = ∑ 𝜑̃𝑖𝑡

𝑖𝜖𝐶

 𝑡𝑓𝑝𝑖
𝑠𝑡 + ∑ 𝜑𝑖𝑡

𝑖𝜖𝐶

(𝑡𝑓𝑝̃𝑖𝑡 − 𝑡𝑓𝑝̃𝑡
𝐼) + ∑ 𝜑𝑖𝑡

𝑖𝜖𝑁

(𝑡𝑓𝑝𝑖𝑡 − 𝑡𝑓𝑝̃𝑡
𝐼)

− ∑ 𝜑𝑖𝑠

𝑖𝜖𝑋

(𝑡𝑓𝑝𝑖𝑠 − 𝑡𝑓𝑝̃𝑡
𝐼) 

(1.16) 

In this decomposition, a tilde over a variable denotes the arithmetic mean of the variable 

in the present and preceding time period (𝑧̃𝑖𝑡 =  (𝑧𝑖𝑡 + 𝑧𝑖𝑡−1)/2), and the double 

superscript 𝑠𝑡 denotes the change from one period to another. Furthermore, 𝐶 denotes 

continuing firms (present in 𝑡 and 𝑠), 𝑁 denotes entering firms (present in 𝑡 but not in 𝑠), 

and 𝑋 denotes exiting firms that leave the sample (not present in 𝑡 but present in 𝑠). 

                                                 
10

 See Balk (2003) and Melitz and Polanec (2013) for an extensive discussion. Balk advocates the use of the 

Griliches and Regev approach, while Melitz and Polanec propose another “dynamic Olley and Pakes” 

decomposition. 
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Hence, in equation (1.16), the first two terms on the right-hand side capture the 

contribution of firms that are continuously observed in the dataset – termed “stayers” by 

Baily et al. (1992). The first term tracks the individual firm’s productivity growth 

weighted by the arithmetic mean of the industry share over the respective periods. The 

second term measures the effect of shifts in the weights of firms with higher or lower than 

average productivity. The third and the fourth terms contain the contribution of firms that 

enter or leave the sample. For example, firms with above-average productivity that enter 

the sample contribute positively to aggregated productivity as well as firms with below-

average productivity that drop out of the sample.  

1.3. Technical Efficiency 

The term “efficiency” in this thesis denotes observed productivity over the maximum 

productivity, which is technically feasible. This includes an output expanding-perspective 

as well as an input-conserving perspective. Hence, an output-oriented efficiency measure 

that complies with this definition can be written as observed output over maximal output 

with a given level of input. The respective input-conserving measure is then defined by 

minimum input over observed input with a given level of output. This notion of technical 

efficiency dates back to a series of papers from the 1950s. Koopmans (1951 p. 60) 

provided a formal definition of technical efficiency as follows: “A possible point […] in 

the commodity space is called efficient whenever an increase in one of its coordinates (the 

net output of one good) can be achieved only at the cost of a decrease in some other 

coordinate (the net output of another good)”. Putting this definition in context with the use 

of inputs in the production process, Lovell (1993 p. 10) describes an inefficient producer 

in less technical words: “Thus a technically inefficient producer could produce the same 

outputs with less of at least one input, or could use the same inputs to produce more of at 

least one output”. The works by Debreu (1951) and Shepard (1953), who theoretically 

derived output- and input-oriented distance measures, and a remarkable paper by Farrell 

(1957), who proposed specific measures of technical and allocative efficiency, are 

generally viewed as the starting points of the efficiency literature. Farrell was also the first 

to empirically calculate measures of efficiency in an application to agricultural production 

in the US. For surveys on the historical developments of the efficiency literature, I refer to 

Fried, Lovell and Schmidt (2008) and Kumbhakar and Lovell (2000).  
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To allow for technical inefficiency, equation (1.1) is rewritten in the following way: 

𝑌𝑡 ≤ 𝐴𝑡  𝐹(𝑿𝑡) (1.17) 

The Farrell-Debreu output-oriented measure of technical efficiency for this single-output 

case is then defined as (Kumbhakar and Lovell, 2000 p. 46):  

𝑇𝐸𝑂
𝑡 = [max{𝜙: 𝜙𝑌𝑡 ≤ 𝐴𝑡  𝐹(𝑿𝑡)}]−1  (1.18) 

Equation (1.18) can be rearranged to: 

𝑇𝐸𝑂
𝑡 =

𝑌𝑡

𝐴𝑡  𝐹(𝑿𝑡)
 (1.19) 

Following equation (1.18 and 1.19), 0 < 𝑇𝐸𝑂
𝑡 ≤ 1 provides a measure of the shortfall of 

observed output 𝑌 from the technically feasible output, predicted by the production 

technology for a given level of input 𝑌∗ = 𝐴 𝐹(𝑋). Figure 1-1 illustrates this output-

oriented measure of technical efficiency.  

 

 

Figure 1-1: Output-oriented measure of technical efficiency in the 

single-input, single-output case. 

 

In figure 1-1, 𝐴 𝐹(𝑋) represents the production frontier of the technology 𝐹(∙), and the ■ 

represents the observed output 𝑌1 of firm “1” at input level 𝑋1. The output-oriented 

measure of technical efficiency for a specific firm is the ratio of observed output over the 

respective frontier output, i.e.:  

𝑌1

𝑌1
∗ =

𝐴 𝐹(𝑋1) ∙ 𝑇𝐸𝑂|1

𝐴 𝐹(𝑋1)
= 𝑇𝐸𝑂|1 (1.20) 

This measure aims at a vertical expansion of output towards the “best practice” (Farrell, 

1957) technology, keeping inputs fixed. If a firm produces at the production frontier, 
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𝑌 = 𝑌∗ and consequently, 𝑇𝐸𝑂 = 1. An input-oriented measure would aim at a horizontal 

contraction of inputs towards the “best practice” technology, keeping the level of output 

fixed.  

Following Farrell’s work, Charnes, et al. (1978) formulated the calculation of 

efficiency measures as a mathematical programming problem. The resulting data 

envelopment analysis (DEA) is a well-established and widespread methodology to analyze 

the technical efficiency of all types of firms, allowing for multiple-output, multiple-input 

production technologies in a non-parametric framework. See Thanassoulis (2001) and 

Cook and Seiford (2009) for an extensive treatment.  

Some of the first approaches to the measurement of technical efficiency of a cross-

section of firms in a parametric framework were conducted by Aigner and Chu (1968) and 

Timmer (1971). They reformulated the log equation (1.3) to accommodate technical 

inefficiency as follows:  

𝑦 = 𝑓(𝒙) − 𝑢 (1.21) 

where 𝑢 is now a non-negative random variable representing the shortfall of observed 

output from the frontier production technology, i.e., inefficiency. The respective 

parameters of 𝑓(𝒙) were derived through linear programming methods. A series of papers 

that allowed an estimation of the frontier econometrically led to a significant advancement 

of the parametric approach to efficiency analysis. Aigner et al. (1977), Meeusen and van 

den Broeck (1977) proposed and Battese and Corra (1977) applied a model of the form: 

𝑦 = 𝑓(𝒙) − 𝑢 + 𝑣 (1.22) 

This model includes an additional component 𝑣, which accounts for statistical noise. To 

estimate the resulting composed error model with maximum likelihood methods, Aigner et 

al. (1977) specified inefficiency as a non-negative term with 𝑢 ~𝑖𝑖𝑑 𝑁+(0, σ𝑢
2 ) and the 

symmetric statistical noise term as 𝑣~𝑖𝑖𝑑 𝑁(0, σ𝑣
2).

11
 Together with the paper by Jondrow 

et al. (1982), who proposed a way to estimate firm-specific efficiency scores, these papers 

lay the foundation of the stochastic frontier analysis (SFA) approach. Several excellent 

surveys on the estimation of stochastic frontier models, their properties and applications 

exist; see, e.g., Greene (1993), Kumbhakar and Lovell (2000), Murillo-Zamorano (2004), 

Coelli et al. (2005) and Greene (2008). I also discuss the properties of a variety of 

stochastic frontier models in chapter 2 of this thesis. Hence, I abstain for now from a 

                                                 
11

 Aigner et al. (1977) and Meeusen and van den Broeck (1977) also proposed an exponential distribution for 

the non-negative efficiency term.  
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further treatment of technical details and a broad survey on subsequently developed 

models.  

1.3.1 Productivity growth taking technical efficiency into account  

Allowing for the possibility of technical inefficiency we can write the production 

technology of two adjacent time periods 𝑠 and 𝑡 in the following way:  

𝑌𝑠 = 𝐴𝑠 𝐹(𝑿𝑠)𝑇𝐸𝑂
𝑠   

and (1.23) 

𝑌𝑡 = 𝐴𝑡  𝐹(𝑿𝑡)𝑇𝐸𝑂
𝑡   

Rearranging both equations to compare the productivity in the two time periods, similarly 

to equation 1.5 yields: 

𝑇𝐹𝑃𝑡

𝑇𝐹𝑃𝑠
=

𝑌𝑡  𝐹(𝑿𝑡)⁄

𝑌𝑡  𝐹(𝑿𝑡)⁄
=

𝐴𝑡

𝐴𝑠

 𝑇𝐸𝑂
𝑡

 𝑇𝐸𝑂
𝑠  (1.24) 

From equation (1.24), we obtain a simple expression that shows that productivity growth 

can be decomposed into two sources. The first ratio on the right-hand side represents the 

change in the production frontier, i.e., technical change, while the second ratio represents 

the change in technical efficiency.  

To decompose total factor productivity growth within a parametric framework, the 

way in which technical change and technical efficiency can vary over time has to be 

specified. The most common form used to account for technical change is the introduction 

of a time trend in the production function (first applied by Tinbergen (1942)), often 

augmented by a squared trend variable to allow for non-linearity over time and interaction 

terms of the trend variable and inputs to allow for non-neutral technical change (e.g., 

Gollop and Jorgenson, 1980). Yearly dummy variables allow for flexible but purely 

neutral technical change; however, Baltagi and Griffin (1988) introduce a flexible general 

index of technical change, which may be non-neutral and scale-augmenting. Numerous 

different specifications of time-varying technical efficiency have been proposed for 

parametric frontier models, which also include the use of linear and non-linear trends as 

well as time dummies (see, e.g., Kumbhakar and Lovell (2000) and Karagiannis and 

Tzouvelekas (2010)).   
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A generalized representation of the production technology that allows for technical 

inefficiency and non-neutral and scale-augmenting technical change can be written as 

follows: 

𝑌𝑡 = 𝐺(𝑿𝑡, 𝑡)𝑇𝐸𝑂
𝑡  (1.25) 

Following Solow’s (1957) theory of growth, Bauer (1990) builds on the work by Denny et 

al. (1981) and Nishimizu and Page (1982) to decompose total factor productivity growth 

(see also Lovell, 1996). After taking logs of both sides, the total differential of equation 

(1.25) with respect to time yields:   

𝑦̇ = ∑
𝜕𝑔(𝑥𝑘

𝑡 , 𝑡)

𝜕𝑥𝑘
𝑡

𝐾

𝑘=1

𝑥̇𝑘 +
𝜕𝑔(𝑥𝑘

𝑡 , 𝑡)

𝜕𝑡
+

𝜕 ln 𝑇𝐸𝑂
𝑡

𝜕𝑡
 (1.26) 

By subtracting aggregate input growth denoted by ∑ 𝑠𝑘
𝐾
𝑘=1 𝑥̇𝑘 and rearranging, we yield 

the following expression for TFP growth: 

𝑡𝑓𝑝̇ = ∑ (
𝜕𝑔(𝑥𝑘

𝑡 , 𝑡)

𝜕𝑥𝑘
𝑡 − 𝑠𝑘)

𝐾

𝑘=1

𝑥̇𝑘 +
𝜕𝑔(𝑥𝑘

𝑡 , 𝑡)

𝜕𝑡
+

𝜕 ln 𝑇𝐸𝑂
𝑡

𝜕𝑡
 (1.27) 

Assuming allocative efficiency and competitive input markets, equation (1.27) can be 

rewritten as 

𝑡𝑓𝑝̇ =
𝜕𝑔(𝑥𝑘

𝑡 , 𝑡)

𝜕𝑡
+

𝜕 ln 𝑇𝐸𝑂
𝑡

𝜕𝑡
+ (𝜀 − 1) ∑ (

𝜀𝑘

𝜀
) 𝑥̇𝑘

𝐾

𝑘=1

 (1.28) 

where 𝜀𝑘 =
𝜕𝑔(𝒙𝑡,𝑡)

𝜕𝑥𝑘
 is the production elasticity of the k-th input, 𝜀 = ∑ 𝜀𝑘

𝐾
𝑘=1  is the scale 

elasticity and 𝑠𝑘 =
𝜀𝑘

𝜀
 (Chan and Mountain, 1983). This decomposition equals the one 

derived by Bauer (1990) and allows the decomposition of total factor productivity growth 

into technical change, changes in technical efficiency and a scale change effect.
12

 If all 

firms are technically efficient or if technical efficiency is time-invariant and the 

technology exhibits constant returns to scale, TFP growth again equals technical change.  

Färe et al. (1994) developed an almost equivalent decomposition of TFP growth 

based on the non-parametric Malmquist index. Empirically, they derive the distance 

measures required to calculate the index using the Data Envelopment approach. However, 

the Malmquist productivity index can also be calculated based on econometrically 

estimated parametric frontier technologies. Balk (2001), Fuentes et al. (2001), Orea (2002) 

                                                 
12

 Having data on input prices 𝑊𝑘 available, an additional component, namely allocative efficiency, can be 

identified (Bauer, 1990; Lovell, 1996). 
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and Coelli et al. (2005) provide extensive discussions on this approach; see Newman and 

Matthews (2006) and chapter 5 in this thesis for empirical applications. The Malmquist 

index and the derivative based approach yield almost identical results if they are applied to 

the same parametric representation of a production technology.  

1.3.2 Efficiency and heterogeneity  

The notion of technical inefficiency usually raises suspicion among neoclassical 

economists, as it implies the opportunity of a “free lunch”. In the discussion following 

Farrell’s presentation of his 1957 paper, several issues were immediately recognized, 

which are still relevant in efficiency analysis, such as the following: i. which inputs to 

include; ii. how to aggregate inputs; iii. how to distinguish between the heterogeneity of 

inputs and production conditions and inefficiency; iv. how to account for different 

production technologies; v. how to account for random productivity shocks, such as 

weather (Farrell, 1957; Hall and Winsten, 1959). In his discussion of the problems and 

possible benefits of efficiency analysis, Lovell (1993) refers to Knight (1933), who noted 

that truly taking all inputs and outputs into account would inevitably cancel out all 

productivity dispersion between firms.
13

 Stigler (1976) and de Alessi (1983) also follow 

this line of thought in their criticism of the work on X-inefficiency by Leibenstein (1966, 

1976). Rather, they assign any “perceived” productivity dispersion to an incomplete model 

specification with missing or non-homogeneous inputs and outputs, unobserved 

constraints and an incorrectly specified objective function but not to a general deviation 

from maximizing behavior, as proposed by Leibenstein. Førsund et al. (1980) in an early 

survey article on frontier production functions and more recently, Fried et al. (2008) 

acknowledge these objections; however, they also emphasize the benefits and potential 

uses of technical efficiency as a “partial” measure of performance:  

“What we have seen are simplified […] models of the firm in which 

measured performance differentials presumably reflect variation in the ability 

to deal with the complexities of the real world. Indeed, performance measures 

based on simplified models of the firm are often useful and sometimes 

necessary. They are useful when the objectives of producers, or the constraints 

facing them, are either unknown or unconventional or subject to debate. […] 

The use […] has proven necessary in a number of contexts for lack of relevant 

data.” (Fried et al., 2008 p. 9).  

                                                 
13

 An identical suggestion made by Zvi Griliches is discussed by Schultz (1959).  
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Nevertheless, it has become one of the major research objectives on frontier functions to 

reduce the proportion of unexplained productivity dispersion, which is then called 

inefficiency. This is also the overarching subject of this thesis. In all four chapters, the 

impact of heterogeneity on the resulting performance measures is addressed. Drawing on 

the example of two farmers, which was already used by Stigler (1976) and Førsund et al. 

(1980), I illustrate the conceptual difference between heterogeneity and inefficiency as 

follows: We observe two farmers using the same technology and identical amounts of 

inputs in their production but yield consistently different amounts of the (measured) 

output corn. Let us consider the case of substantial differences in the land quality of the 

farms. This would surely be regarded as a lack of homogeneity in inputs or, in other 

words, heterogeneity in production conditions. In this context it is commonly accepted 

that the notion of inefficiency to “explain” the shortfall in production is misplaced. The 

farmer has only limited potential to improve the land quality and faces serious constraints 

in the form of transaction costs for relocating his business. In addition, it can be argued 

that (in principle) the quality of land could be measured or approximated in empirical 

studies. Let us now consider a case in which one of the farmers daydreams occasionally 

during work and therefore makes technical mistakes. Again, the effect of these mistakes 

could be assigned to a lower quality of an input, labor this time. Another explanation in 

line with neoclassical theory would be differences in the farmers’ objective functions. The 

daydreaming farmer might efficiently maximize utility instead of corn output, leading to a 

misspecification of the simple production frontier model.
14

 However, it is highly 

unrealistic to ever obtain a measure of daydreaming and correct the quality of the labor 

input, or even to specify a model that allows for an output mix of corn and welfare 

through daydreaming. In that case, the concept of technical inefficiency can be worthwhile 

to obtain a measure of the shortfall of production from a best-practice production frontier, 

even if it is impossible to attribute this shortfall to a specific input or to identify the 

misspecification of the model. Despite the apparent difficulties in defining inefficiency 

and heterogeneity unambiguously,
15

 it has become common practice in the frontier 

literature to attribute heterogeneity to “factors outside the firms’ control” or 

“environmental factors” and inefficiency to factors that seem manageable by the firm. 

Examples of this distinction can be found in Perelman and Pestieau (1988), Farsi et al. 

(2005), Greene (2005), Abrate et al. (2011), and Emvalomatis (2012), among others.  

                                                 
14

 A similar point was also made by Alchian and Kessel (1962) in the context of a comparison of 

monopolists and competitors. 
15

 See also Hall and Winston (1959) for an exhaustive discussion.  
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In this thesis, three distinct manifestations of heterogeneity are addressed, although not 

with equal weight. These are heterogeneity in production conditions, heterogeneous 

technologies and output price heterogeneity.  

Heterogeneous production conditions  

The idea behind heterogeneous production conditions is to account for disadvantages that 

cannot, or only with great difficulty, be addressed by the firms. If the differences in 

production conditions are observed or can be approximated, control variables can be easily 

included in the production function part of the stochastic frontier model (Sherlund et al., 

2002; Coelli et al., 1999). The use of regional dummy variables as shifters of the 

production function is a widely used example of this practice, especially in empirical 

applications to the agricultural sector (see, e.g., Hadley (2006) and chapter 5 of this 

thesis). Another part of the stochastic frontier literature concerns the incorporation of 

factors, which are assumed to directly affect the efficiency with which inputs are 

converted to outputs (Kumbhakar and Lovell, 2000). In these models, the variables are not 

included in the production function part of the model but in the specification of the 

composed error term. That way, the effects on the mean and the variance of the 

inefficiency term or the variance of the stochastic noise term can be modeled. The age and 

education of farmers as well as the location of farms are examples of variables that are 

frequently assumed to directly affect the inefficiency of an agricultural production process. 

For the various specifications of such models and the interpretation of their results, see, 

e.g., Kumbhakar et al. (1991), Battese and Coelli (1995), Wang and Schmidt (2002), 

Karagiannis and Tzouvelekas (2005), Alvarez et al. (2006), Liu and Myers (2009) and, for 

a textbook treatment, chapter 7 in Kumbhakar and Lovell (2000).  

However, if no information about the production conditions or firm characteristics is 

available, i.e., heterogeneity is unobserved, model requirements change. Assuming away 

any heterogeneity, Pitt and Lee (1981) and Schmidt and Sickles (1984) proposed 

stochastic frontier models for panel data with a one-sided firm effect. Inefficiency in those 

models contains by construction the effects of all time-invariant differences between the 

analyzed units. Greene (2005) discusses stochastic frontier models for panel data, which 

attempt to identify inefficiencies from the skewness of the composed error term, similarly 

to the original model by Aigner et al. 1977, but includes a firm-specific fixed or random 

effect in the model. These so-called “true-effect” models separate inefficiency from 

unobserved heterogeneity based on the assertion that any time-invariant differences in 

productivity represent heterogeneity rather than inefficiency. Kumbhakar et al. (2014) 
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further explore the skewness of the firm effects and use multi-step models to identify 

time-varying inefficiency as well as time-invariant “long-term” inefficiency.
16

 In an 

attempt to mitigate the “heterogeneity bias” in technology parameters caused by the 

correlation of unobserved factors with input quantities, Farsi et al. (2005) incorporate 

Mundlak’s (1978) formulation into stochastic frontier models. We build on their idea and 

propose stochastic frontier specifications to take observed and unobserved heterogeneity 

into account (chapter 3) and apply it in chapters 2 and 4. 

Technological heterogeneity 

The notion that neglecting potentially heterogeneous production technologies leads to a 

misspecified model and causes productivity dispersion among analyzed firms was 

discussed already by Marschak and Andrews (1944) and Griliches (1957). Nelson (1968) 

and Atkinson and Stiglitz (1969) also abandon the assumption that all firms use one 

identical production technology. They focus on “localized” technical change, the state of 

development and the diffusion of technological advances across firms and countries in the 

passage of time. Drawing on Nelson’s paper, Hayami and Ruttan (1970) develop the 

concept of a meta-production function to model labor productivity growth in the 

agricultural sector in different countries. A more straightforward way to take technological 

heterogeneity in an empirical application into account is simply dividing the sample at 

hand and estimating separate production technologies. Hoch (1962) briefly notes this 

approach; he suspects technological heterogeneity due to the different locations of farms 

in southeastern and southwestern Minnesota. More recent empirical applications on diary 

production distinguish technologies according to characteristics such as the degree of 

specialization, organic versus conventional production, or milking technology (Newman 

and Matthews, 2006; Mayen et al. 2010; Alvarez et al. 2012). Moreira and Bravo-Uretha 

(2010) use a meta-frontier framework in the spirit of Hayami and Ruttan (1970) to analyze 

dairy production in three South American countries. Karagiannis et al. (2011) estimate a 

bilateral production frontier to identify the technological differences between organic and 

conventional dairy production. 

If technological heterogeneity is suspected, which cannot be described by single or 

even multiple characteristics, or if the respective information is unobserved, econometric 

procedures such as latent class or random coefficient models can be applied (see Alvarez 

and del Corral (2010), Sauer and Morrison Paul (2013) and Emvalomatis (2012) for recent 

                                                 
16

 Colombi et al. (2011) suggest a one-step maximum likelihood model for the econometric implementation 

of the short-run and long-run inefficiency specification.  
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applications on dairy production). In chapter 5 of this thesis, we combine the two 

approaches in an analysis of German dairy farms in Bavaria. First, we distinguish farms 

that operate solely on permanent grassland from fodder-crop dairy farms. Second, to 

account for the remaining unobserved technological heterogeneity, we use a latent class 

model.
17

  

Output price heterogeneity 

Accounting data play an important role as a major data source in many empirical studies. 

However, the wide spread use of costs to approximate inputs and revenues to approximate 

outputs brings the need to address price changes over time as well as price dispersion 

between firms. The temporal dimension of price fluctuations is commonly taken into 

account by deflating all monetary variables using appropriate price indices, which are 

obtained from external data in most cases (e.g., statistical offices as Destatis in Germany 

or the Bureau of Labor Statistics in the US). However, whether the attempt to remove 

temporal price changes from the data is successful depends on the extent to which 

common industry or sector-based price indices display the overall price development in an 

actual empirical sample. If the sample that is used by the authority to construct the price 

index deviates systematically from the researchers’ sample, the deflator may fail to 

represent the unobserved average price development. Similar issues can occur if the index 

is constructed on a different level of product aggregation or if an index for a seemingly 

related product has to be used as a proxy if prices for the actual product under 

consideration are not recorded. However, the researcher cannot assess the application-

specific quality of a price index directly if the firms’ prices are unobserved in his dataset. 

Therefore, much of the judgment of whether a deflator at hand is suitable depends on the 

availability of detailed information on how it was constructed. 

Even if the deflator price index perfectly represents the overall average price 

development in the sample at hand, a common industry or sector-based price index cannot 

account for price dispersion between firms. The crucial points here are as follows: what 

does the price dispersion reflect and can it be considered as an iid white noise term that is 

uncorrelated with input and output quantities? If price dispersion reflects actual quality 

differences in produced products or input factors, the use of deflated revenues and costs is 

a convenient way of taking heterogeneity in outputs or input factors into account. An 
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 Flexible functional forms such as the translog also allow for a certain degree of technological 

heterogeneity, as the production elasticities for the individual firms vary according to their level of input use 

(Sauer and Morrison Paul, 2013).  
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illustration of this case is the use of deflated revenues as output measures instead of the 

physical quantity in studies concerning dairy production. Milk is a rather homogeneous 

product, but its quality can vary according to protein and fat content, which are seldom 

observed in a dataset. Dairy processors, however, observe the milk quality and adjust 

prices accordingly (see Reinhard et al., 1999 and Emvalomatis, 2012). An example on the 

input side is provided by Fox and Smeets (2011), showing the advantage of using the 

deflated wage bill as a measure of labor input compared to the number of employees or 

hour-based measures.  

However, unobserved quality-adjusted price heterogeneity may have serious adverse 

effects. The monotonicity property naturally requires the correlation between inputs and 

outputs to be non-negative. Following the usual assumptions of a downward-sloping 

demand curve and negatively correlated output quantities and prices, prices and inputs are 

negatively correlated. These considerations also fit with the results of an empirical 

analysis of US manufacturers by Roberts and Supina (2000), who consistently find that 

large producers charge lower prices. Klette and Griliches (1996) discuss the implications 

of these relationships for the econometric estimation of production and cost functions. 

They show that the resulting omitted variable bias leads to downward-biased coefficients 

and scale elasticities in most cases. They also propose a potential solution for the omitted 

price bias by approximating unobserved price dispersion by the firms’ market share. 

Under the assumption of monopolistic competition and horizontal product differentiation, 

they integrate a CES demand system in the production function and solve for the firm-

level prices. More recently, De Loecker (2011) built on this approach to reduce the 

omitted price bias in productivity measures. He estimates the resulting model using a 

semi-parametric proxy estimator (Olley and Pakes, 1996) to account for simultaneity and 

allows for multi-product firms and segment-specific demand elasticities.  

Foster et al. (2008) examine the resulting bias in the calculated productivity 

measures if the price dispersion between firms is not taken into account by comparing 

revenue-based and quantity-based TFP. Thereby, they avoid the econometric estimation of 

a production technology and calculate TFP using index numbers techniques. They find 

that the use of a common price index for the firms in a sample leads to a substantial bias of 

TFP measures. Inefficient firms produce less physical output using a given set of inputs, 

implying higher marginal costs. In an imperfectly competitive environment, firms can pass 

these costs along, resulting in a firm price above the industry average. Deflated revenues 

are then an upward-biased measure of the firms’ output quantities and consequently lead 



INTRODUCTION 22 

to an upward-biased productivity measure. Likewise, for highly productive firms charging 

lower than average prices, deflated revenues underestimate the physical output. Hence, 

output prices are inversely correlated with physical productivity (see also De Loecker, 

2011). Consequently, revenue-based TFP has a lower variation than quantity-based TFP, 

and the firms appear to be a more homogenous group if deflated revenues are used as 

output measure. This also translates into an inflation of the estimated technical efficiency 

scores in frontier applications. In chapter 4 of this thesis, we use firm-specific output 

prices to obtain a quantity type output measure for a sample of German breweries. In 

chapter 5, however, we use revenues deflated by a common price index for all firms in the 

sample to allow for quality differences in the output of dairy farms.
18

  

The discussion above shows how important it is to appreciate the theoretical and 

methodological foundations of the measurement of productivity and efficiency. Numerous 

studies have provided empirical evidence of unexplained productivity change over time or 

productivity dispersion between firms. To be able to draw useful conclusions from their 

results, it is necessary to be aware of the underlying assumptions made, possible 

shortcomings of the data and the methodology in use, and potential misspecifications of 

the empirical model. Only then can these partial measures of firm performance be used to 

further investigate the sources of productivity change over time or efficiency dispersion 

between firms, and only then it is sensible to test hypotheses, e.g., concerning the effect of 

policy measures on productivity. 

1.4. Outline of the Thesis 

The main body of the thesis is composed of four articles that address methodological as 

well as empirical research questions. In the first article (chapter 2), I discuss various 

specifications of stochastic frontier models and examine the effect of model choice on the 

measurement of productivity growth in an empirical application. Thereby, the focus 

particularly lies in the way in which models account for (unobserved) heterogeneity in the 

data and how they attempt to distinguish heterogeneity from inefficiency. I elaborate not 

only on the efficiency scores but also on the estimated representation of the production 

technology itself, as the corresponding production elasticities and returns to scale 
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 Note that I do not observe firm specific prices on the input side of production. Hence, even measures of 

“physical” productivity may still contain price effects on the input side, i.e., firms that face higher factor 

prices will appear to utilize a relatively higher level of inputs and less productive as a consequence. 

However, as Foster et al. (2008) note, using quantity output, productivity reflects firms’ “idiosyncratic cost 

components, both technological fundamentals and factor prices”. See also Ornahghi (2006) and Katayama et 

al. (2009) for a discussion of the effects of input price differences. 
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measures are elementary parts of every TFP decomposition. The results show that the 

relative contribution of the components to TFP growth is quite sensitive to the choice of 

the econometric model, which brings up the need to select the “right” model. I apply 

various statistical tests to narrow down the range of applicable models and offer further 

criteria with which to choose between non-nested models.  

In the second article (chapter 3), we follow a suggestion by Farsi et al. (2005; 

2005a) and propose two alternative models in the spirit of Mundlak (1978) and the “true” 

random effects model by Greene (2005). In both of them, we try to improve the ability of 

the true random-effects models to account for heterogeneity by further enlarging the set of 

potential correlates to increase the portion of measured heterogeneity and squeeze the 

impact of heterogeneity bias on the estimated technology parameters and technical 

efficiency. In addition to the true effect types of models, accounting for endogenous 

individual effects gives rise to several new variants of standard stochastic frontier models. 

We present two such variants, making no distributional assumptions that can be viewed as 

extensions of the fixed and the random effects stochastic frontier models introduced by 

Schmidt and Sickles (1984) and developed further by Good et al. (1990). We also discuss 

three models that make distributional assumptions about the inefficiency term, which 

complement previous attempts by Coelli et al. (1999) and Sherlund et al. (2002) to 

account for environmental factors in a maximum-likelihood type of stochastic frontier 

model. We outline the estimation procedures and compare the effectiveness of the 

discussed models in an empirical application. The results show the ability of the proposed 

specifications to take observed and unobserved heterogeneity into account and to reduce 

the respective contamination of the efficiency scores. 

In the third article (chapter 4), we investigate the evolution of labor productivity in 

the German brewing sector. To measure the technical efficiency of the breweries and at 

the same time account for unobserved heterogeneity, we apply one of the stochastic 

frontier models as proposed in chapter 3. In addition, we take price heterogeneity into 

account and use a firm-specific price index to obtain a quantity type measure of output. 

We provide a method to decompose aggregate industry labor productivity growth into 

seven distinct components: input deepening, technical change, technical efficiency, scale 

effect, between-firm reallocation and effects from exits and entry. The first four 

components measure the productivity growth that takes place within a firm. The latter 

three components capture industry dynamics. Our results show that within-firm effects 
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and particularly technical change and the scale change effect clearly dominated the effects 

of industry restructuring. 

In the fourth article (chapter 5), we compare the productive performance of dairy 

farms that operate solely on permanent grassland and dairy farms using fodder crops from 

arable land. Using a latent class stochastic frontier model, we allow for heterogeneous 

production technologies and identify more intensive and extensive production systems for 

both types of farms. Thereby, our notion of intensive vs. extensive dairy production is 

based on differences in stocking density and milk yield per cow and year. We try to take 

heterogeneity in production conditions into account by introducing regional dummy 

variables for various agricultural production areas. To be able to compare the productivity 

levels and productivity developments of the various groups of farms, we develop a group- 

and chain-linked multilateral productivity index. Our results show that the intensive 

classes in both groups of farms are more productive and are also able to increase their 

productivity to a greater extent over the observed period. We find technical progress to be 

by far the most important component of TFP growth for all classes. Our calculations of the 

multilateral Törnqvist index reveal that both the FC classes are more productive than their 

PGL counterparts. However, our distinction between intensive and extensive classes 

shows that there are highly productive grassland farms that can keep up with the fodder-

crop farms and that those farms are predominantly found in the more intensive class of 

farms. The more substantial productivity gap exists between the intensive and extensive 

classes, and this gap widens because of the higher productivity growth rates in the 

intensive classes. 

Each of the chapters in this thesis can be viewed as an independent contribution to 

the literature in the broad field of productivity analysis; however, they all are connected by 

addressing the overarching research question of how productivity and efficiency can be 

measured most accurately in the presence of observed and unobserved heterogeneity.
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2. TOTAL FACTOR PRODUCTIVITY DECOMPOSITION AND 

UNOBSERVED HETEROGENEITY IN STOCHASTIC 

FRONTIER MODELS 

 

 

Abstract 

This paper examines in an empirical comparison how different econometric specifications 

of stochastic frontier models affect the decomposition of total factor productivity growth. 

We estimate nine different stochastic frontier models, which have been in wide use in 

empirical investigations on the sources of productivity growth. Our results show that the 

relative contribution of the components to TFP growth is quite sensitive to the choice of 

the econometric model, which brings up the need to select the “right” model. We show 

various statistical tests to narrow down the range of applicable models and offer further 

criteria to choose between non-nested models. 
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2.1. Introduction 

Productivity analysis has become a major instrument to better understand and describe 

economic developments in many economic sectors (Fried, Lovell, and Schmidt 2008). 

Departing from the seminal paper by Solow (1957), authors tried to minimize the 

unexplained residual of technical change and provide a more detailed structure of total 

factor productivity (TFP) growth. Essential component of such attempts is the estimation 

of a parametric representation of the underlying production technology.
19

 One of the first 

papers in this regard was Griliches (1964), who integrated education as well as research 

and extension services as explanatory variables in an aggregate agricultural production 

function. Denny, Fuss, and Waverman (1981), Nishimizu and Page (1982) and Bauer 

(1990) relaxed assumptions such as of full technical efficiency and constant returns to 

scale.
20

 By this means, they separated the respective effects from technical change, 

resulting in a decomposition of TFP growth. In many empirical studies following this 

approach, the relevant question of interest relates to the relative importance of the 

contributing factors to total factor productivity growth. Those results then often build the 

basis for recommendations on regulatory or support policies.
21

 Therefore, it becomes 

crucial to be aware how potentially sensitive those results can be with regard to the choice 

of particular methods. 

The focus of this study lies on the econometric models used to estimate parametric 

representations of a production technology in a stochastic frontier framework and how 

different models can influence results in regard to the sources of productivity growth. 

Consequently, we elaborate not only on the efficiency scores, but also on the estimated 

representation of the production technology itself, as the corresponding production 

elasticities and returns to scale measures are an elementary part of every TFP 

decomposition. We also call attention to the fact that we can only draw inferences from 

the results of a TFP decomposition, if the underlying estimate of the production 

technology fulfills the requirements of microeconomic theory. These features distinguish 

our work from the existing studies which compare the results of different stochastic 
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 Färe et al. (1994) show how TFP growth can be decomposed using non-parametric methods.  
20

 Denny, Fuss, and Waverman (1981) and many others also identified further contributing factors to total 

factor productivity such as market imperfections and allocative efficiency (e.g. Morrison 1992). 
21

 Examples are Fan (1991), Brümmer, Glauben, and Thijssen (2002), Saal, Parker, and Weyman-Jones 

(2007), Key and McBride (2007), Goto and Sueyoshi (2009) and Tovar, Ramos-Real, and de Almeida 

(2011). 
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frontier models mainly in regard to efficiency scores (e.g. Ahmad and Bravo-Uretha 1996, 

Hallam and Machado 1996, and Abdulai and Tietje 2007).  

We compare a variety of stochastic frontier models that have been most widely 

applied in empirical TFP growth studies. We focus in particular on the way how models 

account for (unobserved) heterogeneity
22

 in the data and how they distinguish 

heterogeneity from inefficiency. It appears that there are no clear-cut criteria available to 

guide the researcher when choosing “the” appropriate model, since seemingly valid 

models are not nested altogether, which complicates the choice purely based on 

econometric specification tests. However, we are able to provide some guidance on how to 

choose an appropriate econometric model for a specific empirical application. 

For our application, we use a data set of just under 1000 dairy farms in an 

unbalanced panel, covering the years 2000 to 2008. A translog output-oriented distance 

function is utilized to represent the production technology. In order to make the results of 

the different models comparable, we keep the data, the specification of variables and the 

functional form identical across the econometric specifications. Based on the estimated 

parameters and inefficiency estimates, we decompose productivity growth into the three 

components that are most commonly found in empirical applications: technical change, 

changes in technical efficiency and the scale change effect.  

