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Abstract

In this thesis, we present new techniques for the integrand reduction of scattering amplitudes

at one and higher loops and their applications to gauge theories such as QCD and the Standard

Model. The goal of integrand-reduction methods is the computation of loop integrals by

decomposing the respective integrands as a sum of fundamental, irreducible contributions,

yielding an expression for the amplitude as a linear combination of Master Integrals.

We describe a new formulation of this problem, based on simple concepts of algebraic

geometry, which allows to easily derive known one-loop results – where all the Master In-

tegrals are known – and extend them to higher loop orders. We show how the integrand

decomposition can be found, either by evaluating the integrand on multiple cuts where some

loop propagators are put on-shell, or within a purely algebraic approach by recursively apply-

ing the multivariate polynomial-division algorithm to integrands with a smaller and smaller

number of loop propagators. We show explicit examples of these two approaches at one and

two loops.

In the one-loop case, we propose a new algorithm for the reduction, which consists in find-

ing the coefficients of the Master Integrals by computing suitable Laurent series expansions

of the integrands. The algorithm has been implemented in the semi-numerical C++ library

Ninja, which has been made publicly available. Since the integrands are rational functions of

the loop variables, the Laurent expansion can be performed via a partial fraction decomposi-

tion which has been implemented via a simplified polynomial-division algorithm. The library

has been interfaced to the one-loop package GoSam and applied to several phenomenological

computations, including next-to-leading order corrections to Higgs production in association

with a top quark pair and a jet and some phenomenological analysis for Higgs boson pro-

duction in gluon fusion in association with two and three jets. Ninja proved to have good

performance and numerical stability, being suited for applications to complex processes.

In the last part of the thesis, we propose a new method for finding relations between

integrals which are independent at the integrand level, by combining integrand-reduction

methods and identities between integrals in a different number of dimensions.
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Chapter 1

Introduction

The study of the most fundamental laws of nature requires to take into account the principles

of Quantum Mechanics and Relativity. This lead to the formulation of Quantum Field The-

ories (QFT ), where one can consistently combine these two theories in a framework which

treats particles as excited quantum states of physical fields. Among Quantum Field Theories,

gauge theories have provided so far the most accurate description of the fundamental laws

of nature observed in high-energy interactions, where both quantum and relativistic effects

play a very important role. In the theoretical formulation of a gauge theory, the definition of

the fields and their interactions is based on a symmetry of nature, which is mathematically

described by a symmetry group.

The theory which currently provides the best description of the known fundamental par-

ticles and their interactions is the so-called Standard Model (SM ). The Standard Model is a

gauge theory based on the symmetry group SU(3)C⊗SU(2)L⊗U(1)Y . The subgroup SU(3)C

defines the theory of Quantum Chromo-Dynamics (QCD) which describes the so-called strong

interactions. The subgroup SU(2)L ⊗ U(1)Y defines instead the electro-weak interactions

which combine the electromagnetic interaction of Quantum Electro-Dynamics (QED) and

the weak interactions. While the symmetry group of QCD is realized in the SM as an exact

symmetry of nature, the SU(2)L ⊗ U(1)Y symmetry is broken via the so-called Higgs mech-

anism. The Higgs particle is a scalar responsible for the symmetry breaking and for all the

masses of the other particles of the SM.

The SM has been validated by an extremely large number of experiments, among which

the most accurate measurements ever performed. Among these, there are experiments at

particle colliders, which study the scattering of particles. Notable colliders which confirmed

various predictions of the SM are the Large Electron-Positron Collider (LEP) at CERN, the

Tevatron at Fermilab, and more recently the Large Hadron Collider (LHC ) which replaced

LEP at CERN and is currently the largest and most powerful particle collider ever built. The

main important missing observation predicted by the SM has been for many years the one

of the Higgs boson. The search for the Higgs particle (or an alternative mechanism which
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would give masses to the particles of the SM) was indeed one of the main reasons which lead

to build the LHC. On 4 July 2012, the collaborations of the ATLAS and CMS experiments at

LHC reported the observation of a new scalar particle [1,2]. The experimental data which are

available at the time of writing are consistent with the assumption that this scalar particle is

the Higgs boson predicted by the SM. The study of the properties of this particle is currently

one of the main goals of particle physics phenomenology.

Despite its tremendous success, both at the theoretical and at the experimental level,

the SM has some important shortcomings which prevent it from being considered the fun-

damental theory of elementary interactions. Indeed the SM does not provide a description

of the gravitational interaction compatible with Quantum Mechanics. Moreover, it fails to

explain the existence of dark matter and dark energy deduced from cosmological studies and

observations, which together are estimated to constitute about the 95% of the content of the

observable universe. Other open problems are phenomena such as neutrino oscillations and

the origin of the observed asymmetry between matter and anti-matter. Therefore, in recent

years a lot of effort has been put into the formulation of theories which extend the SM as well

as in the experimental search of deviations from its predictions which could shed light on the

presence of new physics, commonly referred to as physics Beyond the Standard Model (BSM).

So far no clear evidence of deviations from the SM predictions has however been observed.

Both the study of the properties of the new observed scalar particle and the search for

signals of new physics require to make accurate theoretical predictions to be compared with

the experimental data. This need of accurate theoretical predictions has become particularly

important in recent years, in order to compare old and new theoretical models with the

experimental data coming from the LHC. The latter proved to be an extremely powerful

machine, capable of validating the SM in previously unexplored regions of the phase space, as

well as making important discoveries, such as the new observed scalar we mentioned above.

The high center-of-mass energy in LHC collisions makes it capable of probing the physics at

high energy scales and thus at a more fundamental level. However, LHC interactions are also

characterized by a large background (mainly coming from QCD) which could hide signals of

new or important physics. In order to be able to make the best use of the data from LHC

and other high-energy experiments, one therefore needs to understand the physics of the SM

as accurately as possible.

Performing accurate predictions in a QFT such as the SM is not a trivial task. Indeed,

exact computations of observables in QFT are currently not possible for realistic models and

we therefore need to resort to perturbation theory. In perturbation theory, the result of a

computation is expanded in powers of the coupling constants. The computation of each term

in this expansion is, in principle, possible thanks to techniques such as Feynman diagrams

and Feynman rules. It is by now well known that leading-order (LO) approximations in

perturbation theory are not reliable, because their theoretical uncertainty is too large, often of

the same order of magnitude of the observable that is computed. When accuracy is important,
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one is therefore required to perform perturbative computations at next-leading-order (NLO)

or beyond.

A key ingredient for obtaining theoretical predictions for collider experiments is the com-

putation of scattering amplitudes, which are related to the probability of a given interaction

between fundamental particles. The amplitudes give information about the process-dependent

part of a physical event and thus represent the main point of contact between a theoretical

model and the related phenomenology. Because of the high center-of-mass energy available

at the LHC, many particles are often produced in the final state of a collision. This, in turn,

requires the computation of amplitudes with many external particles (or legs). The latter

is a highly non-trivial task, especially at higher orders in perturbation theory, where it re-

quires the computation of complex loop integrals which take into account the quantum effects

of the theory. For these reasons in recent years, several methods, algorithms and automated

tools for the computation of scattering amplitudes have been developed and used for numeric,

semi-numeric and analytic computations.

Among these methods, the ones inspired by unitarity have been particularly successful.

One of the most important consequences of unitarity, which encodes the conservation of prob-

ability in Quantum Mechanics, is the optical theorem which connects the total cross section to

the imaginary part of the forward scattering amplitude. The latter is in turn determined by

the discontinuity of the Feynman diagrams across their branch cuts. According to Cutkosky’s

cutting rules [3], this discontinuity is given by a sum over all the possible ways to cut – i.e.

to put on-shell – two internal propagators. On such a cut, an amplitude factorizes as the

product of two lower-point amplitudes. More recently, unitarity inspired new approaches for

the perturbative computation of scattering amplitudes, with the formulation of the concepts

of generalized unitarity and generalized cuts [4–7]. These techniques showed that Feynman

diagrams can be grouped according to their multi-particle factorization channels, by cutting

an arbitrary number of propagators which can simultaneously satisfy the on-shell conditions.

These methods have been inspired by new insights on the mathematical properties of scat-

tering amplitudes which came from Witten’s interpretation of perturbative gauge theory as a

string theory in twistor space [8]. This quickly resulted in tremendous progress in the develop-

ment of mathematical frameworks for their study, within super-symmetric theories (e.g. super-

conformal symmetry [9–12], grassmanians [13–15], string-gauge [16] and gravity-gauge [17,18]

duality), and more general on-shell [6, 7, 19–21] and generalized-unitarity [4, 22–37] methods.

In the context of the computation of one-loop amplitudes, one can exploit the knowledge

that every one-loop amplitude is a linear combination of known Master Integrals [38] with up

to four external legs. Methods for the computation of complex one-loop amplitudes, such as

the improved tensor reduction [39] and the already-mentioned unitarity-based techniques, thus

aim to extract the coefficients of this linear combination. A new level of understanding of one-

loop scattering amplitudes came with the development of the Integrand Reduction method [40,

41]. The mathematical structure of the integrated amplitudes has been shown to be related
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to a universal decomposition valid for the integrands and known as OPP decomposition.

The coefficients of the Master Integrals can be found, as already suggested by generalized-

unitarity methods, by evaluating the integrands on the multiple cuts, where a subset of loop

denominators go on-shell. The integrand-level reduction, being based on a decomposition

of the integrand valid for any QFT, is a completely general method for the computation of

one-loop integrals. This allowed to overcame some issues of other unitarity-based methods

(whose application has been mostly restricted to amplitudes with massless loop propagators).

The automation of the algorithm [42,43] and its usage within several automated frameworks

[44–52] has considerably enhanced our possibility of making phenomenological predictions in

QFT for processes characterized by an highly non-trivial complexity.

At two and higher loops, the basis of Master Integrals is instead not known. Hence, the

Master Integrals are identified only after the reduction of the amplitude, when they need to be

computed. The most successful reduction method for higher-loop amplitudes has been, so far,

Integration by Parts (IBP) [53,54], especially using the so-called Laporta algorithm [55]. The

computation of the Master Integrals has been addressed using a wide range of techniques,

such as difference [55–57] and differential [58–68] equations, Mellin-Barnes integral repre-

sentation [69–72], asymptotic expansions [73–75], sector decomposition [76–83], and contour

deformation [84]. At two loops, generalized-unitarity techniques have been introduced for

supersymmetric theories [85] and later for QCD amplitudes [86]. More recently, the maximal-

unitarity approach has been proposed [87–90], aiming to systematically extract the coefficients

of the Master Integrals by using suitable integration contours in the complex plane. The first

generalization of integrand-reduction methods at higher loops has been made in Ref.s [91,92]

which stressed the importance of finding the generic integrand decomposition for higher-loop

topologies – which extends the known one-loop OPP decomposition – and showed the possi-

bility to compute the coefficients of higher-loop Master Integrals by evaluating the integrand

on multiple cuts, along the same lines as the one-loop case.

In this thesis we explore and develop new integrand-reduction methods for the compu-

tation of scattering amplitudes at the loop level. As we mentioned, these techniques have

been originally developed for one-loop diagrams [40, 41] and recently extended to higher

loops [91–95]. These methods can be seen as theoretical tools for better understanding the

analytic and algebraic structure of the loop integrands of scattering amplitudes, as well as

for the development of algorithms for obtaining phenomenological predictions in QFT. The

reduction at the integrand level rewrites scattering amplitudes as linear combinations of Mas-

ter Integrals. More in detail, each integrand is a rational function of the integration variables

and can be rewritten as a linear combination of irreducible terms, which then need to be

integrated. These irreducible terms are universal and only depend on the topology of the

Feynman diagram associated to a given loop integral, while the coefficients of their linear

combination are process-dependent. Therefore, the integrand reduction splits the integrands

in fundamental and universal building blocks and can be a powerful tool for the evaluation
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of the respective integrals. Its most successful application has been so far the computation of

one-loop amplitudes, which can always be reduced at the integrand level as a sum of known

Master Integrals.

More in detail, in this thesis we deal with the integrand reduction both at one and higher

loops. In the former case we mainly focus on the development and implementation of a new

improved integrand-reduction method called integrand reduction via Laurent series expan-

sion [96], as well as its usage in phenomenological applications. In the latter we develop a

framework for the extension of integrand reduction methods at all loop orders.

The integrand reduction via Laurent series expansion is a method for the integrand re-

duction of one-loop scattering amplitudes to a linear combination of known Master Integrals

by performing suitable Laurent expansions of the respective integrands. The coefficients of

this linear combination can indeed be identified with the ones of properly defined Laurent

expansions of the integrand, corrected by some known counter-terms. This yields a reduction

algorithm which is lighter and more efficient than the original. We implemented the algo-

rithm in the C++ library Ninja [97], which has been interfaced with the one-loop package

GoSam [49, 98] and used for the computation of several highly non-trivial scattering ampli-

tudes [99] as well as for the calculation of total and differential cross sections at NLO for Higgs

boson production in association with a top-quark pair and a jet [100] and more recently for

new phenomenological analysis about Higgs boson production in gluon fusion in association

with two and three jets [101]. These applications showed that Ninja is faster and numeri-

cally more stable than implementations of the original integrand reduction algorithm and it

is especially suited for applications to complex one-loop processes.

The extension of integrand reduction methods to higher loops is quite recent and con-

stitutes one of the main results presented in this thesis. It relies on a reformulation of the

problem in terms of basic concepts of algebraic geometry such as multivariate polynomial

division [93, 94]. This allows to find the most general parametric form of the irreducible

contributions appearing in the decomposition of loop integrands. The integrand reduction

can be performed at any loop, as traditionally done in the one-loop case, by evaluating the

integrand on values of the loop momenta which put on-shell internal loop propagators. This

is also known as fit-on-the-cut approach for the integrand reduction, which has been applied

for the reduction of 5-point integrands in N = 4 Super-Yang-Mills (SYM) and N = 8 Super-

Gravity (SUGRA) theories, where the simplicity of the integrands make them suited for trying

out new methods. This reformulation of the problem also lead us to develop an alternative

and purely algebraic reduction strategy, which performs the reduction via recursive polyno-

mial divisions of the integrands, and is a more general approach which can be applied to any

integrand [95]. This is known as divide-and-conquer approach. Using polynomial division

techniques one can also extend the original integrand-reduction algorithm to theories which

allow integrands with higher rank. This higher-rank extension has been used in order to

compute NLO corrections to Higgs boson production plus two [102] and three [103] jets with
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integrand reduction methods.