2.2. Stochastic Frontier Models  

Technical efficiency is considered as the ability of a firm to produce the maximal possible 

output using a given level of inputs.
23

 A firm’s potential inefficiency is the shortfall in 

observed production as against a best practice frontier. The econometric estimation of a 

function that represents this maximal possible expansion of output for given inputs is the 

objective of all models we discuss in this paper. Several excellent surveys on the concepts 

of (technical) efficiency and the estimation of stochastic frontier models exist (e.g. Greene 

1993, Kumbhakar and Lovell 2000); hence, we limit our overview to a short description of 

the respective models we use in our application and their main properties. Thereby, we 

focus mainly on the assumptions these models impose on the residual error term, whether 
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 Models that take parameter- or technological heterogeneity into account are excluded from this work. In 

this regard see works by Tsionas (2002), Orea and Kumbhakar (2004), and Greene (2005) for random 

parameter and latent class models in the context of stochastic frontier models and Emvalomatis (2011) for a 

recent application.  
23

 This statement corresponds to the concept of output-oriented technical efficiency. Input oriented 

efficiency aims for the minimal feasible use of inputs to produce a given level of outputs.  
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they account for heterogeneity between the firms and the way estimates of inefficiency are 

derived. These properties are summarized in table 2-1.  

We start our overview with the pooled model (I) based on the original normal half-

normal model proposed for cross-sectional data by Aigner, Lovell and Schmidt (1977) 

which treats every observation in a sample as independent of each other. Two examples 

for TFP studies concerning the agricultural sector that used the pooled model are Fan 

(1991) and Key, McBride, and Mosheim (2008). In order to keep the notation simple we 

start from a production function, the single-output special case of the output oriented 

distance function. Assuming a log-linear functional form we can write this model as: 

𝑦𝑖𝑡 = 𝒙𝑖𝑡
′ 𝛃 + 𝑒𝑖𝑡 (2.1) 

where 𝑒𝑖𝑡 = 𝑣𝑖𝑡 − 𝑢𝑖𝑡 is a composed error term, 𝑦𝑖𝑡 is the log output, 𝒙 is a vector of log 

inputs and 𝛃 represents the vector of all technology related regression coefficients. The 

subscripts 𝑖 and 𝑡 denote firms and time periods, respectively. Model I contains a 

composed error term 𝑒𝑖𝑡, where 𝑢𝑖𝑡  ~𝑖𝑖𝑑 𝑁+(0, σ𝑢
2 ) is a non-negative term, representing 

inefficiency (𝑢), while 𝑣𝑖𝑡~𝑖𝑖𝑑 𝑁(0, σ𝑣
2) is a symmetric term that captures statistical noise 

e.g. from exogenous productivity shocks beyond the control of the analyzed units or 

measurement errors. Both components of 𝑒𝑖𝑡 are assumed to be uncorrelated with input 

quantities and each other. Especially the assumption that the firms’ inefficiency is 

uncorrelated with the used input quantities requires further reasoning. If their own 

technical inefficiency in 𝑡 is not known to the firms at the time they make their input 

decisions and the firms maximize expected profits, Zellner, Kmenta, and Dreze (1966) 

argue that the quantities of variable inputs are largely predetermined and can consequently 

be uncorrelated with technical inefficiency. The individual efficiency scores of the 𝑖-th 

analyzed unit can be obtained, using the mean (or the mode) of the conditional distribution 

of 𝑢𝑖𝑡 given 𝑒𝑖𝑡 as point estimator (Jondrow et al. 1982). However, since the variance of 

the mean (mode) of (𝑢𝑖𝑡|𝑒𝑖𝑡) for each unit is independent of the sample size, efficiency 

scores cannot be estimated consistently using the pooled model.   

Model II is an inefficiency effects model following a concept as initially proposed 

by Kumbhakar, Ghosh, and MacGuckin (1991). The specification we use in this paper has 

been formulated by Battese and Coelli (1995) for the use with panel data, which has been 

used extensively in the analysis of productivity growth. Examples are Yao, Liu, and 

Zhang (2001), Brümmer, Glauben, and Thijssen (2002), Rae et al. (2006) and Jin et al. 

2010. The main feature of model II is the incorporation of exogenous influences on the 
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inefficiency term in a one-step approach.
24

 Battese and Coelli (1995) achieve this by 

assuming the inefficiency term to have a truncated-normal distribution with mean 

μ𝑖𝑡 = 𝒛𝑖𝑡′𝛇 and variance σ𝑢
2  (see table 2-1). In this context, 𝒛𝑖𝑡 is a vector of observed 

exogenous variables which may have an influence on the firm’s inefficiency and 𝛇 is the 

corresponding vector of additional parameters to be estimated. Although model II is 

designed for the use with panel data, it is not a panel data treatment in the classical sense 

since inefficiency terms are assumed to be independent over time (Battese and Coelli 

1995) and observations of a single firm in different time periods are treated as 

observations of separate firms (Abdulai and Tietje 2007 p.397) just as in model I.
25

 There 

is an ongoing debate in the efficiency literature which can be traced back to one of the 

seminal papers on the topic by Deprins and Simar (1989) about the “right place” of these 

exogenous 𝑧-variables. The question on “where do we put the 𝑧’s” (Greene 2008 p. 154) 

concerns whether these variables truly explain part of the variation in inefficiency or if 

they rather pick up heterogeneity and misspecifications of the production technology.
26

 An 

intuitive example for this debate is the use of variables on the education and age of 

farmers or the farms location found in many agricultural studies (e.g. Battese and Coelli 

1995, Tzouvelekas, Pantzios, and Fotopoulos 2001). It can be argued, that these variables 

should rather enter the production function part in an attempt to reduce heterogeneity and 

create homogenous measures of the inputs labor and land (Sherlund, Barrett, and Adesima 

2002). We do not further elaborate on this question; however, it seems worthwhile to 

cover these concerns when specifying any stochastic frontier model.  

The models III and IV are fixed- and random-effects panel models, developed by 

Schmidt and Sickles (1984), extended to allow for time-varying technical efficiency by 

Cornwell, Schmidt, and Sickles (1990).27 Wu (1995) and Karagiannis, Midmore, and 

Tzouvelekas (2004) have used this model to decompose TFP growth. Models III and IV 

are closely related to the standard effects models known from panel data treatment. In 

their initial specification with time-invariant efficiency, the term 𝑒𝑖𝑡 is assumed to be an 

𝑖𝑖𝑑 (0, σ𝑒
2) white noise error term; the additional effect ϑi is a constant firm-specific 

                                                 
24

 Huang and Liu (1994) propose a very similar specification 
25

 However, in contrast to model I, the distribution of inefficiency 𝑢𝑖𝑡 varies over 𝒛. Hence inefficiency is 

not assumed to be identically distributed. 
26

 See Kumbhakar and Lovell (2000) chapter 7 for a literature review and a detailed summary of different 

approaches to incorporate exogenous influences on efficiency.  
27

 Cornwell, Schmidt, and Sickles (1990) also propose an efficient instrumental variables estimator as a 

generalization of the Hausman and Taylor estimator (Hausman and Taylor 1981). We do not use the H-T 

estimator in this study. 
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parameter or an 𝑖𝑖𝑑 (0, σϑ
2) random effect, respectively. The fixed-effects model can be 

estimated by OLS using the “within-groups” transformation. Then slope coefficients are 

estimated consistently as 𝑁 or 𝑇 → +∞ and unbiased due to unobserved time-invariant 

heterogeneity, since all stable characteristics of the individual firms are controlled. The 

random-effects model can easily be estimated by FGLS. As is common for random-effects 

models, the individual effects ϑi are assumed to be uncorrelated with the explanatory 

variables. In case this assumption does not hold, we have to expect biased slope 

parameters. Schmidt and Sickles (1984) rely on the firm-specific means of the residuals 

𝑒𝑖𝑡 from the within-groups and the FGLS estimator to recover estimates of the individual 

effects ϑ𝑖. From there on, the firms’ level of inefficiency is obtained using the 

normalization 𝑢𝑖 = max(ϑ̂𝑖) −  ϑ̂𝑖. However, the a-priori assumption of time-invariant 

inefficiency appears to be rather restrictive and may even be implausible for productivity 

growth analysis, especially if the operating environment is competitive and the panel 

includes more than a few time periods. In order to allow for time varying inefficiency, 

Cornwell, Schmidt, and Sickles (1990) adapt this model and replace the constant firm 

effect ϑ𝑖 =
1

𝑇𝑖
∑ 𝑒𝑖𝑡

𝑇𝑖
𝑡=1  by ϑ̂𝑖𝑡 = θ̂1𝑖 + θ̂2𝑖𝑡 + θ̂3𝑖𝑡

2, varying as flexible function of time. 

Firm-specific estimates of the respective parameters are derived by regressing the 

residuals of the within-groups and the GLS estimator on a constant, 𝑡 and 𝑡² as in 𝑒𝑖𝑡 =

θ1𝑖 + θ2𝑖𝑡 + θ3𝑖𝑡
2 + ξ𝑖𝑡. 28 Again, we get the firms’ level of inefficiency from: 𝑢𝑖𝑡 =

max(ϑ̂𝑖𝑡) −  ϑ̂𝑖𝑡  ∀ 𝑡. 

The main feature of models III and IV is that they allow for time varying estimates 

of inefficiency, consistent for all 𝑖 and 𝑡 as 𝑇 → +∞ (Cornwell, Schmidt, and Sickles 

1990) without the need to make distributional assumptions. An important issue regarding 

models III and IV is the lack of distinction of unobserved heterogeneity and inefficiency. 

The inefficiency estimates obtained from the models III and IV contain by construction 

the effects of all time invariant differences between the analyzed units. This may lead to 

an overestimation of inefficiency for firms which are subject to unfavorable external 

conditions. As Farsi, Filippini, and Greene (2005 p. 77) note, this question may be even 

more serious for the FE model, since “…the firm-specific effects do not follow a single 

distribution and thus can have a relatively wide range of variation”. In the random-effects 

model, a part of the heterogeneity, which might be correlated with the explanatory 

                                                 
28

 ξ𝑖𝑡 is an additional error term that captures all remaining variance in  the residuals that is left unexplained 

by the flexible function of time. 
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variables (contrary to the respective assumption), can partly be suppressed in biased slope 

coefficients leading to biased TFP decompositions. 

Model V was proposed by Battese and Coelli (1992) and extends the maximum 

likelihood random-effects panel model of Pitt and Lee (1981) to allow for time varying 

inefficiency. It is one of the most popular stochastic frontier models used in empirical 

work on TFP growth (e.g. Kim and Han 2001, Coelli, Rahman, and Thirtle 2003, Newman 

and Matthews 2006, Rasmussen 2010). Under the assumption that the firm effect 𝑢𝑖 has a 

truncated normal distribution 𝑁+(μ, σ𝑢
2 ) it is modeled as time-variant inefficiency taking 

the following form: 

𝑢𝑖𝑡 = β(𝑡) 𝑢𝑖 (2.2) 

where β(𝑡) = 𝑒𝑥𝑝(−η(𝑡 − 𝑇)). If inefficiency appears to be time-invariant (η = 0) and 

𝑢𝑖 is half-normal distributed (μ = 0) the specification simplifies to the model of Pitt and 

Lee (1981). Model V shares two important properties with the GLS random-effects model 

IV. Despite the fact that inefficiency is allowed to vary over time, the firm specific 

random effect 𝑢𝑖 is still time-invariant and includes constant firm effects in the 

inefficiency term (Greene 2005). In addition, model V also relies on the assumption that 

the firm effects are uncorrelated with the explanatory variables. Regarding the use of this 

model in productivity analysis, two more aspects are noted. First, the function β(𝑡) that 

determines how inefficiency varies over time is not very flexible and can therefore only 

depict monotonous patterns of efficiency change. Inefficiency increases at an increasing 

rate if η < 0, decreases at an increasing rate if η > 0 and remains constant if η = 0. 

Second, unlike models III and IV, model V restricts the time path for efficiency change to 

be common to all firms.
29

 As an advantage of its panel nature, the model yields consistent 

estimates of 𝑢𝑖𝑡 as 𝑇 → +∞, in equivalence to the Pitt and Lee model – its time invariant 

special case. 

 

 

                                                 
29

 Cuesta (2000) proposes a maximum likelihood model allowing the temporal pattern of inefficiency to vary 

across firms 



TFP DECOMPOSITION AND UNOBSERVED HETEROGENEITY 32 

 

Table 2-1: Econometric specifications of stochastic frontier models 

Model 
Residual error 𝑒𝑖𝑡 

(unexplained by production technology) 

Specification of error 

components 
Heterogeneity Inefficiency 

Model I 

(Pooled) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡′𝛃𝑀𝐿𝐸 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 

𝑣𝑖𝑡~ 𝑁(0, σ𝑣
2) 

𝑢𝑖𝑡~ 𝑁+(0, σ𝑢
2 ) 

- 𝐸[𝑢𝑖𝑡|𝑒𝑖𝑡] 

Model II 

(BC95) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡′𝛃𝑀𝐿𝐸 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 

𝑣𝑖𝑡~ 𝑁(0, σ𝑣
2) 

𝑢𝑖𝑡~ 𝑁+(μ, σ𝑢
2 ) 

with: μ𝑖𝑡 = 𝒛𝑖𝑡′𝛇 

- 𝐸[𝑢𝑖𝑡|𝑒𝑖𝑡] 

Model III 

(FE) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡

′𝛃𝑊 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡 + ϑ𝑖 
𝑣𝑖𝑡~ 𝑖𝑖𝑑(0, σ𝑣

2) 

ϑ𝑖 = 𝑓𝑖𝑥𝑒𝑑 
- 

𝑒𝑖𝑡 = θ1𝑖 + θ2𝑖𝑡 +
1

2
θ3𝑖𝑡2 + ξ𝑖𝑡 

ϑ̂𝑖𝑡 = θ̂1𝑖 + θ̂2𝑖𝑡 + θ̂3𝑖𝑡2 

𝑢𝑖𝑡 = max
i

(ϑ̂𝑖𝑡) − ϑ̂𝑖𝑡  ∀ 𝑡 

Model IV 

(GLS) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡

′𝛃𝐺𝐿𝑆 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡 + ϑ𝑖 
𝑣𝑖𝑡~ 𝑖𝑖𝑑(0, σ𝑣

2) 

ϑ𝑖~ 𝑖𝑖𝑑(0, σϑ
2) 

- 

𝑒𝑖𝑡 = θ1𝑖 + θ2𝑖𝑡 +
1

2
θ3𝑖𝑡2 + ξ𝑖𝑡 

ϑ̂𝑖𝑡 = θ̂1𝑖 + θ̂2𝑖𝑡 + θ̂3𝑖𝑡2 

𝑢𝑖𝑡 = max
i

(ϑ̂𝑖𝑡) − ϑ̂𝑖𝑡  ∀ 𝑡 
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Model IV-M 

(GLS + 

Mundlak) 

𝑦𝑖𝑡 − 𝒙𝑖𝑡
′𝛃𝐺𝐿𝑆 − 𝒙̅𝑖∙′𝛄

𝐺𝐿𝑆 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡 + ϑ𝑖 

α𝑖 = 𝒙̅𝑖∙′𝛄
𝐺𝐿𝑆 + ϑ𝑖 

𝑣𝑖𝑡~ 𝑖𝑖𝑑(0, σ𝑣
2) 

ϑ𝑖~ 𝑖𝑖𝑑(0, σ𝜗
2 ) 

α̂𝑖 = 𝒙̅𝑖∙′𝛄̂
𝐺𝐿𝑆 

𝑒𝑖𝑡 = θ1𝑖 + θ2𝑖𝑡 +
1

2
θ3𝑖𝑡2 + ξ𝑖𝑡 

ϑ̂𝑖𝑡 = θ̂1𝑖 + θ̂2𝑖𝑡 + θ̂3𝑖𝑡2 

𝑢𝑖𝑡 = max
i

(ϑ̂𝑖𝑡) − ϑ̂𝑖𝑡  ∀ 𝑡 

Model V 

(BC92) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡

′𝛃𝑀𝐿𝐸 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 

𝑣𝑖𝑡~ 𝑁(0, σ𝑣
2) 

𝑢𝑖𝑡 = β(𝑡)𝑢𝑖 

β(𝑡) = exp(−η(𝑡 − 𝑇)) 

𝑢𝑖~ 𝑁+(μ, σ𝑢
2 ) 

- 𝐸[𝑢𝑖𝑡|𝑒𝑖𝑡] 

Model VI 

(TFE) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡

′𝛃𝑀𝐿𝐸 − 𝑫′α𝑖
𝑀𝐿𝐸 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 

𝑣𝑖𝑡~ 𝑁(0, σ𝑣
2) 

𝑢𝑖𝑡~ 𝑁+(0, σ𝑢
2 ) 

α̂𝑖
𝑀𝐿𝐸 𝐸[𝑢𝑖𝑡|𝑒𝑖𝑡] 

Model VII 

(TRE) 
𝑦𝑖𝑡 − 𝒙𝑖𝑡

′𝛃𝑀𝑆𝐿 − α𝑖 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 
𝑣𝑖𝑡~ 𝑖𝑖𝑑 𝑁(0, σ𝑣

2) 

𝑢𝑖𝑡~ 𝑖𝑖𝑑 𝑁+(0, σ𝑢
2 ) 

α𝑖~ 𝑁(0, σα
2 ) 𝐸[𝑢𝑖𝑡|α𝑖 + 𝑒𝑖𝑡] 

Model VII-M 

(TRE + 

Mundlak) 

𝑦𝑖𝑡 − 𝒙𝑖𝑡
′𝛃𝑀𝑆𝐿 − 𝒙̅𝑖∙′𝛄

𝑀𝑆𝐿 − ϑ𝑖 = 𝑒𝑖𝑡 = 𝑣𝑖𝑡−𝑢𝑖𝑡 

α𝑖 = 𝒙̅𝑖∙′𝛄
𝑀𝑆𝐿 + ϑ𝑖 

𝑣𝑖𝑡~ 𝑖𝑖𝑑 𝑁(0, σ𝑣
2) 

𝑢𝑖𝑡~ 𝑖𝑖𝑑 𝑁+(0, σ𝑢
2 ) 

α̂𝑖 = 𝒙̅𝑖∙′𝛄̂
𝑀𝑆𝐿 + ϑ𝑖 

ϑ𝑖~ 𝑁(0, σϑ
2) 

𝐸[𝑢𝑖𝑡|ϑ𝑖 + 𝑒𝑖𝑡] 
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In an attempt to approach the issue of (unobserved) heterogeneity between firms in a 

stochastic frontier framework, Greene (2005) proposed the so called “true” fixed- and 

“true” random-effects models (henceforth abbreviated with TFE and TRE). Both “true” 

effects models have also come to use in TFP growth applications. Saal, Parker, and 

Weyman-Jones (2007), Wetzel (2009) and Filippini, Horvatin, and Zoric (2010) are recent 

examples. The TFE model VI is a straightforward extension of the pooled model (I), 

where α𝑖 is a firm specific fixed-effect, while 𝑣𝑖𝑡 and 𝑢𝑖𝑡 are the components of the normal 

half-normal error term, representing statistical noise and inefficiency, just as in the pooled 

model.
30

 Maximum likelihood is used to estimate the slope parameters and additional 𝑁 

dummy variables for individual α𝑖. The virtue of this brute force approach lies in the 

application of a numerical maximization algorithm, able to handle a large number of 

parameters. As Greene (2005) points out, maximum likelihood estimators of nonlinear 

models can be inconsistent in the presence of fixed effects, due to the incidental 

parameters problem.
31

 The main difference between the TFE model (VI) and the 

conventional fixed-effects model (III) is in the way inefficiency estimates are derived. In 

the TFE model (VI) α𝑖 represents time-invariant unobserved heterogeneity while 

inefficiency is obtained as in the pooled model from the conditional mean of the 

inefficiency term as 𝐸[𝑢𝑖𝑡|𝑒𝑖𝑡]. Thus, the TFE model is a fixed-effects model including a 

composed error term with normal half-normal distribution. Hence, despite the panel 

characteristic of the TFE model, technical inefficiency is assumed to vary stochastically 

over time and we cannot derive consistent estimates of 𝑢𝑖𝑡 even if 𝑁 or 𝑇 → +∞. It should 

be noted, that the use of the TFE model is only appropriate if the analyzed panel contains 

more than a few time periods, since the individual efficiency scores rely on the variation 

of efficiency within the observations of an individual firm. If the observed period is short, 

some firms may exhibit inertia in their inefficiency, which would then mistakenly be 

captured by the fixed effect. A feature of the TFE model (VI) is that it allows the fixed 

effects α𝑖 to be correlated with the input quantities 𝑥𝑖𝑡. However, α𝑖 and 𝑥𝑖𝑡 are still 

assumed to be uncorrelated with both, 𝑢𝑖𝑡 and 𝑣𝑖𝑡.  

In the TRE model (VII) the firm specific effect is assumed to be an iid normal 

distributed random term, i.e. α𝑖~ 𝑁(0, σα
2 ). As in model (VI) time-invariant effects are 

                                                 
30

 See Polachek and Yoon (1996) for one of the first discussions of a fixed effects model, accounting for 

inefficiency using a composed error term.  
31

 We refer the reader to Greene (2005) for a short discussion on the incidental parameters problem related to 

stochastic frontier models. Wang and Ho (2010) provide a within- and first-difference transformation 

approach to estimate stochastic frontier models including fixed effects, which is “immune to the incidental 

parameters problem”.  



TFP DECOMPOSITION AND UNOBSERVED HETEROGENEITY 35 

treated as heterogeneity and captured by α𝑖, while technical inefficiency is estimated by 

the conditional mean of the inefficiency term 𝐸[𝑢𝑖𝑡|α𝑖 + 𝑒𝑖𝑡]. 32 As Greene notes, this 

model can be seen as a special case of the random parameters model where only the 

constant is a random parameter. As common to all random-effects models, the firm-

specific effect α𝑖 is “assumed to be uncorrelated with everything else in the model” 

(Greene 2008 p. 207). In order to overcome the problem of heterogeneity bias in the slope 

parameters in case this assumption does not hold, Farsi, Filippini, and Greene (2005) and 

Farsi, Filippini, and Kuenzle (2005) propose the incorporation of Mundlak’s (1978) 

adjustment in the TRE and in the GLS model.
33

 The underlying assumption is that the 

individual effects are a linear function on the group means of input quantities. The effects 

are then expressed in an auxiliary equation as:  

α𝑖 = 𝛄′𝒙̅𝑖 + ϑ𝑖 (2.3) 

In (2.3), 𝛄 is an additional vector of parameters to be estimated and 𝒙̅𝑖 is a vector of the 

group means of all input variables, i.e. 𝑥̅𝑖 =
1

𝑇𝑖
∑ 𝑥𝑖𝑡

𝑇𝑖
𝑡=1 . Now we want to highlight briefly 

the benefits of Mundlak’s adjustment, applied in the GLS and TRE stochastic frontier 

models. We consider the incorporation of Mundlak’s adjustment into the specification of 

stochastic frontier models to be based on the notion that firms have adjusted their input 

decisions conditional on the constant operating conditions they are subject to. That way it 

provides a possibility to improve the econometricians’ ability to take heterogeneity into 

account that is unobserved to them but not to the producers.
34

 By substituting equation 

(2.3) into the respective specifications of models IV (GLS) and VII (TRE), we add two 

more models to our comparison (IV-M and VII-M).  

In those latter models, the individual effect α𝑖 is decomposed in two components: 

the first part, which is explained by the group-mean variables and the remaining, 

unexplained part ϑ𝑖, assumed to be orthogonal to the explanatory variables. The important 

difference lies in the way this remaining component ϑ𝑖 is treated. In the TRE specification, 

as proposed by Farsi, Filippini, and Greene (2005) (model VII-M) ϑ𝑖 is treated as residual 

heterogeneity, which cannot be explained by the group means of input use. Then, as 

                                                 
32

 Kumbhakar and Hjalmarsson (1993) propose a very similar model, which is, however, estimated in two 

steps. 
33

 In contrast to our application, Farsi, Filippini, and Kuenzle (2005) estimate a GLS model with time-

invariant technical inefficiency. 
34

 It is undisputed that this approach does not save the researcher from making assumptions. For example, it 

could be argued whether it is realistic to assume that firms adjust to operating conditions but do not know 

their inefficiency.  
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intended by the TRE model, this residual heterogeneity is captured by the firm specific 

random effect, i.e. ϑ𝑖~ 𝑁(0, σϑ
2). In the augmented GLS random effects-model (IV-M), 

we assume that the group-mean variables explain all heterogeneity between the firms in 

the sample. Then the term ϑ𝑖 becomes part of the GLS random-effects model’s 𝑖𝑖𝑑 error 

term. In consequence of the following procedure to derive the inefficiencies, ϑ𝑖 is treated 

as part of the time varying inefficiency.  

We incorporate these models in our comparison, because they are useful in two 

ways. First, the estimated slope parameters are free from heterogeneity bias to the extent 

that (2.3) can capture the correlations of the random effect with the explanatory variables. 

As noted above, this is important in regard to our estimates of production and scale 

elasticities. Second, by modeling an individual effect α𝑖 through a function of observed 

variables, we can also mitigate the heterogeneity bias in the estimates of inefficiency. This 

is especially appealing in the case of model IV-M (GLS); this model provides an 

alternative way to derive (consistent) time-varying estimates of inefficiency, while taking 

unobserved heterogeneity into account.
35

  

2.3. Empirical Application 

We apply the different models discussed in the previous section to a panel of 

specialized German dairy farms. Based on the resulting estimates of technology 

parameters and inefficiency, we calculate rates of total factor productivity growth. Using 

farm data for our empirical application is beneficial in two ways. First, the methodology 

we analyze has been used in numerous empirical studies on the agricultural sector e.g. 

Brümmer, Glauben, and Thijssen (2002), Newman and Matthews (2006), Key, McBride, 

and Mosheim (2008), Rasmussen (2010) and many others, showing its relevance. Second, 

farms are natural candidates for firms that operate under heterogeneous production 

conditions affecting their feasible output (Sherlund, Barrett, and Adesima 2002).
36

  

2.3.1 Data 

The data for our empirical application is taken from German farm bookkeeping records 

maintained by the Bavarian Agricultural Research Institute (LfL). The dataset is an 

                                                 
35

 We did not include the “fixed management model” proposed by Alvarez, Arias and Greene (2006) in our 

comparison. This model also attempts to account for unobserved heterogeneity and is closely linked to the 

TRE model. Nevertheless, we applied the model to our dataset, using the Mundlak specification, as 

suggested in the respective paper and found that the results are almost identical to those obtained from 

model VII-M (TRE + Mundlak). Results can be obtained from the authors. 
36

 Abdulai and Tietje (2007) also elaborate on the relevance of (unobserved) heterogeneity in regard to the 

use of different stochastic frontier models on agricultural data. 
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unbalanced panel with 7465 observations of 974 farms. It covers the years 2000 to 2008. 

We only considered specialized dairy farms generating at least 66% of their total revenues 

from dairy production. Farms with less than four consecutive observations were also 

excluded from the analysis.
37

 The observations are evenly spread over the period under 

consideration with 7.7 observations per farm on average. We consider two outputs (milk 

and other output) and four inputs (labor, land, intermediate inputs and capital). 

Descriptive statistics by year are given in table 2-2.  

Table 2-2: Summary statistics of variables by year 

 
2000 2001 2002 2003 2004 2005 2006 2007 2008 

Milk output 

(1000 €) 

56.69 59.96 60.36 62.07 64.26 65.81 66.72 69.86 69.50 

(25.30) (28.26) (28.61) (30.34) (31.32) (32.56) (33.64) (35.28) (36.39) 

Other output 

(1000 €) 

30.59 30.04 31.16 31.98 31.19 31.63 32.92 35.10 33.70 

(15.63) (15.70) (16.10) (17.35) (16.18) (17.58) (18.84) (21.27) (21.19) 

          
Labor (mwu) 

1.52 1.54 1.54 1.53 1.54 1.54 1.55 1.54 1.55 

(0.44) (0.44) (0.43) (0.44) (0.45) (0.46) (0.46) (0.46) (0.44) 

Land (ha) 
40.08 41.14 42.02 42.76 43.42 44.85 45.32 46.74 47.71 

(22.52) (23.19) (23.69) (24.99) (25.09) (26.07) (26.54) (28.08) (29.17) 

Intermediate 

inputs (1000 €) 

44.91 45.34 46.32 47.28 48.87 48.58 48.78 49.94 49.64 

(25.01) (26.85) (26.36) (27.32) (27.45) (26.62) (27.56) (27.71) (28.41) 

Capital (1000 €) 
206.62 208.56 206.94 204.15 202.94 202.18 198.96 195.15 195.51 

(110.89) (117.87) (120.55) (121.63) (121.65) (124.02) (123.03) (121.51) (128.50) 

1
 Mean value and standard deviation (in parentheses)  

 

The output milk is measured in total revenues from milk and milk products. This 

allows to account for quality differences, since the price that the individual farmer receives 

from the processor varies, depending on the fat and protein content in the delivered milk. 

The variable other output contains revenues from beef, crops and other commodities. The 

input variable labor subsumes family and hired labor in man working units (mwu). The 

variable land measures total cultivated land in hectare (ha). The intermediate inputs 

include expenses for forage and crop production (e.g. seed, fertilizer, pesticides, fuel, 

contractors) and animal production (e.g. veterinary, concentrates). The variable capital 

includes the end-of-year value of buildings, technical facilities, machinery and livestock. 

We use price indices from the German Federal Bureau of Statistics to deflate the 

aggregated monetary input and output variables using the year 2005 as base year. As 𝑧-

                                                 
37

 We create this subsample to improve the panel character of the dataset. Especially the use of the models 

III and IV made this restriction necessary. 
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variables for the inefficiency effects model II we use regional dummies representing nine 

different agricultural production areas. 

2.3.2 Specification 

Dairy farms are a typical example of a multi-product firm. Even specialized dairy farms 

do in most cases not solely produce milk, but may also produce beef, veal and field crops 

as part of their integrated production process.
38

 We model this multi-input multi-output 

technology using an output-oriented
39

 distance function 𝐷𝑂(𝒙, 𝒚, 𝑡), where 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑘) ∈ 𝑅+
𝐾 refers to a nonnegative vector of inputs used to produce a 

nonnegative vector of outputs 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑚) ∈ 𝑅+
𝑀 and 𝑡 denotes an exogenous time 

trend 𝑡 = 1,2, … , 𝑇. We choose the common flexible translog functional form that limits 

the a priori restrictions on the relationships among inputs and outputs.  

Hence,  

ln 𝐷𝑖𝑡
𝑂(𝒚, 𝒙, 𝑡) = β0 + ∑ α𝑚 ln 𝑦𝑚𝑖𝑡

𝑀

𝑚=1

+ ∑ β𝑘 ln 𝑥𝑘𝑖𝑡 +

𝐾

𝑘=1

1

2
 ∑ ∑ α𝑚𝑛

𝑀

𝑛=1

ln 𝑦𝑚𝑖𝑡 ln 𝑦𝑛𝑖𝑡

𝑀

𝑚=1

 

+
1

2
 ∑ ∑ β𝑘𝑗

𝐾

𝑗=1

𝐾

𝑘=1

ln 𝑥𝑘𝑖𝑡 ln 𝑥𝑗𝑖𝑡 + ∑ ∑ δ𝑚𝑘

𝐾

𝑘=1

ln 𝑦𝑚𝑖𝑡 ln 𝑥𝑘𝑖𝑡 +

𝑀

𝑚=1

τ1𝑡

+
1

2
τ2𝑡2 + ∑ ς𝑚𝑡  𝑡 ln 𝑦𝑚𝑖𝑡 +

𝑀

𝑚=1

∑ ν𝑘𝑡  𝑡 ln 𝑥𝑘𝑖𝑡

𝐾

𝑘=1

 

(2.4) 

The parameters of this function must satisfy the symmetry restrictions α𝑚𝑛 = α𝑛𝑚 and 

β𝑘𝑗 = β𝑗𝑘. In addition, homogeneity of degree one in output quantities (∑ α𝑚
𝑀
𝑚=1 = 1 and 

∑ α𝑚𝑛
𝑀
𝑚=1 = ∑ δ𝑚𝑘

𝐾
𝑘=1 = ∑ ς𝑚𝑡  𝑀

𝑚=1 = 0) is imposed by normalizing the function by an 

arbitrarily chosen output quantity: 

ln (
𝐷𝑖𝑡

𝑂(𝒚,𝒙,𝑡)

𝑦2𝑖𝑡
) = 𝑇𝐿 (𝒚∗, 𝒙, 𝑡)  with  𝑦𝑚𝑖𝑡

∗ =
𝑦𝑚𝑖𝑡

𝑦2𝑖𝑡
⁄  (2.5) 
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 A farm that has outsourced all calf and heifer rearing, as well as all cereal and forage production might be 

such an example. However, we do not find farms like this in our sample. 
39

 The choice of orientation has to be made individually for a specific application. For our case, we assume 

that the farms in our sample are less flexible in the adjustment of their inputs than their output. The labor 

input which largely contains the family workforce is one example for a rather inflexible input. On the other 

side, a very well established system for quota trading exists in Germany. Hence, output can be considered as 

unrestricted.  
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where 𝑇𝐿 indicates translog, and 𝑇𝐿 (𝒚∗, 𝒙, 𝑡) is the right hand side of (1) after dividing all 

output quantities by 𝑦2.
40

 The dependent variable ln 𝐷𝑖𝑡
𝑂  is unobservable so we rearrange 

the distance function for the estimation in a stochastic frontier framework. We add a 

random error term 𝑣𝑖𝑡 and given that ln 𝐷𝑖𝑡
𝑂 ≤ 0, we replace ln 𝐷𝑖𝑡

𝑂 with −𝑢 such that, 

− ln 𝑦2𝑖𝑡 = 𝑇𝐿 (𝒚∗, 𝒙, 𝑡) + 𝑢 + 𝑣𝑖𝑡  (2.6) 

To be more comparable with the standard stochastic production frontier, we slightly adapt 

equation (2.6) by multiplying both sides by -1. Hence, we use ln 𝑦2𝑖𝑡 as dependent 

variable and reverse the sign of the regressors and the one sided inefficiency term 𝑢. The 

way the inefficiency 𝑢 is modeled varies, depending on the applied econometric model 

(table 2-1). 

2.3.3 Calculation and decomposition of TFP growth 

Based on the estimated parameters and inefficiency estimates of the described models I - 

VII, we use the derivative-based approach to calculate and decompose total factor 

productivity growth.
41

 See Denny, Fuss, and Waverman (1981) and Bauer (1990) for 

applications using production- and cost functions and Brümmer, Glauben, and Thijssen 

(2002) and Karagiannis, Midmore, and Tzouvelekas (2004) for applications using output- 

and input distance functions.
42

 Keeping our application simple and comparable to the 

production function one-output special case of the output distance function, we assume 

allocative efficiency and perfect competition on input- and output markets.
43

 In this setup 

we obtain the following expressions for technical change, efficiency change and the scale 

change effect by taking the total differential of (2.6) and relating it to the Divisia index of 

total factor productivity growth. Technical change is calculated by: 𝑇𝐶𝑖𝑡 =
𝜕 ln 𝑦2𝑖𝑡

𝜕𝑡
= τ1 +

τ2𝑡 + ∑ ς𝑚𝑡  ln 𝑦𝑚𝑖𝑡 +𝑀
𝑚=1 ∑ ν𝑘𝑡  ln 𝑥𝑘𝑖𝑡

𝐾
𝑘=1  (Morrison Paul, Johnston, and Frengley 2000). 

                                                 
40

 Despite the common use of distance functions as representations of multi-input multi-output 

representations of production technology, concerns exist about the exogeneity of the ratio of outputs used as 

a dependent variable in the estimation. Based on findings by Schmidt (1988) and Mundlak (1996), Coelli 

(2000) argues that the ratio form of outputs does not suffer from endogeneity assuming expected profit 

maximization. See also Kumbhakar and Lovell (2000) p. 94 for a discussion.  
41

 Many empirical studies also use the Malmquist TFP index developed by Caves, Christensen and Diewert 

(1982). This alternative approach to decompose TFP growth is based on the same estimates of technology 

parameters and inefficiency. Hence we expect qualitatively identical results of our analysis. 
42

 Lovell (1996) provides an overview that also includes the non-parametric approach to efficiency 

measurement. 
43

 Hence, we exclude in this primal framework contributing factors to TFP growth that are “connected to 

market” and concentrate on those “connected to technology” (Brümmer, Glauben, and Thijssen 2002 p. 

632). 
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This expression of technical change is firm- and time-specific according to the translog 

functional form of (2.4).  

The way we calculate the effect of changes in technical efficiency varies across the 

different econometric models. For the models III, IV and IV-M, we follow Fecher and 

Pestieau (1993) and obtain farm-specific estimates for the change in technical efficiency 

from 𝑇𝐸𝐶𝑖𝑡 =
𝜕ϑ𝑖𝑡

𝜕𝑡
= θ̂2𝑖 + θ̂3𝑖𝑡.

44
 For the model of Battese and Coelli (1992) (V), we get 

𝑇𝐸𝐶𝑖𝑡 = −
𝜕𝑢𝑖𝑡

𝜕𝑡
= 𝑢𝑖̂η̂ exp(−η̂(𝑡 − 𝑇)). The remaining models do not specify an explicit 

way how technical inefficiency is allowed to vary over time. On the contrary, they include 

the assumption that inefficiency is independent across farms and time. Thus, for these 

models the change in technical efficiency is measured from its discrete changes from 

period 𝑡 to 𝑡 + 1; i.e. 𝑇𝐸𝐶𝑖𝑡 = 𝑢𝑖𝑡 − 𝑢𝑖𝑡+1.
45

  

Based on the distance elasticities with respect to the inputs, the scale elasticity and 

the changes in input usage, we calculate the scale change effect: 𝑆𝐶𝑖𝑡 = (ε𝑖𝑡 −

1)𝑠𝑖𝑘𝑡 ln (
𝑥𝑖𝑘𝑡

𝑥𝑖𝑘𝑡+1
) . 46 In this expression ε = ∑

𝜕 ln 𝐷𝑂

𝜕 ln 𝑥𝑘

𝐾
𝑘=1  and 𝑠𝑘 =

𝜕 ln 𝐷𝑂 𝜕 ln 𝑥𝑘⁄

∑ 𝜕 ln 𝐷𝑂 𝜕 ln 𝑥𝑘⁄𝐾
𝑘=1

. We 

observe a positive (negative) contribution to productivity change if ε > 1 and input usage 

is expanded (reduced) or if 𝜀 < 1 and input usage is reduced (expanded). In the case of 

constant returns to scale (𝜀 = 1) or constant input quantities 𝑆𝐶 becomes zero.  

2.4. Empirical Results 

We present the estimated parameters of the nine different models in tables 2-8 and 2-9 in 

the appendix. All models have been estimated using LIMDEP 9.0 (Greene 2007) and 

EViews 6 (QMS 2007), respectively. The percentage of slope parameters, significantly 

different from zero at the 5% level, ranges from 54.2% in model IV-M to 80.0% in model 

VII with an average of 68.5%. Comparing the estimated coefficients, we find an apparent 

variation across some of the models while others are more similar.  

                                                 
44

 This approach implicates that technical change is associated with the trend variable in the technology part 

of the distance function and is common to all firms in a sector. In contrast, efficiency change is individual to 

producers. See Lovell (1996) for a short discussion of different interpretations. 
45

 Karagiannis and Tzouvelekas (2005) show, that the marginal effects of time-varying variables in the 

inefficiency part of model II have to be taken into account in a decomposition of TFP growth. In our 

application, only time-invariant variables enter the inefficiency part. In the decomposition described by Zhu 

and Lansink (2010), this relates to a case where all discrete changes in technical efficiency over time are 

ascribed to “unspecified factors”. 
46

 For a continuous approximation of the elasticities, the arithmetic means of two subsequent periods can be 

used. 
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The variation in the technology parameters carries over into the respective distance 

elasticities. Table 2-3 shows the sample average elasticities of inputs and outputs as well 

as the average returns to scale measure for all estimated models. The average elasticities 

have the right signs on the input as well as on the output side. Some patterns in the 

calculated average elasticities can be noted: for all estimated models the intermediate 

inputs show the highest average output elasticity and the returns to scale measure is below 

one; on the output side the elasticities reflect the high share of milk output in total 

production. Based on similar average elasticities we can identify three groups of models. 

The first group consists of the Pooled, the BC95 and the TFE models (I, II, VI). The three 

models altogether show comparably high average scale elasticities close to one, a high 

elasticity for intermediate inputs and a relatively low elasticity for the input land, close to 

zero.
47

 As a slight variation, model II shows an output elasticity for the input land which is 

still low, but significantly higher compared to models I and VI.
48

 We assign this finding to 

the incorporation of the regional dummy variables into the inefficiency effects model. 

That way (observed) information about heterogeneous production conditions, which is 

basically related to the productive potential of the used acreage, is included into the model, 

leading to a more reliable estimate.
49

  

Table 2-3: Average distance elasticities 

  Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

 (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

Labor 0.174 0.165 0.058 0.093 0.058 0.090 0.177 0.088 0.056 

Land 0.018 0.057 0.111 0.163 0.110 0.165 0.013 0.174 0.103 

Inter. Inputs 0.628 0.611 0.335 0.436 0.335 0.417 0.632 0.399 0.317 

Capital 0.134 0.128 0.057 0.092 0.056 0.085 0.134 0.092 0.062 

           Milk  -0.725 -0.724 -0.801 -0.790 -0.801 -0.790 -0.718 -0.801 -0.814 

Other -0.275 -0.276 -0.199 -0.210 -0.199 -0.210 -0.282 -0.199 -0.186 

                
  RTS 0.953 0.961 0.560 0.783 0.559 0.757 0.955 0.752 0.539 

 

The second group includes the random effects models IV, V and VII. All three 

models produce highly similar elasticities, on the input and output side. The average scale 

elasticity is lower compared to the first group of models, ranging between 0.752 and 

0.783. The intermediate inputs again show the highest average elasticity, followed by the 
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 However, the standard errors of the average elasticities calculated using the delta method show that all are 

significantly different from zero at least at the 1% level.  
48

 We confirmed the significance of the difference in the means using a Welch test. 
49

 As noted above it could be argued that information about land quality should be incorporated directly in 

the distance function. 
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input land and then labor and capital. The three models share the assumption that the firm 

specific component – specified as ϑ𝑖, 𝑢𝑖 and α𝑖, respectively in table 1 – is uncorrelated 

with the explanatory variables.  

Models III, IV-M and VII-M build the third group of models which is connected by 

the fact that they either assume that individual effects are correlated with the explanatory 

variables (as the fixed effects model III) or they take a possible correlation explicitly into 

account using Mundlak’s (1978) adjustment. For this group of models we find the lowest 

scale elasticity in a range between 0.539 and 0.560. The similarities in the distance 

elasticities for the models in this group indicate that the group-mean variables pick up a 

large fraction of the correlation between the firm-specific effects and the explanatory 

variables. In fact, the fixed effects model (III) and an augmented GLS model such as 

model IV-M are assumed to be identical as described by Mundlak (1978).
50

 This 

relationship does not hold for maximum likelihood stochastic frontier models such as VII-

M. However, to the extent that the group-mean variables are able to capture the 

correlations of the firm specific random effect with the explanatory variables, we can 

mitigate the heterogeneity bias in the estimated technology parameters.
51

  

A summary of the estimated efficiency scores from each model is presented in table 

2-4. As noted above, the efficiency scores obtained from the models III, IV and V contain 

the effects of firm-specific unobserved characteristics. This leads to downward biased 

efficiency scores for farms with competitive disadvantages beyond the control of the 

farm’s manager, e.g. unfavorable natural conditions. The fact that these models produce 

the lowest efficiency scores suggests that unobserved heterogeneity cannot be ignored in 

our dataset. Model III produces the lowest efficiency scores with a mean efficiency of less 

than 0.5. This would imply that on average all observed dairy farms could double their 

output without altering their inputs if they were fully efficient – a clearly unrealistic result. 

Compared to model III, the mean efficiency obtained from the models IV and V are 

higher. They lie in the range between 0.59 and 0.74. As Farsi, Filippini, and Kuenzle 

(2005a) note, this can be attributed to the correlation between the explanatory variables 

                                                 
50

 In our case, the GLS-M model is not entirely identical to the FE model, because we have left out the 

group-mean variables for inputs interacted with the trend variable. The results of a specification including 

the respective additional variables are almost identical. Hence, we prefer the present, more parsimonious 

specification.  
51

 The Mundlak adjustment is certainly not a panacea for all problems associated with the estimation of 

production or distance functions when heterogeneity is unobserved. Griliches and Mairesse (1998) elaborate 

on the benefits and difficulties arising from use of panel techniques for the estimation of production 

functions. They also discuss the frequently documented reduction in estimated scale elasticities, just as 

found in our empirical application. However, especially in the context of stochastic frontier analysis the 

Mundlak adjustment has its appealing features.  
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and the firm-specific effects. That way the heterogeneity is partly captured in the slope 

parameters.  

Table 2-4: Descriptive statistics of technical efficiency scores 

 

Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

 (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

Mean 0.868 0.869 0.492 0.588 0.614 0.741 0.842 0.918 0.916 

Standard 

deviation 
0.058 0.059 0.121 0.112 0.099 0.130 0.032 0.045 0.048 

Maximum 0.977 0.980 1.0 1.0 1.0 0.994 0.962 0.991 0.990 

Minimum 0.522 0.538 0.128 0.225 0.264 0.256 0.506 0.544 0.504 

          
 

The “true” fixed- and “true” random-effects models (VI and VII) produce rather 

high efficiency scores, of 0.842 and 0.918 at the mean. These models account explicitly 

for all time-invariant firm-specific effects and thus, the efficiency scores solely depend on 

the within variation of the firms. That means any potentially existent time-invariant 

inefficiency is suppressed in the firm-specific effect. Given that the European dairy sector 

can hardly be assumed to be highly competitive, we cannot rule out the possibility that 

farms with a certain amount of inertia in their inefficiency stay in the sector. On the other 

side the present dataset also has features that agree with the use of the “true” effects 

models. The panel encompasses the years from 2000 to 2008, a reasonable sized time 

frame. More importantly, dairy farmers had to adapt to several severe changes in their 

operating conditions during this period, such as policy changes and fluctuations in factor 

and output prices. This case of a potential upward bias in the efficiency estimates 

illustrates the analogue to the predictable downward bias in the models III, IV and V, who 

do not account for heterogeneity. The incorporation of the Mundlak variables in models 

IV-M and VII-M shows the expected results. The GLS+M specification accounts for 

heterogeneity as specified in table 1 and can therefore reduce the respective contamination 

of the efficiency scores. This leads to an increase in the mean and a reduction in the 

standard deviation of the efficiency score. In case of the TRE model (VII) the 

incorporation of the group-mean variables has a different effect, as this model already 

attempts to capture heterogeneity in its basic specification. Hence, possible time-invariant 

differences between the firms are captured in the random constant anyway and the 

efficiency estimates of the TRE model are free of time-invariant heterogeneity. The 

random constant is specified to be normally distributed with an additional parameter σα or 

σϑ which is the standard deviation of this random parameter in the TRE and the TRE-M 

model, respectively. This additional parameter is a measure of the unaccounted variation 
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between the farms. By including the Mundlak variables into the TRE model we partly 

account for this unobserved heterogeneity. As expected, this reduces the unaccounted 

variation between the firms from σα= 0.2327 to σϑ= 0.1459. 

The correlation between the efficiency scores obtained from the different models 

(table 2-5) support the interpretations of the varying results in table 2-4. The efficiency 

scores from models I and II are highly correlated (0.93) and show considerable 

correlations with the scores of all other models (0.47 – 0.79).  

Table 2-5: Correlation matrix of technical efficiency scores 

  Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

  (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

Pooled 1.00 
        

BC95 0.93 1.00 
       

FE 0.60 0.57 1.00 
      

GLS 0.75 0.75 0.92 1.00 
     

GLS+M 0.78 0.74 0.52 0.70 1.00 
    

BC92 0.70 0.71 0.87 0.92 0.65 1.00 
   

TFE 0.54 0.47 0.15 0.20 0.19 0.03 1.00 
  

TRE 0.56 0.50 0.24 0.29 0.30 0.13 0.87 1.00 
 

TRE+M 0.54 0.48 0.23 0.28 0.35 0.11 0.80 0.97 1.00 

Note: different shades of grey visualize the extent of correlation from high (dark) to low (light) 
1Spearman rank correlation coefficients are highly similar to the displayed coefficients 

 

Both models do not take the panel structure of the data into account. Hence, the 

efficiency scores from these models contain time varying as well as time invariant 

components. This explains the apparent correlation of the efficiency scores with both, the 

conventional and the “true” effects models. We find strong correlations between the 

“conventional” panel models III, IV and V (0.87 – 0.92). This is not surprising. As a 

common feature, in these models the inefficiency estimates include a time invariant fixed- 

(III) or random- (IV, V) effect, which also contains firm-specific heterogeneity. The 

correlation with the efficiency scores obtained from the Mundlak specification of model 

IV is lower and lies between 0.52 and 0.70. This finding can also be expected, as the 

Mundlak adjustment accounts for part of the unobserved heterogeneity and removes it 

from the efficiency scores. The correlation between the scores from the “true” models VI, 

VII and VII-M is also fairly high. Controlling for the heterogeneity, these models show 

similar abilities to identify time-varying inefficiencies. However, the correlation between 

the “conventional” and “true” panel models is rather low and varies between 0.02 and 

0.35. This confirms that the way how heterogeneity is handled has a strong influence on 

the efficiency estimates. Our findings for the efficiency scores and the correlations 
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between the scores obtained from different models agree in general with the findings of 

previous studies, comparing stochastic frontier models (e.g. Farsi, Filippini, and Greene 

2005, Farsi, Filippini, and Kuenzle 2005, Abdulai and Tietje 2007). 

Based on the estimates of the different econometric models, we measure and 

decompose total factor productivity for the observed dairy farms. We report in table 2-6 

the average values for changes in total factor productivity (TFPC), technical change (TC), 

changes in technical efficiency (TEC) and productivity changes due to changes in the 

scale of operations (SC) (see table 2-10 in the appendix for yearly values) and their 

percentage share on TFPC. The results in table 2-6 show that technical change has the 

strongest influence on total factor productivity. In all models, TC has a positive effect on 

productivity throughout the observed time period but we find TC to be slightly increasing 

over time for the models I, II, VII and VII-M but more or less linear growth rates for the 

remaining models (see table 2-10). The average annual productivity growth induced by 

technical change ranges from 1.19% in model IV to 1.64% in model V.  

Table 2-6: Average growth rates of decomposed total factor 

productivity and share of components 

 

Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

 (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

 

Average annual change rate (%) 

TFPC 1.24 1.20 1.03 1.07 1.03 1.11 1.28 1.03 1.03 

TC 1.36 1.29 1.24 1.19 1.24 1.64 1.41 1.25 1.30 

TEC -0.09 -0.06 -0.08 -0.06 -0.08 -0.51 -0.09 -0.11 -0.15 

SC -0.04 -0.03 -0.13 -0.05 -0.13 -0.02 -0.04 -0.10 -0.12 

 Share of TC, TEC and SC on TFPC (%) 

TC 109.86 108.02 120.65 110.65 120.86 147.81 110.17 120.76 126.26 

TEC -6.90 -5.36 -7.80 -5.64 -7.96 -46.34 -7.16 -11.09 -14.64 

SC -2.95 -2.66 -12.84 -5.01 -12.90 -1.47 -3.01 -9.68 -11.62 

           
 

The average rates of technical efficiency change also vary considerably across 

specifications. The highest absolute change rates are found for the BC92 model (-0.51).
52

 

The change rates obtained from the remaining models are very low, in a range between -

0.06% and -0.15% per year (see table 2-10 for information on the development over time). 

The scale change effect also has rather low but negative impact on productivity for all 

models. The magnitude of the effect heavily depends on the returns to scale, thus we find 
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 Some uncertainty exists on the exact reason for the comparably high rates of TEC in this model. A 

possible explanation is that the specification of time-varying inefficiency is rather inflexible. Low levels of 

efficiency are connected to high rates of efficiency change, subject to the parameter η which is common to 

all firms. We find that the high rates of negative TEC are offset by proportional higher rates of positive TC.  
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the largest effect for the models III, IV-M and VII-M with RTS between 0.54 and 0.56. 

The average annual growth rates of TFP also vary across models. Looking at the extreme 

cases, model VI (TFE) reports a growth rate which is more than 20% higher compared to 

models at the lower range.   

Even more important are the differences in the importance of the components of 

TFP growth. In the lower part of table 2-6 we report the share of the single components; 

the differences in the single components TC, TEC and SC are striking in some cases. This 

finding is relevant especially for the case of empirical applications which base regulatory 

or policy recommendations on their calculations of TFP growth. As Grosskopf (1993, p. 

169) points out, “a slowdown in productivity growth due to increased inefficiency 

suggests different policies than a slowdown due to lack of technical change”. Low rates of 

technical change could be interpreted as an indication of an insufficiently innovative 

sector lacking investments, implying suggestions for expenditures through governmental 

policies. Decreasing efficiency levels point towards a growing heterogeneity in the firms’ 

productive performance.  What often is recommended in these cases are investments in 

extension service and consulting as well as the reduction of incentive problems to bring 

the firms back towards the frontier (Fan 1991, Bayarsaihan and Coelli 2003, Aiello, 

Mastromarco, and Zago 2010). Special attention is also given to the interpretation of the 

returns to scale measure and the resulting scale effect on productivity growth; for instance 

Key, McBride, and Mosheim (2008) recommend revising legislation that limits the size or 

growth of hog farm enterprises. For our application, the substantial differences in the 

relative importance of the TFP growth components across the econometric models could 

have led to strongly differing or even contradictory policy advice. 

2.5. Model Selection 

Our empirical application shows that the results of an analysis of productivity growth, 

heavily relies on the choice of an econometric model, used to estimate the representation 

of the frontier production technology. The fact that different econometric models – 

imposing different assumptions on the data and the data generating process – lead to 

different results is not new. However, this is only a problem if we cannot choose reliably 

among the models. In the case of the stochastic frontier models presented in this study, we 

find the situation that not all models are nested; hence formal testing cannot reveal the 

“one” right model for each dataset. In the following section, we attempt to reduce the 

number of appropriate models by rejecting as many models as possible based on statistical 
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tests. Subsequently, we discuss further options which might be of interest for empirical 

researchers to reduce the number of models.  

We start with a test of the pooled model (I) against the inefficiency effects model 

BC95 (II). This is possible, since model I is nested in model II. The likelihood ratio test
53

 

gives statistic of 𝐿𝑅 = 241.12 exceeding the critical value at the 1% level χ(9)
2 = 21.67 

indicating that model II is preferred over model I.
54

 In the specification of model I and II 

(Pooled, BC95) the panel structure of the data is ignored implying the assumption that no 

firm-specific effects are present. We approach this question using the Baltagi and Li 

(1990) form of the Breusch-Pagan Lagrange multiplier statistic for unbalanced panel 

data.
55

 We clearly reject the null hypotheses of “no group effects” with a test statistic of 

𝐿𝑀 = 9293.65 against a critical value of χ(1)
2 = 6.64. Models I and II make the 

assumption that both error components, technical inefficiency and statistical noise, are 

independently distributed. Hence, this result stands against these specifications and has to 

be taken into account in regard to the use of models I and II. Another way of testing the 

presence of firm-specific effects in the data is to test the pooled model I against the “true” 

effects models VI and VII. Model I is a special case of the TFE model for α𝑖 ≡ β0  ∀  𝑖. 

This hypotheses is rejected as the likelihood-ratio test gives a statistic of 𝐿𝑅 = 2071.28 

which is much higher than the critical value of χ(973)
2  = 1078.55

56
 (Greene 2008, p. 211). 

Finally we compare the log-likelihood of the TRE model (VI) against the pooled model 

(Greene 2008, p.207). The resulting test statistic is 𝐿𝑅 = 6615.32 against a critical value of 

χ(1)
2 = 6.64

57
.  

For a straightforward check whether the explanatory variables are correlated with 

existing firm-specific effects (𝐸[𝑥𝑖𝑡ϑ𝑖] ≠ 0) we perform a Hausman test on the GLS 

random effects model. The test rejects the hypotheses of no correlation between the effects 
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 The likelihood ratio test statistic is given by 𝐿𝑅 = 2(ln 𝐿𝑅 − ln 𝐿𝑈), where ln 𝐿𝑅 (ln 𝐿𝑈) is the log-

likelihood of the restricted (unrestricted) specification. 
54

 We also check whether inefficiency is present at all in our empirical dataset by testing model I against a 

simple OLS model. The hypothesis of no inefficiency is clearly rejected.  
55

 The test statistic is calculated based on the residuals (𝑒𝑖𝑡) of a pooled OLS model: 

𝐿𝑀 = [
(𝑁𝑇̅)2

(∑ 𝑇𝑖
2

𝑖 )−𝑁𝑇̅
] [

∑ (∑ 𝑒𝑖𝑡𝑡 )2
𝑖

∑ ∑ 𝑒𝑖𝑡
2

𝑡𝑖
− 1]

2

where 𝑇̅ =
𝑁

∑ (
1

𝑇𝑖
)𝑖

. 

56
 The validity of this test is unclear. The incidental parameter problem can prevent the TFE and the pooled 

model to converge under the null hypotheses. 
57

 We note that this is also a non-standard test. Under the null hypotheses (variance of the random constant 

equals zero), the test statistic is not asymptotically χ2-distributed because the tested value is on the border of 

the feasible parameter space. However, for our application the issue is negligible since we only restrict a 

single parameter and the calculated LR statistic is about 1000 times the critical value anyway. For more on 

the topic see e.g. Self and Liang (1987).  
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and the used variables with a test statistic of 900.25 against a critical value of χ(27)
2 = 

46.96.
 58

 This is a strong indication, that all models, which assume no such correlation (IV, 

V, VII) produce biased slope parameters. Similarly we test the random effects models IV 

and VII against their respective Mundlak specifications. Using a Wald test, we can reject 

the hypotheses that the additional group-mean variables in the GLS + M specification are 

jointly equal to zero with a test statistic of 𝐹 = 48.15 against a critical value of  𝐹(20,6444) = 

2.38. The same applies for the TRE + M specification where we reject this hypotheses 

based on a likelihood ratio statistic of 𝐿𝑅 = 1028.66 against a critical value of χ(20)
2 = 

37.57. Based on the described statistical tests, we were able to exclude five (I, II, IV, V, 

VII) out of nine models, leaving us with the FE (III), the TFE (VI) and the two Mundlak 

specifications (IV-M, VII-M).
59

  

As this in not entirely satisfactory, we look for alternatives to check which of the 

remaining models fits the data best. For the widely used translog functional form, we 

advise to take a closer look at how well the estimated representations of the production 

technology are in line with the requirements implied by microeconomic theory, namely 

monotonicity and quasi-concavity in inputs and concavity in outputs. It has been pointed 

out by several authors (e.g. O’Donnell and Coelli 2005, Sauer, Frohberg, and Hockmann 

2006 and Henningsen and Henning 2009), how important this theoretical consistency is 

for a correct interpretation of the obtained parameters and efficiency scores and 

accordingly for the results of the decomposition of TFP growth. As shown in table 2-3, the 

distance elasticities resulting from all models show the right signs and therefore fulfill the 

monotonicity requirement at the sample mean. According to Sauer, Frohberg, and 

Hockmann (2006) this is the minimum requirement, which has to be fulfilled in any case 

to obtain meaningful results. Monotonicity violation on the input side would, for example, 

implicate that a reduction in inputs given a fixed level of output would reduce 

productivity. After checking for monotonicity for all observations we find some violations 

for all models in our application. However, as reported in table 2-7, the share of 

observations with present violations of monotonicity are more severe for some models and 

less for others. For example, we find that 40.3 % of the observations show the wrong sign 

in the distance elasticity of the input land if the TFE model (VI) is used for estimation. 
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 The test statistic is given by: 𝐻 = [𝛃̂𝑾 − 𝛃̂𝐺𝐿𝑆]
′
𝚪−1[𝛃̂𝑾 − 𝛃̂𝐺𝐿𝑆] where 𝚪−1 = 𝑉𝑎𝑟(𝛃̂𝑾 − 𝛃̂𝐺𝐿𝑆) (Greene, 

2003). 
59

 Another issue that leads to further room for statistical testing is how technical efficiency is specified to 

vary over time. Karagiannis and Tzouvelekas (2010) provide some insights on this topic.  
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This can hardly be accepted. To check the curvature conditions of quasi-convexity in 

inputs and convexity in outputs, we construct the respective (bordered-) Hessian matrix 

for each data point and report the percentage of violations in the lower part of table 2-7. 

Table 2-7: Violations of monotonicity and curvature conditions in 

percent 

  Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

  (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

 
Monotonicity 

Labor 0.0 0.0 6.6 0.3 6.5 0.5 0.0 0.9 4.6 

Land 37.0 14.4 0.2 0.0 0.2 0.0 40.3 0.0 0.3 

Inter. Inputs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Capital 0.0 0.0 0.6 0.0 0.6 0.0 0.0 0.1 0.1 

          
Milk  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Other 0.1 0.1 0.6 0.5 0.6 0.5 0.1 0.2 0.3 

 Curvature 

Input 4.5 0.7 0.0 0.0 0.0 0.0 5.1 0.1 0.1 

Output 31.3 31.5 9.3 13.6 9.2 12.3 26.3 40.9 38.2 

 

On the input side, almost all models are perfectly in line with the curvature requirements 

whereas we find some curvature violations on the output side for all models. These are 

prominent in the TRE and the TRE+M models where 40.9% and 38.2% of the 

observations violate the curvature requirements on the output side. Hence, we could 

challenge two more econometric models based on how consistent the estimated 

technologies are with microeconomic theory.  

Further aspects that should be taken into account when choosing an econometric 

model involves the distinction between inefficiency and heterogeneity. Based on expert 

knowledge about the sector under investigation, it should be reflected which assumptions 

are reasonable. Are the analyzed firms actually working under heterogeneous production 

conditions, which should be controlled? Can the existence of time-invariant inefficiency 

be ruled out generally, e.g. by a competitive operating environment, changes in the 

operating and management conditions (e.g. policy and regulation) and a sufficient number 

of time periods? These considerations argue against the use of the FE model (III) on our 

dataset. As noted, it includes all unaccounted time-invariant effects into the inefficiency 

term, resulting in an unrealistic low average efficiency below 0.5.   

The criteria we used for choosing a suitable stochastic frontier model for a given 

dataset have helped to narrow down the range of applicable models from nine to only one, 

the GLS+M (IV-M) model. We would not consider this choice to be utterly irrefutable, 
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however, considering our tests in combination with the knowledge on the production 

process, the general operating environment in the sector and the characteristics of the 

dataset at hand, empirical researchers should be able to make an educated choice.
60

  

2.6. Concluding Remarks 

In this paper, we compare the results of a decomposition of total factor productivity 

growth based on the estimates of nine different commonly used stochastic frontier models. 

Hereby we focus on the models’ ability to take unobserved heterogeneity into account. 

The main conclusion from this comparison is not surprising: different econometric 

specifications can lead to very different results. For an unbalanced panel of 974 dairy 

farms, observed between the years 2000 and 2008, we find substantial differences in the 

estimated slope parameters of input-, output- and trend-variables, in the resulting distance 

elasticities and in the individual efficiency scores of the observed firms. These differences 

lead to an uncertainty in the interpretation of the results. Unstable distance elasticities raise 

questions about the importance of particular inputs for the production process. In our 

results, greatly varying returns to scale indicate almost constant returns to scale for some 

models, while strongly decreasing returns to scale for others. For all models, technical 

change is positive, but with increasing or constant rates of change. We find great 

differences in the average efficiency and thus in the potential for productivity 

improvement, as well as in the individual efficiency scores. While some models produce 

corresponding efficiency scores, the scores of others do not match at all.  

Considering the widespread application of different econometric models for the 

analysis of productivity change (see above for some examples), we emphasize that the 

chosen methodology has to fit the characteristics and the structure of the dataset, as well as 

the purpose of the analysis. Especially if findings are used to state recommendations for 

regulation and policy, it is crucial to be aware of the consequences of choosing a particular 

econometric model. We also show how several statistical tests can be used to narrow 

down the range of appropriate models and hence facilitate the right choice of the model. 

Finally, the purpose of the study has to be taken into account. As described, the models 

have different virtues. Hence, the choice of the model depends also on whether the focus 

lies on individual efficiency scores and their development over time, the slope parameters 

or, as in case of an analysis of TFP change, both. Since the models are not nested 
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 In a similar situation Karagiannis and Tzouvelekas (2010) recommend to construct averages of the results 

from competing models. This approach was brought up by Coelli and Perelman (1999) in regard to 

efficiency analysis. 
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altogether, it is not possible to find the most appropriate model using formal statistical 

tests. However, it is possible to narrow the range of models and thereby to facilitate the 

choice in combination with the aforementioned aspects. 
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Appendix 

Table 2-8: Regression results of the estimated stochastic frontier models 

 

Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

Coefficients (I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

(Constant) 
0.1022 

a
 0.1072 

a
 - -0.0615 

a
 -0.0373 

a
 0.2205 

a
 - 0.0007 0.0616 

a
 

(0.0088) (0.0106) - (0.0071) (0.0102) (0.0058) - (0.0040) (0.0042) 

σ(𝑟𝑎𝑛𝑑𝑜𝑚 𝑐𝑜𝑛𝑠𝑡. ) 
- - - - - - - 0.2327 

a
 0.1459 

a
 

- - - - - - - (0.0013) (0.0010) 

β1 (Labor) 
0.1766 

a
 0.1707 

a
 0.0360 

a
 0.0782 

a
 0.0359 

a
 0.0838 

a
 0.1789 

a
 0.0676 

a
 0.0322 

a
 

(0.0191) (0.0202) (0.0131) (0.0126) (0.0130) (0.0095) (0.0155) (0.0078) (0.0088) 

β2 (Land) 
0.0229 0.0614 

a
 0.1156 

a
 0.1667 

a
 0.1162 

a
 0.1612 

a
 0.0223 

b
 0.1818 

a
 0.1097 

a
 

(0.0140) (0.0142) (0.0150) (0.0118) (0.0150) (0.0071) (0.0113) (0.0055) (0.0087) 

β3 (Interm. inputs) 
0.5908 

a
 0.5708 

a
 0.3215 

a
 0.4286 

a
 0.3190 

a
 0.4284 

a
 0.5851 

a
 0.3970 

a
 0.3081 

a
 

(0.0131) (0.0136) (0.0108) (0.0098) (0.0108) (0.0063) (0.0117) (0.0053) (0.0069) 

β4 (Capital) 
0.1378 

a
 0.1349 

a
 0.0222 

a
 0.0742 

a
 0.0221 

a
 0.0690 

a
 0.1385 

a
 0.0700 

a
 0.0271 

a
 

(0.0106) (0.0106) (0.0085) (0.0079) (0.0085) (0.0053) (0.0085) (0.0040) (0.0053) 

β11  
-0.0494 -0.0212 -0.1060 

a
 -0.0829 

b
 -0.1056 

a
 -0.0880 

a
 -0.0530 

c
 -0.0571 

a
 -0.0747 

a
 

(0.0418) (0.0420) (0.0377) (0.0360) (0.0377) (0.0281) (0.0279) (0.0179) (0.0267) 

β22  
-0.1136 

a
 -0.1140 

a
 -0.0609 

b
 -0.0599 

b
 -0.0596 

b
 -0.0271 

c
 -0.1188 

a
 -0.0162 -0.0301 

b
 

(0.0249) (0.0240) (0.0286) (0.0263) (0.0287) (0.0146) (0.0165) (0.0100) (0.0148) 

β33  
0.1339 

a
 0.1005 

a
 0.0646 

a
 0.0906 

a
 0.0636 

a
 0.0986 

a
 0.1315 

a
 0.1052 

a
 0.0927 

a
 

(0.0203) (0.0193) (0.0203) (0.0192) (0.0204) (0.0095) (0.0135) (0.0079) (0.0110) 

β44  
-0.0487 

a
 -0.0526 

a
 -0.0302 

b
 -0.0481 

a
 -0.0300 

b
 -0.0396 

a
 -0.0474 

a
 -0.0388 

a
 -0.0191 

b
 

(0.0129) (0.0119) (0.0133) (0.0124) (0.0133) (0.0090) (0.0087) (0.0053) (0.0091) 

β12  
0.0430 

c
 0.0223 0.0101 -0.0054 0.0101 0.0055 0.0539 

a
 -0.0214 

b
 -0.0071 

(0.0259) (0.0262) (0.0238) (0.0226) (0.0238) (0.0160) (0.0175) (0.0108) (0.0155) 

β13  
-0.0210 -0.0007 0.0002 0.0061 0.0002 0.0192 -0.0253 -0.0104 0.0004 

(0.0230) (0.0229) (0.0210) (0.0201) (0.0210) (0.0141) (0.0156) (0.0094) (0.0140) 

β14  
-0.0496 

a
 -0.0459 

a
 0.0251 0.0133 0.0250 0.0176 

c
 -0.0548 

a
 0.0005 0.0158 

(0.0177) (0.0162) (0.0157) (0.0150) (0.0157) (0.0099) (0.0122) (0.0068) (0.0099) 

β23  
-0.0090 0.0034 0.0218 0.0185 0.0211 0.0155 -0.0077 0.0086 -0.0020 

(0.0190) (0.0184) (0.0190) (0.0179) (0.0191) (0.0104) (0.0128) (0.0077) (0.0107) 
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β24  
0.0767 

a
 0.0663 

a
 0.0047 0.0260 

b
 0.0037 -0.0018 0.0768 

a
 0.0207 

a
 0.0089 

(0.0131) (0.0119) (0.0138) (0.0128) (0.0138) (0.0078) (0.0088) (0.0054) (0.0085) 

β34  
-0.0406 

a
 -0.0294 

b
 0.0008 -0.0201 

c
 0.0022 0.0082 -0.0385 

a
 -0.0358 

a
 -0.0019 

(0.0119) (0.0117) (0.0124) (0.0116) (0.0124) (0.0068) (0.0079) (0.0047) (0.0069) 

        
  

α1 (Milk) 
-0.7186 

a
 -0.7175 

a
 -0.8287 

a
 -0.8058 

a
 -0.8284 

a
 -0.7995 

a
 -0.7143 

a
 -0.8095 

a
 -0.8358 

a
 

(0.0132) (0.0126) (0.0083 (0.0082) (0.0083) (0.0056) (0.0118) (0.0048) (0.0049) 

α2 (Other) 
-0.2814 -0.2825 -0.1713 -0.1942 -0.1716 -0.2005 -0.2857 -0.1905 -0.1642 

- - - - - - - - - 

α11  
-0.2146 

a
 -0.2150 

a
 -0.2125 

a
 -0.2088 

a
 -0.2125 

a
 -0.2113 

a
 -0.2214 

a
 -0.1683 

a
 -0.1631 

a
 

(0.0175) (0.0141) (0.0100) (0.0099) (0.0100) (0.0050) (0.0141) (0.0046) (0.0048) 

α22  
-0.2146 -0.2150 -0.2125 -0.2088 -0.2125 -0.2113 -0.2214 -0.1683 -0.1631 

- - - - - - - - - 

α12  
0.2146 0.215 0.2125 0.2088 0.2125 0.2113 0.2214 0.1683 0.1631 

- - - - - - - - - 

        
  

δ11  -0.0108 -0.0194 -0.0817 
a
 -0.0696 

a
 -0.0815 

a
 -0.0740 

a
 -0.0038 -0.0736 

a
 -0.0778 

a
 

 
(0.0230) (0.0210) (0.0152) (0.0149) (0.0152) (0.0091) (0.0174) (0.0082) (0.0086) 

δ21  0.0517 
a
 0.0583 

a
 0.0571 

a
 0.0629 

a
 0.0577 

a
 0.0627 

a
 0.0461 

a
 0.0753 

a
 0.0655 

a
 

 
(0.0161) (0.0131) (0.0111) (0.0109) (0.0111) (0.0054) (0.0118) (0.0049) (0.0055) 

δ31  -0.0325 
b
 -0.0290 

a
 -0.0332 

a
 -0.0297 

a
 -0.0337 

a
 -0.0258 

a
 -0.0305 

a
 -0.0389 

a
 -0.0361 

a
 

 
(0.0137) (0.0103) (0.0095) (0.0093) (0.0095) (0.0038) (0.0100) (0.0034) (0.0039) 

δ41  0.0234 
b
 0.0216 

b
 0.0295 

a
 0.0298 

a
 0.0294 

a
 0.0302 

a
 0.0215 

b
 0.0275 

a
 0.0310 

a
 

 
(0.0119) (0.0099) (0.0082) (0.0081) (0.0082) (0.0048) (0.0087) (0.0040) (0.0045) 

δ12  
0.0108 0.0194 0.0817 0.0696 0.0815 0.074 0.0038 0.0736 0.0778 

- - - - - - - - - 

δ22  
-0.0517 -0.0583 -0.0571 -0.0629 -0.0577 -0.0627 -0.0461 -0.0753 -0.0655 

- - - - - - - - - 

δ32  
0.0325 0.029 0.0332 0.0297 0.0337 0.0258 0.0305 0.0389 0.0361 

- - - - - - - - - 

δ42  
-0.0234 -0.0216 -0.0295 -0.0298 -0.0294 -0.0302 -0.0215 -0.0275 -0.031 

- - - - - - - - - 
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τ1 (Trend) 
0.0078 

b
 0.0076 

b
 0.0146 

a
 0.0108 

a
 0.0146 

a
 0.0155 

a
 0.0123 

a
 0.0075 

a
 0.0097 

a
 

(0.0036) (0.0037) (0.0019) (0.0019) (0.0019) (0.0019) (0.0014) (0.0017) (0.0016) 

τ2  
0.0013 

c
 0.0012 

c
 -0.0001 0.0004 -0.0001 0.0003 0.0005 0.0011 

a
 0.0010 

a
 

(0.0007) (0.0007) (0.0004) (0.0004) (0.0004) (0.0003) (0.0004) (0.0003) (0.0003) 

ν1t  
-0.0019 -0.0022 0.0050 

a
 0.0029 0.0050 

a
 0.0022 -0.0019 0.0030 

b
 0.0047 

a
 

(0.0033) (0.0033) (0.0019) (0.0019) (0.0019) (0.0016) (0.0028) (0.0013) (0.0013) 

ν2t  
-0.0018 -0.0018 -0.0021 -0.0013 -0.0024 

c
 0.0000 -0.0026 -0.0016 

c
 -0.0023 

a
 

(0.0024) (0.0024) (0.0014) (0.0014) (0.0014) (0.0010) (0.0020) (0.0009) (0.0008) 

ν3t  
0.0094 

a
 0.0100 

a
 0.0053 

a
 0.0040 

a
 0.0057 

a
 0.0016 0.0113 

a
 0.0025 

a
 0.0046 

a
 

(0.0023) (0.0022) (0.0013) (0.0013) (0.0013) (0.0010) (0.0020) (0.0008) (0.0008) 

ν4t  
-0.0020 -0.0025 0.0059 

a
 0.0019 

c
 0.0059 

a
 0.0020 

a
 -0.0020 0.0023 

a
 0.0064 

a
 

(0.0018) (0.0018) (0.0011) (0.0011) (0.0011) (0.0008) (0.0015) (0.0007) (0.0007) 