This thesis is organized as follows. In Chapter 2 we review some basic and well-known

concepts about scattering amplitudes in gauge theories, such as QCD and the SM, as well

as their relation to physical observables. In Chapter 3 we present a general description of

integrand-reduction methods within a coherent framework based on multivariate polynomial

division and valid at all loop orders. We also present the main reduction techniques, we derive

the known one-loop case as a special case of this framework and we show how to extend it to

theories with higher-rank integrands. In Chapter 4 we present the one-loop integrand reduc-

tion via Laurent expansion method and its implementation in the public library Ninja. In

Chapter 5 we describe some phenomenological applications of Ninja and the one-loop pack-

age GoSam. In Chapter 6 we present some applications of the integrand reduction method at

higher loops, using both the fit-on-the-cut and the divide-and-conquer reduction techniques.

In Chapter 7 we present a new method for obtaining additional relations between loop inte-

grals, using a combination of integrand reduction and dimensional shifts, with applications

both at one and higher loops. A brief review of the so-called spinor-helicity formalism which

is used in several parts of the thesis is given in Appendix A. The basic concepts of algebraic

geometry we used are instead reviewed in Appendix B. Appendix C contains more details

on the usage of the C++ library Ninja. Appendix D contains instead a list of numerical

benchmarks of one-loop scattering amplitudes computed with GoSam+Ninja, which could

be useful as a reference for future implementations or calculations.



Chapter 2

Scattering amplitudes in gauge

theories

In this chapter we review some basic concepts about the perturbative computation of scattering

amplitudes in Quantum Field Theory (QFT), and in particular in gauge theories. We focus

on Quantum Chromodynamics (QCD) and the Standard Model (SM). We will give a brief

summary of these theories and the computation of the corresponding scattering amplitudes,

as well as their relation to physical observables.

This chapter is meant to be an introduction to the theoretical and phenomenological topics

which will be used and developed in the rest of the thesis. We do not attempt to make a

comprehensive treatment on these subjects, most of which are well known. The reader is

therefore expected to be already familiar with most of the notions presented in the following

sections (for which we refer to textbooks and manuals such as Ref.s [104–107]).

2.1 Quantum chromodynamics

Quantum Chromodynamics (QCD) is a non-abelian gauge theory with symmetry group SU(Nc),

with Nc = 3. It describes the so-called strong interaction between nf flavors of quarks and

the gluons. The quarks are spin-1/2 fermions and the gluons are the vector bosons which

mediate the interaction. The Lagrangian of QCD is

L = −1

4
GaµνG

µν
a +

nf∑

f=1

ψ̄f (i /D −mf )ψf + Lgf, (2.1)

where the field tensor Gµνa can be written in terms of the gluon vector field Aµa as

Gµνa = ∂µAνa − ∂νAµa + gs fabcA
µ
bA

ν
c . (2.2)

The vector field also defines the covariant derivative as

Dµ = ∂µ − igstaAµa , (2.3)
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Flavor up (u) down d charm (c) strange (s) top t bottom (b)

El. charge 2/3 -1/3 2/3 -1/3 2/3 -1/3

Mass ∼ 2.3 MeV ∼ 4.8 MeV 1.275 GeV 95 MeV 173 GeV 4.18 GeV

Table 2.1: Quark flavors, with their electric charge and approximate mass.

while the ψf are the quark fields. In these equations gs is the coupling constant of the

interaction, while fabc and ta are the structure constants and the generators of the symmetry

group SU(Nc) respectively. The contribution Lgf to Eq. (2.1) is a gauge fixing term. Although

many gauge choices are possible, the most common ones are the so-call Rξ gauges which have

the form

Lgf = − 1

2ξ
(∂µA

µ)2. (2.4)

Typical choices of ξ are ξ = 1, known as Feynman–’t Hooft gauge, and the limit ξ → 0, known

as Landau gauge. In this thesis we will mostly use the Feynman–’t Hooft gauge.

The “charge” of strongly interacting particles (the QCD analogous of the electric charge in

electrodynamics) is called color. Each flavor of quark lives in the fundamental representation

of the group SU(Nc) and can have (a combination of) Nc = 3 different colors. The gluons,

which are the gauge bosons and thus live in the adjoint representation of the symmetry group,

can have N2
c − 1 = 8 different colors. In QCD computations, one typically deals with all the

different colors simultaneously by means of SU(Nc) algebra, often referred to in this context

as color algebra. Because of confinement, colored particles have never been observed as free

states, but only bound into composite objects called hadrons (such as protons and neutrons)

whose total color charge is zero.

Quantum chromodynamics provides an accurate description of the strong interactions

observed in nature. So far, nf = 6 different flavors of quarks have been observed and they

are listed in Table 2.1. In computations relevant for high-energy processes at colliders such

as LHC, the mass of the lightest flavors, namely all but the top and in some cases the bottom

quark, is usually neglected.

For the sake of completeness, we remind that the quantization of a non-abelian gauge the-

ory such as QCD requires the introduction of unphysical fields known as ghosts, which in the

computation of scattering amplitudes and physical observables cancel out the contributions

from unphysical polarizations of the gauge bosons.

In Fig. 2.1 we list the Feynman rules for QCD, including the ones involving ghosts. We

have 3- and 4-point interactions between gluons, as well as gluon-quark-quark and gluon-

ghost-ghost 3-point interactions. Scattering amplitudes can be computed, at any order in

perturbation theory, by summing the contributions of the Feynman diagrams obtained by

combining the Feynman rules. A perturbative computation in QCD is typically organized by
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expanding the result in powers of the coupling αs defined as

αs ≡
g2
s

4π
. (2.5)

The renormalization group equation for αs is

Q2 ∂

∂Q2
αs(Q) = β(αs) (2.6)

whereQ is the physical scale of the process and the β function can be computed perturbatively.

The value of αs is determined by the fits of experimental data and it is typically given at a

scale equal to the mass of the Z boson (αs(mZ) ' 0.1186), and evolved to any other scale

using Eq. (2.6). In QCD the β function is negative and the coupling can be shown to decrease

logarithmically with the scale, in first approximation as 1/ lnQ2. This phenomenon, known

as asymptotic freedom, is particularly important because it allows to use perturbation theory

at high energy, where the coupling becomes smaller. However, the value of the coupling αs is

still quite large compared to the ones of other interactions (for instance, the electromagnetic

coupling α ' 1/137, while weak interactions are suppressed by the mass of the W and Z

gauge bosons). Hence, QCD interactions are the most important ones at colliders, especially

at hadron colliders such as LHC. In particular, given the high center-of-mass energy available

at LHC, many external particles are produced in the final state. The production of quarks

and gluons in the final state of a partonic interaction is signaled by the presence of jets in

the observed physical final state (see Section 2.3 for more details about jets). This makes the

computation of amplitudes with many external legs very important.
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µ1, a1 k µ2, a2
=

−iδa1a2

k2 + iǫ

(
− gµ1µ2 + (1− ξ)

kµ1kµ2

k2 + iǫ

)

j1
k j2

=
i δj1j2 /k

k2 −m2
f + iǫ

j1
k j2

=
i δj1j2
k2 + iǫ

g1

g3g2

= gsf
a1a2a3

(
gµ1µ2(k1 − k2)

µ3

+ gµ2µ3(k2 − k3)
µ1

+ gµ3µ1(k1 − k2)
µ2

)

g1 g2

g4g3

= −ig2s

(
fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+ fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)
)

g1

q3q2

= −igs t
a1
j1j3

γµ1

g1

= gsk
µ1

1

Figure 2.1: Feynman rules of QCD in Rξ gauge. Arrow lines are quarks, curly lines are gluons,

and dashed lines are ghost fields. Quark color indices are indicated with j1, j2, . . ., gluon color

indices with a1, a2, . . ., while a sum over the repeated index b is understood. The momenta

in 3-point vertices are assumed to be incoming.
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2.2 The Standard Model

The Standard Model currently provides the best available description of the known fundamen-

tal interactions of nature, with the notable exception of gravity. More in detail, it incorporates

QCD, briefly reviewed in Section 2.1, and the electroweak (EW ) interaction. The latter de-

scribes the electromagnetic and the weak forces between elementary particles. More in detail,

the Standard Model is a gauge theory based on the symmetry group SU(3)C⊗SU(2)L⊗U(1)Y .

The symmetry group SU(3)C is the color symmetry of QCD, which according to the Stan-

dard Model is realized as an exact symmetry of nature. The group SU(2)L⊗U(1)Y describes

instead the electroweak interactions and is spontaneously broken via the Higgs mechanism,

which yields three massive vector bosons, respectively known as Z,W+,W−. The Higgs field

is responsible for the masses of both the electroweak gauge bosons and the fermions of the

theory. In this section we will give a brief review of the electroweak sector of the Standard

Model.

The symmetry group of the EW interaction is the direct product of the symmetry groups

SU(2)L and U(1)Y . The former defines a non-abelian chiral symmetry which only affects

the left-handed components of the fermion fields. The latter is instead an abelian symmetry

group. The interactions are, as usual, mediated by the gauge bosons, whose Lagrangian reads

LSU(2)L⊗U(1)Y = −1

4
Wµν
i W i

µν −
1

4
BµνBµν (2.7)

with the field tensors Wµν
i (i = 1, 2, 3) and Bµν

i defined in terms of the gauge vector fields

Wµ
i and Bµ

i as

Wµν
i = ∂µW ν

i − ∂νWµ
i + gW εijkW

µ
j W

ν
k

Bµν = ∂µBν − ∂νBµ, (2.8)

where gW is the gauge coupling of SU(2)L and εijk is the Levi-Civita symbol which represents

the structure constants of SU(2). The covariant derivative is defined as the matrix operator

Dµ = ∂µ − igW tiW ν
i − ig′WY Bµ, (2.9)

where the ti are the generators of SU(2) (i.e. the well-known Pauli matrices) and g′W is

the coupling of the group U(1)Y . In the previous equation we also introduced the diagonal

matrix Y whose elements are the charges (in units of g′W ) of the particles with respect to the

interaction of the symmetry group U(1)Y . For each particle, this quantum number is also

known as hypercharge. Because U(1) is an abelian group, every particle can have a different

hypercharge. Moreover, the left- and the right-handed components of a fermion can also have

different hypercharges. One can replace the fields Wµ
1 and Wµ

2 with the fields Wµ
± defined by

Wµ
± =

1√
2

(Wµ
1 ∓ iWµ

2 ) (2.10)
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so that Eq. (2.9) becomes

Dµ = ∂µ − igW
(
t3W ν

3 +
1√
2
t+Wµ

+ +
1√
2
t−Wµ

−

)
− ig′WY Bµ. (2.11)

where t± ≡ t1 ± it2 are the isospin raising and lowering operators.

According to experimental observations, the vector bosons of the electroweak interactions

are massive. However, adding mass terms to the Lagrangian in Eq. (2.7) is well known to

yield a non-renormalizable theory, which would negatively affect our capability of making

perturbative predictions. The main reason for the introduction of the Higgs field in the

Standard Model is the possibility to exploit the Higgs mechanism in order to give masses to

the vector bosons. In this case, the mass of a vector boson is not an intrinsic property of the

particle, but a dynamic effect which preserves the renormalizability of the theory.

The Higgs field is a doublet of scalar fields φ = (φ+, φ0). Its Lagrangian is

Lφ = (Dµφ)†(Dµφ)− V (φ), V (φ) = λ|φ|4 − µ2|φ|2. (2.12)

The spontaneous symmetry breaking is due to the negative mass term in the potential V (φ),

which thus has a classical minimum which is not at φ = 0 but at values of φ such that

|φ| =
√
µ2

2λ
≡ v√

2
. (2.13)

Therefore, in order to quantize the theory, we can choose a particular direction of the minimum

of φ, e.g.

〈φ〉 =
1√
2

(
0

v

)
(2.14)

and consider fluctuations of φ about this minimum. Up to a gauge choice (unitary gauge),

we can parametrize φ as

φ =
1√
2

(
0

v +H

)
. (2.15)

where H is the physical Higgs field. By inserting this expression in the Higgs Lagrangian

of Eq. (2.12) one obtains a sum of interaction terms, including self-interactions of the Higgs

field H as well as interactions between the Higgs and the vector bosons, and quadratic terms

in the vector bosons which therefore represent mass terms. Since the propagator for the Bµ

and Wµ
3 fields is not diagonal, we can diagonalize it by defining the fields Aµ and Zµ

(
Zµ

Aµ

)
=

(
cos θW sin θW

sin θW cos θW

)(
Wµ

3

Bµ

)
, (2.16)

where the Weinberg angle θW is given by

sin2 θW =
g′2W

g′2W + g2
W

. (2.17)



2.2 The Standard Model 13

Hence the vector field A is identified with the (massless) electromagnetic field, i.e. the photon

field of Quantum electrodynamics (QED), while Z is a massive gauge boson of the electroweak

interaction. With an explicit calculation, one can check that in the final Lagrangian the bosons

W± and Z have respectively acquired masses mW and mZ given by

mW =
1

2
v gW , mZ =

1

2
v
√
g′2W + g2

W =
mW

cos θW
. (2.18)

The Higgs boson also acquires a physical mass (m2
H > 0) given by

mH =
√

2µ =
√

2λv. (2.19)

This completes our brief description of the scalar and vector bosons of the Standard Model.

The next step will be the description of the fermions and their couplings.