ς1t  
0.0010 0.0011 0.0074 

a
 0.0054 

a
 0.0073 

a
 0.0043 

a
 0.0013 0.0039 

a
 0.0063 

a
 

(0.0022) (0.0021) (0.0013) (0.0012) (0.0013) (0.0009) (0.0018) (0.0008) (0.0007) 

ς2t  
-0.001 -0.0011 -0.0074 -0.0054 -0.0073 -0.0043 -0.0013 -0.0039 -0.0063 

- - - - - - - - - 

  
       

  

λ =  σu σv⁄    
1.3287 

a
 1.1311 

a
 

   

4.4007 
a
 1.4391 

a
 1.9320 

a
 2.1771 

a
 

(0.0367) (0.0770)    (0.0073) (0.0439) (0.0707) (0.0736) 

σ = √σu
2 + σv

2  
0.2258 

a
 0.2081 

a
 

   

0.4022 0.3068 
a
 0.1258 

a
 0.1259 

a
 

(0.0000) (0.0037)    - (0.0026) (0.0013) (0.0012) 

σu  
0.1804 0.1559    0.3922 0.2519 0.1118 0.1145 

- -    - - - - 

σϑ  
  0.2467 0.1512 0.1407     

  - - -     

σv  
0.1358 0.1378 0.0868 0.0868 0.0869 0.0891 0.1751 .0579 0.0526 

- - - - - - - - - 

η  
   

 

 

-0.0163 
a
 

 

  

     (0.0021)    

          
Log-likelihood 2500.77 2621.33    5712.47 3536.41 5808.43 6322.76 

   a,b,c: Significantly different from zero  on the 1%, 5% and 10% level respectively 

   Standard errors in parentheses  
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Table 2-9: Auxiliary parameters of the inefficiency effects and the 

Mundlak models 

BC95 GLS + Mundlak  TRE + Mundlak 

(II) (IV – M)  (VII – M) 

ζreg2  
-0.1094 

a
 

γx̅1  
0.1292 

a
 

γx̅14  
-0.0697 

 

γx̅1  
0.1201 

a
 

γx̅14  
-0.0546 

a
 

(0.0265) (0.0263) (0.0534)  (0.0080) (0.0144) 

ζreg3  
-0.0720 

c
 

γx̅2  
-0.1209 

a
 

γx̅23  
-0.0211 

 

γx̅2  
-0.1175 

a
 

γx̅23  
0.0265 

c
 

(0.0380) (0.0207) (0.0556)  (0.0077) (0.0151) 

ζreg4  
-0.0660 

γx̅3  
0.3352 

γx̅24  
0.1062 

a
 

 

γx̅3  
0.3583 

a
 

γx̅24  
0.1225 

a
 

(0.0673) (0.0190) (0.0379)  (0.0063) (0.0114) 

ζreg5  
0.0898 

a
 

γx̅4  
0.0728 

a
 

γx̅34  
-0.0663 

c
 

 

γx̅4  
0.0686 

a
 

γx̅34  
-0.0716 

a
 

(0.0169) (0.0145) (0.0339)  (0.0047) (0.0095) 

ζreg6  
0.1225 

a
 

γx̅11  
0.0331 

a
 

γy̅1  
0.1317 

a
 

 

γx̅11  
-0.0149 

γy̅1  
0.1227 

a
 

(0.0193) (0.1212) (0.0204)  (0.0360) (0.0050) 

ζreg7  
0.1266 

a
 

γx̅22  
-0.1178 

γy̅11  
-0.1321 

c
 

 

γx̅22  
-0.1702 

a
 

γy̅11  
-0.1673 

a
 

(0.0226) (0.0728) (0.0773)  (0.0201) (0.0161) 

ζreg8  
0.0157 

γx̅33  
0.0809 

γxy̅̅̅̅ 11  
0.0924 

 

γx̅33  
-0.0083 

γxy̅̅̅̅ 11  
0.0589 

a
 

(0.0363) (0.0591) (0.0853)  (0.0158) (0.0193) 

ζreg9  
0.2365 

a
 

γx̅44  
-0.0237 

γxy̅̅̅̅ 21  
-0.0962 

c
 

 

γx̅44  
-0.0348 

a
 

γxy̅̅̅̅ 21  
-0.1539 

a
 

(0.0283) (0.0369) (0.0582)  (0.0118) (0.0129) 

 
 

γx̅12  
0.0677 

γxy̅̅̅̅ 31  
0.0388 

 

γx̅12  
0.0560 

a
 

γxy̅̅̅̅ 31  
0.0749 

a
 

 (0.0759) (0.0514)  (0.0214) (0.0109) 

 
 

γx̅13     
-0.0560 

γxy̅̅̅̅ 41  
0.0060 

 

γx̅13  
-0.0122 

γxy̅̅̅̅ 41  
0.0152 

 (0.0687) (0.0422)  (0.0192) (0.0097) 

   a,b,c: Significantly different from zero  on the 1%, 5% and 10% level respectively 

   Standard errors in parentheses 

 

 

 



TFP DECOMPOSITION AND UNOBSERVED HETEROGENEITY 56 

Table 2-10: Year to year average percentage TFP change 

 
Pooled BC95 FE GLS GLS+M BC92 TFE TRE TRE+M 

 
(I) (II) (III) (IV) (IV-M) (V) (VI) (VII) (VII-M) 

Year Total factor productivity change (TFPC) 

00/01 1.253 1.156 1.482 1.187 1.479 1.117 1.547 1.849 2.143 

01/02 0.769 0.802 0.417 0.729 0.412 0.676 0.880 0.347 -0.029 

02/03 1.031 1.000 0.665 0.859 0.662 0.913 1.298 0.972 0.883 

03/04 0.481 0.492 0.325 0.666 0.322 0.773 0.458 0.253 0.106 

04/05 1.671 1.619 1.623 1.457 1.625 1.346 1.718 1.517 1.661 

05/06 1.544 1.499 1.253 1.280 1.254 1.257 1.543 1.257 1.352 

06/07 2.168 2.056 0.941 1.065 0.941 1.190 2.216 2.097 2.184 

07/08 0.965 0.966 1.531 1.342 1.534 1.610 0.604 -0.036 -0.040 

Year Technical change (TC) 

00/01 0.848 0.808 1.267 1.030 1.261 1.516 1.159 0.850 0.954 

01/02 0.993 0.946 1.277 1.084 1.273 1.560 1.231 0.970 1.070 

02/03 1.140 1.088 1.239 1.111 1.237 1.580 1.305 1.069 1.142 

03/04 1.301 1.243 1.265 1.177 1.266 1.629 1.399 1.198 1.271 

04/05 1.444 1.380 1.258 1.225 1.261 1.669 1.468 1.313 1.370 

05/06 1.569 1.497 1.231 1.256 1.235 1.696 1.514 1.417 1.454 

06/07 1.715 1.637 1.207 1.288 1.213 1.722 1.589 1.521 1.537 

07/08 1.847 1.761 1.192 1.329 1.199 1.756 1.644 1.631 1.631 

Year Technical efficiency change (TEC) 

00/01 0.385 0.336 0.146 0.112 0.151 -0.493 0.368 1.004 1.140 

01/02 -0.120 -0.057 0.018 0.019 0.021 -0.498 -0.245 -0.199 -0.232 

02/03 -0.044 -0.032 -0.125 -0.065 -0.124 -0.509 0.057 0.155 0.193 

03/04 -0.699 -0.654 -0.192 -0.161 -0.193 -0.510 -0.819 -0.522 -0.418 

04/05 0.203 0.224 0.049 0.078 0.046 -0.525 0.229 0.068 -0.063 

05/06 0.023 0.044 -0.040 0.008 -0.044 -0.526 0.078 -0.112 -0.178 

06/07 0.494 0.457 -0.226 -0.199 -0.231 -0.524 0.671 0.633 0.662 

07/08 -0.925 -0.833 -0.272 -0.277 -0.279 -0.531 -1.074 -1.944 -2.313 

Year Scale change effect (SC) 

00/01 0.019 0.012 0.068 0.045 0.067 0.094 0.021 -0.005 0.048 

01/02 -0.104 -0.087 -0.878 -0.374 -0.881 -0.386 -0.106 -0.425 -0.867 

02/03 -0.065 -0.056 -0.449 -0.187 -0.451 -0.157 -0.065 -0.252 -0.452 

03/04 -0.121 -0.098 -0.748 -0.349 -0.751 -0.347 -0.122 -0.424 -0.747 

04/05 0.023 0.015 0.317 0.154 0.318 0.203 0.021 0.136 0.354 

05/06 -0.048 -0.042 0.062 0.017 0.063 0.087 -0.049 -0.049 0.076 

06/07 -0.041 -0.037 -0.040 -0.025 -0.041 -0.008 -0.044 -0.057 -0.015 

07/08 0.044 0.037 0.611 0.290 0.614 0.385 0.034 0.277 0.642 
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3. ACCOUNTING FOR ENDOGENOUS EFFECTS IN 

STOCHASTIC FRONTIER MODELS 

 

 

Abstract 

In this paper we propose several extensions for stochastic frontier models, to take firm 

heterogeneity into account and to reduce heterogeneity-induced biases in the estimated 

efficiency scores and technology parameters. We broaden the approach by Farsi et al. 

(2005) and consider the incorporation of an auxiliary equation with the group means of the 

input variables as an actual modeling of between-firm heterogeneity. A generalized 

specification of this auxiliary equation is proposed, including also environmental variables 

and considering that not all group-mean variables are necessarily correlated with firm 

heterogeneity, and adapted to three different stochastic frontier models for panel data. The 

results of an empirical application show that the proposed specifications help to reduce the 

heterogeneity bias in the estimated technology parameters and technical efficiency scores. 

 

Keywords: heterogeneity, panel data, stochastic frontier 

JEL Classification: C23, D24 

 

 

 

This chapter is based on the article Accounting for endogenous effects in stochastic 

frontier models by Giannis Karagiannis and Magnus Kellermann. The authors share the 

main authorship. 
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3.1. Introduction 

The true effects models developed by Greene (2005, 2005a) are undoubtedly one of the 

most important recent contributions in stochastic frontier analysis for panel data. Their 

main advantage is that they allow individual effects to exist alongside inefficiency in such 

a way that we can distinguish between heterogeneity and technical efficiency, thereby 

providing more accurate performance evaluations. Standard stochastic frontier models 

have failed in one way or another to address this issue.
61

 On the one hand, stochastic 

frontier models making no distributional assumptions about the one-sided error term 

capturing technical inefficiency (i.e., Schmidt and Sickles, 1984) confound heterogeneity 

and inefficiency, as whatever is not accounted for by factor inputs is attributed to technical 

inefficiency (Greene, 2004). On the other hand, stochastic frontier models making 

distributional assumptions (e.g., Pitt and Lee, 1981) have simply ignored (assumed away) 

heterogeneity.   

The direct consequence of these modeling limitations is inaccurate estimates of 

efficiency. In particular, for those stochastic frontier models making no distributional 

assumptions, not distinguishing between heterogeneity and efficiency may lead to an 

upward (downward) bias of technical inefficiency for production units that are subject to 

unfavorable (favorable) individual effects. In random effects specifications (Schmidt and 

Sickles, 1984), omitted variable biases in the technology parameters must be expected. For 

those stochastic frontier models making distributional assumptions, neglecting the 

heterogeneity that is asymmetrically distributed among production units also results in 

biased estimated technology parameters, significantly inflated estimates of technical 

inefficiency (Sherlund et al. 2002) and the increased dispersion of efficiency scores 

(Tybout, 2000).
62

 

However, the true effects models that are able to distinguish between heterogeneity 

and inefficiency are unfortunately not without problems. On the one hand, true fixed 

effects models produce biased estimates of individual (fixed) effects and of firm-specific 

efficiency scores (Abdulai and Tietje, 2007).
63

 On the other hand, true random effects 

models result in biased technology parameter estimates, as most of the unobserved factors 

                                                 
61

 Good et al. (1993), Coelli et al. (1999), and Sherlund et al. (2002) are notable exceptions, since they 

included environmental variables to account for heterogeneity. 
62

 Sherlund et al. (2002) also mentioned that not controlling for unobserved heterogeneity also results in an 

upwards bias in the estimates of technical inefficiency for deterministic frontier models. 
63

 For the purely estimation-related problems of the true fixed effect model, see Greene (2005a, b) and Wang 

and Ho (2010). 
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are likely to be correlated with the explanatory variables, i.e., input quantities. The 

inconsistent estimates of the technology (slope) parameters will then bias the estimated 

variance of the composed error term used in the Jondrow et al. (1982) procedure to 

estimate technical efficiency. In addition, because all time-invariant effects are 

incorporated within the individual effects, we cannot account for any persistent 

inefficiency; thus, technical inefficiency tends to be underestimated (Last and Wetzel, 

2010).      

Under these circumstances, the true random effects model with Mundlak’s (1978) 

adjustment, proposed by Farsi et al. (2005) and Farsi et al. (2005a), appears to be a 

promising alternative, as it can reduce the heterogeneity bias in both, technology (slope) 

parameters and inefficiency estimates at the same time. The Mundlak true random effects 

(M-TRE) model is based on the assumption that unobserved heterogeneity is correlated 

with the group means of the explanatory variables, and in the case of production frontiers, 

this assumption refers to input quantities and the technical change index.
64

 By controlling 

for (some of) the unobserved heterogeneity and separating the correlation effects, the M-

TRE model tends to decrease the bias in the inefficiency estimates without affecting the 

consistency of the estimated technology parameters. In fact, when the error term in the 

estimated equation is a composite asymmetric term, as with stochastic frontier models, the 

heterogeneity bias will be reduced, given that the correlation between the individual 

effects and the explanatory variables is partly captured in the model (Farsi et al. 2005a).   

This paper attempts to contribute to this strand of the literature by proposing two 

alternative models in the spirit of the M-TRE model.
65

 In both of these models, we try to 

further improve the ability of the true random effects models to account for heterogeneity 

by further enlarging the set of potential correlates to increase the portion of measured 

heterogeneity and to squeeze the impact of heterogeneity bias on the estimated technology 

parameters and technical efficiency. The first model allows heterogeneity to be correlated 

with the group means of input quantities and with a set of relevant environmental 

variables that are beyond producers’ control but account for the operating conditions with 

which the production units have to cope and which most likely tend to differ among firms. 

The second model takes even a boarder view by assuming that heterogeneity may not be 

correlated with all of the technology-related explanatory variables. For example, 

                                                 
64

 The explanatory variables in a cost frontier are input prices, output quantities and the technical change 

index; in a profit frontier, they include input and output prices and the technical change index.   
65

 Both the proposed models and the M-TRE model itself fall in the boarder category of hierarchical or 

multilevel models, as referred to by Greene (2004). 
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heterogeneity is most likely uncorrelated with the neutral component of disembodied 

technical change as long as production units are not involved in R&D activities, as is the 

case in agriculture and several service industries. The same may also be true for a subset 

of environmental variables, such as those affecting the operating conditions in a uniform 

way, even if they change over time (e.g., policy variables). As a common feature of both 

of the proposed models, it is worth mentioning that each employs a more general 

specification of endogenous individual effects than the M-TRE model.
66

  

Furthermore, the true-effects type of models, which account for endogenous 

individual effects, give rise to several new variants of standard stochastic frontier models. 

We present two such variants without distributional assumptions. These variants can be 

viewed as extensions of the fixed- and the random-effects stochastic frontier models 

introduced by Schmidt and Sickles (1984) and developed further by Good et al. (1993) to 

account for environmental variables and by Farsi et al. (2005a) to incorporate Mundlak’s 

adjustments. Moreover, we propose three additional models for making distributional 

assumptions that complement previous attempts by Coelli et al. (1999) and Sherlund et al. 

(2002) to account for environmental factors in a maximum-likelihood type of stochastic 

frontier models.  

The main reason for incorporating endogenous individual effects into applied 

efficiency analysis is that these effects may improve econometricians’ abilities to account 

for the heterogeneity that is unobserved by them but is observed by producers, who adjust 

their input decisions in accordance with underlying environmental factors. We expect that 

at least part of what is considered to be individual heterogeneity may be accounted for by 

utilizing some control variables. These variables include environmental factors affecting 

firms’ operating conditions and Mundlak’s adjustment terms, which in the case of 

production frontiers, correspond to individual means of input quantities. The only 

difference is that in the proposed conventional stochastic frontier models, it is assumed 

that all heterogeneity is captured by the control variables, whereas in the true effects 

models, the included control variables account only for part of the individual effects. The 

remaining effects are treated as unobserved heterogeneity by means of random effects. 

We provide an empirical evaluation of the proposed models using a dataset of a 

sample of specialized German dairy farms observed for the period 2003–2008. This 

example is especially appealing because agricultural sector firms (farms) are prone to 

                                                 
66

 The term “endogenous effects” has been used by Baltagi (1995, p. 116-120) to refer to the Mundlak 

(1978) and Hausman and Taylor (1981) types of panel data models.  
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heterogeneous production conditions. For this reason, models that fail to account for 

different production and environmental conditions have been criticized in the literature; 

see for example Sherlund et al. (2002) and Abdulai and Tietje (2007). We explicitly 

account for this and provide some empirical evidence as to the extent of the difference in 

the estimated technical efficiency scores by using alternative specifications to account for 

endogenous individual effects and/or different model assumptions.   

The rest of paper is organized as follows: in the next section, we present the 

proposed model specifications and outline their estimation procedures. The data and the 

empirical model are described in the third section. The comparative empirical results are 

discussed in the fourth section. Concluding remarks follow in the last section. 

3.2. Models Specification and Estimation 

Following Greene (2005, 2005a) let the true effects stochastic production frontier model 

be given as follows: 

0 ( )it it i it ity f x u v       (3.1) 

where i is used to index production or decision making units and t time periods, y refers to 

(the log of) output quantity and x to (the log of) input quantities, ( )f   is the functional 

form of the production function not including the intercept term 0 , i  represents firm-

specific (individual) effects or unobserved heterogeneity, itu  is a one-sided non-negative 

error term measuring (the log of) technical efficiency, and itv  is a symmetric and normally 

distributed error term, which plays the role of statistical noise accounting for unanticipated 

production shocks that producers do not observe when making their input decisions and 

for econometricians’ weaknesses related to omitted explanatory variables, measurement 

errors in the dependent variable, and functional form discrepancies. In addition, the 

following distributional assumptions are made for these error terms: that both are 

independent and identically distributed (iid) as 𝜈𝑖𝑡~𝑁(0, 𝜎𝜈
2) and that 𝑢𝑖𝑡~𝑁+(0, 𝜎𝑢

2) 

(half-normal) and is also uncorrelated with (or distributed independently of) input 

quantities x and one another.  

The former presupposes that technical efficiency is not known to producers before 

they make their input decisions.
67

 In such a case where producers seek to maximize the 

expected profits, the quantities of (variable) inputs are largely predetermined and are 

                                                 
67

 If a firm knew its level of technical efficiency at the time it makes its production decisions, input choice 

would be affected (Schmidt and Sickles, 1984).   
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hence uncorrelated with technical efficiency (Zellner et al., 1966).
68

 Moreover, technical 

efficiency is assumed to be stochastically (randomly) time-varying, as no particular form 

is specified for its time pattern. In other words, inefficiency is not persistent, and “each 

period brings about new idiosyncratic elements thus new sources of inefficiency. This is a 

reasonable assumption, particularly in industries that are constantly facing new 

technologies” (Farsi et al., 2005, p. 77). The implication of this assumption is that the 

observations from the same production unit are considered independent sample points. 

Following Greene (2005, 2005a), there are alternative ways of modelling the firm-

specific effects in (1). One such method is to treat 
i  as fixed effects that are correlated 

with input quantities, even though 
i  and 

itx  are assumed to be uncorrelated with both 
itu  

and 
itv . This specification corresponds to the true fixed effects (TFE) model. Another 

approach is to consider heterogeneity as an independent and identically distributed (iid) 

variable with 𝛼𝑖~𝑁(0, 𝜎𝛼
2). This approach results in the true random effects (TRE) model, 

in which 
itu , 

itv  and 
i  are assumed to be uncorrelated with the input quantities and each 

other.   

On the other hand, the M-TRE model as given by Farsi et al. (2005) and Farsi et al. 

(2005a), is based on the assumption that individual effects are a linear function of the 

group means of all explanatory variables (i.e., input quantities) across time, namely: 

 (3.2) 

where   are parameters to be estimated and a bar over a variable denotes its group mean, 

i.e., (1/ )i i itx T x  . By substituting (3.2) into (3.1), we obtain the estimable equation of 

the M-TRE model:  

 (3.3) 

where it it ite u v    is a composite asymmetric error term equal to the sum of two 

orthogonal error terms, one reflecting inefficiency and the other statistical noise. In 

estimating (3.3), Farsi et al. (2005) and Farsi et al. (2005a) have treated i  as pure 

unobserved or residual heterogeneity, reflecting that part the of firm-specific (individual) 

effects that cannot be explained by observed factors, namely, the group means of input 

use. To deal practically with this unobservable part the authors assumed that it was 

independent and identically distributed (iid) as 𝛿𝑖~𝑁(0, 𝜎𝛿
2). As a random effects model, 

                                                 
68

 For comparison purposes, we maintain this assumption even for the GLS models presented later in this 

section, restricting ourselves to random effects GLS models. 

i i ix   

0 ( )it it i i ity f x x e      
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(3.3) assumes that ite  and thus ( itv  and technical inefficiency) are uncorrelated with pure 

unobserved heterogeneity i  and input use. However, with some fixed-effects elements 

being inherent through Mundlak’s adjustment, i  is found to be correlated with the group 

means of input use as in (3.2), which is expected to deteriorate the heterogeneity bias. 

Under this setup, the M-TRE model is estimated with simulated maximum likelihood (see 

Greene, 2005, 2005a), and technical efficiency estimates are obtained as ( )it itE u e  using 

the Jondrow et al. (1978) estimator (Greene, 2004).
69

 

A potential limitation of the M-TRE model is that it accounts only for heterogeneity 

reflected in the firms’ level of input use. The impact of other variables affecting 

heterogeneity, such as those related to “environmental factors”, is not accommodated in 

the M-TRE model.
70

 We consider as environmental “those factors which (…) are taken as 

not within the management’s field of choice” (Hall and Winsten, 1959, p. 72) and thus are 

not under its control. For instance, these factors account for the operating conditions with 

which the production units have to cope, as they most likely tend to differ among firms 

and perhaps even across time.   

Although there are industries, such as banking and semiconductors, in which firms 

have considerable control over their operating conditions (Sherlund et al., 2002), several 

other examples exist for which this is not the case. For instance, the population density 

and per capita income might be considered as two environmental factors in evaluating the 

performance of retail distribution systems (Hall and Winsten, 1959). Similarly, according 

to Coelli et al. (1999), several geographic and demographic features of the regions or 

countries served are important to accurately estimate efficiency in the airline industry. 

Moreover, agro-ecological conditions, topography, pest infestation and (plant or animal) 

diseases are important environmental factors in estimating farm efficiency (see Mundlak, 

1961; Sherlund et al., 2002). 

To accommodate these concerns into (3.2), we extend the M-TRE model in two 

directions: first, we adopt a variant of Mundlak’s model that first appeared in Maddala 

(1987) and includes time-invariant environmental factors within the auxiliary equation for 

explaining individual effects; and second, we incorporate time-varying environmental 

                                                 
69

 Notice however that the resulting estimated parameters are not the within estimates, as in the original 

Mundlak (1978) model because 𝑒𝑖𝑡 is a composite asymmetric rather than a symmetric error term (Farsi et 

al., 2005a). 
70

 The discussion on the role of “environmental factors” in efficiency measurement is dated back to Hall and 

Winsten (1959) and Mundlak (1961).   
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factors into the production function ( )f  . With these modifications the auxiliary equation 

(3.2) may be written as follows:  

 (3.4) 

where   are parameters to be estimated, 
* ( , )it it itx x z , and z is the set of the relevant 

environmental factors. Thus, with (3.4) we attempt to improve the ability of the TRE 

model to account for heterogeneity by including a set of relevant environmental factors 

along with firm-specific means of input quantities. By substituting (3.4) into (3.1), we 

obtain the following: 

𝑦𝑖𝑡 = 𝛽0 + 𝑓(𝑥𝑖𝑡
∗ ) + 𝜋′𝑥̅𝑖

∗ + 𝛾′𝑧𝑖 + 𝛿𝑖 + 𝑒𝑖𝑡 (3.5) 

which we refer to as the Mundlak-Maddala true random effects (MM-TRE) model. As the 

M-TRE model, the MM-TRE model can be estimated with simulated maximum-

likelihood, and technical efficiency estimates can be obtained as ( )it itE u e  using the 

Jondrow et al. (1978) estimator. From (3.5) and (3.3), that the M-TRE is nested in the 

MM-TRE model can be verified. Hence, the decision as to which model should be used 

for the data at hand could be based on the likelihood ratio test. 

Yet another modeling alternative emerges by noticing that the firm-specific effects 

might be correlated with some but not necessarily all technology-related and 

environmental variables. The idea of distinguishing between variables that are potentially 

correlated or uncorrelated with firm effects was introduced in a completely different setup 

by Hausman and Taylor (1981).
71

 For example, individual effects are most likely 

uncorrelated with quasi-fixed inputs and neutral disembodied technical changes. 

According to Griliches and Mairesse (1998, p. 385), “if one accepts the notion that the 

quasi-fixed inputs are predetermined for the duration of the relevant observation period”, 

then their quantity is uncorrelated with the individual effects. Similarly, the neutral part of 

disembodied technical change with a common impact (i.e., shift) on the production 

technology of all producers is most likely thought of as being uncorrelated with 

heterogeneity; the same though is not true for biased technical change, as it depends on 

input quantities. However, all symmetrically distributed time-varying environmental 

variables may have an impact on the position of the production function; however, this 

impact will be uniform for all producers. Such variables could be dummy variables 

                                                 
71

 Hausman and Taylor (1981) use the exogenous variables to derive valid instruments for the endogenous 

variables. We, however, just borrow the notion to split the set of variables in exogenous and endogenous 

variables. 

*

i i i ix z      
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reflecting policy changes and even rainfall measures for tightly defined geographical 

areas. However, under certain conditions the uncorrelatedness assumption can also apply 

to input quantities. A concrete example is a study on the US airline industry by Cornwell 

et al. (1990), who assumed that labor and material inputs were uncorrelated with 

individual effects for their illustration of a Hausman-Taylor type, efficient instrumental 

variable estimator. 

We accommodate these aspects by partitioning the 
*

itx  vector into a group of 

technology and environmental variables 
*

1 1 1( , )it it itx x z  that are correlated with 

heterogeneity (firm-specific effects) and another group 
*

2 2 2( , )it it itx x z  that are 

uncorrelated. Thus, we can write the auxiliary equation as follows:  

𝛼𝑖 = 𝜋1′𝑥̅1𝑖∙
∗ +𝛾′𝑧𝑖 + 𝛿𝑖 (3.6) 

where 1 and 𝛾 are parameters to be estimated. By substituting (3.6) into (3.1), we obtain 

the following: 

 (3.7) 

which we refer to as the Hausman-Taylor true random effects (HT-TRE) model. As for the 

other two models, the HT-TRE model is estimated with simulated maximum-likelihood 

and the technical efficiency estimates are obtained as ( )it itE u e  using the Jondrow et al. 

(1978) estimator. The empirical validity of the HT-TRE model can be tested against both 

the M-TRE and the MM-TRE models using the likelihood ratio test.   

In the models above, we have followed Greene (2005, 2005a) by interpreting the i  

term in (3.3), (3.5) and (3.7) as pure unobserved heterogeneity. Therefore, we have 

assumed that the group means of input quantities and environmental factors only partially 

explain their individual effects. Alternatively, the auxiliary equations in (3.2), (3.4) and 

(3.6) could be thought of as pure regression equations, with i  representing statistical 

noise and the individual effects being related to a vector of observed characteristics, 

including environmental factors and group means of input quantities, subject to statistical 

error. This is equivalent to saying that if all of the relevant variables used to control for 

heterogeneity in (3.2), (3.4) and (3.6) are included, then the measured heterogeneity can 

account for individual effects up to a statistical error.  

* *

0 1 1( )it it i i i ity f x x z e         



ENDOGENOUS EFFECTS IN STOCHASTIC FRONTIER MODELS 66 

Thus, it iv   is an independent and identically distributed (iid) error term with zero mean 

and constant variance i.e.: (𝑣𝑖𝑡 + 𝛿𝑖) ~ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2 + 𝜎𝛿

2). Equations (3.3), (3.5) and (3.7) 

may be adjusted accordingly as follows: 

0 ( )it it i ity f x x       (3.8) 

*

0 ( )it it i i ity f x x z          (3.9) 

 (3.10) 

where ( )it it i itv u     is a composite asymmetric error term equal to the sum of two 

orthogonal error terms, one reflecting normal distributed statistical noise (the sum of the 

two terms in the parenthesis) and the other reflecting half-normal distributed technical 

inefficiency. Because it is necessary to make distributional assumptions to estimate 

models (3.8)-(3.10), we have followed the same line of reasoning as above in referring to 

them as the M-MLE, MM-MLE and HT-MLE models, respectively. These models 

complement and enrich previous works by Coelli et al. (1999) and Sherlund et al. (2002) 

in accounting for environmental factors in maximum likelihood estimated (MLE) 

stochastic frontier models. 

In contrast to the true effects models in (3.3), (3.5) and (3.7) and keeping track of the 

traditions of MLE stochastic frontier models for panel data, we assume that technical 

inefficiency is deterministically time-varying. In particular, we adopt the specification of 

Battese and Coelli (1992): exp( ( )it iu t T u   , where   is a parameter to be estimated 

and iu  is time invariant technical efficiency that is assumed to be independent and 

identically distributed (iid) with 
2(0, )uN 

. If the estimated value of   is positive 

(negative), technical efficiency tends to improve (deteriorate) over time, whereas if 0  , 

technical efficiency is time-invariant. This specification allows inefficiency to evolve 

smoothly over time, with its movement being monotonic and standardized for all 

production units, depending on their level of inefficiency. Moreover, the most efficient 

firm does not change over time. Still, these two aspects of Battese and Coelli’s (1992) 

specification of time varying technical efficiency are consistent with the stylized facts, as 

documented in Bartelsman and Doms’ (2002) survey, on the uniformity of changes in 

efficiency across production units and on the persistence of efficiency differentials over 

time. 

* *

0 1 1( )it it i i ity f x x z        
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In the previous models, we have treated the i -term as either pure unobserved 

heterogeneity or statistical noise. These are not, however, the only interpretations 

available. A third alternative offered by Hay and Liu (1997) views i  and itu  as two 

distinct components of technical inefficiency, namely long- and short-run. Long-run 

inefficiency reflects persistent differences in the quality of management due to innate 

abilities and business experience, as well as differences in the ability or lack of expertise 

to utilize the available technology. However, short-run inefficiency is allowed to vary over 

time because we expect management to raise its efforts in response to internal and external 

(i.e., competitive) pressures. The aforementioned interpretation of long-run inefficiency 

can be accommodated by treating i  as a one-sided error term that is independent and 

identically distributed (iid) with constant mean (which is positive) and variance.
72

 

However, if the assumption of time-invariant efficiency is tenable, then we can 

assume away short-run (time-varying) technical inefficiency; that is, 0itu  . The idea of 

time-invariant inefficiency is inherent in Jovanovic’s (1982) “passive learning” model, 

wherein firms are “born” with a fixed efficiency level that they learn over time 

(Bartelsman and Doms, 2000). Then, the firms that are endowed with a relatively low 

efficiency level eventually have to exit the market, while the surviving firms exhibit 

efficiency persistence. Under these circumstances and following the initiative of Farsi et 

al. (2005a), who proposed (3.11) below, we can extend the class of random effect models 

suggested by Schmidt and Sickles (1984) with the following three models by adjusting 

(3.3), (3.5) and (3.7) accordingly as follows: 

*

0 ( )it it i ity f x x       (3.11) 

* * *

0 ( )it it i i ity f x x z          (3.12) 

 (3.13) 

where 
*

0 0 ( )iE     and [ ( )]it it i iv E      is an independent and identically 

distributed (iid ) error term with zero mean and constant variance, and E refers to the 

expectation operator.
73

 The above three models, which we refer to as M-GLS, MM-GLS, 

and HT-GLS, can be estimated with GLS along the lines suggested by Schmidt and 

                                                 
72

 Even though not considered here, this interpretation of long-run inefficiency can in principle be 

accommodated in Greene’s (2005, 2005a) true effects models. 
73

 Notice that (12) may result from the simple combination of the formulations of Good et al. (1993) and 

Farsi et al. (2005a). 

* * *

0 1 1( )it it i i ity f x x z        
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Sickles (1984) without having to make distributional assumptions about the i  term, as in 

the true effects models. Moreover, the choice among the three aforementioned models can 

be made by a Wald test on the joint significance of the additional variables. Firm-specific 

estimates of technical efficiency are obtained by first computing the residuals 
it  as 

ˆ ˆ( )it it iy f x x  , * *ˆ ˆˆ( )it it i iy f x x z     , and * *

1 1
ˆ ˆˆ( )it it i iy f x x z      using, 

respectively, the estimated parameters (denoted by a hat) of the models (3.11), (3.12) and 

(3.13). From those residuals it , we can recover estimates of the individual-firm intercepts 

in (3.11), (3.12) and (3.13) as ˆ (1/ )i itT    (Schmidt and Sickles, 1984). Then, using 

the normalization
0

ˆ ˆmax( )i  , we may derive estimates of the firms inefficiency from 

0
ˆ ˆ ˆ
i i    . 

3.3. Empirical Model and Data Description 

We applied the three types of models discussed in the previous section to a dataset of 466 

Bavarian farms specialized in dairy production, observed over the period 2003–2008 

(2409 observations).
74

 These three models comprised namely the “true” random effects 

model (TRE) (Greene, 2005; 2005a), the GLS random effects model (GLS) (Schmidt and 

Sickles, 1984) and the maximum likelihood random effects model (MLE), which allowed 

allowing for time-varying technical efficiency (Battese and Coelli, 1992). We estimated 

the three models in their well-known basic specifications (B), as well as the three 

discussed extensions: the Mundlak- (M), the Mundlak-Maddala- (MM) and the Hausman-

Taylor- (HT) type specifications. Additional specifications have built on the work by 

Good et al. (1993) in the context of a GLS stochastic frontier model and by Coelli et al. 

(1999) in the context of MLE stochastic frontier models. Both models include 

environmental variables within the estimation equation to account for heterogeneous 

production conditions. Without commenting on those specifications in depth, we added 

this “Environmental-Variables”- (E) specification to all models to make our comparison 

more complete. Hence, we estimated a total of 15 different stochastic frontier models and 

have examined their respective results.  

To keep the empirical application simple, we employed a single-output, multiple 

input Cobb-Douglas production function to represent the production technology. 

However, all of the discussed models are in no way limited a priori to this functional form. 

                                                 
74

 The term “specialized” states that at least 75% of the farm’s revenue must come from dairy production.  
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We aggregated the farms’ outputs into one variable and their inputs into four variables. 

The output variable included the farms total revenue from dairy production. As input 

variables we considered the following: i: labor, measured in full-time equivalents 

(including family labor and hired workers); ii: land, measured in ha; iii: material, 

including expenses for forage production, veterinary services, purchased feed and other 

related expenses; and iv: capital, including the end-of-year value of all farm-related 

machinery, equipment and buildings as well as the livestock. All monetary values were 

deflated using appropriate price-indices obtained from the German Federal Statistical 

Office (Destatis, 2012). We show the descriptive statistics of the input and output 

variables in the upper portion of table 3-1.  

Table 3-1: Descriptive statistics of input-, output- and 

environmental variables 

  Mean S.D. Min Max 

Output Revenues (1000 €) 110.3 53.6 13.4 402.6 

Inputs Labor (fte) 1.61 0.49 0.30 3.86 

 Land (ha) 52.6 28.8 5.6 318.3 

 Material (1000 €) 57.7 30.7 5.7 247.1 

 Capital (1000 €) 223.6 132.6 12.9 1063.5 

Environmental  

variables 

share of owned land (%) 48.59 24.10 0.00 100.00 

ag. Region 1
1
 8.3    

 ag. Region 2
1
 2.7    

 ag. Region 3
1
 33.7    

 ag. Region 4
1
 43.0    

 ag. Region 5
1
 6.9    

 ag. Region 6
1
 5.4    

 part time farming
1
 6.5    

1Dummy variable     

 

The basic specification of all three model-types included just the four inputs alone as 

explanatory variables. For the Mundlak specification of the three models (as specified by 

equations (3.3), (3.8) and (3.11)) we constructed an additional set of variables 𝑥̅𝑖𝑘 =

1

𝑇𝑖
𝑥𝑖𝑡𝑘 ∀ 𝑖, representing the respective group means of the initial input variables, where 

𝑘 = 1, … ,4. For the Mundlak-Maddala specification (equations (3.5), (3.9) and (3.12)), we 

defined a set of environmental variables 𝑧 to further improve the models’ ability to 

account for heterogeneity. In our application, this set contains time-invariant dummy 

variables for part-time farming and dummy variables indicating the location of the farm in 
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well-defined agricultural production regions in Bavaria
75

. We also included a time-varying 

variable 𝑧𝑖𝑡, which represents the share of owned land. Other examples of time-varying 

variables could be the average field size or the share of permanent grassland. The 

descriptive statistics for the environmental variables used are given in the lower part of 

table 1. These variables were also used for the “Environmental-Variables”-specification. 