Experimental observations show that there are two kinds of fermions: quarks and lep-

tons. Quarks were already introduced in Section 2.1. They are subject to both strong and

electroweak interactions. As already stated, six flavors of quarks have been observed (see

Table 2.1). The left handed components of the quarks are organized into SU(2)L doublets

PL

(
u

d

)
, PL

(
c

s

)
, PL

(
t

b

)
, (2.20)

where the matrix PL and PR project out the left- and right-handed components of the fields

respectively and they are defined by

PL =
1

2

(
1− γ5

)
, PR =

1

2

(
1 + γ5

)
. (2.21)

The right-handed components (PRu, PRd, PRc, PRs, PRt, PRb) are instead all singlets with

respect to SU(2)L. Leptons are instead only subject to the electroweak interactions. Sim-

ilarly to the case of the quarks, we have six different flavors of leptons, whose left-handed

components are also organized in SU(2)L singlets

PL

(
νe
e−

)
, PL

(
νµ
µ−

)
, PL

(
ντ
τ−

)
. (2.22)

The right-handed components of the leptons, like the ones of the quarks, are also SU(2)L

singlets. The electron field e−, the µ− field and the τ− field have the same electric charge but

very different masses (approximately me ' 0.51 MeV, mµ ' 106 MeV, mτ ' 1.78 GeV). The

neutrinos νi only interact with the W± and Z bosons. They are very light and, although their

actual mass is not known, in high-energy computations they can be assumed to be massless.

Notice that, with this assumption, the right-handed component of the neutrinos does not

take part in any interaction in the SM and therefore it can be omitted altogether from the

Lagrangian.

The coupling of the gauge bosons to the fermions is defined via the covariant derivative

given in Eq. (2.9), or alternatively in Eq. (2.11). As already observed, in those equations the
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left-handed right-handed

Fermion Q t3 Y Q t3 Y

u, c, t 2/3 1/2 1/3 2/3 0 4/3

d, s, b −1/3 −1/2 1/3 −1/3 0 −2/3

νe, νµ, ντ 0 1/2 −1 - - -

e−, µ−, τ− −1 −1/2 −1 −1 0 −2

Table 2.2: Electroweak quantum numbers of the fermions in the standard model.

operators ti and t± only act on the left-handed components of the fields, while the hypercharge

matrix Y is diagonal and acts differently on left- and right-handed components of the fermions.

In order to assign the correct quantum numbers to each fermion field, one can exploit the

identification of the vector field Aµ with the electromagnetic field. The relevant part of the

Lagrangian is thus identified with the QED Lagrangian, whose interaction term reads

LQED = AµΨ̄γµ
(
gW sin θW t

3 +
Y

2
g′W cos θW

)
Ψ, (2.23)

where Ψ is a vector of the fermion fields. We thus make the identification

eQ = gW sin θW t
3 +

Y

2
g′W cos θW , (2.24)

where Q is a diagonal matrix with the electric charges of the fields in units of the electron

charge e. From the knowledge of the electric charge of the fields and the arbitrary choice

Y = −1 for left-handed leptons, one gets the relation

t3 +
Y

2
= Q, (2.25)

and the identification

gW sin θW = g′W cos θW = e. (2.26)

This allows to assign all the correct quantum numbers, listed in Table 2.2. One can observe

that the matter content of the Standard Model essentially consists in three copies of the same

theory with two quarks and two leptons. Indeed the other two families of quarks and leptons

only differ from the first for their masses.

Finally, the Higgs mechanism is also needed to give masses to quarks and leptons. As we

said, the main motivation for the introduction of the Higgs field was the possibility to build

a gauge theory with massive gauge bosons. However, in the case of the Standard Model, the

Higgs field is also responsible for the masses of the fermions. Indeed a Dirac mass term in the

Lagrangian for a fermion ψ would look like, after splitting it into the right- and left-handed

components ψR and ψL, as

−mψ̄ψ = −m(ψ̄RψL + ψ̄LψR).
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This term would clearly violate the chiral symmetry SU(2)L which only acts on the left-

handed components. We can however introduce a new contribution to the Lagrangian which

contains Yukawa couplings between the unbroken Higgs field φ and the fermions. For one

generation of quarks and leptons, one can have a term of the form

LY = −λd(q̄L · φ)dR − λu(εabq̄L,a · φ†b)uR − λe(ēL · φ)eR + c.c., (2.27)

with

qL = PL

(
u

d

)
, eL = PL

(
νe
e−

)
.

One can check that LY is gauge invariant and can thus be freely added to the Lagrangian of

the SM. After symmetry breaking, this will become

LY = −mdd̄d
(

1 +
H

v

)
−muūu

(
1 +

H

v

)
−meēe

(
1 +

H

v

)
, (2.28)

with

mi =
λi√

2
v, i = d, u, e, (2.29)

generating thus a mass term and a Yukawa interaction between the fermions and the Higgs. If

more fermion families are present, we can proceed in the same way by substituting qL and eL

with vectors of left-handed fermion doublets and uR, dR, eR with vectors of fermion singlets.

In the most general case, the couplings λi will thus become generic complex matrices. By

diagonalizing the mass sector, one can introduce mixing between the quarks (but not the

leptons, if the neutrinos are taken as massless) of different generations, proportional to the

elements of the so-called Cabibbo-Kobayashi-Maskawa (CKM) matrix. With three generations

one can show that, with this mechanism, CP violating terms arise. Indeed, a third generation

of quarks was introduced in the theory before an experimental observation, in order to give

a theoretical explanation for the observed CP violation in electroweak interactions. At very

high energies, where the masses of the two lightest generations of quarks can be neglected,

one can often assume the CKM matrix to be diagonal and thus no mixing between different

generations of quarks is present.

Perturbative computations of scattering amplitudes within the Standard Model can be

made, as in QCD, with the usual tools of QFT, namely Feynman diagrams and Feynman

rules. A full list of Feynman rules can be found in several textbooks and manuals, e.g. in

Ref. [107]. Since the dominant contributions to Standard Model processes in perturbation

theory come from QCD interactions, next-to-leading-order (NLO) QCD corrections usually

provide an approximation which is good enough for comparisons with experiments. There are

cases however where also electroweak corrections can be important, especially when aiming

for higher precision, but their computation is significantly more involved due to the presence

of many more couplings and interaction terms. The methods presented in this thesis rely on

fundamental properties of QFT and gauge theories and can thus be applied to any theoretical
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model. However, most of the applications to higher order computations we will describe

involve very complex processes and will contain only QCD corrections beyond the leading

order approximation.

The Standard Model of elementary particles has been validated by a tremendous amount

of experimental data, among which the most accurate experiments ever performed. For a

long time, the only fundamental missing piece of evidence required by the predictions of

this theory had been the observation of the Higgs boson. The search for the Higgs has also

been one of the main motivations for building the Large Hadron Collider (LHC). On 4 July

2012, the ATLAS and CMS collaborations reported the discovery of a new scalar particle

compatible with a Standard Model Higgs bosons with mass between 125 and 126 GeV [1,2].

The analyses performed at the time of writing are in good agreement with the assumption

that the new particle is the Higgs boson of the Standard Model, that couples to other SM

particles with a strength proportional to their mass [108,109]. The study of the properties of

this newly discovered particle is one of the main goals of particle physics phenomenology in the

near future. Accurate predictions are necessary and will play a crucial role for the complete

determination of the properties of such boson [110], and in particular to shed light on the

structure of its couplings to the other particles. The dominant production mechanism of the

Higgs boson at a proton-proton collider such as LHC is the gluon fusion (GF) gg → H, where

the Higgs couples to the gluons via a heavy-quark (a top) loop. Another important channel is

vector boson fusion (VBF), qq → Hqq via W+W− → H or ZZ → H. Other mechanisms are

associated production with vector bosons, qq̄′ →WH or qq̄ → ZH, and associated production

with top quarks gg, qq̄ → tt̄H. Among the results presented in this thesis, we will show NLO

corrections to phenomenological predictions for Higgs boson production via GF in association

with 2 and 3 jets, and associated production with top quarks and a jet. We will also present

the computation of NLO scattering amplitudes for Higgs production in VBF with up to 5

additional jets in the final state.

2.3 Observables in scattering processes

The main physical observables computed in high-energy physics are total and differential cross

sections. In this section we briefly recall some concepts about the relation between scattering

amplitudes and physical observables.

In order to make a theoretical prediction for a realistic scattering process, such as the

ones measured at colliders, several ingredients are necessary. The first ingredient is the

information about the initial state of the process. When this is constituted by elementary

particles, its theoretical description is particularly easy, being identified by the incoming

momenta (and helicities, if the incoming beam is polarized). If in the initial state we have

composite objects, such as hadrons, we need instead information about their structure. The

composition of hadrons (such as protons and neutrons) in terms of partons is encoded in
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the parton distribution functions (PDFs). These cannot be computed perturbatively and

need to be measured experimentally. However, since the structure of the hadrons does not

depend on the considered process or experiment, the PDFs are universal, i.e. PDFs measured

using data from a set of processes (or experiments) can be used in order to make predictions

for other processes (or experiments). The next ingredient is a description of the fundamental

interactions between the elementary particles involved in the process. These hard interactions

are described by the scattering amplitudes which can be computed in perturbation theory

and represent the main process-dependent part of a process. For this reason they can also be

considered the main point of contact between a theory and the related phenomenology. The

final ingredient is the knowledge of how the final state of this elementary interaction further

evolves into a physical final state which can be measured in a detector. This final state

evolution is in turn the combination of several ingredients, such as parton shower (emission of

extra radiation), use of jet algorithms (definition of jets, i.e. the final state signatures of quarks

and gluons produced in the hard scattering), and hadronization (how final state partons

combine together into hadrons). Similarly to the PDFs, also these final-state ingredients are

universal and can usually be implemented in process-independent algorithms. In this thesis

we will mostly deal with scattering amplitudes and in particular with the development and

the implementation of general methods for their computation.

We first consider an n-point process with 2 incoming elementary particles and n − 2

outgoing particles, with kinematic k1k2 → k3 · · · kn. The unitary scattering matrix S of the

interaction is defined by

out〈k2 · · · kn|k1k2〉in = 〈k2 · · · kn|S|k1k2〉 (2.30)

In order to isolate the part of the S matrix which corresponds to interactions, one usually

defines a matrix T such that

S = 1 + i T. (2.31)

The scattering amplitude M is thus defined from T by factoring out a δ function related to

momentum conservation,

〈k2 · · · kn|iT |k1k2〉 = (2π)4δ(4)(k1 + k2 −
n∑

j=3

kj) iM. (2.32)

The amplitude M can be computed in perturbation theory using Feynman diagrams and

Feynman rules. The cross-section σ can thus be calculated by integrating the squared scat-

tering amplitude over the phase space of the final state, and dividing by the incoming flux,

dσ =
1

2E1E2|v1 − v2|
n∏

j=3

d3kj
(2π)22Ej

δ(4)(k1 + k2 −
n∑

j=3

kj)|M|2. (2.33)

When dealing with hadrons in the initial state, one should instead compute a partonic

cross section between the initial partons and the other elementary particles involved, using
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the formula above, and thus convolute it with the PDFs. For a process with two hadrons in

the initial state h1h2 → X, with kinematics k1k2 →
∑

j∈X kj , the total cross section is a sum

of all the possible partonic channels ij → X

dσ (h1(k1)h2(k2)→ X) =
∑

ij

∫ 1

0
dx1dx2fi,1(x1, µ

2
F )fj,2(x2, µ

2
F )

× dσij
(
i(x1k1)j(x2k2)→ X,Q2/µ2

F

)
, (2.34)

where fi,h denotes the distribution of the parton i in the hadron h, and Q2 is the scale of the

process. The integration variables xi represent the fraction of the momentum of the hadron hi

carried by the respective parton involved in the interaction. Depending on the process, there

might be a sum on the final states X as well (e.g. requiring a final jet could correspond, at the

partonic level, to both a quark or a gluon, hence one needs to sum over all the possibilities).

Starting from NLO in perturbation theory, a scattering amplitude M usually contains

divergences arising from integrals in the loop momenta of the form
∫ ∞

0

∏

i

d4qi

associated to diagrams with loops. These divergences need to be regularized and they typically

cancel out only at the end of the computation of physical observables. The most common

regularization scheme is dimensional regularization. It consist in performing the integration

in a generic number of dimensions d, i.e.
∫ ∞

0

∏

i

d4qi →
∫ ∞

0

∏

i

dd q̄i.

Physical observables are finite for d → 4, but in general the loop integrals appearing in

the computation are not. One can distinguish between ultraviolet (UV) and infrared (IR)

divergences, which in dimensional regularization correspond to the presence of poles in d = 4

in the results. Infrared divergences can in turn be soft and collinear. We will assume the

reader to be familiar with these types of divergences, as well as their regularization and

renormalization.

The presence of these divergencies can be problematic for numerical and semi-numerical

computations. In general, ultraviolet divergences are removed from the scattering amplitudes

by UV renormalization, after a proper choice of renormalization scheme. Infrared divergencies

instead, only cancel after summing, order by order in perturbation theory, the contributions

of the considered process and the one with emission of extra radiation in the final state. As

an example, at NLO a cross section of a process with n external particles will be written as

σ = σLO + σNLO. (2.35)

The LO contribution consists in an integration of the form of Eq. (2.33) with the matrix

element M computed at LO, also known as Born approximation. We can thus schematically
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write

σLO =

∫

n−2
dσB. (2.36)

Since this integration is finite, it can be carried out in d = 4, either analytically or numerically.

The NLO contribution contains two pieces, commonly known as virtual and real. The former

is the integration over the NLO contributions to the squared matrix element |M|2. The latter

involves instead a process with emission of an additional external particle in the final state.

Therefore we can write

σNLO =

∫

n−2
dσV +

∫

n−1
dσR, (2.37)

where V and R stand for virtual and real respectively. Since UV renormalization happens

at the amplitude level, we can assume to have already removed the UV divergencies in dσV .

This two pieces are separately IR divergent and only their sum is finite. However, since the

two integrations are performed on different phase spaces (with n − 2 and n − 1 outgoing

particles respectively), a direct application of the formula above in a numerical phase-space

integration is not possible. The most common way of dealing with this problem is rewriting

this formula as

σNLO =

∫

n−2

[
dσV +

∫

1
dσA

]
+

∫

n−1

[
dσR − dσA

]
, (2.38)

where dσA is an approximation of dσR which correctly reproduces its singularities in the

infrared limits. In this way, the second integral is finite and can be performed numerically.

The contribution we subtracted from dσR is thus added back to the virtual piece, integrated

over the extra particle. Several choices of dσA are possible and they are known as subtraction

schemes. One of the most common subtraction schemes is the dipole subtraction proposed

by Catani and Seymour [111]. This exploits the knowledge of the matrix elements in the

soft and collinear limits in order to give a recipe for building dσA in a process-independent

way. Moreover, they propose a choice of dσA where the integration over the extra parti-

cle is performed analytically. Other well known NLO subtraction schemes are the antenna

subtraction [112,113] and the so-called FKS subtraction [114,115].

In the phenomenological applications of this thesis, we will often deal with processes with

many particles in the final state. At the level of scattering amplitudes, some of these final

states can be partons, i.e. quarks and gluons. However, as we briefly recalled in Section 2.1,

partons are never observed as free states in detectors. After the hard interaction described by

the scattering amplitude, they fragment into hadrons. A jet is a collimated cone of hadrons

and can be regarded as the footprint of a parton in the final state of the hard scattering

process. A more accurate definition of jets is given by specifying an algorithm for identifying

them from the signals of an event. This is known as jet algorithm. Several jet algorithms have

been proposed. Among the most popular are clustering algorithms, which consist in defining

a distance dij between particles i and j, and diB between a particle i and the beam. One can

thus proceed recursively by finding the minimum of these distances and merge particles i and
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j if the minimum is dij , or identifying i as a jet and remove it from the list of particles if the

minimum is diB. The procedure terminates when there are no particles left. A commonly

used version of this algorithm is the anti-kt jet algorithm proposed in Ref. [116], which we

will use for the phenomenological applications presented in this thesis.

Finally, we recall that perturbative results in QFT can depend on unphysical scales, such

as the factorization scale µF which appears when partons are present in the initial state after

the factorization defined by Eq. (2.34), and the renormalization scale µR which appears after

UV renormalization. The dependence on these scales would cancel out if we were able to sum

all orders in perturbation theory and obtain an exact result. In a fixed-order perturbative

computation, this cancellation is however spoiled by the neglected higher-order terms. The

most important pieces of these contributions typically take the logarithmic form lnkQ2
i /µ

2
R,F ,

where Q2
i are the physical scales of the process. One can try to minimize the effect of

these higher-order terms by choosing values of µR and µF which are close to the physical

scales. Although there is no general recipe for obtaining the best choice of this scale, this is

usually taken to be a suitable combination of the masses of the produced external particles (if

massive) and the transverse momentum of the final jets. Since the unphysical dependence on

the renormalization and factorization scales is an effect of the neglected higher-order terms,

it can also be exploited in order to assess the theoretical uncertainty of perturbative results,

which can be obtained by varying µR and µF on a given range. Common practice is choosing

a central value µR = µF = µ0 and then vary them from µ0/2 to 2µ0.

2.4 Tree-level amplitudes

In this section we review some techniques for the computation of tree-level amplitudes. Tree-

level amplitudes are scattering amplitudes whose Feynman diagrams contain no loop. Their

computation is relatively simple, because it only involves algebraic operations, namely sub-

stitution of Feynman rules, followed by color, Lorentz and γ algebra. This kind of calculation

can also be efficiently performed by numerical and semi-numerical algorithms. Despite their

simplicity, compared e.g. to loop computations, some interesting results on the computation

of tree level amplitudes have been obtained in recent years, motivated by a better understand-

ing of the analytic and algebraic structure of amplitudes, as well as the research of efficient

methods for their evaluation at high multiplicities or as building blocks for loop amplitudes.

We will give a brief review of two well known recursive techniques, namely Berends-Giele

recursion [117] and BCFW recursion [7,19]. Even though we will not make explicit use of these

techniques in the computations presented in this thesis, they are nevertheless very interesting.

Indeed they shed light on how one can exploit the knowledge of the analytic and algebraic

structure of amplitudes, especially their factorization properties at their singularities. This

has been particularly important for the development of more advanced techniques for the

computation of loop amplitudes, such as the ones presented in this thesis. Since, for our
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purposes, we are not interested here in a systematic study of these techniques but only in the

main ideas behind their formulation, we will describe them for a SU(Nc) gauge theory with

only gluons (i.e. nf = 0). A more systematic an pedagogical review of these techniques can

be found in Ref.s [118,119], which we will partially follow here.

Both Berends-Giele and BCFW recursion are more conveniently applied to color-ordered

amplitudes. In order to introduce them, we define the SU(NC) generators T a which can be

obtained from the standard ones ta by a change of normalization

T a ≡ 1√
2
ta, (2.39)

so that

[ta, tb] = ifabctc, [T a, T b] = i
√

2fabcT c. (2.40)

With the new normalization, the additional factors
√

2 that appear in the intermediate steps

and the Feynman rules cancel out with the ones which would appear in the total results for

the color-ordered amplitudes if we used the standard normalization instead. One can also get

rid of the structure constants fabc in the Feynman rules by replacing them with combinations

of T a, namely

fabc = − i√
2

(
Tr(T aT bT c)− Tr(T bT aT c)

)
. (2.41)

In this way, the total result can be written as a linear combination of purely kinematic factors

multiplied by color factors. More specifically, in a pure Yang Mills theory (i.e. with only

gluons), any n-point tree-level amplitude Mn can be written in this way as

Mn(kh1
1 , . . . , khnn ) = gn−2

s

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n))An(σ(kh1
1 ), . . . , σ(khnn )) (2.42)

where khii represents a gluon with momentum ki and helicity hi. The kinematic factors An
are known as color-ordered amplitudes. They receive contributions from Feynman diagrams

whose external particles are in a given order, namely the one specified by the permutation σ,

which in the sum runs over all the non-cyclic permutations of the external particles. Color-

ordered amplitudes can be computed with diagrammatic techniques, by considering diagrams

where the external particles are ordered and using the so-called color-ordered Feynman rules

(they are listed in the references we mentioned above), which can be obtained from the

traditional Feynman rules with the help of Eq. (2.41).

In the following subsections, we will briefly show how to recursively compute the color

ordered amplitudes An, using and Berends-Giele and BCFW techniques.

2.4.1 Berends-Giele recursion

Berends-Giele recursion is based on the computation of quantities called off-shell currents.

An off-shell current Jµ(kh1
1 , . . . , khnn ) can be seen as a (n + 1)-point scattering amplitude
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where one of the external legs, namely the one identified by the Lorenz index µ, is off-shell,

while all the others, identified by kh1
1 , . . . , khnn , are on-shell. Off-shell currents can be easily

be built recursively, using lower-point ones as building blocks for higher-point ones. Indeed

the external leg µ can either be attached to a 3-gluon o a 4-gluon vertex. The other legs of

the vertex can in turn be identified with off-shell currents with a smaller number of gluons.

Putting everything together, we have

Jµ(kh1
1 , . . . , khnn ) = − i

p2
i,n

( n−1∑

i=1

V(ggg)
µνρ (p1,i, pi+1,n)Jν(kh1

1 , . . . , khii )Jρ(kh1
i+1, . . . , k

hn
n )

+

n−2∑

i=1

n−1∑

j=i+1

V(gggg)
µνρσ Jν(kh1

1 , . . . , khii )Jρ(kh1
1 , . . . , khii )Jσ(kh1

1 , . . . , khii )
)
,

(2.43)

where we defined

pi,j =

j∑

l=i

kl (2.44)

and the expressions for V(ggg)
µνρ and V(gggg)

µνρσ can be easily worked out from the 3- and 4-gluon

vertexes respectively and read

V(ggg)
µνρ )(k1, k2) =

i√
2

(
gνρ(kµ1 − kµ2 ) + 2gµρkν2 − gµνkρ1

)

V(gggg)
µνρσ =

i√
2

(
2gµρgνσ − gµνgρσ − gµσgνρ

)
. (2.45)

For the special case n = 1 we define the current as the polarization vector with the corre-

sponding helicity, i.e.

Jµ(kh) ≡ εµh(k, r), (2.46)

where r is an arbitrary reference vector defining the direction of quantization of the spin. The

n-gluon color-ordered amplitude An(kh1
1 , . . . , khnn ) can be found by contracting the (n − 1)-

point off-shell current J µn (kh1
1 , . . . , k

hn−1

n−1 ) with the last polarization vector εµhn(kn, rn), i.e.

An(kh1
1 , . . . , khnn ) = lim

p2
1,n−1→0

ip2
1,n−1 Jn(kh1

1 , . . . , k
hn−1

n−1 ) · εhn(kn, rn). (2.47)

Notice that, especially in numerical applications, instead of multiplying by ip2
1,n−1 and taking

the on-shell limit p1,n−1 → 0 one can simply omit the multiplication by the propagator

−i/p2
1,n−1 in the computation of the last current.

Even though it is not very practical for analytic calculations (compared e.g. to BCFW),

the Berends-Giele recursion is very efficient for numerical computations, especially if one

builds the currents from lower to higher points and caches them for later use. It should also

be clear that the method is very general and can be extended to any gauge theory with any

kind of massless or massive particle (in this case, the free index of a current can also be a

spinor index), by defining for each vertex a suitable contraction of the lower-point currents

from the Feynman rules.
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2.4.2 BCFW recursion

While Berends-Giele recursion builds the amplitude from lower points off-shell objects, BCFW

recursion achieves a similar effect using only on-shell quantities. Even though it is not nu-

merically as efficient as the former for high multiplicities, BCFW is significantly easier to

apply to analytic calculations. Moreover, it is also particularly interesting from a theoretical

point of view. Indeed it shows that a tree-level amplitude, being an analytic function of the

kinematic invariants, can be determined by its singularity structure on the complex plane.

This can in turn be accessed by putting internal propagators on-shell.

Here we start from a slightly more general case. We consider a color-ordered amplitude

An(k1, . . . , kn), where the external particles can either be gluons, quarks or scalars, with no

assumption about their mass. We pick two external particles i and j and we build a null

vector ηµ such that

ki · η = kj · η = η2 = 0. (2.48)

In the general case, we have two linearly independent choices for η. Using the spinor-helicity

formalism (see Appendix A) we can write them as

ηµ =
〈e1 γ

µ e2]

2
, ηµ =

〈e2 γ
µ e1]

2
, (2.49)

where e1 and e2 are massless linear combinations of ki and kj . Notice that ηµ is complex. We

thus define two new shifted momenta k̂i and k̂j ,

k̂µi ≡ k
µ
i + z ηµ, k̂µj ≡ k

µ
j − z ηµ, (2.50)

as functions of the complex variable z. These new vectors satisfy the same on-shell constraints

as the original two, as well as momentum conservation,

k̂2
i = k2

i , k̂2
j = k2

j , k̂i + k̂j = ki + kj . (2.51)

This implies that we can consistently define the on-shell amplitude A(z) as

A(z) = A(k1, . . . , k̂i, . . . , k̂j , . . . , kn), (2.52)

from the analytic continuation of A(k1, . . . , kn) taken as an analytic function of the invariants

built from its momenta. More in detail, A(z) is thus a rational function of z and for the

special value z = 0 we recover the original amplitude. If spinors and polarization vectors are

present, we should be slightly more careful on how we define the shifted momenta in order

to avoid branch cuts in z, but we will deal with this when considering the special case of an

all-gluon amplitude.

Now we consider the integral ∮
dz

2πiz
iA(z) (2.53)
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taken around a large circle in the complex plane. If A(z)→ 0 as z →∞ (the validity of this

assumption will be briefly discussed later), then the integral vanishes. By rewriting it as the

sum of its residues at the corresponding poles we have

∑
Res

(A(z)

z

)
= 0. (2.54)

There is a pole in z = 0 whose residue is simply the original amplitude iA = iA(z = 0).

Further poles appear because of the dependence on z of the denominators of the propagators.

The only propagators depending on z are the ones which factorize the amplitude A(z) by

separating the particles i and j. Any propagator of this form splits the external particles in

two groups

• (ka, ka+1, . . . , k̂i, . . . , kb) on its left

• (kb+1, . . . , k̂j , . . . , ka−1) on its right.

The momentum flowing in the propagator before the shift is pµa,b, defined according to

Eq. (2.44). After the z-dependent shift, this becomes equal to p̂µa,b given by

p̂µa,b = pµa,b + z ηµ. (2.55)

The shifted amplitude A(z) has a pole for the value of z = z̄ which puts p̂µa,b on-shell (p̂2
a,b =

m2), which is

z = z̄ = −
p2
a,b −m2

2pa,b · η
(2.56)

where m is the mass of the particle running in the propagator. Since the numerator of the

propagator can be written as a sum over polarizations h, the residue of this pole is

Res

(
iA(z)

z

)

z=z̄

= −
∑

h

(
iA(ka, . . . , k̂i, . . . , kb,−p̂ha,b)

i

p2
a,b −m2

× iA(p̂ha,b, kb+1, . . . , k̂j , . . . , kb−1)
)
, (2.57)

where all the z-dependent quantities are evaluated at z = z̄.

By repeating the procedure on all the propagators which split the external particles in two

partitions, Eq. (2.54) gives thus an expression for the original partial amplitudes A(k1, . . . , kn)

in terms of on-shell amplitudes with a lower number of external legs and shifted momenta,

iA(k1, . . . , kn) =
∑

partitions r

∑

h

(
iA(kar , . . . , k̂i, . . . , kbr ,−p̂har,br)

i

p2
ar,br
−m2

r

× iA(p̂har,br , kbr+1, . . . , k̂j , . . . , kar−1)
)
. (2.58)

Here the first sum goes over all the partitions r which separate the particles i and j and each

addend of this sum has to be evaluated at the respective pole z = z̄. The result is quite
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remarkable, for several reasons. The formula only involves on-shell scattering amplitudes

evaluated at special (and complex) values of the momenta. One can thus start from 3-point

amplitudes, which can be easily worked out from 3-point vertexes, and from these build all

higher point amplitudes. In particular, in theories like QCD, the presence of 4- or higher-point

vertexes is irrelevant and all the information is already contained in the 3-point interactions,

provided that A(z) goes to zero at the boundary conditions.