The intuition that only some and not all environmental and technology parameters 

are correlated with unobserved heterogeneity was the basis of the Hausman-Taylor type 

models specified in equations (3.7), (3.10) and (3.13). In principle, any technology- or 

environmental variable could be assumed to be independent of unobserved heterogeneity. 

However, for many variables – especially inputs – this is a strong assumption that has to 

be based on conclusive arguments. As previously discussed – there are also natural 

candidates, such as quasi-fixed inputs or the neutral part of disembodied technical change. 

We cannot justify the uncorrelatedness assumption for any of the above-mentioned input 

or environmental variables in our dataset. Hence, for illustrative purposes, we used this 

fact to construct a very simple example of the HT-type specification by simply adding a 

linear trend variable to the estimation equation, which by construction is uncorrelated with 

time invariant effects. 

3.4. Discussion of Empirical Results 

As a first assessment of the endogeneity of the individual effects, we tested the null 

hypotheses 𝐻0: 𝛼𝑖 ⊥ 𝑥𝑖𝑡𝑘 by performing a Hausman test on the basic GLS random effects 

model (B-GLS). This test clearly rejected the hypotheses of no correlation between the 

effects and the input variables, with a test statistic of 317.1 against a critical value of 

𝜒(4;0.01)
2 = 13.3. Even if this test only applies to the GLS random effects model, the result 

indicates clearly that all models assuming exogenous random effects will generate biased 

coefficients for the technology parameters. We present the estimated coefficients, as 

derived from the discussed models (TRE, GLS and MLE), in tables 3-2 – 3-4. In each 

table, we have five columns. The first column contains the result of the basic specification, 

followed by the Environmental-Variables-, the Mundlak-, the Mundlak-Maddala- and the 

Hausman-Taylor-type specifications. In the third column in table 3-2, we show the 

respective coefficients of the additional Mundlak variables 𝜋𝑥̅𝑘
; all four of them are 

significantly different from zero. 
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 The agricultural production regions are defined by the Bavarian Agricultural Research Institute (LfL). We 

arbitrarily choose the Franconian region as reference group. 
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Table 3-2: Regression results of the estimated GLS stochastic frontier models 

 
Basic Environmental Var. Mundlak Mundlak-Maddala Hausman-Taylor 

 
Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. 

𝛽0 (Constant) 0.0046 (0.0072) -0.0724 (0.0290)
 b
 0.0134 (0.0067)

 b
 0.0043 (0.0281) -0.0510 (0.0285)

 c
 

𝛽𝑥1 (Labor) 0.0832 (0.0151)
 a
 0.0772 (0.0152)

 a
 0.0344 (0.0172)

 b
 0.0422 (0.0172) 

b
 0.0534 (0.0168)

 a
 

𝛽𝑥2 (Land) 0.2539 (0.0151)
 a
 0.3132 (0.0178)

 a
 0.3765 (0.0218)

 a
 0.4456 (0.0270)

 a
 0.3110 (0.0294)

 a
 

𝛽𝑥3 (Material) 0.5106 (0.0139)
 a
 0.4980 (0.0140)

 a
 0.3913 (0.0171)

 a
 0.3906 (0.0171)

 a
 0.3752 (0.0167)

 a
 

𝛽𝑥4 (Capital) 0.0687 (0.0091)
 a
 0.0675 (0.0092)

 a
 0.0150 (0.0109) 0.0168 (0.0109) 0.0574 (0.0113)

 a
 

𝜋𝑥̅1      0.1827 (0.0347)
 a
 0.1478 (0.0358)

 a
 0.1412 (0.0356)

 a
 

𝜋𝑥̅2      -0.4233 (0.0312)
 a
 -0.4376 (0.0372)

 a
 -0.3090 (0.0388)

 a
 

𝜋𝑥̅3      0.3066 (0.0291)
 a
 0.2798 (0.0295)

 a
 0.2937 (0.0292)

 a
 

𝜋𝑥̅4          0.1502 (0.0196)
 a
 0.1528 (0.0201)

 a
 0.1149 (0.0203)

 a
 

𝛽𝑧1 (owned land)   0.0013 (0.0004)
 a
   0.0018 (0.0004)

 a
 0.0012 (0.0004)

 a
 

𝜋𝑧̅1        -0.0012 (0.0005)
 b
 -0.0005 (0.0005) 

𝛾1 (Region 1)   0.1297 (0.0352)
 a
   0.0531 (0.0331) 0.0550 (0.0331)

 c
 

𝛾2 (Region 2)   0.1450 (0.0467)
 a
   0.0309 (0.0440) 0.0302 (0.0440) 

𝛾3 (Region 3)   0.0621 (0.0283)
 b
   -0.0079 (0.0271) -0.0092 (0.0270) 

𝛾4 (Region 4)   0.0034 (0.0274)   -0.0327 (0.0258) -0.0331 (0.0258) 

𝛾5 (Region 6)   -0.1282 (0.0385)
 a
   -0.0972 (0.0360)

 a
 -0.0932 (0.0359)

 a
 

𝛾6 (Part time)     -0.0673 (0.0291)
 b
   -0.0389 (0.0289) -0.0357 (0.0289) 

𝛽𝑡 (Trend)             0.0154 (0.0015)
 a
 

𝜎𝛿  0.1417 - 0.1368 - 0.1300 - 0.1261 - 0.1261 - 

𝜎𝑣  0.1010 - 0.0102 - 0.1014 - 0.1010 - 0.0985 - 

 
 

a,b,c
  parameter significant different from zero on the 1%, 5% and 10% level respectively 
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Under the assumption that all (still) unaccounted-for time-invariant differences between 

the firms are due to inefficiency, we obtain the respective efficiency scores from the group 

means of the residuals by applying the normalization described in Schmidt and Sickles 

(1984). The estimated standard deviation 𝜎𝛿 is therefore equivalent to the standard 

deviation of the inefficiency term. If we compare 𝜎𝛿 in column 1 and 3 in table 3-2, we 

can observe a decrease in the estimated standard deviation of the inefficiency term from 

0.1417 to 0.130. This is to be expected, as in the M-GLS model, 𝛼𝑖 = 𝜋𝑥̅𝑖∙ is intended to 

capture all unobserved time-invariant heterogeneity that is correlated with the input 

variables. This helps to reduce heterogeneity bias in the inefficiency estimates. Hence, as 

in the Schmidt and Sickles (1984) initial fixed effects SFA model, the M-GLS 

specification provides in principle unbiased slope coefficients and therefore a better 

understanding of the underlying production technology without capturing all time-

invariant differences between the firms in the fixed-effects inefficiency term.  

If available, the introduction of environmental variables provides another method of 

accommodating heterogeneous production conditions in a production frontier. This 

approach corresponds to the E-specification (column 2), as in Good et al. (1993). We find 

that the technology-related coefficients of the input variables in this specification lie in 

between those of the B-GLS and the M-GLS model; six out of seven environmental 

variables are significantly different from zero. Comparing the standard deviation of the 

inefficiency term 𝜎𝛿 in column 1 and 2 we find a reduction from 0.1417 to 0.1368. These 

findings confirm that the introduction of the environmental variables helps to reduce the 

heterogeneity bias in the technology parameters and in the inefficiency estimates. 

In the MM-GLS specification, we combined the Mundlak approach with the 

additional set of environmental variables in the estimation equation, further improving our 

modeling of heterogeneity. In this specification, the term 𝛼𝑖 = 𝜋𝑥̅𝑥̅𝑖∙ + 𝜋𝑧̅𝑧𝑖̅∙ + 𝛾𝑧𝑖 takes 

into account not only the correlation of unobserved heterogeneity with input variables but 

also of observed (or rather approximated) heterogeneity, as measured by time-varying and 

time-invariant environmental variables. Accordingly, the estimated standard deviation of 

the time-invariant error component 𝜎𝛿 is further reduced to 0.1261. In our example of an 

HT-GLS model, where we simply added a linear trend variable, we find no effect on 𝜎𝛿 

but, instead, an effect on 𝜎𝑣 – the estimated standard deviation of the idiosyncratic error 

component. This result must be the case because the trend variable has no in-between 

group variance. On the other side, we observe almost no effect on 𝜎𝑣 between the basic 
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GLS model and the M- and MM-GLS specification. This was also expected because only 

additional time-varying variable is the share of owned land
76

. 

The estimated parameters from the MLE random effects models (table 3-3) are 

similar to those obtained from the GLS models. The first order parameters of the input 

variables in the basic specifications have similar values, as well as the parameters of the 

Mundlak variables and the environmental variables. We also find the expected reactions in 

the estimated standard deviations of the inefficiency component 𝜎𝑢, which is reduced from 

0.2709 in the basic specification to 0.2101 in the Mundlak-Maddala specification. 

Interestingly, 𝜎𝑢 increases again to 0.2389 in the HT-MLE model. We assign this increase 

to the change in the sign of the parameter 𝜂. While this parameter is positive in the B-, E-, 

M- and MM-specification, indicating an increase in efficiency over time, it turns out to be 

negative in the HT-specification due to the incorporation of the trend variable within the 

production function part. This leads to a growing dispersion in inefficiency values over 

time and, therefore, to the higher value of 𝜎𝑢. 

In contrast to the GLS and the MLE models, the TRE model (table 3-4) attempts to 

capture time-invariant heterogeneity in its basic specification. The TRE model is a random 

parameter model, with the constant as the only random parameter. This random parameter 

is specified to be normally distributed and can be interpreted as an individual random 

effect. The additional parameter 𝜎𝛽0
 is the standard deviation of this random parameter 

and herein a measure of the unobserved (or unaccounted) variation between the farms. By 

including the Mundlak variables into the TRE model, we partially account for unobserved 

heterogeneity, as in the M-GLS and the M-MLE models. As expected, the “unaccounted” 

variation between the firms is reduced from 𝜎𝛽0
=0.1789 to 0.1378. Similarily, the 

inclusion of environmental variables also reduces the standard deviation of the random 

parameter, although not severly (from 𝜎𝛽0
=0.1789 to 0.1700). Still, in the TRE model, the 

additional Mundlak variables and the environmental variables have no distinct effect on 

the inefficiency estimates. Comparing columns 1-5 in table 3-4, we find almost identical 

estimates for 𝜎𝑢 and 𝜎𝑣. These findings are in line with our expectations. Because all 

time-invariant differences between the firms are captured by the random constant anyway, 

the inefficiency estimates do not contain any time-invariant component and are not 

contaminated with heterogeneity. Thus, we simply reduce the variation in the random 

constant.  
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 Despite being a time-varying variable, the between-group variance in the share of owned land accounts 

for most (93.2 %) of the variable’s overall variance. 
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Table 3-3: Regression results of the estimated MLE stochastic frontier models 

 
Basic Environmental Var. Mundlak Mundlak-Maddala Hausman-Taylor 

 
Coeff. Std.Err.   Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. 

𝛽0 (Constant) 0.2545 (0.0059)
 a
 0.1495 (0.0223)

 a
 0.2137 (0.0055)

 a
 0.1693 (0.0289)

 a
 0.0870 (0.0303)

 a
 

𝛽𝑥1 (Labor) 0.0827 (0.0128)
 a
 0.0746 (0.0132)

 a
 0.0345 (0.0142)

 b
 0.0403 (0.0145)

 a
 0.0560 (0.0142)

 a
 

𝛽𝑥2 (Land) 0.2211 (0.0103)
 a
 0.2754 (0.0132)

 a
 0.3100 (0.0135)

 a
 0.3718 (0.0180)

 a
 0.3096 (0.0176)

 a
 

𝛽𝑥3 (Material) 0.4997 (0.0091)
 a
 0.4988 (0.0092)

 a
 0.3844 (0.0096)

 a
 0.3838 (0.0095)

 a
 0.3741 (0.0094)

 a
 

𝛽𝑥4 (Capital) 0.0970 (0.0079)
 a
 0.0983 (0.0087)

 a
 0.0435 (0.0104)

 a
 0.0438 (0.0104)

 a
 0.0559 (0.0102)

 a
 

𝜋𝑥̅1  
    0.1809 (0.0252)

 a
 0.1277 (0.0283)

 a
 0.1155 (0.0290)

 a
 

𝜋𝑥̅2  
    -0.3681 (0.0214)

 a
 -0.3550 (0.0309)

 a
 -0.2757 (0.0312)

 a
 

𝜋𝑥̅3  
    0.2836 (0.0206)

 a
 0.2543 (0.0227)

 a
 0.2453 (0.0234)

 a
 

𝜋𝑥̅4  
    0.1370 (0.0146)

 a
 0.1365 (0.0173)

 a
 0.1177 (0.0172)

 a
 

𝛽𝑧1 (owned land) 
  0.0013 (0.0003)

 a
   0.0015 (0.0003)

 a
 0.0012 (0.0003)

 a
 

𝜋𝑧̅1  
      -0.0007 (0.0005) -0.0003 (0.0005) 

𝛾1 (Region 1) 
  0.1301 (0.0305)

 a
   0.0787 (0.0281)

 a
 0.0906 (0.0303)

 a
 

𝛾2 (Region 2) 
  0.0951 (0.0583)   0.0112 (0.0487) 0.0289 (0.0527) 

𝛾3 (Region 3) 
  0.0730 (0.0220)

 a
   0.0234 (0.0246) 0.0267 (0.0264) 

𝛾4 (Region 4) 
  0.0068 (0.0198)   -0.0111 (0.0236) -0.0049 (0.0252) 

𝛾5 (Region 6) 
  -0.0824 (0.0278)

 a
   -0.0943 (0.0307)

 a
 -0.0730 (0.0369)

 b
 

𝛾6 (Part time) 
  -0.0537 (0.0211)

 b
   -0.0403 (0.0205)

 b
 -0.0332 (0.0220) 

𝛽𝑡 (Trend) 
      

  
0.0184 (0.0020)

 a
 

𝜆  2.6086 (0.0167)
 a
 2.4105 (0.0182)

 a
 2.1631 (0.0188)

 a
 2.0989 (0.0194)

 a
 2.4162 (0.0179)

 a
 

𝜎𝑢  0.2709 (0.0011)
 a
 0.2483 (0.0009)

 a
 0.2184 (0.0006)

 a
 0.2101 (0.0005)

 a
 0.2389 (0.0008)

 a
 

𝜎𝑣  0.1038 - 0.1030 - 0.1010 - 0.1001 - 0.0989 - 

𝜂  0.0436 (0.0040)
 a
 0.0458 (0.0045)

 a
 0.0483 (0.0045)

 a
 0.0480 (0.0049)

 a
 -0.0166 (0.0086)

 c
 

a,b,c
 parameter significant different from zero on the 1%, 5% and 10% level respectively 
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Table 3-4: Regression results of the estimated TRE stochastic frontier models 

 
Basic Environmental Var. Mundlak Mundlak-Maddala Hausman-Taylor 

 
Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. Coeff. Std.Err. 

𝛽0 (Constant) 0.0865 (0.0043)
 a
 0.0090 (0.0101) 0.0986 (0.0046)

 a
 0.0763 (0.0103)

 a
 0.0383 (0.0104)

 a
 

𝜎𝛽0
  0.1789 (0.0024)

 a
 0.1700 (0.0024)

 a
 0.1378 (0.0019)

 a 
 0.1315 (0.0020)

 a
 0.1303 (0.0020)

 a
 

𝛽𝑥1 (Labor) 0.0727 (0.0080)
 a
 0.0635 (0.0084)

 a
 0.0317 (0.0134)

 b
 0.0362 (0.0134)

 a
 0.0414 (0.0137)

 a
 

𝛽𝑥2 (Land) 0.2733 (0.0066)
 a
 0.3265 (0.0077)

 a
 0.3810 (0.0125)

 a
 0.4243 (0.0129)

 a
 0.3034 (0.0174)

 a
 

𝛽𝑥3 (Material) 0.5015 (0.0064)
 a
 0.4958 (0.0066)

 a
 0.3887 (0.0106)

 a
 0.3892 (0.0105)

 a
 0.3713 (0.0103)

 a
 

𝛽𝑥4 (Capital) 0.0658 (0.0048)
 a
 0.0658 (0.0050)

 a
 0.0167 (0.0093)

 c
 0.0173 (0.0093)

 c
 0.0601 (0.0095)

 a
 

𝜋𝑥̅1  
  

  0.2012 (0.0162)
 a
 0.1521 (0.0167)

 a
 0.1567 (0.0164)

 a
 

𝜋𝑥̅2  
  

  -0.4324 (0.0143)
 a
 -0.4149 (0.0146)

 a
 -0.3099 (0.0192)

 a
 

𝜋𝑥̅3  
  

  0.3235 (0.0130)
 a
 0.2918 (0.0131)

 a
 0.3050 (0.0127)

 a
 

𝜋𝑥̅4  
  

  0.1437 (0.0106)
 a
 0.1578 (0.0109)

 a
 0.1178 (0.0109)

 a
 

𝛽𝑧1 (owned land) 
  

0.0013 (0.0003)
 a
   0.0011 (0.0001)

 a
 0.0011 (0.0003)

 a
 

𝜋𝑧̅1  
  

    -0.0004 (0.0003) -0.0004 (0.0003) 

𝛾1 (Region 1) 
  

0.1124 (0.0112)
 a
   0.0447 (0.0111)

 a
 0.0521 (0.0107)

 a
 

𝛾2 (Region 2) 
  

0.1467 (0.0153)
 a
   0.0229 (0.0150) 0.0249 (0.0144)

 c
 

𝛾3 (Region 3) 
  

0.0418 (0.0090)
 a
   -0.0242 (0.0090)

 a
 -0.0221 (0.0087)

 b
 

𝛾4 (Region 4) 
  

-0.0104 (0.0087)   -0.0395 (0.0086)
 a
 -0.0402 (0.0083)

 a
 

𝛾5 (Region 6) 
  

-0.1348 (0.0121)
 a
   -0.0947 (0.0119)

 a
 -0.0857 (0.0116)

 a
 

𝛾6 (Part time) 
  

-0.0394 (0.0093)
 a
   -0.0722 (0.0083)

 a
 -0.0686 (0.0084)

 a
 

𝛽𝑡 (Trend) 
  

    
  

0.0163 (0.0011)
 a
 

𝜆  1.4723 (0.0993)
 a
 1.4747 (0.1001)

 a
 1.4853 (0.1114)

 a
 1.4501 (0.1104)

 a
 1.5996 (0.1145)

 a
 

𝜎𝑢  0.1154 - 0.1148 - 0.1127 - 0.1105 - 0.1134 - 

𝜎𝑣  0.0784 - 0.0779 - 0.0759 - 0.0762 - 0.0709 - 

a,b,c
 parameter significant different from zero on the 1%, 5% and 10% level respectively  
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Nevertheless, as in the M-GLS and the M-MLE models, the Mundlak variables in the M-

TRE specification are able to control for possible correlations between the inputs and the 

unobserved heterogeneity, thereby mitigating the heterogeneity bias in the estimated 

coefficients of the input variables. We find that those coefficients in the TRE models to 

evolve in a similar manner as in the GLS and MLE models across the different 

specifications. Including additional environmental variables, as in the MM-TRE 

specification, leads to a further decrease in 𝜎𝛽0
. Again, the inefficiency estimates are 

almost unaffected. In the HT-TRE specification, the coefficient of the trend variable is 

significant; however, the changes in the time-invariant and time-varying error components 

are only minor. The different specifications within the three models are nested. Hence, we 

are able to use Likelihood-Ratio and Wald tests to identify the most suitable specification 

for each model and the data at hand. The results of these tests are summarized in table 3-5. 

Table 3-5: Model specification tests 

Model  F- / LR-statistic critical value (𝛼 =0.05) 

GLS 

B vs. M  87.53 𝐹(4,1935) = 2.38 

B vs. E 12.71 𝐹(7,1932) = 2.01 

M vs. MM 6.08 𝐹(8,1927) = 1.94 

E vs. MM 75.28 𝐹(5,1927) = 2.22 

MM vs. HT 104.55 𝐹(1,1926) = 3.85 

MLE 

B vs. M  276.39 𝜒4
2 = 9.49 

B vs. E  94.64 𝜒7
2 = 14.07 

M vs. MM 60.32 𝜒8
2 = 15.51 

E vs. MM 242.06 𝜒5
2 = 11.07 

MM vs. HT 52.59 𝜒1
2 = 3.84 

TRE 

B vs. M  319.82 𝜒4
2 = 9.49 

B vs. E 73.63 𝜒7
2 = 14.07 

M vs. MM 49.81 𝜒8
2 = 15.51 

E vs. MM 296.00 𝜒5
2 = 11.07 

MM vs. HT 119.32 𝜒1
2 = 3.84 

 

Consistently across the three models, we find that all specifications that attempt to 

model heterogeneity are preferred over the basic specification. Additionally, in all three 

models, the HT-specification is preferred. However, the decision as to whether the GLS-, 

the MLE- or the TRE- model is the appropriate model for empirical application is not as 

straightforward. Instead this decision must be based on the researcher’s knowledge about 

the sector under consideration, the characteristics of the dataset and the assumptions one is 

willing to make.  
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We present and compare the efficiency scores derived from the different models and 

specifications
77

. In addition, we calculate the predicted values of the individual effects 𝛼𝑖 

and examine how the discussed model extensions account for heterogeneity. In figure 3-1 

we present the distributions and the descriptive statistics of the estimated technical 

efficiency scores from the GLS-, the MLE and the TRE models.  

Figure 3-1 confirms what we already expected from the estimated variance 

components 𝜎𝛿 and 𝜎𝑣 in the different GLS-model specifications. The additional 

Mundlak- and environmental variables account for heterogeneity and therefore help to 

reduce the respective contamination of the efficiency scores. In our example, the mean 

efficiency scores vary between 0.687 for the basic GLS model and 0.719 for the MM-GLS 

model. As we can see from figure 3-1 the same applies to the MLE-models. Both, the 

Mundlak- and the Mundlak-Maddala-MLE specification shift the distribution of the 

efficiency scores towards one and raise the mean efficiency from 0.786 in the Basic-MLE 

model to 0.821 and 0.828, respectively.  

The efficiency results for the TRE-models also fit into this set of results. As 

expected, adding time-invariant Mundlak variables and mostly time-invariant 

environmental variables to the estimation equation has no substantial effect on the 

efficiency scores, as obtained from the TRE models. This finding might be different in 

empirical applications where more information about time-varying environmental 

production conditions is available. To examine how the efficiency scores obtained from 

the different models and specifications relate to one another we calculate their Pearson 

correlation coefficients. (table 3-6) For the models with time-varying efficiency, we use 

their group mean efficiency score over the observed period to calculate the correlation 

coefficients. The coefficients vary between 0.443 and 0.998. We find a consistently high 

correlation between all GLS and MLE specifications, in particular for the M-, MM- and 

HT-specifications that take heterogeneity into account. The correlation between the 

efficiency scores of those models and the efficiency scores from the TRE models is 

notably lower. 
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 From here on we omit the results of the Environmental-Effects specification for reasons of clarity and 

comprehensibility. The respective specifications perform as expected; the additional results are available 

upon request. 
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Figure 3-1: Distributions and descriptive statistics on technical efficiency scores from GLS-, MLE- and TRE models 

 
  Mean S.D. Max. Min.   Mean S.D. Max. Min.   Mean S.D. Max. Min. 

 B-GLS 0.687 0.112 1.0 0.332  B-MLE 0.786 0.113 0.990 0.368  B-TRE 0.915 0.039 0.987 0.602 

 M-GLS 0.704 0.095 1.0 0.399  M-MLE 0.821 0.098 0.990 0.429  M-TRE 0.917 0.039 0.986 0.662 

 MM-GLS 0.719 0.095 1.0 0.420  MM-MLE 0.828 0.096 0.986 0.444  MM-TRE 0.918 0.038 0.986 0.667 

 HT-GLS 0.701 0.092 1.0 0.408  HT-MLE 0.831 0.096 0.987 0.471  HT-TRE 0.916 0.041 0.987 0.637 

 

Table 3-6: Pairwise Pearson correlation coefficients of technical efficiency scores 

 B-GLS M-GLS MM-GLS HT-GLS B-MLE M-MLE MM-MLE HT-MLE B-TRE M-TRE MM-TRE HT-TRE 

B-GLS 1.0            

M-GLS 0.809 1.0           

MM-GLS 0.785 0.969 1.0          

HT-GLS 0.783 0.967 0.998 1.0         

B-MLE 0.985 0.823 0.801 0.799 1.0        

M-MLE 0.799 0.977 0.950 0.948 0.838 1.0       

MM-MLE 0.780 0.935 0.972 0.970 0.820 0.960 1.0      

HT-MLE 0.811 0.928 0.964 0.966 0.850 0.955 0.993 1.0     

B-TRE 0.519 0.462 0.449 0.443 0.539 0.483 0.475 0.473 1.0    

M-TRE 0.507 0.620 0.598 0.592 0.534 0.632 0.609 0.590 0.821 1.0   

MM-TRE 0.509 0.621 0.629 0.623 0.536 0.634 0.641 0.622 0.821 0.983 1.0  

HT-TRE 0.526 0.621 0.620 0.617 0.553 0.635 0.631 0.625 0.802 0.957 0.968 1.0 
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We examine our modeling of unobserved and observed heterogeneity and also present the 

predicted values for the individual effects, 𝛼𝑖. In table 3-7, we summarize how the 

predicted firm effects 𝛼̂𝑖 are calculated according to the respective model specification. As 

previously discussed, the basic GLS and MLE specifications do not contain any modeling 

of heterogeneity. In contrast, we also obtain an estimate of 𝛼𝑖 from the basic TRE model.  

Table 3-7: Specifications of calculated firm effects 

 GLS MLE TRE 

asic - - 𝛼̂𝑖 = 𝛿̂𝑖  

Mundlak 𝛼̂𝑖 = 𝜋̂𝑥̅𝑖∙ 𝛼̂𝑖 = 𝜋̂𝑥̅𝑖∙ 𝛼̂𝑖 = 𝛿̂𝑖 + 𝜋̂𝑥̅𝑖∙ 

Mundlak-Madalla 𝛼̂𝑖 = 𝜋̂𝑥̅𝑖∙
∗ + 𝛾𝑧𝑖 𝛼̂𝑖 = 𝜋̂𝑥̅𝑖∙

∗ + 𝛾𝑧𝑖 𝛼̂𝑖 = 𝛿̂𝑖 + 𝜋̂𝑥̅𝑖∙
∗ + 𝛾𝑧𝑖  

Hausman-Taylor 𝛼̂𝑖 = 𝜋̂1𝑥̅1𝑖∙
∗ + 𝛾𝑧𝑖  𝛼̂𝑖 = 𝜋̂1𝑥̅1𝑖∙

∗ + 𝛾𝑧𝑖  𝛼̂𝑖 = 𝛿̂𝑖 + 𝜋̂1𝑥̅1𝑖∙
∗ + 𝛾𝑧𝑖 

 

According to table 3-7, 𝛼̂𝑖 is calculated as the fitted value of our models of heterogeneity, 

which is obtained using the estimated coefficients – indicated by a hat ( ∙ ̂) – and the 

respective data. However, in the TRE model, 𝛿𝑖 is not a fitted value, but rather, the 

estimated mean of the conditional distributions of the random parameter, 𝛿𝑖
78. It is 

encouraging that the distributions and the descriptive statistics of 𝛼̂𝑖 obtained from the 

different models are quite similar. Figure 3-2 shows the distribution and descriptive 

statistics of 𝛼̂𝑖 – obtained from the GLS-, MLE- and TRE models. It should be noted that 

our lack of an estimate from the basic GLS- and MLE specifications is due to the model’s 

non-accounting for heterogeneity.  

Because similar distributions and statistics do not necessarily reveal a present 

relationship, we also calculate the correlation between these predictions of the firm 

effects; the respective coefficients are presented in table 3-8. We find that the described 

Mundlak-, Mundlak-Maddala and Hausman-Taylor specifications of the GLS and the 

MLE models are able to integrate and measure heterogeneity in a similar way to that of 

the TRE model. The relationship between the measures of heterogeneity becomes even 

closer as we compare the GLS- and MLE-models and those from the augmented TRE-

models. 

 

                                                 
78

 Details on the estimation of the individual specific coefficient can be found in Greene (2007) and Train 

(2009)  
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Figure 3-2: Distributions and descriptive statistics of calculated firm effects from GLS-, MLE- and TRE models 

 
  Mean S.D. Max. Min.   Mean S.D. Max. Min.   Mean S.D. Max. Min. 

             B-TRE 0.097 0.159 0.459 -0.370 

 M-GLS -0.022 0.155 0.420 -0.584  M-MLE -0.024 0.145 0.379 -0.544  M-TRE 0.082 0.197 0.576 -0.677 

 MM-GLS -0.091 0.156 0.399 -0.657  MM-MLE -0.051 0.144 0.392 -0.594  MM-TRE 0.031 0.196 0.509 -0.702 

 HT-GLS -0.073 0.152 0.355 -0.608  HT-MLE -0.031 0.136 0.374 -0.529  HT-TRE -0.016 0.193 0.471 -0.718 

 

Table 3-8: Pairwise Pearson correlation coefficients of calculated firm effects 

 M-GLS MM-GLS HT-GLS M-MLE MM-MLE HT-MLE B-TRE M-TRE MM-TRE HT-TRE 

M-GLS 1.0          

MM-GLS 0.969 1.0         

HT-GLS 0.944 0.946 1.0        

M-MLE 0.995 0.957 0.962 1.0       

MM-MLE 0.968 0.990 0.969 0.965 1.0      

HT-MLE 0.953 0.959 0.993 0.965 0.985 1.0     

B-TRE 0.588 0.604 0.558 0.575 0.602 0.578 1.0    

M-TRE 0.786 0.782 0.764 0.782 0.787 0.777 0.955 1.0   

MM-TRE 0.781 0.795 0.760 0.773 0.792 0.772 0.955 0.995 1.0  

HT-TRE 0.751 0.746 0.790 0.65 0.766 0.786 0.917 0.975 0.969 1.0 
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3.5. Concluding Remarks 

In this paper, we examine several extensions for stochastic frontier models, attempting to 

take heterogeneity, be it observable or unobserved, into account and to reduce 

heterogeneity-induced biases in the estimated efficiency scores and technology 

parameters. Therefore, we further develop the line of thought brought forth Farsi et al. 

(2005) in two directions. Following Mundlak (1978), these authors suggest the 

incorporation of the group-means of input variables in Greene’s (2005) “true” random 

effects stochastic frontier model to mitigate the heterogeneity bias in the technology 

parameters.  

We broaden this approach and consider the incorporation of the group mean 

variables, not as a sole auxiliary equation but as an actual modeling of between-firm 

heterogeneity. Extensions of this heterogeneity model include the incorporation of 

environmental variables and the notion that group-mean variables are only needed for 

inputs that are assumed to be correlated with heterogeneity. The second direction is that 

we adapt this modeling of heterogeneity, not only for TRE-type models but also for the 

MLE and GLS random effects models with time varying and time-invariant inefficiency. 

Thus, we extend the range of models and broaden the toolbox for the empirical researcher 

in a straightforward, useful way.  

The results of our empirical application confirm the proposed specifications. The 

heterogeneity biases in the technology parameters are reduced in the sense that the 

coefficients of the input factors come closer to those of the conventional fixed effects 

model. The predicted firm effects and the efficiency scores we obtain from the different 

specifications also meet our expectations. Compared to the basic specifications of the GLS 

and MLE model, the proposed extensions help to reduce the downward bias in efficiency 

scores. We do not find this effect on the efficiency scores in the TRE specifications, in 

which the random constant already captures the firm effects. These results are in line with 

the findings by Farsi et al. (2005, 2005a) and Abdulai and Tietje (2007). For the predicted 

firm effects, we find similar distributions across different specifications, and fairly strong 

positive correlations. These findings indicate that the proposed specifications to model 

heterogeneity can serve as a possible alternative to the “true” effects models.  

However, the final decision as to which model is appropriate for an empirical 

application must be based on the researcher’s knowledge of the analyzed sector, the 

dataset at hand and the assumptions one is willing to make. The first consideration would 
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be whether the firms actually work under heterogeneous production conditions that should 

be controlled. In cases where the dataset at hand contains information on such conditions, 

the respective (proxy-) variables can be included in the production function, as in Good et 

al. (1993) and Coelli et al. (1999), for example. If there is reason to assume that the firms 

in the sample have adjusted their level of input usage according to their production 

conditions, the coefficients for the input variables will be affected by heterogeneity bias. 

However, we can make use of this fact and include the Mundlak control variables into the 

estimation equation as a model of unobserved (to the researcher) heterogeneity. The 

second consideration must consider whether the lack of any time-persistent inefficiency 

can be assumed. Supporting factors for this assumption could be i: a competitive operating 

environment that forces inefficient firms either to improve their efficiency rapidly or to 

drop out of the market; ii: changes in the operating and management conditions during the 

observed time period (e.g., policy and regulation) that require the firms to adapt; and iii: a 

sufficient number of observed time periods. If a researcher cannot be sure that these 

conditions are met, e.g., if a dataset contains only a couple of time periods, it is possible 

that some firms exhibit non-varying efficiency levels. In that case, an individual effect, as 

in the TRE model, would consequently capture parts of this inefficiency. 

 

 



LABOR PRODUCTIVITY IN THE GERMAN BREWING SECTOR 83 

4. DECOMPOSING LABOR PRODUCTIVITY GROWTH – 

THE CASE OF SMALL AND MEDIUM-SIZED BREWERIES 

IN GERMANY 

 

 

Abstract 

In this paper, we provide a method to decompose aggregate industry labor productivity 

growth into seven distinct components: input deepening, technical change, technical 

efficiency, scale effect, between-firm reallocation and effects from exits and entry. The 

first four components measure the productivity growth that takes place within a firm. The 

latter three components capture industry dynamics. Applied to a sample of 118 small and 

medium sized breweries in Germany between 1996 and 2008, we found that within-firm 

effects and in particular technical change and the scale change effect clearly dominated the 

effects from industry restructuring. 
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4.1. Introduction 

Today, the brewing industry worldwide is highly concentrated. The five largest firms 

(AB-InBev, SAB Miller, Heineken, Carlsberg and China Resource Brewery) account for 

two-thirds of the global profits in this sector and produce approximately half of the beers 

worldwide (NGG, 2013). As a global exception, the brewing industry in Germany is still 

dominated by relatively small firms. Only two of the five worldwide market leaders (AB-

InBev as number two and Carlsberg as number nine) are listed among Germany’s top ten 

breweries, and these firms account for approximately 15% of the German beer production 

(NGG, 2013). Moreover, the largest German brewery (Radeberger Gruppe KG) is in only 

the 23
rd

 position worldwide (NGG, 2013). Nevertheless, the German brewing industry has 

faced considerable structural changes in the last two decades. Beer consumption was 

relatively stable in the 1970s and 1980s at approximately 146 liters per capita and was still 

at 141.9 liters per capita in 1991, but it constantly decreased to 106.4 liter per capita (-

25%) in 2013 (Private Brauereien Bayern e.V., 2014). In addition to a decrease in 

quantity, there was also a considerable change in consumer preferences away from 

consuming Pils and Lager on a more frequent basis in pubs to occasional consumption of 

specialty beers at home. Although the net-exports increased by approximately 2.7 million 

hectoliters (hl) between 1998 and 2012, this was not enough to compensate for the 

decrease in domestic consumption (NGG, 2013). As a consequence, beer production 

decreased by 16.3% from 115.3 million hl in 1995 to 96.5 million hl in 2012 (Private 

Brauereien Bayern e.V., 2014). During the same time, the number of brewery employees 

decreased by almost half from 48,216 in 1995 to 26,915 in 2012 (NGG, 2009; 2013).  

Despite the decreasing demand for beer, the German brewing sector is still 

characterized by a comparably low concentration. In fact, Germany is the country with the 

most breweries of the EU nations (Berkhout et al., 2013). Interestingly, in the last decade, 

the number of breweries has increased from 1,275 in 2002 to 1,349 in 2013 (Private 

Brauereien Bayern e.V., 2014). However, these aggregated numbers give a very 

incomplete picture of the developments. New establishments entered the market only in 

the group of very small breweries (producing up to 1,000 hl/year). Their number increased 

from 523 in 2006 to 668 in 2013 (Private Brauereien Bayern e.V., 2012; 2014). In all 

other groups, we observe a sharp decrease, e.g., the number of breweries with over 5,000 

hl/year decreased by 33.5% between 1995 and 2013 (Deutscher Brauerbund e.V., 2009; 
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Private Brauereien Bayern e.V., 2014). These breweries are in a fierce competition for a 

decreasing demand. 

The aim of this paper is to investigate the development of the labor productivity in 

this sector as a key factor for firms to increase their competitiveness. To do so, we 

combine two strands of the literature on (labor) productivity decomposition. One strand 

originates from empirical studies that use micro-data to describe the productivity growth 

dynamics of a sector. Several decomposition methods have been proposed to analyze the 

sources of aggregate productivity change via a within-firm effect and the reallocation 

effects between incumbent firms as well as entering and exiting firms (Baily et al., 1992; 

1996; 2001; Griliches and Regev, 1995; Foster et al., 2001; Melitz and Polanec, 2012). 

The other strand combines index number theory with stochastic frontier analysis 

(Nishimizu and Page, 1982; Bauer, 1990) and decomposes firm-specific productivity 

growth into several components. Here, we show how to combine those two approaches to 

analyze the dynamics of aggregated industry labor productivity in great detail. In 

particular, based on this procedure, we can decompose industry labor productivity change 

into seven components: input deepening, technical change, technical efficiency, a scale 

change effect, between-firm reallocation and the effects from exits and entry. The first 

four of these components constitute the within-firm effect. Applying our method to a 

sample of 118 German breweries between 1996 and 2008 provides useful insights into the 

development of (labor) productivity and its driving forces.  