Now we will give further details about all-gluon amplitudes in QCD. In the presence of

gluons (and also quarks) the amplitude should be seen as an analytic function of the spinors

|ki〉 and |ki], rather than a function of the components of the external momenta. In this way,

one can directly define the shifts on the spinors. With the choice of η

ηµ =
〈k1 γ

µ k2]

2
, (2.59)

we define the shifts

k̂i] = k̂i] + z kj ], k̂i〉 = ki〉,
k̂j〉 = kj〉 − z ki〉, k̂j ] = kj ]. (2.60)

One can easily check that this gives the same shifted momenta as Eq. (2.50), while generating

an amplitude A(z) which is a rational function of z. The only remaining issue is thus making

sure that A(z) → 0 at z → ∞. One can show that this is always the case for a proper

choice of the external particles i and j. In particular, for all-gluon amplitudes, one should

avoid a choice of i and j with helicities (hi, hj) = (−,+), assuming all the particles incoming

(otherwise the helicity should be reversed). One can easily extend everything to the presence

of quarks, with the same helicity choice to be avoided and the additional exception that two

external quarks i and j cannot be chosen if they are on the same fermion line. The method

can be extended to theories with massive fermions, but in this case the choice of helicity and

momentum shift are much more complicated.

BCFW recursion is a first example of how one can exploit the analytic properties of

scattering amplitudes in order to efficiently compute them. In particular the recursion relies on

their evaluation at (complex) values of the external momenta for which an internal propagator

goes on-shell. These ingredients will also be important on the methods we present in this

thesis for the computation of loop amplitudes, even though they will be used within a different

framework.

2.5 Loop amplitudes

Loop amplitudes are sums of Feynman diagrams containing loops. While in a tree-level ampli-

tude the momentum flowing in every propagator is a combination of the external momenta,

in a amplitude with ` loops there are ` momenta which are not fixed by momentum con-

servation. Loop diagrams correspond to quantum effects where all the values of the loop
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momenta interfere and contribute to the final result. The amplitude is therefore the result of

an integration over the components of the loop momenta.

As we recalled in Section 2.3, in dimensional regularization the integration is performed

in d dimensions. Several variants of dimensional regularization exist, which differ for the

treatment of the external momenta and internal gluon states propagating in the loop. In this

thesis we will use regularization schemes where the external legs are purely four-dimensional.

These include dimensional reduction scheme and the t’Hooft–Veltman scheme. The former

treats internal states as four-dimensional, while the latter treats them as d-dimensional keep-

ing thus the dependence on d in the numerator of the integrand. A more detailed comparison

of different regularization schemes can be found in Ref. [120] and references therein.

As one can see from the Feynman rules of QFT, the integrand of a loop amplitude can be

written as a rational function of the components of the loop momenta. In this thesis we will

analyze the analytic and algebraic properties of the integrands in order to develop efficient

and general methods for the evaluation of the respective integrals.



Chapter 3

Integrand reduction of loop

amplitudes

Integrand reduction methods for the computation of scattering amplitudes have been devel-

oped for one-loop diagrams [40, 41] and recently extended to higher loops [91–95]. These

methods use the knowledge of the analytic and algebraic structure of loop integrands in order

to rewrite scattering amplitudes as linear combinations of Master Integrals. In this chapter

we present a general framework for the integrand decomposition of loop amplitudes which

is valid at any loop order. It can be applied to any amplitude in Quantum Field Theory,

regardless of the number of external legs or the complexity of the integrands.

The integrand of a Feynman diagram is a rational function of the components of the loop

momenta, namely a polynomial numerator sitting over a set of quadratic loop denomina-

tors corresponding to internal propagators. Any integrand of this form can be written as a

combination of fundamental, irreducible contributions. These contributions are integrands

characterized by a subset of the original loop denominators and an irreducible polynomial

residue for numerator. The latter is a polynomial whose terms cannot be written as combi-

nations of its loop denominators (hence, it cannot be further simplified via a partial fraction

decomposition). The residues have a universal process-independent parametric form in terms

of unknown coefficients. The actual value of these coefficients is process-dependent and it is

a function of the kinematics.

In Ref.s [93,94] the determination of the residues of the integrand decomposition has been

formulated as a problem of multivariate polynomial division, and solved at any loop order

using simple techniques of algebraic geometry (the basic concepts of algebraic geometry we

will use in this thesis are illustrated in Appendix B). The most general parametric form of a

residue is the most general remainder of a polynomial division modulo the ideal generated by

the corresponding subset of denominators. This formulation of the problem allows to easily

derive well known one-loop results and extend them to any loop order.

After integration, most of the terms appearing in the integrand decomposition vanish
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(they are called spurious). The non-spurious terms give instead the Master Integrals of the

integrand reduction. The amplitude is therefore a linear combination of Master Integrals. The

coefficients of this linear combination can be identified with a subset of the coefficients which

parametrize the residues of the integrand reduction. The reduction of a scattering amplitude

to Master Integrals can therefore be reduced to the problem of performing a polynomial fit of

the residues. In Section 3.3 we describe two general approaches for performing this fit. The

first is the traditional method used in the one-loop case [40], which consists in evaluating the

integrand on values of the loop momentum such that some denominators vanish (also known

as multiple cuts) and can be referred to as fit-on-the-cut approach. The second, which we

call divide-and-conquer approach [95], is a more general algorithm based on purely algebraic

operations such as the multivariate polynomial division.

3.1 Integrand reduction via multivariate polynomial division

An arbitrary `-loop amplitude in d = 4 − 2ε dimensions is a sum of contributions M of the

form

M =

∫
ddq̄1 · · · ddq̄` Ii1···in , Ii1···in ≡

Ni1···in
Di1 · · ·Din

, (3.1)

where i1, . . . , in are (not necessarily distinct) indices labeling loop propagators. The numera-

tor N and the denominators Di of the integrand Ii1···in are polynomials in the components of

the loop momenta q̄i. The d-dimensional loop momenta can be split into a four-dimensional

part qi and a (−2ε)-dimensional part ~µi,

q̄i = qi + ~µi, q̄i · q̄j = qi · qj − µij (3.2)

where µij is the euclidean scalar product of the extra-dimensional components, i.e. µij ≡ ~µi· ~µj .
Therefore, the integrand will be a rational function of

nv = 4 l +
l (l + 1)

2
(3.3)

loop coordinates, namely the components of the four-dimensional vectors qi in terms of a

basis and the extra-dimensional coordinates µij . In the following we generically refer to these

variables as z = {z1, . . . , znv}. The loop denominators are quadratic polynomials and their

general form is

Di =
(∑

j

αj q̄j + pi

)2
−m2

i , with αj = 0,±1, (3.4)

where pi is a linear combination of external momenta and mi are the masses of the particles

running in the loop (in general mi can be complex, if the particle has a non-zero width).

Let P [z] be the ring of all polynomials in the coordinates z. Every set of indices {i1, . . . , in}
defines the ideal

Ji1i2···in ≡ 〈Di1 , . . . , Din〉 =

{
n∑

k=1

hk(z) Dik(z) : hk(z) ∈ P [z]

}
. (3.5)
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The goal of the integrand reduction is finding a decomposition of the form

Ii1···in ≡
Ni1···in

Di1 · · ·Din

=
n∑

k=0

∑

{j1···jk}

∆j1···jk
Dj1 · · ·Djk

(3.6)

where the residues ∆j1···jk are irreducible polynomials, i.e. polynomials which contain no

contribution belonging in the corresponding ideal Ji1···in . The second sum on the r.h.s. of

the previous equation runs over all the multisubsets1 of {i1 · · · in}. We can associate to any

residue ∆j1···jk a multiple cut, defined as the system of equations which puts on-shell the

corresponding loop propagators, i.e. Dj1 = · · · = Djk = 0. Eq. (3.6) can also be cast as a

decomposition of the numerator in terms of residues and denominators,

Ni1···in =
n∑

k=0

∑

{j1···jk}

∆j1···jk
∏

h∈{i1···in}\{j1···jk}

Dh. (3.7)

The numerator N of the integrand can be decomposed by performing the multivariate

polynomial division modulo a Gröbner basis Gi1···in of Ji1···in as

Ni1···in = Qi1···in + ∆i1···in

=
n∑

k=1

Ni1···ik−1ik+1···inDik + ∆i1···in (3.8)

in terms of a quotient Qi1···in and the remainder ∆i1···in . The properties of Gröbner bases

ensure that the remainder is irreducible, therefore it is identified with the residue of the

multiple cut Di1 = · · · = Din = 0, as suggested by the notation. The quotient Qi1···in belongs

instead to the ideal Ji1···in , hence in the last equality of Eq. (3.8) it has been written as a

combination of denominators. Substituting Eq. (3.8) in Eq. (3.1), we obtain the recursive

formula [94,95]

Ii1···in =
n∑

k=1

Ii1···ik−1ik+1···in +
∆i1···in

Di1 · · ·Din

. (3.9)

Eq. (3.9) expresses a given integrand in terms of an irreducible residue sitting over its denom-

inators and a sum of integrands corresponding to sub-diagrams with fewer loop propagators.

Hence, the recursive application of this formula ultimately yields the full decomposition of

any integrand in terms of irreducible residues and denominators, as in Eq. (3.6).

The existence of such a recursive formula proves that the integrand decomposition, origi-

nally proposed for one-loop amplitudes, can be extended at any number of loops and the most

general parametrization of a residue ∆i1···in can be identified with the most general remainder

of a polynomial division modulo the Gröbner basis Gi1···in .

1A multiset is a set where members can have multiplicity. As an example, {1,1,2,2,2,3} and {1,1,2,3} are

two different multisets of integer numbers, which differ for the multiplicity of the element 2, and the latter is

a multisubset of the former.
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As mentioned above, the universal parametric form of a residue ∆j1···jk is independent of

the process and only depends on the topology of its sub-diagram, i.e. on the set of denomi-

nators Dj1 , . . . , Djk . As we already stated, our derivation of Eq. (3.9) implies that the most

general form of ∆j1···jk is the most general remainder of a polynomial division modulo the

Gröbner basis of the ideal Jj1···jk . Using the notion of quotient rings (see Appendix B.2), one

can equivalently identify the parametric form of ∆j1···jn with the most general polynomial in

the quotient ring P [z]/Jj1...jk . This can in principle contain an unlimited number of terms,

but it can always be constrained to have a finite number of them by fixing a limit to the degree

of the monomials of the residues. Once the maximum rank of a residue has been fixed, its

most general parametrization can thus easily be found by means of computer algebra systems

such as Singular [121] and Macaulay2 [122].

3.2 Two results from algebraic geometry

The formulation of the problem of the integrand reduction of loop amplitudes in terms of

basic concepts of algebraic geometry allows to prove two useful results, which we refer to

as the reducibility criterion and the maximum-cut theorem respectively, which we proved in

Ref. [94].

The reducibility criterion is a direct consequence of Hilbert’s weak Nullstellensatz (see

Appendix B.1). We first notice from Eq. (3.8) and (3.9) that a numerator Ni1···in is completely

reducible when the residue ∆i1···in , i.e. the remainder of the polynomial division modulo the

Gröbner basis generated by its denominators, vanish. The properties of Gröbner bases imply

that this happens if and only ifNi1···in belongs to the ideal generated by the loop denominators.

There are cases where this ideal coincides with the whole polynomial ring P [z], and therefore

any integrand Ii1···in over this set of denominators is reducible, independently of the explicit

form of the numerator. Hilbert’s weak Nullstellensatz implies that this happens if and only

if the system of equations of the corresponding multiple cut Di1 = · · · = Din = 0 has no

solution. We have thus proved the following

Proposition. Reducibility criterion. If a multiple cut Di1 = · · · = Din = 0 has no solution,

then any integrand Ii1···in over this set of loop denominators is reducible.

The hypothesis of the reducibility criterion is satisfied when the number of independent

loop denominators is higher than the number nv of loop variables (given in Eq. (3.3) for

amplitudes in dimensional regularization). In this case, the multiple cut Di1 = · · · = Din = 0

is an over-determined system of equations with no solution and the integrand is guaranteed to

be reducible. When all the loop denominators are distinct, this typically happens whenever

n > nv, with n being the total number of loop propagators. This will have important

consequences, especially for the fit-on-the-cut approach we will discuss in Section 3.3.1.

A second important result is the so-called maximum-cut theorem. A maximum-cut is a
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multiple cut where the number of (independent) loop propagators is equal to the number of

loop coordinates. In this case, the multiple cut is a system of nv equations in nv unknowns

and therefore it will have, in non-special cases, a finite number ns of distinct solutions. With

this definition, one can prove the following

Theorem. Maximum-cut. If a maximum-cut has a finite number ns of solutions, each with

multiplicity one, the corresponding residue is a polynomial parametrized by ns coefficients.

This polynomial admits an univariate representation of degree ns − 1.

Proof. Let J = Jj1···jnv be the ideal generated by the denominators defining the maximum-

cutDj1 = . . . = Djnv = 0, and ∆j1···jnv the corresponding residue. The solutions z(1), . . . , z(ns)

have the form

z(k) = (z
(k)
1 , . . . , z(k)

nv ), for k = 1, . . . , ns.

Since the solutions are all distinct, up to a change of variables we can assume the last coor-

dinate z
(k)
nv of all solutions to be different.

Since the ideal J defined by the maximum cut is zero-dimensional (i.e. it has a finite

number of solutions) we can use the results collected in Appendix B.3. In particular, because

the multiplicity of each multiple-cut solution is 1, the Proposition reviewed in Appendix B.3

implies that the ideal J is radical. Therefore, if we use the lexicographical order with z1 >

. . . > znv , the hypotheses of the Shape lemma are satisfied. This implies that the dimension

of the quotient ring P [z]/J is finite and the monomials 1, znv , z
2
nv , . . . , z

ns−1
nv form a basis.

Since the most general parametrization of ∆j1···jk coincides with the most general polynomial

in the quotient ring P [z]/J , this completes the proof.

The Maximum-cut Theorem will be particularly important for the fit-on-the-cut approach

for the reduction, which we will describe in Section 3.3.1. In Fig. 3.1 we show examples of

maximum cuts for one-, two- and three-loop topologies, where we explicitly checked that the

maximum cut theorem is satisfied. At one loop in d = 4 − 2ε dimensions, a maximum cut

has nv = 5 loop propagators. The corresponding cut equations Dj1 = · · · = Dj5 = 0 can be

shown to have only one solution. Hence, its residue can be parametrized by one coefficient,

i.e. by a constant. In d = 4 dimensions instead, we only have four loop coordinates and thus

5-point diagrams are reducible (for the reducibility criterion) and a maximum cut is a 4-ple

cut. In four dimensions, quadruple cuts have two solutions and their residue can thus be

parametrized by two coefficients. Similarly, at two and three loops, four-dimensional maxi-

mum cuts involve eight and twelve loop propagators respectively. The number of solutions, in

these cases, depends on the topology of the diagram, but it is always equal to the number of

unknown coefficients appearing in the parametrization of the residues. When the lexicograph-

ical monomial order is used, this parametrization is an univariate monomial, however we will

generally use the degree reverse lexicographical monomial order (see Appendix B.2), hence

these residues will be multivariate but have in turn a lower degree, significantly simplifying

our computations.
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Figure 3.1: Examples of maximum cuts. The first on the left is a one-loop maximum cut

in (4 − 2ε) dimensions. The others are one-, two- and three-loop maximum cuts in four

dimensions. For each cut we show the number of solutions and the parametric residue,

assuming a lexicographical monomial order.

3.3 Reduction techniques

Within the framework we described in the previous section, the reduction of a scattering

amplitude to Master Integrals has been reduced to the problem of performing a polynomial

fit of the residues of the integrand decomposition. The traditional way of performing this

fit is by evaluating the integrand on multiple cuts, i.e. on values of the loop momentum

such that some denominators vanish. This is the so-called fit-on-the-cut approach, which we

will review in Section 3.3.1. One can also perform the full integrand decomposition of any

multi-loop amplitude by means of purely algebraic operations, within what we call the divide-

and-conquer approach [95], which will be illustrated in Section 3.3.2. In this case, the residues

are generated as the remainders of multivariate polynomial divisions recursively applied to

the numerator of the diagram and the ones of the sub-diagrams defined by the quotients of

former divisions. Because of its wider range of applicability we may consider the latter a more

general method for the integrand decomposition of loop integrals.

3.3.1 Fit-on-the-cut approach

The fit-on-the-cut approach was proposed in Ref. [40] for one-loop amplitudes, and first

applied to the integrand reduction of higher-loop amplitudes in Ref. [91]. It consists in

finding the values of the coefficients which parametrize the residues in Eq. (3.6) by evaluating

the integrand on values of the loop momenta such that a subset of loop denominators vanish.

On such values, the only non-vanishing contributions to the decomposition of the numerator

in Eq. (3.7) are the ones coming from the residue identified by those denominators and from

the ones which have the corresponding loop propagators as a sub-diagram.
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In this subsection we will assume that all the denominators Dj are distinct. This can

always assumed to be the case at one-loop, but not at two or higher loops. The problem of

the reduction of diagrams with arbitrary powers of loop denominators can be addressed with

divide-and-conquer method, which we will describe in the next subsection. An alternative

method which can be used in the presence of double powers of loop propagators has been

proposed in Ref. [123].

With this hypothesis we can assume {i1, . . . , in} ≡ {1, . . . , n} and Eq. (3.7) can be rewrit-

ten as

N1···n =

n∑

m=0

∑

{i1···im}

∆i1···im
∏

h6=i1,...,im

Dh. (3.10)

By evaluating Eq. (3.10) on a m-ple cut Dj1 = . . . = Djm = 0 one gets

∆j1···jm =
N1···n∏

h6∈{j1···jm}Dh
−

n∑

m′=m+1

∑

{i1···im′}

∆i1···im′∏
h∈{i1···im′}\{j1···jm}

Dh
, (3.11)

where the second sum on the r.h.s. runs over all the partitions which satisfy {i1, . . . , im′} ⊃
{j1, . . . , jm}, i.e. those whose denominators are a superset of the cut denominators. In other

words, a residue is equal to the numerator evaluated on the corresponding multiple cut and

divided by the uncut denominators, after subtracting all the non-vanishing contributions from

higher-point residues.

This suggests a top-down strategy for the determination of the coefficients of all the

residues. The first step consists in using Eq. (3.11) on a maximum-cut, i.e. with m equal to

the number nv of loop coordinates. The reducibility criterion and the maximum-cut theorem

(see Section 3.2) play here an important role. The reducibility criterion ensures that all the

higher-point residues vanish, because the corresponding cut is an over-determined system of

equations. Hence Eq. (3.11) on a maximum cut becomes

∆j1···jnv =
N1···n∏

h6∈{j1···jnv}Dh
, (3.12)

where on the l.h.s. we can substitute the most general parametric form of the residue, which

can be found a priori as explained in Section 3.1. In particular, the maximum-cut theorem

says that that the number of coefficients which parametrize the residue ∆j1···jnv is equal to the

number ns of solutions of the cut. Hence, by evaluating Eq. (3.12) on these solutions, with

the parametric form of ∆j1···jnv on the l.h.s., we obtain an ns × ns linear system of equations

for the coefficients.

The next step is the determination of residues corresponding to next-to-maximum cuts.

As usual, the parametric form of the residue is easily known and therefore one must only

find the unknown process-dependent coefficients which appear in such parametrization. In

this case the system Dj1 = · · · = Djm = 0 is under-determined and thus, in non-special

kinematic points, it has an infinite number of solutions. By applying Eq. (3.11), we need to
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subtract from the integrand the non-vanishing maximum-cuts computed in the previous step

and evaluate it on a subset of the solutions of this cut, obtaining a system of equations for

the unknown coefficients.

With this procedure, one can thus recursively apply Eq. (3.12) on m-ple cuts. At each

step, one must subtract from the integrand all the non-vanishing contributions from higher-

point residues with more than m loop propagators. These are known as subtractions at

the integrand level. A multiple cut can thus be seen as a projector that, once applied to

the integrand, isolates the contribution of the corresponding residue. An alternative way of

carrying out the reduction on the cuts for the one-loop case is presented in Chapter 4.

The fit-on-the-cut strategy has been very successful for the computation of one-loop am-

plitudes. However, at two or higher loops it has several limitations. A first limitation is that,

as stated before, it cannot be applied to processes where the loop denominators are not all

distinct (or equivalently, where higher powers of loop propagators are present). This can be

clearly seen from Eq. (3.11) where on the r.h.s. we divide by the uncut denominators, which

therefore must not be equal to the (vanishing) cut denominators. Another limitation is that

the solutions of multiple cuts, and in particular a parametrization of the algebraic variety

V(Jj1···jm) defined by such solutions, can be difficult to find for a higher-loop topology, es-

pecially for lower-point cuts. Such parametrization is however needed in order to fit all the

unknown coefficients which parametrize these residues. A third potential limitation is due to

the fact that there is no guarantee that, by evaluating the integrand on values of the loop

coordinates z belonging to the variety of solutions V(Jj1···jm), one can find the values of all

the coefficients of the residue ∆j1···jm . Indeed, as a consequence of Hilbert’s Nullstellensatz,

the set of polynomials which vanish on V(Jj1···jm) is the radical
√
Jj1···jm of the ideal defined

by the loop denominators. Since in general Jj1···jm ⊆
√
Jj1···jm , by evaluating the integrand

on values z ∈ V(Jj1···jm) we are only guaranteed to be able to fit a polynomial p when

p ∈ P [z]/
√
Jj1···jm . However ∆j1···jm ∈ P [z]/Jj1···jm which is a larger space of polynomials

than P [z]/
√
Jj1···jm . Therefore, the fit-on-the-cut approach will work only if the ideals defined

by the loop denominators of the diagrams and their sub-diagrams are radical, i.e. if for every

residue ∆j1···jm we have
√
Jj1···jm = Jj1···jm . However, none of these limitations are present

in the divide-and-conquer approach that we are going to present in the next subsection.

3.3.2 Divide-and-conquer approach

The direct application of the integrand reduction formula of Eq. (3.9) on the numerator of

an `-loop graph allows to perform the integrand decomposition algebraically by successive

polynomial divisions, within what we call the divide-and-conquer approach, which has been

presented in Ref. [95]. At each step, the remainders of the divisions are identified with the

residues of the corresponding set of denominators, while the quotients become the numerators

of the lower-point integrands appearing on the r.h.s. of the formula, allowing thus to iterate
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the procedure. In this way, the decomposition of any integrand is obtained analytically, with

a finite number of algebraic operations, without requiring the knowledge of the varieties of

solutions of the multiple cuts, nor the one of the parametric form of the residues. Explicit

applications of this methods will be discussed in Section 6.2.

Since it is based on the same principles used to constructively prove the existence of

the integrand decomposition at all loops, the divide-and-conquer approach doesn’t have the

limitations of other methods, and in particular it is not affected by the presence of mas-

sive propagators, non planar diagrams, higher powers of loop denominators or higher-rank

contributions in the numerator. Therefore, this can be considered a more general integrand

reduction algorithm.

3.4 An algebraic implementation of the divide-and-conquer

approach

In this Section we describe a semi-automated implementation of the divide-and-conquer ap-

proach, which we used for some of the computations presented in this thesis. The implemen-

tation is a Python package, which uses Form [124] and Macaulay2 [122] for the algebraic

operations.

The inputs needed by the algorithm are

• the analytic Form expression of the numerator

• the expressions of the loop denominators

• the set of (not-necessarily distinct) indexes {i1, . . . , in} labeling the denominators

• the (possibly cut-dependent) choice of variables zi for the parametrization of the 4-

dimensional part of the loop momenta

• any additional identity between the variables appearing in the computation to be passed

to Form and/or Macaulay2.

The Python code thus generates all the independent multisubsets of {i1, . . . , ik} for the

original loop indexes and iterates over them. In each iteration, the following operations are

performed:

• the parametrization for the loop momenta is substituted in the formula for the numera-

tor (or sub-numerator) Ni1···ik , which is parsed by Form checking for all the monomials

that appear in the expression

• the Groöbner basis of Gi1···ik of the ideal Ji1···ik = 〈Di1 , . . . , Dik〉 is computed in Macaulay
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• for each monomial appearing in the numerator expression, a polynomial division is

performed, where the quotient is then rewritten as a combination of the original de-

nominators Di1 , . . . , Dik

• the results of the polynomial division are translated into Form substitutions, the re-

mainder is stored as the residue and the quotients will contribute to lower points nu-

merators.

The recursion terminates after the iteration over multisubsets of k denominators, if all the

resulting lower (k − 1)-point numerators obtained as sums of quotients vanish.

The result is thus available as a decomposition of the numerator of the form of Eq. (3.7),

where algebraic expressions for all the residues have been computed and can be inserted with

a set of automatically-generated substitutions in Form.

This basic implementation, despite being quite simple and minimal, has already been used

for some computations which showed the generality of the method and therefore its potential.

It is also a proof of concept of the possibility of automating the algebraic integrand reduction

at all loops. Furthermore, the combination of Form, with its capability of handling large

expressions, and the features of other Computer Algebra Systems, which are more focused on

typical operations of algebraic geometry, seems to be a reasonable and effective choice.

For a systematic usage in more complex computations, several improvements could be

implemented. The set of diagrams contributing to a scattering amplitude could be orga-

nized in terms of common topologies and sub-topologies, taking into account symmetries of

diagrams as well, in order to minimize the number of Gröbner basis to be computed. The

possibility of using Singular as an alternative to Macaulay could also help in improv-

ing the performance. A custom implementation of the computation of Gröbner bases or the

polynomial division algorithm, tailored for the kind of problems we are dealing with, could

also be worth considering. Finally, a default algorithm for the choice of parametrization of

the loop momenta could be implemented. Building a full computational framework for the

higher-loop integrand reduction is however a complex task which is beyond the purposes of

this thesis. Nevertheless, thanks to the ingredients we presented, the path for the automation

of higher-loop integrand reduction appears now more clear.

3.5 The one-loop case: OPP decomposition

Integrand reduction methods were first proposed for one-loop amplitudes [40, 41]. In this

section, we will present the one-loop case as a special application of the general framework

we described in this chapter.

A generic contributionM to an n-point one-loop amplitude in dimensional regularization

can be written as

M = h(µ2
R, d)

∫
ddq̄ I = h(µ2

R, d)

∫
ddq̄

N (q̄)

D0 · · ·Dn−1
. (3.13)



3.5 The one-loop case: OPP decomposition 37

In the previous equation, the integrand I is a rational function of the components of the d-

dimensional loop momentum q̄, with d = 4− 2ε. The numerator N (q̄) is a process-dependent

polynomial in q̄, while the denominators Di in the one-loop case have the form,

Di = (q̄ + pi)
2 −m2

i . (3.14)

The function h appearing in Eq. (3.13) is a conventional normalization factor given by [125]

h(µ2
R, d) = h(µ2

R, 4− 2ε) =
µ2ε
R

iπ2−ε
Γ(1− 2ε)

Γ2(1− ε)Γ(1 + ε)
, (3.15)

as a function of the renormalization scale µ2
R and the dimension d = 4−2ε. The d-dimensional

loop momentum q̄ can be split into a four-dimensional part q and a (−2ε)-dimensional part

~µ as

q̄ = q + ~µ , q̄2 = q2 − µ2. (3.16)

The numerator N will therefore be a polynomial in the four components of q and the extra-

dimensional variable µ2.

Since we have five loop coordinates, the reducibility criterion (see Section 3.2) implies

that every one-loop integrand in dimensional regularization can be decomposed as sum of

integrands having five or less loop denominators

I ≡ N
D0 · · ·Dn−1

=
5∑

k=1

∑

{i1,...,ik}

∆i1···ik
Di1 · · ·Dik

, (3.17)

where the second sum on the r.h.s. runs over all the subsets of the denominator indexes

{0, . . . , n− 1} containing k elements.