4.2. Method 

The labor productivity (𝐿𝑃) of a single firm 𝑖 in time 𝑡 in its logarithmic form is defined as 

𝐿𝑃𝑖𝑡 = ln (
𝑦𝑖𝑡

𝑙𝑖𝑡
), where 𝑦𝑖𝑡 is the quantity of output produced and 𝑙𝑖𝑡 is the utilized amount 

of labor. Moreover, we define labor productivity of the whole industry 𝐼 consisting of 𝑁 

firms (or a sample of firms 𝑁 within an industry) at time 𝑡 as the share-weighted average 

labor productivity 𝐿𝑃𝑡
𝐼 = ∑ 𝑠𝑖𝑡𝐿𝑃𝑖𝑡

𝑁
𝑖=1 , where 𝑠𝑖𝑡 represents a firm’s activity share within 

the industry (Olley and Pakes, 1996). The change in labor productivity of a single firm and 

of the whole industry from period 𝑡 − 1 to 𝑡 is given by ∆𝐿𝑃𝑖𝑡 = 𝐿𝑃𝑖𝑡 − 𝐿𝑃𝑖𝑡−1 and 

∆𝐿𝑃𝑡
𝐼 = 𝐿𝑃𝑡

𝐼 − 𝐿𝑃𝑡−1
𝐼 , respectively.

79
  

                                                 
79

 Because labor productivity is in logarithms, ∆𝐿𝑃𝑖𝑡  (∆𝐿𝑃𝑡
𝐼) is the percentage change or a discrete rate of 

change in a firm’s (industry’s) labor productivity. 
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To decompose the change in industry labor productivity (∆𝐿𝑃𝑡
𝐼) into its components we 

proceed as follows. In a first step, we differentiate between effects within firms, effects 

between firms and effects from firms that enter and exit the sample and/or the industry. In 

a second step, we further decompose the within-firms component into the effect of 

technical change, the scale effect, the change in technical efficiency effect and an input 

deepening effect. Our decomposition of the change in industry labor productivity (∆𝐿𝑃𝑡
𝐼) 

in the first step is closely related to the one proposed by Griliches and Regev (1995). 

Given the nature of our data, we further decompose the net entry term to distinguish the 

effect associated with firms that enter/exit the industry (and therefore the sample) from 

that of firms that drop in and out of the sample for other unknown reasons
80

. Therefore, in 

each period, our sample is divided into continuing firms (𝐶), new firms that enter the 

industry (𝑁𝐸), existing firms that enter the sample (𝑁𝑆), firms that shut down (or are sold) 

(𝑋𝐸) and firms that exit the sample for other reasons but continue to produce (𝑋𝑆). Given 

this, the industry’s labor productivity can be decomposed into 

∆𝐿𝑃𝑡
𝐼 = ∑ 𝑠𝑖𝑡̃

𝑖∈𝐶

∆𝐿𝑃𝑖𝑡 + ∑(𝐿𝑃𝑖𝑡
̃ − 𝐿𝑃𝑡

𝐼̃)

𝑖∈𝐶

∆𝑠𝑖𝑡 + ∑ 𝑠𝑖𝑡

𝑖∈𝑁𝐸

(𝐿𝑃𝑖𝑡 − 𝐿𝑃𝑡
𝐼̃)

+ ∑ 𝑠𝑖𝑡

𝑖∈𝑁𝑆

(𝐿𝑃𝑖𝑡 − 𝐿𝑃𝑡
𝐼̃) − ∑ 𝑠𝑖𝑡−1

𝑖∈𝑋𝐸

(𝐿𝑃𝑖𝑡−1 − 𝐿𝑃𝑡
𝐼̃)

− ∑ 𝑠𝑖𝑡−1

𝑖∈𝑋𝑆

(𝐿𝑃𝑖𝑡−1 − 𝐿𝑃𝑡
𝐼̃) 

∀ 𝑡 ≠ 1 (4.1) 

where a tilde over a variable denotes the arithmetic mean of the variable in 𝑡 and 𝑡 − 1 

(i.e., 𝑠𝑖𝑡̃ =
1

2
(𝑠𝑖𝑡 + 𝑠𝑖𝑡−1)), and a delta in front of a variable denotes its first-difference 

(i.e., ∆𝑠𝑖𝑡 = 𝑠𝑖𝑡 − 𝑠𝑖𝑡−1). The first term on the right hand side is the aggregated effect of 

the individual firms’ weighted labor productivity change (within-firm component). 

Loosely, this is positive if firms improve their performance on average. The second term 

shows the effect of shifts in the shares between firms (between-firm component) weighted 

by the firm’s deviation in its average productivity in 𝑡 and 𝑡 − 1 from the industry’s 

respective productivity. This is positive if the relative weight of high-productivity to low-

productivity firms increases. The third (fifth) term is the effect of firms that enter (exit) the 

industry and therefore the sample. The effects on labor productivity of the whole industry 

are positive if better (worse) than average performing firms enter (exit) and negative 

                                                 
80

 Baily et al. (1992) noted the possibility that a firm that exits their sample may still operate. However, they 

do not pursue this issue but note that they do not regard this as a problem of magnitude for their sample 

(Baily et al. 1992, fn. 11). The firms in our dataset participate on a voluntary basis; hence, we must not 

neglect the issue of exits/entries to the sample that do not reflect the true behavior of the firm.  
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otherwise. Finally, the fourth (sixth) term gives the aggregated effects of firms that exit or 

enter the sample but not the industry. The same reasoning applies for the direction of the 

effects on industry productivity. 

Various methods have been used in the literature to decompose the change in labor 

productivity into these components. Baily et al. (1992) were the first to differentiate 

between a within-firm and a between-firm component and also distinguished between 

surviving, entering and exiting firms. The main difference between their method and the 

method we use based on Griliches and Regev (1995) is that the latter introduces the 

average aggregate industry productivity level between the two periods 𝐿𝑃𝑡
𝐼̃ as a reference 

point (Melitz and Polanec, 2012). This has the interpretive advantage that the contribution 

of entering and exiting firms (terms three to six in equation (2.1)) on the industry 

productivity change can be positive or negative, but the contribution of entry (exit) is 

always positive (negative) in Baily et al. (1992). Another popular decomposition is Foster 

et al. (2001). Although it also adds an additional component, a cross-firm effect, the main 

difference compared to Griliches and Regev (1995) is that Foster et al. use the industries’ 

initial productivity level 𝐿𝑃𝑡−1
𝐼  rather than the time average 𝐿𝑃𝑡

𝐼̃ as a reference point. 

Recently, Melitz and Polanec (2012) introduced another decomposition: a dynamic 

version of the well-known static Olley and Pakes (1996) decomposition. Hence, they 

decompose the change in industry labor productivity into a change in the unweighted 

mean in the productivity, the covariance change between market share and productivity, 

and the contributions of entrants and exiting firms. In contrast to Griliches and Regev 

(1995) and Foster et al. (2001), Melitz and Polanec use surviving firms at time 𝑡 (𝑡 − 1) as 

a benchmark to value the contribution of entering (exiting) firms. Although it is clear that 

any choice of reference group will influence the contribution of entrants and exiting firms, 

it remains debatable which approach is superior. Balk (2003) and Diewert and Fox (2010) 

argue that the decomposition of Griliches and Regev (1995) (as compared to that of Foster 

et al. (2001)) has the advantage of treating time in a symmetric fashion, which makes the 

within term in this decomposition a Divisia index of the continuing firms’ productivity 

change (Foster et al., 2008). 

In a second step, we further decompose the within-firm component of productivity 

growth (first right-hand-side term in equation (4.1)) by using a parametric frontier 

approach following Nishimizu and Page (1982) and Bauer (1990). To do so, we describe a 

firm’s production technology with a well-behaved production function but also account 

for the possibility of technical inefficiency: 
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𝑦 = 𝑓(𝒙, 𝑡)𝑇𝐸(𝑡) (4.2) 

where 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝐽) is a vector of 𝐽 inputs, 𝑦 is a scalar output, 𝑇𝐸(𝑡) is the output-

oriented measure of technical efficiency defined over the range (0,1] and 𝑡 is a time trend 

that accounts for technological change in the production function. Hence, if 𝑇𝐸(𝑡) = 1, 

the production of a firm is at the technically efficient level, which is described by the 

production frontier 𝑦 = 𝑓(𝒙, 𝑡). Taking logarithms of both sides of equation (4.2) and 

totally differentiating them with respect to time results in:  

∆ ln 𝑦 = ∑ 𝜀𝑗

𝐽

𝑗=1

∆ ln 𝑥𝑗 + ∆𝑇 + ∆ ln 𝑇𝐸 . (4.3) 

The delta in front of a variable denotes its difference over adjacent time periods, i.e., its 

rate of growth (e.g., ∆ ln 𝑦 =
𝑑

𝑑𝑡
ln (𝑦)), 𝜀𝑗 = 𝜕 ln 𝑓 (𝒙, 𝑡) 𝜕 ln 𝑥𝑗⁄  is the partial output 

elasticity of the 𝑗th input, ∆𝑇 = 𝜕 ln 𝑓 (𝒙, 𝑡) 𝜕𝑡⁄  is the primal rate of technical change and 

∆ln 𝑇𝐸 = 𝜕 ln 𝑇𝐸 (𝑡) 𝜕𝑡⁄  is the rate of change in technical efficiency. 

By subtracting the growth of labor input ∆𝑙 =
𝑑

𝑑𝑡
 ln (𝑙) from both sides of (4.3) and 

by adding and subtracting aggregate input growth ∑
𝜀𝑗

𝜀

𝐽
𝑗=1 ∆𝑥𝑗

 81
, we rearrange equation 

(4.3) to 

∆𝐿𝑃 = ∆ ln 𝑦 − ∆ ln 𝑙 = 

∑ (
𝜀𝑗

𝜀
)𝐽−1

𝑗=1 (∆ ln 𝑥𝑗 − ∆ ln 𝑙) + ∆𝑇 + (𝜀 − 1) ∑ (
𝜀𝑗

𝜀
) ∆ ln 𝑥𝑗

𝐽
𝑗=1 +  ∆ln 𝑇𝐸. 

(4.4) 

The input labor is defined to be the 𝐽-th input, i.e., 𝑥𝐽 = 𝑙. Equation (4.4) decomposes firm 

level labor productivity growth into four elements. The first term on the right-hand side is 

the input deepening effect, i.e., it accounts for changes in factor intensities. Input 

deepening relates to factor substitution and indicates that labor productivity can increase if 

the other inputs grow faster than labor and eventually replace it in the production process. 

Technical change (second term) has a one-to-one contribution to labor productivity growth 

and positively affects it if it is progressive. The contribution of the scale effect (third term) 

is positive if the production technology exhibits increasing returns to scale (𝜀 > 1) and the 

aggregate input usage expands or if 𝜀 < 1 and the input usage is reduced. In the case of 

constant returns to scale (𝜀 = 1) or constant input quantities, the scale effect becomes 

                                                 
81 

Aggregate input growth is denoted by ∑ 𝑐𝑗
𝐽
𝑗=1 ∆ ln 𝑥𝑗, where 𝑐𝑗 = (𝑤𝑗𝑥𝑗) 𝐶⁄  is the cost share of the 𝑗th 

input, 𝑤𝑗  is the respective input price and 𝐶 are the total costs. Under the assumption of allocative efficiency 

and competitive input markets 𝑐𝑗 =
𝜀𝑗

𝜀
, where 𝜀 = ∑ 𝜀𝑗

𝐽
𝑗=1  is the scale elasticity (Chan and Mountain, 1983). 
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zero. Finally, technical efficiency change (fourth term) indicates a catching up effect (Färe 

et al. 1994) that contributes positively to labor productivity growth as firms move closer to 

the production frontier. The last three terms correspond to Bauer’s (1990) and Lovell’s 

(1996) decompositions of total factor productivity growth (∆𝑇𝐹𝑃). Hence, one may 

rewrite equation (4.4) as ∆𝐿𝑃 = ∑ (
𝜀𝑗

𝜀
)𝐽−1

𝑗=1 (∆ ln 𝑥𝑗 − ∆ ln 𝑙) + ∆𝑇𝐹𝑃, where ∆𝑇𝐹𝑃 =

 ∆ ln 𝑦 − ∑ (
𝜀𝑗

𝜀
)𝐽

𝑗=1 ∆ ln 𝑥𝑗 . This highlights the advantage of the present decomposition of 

labor productivity growth in equation (4.4). It preserves the intuitive concept of a partial 

productivity measure but still features the differences between the substitution effects and 

productivity growth due to technical progress, efficiency change and scale changes.  

Once the parameters of the production frontier 𝑓(𝒙, 𝑡)𝑇𝐸(𝑡) are econometrically 

estimated, we can calculate all four components without knowledge of the input prices and 

the assumption of constant returns to scale (Bauer, 1990). Several models for the 

econometric estimation of production (or cost) frontiers from panel data have been 

proposed and discussed in the literature (e.g., Greene, 2008). A stochastic frontier panel 

model can be formulated as  

ln 𝑦𝑖𝑡 = ln 𝒙 ′𝜷 + 𝛼𝑖 + 𝑢𝑖𝑡 + 𝑒𝑖𝑡. (4.5) 

where 𝜷 are parameters to be estimated, 𝛼𝑖 are time-invariant firm-specific effects, 𝑢𝑖𝑡 is a 

non-negative term that represents inefficiency and 𝑒𝑖𝑡 is statistical noise.  

The main distinguishing features of the various proposed models are the way 

inefficiency (𝑢𝑖𝑡) is modeled, whether inefficiency is allowed to vary over time (𝑢𝑖𝑡 versus 

𝑢𝑖) and the way firm heterogeneity 𝛼𝑖 is taken into account.
82

 Greene (2005, 2005a) 

addressed the issue of between-firm heterogeneity and proposed the “true” fixed-effects 

and “true” random-effects model, where 𝛼𝑖 is a constant or an 𝑖𝑖𝑑 normal distributed 

random term, respectively. The “true” effects models present a great improvement in 

dealing with potential between-firm heterogeneity in the stochastic frontier framework. 

Nevertheless, the models have some complexities, and their implementation requires 

involved econometric estimation procedures.
83
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 Pitt and Lee (1981) and Schmidt and Sickles (1984) made early contributions to panel data models and 

assume time-invariant technical efficiency. Battese and Coelli (1992) and Cornwell et al. (1990) extend the 

models of Pitt and Lee (1981) and Schmidt and Sickles (1984) to allow for time-varying inefficiency. These 

earlier models did not specifically account for firm heterogeneity (αi) within the model. Hence, the 

contamination of the measure of inefficiency with unobserved firm-specific heterogeneity is an issue 

discussed in the more recent literature (e.g., Greene 2005, Farsi et al. 2005). 
83

 See Greene (2005, 2005a, 2008) and Wang and Ho (2010) for further details.  
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Here, we follow a different strategy by explicitly modelling firm heterogeneity in the spirit 

of Mundlak (1978). In particular, we model the stochastic production frontier as 

ln 𝑦𝑖𝑡 = ∑ 𝛽𝑗

𝐽

𝑗=1

ln 𝑥𝑗𝑖𝑡 +
1

2
∑ ∑ 𝛽𝑗𝑘

𝐽

𝑘=1

𝐽

𝑗=1

ln 𝑥𝑗𝑖𝑡 ln 𝑥𝑗𝑖𝑡 + 𝛽𝑡𝑡 +
1

2
𝛽𝑡𝑡𝑡𝑡

+ ∑ 𝛽𝑡𝑗

𝐽

𝑗=1

𝑡 ln 𝑥𝑗𝑖𝑡 + 𝛼𝑖 − 𝑢𝑖𝑡 + 𝑒𝑖𝑡       

with 

𝛼𝑖 = ∑ 𝛾𝑗(ln 𝑥𝑗𝑖𝑡
̅̅ ̅̅ ̅̅ ̅)

𝐽

𝑗=1

+
1

2
 ∑ ∑(ln 𝑥𝑗𝑖𝑡 ln 𝑥𝑘𝑖𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝐽

𝑘=1

𝐽

𝑗=1

+ ∑ 𝛾𝑗(𝑡 ln 𝑥𝑗𝑖𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝐽

𝑗=1

, 

 

𝑢𝑖𝑡 = 𝑢𝑖 exp(−𝜂(𝑡 − 𝑇))    𝑢𝑖~𝑁+(0, 𝜎𝑢
2), 

 

𝑒𝑖𝑡~𝑖𝑖𝑑𝑁(0, 𝜎𝑒
2) 

(4.6) 

where all the 𝛽s, 𝛾s and 𝜂 are parameters to be estimated. A bar over a variable denotes its 

cross-section mean, i.e., 𝑥̅𝑖𝑡 =
1

𝑇𝑖
∑ 𝑥𝑖𝑡

𝑇𝑖
𝑡=1  ∀ 𝑖. To avoid imposing unnecessary a priori 

restrictions on the production technology, we use the flexible translog form with 

symmetry imposed as 𝛽𝑗𝑘 = 𝛽𝑘𝑗 ∀  𝑗, 𝑘. The firm-specific effect 𝛼𝑖 is explicitly modelled 

based on the following reasoning: unobserved heterogeneity may be unobservable to only 

the econometrician but not the decision making unit. Thus, we can expect that the firms 

have adjusted their inputs according to their given production conditions. Hence, 

unobserved heterogeneity is assumed to be correlated with the observed levels of input 

usage. If this assumption holds, we can model 𝛼𝑖 by adding the individual group means of 

inputs as auxiliary variables. In this way, we can account for the unobserved heterogeneity 

that is correlated with the firm’s level of input usage.  

A second but no less relevant virtue of this approach is that it mitigates the 

heterogeneity bias in the slope parameters. Mundlak (1978) showed that including the 

group means of the explanatory variables in a GLS random effects model yields the 

unbiased within estimator for the slope parameters. This result cannot be strictly applied to 

stochastic frontier models with an asymmetric composed error term. However, we can 

expect the heterogeneity bias to be minimal to the extent that the auxiliary variables 

capture the correlation between the unobserved effect and input quantities (Farsi et al. 
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2005). To allow for temporal variation in the one-sided inefficiency component 𝑢, we use 

the time-varying formulation of Battese and Coelli (1992). Finally, we have a symmetric 

noise component 𝑒𝑖𝑡. 

After the econometric estimation of (4.6) we can calculate the four components of 

firm-level labor productivity growth. To calculate the input deepening effect (𝐼𝐷𝑖𝑡 =

∑ (
𝜀𝑗𝑖𝑡

𝜀𝑖𝑡
) (∆ ln 𝑥𝑗𝑖𝑡 − ∆ ln 𝑙𝑖𝑡)𝐽−1

𝑗=1 ) and the scale effect 

(𝑆𝐶𝑖𝑡 =  (𝜀𝑖𝑡 − 1) ∑ (
𝜀𝑗𝑖𝑡

𝜀𝑖𝑡
) ∆ ln 𝑥𝑗𝑖𝑡

𝐽
𝑗=1 ) of firm 𝑖 in time 𝑡, we need percentage changes in 

inputs (∆ ln 𝑥𝑗𝑖𝑡) and the scale elasticity calculated as 

𝜀𝑖𝑡 = ∑ 𝜀𝑗𝑖𝑡

𝐽

𝑗=1

= ∑
𝜕 ln 𝑓 (𝒙, 𝑡)

𝜕 ln 𝑥𝑗𝑖𝑡

𝐽

𝑗=1

= ∑ (𝛽̂𝑗 + ∑ 𝛽̂𝑗𝑘 ln 𝑥𝑘𝑖𝑡

𝐽

𝑘=1

+ 𝛽̂𝑡𝑗𝑡)

𝐽

𝑗=1

 (4.7) 

where a hat over a parameter indicates that it is an estimated value. The technology 

exhibits constant returns to scale (𝜀𝑖𝑡 = 1) for ∑ 𝛽̂𝑗
𝐽
𝑗=1 = 1;  𝛽̂𝑗𝑘 = 0 ∀ 𝑗, 𝑘 and 𝛽̂𝑡𝑗 =

0 ∀ 𝑗. Output elasticities 𝜀𝑗𝑖𝑡 and associated scale elasticities vary across producers and 

time unless 𝛽̂𝑗𝑘 = 0 ∀ 𝑗, 𝑘 and 𝛽̂𝑡𝑗 = 0 ∀ 𝑗, respectively.  

The primal rate of technical change for firm 𝑖 in time 𝑡 is calculated as  

∆𝑇𝑖𝑡 =
𝜕 ln 𝑓 (𝒙, 𝑡)

𝜕𝑡
= 𝛽̂𝑡 + 𝛽̂𝑡𝑡𝑡 + ∑ 𝛽̂𝑡𝑗ln 𝑥𝑗𝑖𝑡

𝐽

𝑗=1

 (4.8) 

Technical change varies across producers unless it is Hicks-neutral with respect to inputs 

(𝛽̂𝑡𝑗 = 0 ∀ 𝑗) and across periods except 𝛽̂𝑡𝑡 = 𝛽̂𝑡𝑗 = 0 ∀ 𝑗. The technical efficiency change 

of firm 𝑖 in time 𝑡 can be derived from 

∆𝑇𝐸𝑖𝑡 =
𝜕 ln 𝑇𝐸̂(𝑡)

𝜕𝑡
= −

𝜕𝑢̂𝑖𝑡

𝜕𝑡
= 𝑢̂𝑖𝜂̂ 𝑒𝑥𝑝(−𝜂̂(𝑡 − 𝑇)) (4.9) 

This expression also varies across producers unless 𝑢̂𝑖 = 𝑢 ∀ 𝑖 and across periods with the 

same trend for all 𝑖 unless 𝜂̂ = 0, but the latter case would imply a time-invariant technical 

efficiency. Finally, the within-firm component as measured by the first right-hand-side 

term in equation (4.1) is calculated as  

∑ 𝑠𝑖𝑡̃

𝑖∈𝐶

∆𝐿𝑃𝑖𝑡 = ∑ 𝑠𝑖𝑡̃

𝑖∈𝐶

(𝐼𝐷𝑖𝑡 + 𝑆𝐶𝑖𝑡 + 𝑇𝐶𝑖𝑡 + 𝑇𝐸𝑖𝑡) (4.10) 

where 𝑠𝑖𝑡 is a firm’s share in the total wage expenditures.  
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4.3. Data and Empirical Implementation 

We use an unbalanced panel of 118 German breweries that were participating in a 

voluntary benchmarking program conducted on behalf of the German brewers’ association 

over a period of 13 years from 1996 to 2008. On average, each brewery was observed for 

approximately 7 years, which resulted in 827 observations. We excluded microbreweries 

that produce less than 5,000 hl/year and very large breweries that produce more than 

400,000 hl/year
 84

 from the sample because it can be expected that these breweries use 

different production technologies. Most breweries produce less than 100,000 hl/year 

(70.3%) on average. Hence, the breweries in the sample are small and midsized businesses 

with an average of 48 employees and revenues of 7.8 million €. Nevertheless they 

represent the core of the German brewing sector. Most of the observed breweries are 

located in Bavaria (57%) and Baden-Württemberg (19%) in southern Germany.  

Table 4-1 summarizes the descriptive statistics for the input and output variables. 

We aggregate the inputs into three categories: materials including expenses for malt and 

barley, hops, water, energy and purchased goods and services; labor measured by the total 

wages
85

 paid; and capital given by the end of year value of all machinery, equipment and 

buildings. Using appropriate price indices from the German Federal Statistical Office 

(Destatis), all the monetary values were deflated to base year 2005 values. Output is 

measured by total revenues deflated by a firm-specific price index. This allows us to take 

any price dispersion between the breweries and price changes over time into account and 

create a quantity-type measure of output
86

 and productivity. Compared to the use of a 

common industry-based price index as a deflator, this approach is beneficial in two ways. 

First, we avoid an omitted variable bias in the econometric estimation of the production 

technology. Klette and Griliches (1996) note that, in most cases, omitted price dispersion 

will be negatively correlated with input quantities and introduces a downward bias in the 

                                                 
84

 The original sample contained a few observations of very large breweries that produce up to 2.2 million 

hl/year.  
85

 We use data on the wages instead of the mere number of employees because we are missing information 

on the actual work hours, the educational status and tenure of employees in the firms. Hence, we follow Fox 

and Smeets (2011), who show that the wage bill is a good approximation of quality adjusted labor input 

among others in the Danish food and beverages industry.   
86

 Our dataset contains information on the physical production and the respective revenues from various 

categories of beverages. These categories include beer, beer-mix beverages, and non-alcoholic beverages, 

which are all distinguished by whether they are packaged in bottles or kegs and by beer produced in license 

brewing. From the reported revenues and the physical output, we calculate category-specific prices that are 

then aggregated to a firm-specific price index using the categories revenue shares as weights. This index is 

also normalized using the year 2005 as the base, i.e., the average price index across all firms in the year 

2005 is equal to 100. Eslava et al. (2004), Mairesse and Jaumandreu (2005) and Ornaghi (2006) also use 

firm-specific prices to deflate revenues to generate a quantity-type measure of output. 
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estimated scale elasticities. Second, we ensure that we measure physical productivity 

growth that is free of demand-side price effects
87

. Abbott (1990) showed that revenue-

based productivity growth equals physical productivity plus a price change component. In 

addition, Foster et al. (2008) show how firms’ output prices are positively correlated with 

firm-specific demand factors and negatively correlated with physical total factor 

productivity.  

Table 4-1: Summary statistics of input and output variables 

 

Mean Max. Min. Std. Dev. 

Material (1000 €) 2846.7 13776.7 210.0 2730.1 

Labor     (1000 €) 1833.8 6530.7 99.8 1376.8 

Capital   (1000 €) 3577.5 26523.3 210.4 3523.8 

     

Output   (1000 €) 7849.2 57703.5 584.0 6359.9 

     
 

As summarized in table 4-2, we perform several specification tests on our empirical 

model in equation (4.6). The hypotheses that the Cobb-Douglas production function, 

which is a special case of the translog functional form, is a sufficient specification of the 

production technology is rejected at the 1% level. We also reject the hypotheses that all 

breweries are technically efficient and that they operate on the production frontier. This 

result favors the stochastic frontier model over the conventional average production 

function approach. The hypothesis of zero and Hicks neutral technical change is rejected 

at the 1% level. Hence, the technical change component has a significant effect on output 

growth. We reject the hypotheses of constant returns to scale and time-invariant technical 

efficiency at the 1% and the 5% level, respectively. These results indicate that all three 

components of the within TFP growth contribute to growth in labor productivity and 

should be included in (4.2). Based on a Hausman
88

 test, we can reject the null hypothesis 

that the individual effects 𝛼𝑖 are not correlated with the explanatory variables at the 1% 

level. Moreover, the null hypothesis that all auxiliary group mean variables of the 

Mundlak adjustment are jointly equal to zero is rejected at the 1% level. We take the 

                                                 
87

 We do not observe firm-specific prices on the input side of production. Hence, our measure of “physical” 

productivity may still contain price effects on the input side, i.e., firms that face higher factor prices will 

appear to utilize a relatively higher level of inputs and thus to be less productive. As Foster et al. (2008) 

note, using quantity output, productivity reflects firms’ “idiosyncratic cost components, both technological 

fundamentals and factor prices.” See also Ornahghi (2006) for a discussion on the effects of input price 

differences. 
88

 The test statistic is based on the comparison of the estimates of conventional fixed and random effects 

models. 
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results of the last two tests as an indication that the input variables are correlated with 

individual effects i.e., unobserved firm heterogeneity. All the tests together confirm our 

model specification in equation (4.6). 

Table 4-2: Model specification tests 

Hypotheses  
LR-

statistic 
Critical value (α = 0.05 / 0.01)  

Cobb-Douglas ( 𝐻0: 𝛽𝑗𝑘 = 𝛾𝑗𝑘 = 0, ∀ 𝑗, 𝑘) 56.25  𝜒2
12

= 21.03 / 26.22 

Technical efficiency (𝐻0: 𝜎𝑢 = 0) 1014.72  𝜒2
1   = 2.71 / 5.41 

a 

Zero technical change 𝐻0: 𝛽𝑡 = 𝛽𝑡𝑡 = 𝛽𝑡𝑗 = 𝛾𝑡𝑗 = 0, ∀ 𝑗 55.19  𝜒2
8   = 15.51 / 20.09 

Hicks neutral technical change 𝐻0: 𝛽𝑡𝑗 = 𝛾𝑡𝑗 = 0, ∀ 𝑗  32.31  𝜒2
6

  = 12.59 / 16.81 

Constant returns to scale  

(𝐻0: ∑ 𝛽𝑗 = 1;∑ 𝛽 1𝑗 = ∑ 𝛽 2𝑗 = ∑ 𝛽 3𝑗 = ∑ 𝛽 𝑡𝑗 = 0 ∀ 𝑗) 
15.71 

 
𝜒2

5
  = 11.07 / 15.09 

Time-invariant technical efficiency (𝐻0: 𝜂 = 0) 5.78  𝜒2
1   = 3.84 / 6.63

 

Individual effects (𝐻0: 𝛼𝑖 ⊥ 𝑥𝑘𝑖𝑡) 32,32  𝜒2
14 = 23.69 / 29.68 

Individual effects 𝐻0: 𝛾𝑗 = 𝛾𝑘𝑗 = 𝛾𝑡𝑗 = 0  ∀ 𝑘, 𝑗 118,94  𝜒2
9   = 16.91 / 21.67 

a 
Kodde and Palm (1986) 

4.4. Results and Discussion 

The estimated parameters for the production frontier and the composed error term are 

reported in table 4-3. The coefficients of the first-order parameters are positive and 

significantly different from zero. The coefficients of the trend variables are positive but 

not significantly different from zero. However, the significant positive and negative 

coefficient of the variables material and labor interacted with the time trend, indicate 

material-using and labor-saving technical change, respectively. We check whether the 

theoretical requirements for a well-behaved production function implied by economic 

theory, namely the monotonicity and quasi-concavity, are met at all the data points. 

Flexible functional forms such as the translog functional form, in contrast to the Cobb-

Douglas, do not meet these requirements globally (Lau, 1978; Diewert and Wales, 1987). 

Hence, the function’s properties must be imposed or checked a posteriori to avoid serious 

implications for the interpretation of the obtained parameters and efficiency scores (Sauer 

et al., 2006; Henningsen and Henning, 2009). In a production function, monotonicity 

requires positive marginal products for all inputs. Because both 𝑦 and 𝒙 contain only 
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strictly positive numbers, it is sufficient to check the sign of the output elasticities (𝜀𝑗𝑖𝑡) at 

all data points. We find no violations of monotonicity. 

Table 4-3: Parameter estimates of the production frontier 

Parameter Coefficient S.E.  

β0  0.2354 0.0342 
a 

β1 (𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙) 0.3262 0.0283 
a 

β2 (𝐿𝑎𝑏𝑜𝑟) 0.5233 0.0320 
a 

β3 (𝐶𝑎𝑝𝑖𝑡𝑎𝑙) 0.0477 0.0131 
a 

β11  0.0777 0.0587 
 

β22  0.1162 0.0913 
 

β33  0.0180 0.0172 
 

β12  -0.1068 0.0668 
 

β13  -0.0089 0.0323 
 

β23  -0.0134 0.0283 
 

βt   (𝑇𝑟𝑒𝑛𝑑) 0.0076 0.0047 
 

βtt  (𝑇𝑟𝑒𝑛𝑑2) 0.0005 0.0005 
 

βt1 (𝑡 ∗ 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙) 0.0076 0.0033 
b 

βt2 (𝑡 ∗ 𝐿𝑎𝑏𝑜𝑟) -0.0111 0.0035 
a 

βt3 (𝑡 ∗ 𝐶𝑎𝑝𝑖𝑡𝑎𝑙) 0.0003 0.0016 
 

γ1  0.9392 0.1932 
a 

γ2  -1.0591 0.1757 
a 

γ3  0.1190 0.1190 
 

γ11  0.3268 0.2852 
 

γ22  1.0329 0.4099 
b 

γ33  0.2557 0.1362 
c 

γ12  -0.4502 0.3404 
 

γ13  0.0750 0.1898 
 

γ23  -0.4650 0.1461 
a 

γt1  -0.1134 0.0251 
a 

γt2  0.1132 0.0234 
a 

γt3  0.0143 0.0162 
 

𝜆 =  𝜎𝑢 𝜎𝜈⁄   5.4288 0.0219 
a 

𝜎𝑢  0.4164 0.0089 
a 

𝜂  -0.0174 0.0048 
a 

𝐿𝑜𝑔 𝐿𝐹  726.53  

a,b,c
  statistical significance on 1%, 5 %, 10% level 

 

To check for quasi-concavity, we find that the condition of a negative semi-definite 

bordered Hessian matrix of the first- and second-order derivatives is met in more than 

98% of the data points. Hence, we conclude that the estimated translog production frontier 
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is well-behaved and satisfies the regularity conditions of monotonicity and quasi-

concavity very well.  

Based on the input data and the estimated coefficients of the production frontier, we 

calculate the output elasticities and returns to scale. The reported elasticities in table 4-4 

indicate that the inputs material and labor contribute the most to the production of beer on 

average and that the impact of additional capital on production is rather low. We observe 

decreasing returns to scale at the sample mean. 

Table 4-4: Average output elasticities and returns to scale 

Average output elasticities 

Material 0.385 (0.022)
a
 

Labor 0.460 (0.025)
a
 

Capital 0.050 (0.009)
a
 

  
Returns to scale 0.894 (0.022)

a
 

a 
Standard errors computed using Krinsky and 

Robb (1986) 

 

In table 4-5, we present the decomposition of labor productivity growth for three 

periods of four years, respectively. This is done to avoid year-to-year fluctuations. 

Between 2004 and 2008, we measure an aggregated sector-wide labor productivity change 

of 4.71%. However, part of the measured change comes from firms that enter (-0.23%) or 

exit (0.69) the sample but not the industry. Abstracting from this issue, the aggregated 

labor productivity change of our sample of 118 firms is 4.07%. The biggest share of this 

change (3.86%) is due to productivity increases within the firm. Within the firm, mainly 

technical change (4.63%) and an increase in scale efficiency (1.40%) are important, but 

the decrease in the firms’ technical efficiency had a significant negative effect (-1.15%). 

Neither deepening of material nor capital play a major role. Additionally, changes within 

the firms’ aggregated labor productivity can increase from industry dynamics. We 

distinguish between two effects: a shift of shares from less to more productive firms (0. 

77%) and industry exits of firms that are less productive than the average firm (1.06%). If 

we take all three time periods into account, the following tendencies seem important: i.) 

The within-firm effect is almost twice as strong as the effects from industry dynamics 

(between-firms and industry-exiting effect). ii.) The within-firm effect is mainly driven by 

technical change. Hence, the main strategy of these mid-sized firms to increase 
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productivity is to maintain their market shares rather than to increase their market shares 

through acquisition. iii.) The technical efficiency of firms decreases over time. 

Table 4-5: Decomposition of aggregate labor productivity growth 

Component 96/00 00/04 04/08 

Within firms 1.44 
  

2.35 
  

3.86 
  

Deepening 
 

0.21 
  

0.91 
  

0.01 
 

Material   0.17   0.99   -0.25 

Capital   0.03   -0.09   0.26 

TFPC 
 

1.24 
  

1.44 
  

3.85 
 

Technical change 
  

1.64 
  

2.86 
  

4.63 

Tech. eff. change 
  

-1.15 
  

-1.57 
  

-2.18 

Scale eff. change 
  

0.74 
  

0.15 
  

1.40 

Industry dynamics 0.97   1.19   1.83   

Between firm  0.44   1.36   0.77  

Exit (industry)  0.53   -0.17   1.06  

Exit (sample) 0.72   3.17   0.69   

Entry (sample) 1.55   1.81   -0.23   

Residual
a
 -0.35   0.01   -1.44   

Overall aggregate 4.34   8.53   4.71   

Overall aggregate without 

sample exits and entries 
2.07   3.55   4.25   

a
 The residual category is necessary because of differences between the directly calculated within-firm effect 

in equation (1) (first right-hand side term) and the one measured from the estimated production frontier 

(equation (10)). 

 

This gives us the following picture. Although the production frontier as formed by 

the best firms is shifted upwards, not all firms are able to follow this development. Hence, 

the performance of the firms in the sector diverges. This seems typical for shrinking 

sectors with some firms following an active strategy and investing in new technology and 

others staying passive and producing as long as possible with the existing technology. It is 

important to note here that most mid-sized breweries in Germany are family owned and 

that many have a long tradition of brewing. As opposed to listed companies, such family 

businesses are often driven by continuity rather than rates of returns. iv.) Within the firm, 

the scale change effect is less important than technical change but clearly positive. In the 

light of decreasing returns to scale, firms reduce their input usage and improve their 

productivity by adjusting the scale of their operations. v.) Except for material in the 
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second period, the deepening effect is rather minor. This points at a rather limiting 

production technology with minor substitution effects between production factors. v.) The 

reallocation effect also contributes to aggregated labor productivity; however, changes 

within firms are more important. vi) The effect of firms that enter and exit the sample but 

not the sector is quite large. This shows the sensitivity of our results to changes in our 

sample. vii.) Overall labor productivity increases over time because both the within-firm 

effect and the effect of industry restructuring increase. 

4.5. Conclusions 

Although the global beer market is dominated by five big, international players, the 

number of breweries in Germany, which is the largest beer producing country in the EU, is 

still large and with a relatively low concentration. Nevertheless, significantly decreasing 

domestic demand and only slightly increasing net-exports for more than two decades has 

caused structural changes. In particular, although the number of microbreweries and 

especially those with a production of less than 1000 hl/year has steadily increased and the 

number of very large firms with more than 1 million hl/year has remained fairly stable, the 

number of medium sized breweries (5,000 – 100,000 hl/year) has sharply decreased. 