In order to write down the most general parametric form of the irreducible residues ∆i1···ik ,

we must first make an explicit choice of the four-dimensional variables. This can be done by

choosing, for any set of denominators Di1 , . . . , Dik with k ≤ 5, a proper four-dimensional

basis. As proposed in Ref.s [30, 40, 43, 126] we build a basis of massless momenta E(i1···ik) =

{e1, e2, e3, e4}. The first two elements of the basis are linear combinations of two external

momenta K1, K2 of the sub-diagram identified by the considered set of loop denominators.

More explicitly, we define

eµ1 =
1

1− r1r2
(Kµ

1 − r1K
µ
2 ) , eµ2 =

1

1− r1r2
(Kµ

2 − r2K
µ
1 ) , (3.18)

with

Kµ
1 = pµi1 − p

µ
ik
, Kµ

2 = pµi2 − p
µ
i1
, r1 =

K2
1

γ
, r2 =

K2
2

γ
,

γ = (K1 ·K2)

(
1 +

√
1− K2

1K
2
2

(K1 ·K2)2

)
.
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where the momenta pi were defined in Eq. (3.14). If the sub-diagram has less than two

independent external momenta, the remaining ones are substituted by arbitrary reference

vectors in the definition of e1 and e2. The momenta e3 and e4 are instead chosen to be

orthogonal to the first two and can be defined using the spinor notation (see Appendix A) as

eµ3 =
〈e1 γ

µ e2]

2
, eµ4 =

〈e2 γ
µ e1]

2
. (3.19)

They satisfy the property (e3 · e4) = −(e1 · e2). For subsets of k = 4 denominators, we also

define the vectors v and v⊥

vµ = (e4 ·K3) eµ3 + (e3 ·K3) eµ4 , vµ⊥ = (e4 ·K3) eµ3 − (e3 ·K3) eµ4 , (3.20)

with Kµ
3 = pµi3 − p

µ
i2

. We observe that the vector v⊥ is orthogonal to all the external legs of

the sub-diagram identified by the four denominators.

By expanding the four dimensional part q of the loop momentum q̄ in the basis E(i1···ik),

the numerator and the denominators can be written as polynomials in the coordinates z ≡
(z1, z2, z3, z4, z5) = (x1, x2, x3, x4, µ

2),

N (q̄) = N (q, µ2) = N (x1, x2, x3, x4, µ
2) = N (z), (3.21)

with

qν = −pνi1 +
1

e1 · e2
(x1e

ν
1 + x2e

ν
2 − x3e

ν
3 − x4 e

ν
4) . (3.22)

The coordinates xi can be written as scalar products

x1 = (li1 · e2), x2 = (li1 · e1), x3 = (li1 · e4), x4 = (li1 · e3), (3.23)

where li1 ≡ (q + pi1). For k = 4 we also consider the alternative expansion of the loop

momentum

qν = −pνi1 +
1

e1 · e2
(x1e

ν
1 + x2e

ν
2) +

1

v2
(x3,v v

ν
3 − x4,v v

ν
4 ) . (3.24)

with

x3,v = (li1 · v), x4,v = (li1 · v⊥). (3.25)

Following the general discussion of Section 3.1, the universal parametric form of the

residues ∆i1···ik in a renormalizable theory can be found as the most general remainder of

a numerator of the form

Ni1···ik ≡
∑

j1,j2,j3,j4,j5

nj1j2j3j4j5 x
j1
1 xj22 xj33 xj44 µ2j5 , with j1 + j2 + j3 + j4 + 2 j5 ≤ rmax,

(3.26)

where rmax = k. In practice, as suggested in Ref. [127], using a different parametrization of

the 5-point residues may be more convenient, namely

∆i1i2i3i4i5 = c0 µ
2 instead of ∆i1i2i3i4i5 = c0,
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Figure 3.2: Schematic illustration of the one-loop OPP decomposition.

which is allowed because 1 is proportional to µ2 in the quotient ring P [z]/Ji1i2i3i4i5 . The main

advantage of this choice is that the 5-point residues will vanish after integration. Besides,

with this parametrization, the four-dimensional part of the 4-point residues will coincide

with the one which would be obtained with a purely four-dimensional reduction (i.e. with

q̄ = q, µ2 = 0). With these choices, the most general parametric form of the residues is

[40,41,94]

∆i1i2i3i4i5 = c0 µ
2

∆i1i2i3i4 = c0 + c1x4,v + µ2
(
c2 + c3x4,v + µ2c4

)

∆i1i2i3 = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x3 + c5x

2
3 + c6x

3
3 + µ2 (c7 + c8x4 + c9x3)

∆i1i2 = c0 + c1x1 + c2x
2
2 + c3x4 + c4x

2
4 + c5x3 + c6x

2
3 + c7x1x4 + c8x1x3 + c9µ

2

∆i1 = c0 + c1x2 + c2x1 + c3x4 + c4x3, (3.27)

where we understand that the unknown coefficients cj depend on the indexes of the residue

(e.g. cj = c
(i1···ik)
j ), while the scalar products xi and xi,v depend on both the indexes of the

residue and the loop momentum q. The decomposition in Eq. (3.17) with parametric residues

of Eq. (3.27) is often referred to as the OPP integrand decomposition. It is schematically

depicted in Fig. 3.2.

The parametrization in Eq. (3.27) can easily be extended to effective and non-renormalizable

theories where the rank r of the numerator can be larger than the number n of loop propa-

gators [96]. In the case with r = n+ 1, such parametrization can be generalized by allowing

rmax = k + 1 in Eq. (3.26). The result,

∆
(r=n+1)
i1i2i3i4i5

= ∆i1i2i3i4i5

∆
(r=n+1)
i1i2i3i4

= ∆i1i2i3i4 + c5 µ
4xv,4

∆
(r=n+1)
i1i2i3

= ∆i1i2i3 + µ2 (c10 x
2
4 + c11 x

2
3) + c12 x

4
4 + c13 x

4
3 + c14 µ

4

∆
(r=n+1)
i1i2

= ∆i1i2 + µ2(c10 x1 + c11 x4 + c12 x3) + c13 x
3
1 + c14 x

3
4 + c15 x

3
3

+ c16 x
2
1x4 + c17 x

2
1x3 + c18 x1x

2
4 + c19 x1x

2
3

∆
(r=n+1)
i1

= ∆i1 + c5 x
2
2 + c6 x

2
1 + c7 x

2
4 + c8 x

2
3 + c10 x2x4 + c11 x2x3

+ c12 x1x4 + c13 x1x3 + c14 µ
2 + c15 x3x4, (3.28)

agrees with the one we first found with a different (and less general) method in Ref. [96].
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Most of the terms appearing in Eq. (3.27) are spurious, i.e. they vanish after integration

and do not contribute to the final result. The amplitudeM can thus be expressed as a linear

combination of Master Integrals, corresponding to the non-spurious terms of the integrand

decomposition, namely

M =
∑

{i1,i2,i3,i4}

{
c

(i1i2i3i4)
0 Ii1i2i3i4 + c

(i1i2i3i4)
4 Ii1i2i3i4 [µ4]

}

+
∑

{i1,i2,i3}

{
c

(i1i2i3)
0 Ii1i2i3 + c

(i1i2i3)
7 Ii1i2i3 [µ2]

}

+
∑

{i1,i2}

{
c

(i1i2)
0 Ii1i2 + c

(i1i2)
1 Ii1i2 [(q + pi1) · e2]

+ c
(i1i2)
2 Ii1i2 [((q + pi1) · e2)2] + c

(i1i2)
9 Ii1i2 [µ2]

}

+
∑

i1

c
(i1)
0 Ii1 , (3.29)

where

Ii1···ik [α] ≡ h(µ2
R, d)

∫
ddq̄

α

Di1 · · ·Dik

, Ii1···ik ≡ Ii1···ik [1]. (3.30)

The coefficients of this linear combination can be identified with a subset of the coefficients of

the parametric residues in Eq. (3.27). Since all the Master Integrals appearing in Eq. (3.29)

are known, the problem of the computation of an arbitrary one-loop amplitude can be re-

duced to the problem of the determination of the non-spurious coefficients appearing in the

parametrization of the residues ∆i1···ik .

For the higher-rank case with r = n+ 1, the integral decomposition is generalized as

M(r=n+1) =M(r=n) +
∑

{i1,i2,i3}

c
(i1i2i3)
14 Ii1i2i3 [µ4]

+
∑

{i1,i2}

{
c

(i1i2)
10 Ii1i2 [µ2 (q + pi1) · e2)] + c

(i1i2)
13 Ii1i2 [((q + pi1) · e2)3]

}

+
∑

i1

{
c14 Ii1 [µ2] + c

(i1)
15 Ii1 [((q + pi1) · e3)((q + pi1) · e4)]

}
, (3.31)

where, once again, all the Master Integrals are known [96] (see also Section 4.2.2).

3.5.1 Fit on the cut at one loop

The fit of the unknown coefficients of residues, and thus the Master Integrals, can be efficiently

performed using the fit-on-the-cut approach we described in Section 3.3.1. This consists

in evaluating the numerator of the integrand on multiple cuts, i.e. on values of the loop

momentum such that a subset of the loop denominators vanish. A residue can be evaluated

by putting on-shell the corresponding loop propagators and subtracting from the integrand
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Figure 3.3: Schematic illustration of the fit-on-the-cut reduction technique at one loop.

the non-vanishing contributions coming from higher-point residues. This leads to a top-

down algorithm, schematically illustrated in Fig. 3.3, which allows to compute any one-loop

amplitude with any number of external legs.

Within semi-numerical computations, the algorithm is usually implemented by sampling

the integrand on several solutions of the multiple cuts and subtracting at each step of the

reduction all the non-vanishing contributions coming from higher-point residues. This yields

a system of equations for the coefficients of each residue. The method is suited for automation

and it has been implemented in several codes, some of which are public (e.g. CutTools [42]

and Samurai [43]). Its usage within several automated frameworks [44–52] has been partic-

ularly successful and produced highly non-trivial phenomenological results.

In this section we give a brief review of this method, as proposed in Ref.s [40, 41, 43],

addressing in some detail the computation of 5-, 4-, 3-, 2-, and 1-point residues, also commonly

known as pentagons, boxes, triangles, bubbles and tadpoles respectively. In Chapter 4 we

will present an alternative integrand-reduction algorithm, namely the integrand reduction via

Laurent series expansion [96], which can be numerically more accurate and efficient.

5-point residues A maximum-cut in a (4− 2ε)-dimensional one-loop amplitude is a 5-ple

cut. The corresponding system of equations Di1 = · · · = Di5 = 0 has one solution and the

residue ∆i1···i5 , as already observed, can be parametrized by one coefficient, in agreement with

the maximum-cut theorem. Indeed, using Eq. (3.12) and the parametrization in Eq. (3.27),
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on this solution q = qs, µ
2 = µ2

s, the coefficient c0 of the pentagon can be simply found as

c0 =
1

µ2
s

N (qs, µ
2
s)∏

h6=i1,...,i5 Dh
. (3.32)

4-point residues The most general parametrization of a 4-point residue ∆i1···i4 was given

in Eq. (3.27), and its coefficients can be found by evaluating the integrand on the solutions

of the corresponding quadruple cut [5], i.e. Di1 = · · · = Di4 = 0. More in detail, the two

coefficients c0 and c1 can be easily found on the solutions of a four-dimensional quadruple

cut, i.e. with q̄ = q, µ2 = 0. Indeed, in four dimensions we only have four loop coordinates

and thus a quadruple cut is a maximum cut. This has two solutions q+ and q−, which can

be used to fit the two four-dimensional coefficients c0 and c1. In particular, the coefficient c0

can be shown to be equal to the average of the integrand evaluated on the two solutions, i.e.

c0 =
1

2


 N (q)∏

j 6=i1,i2,i3,i4 Dj

∣∣∣∣∣
q=q+

+
N (q)∏

j 6=i1,i2,i3,i4 Dj

∣∣∣∣∣
q=q−


 , (3.33)

while c1 is proportional to the difference. The computation of the other coefficients requires

instead to evaluate the integrand on (4 − 2ε)-dimensional quadruple cuts, which admit an

infinite number of solutions {(qs, µ2
s)}. By sampling the integrand on a subset of these solu-

tions and subtracting the contributions coming form 5-point residues, one obtains a system

of equations for the unknown coefficients c2, c3 and c4, using the decomposition

∆i1i2i3i4 =
N (qs, µ

2
s)∏

j 6=i1,i2,i3,i4 Dj
−
∑

k

∆i1i2i3i4k

Dk
, (3.34)

valid on a generic quadruple cut.

3-point residues The coefficients of the residues of a generic triangle contribution ∆i1i2i3

can be determined by evaluating the integrand on the solutions of the corresponding d-

dimensional triple cut [30], i.e. Di1 = Di2 = Di30. On the solutions {(qs, µ2
s)} the integrand

decomposition reads

∆i1i2i3 =
N (qs, µ

2
s)∏

j 6=i1,i2,i3 Dj
−
∑

i4

∆i1i2i3i4

Di4

−
∑

i4,i5

∆i1i2i3i4i5

Di4Di5

, (3.35)

hence one can compute the coefficients of the residue by sampling the integrand on a finite

subset of these solutions and subtracting the non-vanishing contributions coming from boxes

and pentagons.

2-point residues In order to determine the coefficients of the bubble residues ∆i1i2 one can

evaluate the integrand on the solutions {(qs, µ2
s)} of the corresponding d-dimensional double
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cut Di1 = Di2 = 0. In this case the integrand decomposition reads

∆i1i2 =
N (qs, µ

2
s)∏

j 6=i1,i2 Dj
−
∑

i3

∆i1i2i3

Di3

−
∑

i3,i4

∆i1i2i3i4

Di3Di4

−
∑

i3,i4,i5

∆i1i2i3i4i5

Di3Di4Di5

, (3.36)

and one needs to subtract higher-point contributions from triangles, boxes and pentagons.

1-point residues Finally, the coefficients of the tadpole residues ∆i1 can be determined

by evaluating the integrand on the corresponding single cut Di1 = 0, where the integrand

decomposition becomes

∆i1 =
N (qs, µ

2
s)∏

j 6=i1 Dj
−
∑

i2

∆i1i2

Di2

−
∑

i2,i3

∆i1i2i3

Di2Di3

−
∑

i2,i3,i4

∆i1i2i3i4

Di2Di3Di4

−
∑

i2,i3,i4,i5

∆i1i2i3i4i5

Di2Di3Di4Di5

, (3.37)

and one needs to subtract higher-point contributions from bubbles, triangles, boxes and pen-

tagons.