According to NGG (2013), 40 producers with 320 production plants were put out of 

business between 2006 and 2012.  

In this paper, we examine how labor productivity in this segment of the sector 

(5,000 – 400,000 hl/year) developed based on a sample of 118 breweries between 1996 

and 2008. We provide a method to decompose industry labor productivity into seven 

components: input deepening, technical change, technical efficiency, scale effect, 

reallocation effect and the effects from exits and entry. Although the first four of these 

components occur within firms, the last three can be attributed to industry dynamics. Our 

main finding is that the within effect is much more important than changes within the 

sector. Moreover, although most of the increase in labor productivity comes from 

technical change, technical efficiency decreases over time. In addition to technical change, 

some increase in labor productivity comes from adjusting the size of the firm to the 

decreased demand (rationalization). All these findings together fit well into a sector that is 

dominated by mid-sized, family owned businesses with a long tradition. On average, these 

firms stay rather passive and either try to defend their market shares by becoming more 

productive through investments in technology or continue producing with the old 

technology as long as possible. 
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5. DAIRY FARMING ON PERMANENT GRASSLAND: CAN 

THEY KEEP UP? 

 

 

Abstract 

Based on an extensive data set for southern Germany, we compare the productive 

performance of dairy farms that operate solely on permanent grassland and dairy farms 

using fodder crops from arable land. We allow for heterogeneous production technologies 

and identify more intensive and extensive production systems for both types of farms, 

whereby we base our notion of intensive vs. extensive dairy production on differences in 

stocking density and milk yield per cow and year. To be able to compare the productivity 

levels and productivity developments of the various groups of farms, we develop a group- 

and chain-linked multilateral productivity index. We also analyze how technical change, 

technical efficiency change and a scale change effect contribute to productivity growth 

between the years 2000 and 2008. Our results reveal that permanent grassland farms can 

generally keep up with fodder-crop farms, even in an intensive production setting. 

However, extensively operating farms, especially those on permanent grassland, 

significantly lag behind in productivity and productivity change and run the risk of losing 

ground.  

 

Keywords: dairy farm, permanent grassland, total factor productivity, stochastic 

production frontier 

JEL classifications: D24, Q12 

 

 

 

This chapter is based on the article Dairy farming on permanent grassland: can they keep 

up? by Magnus Kellermann and Klaus Salhofer, published in the Journal of Dairy Science 

(Vol. 97, pp. 6196–6210; DOI: 10.3168/jds.2013-7825). The author of this dissertation is 

the main author of the article. 
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5.1. Introduction 

In addition to being an important basis for agricultural production, grasslands provide a 

variety of essential environmental and social benefits. For instance, grasslands act as a 

carbon sink (Soussana et al., 2007) and generally ensure a high level of biodiversity 

because they provide habitats for flora and fauna (Pflimlin and Poux, 2005). The 

preservation of ground and surface water quality and the provision of an attractive 

environment for recreational activities and tourism are additional benefits (e.g., Prochnow 

et al., 2009; Peeters, 2009; Sanderson et al., 2012). Hence, the preservation of permanent 

grassland is an important topic in the agricultural conservation policy of the United States 

and the European Union. The US Grassland Reserve Program was established as part of 

the 2002 Farm Bill and is one example for these efforts (USDA, 2013). In the EU, several 

agri-environmental programs contain grassland protection elements. In addition, plans 

exist to strengthen legislation that prevents the conversion of grassland to arable land as 

part of the greening strategy of the 2013 reform of the Common Agricultural Policy 

(European Commission, 2013). The productive potential of permanent grassland can be 

exploited only by ruminants and, with some limitations, biogas plants. Hence, dairy 

farming plays the key role in agricultural production in many grassland regions. In the 

European heartland, the regions with agricultural production based solely on permanent 

grassland are generally found in elevated and mountainous areas, e.g., in the surroundings 

of the Alps and the Massif Central. Dairy farms in these areas often face some natural 

disadvantages. Most notably, the cultivation of fodder crops, such as corn silage, is not 

feasible because of comparably high precipitation, lower average annual temperature and a 

shorter vegetation period (Hein, 2002; Meisser and Wyss, 1998). The relatively low 

energy yield per hectare of permanent grassland compared to corn silage illustrates these 

circumstances effectively. In 2010, the numbers vary between 42 – 67 GJ NEL per ha for 

grass silage and 87 – 110 GJ NEL per ha for corn silage for dairy farms in Bavaria (LfL, 

2012). Moreover, Thaysen et al. (2010) show that the disadvantage of grassland regarding 

the energy content of the forage increases over time. Analyzing data from northern 

Germany between 1985 and 2008, they find an average annual increase in NEL yield of 

approximately 1 GJ per ha and year for corn silage compared to only approximately 0.45 

GJ per ha and year for grass silage. Nevertheless, grassland dairy farmers have to compete 

with farmers growing fodder crops on arable land because in most cases they are acting in 

the same markets. First, the distances to the more favorable areas are minor. Referring to 
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the zones of ruminant rearing systems in Europe identified by Pflimlin et al. (2005), we 

find areas labeled as “arable land and livestock regions” and “forage crops regions with 

temporary grassland plus corn” in close proximity to the permanent grassland regions in 

parts of Austria, Switzerland, southern Germany and the eastern part of France. Second, 

the produced milk is not promoted to generate higher farm prices in many cases, for 

example as “mountain- or hay-milk.” However, certain approaches in the marketing of 

these products can be observed, e.g., the promotion of high-quality cheese in the context 

of a Protected Designation of Origin. Given the ongoing market liberalization in the dairy 

sector and the latest farm-price fluctuations, serious concerns exist (e.g., Hopkins, 2011) 

as to whether dairy farms that operate solely on permanent grassland can compete with 

farms that use arable land to produce fodder crops. 

The objective of this paper is to measure the levels and growth rates of total factor 

productivity (TFP) of dairy farms in Bavaria and examine whether grassland dairy farms 

are able to keep up with their fodder-crop counterparts in terms of productive 

performance. If dairy farming in permanent grassland areas is getting less productive 

compared to areas with arable land, either agricultural production will be abandoned in 

these regions or payments directed towards these areas, e.g., less-favored area payments, 

have to increase over time. MacDonald et al. (2000) discuss some of the undesirable 

effects agricultural abandonment in mountainous regions can have on environmental 

parameters, e.g., reductions in biodiversity and landscape quality. 

In general, when comparing the productivity of various groups of farms (e.g., 

organic vs. conventional, intensive vs. extensive, irrigated vs. rain-fed, country A vs. 

country B) it is important to have information on both the difference in absolute 

productivity levels and the differences in productivity growth. Only the combination of 

these components can give a full picture of the present and future performance of one 

group compared to another. Nevertheless, many studies on the performance of groups of 

dairy farms concentrate on differences in the TFP growth rates and its decomposition; 

examples are Brümmer et al. (2002) for the dairy sector in various EU countries, Newman 

and Matthews (2006) for specialist versus “other” dairy farms and, more recently, Ma et 

al. (2012) for dairy farms of various size classes. We follow this strand of the literature 

and calculate total factor productivity growth. Using the generalized Malmquist 

productivity index described by Orea (2002), we decompose productivity growth into 

technical change, technical efficiency change and a scale change effect. However, this 

procedure is not enough to fully answer our research question. Two groups can have equal 
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growth rates, and yet one of them may be much less productive. Likewise, 2 groups can be 

equally productive at a point in time and still drift apart over time because of very 

different growth rates. To get a full picture of what is going on in this sector, we need to 

map the TFP levels of both groups over time. To do this, we provide a group- and chain-

linked multilateral productivity index based on the indices first introduced by Caves et al. 

(1982a) and refined by Good et al. (1997). This index makes it possible to analyze the 

variation of TFP within and between various groups in a sample and how this variation 

develops over time. We note that throughout this article the term productivity refers to 

total factor productivity, i.e., an index of all aggregated outputs over all aggregated inputs. 

5.2. Materials and Methods 

5.2.1 Empirical model 

To model the multi-input, multi-output technology of agricultural production, we use a 

parametric output-oriented distance function  , ,OD tx y , where x  refers to a nonnegative 

vector of inputs used to produce a nonnegative vector of outputs y in time period t . See 

Färe and Primont (1995) for the theoretical derivation of the distance function and its 

properties. We choose output orientation because we assume that the farms in our sample 

are less flexible in the adjustment of their inputs than their outputs. Labor input, which 

predominantly consists of family workforce, is one example for a rather inflexible input. 

Breustedt et al. (2011) also note the low flexibility of the inputs of labor and land in 

Bavarian dairy farming. Contrariwise, although the aggregated amount of milk is limited 

by the quota system, the very well established quota trading system in Germany assures 

unrestricted output at the single farm level. Hence, we argue that farmers decide on a set 

of short-term inflexible inputs for a given year and aim to obtain the maximum output 

from those inputs. Our assumptions are in line with Brümmer et al. (2002), Newman and 

Matthews (2007) and Emvalomatis (2012) who also choose output orientated distance 

functions as representations of production technologies for dairy farms in various EU 

countries. We use a flexible translog functional form to limit a priori restrictions on the 

relationships among inputs and outputs (Morrison Paul et al., 2000; Karagiannis et al., 

2004). 
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 (5.1) 

In equation (5.1), the subscripts 1,2,..., Ni  and 1,2,...,t T denote individual farms and 

time periods, respectively; the subscripts , 1,2, ,k j K  indicate various types of inputs, 

and , 1,2, ,m n M  indicate various types of outputs; , , , , ,        are parameters to 

be estimated.  

The parameters of this function must satisfy the symmetry restrictions 
mn nm   and

kj jk  . We follow Lovell et al. (1994) and Coelli and Perelman (2000) and impose 

homogeneity of degree 1 in output quantities (
1

1
M

m

m




  and
1 1 1

  0
M K M

mn mk mt

m k m

  
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     ) 

by normalizing the function by 1 of the output quantities: 
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  (5.2) 

where TL  indicates the translog functional form, and    , ,TL t*
y x  is the right hand side of 

equation (5.1) after dividing all the output quantities by 
My . Because the dependent 

variable ln  O

itD is unobservable, we have to rearrange the distance function for estimation. 

We add a random error term
itv , and, given that ln 0O

itD  , we replace ln O

itD  with 
itu  

such that 

 ln   , ,Mit it ity TL t u v   *
y x  (5.3)    

Equation (5.3) is a “stochastic frontier model” (Kumbhakar and Lovell, 2000) and can be 

estimated by maximum-likelihood methods given that 
 itv is a normally distributed random 

variable  2  0, vN   that reflects statistical noise and other stochastic shocks, and 
itu  is a 
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non-negative random error term  20, uN   that represents inefficiency (Aigner et al., 

1977).  

Because the aim of the paper is to compare the efficiency and productivity of 

permanent grassland farms and fodder-crop farms, we split our sample into these 2 groups. 

We know each farm’s share of permanent grassland in its total utilized land. This 

information is used to distinguish between the 2 types of farms. However, we have only 

limited information on potentially heterogeneous production technologies within those 2 

groups. To allow for the possibility of unobserved differences in the production 

technologies, we apply a latent class stochastic frontier model for each of the 2 groups as 

described in Orea and Kumbhakar (2004), Greene (2005) and Alvarez and del Corral 

(2010).  

The reader might ask why we did not use the latent class model on the complete 

dataset and let the econometric model assign the farms to classes with different 

(unobserved) production technologies. Alvarez et al. (2012) find that latent class models 

are better suited to identify heterogeneous technologies than is an a priori split of the 

sample. However, our research question aims to identify productivity differences between 

2 groups of farms, which are not latent to us; rather, we have a clear conception for their 

separation based on the farms’ shares of permanent grassland. Still, technological 

homogeneity can be a strong assumption even within those more closely defined 

subsamples. Hence, we use the latent class model to relax this restriction and allow for 

unobserved technological heterogeneity. 

In the latent class framework, equation (5.3) can be rewritten as  

 ln   , , | | |Mit g it g it gy TL t u v   *
y x  (5.4) 

where the vertical bar simply indicates that we estimate a specific set of coefficients for 

each class 1,  , g G  , and the overall functional relationship remains the same for all the 

classes. Hence, the heterogeneity in the production technology is captured by a class-

specific parameter vector. The true class membership of each farm is unknown to us. It is 

assumed that a latent relationship between the observations in the sample exists, which 

translates into G  different classes. Following Greene (2005), under the aforementioned 

distributional assumptions on 
itu  and

itv , the contribution to the conditional likelihood 

function for each farm i  is the product of the likelihood functions in each period: 
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1
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ig itg
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
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where itgLF  is the likelihood function for each observation in each class. To get the 

unconditional likelihood function for farm i , a weighted average of all its likelihood 

functions over the G classes is calculated using the G prior probabilities of class 

membership gP as weights: 

1

G

i g ig

g

LF P LF


  (5.6) 

The prior probabilities must be specified to have a value between 0 and 1( 0 1gP  ) and 

must sum up to 1 (
1

1 , 
G

g

g

P i


  ). A simple parameterization of the prior probabilities with 

1 class ( G ) as reference that fulfills these requirements is in the form of a logit model:  
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where g  are parameters to be estimated. We impose the constraint on the last 
G

because we only need 1G   parameters to specify the G probabilities. Consequently, the 

last probability is 1 minus the sum of the first 1G   (Greene, 2003 p. 440). Using this 

formulation, the prior probability of class membership is constant for all the individuals. 

Based on the concomitant variable model by Dayton and MacReady (1988), we 

incorporate variables on characteristics of each individual i . By this means, the individual 

specific prior probabilities of class membership can be parameterized by a multinomial 

logit model: 

 
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g i

ig G
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
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





z

z
 0G   (5.8) 

The vector 
iz  contains time invariant farm specific characteristics, and

g is the respective 

vector of parameters to be estimated. The parameter in g denotes the impact of the farm 

characteristic on the prior probability of belonging to class g . Hence, a positive coefficient 

in g  implies that a higher value of the respective variable increases the prior probability 

that a farm i  belongs to class g (Wedel and DeSarbo, 2002). If concomitant variables are 
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incorporated in the model to derive individual specific estimates of the prior probabilities, 

equation (5.6) changes accordingly and gP  is replaced by igP . We derive the log-

likelihood-function used to estimate the parameters of the production frontier, the 

composed error term and the prior class probabilities from the sum of the individual log 

LF:  

1 1 1 1

log ln ln    
N N G T

i ig itg

i i g t

LF LF P LF
   

      (5.9) 

Following Greene (2005), the log-likelihood-function (5.9) is maximized with respect to 

the parameter set 
g ,  Θ  where Θ  contains all the parameters of the stochastic distance 

function 2, , , , , ,g g g g g g g     δ τ  and the prior class probabilities
g

   . The estimated 

parameters are then used to estimate the conditional posterior probabilities of class 

membership from 

 
1

 
|   .

 

ig ig

G

ig igg

LF P
P g i

LF P





 (5.10) 

As noted by Orea and Kumbhakar (2004), we can deduce from expression (5.10) that the 

posterior class probabilities depend not only on the estimated   parameters for the 

concomitant variables in the logit model (5.8) but on all the parameters contained in the 

set
g

  Θ . Hence, if information about possible class characteristics is unavailable, the 

latent class model still clusters the sample using the goodness of fit of each estimated 

frontier.  

Although we have panel data available, we estimate the posterior class probabilities 

as  |P g i  instead of  |P g it . This means that the posterior probabilities are the same for 

each observation of a farm and that the farms are not allowed to switch between the 

classes over time contrary to Alvarez and del Corral (2010). We argue that dairy farmers 

do not decide whether they produce using a more intensive or extensive production 

technology on a year-to-year basis. Rather, this decision has to be considered as the result 

of a medium- to long-term strategy because each production technology has particular 

requirements that are not always easy to adjust every year, e.g., special knowledge by the 

farmer or specific dairy breeds.  

We follow Orea and Kumbhakar (2004) and use the Akaike Information Criterion 

(AIC) as an indication for the appropriate number of classes. For the econometric 
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implementation of the described model, we use LIMDEP 10.0 (Greene, 2012; 

Econometric Software Inc., Plainview, NY). 

5.2.2 Production technology, technical efficiency and productivity 

Based on the stochastic frontier model in equation (5.4), we can examine various 

characteristics of the production technology and derive the technical efficiency and 

productivity growth of the farms in our sample. The elasticities of the distance functions 

with respect to inputs and outputs characterize the multi-output production technology in a 

way similar to the more common parameters of a Cobb-Douglas production function. The 

first-order elasticities with respect to inputs  
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are therefore interpreted as the percentage change in the overall output due to a 1% 

increase in the respective inputs (Morrison Paul et al., 2000). The sum of these input 

elasticities is defined as the scale elasticity (Färe and Primont, 1995): 
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  (5.12) 

The first-order elasticities with respect to output are calculated as 
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and reflect the profit maximizing revenue share of the m-th output for a given level of 

inputs (Brümmer et al., 2002). Grosskopf et al. (1995) provide a discussion of the various 

measures that can be derived from the estimated elasticities on the output side and their 

economic interpretation. 

In contrast to the standard stochastic frontier model, in which 1 homogeneous 

production technology is assumed, the latent class model can establish several frontiers. In 

accordance with the estimated a posteriori probability from (5.10), the farms in the sample 

are assigned to the identified classes, and their individual technical efficiency score is 

measured against the respective class technology frontier. Consequently, the technical 

efficiency scores for individual farms are estimated using the common formula of 

Jondrow et al. (1982): 

  exp |it it it itTE E u u v   . (5.14) 
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Hence, technical efficiency scores are a measure of the productive homogeneity of the 

respective class and cannot be used to compare the efficiency of farms across classes. 

Orea and Kumbhakar (2004) also discuss an alternative approach for the estimation of 

efficiency scores in a latent class model. It aims to take the uncertainty about class 

membership into account and calculates a weighted average of the farms’ technical 

efficiency scores as against all possible frontiers: 

 
1

* |  
G

it it gg
TE P g i TE


 . (5.15) 

Malmquist index of TFP growth  

To examine productivity growth, we use the well-established generalized Malmquist index 

of total factor productivity as suggested by Orea (2002). Details on the derivation of the 

index and applications to the agricultural sector can be found in Coelli et al. (2005), 

Newman and Matthews (2006) and Key et al. (2008). The generalized Malmquist index of 

productivity change between 2 time periods 𝑡 and 𝑠 = 𝑡 + 1 can be written as 
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 (5.16) 

The index measures how the productivity of an individual farm changes over time and 

allows for the decomposition of productivity growth in technical change, technical 

efficiency change and a scale change effect. Given the estimated parameters of the 

stochastic distance function, the calculation of the components of productivity change is 

rather straightforward. Technical change (TC ) – the first term on the right hand side of 

equation (5.16) – includes the partial derivatives of the distance function with respect to 

time for the periods t  and 1s t  , where 1 2
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The second term in equation (5.16) measures the change in technical efficiency (TEC ) by 

the difference in the value of the output distance function from one period to the next. The 

third term on the right hand side of equation (5.16) contains the scale change effect ( SC ), 

which is based on the scale elasticity 
it  and changes in input use. We observe a positive 

(negative) contribution to productivity change if 1it   and input usage is expanded 

(reduced) or if 1it   and input usage is reduced (expanded). In the case of constant 
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returns to scale ( 1it  ) or if input quantities do not change (  ln 0kis kitx x  ), SC  

becomes 0.  

Group- and chain-linked multilateral productivity index  

As noted in the introduction, our analysis goes beyond the examination of the mere growth 

rates of productivity. To compare the productivity levels of fodder-crop and grassland 

farms relative to each other, we develop a group- and chain-linked multilateral 

productivity index. The initial form of this index, as introduced by Caves et al. (1982a), 

provides a measure of the productivity level of all the production units in a cross-section 

relative to one hypothetical average reference unit. We adapt this index to compare the 

productivity level of groups that consist of subordinate (micro-level) units as described in 

Delgado et al. (2002). This group-linked multilateral productivity index ln iP can be 

written as  

In equation (5.17) the first term in the first square brackets is a multilateral output index 

that gives the relative output of the i -th unit in each group 1, ,h H  , against the output 

of a hypothetical group average unit. In our application, the superscript 1, ,h H 

includes all the G latent classes we identify among the permanent grassland and fodder-

crop farms. Hence, 
h

miR  denotes the unit-specific revenue share of the m -th output (
my ), 

and superscript h  signifies the group membership of unit i . A single bar over a variable 

denotes its arithmetic mean for the respective group h  (e.g.,
1

1
   

hN
h h

m mih
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R R h
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  ). The 

second term in the first square brackets then compares the output of the hypothetical group 

average units themselves against a hypothetical overall average unit. A double bar over a 

variable indicates the arithmetic mean over the H  groups (e.g.,
1

1 H
h

m m

h

R R
H 

  ). The 

second square bracket performs the respective calculations on the input side.  

Applying the first order conditions of cost minimization, we obtain the required 

input (cost) shares 
kC  under the assumption of allocative efficiency from the input-side 
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 (5.17) 



DAIRY FARMING ON PERMANENT GRASSLAND 110 

elasticities of the estimated distance functions. Following Chan and Mountain (1983), 
kC  

corresponds to the elasticities corrected by the respective returns to scale measure:  
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On the output side, we make use of the fact that the revenue shares are observed in the 

data. This way we can abstain from the assumption of an allocative efficient output mix 

and use the observed revenue shares for aggregation. 

The resulting productivity index in (5.17) is purely cross-sectional. However, it 

allows interlinking various cross-sections or groups and provides a decomposition of the 

productivity variation within and between the various groups. The totaled productivity 

measure we obtain for all the units in all the groups consequently relates exclusively to the 

overall hypothetical reference unit. This way the “path of comparison” (Good et al., 1997 

p. 11) is still well defined, and transitivity is maintained. The use of the arithmetic mean in 

equation (5.17) corresponds to the notion of democratic weights
89

 for the construction of 

the hypothetical average reference units, i.e. every unit is given an equal weight in the 

construction of the group average unit and every group is given an equal weight in the 

construction of the overall average reference unit. However, different weighting schemes 

exit.
90

  

Equation (5.17) yields equivalent results as the initial formulation by Caves et al. 

(1982a) if each groups share on the total number of observations is used as weights for the 

construction of the overall reference unit. A double bar over a variable then indicates the 

weighted arithmetic mean, e.g. 
1

G
g g

m m

g

R R


  where 
g

g N

N
  . Thus, groups with a larger 

(smaller) number of observations will have a higher (lower) impact on the overall 

reference unit. Provided that the number of observations for the different groups reflects 

the true distribution and importance of the groups in the industry (sector) under 

consideration this may be a desirable property. However, this may or may not be true 

when micro-level data is used. Considering the case that the number of observations in the 

groups is arbitrary, the overall reference unit will be biased towards the group with most 

observations. In three obvious cases the “observation share-” and the “democratic-” 
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 The term “democratic weights” was first used by Prais (1959) in an index number context. 
90

 Diewert (1986) discusses various weighting schemes and their properties in the context of inter-country 

comparisons. He notes that no clear-cut answer exists on which formula is the best in all occasions. 

Depending on which properties are considered to be the most important in an empirical application, the 

“right” weights have to be chosen on a case-by-case basis.  
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weights yield the same results: if we observe the same number of observations in all 

groups, if all groups are on average equally productive and if productivity and group size 

are uncorrelated. For our dataset we do not have sufficient information to state that the 

number of yearly observations represents the true importance of the different groups in the 

sector. For this reason, but also because we want to focus on a general comparison of the 

productivity of the different identified groups in our dataset we use democratic weights
91

. 

We now further extend this group-linked multilateral productivity index for use with 

panel data in the way Good et al. (1997) describe for the comparison of single firms over 

time. Here, we calculate the group-linked multilateral productivity index for each period 

1, ,t T   and then chain-link the overall hypothetical reference units over time. The 

group- and chain-linked productivity index can then be written as  

This index then provides a measure of the level of productivity for each unit i  in each 

group h  and each time period t  relative to the overall hypothetical reference unit in the 

base year 1t  . Furthermore, we obtain information on the variability of TFP within and 

between the H  groups and how this variability develops over time. In this application, we 

are mainly interested in productivity gaps between the identified groups of dairy farms. 

The multilateral Törnqvist index does not allow for the measurement of the effects of non-

constant returns to scale or technical inefficiency to explain productivity dispersion. We 
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 One may also challenge our decision to use democratic weights for the construction of the groups’ 

hypothetical reference units. However, we abstain from adding another layer of complexity by using revenue 

or quantity weights mainly because the relatively high number of observations and the fairly symmetric 

distributions of farm size in each group mitigate a possible “tiny country” effect (see e.g. Diewert 1986). 
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note that these restrictions are necessary for the calculation of the relative productivity 

measures across distinct production technologies. 

5.2.3 Data 

We employ an unbalanced panel dataset taken from farm bookkeeping records, which 

serves as a basis for the European Commission’s Farm Accountancy Data Network. The 

farm level dataset includes 9,482 observations of 1,142 dairy farms observed over the 

years 2000 to 2008 in the Federal state of Bavaria in south Germany. All the farms are 

specialized dairy farms with more than 66% of the farms’ total revenues coming from 

dairy production. The observations are evenly spread over the period under consideration 

with 8.3 observations per farm on average. Overall, 958 farms are identified as fodder-

crop farms, and 184 farms are permanent grassland farms. The farms considered to be 

grassland farms are operating with 100% permanent grassland during the entire period. 

Though fodder-crop farms may operate partly on permanent grassland, it never exceeds 

90% of their total farm land. The average share of permanent grassland in the fodder-crop 

group is 45%. All the monetary figures from accounting data are deflated using relevant 

price indices from the German Federal Bureau of Statistics.  

Table 5-1: Summary statistics of main variables for fodder-crop and 

grassland farms 

  

Mean Max. Min. Std. Dev. 

  
Fodder-crop (958 farms; 7,999 observations) 

Labor (fte)
1
 1.57 3.94 0.40 0.46 

Land (ha) 46.2 318.3 9.4 26.0 

Intermediate inputs (€) 54,171 247,089 6,145 29,462 

Capital (€) 216,589 106,3470 14,767 129,886 

      
Milk output (€) 75,950 310,611 9,122 39,307 

Other output (€) 31,852 239,780 2,276 17,863 

     
Cattle LU/ha forage land

2
 2.36 5.64 0.85 0.58 

Yearly milk yield kg/ cow 6,079 9,162 2,253 1,001 

  
Grassland (184 farms; 1,483 observations) 

Labor (fte)
1
 1.49 2.97 0.35 0.35 

Land (ha) 31.2 81.4 12.3 11.9 

Intermediate inputs (€) 28,862 101,581 5,349 12,792 

Capital (€) 152,885 398,067 21,395 81,251 

     Output (€) 68,623 204,891 21,301 24,072 

     
Cattle LU/ha forage land

2
 1.54 3.06 0.70 0.35 

Yearly milk yield kg/ cow 5,947 8,258 3,365 915 
1fte = full-time equivalent 
2LU = livestock unit 
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For the fodder-crop farms, we aggregate the outputs into 2 categories, milk and other 

output. Milk is equal to revenues from raw milk and milk products. This allows accounting 

for quality differences because the price that the individual farmer receives from the 

processor varies depending on the fat and protein content in the milk (see Reinhard et al., 

1999 and Emvalomatis, 2012). The variable other output contains revenues from beef, 

crops and other commodities. We also tried a multi-output specification for the grassland 

farms. However, the estimated distance function encountered substantial monotonicity 

problems. This is not surprising, given that grassland farms are highly specialized. Their 

average share of dairy production on the total output is 92.6% with 80.2% as a minimum. 

Therefore, as common practice in the case of highly specialized dairy farms (e.g., Abdulai 

and Tietje, 2007), we estimate a production frontier that is the single-output special case 

of an output distance function. For both groups of farms, we aggregate the utilized inputs 

into 4 categories (labor, land, intermediate inputs and capital). Table 5-1 summarizes the 

descriptive statistics for the main variables of the stochastic frontier model.Labor includes 

family and hired labor in full-time equivalents (fte). Land measures the total cultivated 

land in hectares. Thus, differences in land quality are omitted. We tackle this issue by 

introducing regional dummies for various agricultural production areas, as defined by the 

Bavarian Agricultural Research Institute (LfL, 2009). Intermediate inputs include all the 

expenses for forage and crop production (e.g., seed, fertilizer, pesticides, contractors), for 

animal production (e.g., veterinary, concentrates) and for water, energy, fuel and other 

expenses linked to production. Capital includes the end-of-year value of livestock, 

buildings, technical facilities and machinery related to agricultural production. Similar 

input specifications for dairy farms can be found in Kumbhakar and Heshmati (1995), 

Brümmer et al. (2002) and Newman and Matthews (2006). In addition to the variables of 

the distance function, we use the farm average value of the variables cattle livestock unit 

per ha of forage land and yearly milk yield per cow as concomitant variables in the model 

for the prior probabilities of the latent classes. These variables most commonly 

characterize intensive or extensive dairy production systems (Müller-Lindenlauf et al., 

2010; Nehring et al., 2011). 

5.3. Results 

5.3.1 Econometric estimates of the production technology 

Estimation results based on 7,999 (1,483) observations for the group of fodder-crop 

(grassland) farms are presented in tables 5-2 and 5-3. In the case of fodder-crop farms, 
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87% of the estimated parameters are statistically significantly different from zero at the 

5% level (52% for the grassland farms).  

Table 5-2: Estimated parameters for the 2 classes of fodder-crop 

dairy farms ( 7,999n  ) 

 

Latent Class 1    

(intensive) 

Latent Class 2 

(extensive) 

Parameter Coefficient SE  Coefficient SE 
 

0  (Constant) 0.0188 (0.0225)  -0.0421 (0.0107) 
a
 

1  (Labor) 0.1247 (0.0176) 
a
 0.1746 (0.0200) 

a
 

2  (Land) 0.1388 (0.0159) 
a
 0.1371 (0.0170) 

a
 

3 (Interm. Inputs) 0.5046 (0.0140) 
a
 0.5430 (0.0141) 

a
 

4  (Capital) 0.1447 (0.0106) 
a
 0.1252 (0.0122) 

a
 

11   -0.1340 (0.0424) 
a
 -0.1068 (0.0439) 

b
 

22   -0.1651 (0.0298) 
a
 -0.2367 (0.0340) 

a
 

33   0.0742 (0.0246) 
a
 0.1249 (0.0257) 

a
 

44   -0.0983 (0.0152) 
a
 -0.0980 (0.0155) 

a
 

12   0.1186 (0.0269) 
a
 0.0584 (0.0295) 

b
 

13   -0.0300 (0.0255)  0.0492 (0.0246) 
b
 

14   -0.0164 (0.0196)  -0.1150 (0.0220) 
a
 

23   -0.0425 (0.0218) 
c
 -0.0220 (0.0253)  

24   0.0800 (0.0140) 
a
 0.1756 (0.0166) 

a
 

34   0.0385 (0.0159) 
b
 -0.0993 (0.0144) 

a
 

1  (Milk) -0.7018 (0.0104) 
a
 -0.7401 (0.0114) 

a
 

2  (Other)
1
 -0.2982 -  -0.2599 -  

11   -0.1090 (0.0153) 
a
 -0.0975 (0.0145) 

a
 

22   -0.1090 -  -0.0975 -  

12   0.1090 -  0.0975 -  

11   0.0132 (0.0191)  -0.0363 (0.0228)  

21   0.0401 (0.0151) 
a
 0.0619 (0.0170) 

a
 

31   0.0000 (0.0151)  -0.0614 (0.0108) 
a
 

41   0.0067 (0.0100)  0.0273 (0.0123) 
b
 

12   -0.0132 -  0.0363 -  

22   -0.0401 -  -0.0619 -  

32   0.0000 -  0.0614 -  

42   -0.0067 -  -0.0273 -  

1  (Trend) 0.0108 (0.0033) 
a
 -0.0041 (0.0037)  

2   0.0004 (0.0006)  0.0030 (0.0007) 
a
 

1t   -0.0025 (0.0031)  -0.0065 (0.0035) 
c
 

2t   0.0039 (0.0023) 
c
 0.0089 (0.0025) 

a
 

3t   0.0080 (0.0024) 
a
 -0.0037 (0.0024)  

4t   -0.0048 (0.0018) 
a
 -0.0021 (0.0019)  

1t   -0.0011 (0.0017)  0.0041 (0.0019) 
b
 

2t   0.0011 -  -0.0041 -  

_1area   0.2146 (0.0318) 
a
 0.1864 (0.0168) 

a
 

_ 2area   0.1978 (0.0108) 
a
 0.1965 (0.0102) 

a
 

_ 3area   0.1890 (0.0092) 
a
 0.1819 (0.0114) 

a
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_ 4area   0.1574 (0.0083) 
a
 0.1263 (0.0112) 

a
 

_ 5area   0.1835 (0.0182) 
a
 0.1639 (0.0129) 

a
 

_ 6area   0.0382 (0.0203) 
c
 0.1042 (0.0259) 

a
 

_ 7area   0.0588 (0.0071) 
a
 0.0530 (0.0082) 

a
 

_8area   0.0831 (0.0092) 
a
 0.0281 (0.0107) 

a
 

_ 9area    0.0495 (0.0070) 
a
 -0.0049 (0.0080)  

  /u v      0.1208 (0.0072) 
a
 0.1986 (0.0035) 

a 

2 2

u v      0.4615 (0.2569) 
c
 2.6154 (0.1505) 

a 

Log-likelihood:      5059.2 

The estimated coefficients of the output distance function are multiplied with -1 to 

facilitate the comparison with the production frontier. 
1Italic parameters calculated using the homogeneity restriction 

a,b,c statistical significance on the 1, 5 and 10% level 

 

Table 5-3: Estimated parameters for the 2 classes of grassland dairy 

farms ( 1,483n  ) 

 

Latent Class 1 

 (intensive) 

Latent Class 2 

 (extensive) 

Parameter Coefficient SE 
 

Coefficient SE 
 

0  (Constant) 0.0916 (0.0209) 
a 

-0.1973 (0.0396) 
a 

1  (Labor) 0.1591 (0.0340) 
a 

0.2702 (0.0660) 
a 

2  (Land) 0.2923 (0.0298) 
a 

0.1949 (0.0488) 
a 

3 (Interm. Inputs) 0.3906 (0.0249) 
a 

0.3650 (0.0414) 
a 

4  (Capital) 0.0911 (0.0204) 
a 

0.1292 (0.0315) 
a 

11   -0.0256 (0.0861) 
 

-0.1933 (0.1731) 
 

22   -0.1656 (0.0851) 
c 

-0.1409 (0.1164) 
 

33   0.0455 (0.0471) 
 

0.0802 (0.0568) 
 

44   -0.0945 (0.0332) 
a 

-0.1791 (0.0385) 
a 

12   0.0398 (0.0637) 
 

0.1088 (0.1150) 
 

13   0.0427 (0.0521) 
 

-0.1429 (0.0952) 
 

14   -0.0298 (0.0366) 
 

0.0281 (0.0539) 
 

23   -0.1644 (0.0453) 
a 

-0.0429 (0.0660) 
 

24   0.1933 (0.0391) 
a 

0.1586 (0.0446) 
a 

34   0.0499 (0.0272) 
c 

-0.0462 (0.0314) 
 

1  (Trend) 0.0274 (0.0063) 
a 

0.0092 (0.0095) 
 

2   -0.0032 (0.0012) 
a 

-0.0010 (0.0018) 
 

1t   -0.0071 (0.0062) 
 

-0.0208 (0.0105) 
b 

2t   0.0005 (0.0052) 
 

0.0272 (0.0080) 
a 

3t   0.0073 (0.0042) 
c 

0.0019 (0.0064) 
 

4t   -0.0028 (0.0034) 
 

-0.0176 (0.0046) 
a 

_1area   -0.0978 (0.0150) 
a 

0.0541 (0.0311) 
c 

_ 2area   -0.0246 (0.0140) 
c 

0.1781 (0.0324) 
a 

  /u v      1.4739 (0.2037) 
a 

1.9560 (0.3281) 
a 

2 2

u v      0.1395 (0.0063) 
a 

0.1686 (0.0091) 
a 

Log-likelihood:       1099.6  
a,b,c statistical significance on the 1, 5 and 10% level   
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For the group of fodder-crop farms, the AIC indicates that a model with 2 classes (AIC -

1.245) is preferred over a model with 1 class (-0.740). Attempts to estimate a model with 3 

or more classes failed to achieve convergence. For the group of grassland farms, the AIC 

also supports a model with 2 classes against a model with 1 class (AIC of -1.020 and -

1.412, respectively). However, for this group, a model with 3 classes and a slightly lower 

AIC can be estimated, but with very poor results. In particular, the additional class is very 

small and the distance function coefficients are insignificant with extreme standard errors. 

In accordance with Greene (2005), who reports a similar case, we prefer a model with 2 

classes in both groups. The coefficients for the concomitant variables in the latent class 

model are shown in table 5-4. The positive signs indicate that a higher value of the 

variables milk yield per cow and year and cattle livestock unit per ha of forage land 

increases the probability of a farm to belong to class 1 in both groups. For the size of the 

effect and a more detailed interpretation, the marginal effects of the variables on the prior 

probability have to be calculated. However, the signs of the marginal effects depend on 

the signs of the coefficients. Because we are not interested in the size of the marginal 

effect, we check only the estimated coefficients. Using a likelihood ratio test, we examine 

their statistical significance. For both groups, we find that the variables provide additional 

information to classify the sample (table 5-4).  

Table 5-4: Parameter of the latent class prior probability function 

       Fodder-crop    Grassland 

   intensive  extensive intensive extensive 

  Coef.    SE  Coef.    SE  

Constant (
0 ) -7.563 (0.677)

a
     - -7.090 (1.662)

a
 - 

Yearly milk yield 

kg/cow (
1 ) 1.183 (0.178)

a
 

 

    - 
2.801 (0.611)

a
 - 

Cattle LU/ha 

forage land
1
  (

2 ) 0.080 (0.009)
a
     - 0.059 (0.020)

a
 - 

LR Test LR statistic  LR statistic  

0 1 2 0:H     186.7 
a
  35.3 

a
  

a,b,c statistical significance on the 1, 5 or 10% level 
1LU = livestock unit 

 

However, it is important to note that the assignment of farms to the classes is only slightly 

affected by the specification of the prior probability function. Including the concomitant 

variables (cattle livestock unit per ha of forage land and yearly milk yield per cow) in the 

probability function (see equation (5.8)), we find that only 27 out of the 958 fodder-crop 

farms (6 out of the 184 grassland farms) were assigned to a different class as compared to 



DAIRY FARMING ON PERMANENT GRASSLAND 117 

the simpler model with no concomitant variables included (equation (5.7)). Hence, we 

argue that the major effect for sorting the farms into the classes can be attributed to 

differences in the distance functions’ coefficients, representing distinct production 

technologies. Taking the results from table 5-4 in combination with the key properties of 

the various classes into account (table 5-5), we conclude that the degree of intensification 

is at least 1 major distinguishing characteristic of the 2 identified classes in each group. 

Hence, we refer to the classes as intensive and extensive, but we are fully aware that other 

interpretations of these results might exist. As depicted in table 5-5, in both groups 

(henceforth referred to as PGL-I and PGL-E for intensive and extensive permanent 

grassland and FC-I and FC-E for the respective fodder-crop farms), the so called intensive 

farms produce relatively more milk on average and utilize an almost equal work force and 

area under cultivation, respectively.  

Table 5-5: Characteristics of identified production systems (class 

averages) 

 

Fodder-crop Grassland 

   
intensive extensive intensive extensive 

Farms  491 467 116 68 

Observations   4,100 3,899 951 532 

Labor (fte)
1
 

 
1.60 1.54 1.49 1.48 

Land (ha) 
 

  46.9 45.5 31.4 30.9 

Intermediate inputs (€)   58,602 49,510 31,116 24,833 

Cows 
 

  41 32 30 22 

Milk production (1000 kg/yr)
2
 265.1 185.3 180.9 125.7 

Concentrate/Cow (€)   312.3 277.2 259.7 274.1 

Cattle LU/ha forage land
3
 2.54 2.18 1.64 1.37 

Milk yield (kg/cow yr)   6,432 5,708 6,087 5,693 

Vet. cost/Cow (€) 
 

90.3 99.6 76.0 96.8 

av. growth rate milk yield (%/yr) 1.80 1.87 1.61 1.41 

av. growth rate milk prod. (%/yr) 2.90 2.39 2.61 1.17 

No agricult. education (%) 6.7 8.8 9.8 14.1 

Basic agricult. education (%) 61.3 68.0 69.5 69.4 

Higher agricult. education (%) 32.0 23.2 20.7 16.5 

Farmers age (yr) 46.7 48.2 46.9 47.3 
1fte = full-time equivalent 
2yr = year 
3LU = livestock unit 

 

These farms have a higher stocking rate and larger dairy herds, use more intermediate 

inputs, achieve higher milk yields per cow and have expanded their production faster than 

the extensive farms. For the PGL farms, the difference in the latter is most striking. The 

PGL-E farms achieve a yearly growth rate of approximately 1.17%, but the PGL-I farms 
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increased their milk output more than 2.6% per year during the observed period. The FC-I 

(FC-E) farms expand their milk production at a rate of 2.9% (2.39%) per year. Hence, the 

group of PGL-E farms lags behind the other 3 groups regarding the expansion of 

production. FC farms show a higher stocking rate compared to PGL farms. This finding is 

assigned to the higher forage yields from arable land compared to permanent grassland. 

Surprisingly and despite the higher milk yields per cow in the intensive classes in both 

groups, we find higher costs for veterinary services per cow in the extensive classes. 

Likewise, the costs of concentrate per cow are larger for PGL-E farms compared to 

intensive ones. Both observations may be explained by better management skills in the 

intensive classes. This argument is supported by observed educational differences. The 

highest percentage of farm managers with no agricultural education is found in the PGL-E 

class (14.1%), and the lowest is found in the FC-I (6.7%) class. Contrariwise, about twice 

as many farmers (32%) in the FC-I class have received higher agricultural education as 

those in the PGL-E class (16.5%). For the FC-E (23.2%) and the PGL-I (20.7%) class, the 

respective figures lie somewhere in between.  

To examine the estimated representations of the production technologies for the 4 

identified classes, we focus on the first-order production and scale elasticities and the 

estimated efficiency scores. We calculate the first-order elasticities with respect to inputs 

and outputs at each data point and present their average values for each class in table 5-6.  

Table 5-6: Average elasticities for the 4 identified classes
1
 

 
Fodder-crop

2
 Grassland 

 
intensive extensive intensive extensive 

Labor 0.104 (0.047)
a
 0.155 (0.066)

b
 0.122 (0.027)

c
 0.203 (0.080)

d
 

Land 0.172 (0.077)
a
 0.177 (0.112)

a
 0.284 (0.099)

c
 0.313 (0.096)

d
 

Intermediate inputs 0.543 (0.044)
a
 0.523 (0.062)

b
 0.421 (0.048)

c
 0.370 (0.054)

d
 

Capital 0.121 (0.048)
a
 0.136 (0.077)

b
 0.080 (0.067)

c
 0.089 (0.094)

c
 

     Scale 0.940 (0.037)
a
 0.991 (0.091)

b
 0.907 (0.054)

c
 0.976 (0.083)

d
 

Milk output -0.721 (0.055)
a
 -0.715 (0.052)

b
 - - 

Other output -0.279 (0.055)
a
 -0.285 (0.052)

b
 - - 

a-d
Means within a row with different superscripts differ significantly on the 1% level based on a Welch test 

1Standard deviation in parentheses. 
2The coefficients of the output distance function are multiplied with -1 to facilitate the comparison with the 

production frontier. For that reason we find positive (negative) signs for the elasticities on the input- (output-) side. 

 

In all the classes, the average elasticities show the expected signs. As a general 

pattern, intermediate inputs have the highest average output elasticity followed by land, 

labor and capital. For the FC-I class, the average elasticity of the intermediate inputs with 
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respect to output equals 0.543. That is, a 1% increase of this input results in a 0.543% 

increase of aggregate output. Comparing the elasticities between the 2 groups of farms, we 

find output to be relatively more responsive to land and labor for the PGL farms. On the 

other hand, intermediate inputs and capital have a higher impact on output for the FC 

farms. These findings show the relative importance of the input land in particular for the 

PGL dairy farms. This reflects the more pronounced necessity of pure grassland-based 

farms for additional land to increase their output. On the contrary, FC farms have more 

alternative means of output expansion because arable land is more versatile. The 

elasticities on the output side reflect the high share of milk output in the total production 

of both fodder-crop classes. We check whether the estimated parametric representations of 

the production technologies satisfy the monotonicity condition at each data point. We find 

only few violations, primarily for the input capital (table 5-7). However, the percent of 

violations is still low, and we expect no substantial consistency problems regarding 

monotonicity. 

Table 5-7: Monotonicity violations in percent 

 
Fodder-crop Grassland 

 
intensive extensive intensive extensive 

Labor 1.6 0.8 0.0 0.2 

Land 2.0 5.7 0.1 0.0 

Intermediate inputs 0.0 0.0 0.0 0.0 

Capital 0.4 3.6 12.1 15.9 

     
Milk output 0.0 0.0 - - 

Other output 0.0 0.0 - - 

 

Returns to scale are slightly decreasing for all the classes at their sample mean. 

Considering the relatively modest size of the dairy herds in our sample this result is 

surprising at first sight. However, it is not an uncommon finding in similar research: see 

for example Emvalomatis (2012) for dairy farms in Germany; Abdulai and Tietje (2007) 

for northern German dairy farms; Barnes (2008) for dairy farms in Scotland. Moreover 

Alvarez and Arias (2003) show, that diseconomies of size can occur if farms increase their 

size but not managerial abilities. We checked the distributions of the scale elasticities and 

found that they are more widely distributed in the extensive classes, which show a 

considerable number of observations with decreasing and increasing returns to scale. The 

distributions for the intensive classes are narrower with only a small number of 

observations with returns to scale greater than 1.  
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Regarding the coefficients associated with time (all s and s in tables 5-2 and 5-3), we 

find non-neutral technical change in all 4 identified technologies. With only 1 exception 

(parameter 
3t  in the FC-E class), technical change is labor and capital saving and land 

and intermediate inputs using (Morrison Paul et al., 2000). However, the coefficients vary 

in value and significance across all the classes. For instance, technical change for the 

PGL-I class is almost exclusively disembodied, but we do not find significant 

disembodied technical change for the extensive class. This implies that the contribution of 

technical change to total factor productivity for the PGL-E class stems mainly from 

changes in the marginal productivities of single inputs over time. We test whether the 

presence of non-neutral technical change can be rejected for the class of PGL-I farms. The 

Wald statistic for the hypothesis 
0 1 2 3 4:  0t t t tH         is equal to

 2 2

0.954 3.913   9.487    . Hence, the coefficients for non-neutral technical change are 

not significantly different from zero. Because we do not face restrictions in degrees of 

freedom, we still keep the respective variables in the model to preserve a model 

specification consistent with the other classes. 

5.3.2 Technical efficiency 

As noted above, the technical efficiency scores we report are measured against the most 

likely frontier for each farm. Hence, this approach does not take the uncertainty of class 

membership into account and is in the line of thought by Greene (2007a), who favors the 

parameter associated with the most likely class as the best estimator for a “unit specific” 

parameter in a latent class model. However, the uncertainty in the class assignment of the 

farms is very low. This is reflected by average a posteriori probabilities of class 

membership of 0.983 for the FC farms and 0.982 for PGL farms. Consequently, we find 

almost identical results, if the technical efficiency scores are calculated as a weighted 

average using equation (5.15).  

The average technical efficiency scores for the intensive and extensive FC classes 

are 0.977 and 0.917, respectively. The average values for the PGL classes are 0.954 

(intensive) and 0.937 (extensive). Hence, the farms in the intensive classes are on average 

more efficient and, as a more homogeneous class, closer to their own frontier for both 

groups. The cumulative distributions of efficiency scores in figure 5-1 show that most of 

the farms are highly efficient in all the classes. However, especially in the extensive 

classes, inefficient farms exist, which drag down the class’s average efficiency. For the 

FC-E and the PGL-E classes, we find that 31.1% and 15.4% of the farms exhibit 
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efficiency scores below 0.9, respectively. In contrast, only 2.6% of the PGL-I and none of 

the FC-I farms show efficiency scores below 0.9. In figure 5-1, technical efficiency of 0.9 

is indicated by the vertical grid line. Cabrera et al. (2010) also identify a positive 

relationship between intensification and technical efficiency for dairy farms by using an 

inefficiency effects model. Alvarez and del Corral (2010) report similar results, and they 

ascribe these findings to the assumption that intensive systems might be easier to manage 

and farmers are less prone to make mistakes. The shape of the distributions in figure 1 

supports this interpretation.  

Figure 5-1: Empirical cumulative distributions of technical 

efficiency scores.  

 

Differences in the managerial quality could be another interpretation. This is supported by 

the aforementioned differences in veterinary costs and the farmers’ agricultural education. 

Putting the estimated efficiency scores for the 4 groups in context with the rich literature 

on dairy farm efficiency, we find the class-average scores to be relatively high (cf. Bravo-

Ureta et al., 2007). We attribute this finding mainly to the methodological design of the 

study, which mitigates the confusion of technological heterogeneity with technical 

inefficiency (see also Alvarez and del Corral, 2010). 

5.3.3 Productivity analysis  

The results for the calculation of the Malmquist index of TFP change and its 

decomposition are summarized in table 5-8. Technical change accounts for the major part 

of TFP change in all the classes. Except for the extensive PGL farms, the effect of 
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technical efficiency change is only very small. We find negative scale change effects for 

both the fodder-crop and the PGL-E farms and a positive effect for the PGL-I farms. 

Again, except for the FC-E farms, the impact of the scale effect on TFP growth is 

negligible.  

Table 5-8: Malmquist index of total factor productivity (TFP) 

change for the 4 identified classes 

 

Fodder-crop Grassland 

 
intensive extensive intensive extensive 

 ∆TFP
1
 cumul.

2
 ∆ TFP cumul. ∆ TFP cumul. ∆ TFP cumul. 

  
0.00  0.00  0.00  0.00 

2000/01 1.06 1.06 0.62 0.62 2.60 2.60 0.78 0.78 

2001/02 0.90 1.97 0.34 0.97 1.81 4.40 1.21 1.99 

2002/03 1.16 3.13 0.46 1.42 1.21 5.61 0.45 2.44 

2003/04 0.99 4.12 0.67 2.10 1.59 7.20 0.98 3.42 

2004/05 1.42 5.54 1.33 3.43 1.09 8.29 -0.24 3.19 

2005/06 1.41 6.95 1.73 5.16 1.05 9.34 0.83 4.01 

2006/07 1.58 8.53 1.74 6.90 0.55 9.89 1.26 5.28 

2007/08 1.37 9.90 0.83 7.73 -0.48 9.41 -1.06 4.22 

 Average annual change rate (%) 

𝑇𝐹𝑃𝐶 1.24 0.97 1.18 0.53 

𝑇𝐶 1.27 1.10 1.18 0.66 

𝑇𝐸𝐶 -0.01 -0.02 -0.03 -0.13 

𝑆𝐶 -0.03 -0.12 0.03 -0.01 
1∆TFP = class average percentage TFP change between the indicated years 
2cumul. = cumulative percentage TFP change 

 

Table 5-8 also shows year-to-year TFP changes for the 4 classes and the cumulative 

growth from 2000 to 2008. We observe a steady TFP growth for the FC-I farms with 

slightly increased rates after 2004. The class of FC-E farms exhibits rather low TFP 

growth in the first years, but the growth rates increase from 2004 on and catch up to those 

of the FC-I class. The PGL-I class shows the highest growth rates in the first years, but the 

rates decrease over time; we even find a decrease in productivity from year 2007 to 2008. 

The average TFP change rates for the PGL-E farms are unsteady. In the FC group the 

intensive (extensive) farms reach an average annual rate of 1.24% (0.97%). The PGL 

farms improve their productivity on average at an annual change rate of 1.18% for the 

intensive class but only 0.53% for the extensive class. These rates result in a cumulative 

productivity growth during the observed period of 9.9% and 7.7%, respectively, for the 

intensive and extensive FC classes and 9.4% and 4.2% for the respective PGL classes.  

Turning now to the results of the multilateral Törnqvist index, we check for 

differences in the productivity levels of the 4 identified classes. Figure 5-2 summarizes the 
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main results. Each line represents the percentage deviation of the 4 groups’ hypothetical 

reference farm from the productivity of the overall reference farm in the base year and its 

evolution over time. For example, the FC-I class reaches an average productivity level of 

22.1% in the year 2007. This means that the average farm in the FC-I class produces 

22.1% more output using a given amount of inputs in 2007 than the overall average 

reference farm in the year 2000. 

Figure 5-2: Percentage deviation of the class reference unit’s total 

factor productivity (TFP) from the overall average TFP in the base 

year 2000 

 

 

Starting in the base year 2000, we find the FC-I class to be 12.7% more productive than 

the overall reference farm. The PGL-I class also lies well above the overall reference 

(7.6%). In contrast, the extensive classes are consequently underperforming (-12.8% and -

7.4%). The ranking of the 4 groups does not change during the observed period. However, 

the differences between the intensive and extensive classes increase over time. Although 

the difference between the intensive and extensive FC (PGL) farms is 20.1% (20.4%) in 

2000, it is 22.2% (23.9%) in 2008. 

We note that a direct comparison of the results of the Malmquist index of TFP 

growth in table 5-8 and the multilateral Törnqvist index in figure 5-2 should be exercised 

only cautiously. First, the indices have different reference points. The Malmquist index 

measures individual productivity growth rates from one period to the next, but the 

multilateral Törnqvist index measures the productivity of each farm relative to the average 
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farm in the first year. Second, the Malmquist index allows for non-constant returns to 

scale and inefficiency. For the calculation of the multilateral Törnqvist index, we assume 

constant returns to scale and full efficiency. However, considering our results that 

inefficiency and non-constant returns to scale have only a minor effect, we are not 

particularly concerned about these assumptions. Third, the Malmquist index is based on 

econometrically estimated distance functions. Hence, statistical noise in the data is taken 

into account in the error term 
itv  and eliminated from the calculations. The estimations are 

performed for all the years of the panel in one step with a time trend included to allow for 

non-neutral technical change. This leads to a much smoother productivity change measure 

than the more flexible Törnqvist index, where we assume the data to be free of any errors 

in measurement, reporting or specification and calculate discrete measures for every year 

(Coelli et al., 2005). The latter aspect explains why the productivity pathways obtained 

from the two different indices begin to differ substantially in the years 2007 and 2008, 

especially for the FC classes. The years in question can be considered to be extreme 

events for the dairy sector due to the erratic price movements that took place on the input 

and the output side. 

5.4. Discussion 

The key results of the study can be summarized as follows. With respect to their 

technology’s own frontier, most farmers in all the classes are highly technically efficient. 

However, we find substantial differences by comparing the productivity of the 4 classes. 

The intensive classes in both groups of farms are more productive and are also able to 

increase their productivity to a greater extent over the observed period. Technical progress 

is by far the most important component of TFP growth for all the classes. Our calculations 

of the multilateral Törnqvist index reveal that both the FC classes are more productive 

than their PGL counterparts. However, our distinction between intensive and extensive 

classes shows that there are highly productive grassland farms that can keep up with the 

fodder-crop farms and that those farms are predominantly found in the more intensive 

class of farms. The more substantial productivity gap exists between the intensive and 

extensive classes, and this gap widens because of the higher productivity growth rates in 

the intensive classes. To some extent, this finding questions payments particularly targeted 

to grassland farms.  

There is some evidence that being in the group of intensive or extensive farms is at 

least to some extent not an intentional decision made by the farmer but is also related to 
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his/her management skills. In both of the intensive groups, farmers are on average better 

educated and have to spend less on veterinary services. The management skills are also 

reflected in the technical efficiency scores. The farmers in the intensive classes produce 

very close to their frontier. This indicates hardly any errors in management. The 

abolishment of the milk quota system in 2015 might change the situation to some extent. 

Production controls usually limit technical change and one could argue that this helped 

permanent grassland farmers to keep up with their advantaged counterparts. Given that the 

PGL-E class has the lowest productivity and productivity growth rates, this suggests a 

shift toward more intensive production technologies in permanent grassland regions. This 

could occur either because extensive farms are more prone to leave the market or because 

farmers manage to steadily increase the intensity of their production. However, regarding 

the aforementioned additional benefits (biodiversity, carbon storage, landscape) of 

cultivated permanent grassland, we have to stress that these benefits predominantly apply 

to a more extensive form of cultivation (Poetsch, 2007). Müller-Lindenlauf et al. (2010), 

who identify the same 4 groups of dairy farms (intensive vs. extensive; grassland vs. 

fodder-crop), note that intensive farm types tend to be advantageous in global categories, 

such as climate impact and land demand and the low input farm types have advantages in 

local categories, such as the emission of ammonia, animal welfare and milk quality. 

Therefore, on the one hand, stimulation of further intensification could help to improve 

productivity in the dairy sector, especially in permanent grassland regions. On the other 

hand, exactly where we identify the greatest potential for productivity gains, further 

intensification could be counterproductive for the provision of local external benefits.  

Our analysis stresses the importance of looking at both the levels of productivity and 

productivity changes when comparing various groups. To do so, we provide a group- and 

chain-linked multilateral productivity index. We consider this index to be particularly 

useful for empirical applications that combine inter- and intra-group comparisons over 

time. Based on firm-level data, it can provide a convenient measure of the productivity 

variation among firms in a group and between the groups over time. A natural application 

would be the comparisons of industries in various countries or regions. Other examples 

are conventional versus organic production and large versus small operations. However, in 

this context, we have to point toward the weighting adjustments that could become 

necessary to obtain adequate results and to take the potential differences between 

aggregated productivity, average productivity and the productivity of the average 

production unit into account. 
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The research of Kumbhakar et al. (2009), Mayen et al. (2010) and Moreira and Bravo-

Ureta (2010) is closely related to, but to some extent different from our framework. 

Mayen et al. (2010) use a propensity score matching approach to compare the efficiency 

and productivity of organic and conventional dairy farms in the US. Hence, they directly 

compare the efficiency and productivity of pairs of conventional and organic farms, which 

are completely identical except for their technology under ideal circumstances. This has 2 

advantages: first, it accounts for a potential self-selection bias from endogenous 

technology choice; second, the measured differences are directly and solely attributable to 

the difference in technology. However, the problem we face here is somewhat different. In 

our case, technology is not endogenous but rather is given by the exogenous location of 

the farm. Hence, a self-selection problem is not present. Moreover, because our question is 

whether grassland farms can compete, we are not interested in the differences in 

productivity attributable only to technology but rather in the overall difference. For 

example, grassland farms in mountainous areas may be smaller than their counterparts 

because access to land is limited given the topology. Observed differences in efficiency 

and productivity might originate from differences in technology or differences in size. The 

additional scope for diversification might be an additional advantage for the group of 

fodder-crop farms. Kumbhakar et al. (2009) compare the performance of organic and 

conventional dairy farms in Finland. They account for a potential self-selection bias by 

jointly estimating production technologies and technology choice decisions. Subsequently, 

they calculate predicted outputs for each farm utilizing the observed input mix and 

estimated parameters of the alternative production technologies. They interpret the gap 

between each farm’s predicted outputs from various production technologies given 

observed inputs as the difference in productivity between the respective technologies. 

Moreira and Bravo-Ureta (2010) analyze the technical efficiency of dairy farms in 3 South 

American countries, whereby they use the metafrontier concept described in O’Donnell et 

al. (2008) to compare efficiency scores across various technologies. This involves the 

estimation of a specific frontier for each technology group and a metafrontier that 

envelops all the group frontiers. The efficiency of each farm is then measured against its 

own group frontier, and the group frontiers are subsequently compared to the metafrontier. 

The approaches used by Kumbhakar et al. (2009) and Moreira and Bravo-Ureta (2010) 

measure the potential productivity of a farm if it had access to a different technology but 

keeps its initial input mix fixed. However, it is likely that switching to an alternative 

production technology also implies changes in the input mix.  
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6. DISCUSSION 

In this thesis, I tackle methodological and empirical questions in regard to the 

measurement of firm’s productivity and efficiency. To do so, I use a frontier approach, 

which allows for a firm’s shortfall from its potential best practice production technology. 

Empirically, this best practice production technology is estimated econometrically in a 

parametric, stochastic framework based on firm-level data. As a main contribution, I 

particularly pay attention to various manifestations of observed and unobserved forms of 

firm heterogeneity that can hamper the correct identification of production technologies, 

productivity and efficiency scores.  

In the first part of the thesis, I briefly review the origins and the theoretical 

background as well as parts of the huge literature in the field of productivity and 

efficiency analysis. I also introduce the key properties of the applied methodologies. In 

addition, I discuss some of the issues evoked through unaccounted heterogeneity which 

motivated my work and comment shortly on the apparent ambiguity that complicates a 

clear-cut definition of heterogeneity and isolating it from measures of productivity and 

efficiency.  

In the second chapter, entitled “Total factor productivity decomposition and 

unobserved heterogeneity in stochastic frontier models”, I examine how the 

decomposition of total factor productivity growth is affected by the choice of the 

econometric specification, which is used to estimate the underlying production 

technology. I concentrate on nine stochastic frontier models, of which eight have been 

widely applied in empirical TFP growth studies; in addition, I introduce a new model by 

combining the GLS random effects stochastic frontier model, which allows for firm-

specific time varying efficiency (Cornwell et al., 1990) with the Mundlak adjustment to 

account for unobserved heterogeneity, as proposed by Farsi et al. (2005a). I discuss the 

properties of all nine models and pay particular attention to their potential to take 

unobserved heterogeneity into account. For the empirical application, I use an unbalanced 

panel dataset of 974 dairy farms and an output-oriented translog distance function to 

represent the production technology. To obtain comparable results of the nine different 

models, I keep the data, the specification of variables and the functional form idential 

across all econometric specifications. The values and rankings of the estimated efficiency 

scores are found to be quite sensitive to model specification. This result was expected; it 
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reflects the different abilities of the models to take unobserved heterogeneity into account 

and is in line with findings by Farsi et al. (2005; 2005a), Greene (2005), Abdulai and 

Tietje (2007) and Filippini et al. (2008). In contrast to the prevailing works in the 

stochastic frontier literature, I elaborate not only on the efficiency scores but also on the 

estimated representation of the production technology itself. Then, based on the 

corresponding production elasticities, the returns to scale measures and inefficiency 

estimates, I measure productivity growth and decompose it into the three components that 

are most commonly found in empirical applications: technical change, changes in 

technical efficiency and the scale change effect. The results of the decomposition show 

that the relative contribution of the components to TFP growth is quite sensitive to the 

choice of the econometric model. The average growth rates of technical change vary in a 

range between 1.64% and 1.19%. For technical efficiency change (scale change effect), 

average growth rates lie in a range between -0.06% and -0.51% (-0.02% and -0.13%).  

The fact that different econometric models, which impose different assumptions on 

the data and the data-generating process, lead to different results is obvious. The problem 

arises if we cannot choose reliably among the models. Many of the stochastic frontier 

models are not nested; hence, standard statistical testing cannot reveal the “one” correct 

model for any dataset. I apply a range of statistical tests to reduce the number of 

applicable models and offer further criteria from which to choose between the non-nested 

models. These are based on the requirements implied by microeconomic theory, namely 

monotonicity and quasi-concavity in inputs and concavity in outputs, as well as the 

properties of the dataset and the sector under consideration. Despite the fact that these 

criteria can be simply applied by empirical researchers, further research should focus on 

the application of specification test procedures for non-nested models in the stochastic 

frontier context (see Lai and Huang (2010) for a recent example).  

In the third chapter “Accounting for endogenous effects in stochastic frontier 

models”, we elaborate an alternative modeling approach for observed and unobserved 

heterogeneity. We further develop the line of thought by Farsi et al. (2005) and provide a 

general framework that allows taking heterogeneity in stochastic frontier models into 

account. Following Mundlak (1978), we use the group means of the input variables to 

construct a model of the unobserved heterogeneity. This improves econometricians’ 

ability to account for heterogeneity that is unobserved to them but not to producers, who 

adjust their input decisions conditional on their production conditions. Extensions of this 

heterogeneity model include the incorporation of environmental variables and the notion 
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that not all group-mean variables are necessarily correlated with firm heterogeneity. We 

adapt this extended modeling of heterogeneity to three different stochastic frontier models: 

the so-called “true” random-effects model (Greene, 2005) with stochastically time-varying 

efficiency; a MLE random-effects model (Battese and Coelli, 1992) with deterministically 

time-varying technical efficiency; and the GLS random effects model (Schmidt and 

Sickles, 1984) with time-invariant technical efficiency. The results of our empirical 

application support the proposed specifications. The heterogeneity bias in the technology 

parameters is reduced in the sense that the coefficients of the input factors come closer to 

those of the conventional fixed-effects panel model. The predicted firm effects and the 

efficiency scores we obtain from the different specifications also meet our expectations. 

Compared to the basic specifications of the GLS and MLE model, the proposed extensions 

help to reduce the downward-bias in the efficiency scores. We don’t find this effect on the 

efficiency scores in the TRE specifications in which the random constant already captures 

firm effects. These results are in line with findings by Farsi et al. (2005, 2005a) and 

Abdulai and Tietje (2007). For the predicted firm effects, we find similar distributions 

across the different specifications, as well as fairly strong positive correlations between 

them. These findings indicate that the proposed specifications to model heterogeneity can 

serve as an alternative to the “true” effects models.  

In the fourth chapter “Decomposing labor productivity growth: the case of small 

and medium-sized breweries in Germany” we investigate the evolution of labor 

productivity in the German brewing industry. As a global exception, the brewing industry 

in Germany is still dominated by relatively small firms and the market concentration is 

comparably low. Nevertheless, the German brewing industry has faced considerable 

structural changes in the last two decades, mainly due to a substantial reduction in the 

domestic beer consumption. We focus on small- and medium-sized breweries, many of 

which are regional, family owned and operated businesses with a long-standing tradition.  

In this chapter we add to the literature by tackling the micro-macro linkage of 

productivity growth, one of the “areas of future work” as put forward by Bartelsman and 

Doms (2000, p. 592). In particular we combine two strands of the literature on (labor) 

productivity decomposition. One strand originates from empirical studies that use micro-

data to describe the productivity growth dynamics of a sector as in Baily et al. (1992; 

2001), Griliches and Regev (1995) and Foster et al. (2001). The other strand combines 

index number theory with stochastic frontier analysis (e.g., Nishimizu and Page, 1982; 

Bauer, 1990) and decomposes firm-specific productivity growth into several components. 
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We show how the two approaches can be combined to analyze the dynamics of aggregated 

industry labor productivity in great detail. Based on this procedure, we can decompose 

industry labor productivity change into seven components: input deepening, technical 

change, technical efficiency, a scale change effect, between-firm reallocation and the 

effects from exits and entry. Given the nature of our data, we further decompose the net 

entry term to distinguish the effect associated with firms that enter/exit the industry (and 

therefore the sample) from that of firms that drop in and out of the sample for other 

unknown reasons. In order to account for unobserved heterogeneity in the econometric 

estimation of the production technology we apply an augmented stochastic frontier model, 

as proposed in chapter three. We also factor in output price heterogeneity between the 

firms in the sample by constructing a firm specific price index based on the physical 

output and the revenues of each brewery.   

Our results show that productivity growth within the breweries has a much higher 

impact on the sectoral productivity, compared to the effects from industry dynamics. From 

1996 to 2008 labor productivity in our sample increased by 7.65% due to improvements 

happening within the firms. The reallocation of workforce towards more productive firms 

and the shutdown of underperforming firms increased labor productivity by 3.99%. These 

findings are in line with Baily et al. (1996) and Griliches and Regev (1995) how also find 

a high share of aggregate labor productivity growth (0.79 and 0.83, respectively) due to 

improvements within the firms (see table 8.1 in Foster et al. (2001) for further examples). 

Disentangling the within firm effect, technical change demonstrates to be the main driver 

of firms’ productivity growth. Technical efficiency, however, decreases over time. Hence, 

although the production frontier is shifted upwards through technical change, not all firms 

are able to follow this development. Accordingly, the performance of the firms in the 

sector diverges and the average technical efficiency decreases. All these findings together 

fit well into a sector that mainly consists of mid-sized, family owned businesses with a 

long tradition. These family businesses appear to be “squeezed in” between the very large 

breweries which aim towards cost-leadership and/or invest in substantial marketing 

activities and the flexible and innovative micro-breweries, which produce for regional 

niche-markets. On average the mid-sized businesses stay rather passive and either try to 

defend their market shares by becoming more productive through investments in 

technology or continue producing with the old technology as long as possible.  

Although we cover several issues in the design and implementation of our study, it 

has some limitations. Generally decreasing demand for beer in combination with sunk 
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capital, which can hardly be adjusted (brewing kettles, filling lines, cold storage), 

challenge the elementary assumption that firms utilize their production factors at full 

capacity (see e.g., Jorgenson and Griliches, 1967). We were unable to obtain firm-specific 

measures of the total capacity of the breweries due to the anonymity of the firms. 

However, including the total demand for beer could have served as an ad-hoc 

approximation. Baldwin et al. (2013) in a similar application build on a suggestion by 

Berndt and Fuss (1986) to account for variations in capital utilization through the share of 

capital income in the total value added. This strategy remains to be explored. A second 

limitation concerns the functional specification of time-varying inefficiency in our 

econometric model (Battese and Coelli, 1992). Despite its widespread application in 

numerous empirical studies on productivity change, it can only depict monotonous 

patterns of efficiency change. Low levels of efficiency are connected to high rates of 

efficiency change, subject to a single parameter 𝜂 which is common to all firms. The 

comparative analysis of different specifications in chapter 2 shows that the decomposition 

of productivity growth can be quite sensitive to the choice of the econometric model (see 

also Karagiannis and Tzouvelekas, 2009).  Third, we use the complete sample for the 

econometric estimation of the technology parameters, which are then used to perform the 

decomposition of productivity growth. However, only the “continuing” firms contribute to 

the calculation of the within firm effect between two time periods. This mismatch could 

lead to a bias in the technology parameters, if the group of continuing firms uses a 

separate production technology. A potential solution to this issue could be the concept of a 

bilateral production frontier as proposed by Karagiannis et al. (2011). Finally, we use a 

firm specific price index to construct an output measure which takes price dispersion on 

the output side into account. On the input side, however, we use price indices from the 

German Federal Statistical Office (Destatis) to account for price effects over time. In case 

of the input labor, we use the wage bill to factor in quality differences in the workforce. 

Apart from quality differences, breweries located near urban centers will probably have to 

pay higher wages for employees with equivalent qualifications compared to breweries in 

structurally weak regions. One could also argue that large firms have more bargaining 

power compared to small firms and therefore buy intermediate inputs at a cheaper rate. In 

both cases, firms with lower (higher) costs due to input price dispersion may appear to be 

more (less) productive.  

In the fifth chapter “Dairy farming on permanent grassland: can they keep up” we 

perform an analysis of the productive performance of Bavarian dairy farms and focus 
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thereby in particular on differences in the production technologies. We distinguish two 

types of dairy farms; one type operates solely on permanent grassland whereas the other 

uses fodder crops from arable land. In both groups we allow for further, unobserved 

heterogeneity in the production technology by applying a latent class stochastic frontier 

model. As a result we identify more intensive and extensive production systems for both 

types of farms, whereby we base our notion of intensive vs. extensive dairy production on 

differences in stocking density and milk yield per cow and year. To assess the productive 

performance of the different groups of farms, we analyze the levels and growth rates of 

total factor productivity. We use the well-established generalized Malmquist index as 

suggested by Orea (2002) to analyze productivity growth; to compare the productivity 

levels of the different groups of farms we develop a group- and chain-linked multilateral 

productivity index. Our index is based on the multilateral TFP index introduced by Caves 

et al. (1982a).  We adapt their index, however, by combining approaches by Good et al. 

(1997) and Delgado et al. (2002) to analyze the productivity level of groups that consist of 

subordinate (micro-level) units over time. 

Our results show that most farms are highly technically efficient with respect to their 

own technology frontier, but we find substantial differences in their productivity levels. 

The intensively producing farms in both, the grassland and the fodder-crop group, are 

more productive and are also able to increase their productivity to a greater extent over the 

observed period. Starting in the base year 2000, we find the class of intensive fodder-crop 

farms to be on average 12.7% more productive than the overall reference farm. The 

intensive grassland farms also lies well above the overall reference (7.6%). In contrast, the 

extensive classes are on average consequently underperforming (-12.8% for the grassland 

and -7.4% for the fodder-crop farms). The ranking of the 4 groups does not change during 

the observed period, but we find that the differences between the intensive and extensive 

classes increase over time.  

Despite our efforts to whittle down the effects of unobserved heterogeneity in this 

empirical study, some remaining differences in the production conditions cannot be ruled 

out. In order to account for heterogeneous land quality and topographical effects we 

include regional dummies for various agricultural production areas. However, even these 

well-defined areas can only be considered as a rough approximation. A promising solution 

would be the use of a detailed land quality index, which was in principle included in our 

dataset, but revealed some unexplainable inconsistencies. Another issue, is the use of two 

distinct productivity indices. A direct comparison of the results of the Malmquist index of 
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TFP growth and the multilateral Törnqvist index should be exercised only cautiously as 

the indices have different reference points. While the Malmquist index measures 

individual productivity growth rates from one period to the next, the multilateral Törnqvist 

index measures the productivity of each firm relative to the average firm in the first year. 

In addition, the Malmquist index allows for non-constant returns to scale and inefficiency. 

For the calculation of the multilateral Törnqvist index, however, we assume constant 

returns to scale and full efficiency. Considering our results that inefficiency and non-

constant returns to scale have only a minor effect, we are not particularly concerned about 

those additional assumptions. Third, the Malmquist index is based on econometrically 

estimated distance functions. Hence, statistical noise in the data is taken into account and 

eliminated from the calculations. The estimations are performed for all the years of the 

panel in one step with a time trend included to allow for non-neutral technical change. 

This leads to a much smoother productivity change measure than the more flexible 

Törnqvist index, where we assume the data to be free of any errors in measurement, 

reporting or specification, and calculate discrete measures for every year. 

The thesis highlights the significance of firm heterogeneity in micro-level datasets; 

in particular I emphasize the necessity to take observed and unobserved differences in the 

firms and their technologies into account to obtain unbiased measures of efficiency and 

productivity (growth). I discuss various methodological and empirical questions in this 

respect and hope to contribute to a clear presentation of the challenges and some strategies 

to tackle them. An important field of future research, which deserves further attention, is 

the incorporation of approaches to account for capacity utilization and imperfect 

competition in the parametric frontier framework. Some effort has been made by the 

author in this respect, attempting to identify the effects of markups on total factor 

productivity growth and to distinguish it from other components, e.g., technical change, 

efficiency change and scale effects (Karagiannis et al., 2013).  
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