Sampling the integrand Since, with the exception of 5-point cuts and four-dimensional

4-point cuts, every multiple cut has an infinite number of solutions, there is also an infinite

number of choices on how to sample the numerator in order to obtain a system of equations for

the coefficients of the residues. A choice proposed in Ref. [128], and then implemented in the

public code Samurai [43], has been the usage of values of the loop coordinates corresponding

to a Discrete Fourier Transform which can be used to project out the values of the coefficients

of the polynomial residues. More details on this approach can be found in the two references

we mentioned. In Chapter 4, we present instead the integrand reduction via Laurent expansion

method, where no choice of sampling is needed and the systems of equations for the coefficients

are automatically diagonal.
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Chapter 4

One-loop amplitudes via Laurent

series expansion with Ninja

In this Section we will describe the Integrand Reduction via Laurent Series Expansion method,

proposed in Ref. [96] and implemented in the public C++ library Ninja [97], which is an

alternative one-loop integrand reduction algorithm to the traditional one we reviewed in

Section 3.5.1. This new algorithm is based on the systematic application of the Laurent

series expansion to an integrand on the multiple cuts. After performing a suitable Laurent

expansion on a multiple cut, in the asymptotic limit both the integrand and the subtraction

terms exhibit the same polynomial behavior as the residue. This allows one to directly identify

the coefficients of the residues (and thus the ones of the Master Integrals) with the ones of the

Laurent expansion of the integrand, corrected by subtractions terms which can be computed

once and for all as functions of a subset of the higher-point coefficients. This leads to a

diagonal system of equations for the coefficients of each residue and to a significant reduction

of the number of subtraction terms which affect the computation of lower-point contributions.

Ninja is a public C++ library which provides a semi-numerical implementation of the

integrand reduction via Laurent expansion. Since the integrand of a one-loop amplitude is a

rational function of the loop momentum, a Laurent expansion can be performed via a partial

fraction decomposition. Ninja implements it semi-numerically via a simplified polynomial

division algorithm between the expansions of the numerator and the ones of the denominators.

The simplified subtractions and the diagonal systems of equations make the algorithm

implemented in Ninja significantly simpler and lighter than the traditional one. The library

has been interfaced with the one-loop package GoSam [49, 98] and has been used to com-

pute NLO corrections to Higgs boson production in association with a top-quark pair and

a jet [100] and several six-, seven- and eight-point amplitudes involving both massive and

massless particles as external states or propagating in the loop [99]. More recently, it has

been used for producing new phenomenological analysis on Higgs boson production in gluon

fusion in association with two and three jets [101]. These applications showed that Ninja
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has better performance and numerical stability than implementations of traditional integrand

reduction algorithms.

In this chapter we will focus on the description of the algorithm and its implementation,

while in Chapter 5 we will present several phenomenological results obtained using Ninja.

In Section 4.1 we will review the method, pointing out its differences with respect to the

traditional one. In Section 4.2 we will give more details about the implementation in the

C++ library Ninja, whose basic usage is described in Appendix C.

4.1 The method

As we showed in Chapter 3, the coefficients appearing in the integrand decomposition can be

computed by evaluating the integrand on multiple cuts, i.e. on values of the loop momentum

q̄ such that a subset of loop denominators vanish [42]. More in detail, the coefficients of a

k-point residue ∆i1···ik can be determined by evaluating the integrand on the corresponding

k-ple cut Di1 = · · · = Dik = 0. For these values of the loop momentum, the only non-

vanishing contributions of the integrand decomposition are the ones coming from the residue

in consideration and from all the higher-point residues which have {Di1 , . . . , Dik} as a subset

of their loop denominators.

Within the original integrand reduction algorithm [42, 43, 128], the coefficients are com-

puted by sampling the numerator of the integrand on a finite subset of the on-shell solutions,

subtracting all the non-vanishing contributions coming from higher-point residues, and finally

solving the resulting linear system of equations. This is therefore a top-down approach, where

higher-point residues are computed first, starting from k = 5, and systematically subtracted

from the integrand for the evaluation of lower-point contributions. These are referred to as

subtractions at the integrand level.

The integrand reduction via Laurent expansion method, presented in Ref. [96], improves

this reduction strategy by elaborating on techniques proposed in [30, 37]. Whenever the

analytic dependence of the integrand on the loop momentum is known, this approach allows

to compute the coefficients of a residue ∆i1···ik by performing a Laurent expansion of the

integrand with respect to one of the components of the loop momentum which are not fixed

by the on-shell conditions of the corresponding multiple cut Di1 = · · · = Dik = 0. In the

asymptotic limit defined by this Laurent expansion, both the integrand and the higher-point

subtractions exhibit the same polynomial behavior as the residue. Therefore one can directly

identify the unknown coefficients with the ones of the Laurent expansion of the integrand,

corrected by the contributions coming from higher-point residues.

Hence, by choosing a suitable Laurent expansion, one obtains a diagonal system of equa-

tions for the coefficients of the residues, while the subtractions of higher-point contributions

can be implemented as corrections at the coefficient level which replace the subtractions at

the integrand level of the original algorithm. Since the polynomial structure of the residues is
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Figure 4.1: Schematic illustration of the simplifications involved in the Laurent expansion

method, with respect to the traditional method depicted in Fig. 3.3.

universal and does not depend on the process, the parametric form of the coefficient-level cor-

rections can be computed once and for all, in terms of a subset of the higher-point coefficients.

More in detail, the corrections at the coefficient level are known functions of a subset of the

coefficients of 3- and 2-point residues. In particular, no subtraction term coming from 4- and

5-point contributions is ever needed. This allows to skip the computation of the (spurious)

5-point contributions entirely, and to completely disentangle the determination of 4-point

residues from the one of lower point contributions. A pictorial view of the simplifications

obtained with the Laurent expansion method is given in Fig. 4.1.

In the following, we address more in detail the computation of 5-, 4-, 3-, 2-, and 1-

point residues, also commonly known as pentagons, boxes, triangles, bubbles and tadpoles

respectively. For simplicity, we first focus on renormalizable theories, where (up to a suitable

choice of gauge) the maximum allowed rank of the integrand is equal to the number of

loop denominators and the most general parametrization of the residues is the one given in

Eq. (3.27). Ninja can also be used for the computation of integrals whose rank exceeds the

number of denominators by one. The extension of the method to the higher-rank case is

discussed in Subsection 4.1.1.

5-point residues As mentioned above, pentagon contributions are spurious. Within the

original integrand reduction algorithm, their computation is needed because they appear in

the subtractions at the integrand level required for the evaluation of lower-point contribu-
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tions. A 5-point residue only has one coefficient, which can easily be computed by evaluating

the numerator of the integrand on the corresponding 5-ple cut. Within the Laurent expan-

sion approach, the subtraction terms coming from five-point residues always vanish in the

asymptotic limits we consider, therefore their computation can be skipped. For this reason,

in the library Ninja the computation of pentagons is disabled by default (even though it can

be enabled for debugging purposes).

4-point residues The coefficient c0 of a box contribution ∆i1i2i3i4 can be determined via

four-dimensional quadruple cuts, as shown in Eq. (3.33). Given the simplicity of that formula,

this is the only coefficient which Ninja computes in the same way as the traditional algorithm.

The coefficient c4 can instead be determined by evaluating the integrand on d-dimensional

quadruple cuts in the asymptotic limit of large µ2 [37]. A d-dimensional quadruple cut has

an infinite number of solutions which can be parametrized by the (−2ε)-dimensional variable

µ2. These solutions become simpler in the considered limit, namely

qν± = −pνi1 + aν ±
√
µ2 + β vν⊥

µ2→∞
= ±

√
µ2 vν⊥ +O(1), (4.1)

where the vector aν and the constant β are fixed by the cut conditions. The coefficient c4

is non-vanishing only if the rank of the numerator is greater or equal to the number of loop

denominators. In a renormalizable theory, it can be found in the µ2 → ∞ asymptotic limit

as the leading term of the Laurent expansion of the integrand

N (q, µ2)∏
j 6=i1,i2,i3,i4 Dj

∣∣∣∣∣
q=
√
µ2v⊥+O(1)

= c4 µ
4 +O(µ3). (4.2)

The other coefficients of the boxes are spurious and, since they neither contribute to the final

result nor to the subtraction terms, their computation can be skipped.

3-point residues The coefficients of the residues of a generic triangle contribution ∆i1i2i3

can be determined by evaluating the integrand on the solutions of the corresponding d-

dimensional triple cut [30]. These can be parametrized by the variable µ2 and a free parameter

t,

qν+ = −pνi1 + aν + t eν3 +
β + µ2

2 t (e3 · e4)
eν4 , qν− = −pνi1 + aν +

β + µ2

2 t (e3 · e4)
eν3 + t eν4 , (4.3)

where the vector aν and the constant β are fixed by the cut conditions Di1 = Di2 = Di3 = 0.

The momentum aν is a linear combination of e1 and e2 and is therefore orthogonal to e3 and

e4. On these solutions, the non-vanishing contributions to the integrand decomposition are

the ones of the residue ∆i1i2i3 , as well as the ones of the boxes and pentagons which share

the three cut denominators. However, after performing a Laurent expansion for large t and

dropping the terms which vanish in this limit, the pentagon contributions vanish, while the
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box contributions are constant in t but they also vanish when taking the average between the

parametrizations q+ and q− of Eq. (4.3). More explicitly,

N (q±, µ
2)∏

j 6=i1,i2,i3 Dj
= ∆i1i2i3 +

∑

j

∆i1i2i3j

Dj
+
∑

jk

∆i1i2i3jk

DjDk

= ∆i1i2i3 + d±1 + d±2 µ
2 +O(1/t), with d+

i + d−i = 0. (4.4)

Moreover, the expansion of the integrand is given by

N (q+, µ
2)∏

j 6=i1,i2,i3 Dj
= n+

0 + n+
7 µ

2 + (n4 + n9 µ
2) t+ n5 t

2 + n6 t
3 +O(1/t),

N (q−, µ
2)∏

j 6=i1,i2,i3 Dj
= n−0 + n−7 µ

2 + (n1 + n8 µ
2) t+ n2 t

2 + n3 t
3 +O(1/t) (4.5)

and it has the same polynomial behavior as the expansion of the residue ∆i1i2i3 ,

∆i1i2i3(q+, µ
2) = c0 + c7 µ

2 + (c4 + c9 µ
2) (e3 · e4) t+ c5 (e3 · e4)2 t2 + c6 (e3 · e4)3 t3 +O(1/t),

∆i1i2i3(q−, µ
2) = c0 + c7 µ

2 + (c1 + c8 µ
2) (e3 · e4) t+ c2 (e3 · e4)2 t2 + c3 (e3 · e4)3 t3 +O(1/t).

(4.6)

By comparison of Eq. (4.4), (4.5) and (4.6) one can directly identify the ten triangle coefficients

as the corresponding terms of the expansion of the integrand,

c0,7 =
1

2
(n+

0,7 + n−0,7), c1,4,8,9 =
n1,4,8,9

(e3 · e4)
, c2,5 =

n2,5

(e3 · e4)2
, c3,6 =

n3,6

(e3 · e4)3
. (4.7)

Hence, with the Laurent expansion method, the determination of the 3-point residues does

not require any subtraction of higher-point terms.

2-point residues The coefficients of a generic 2-point residue ∆i1i2 can be evaluated on the

on-shell solutions of the corresponding double cut Di1 = Di2 = 0, which can be parametrized

as

qν+ = −pνi1 + x eν1 + (α0 + xα1) eν2 + t eν3 +
β0 + β1 x+ β2 x

2 + µ2

2 t (e3 · e4)
eν4 ,

qν− = −pνi1 + x eν1 + (α0 + xα1) eν2 +
β0 + β1 x+ β2 x

2 + µ2

2 t (e3 · e4)
eν3 + t eν4 , (4.8)

in terms of the three free parameters x, t and µ2, while the constants αi and βi are fixed

by the on-shell conditions. After evaluating the integrand on these solutions and performing

a Laurent expansion for t → ∞, the only non-vanishing subtraction terms come from the

triangles,

N (q±, µ
2)∏

j 6=i1,i2 Dj
= ∆i1i2 +

∑

j

∆i1i2j

Dj
+
∑

jk

∆i1i2jk

DjDk
+
∑

jkl

∆i1i2jkl

DjDkDl

= ∆i1i2 +
∑

j

∆i1i2j

Dj
+O(1/t). (4.9)



50 4 One-loop amplitudes via Laurent series expansion with Ninja

Even though the integrand and the subtraction terms are rational functions, in the asymptotic

limit they both have the same polynomial behavior as the residue, namely

N (q+, µ
2)∏

j 6=i1,i2 Dj
= n0 + n9 µ

2 + n1 x+ n2 x
2 −

(
n5 + n8x

)
t+ n6 t

2 +O(1/t)

N (q−, µ
2)∏

j 6=i1,i2 Dj
= n0 + n9 µ

2 + n1 x+ n2 x
2 −

(
n3 + n7x

)
t+ n4 t

2 +O(1/t) (4.10)

∆i1i2j(q+, µ
2)

Dj
= c

(j)
s3,0

+ c
(j)
s3,9

µ2 + c
(j)
s3,1

x+ c
(j)
s3,2

x2 −
(
c

(j)
s3,5

+ c
(j)
s3,8

x
)
t+ c

(j)
s3,6

t2 +O(1/t)

∆i1i2j(q−, µ
2)

Dj
= c

(j)
s3,0

+ c
(j)
s3,9

µ2 + c
(j)
s3,1

x+ c
(j)
s3,2

x2 −
(
c

(j)
s3,3

+ c
(j)
s3,7

x
)
t+ c

(j)
s3,4

t2 +O(1/t)

(4.11)

∆i1i2(q+, µ
2) = c0 + c9 µ

2 + c1 (e1 · e2)x+ c2 (e1 · e2)2 x2

+
(
c5 + c8 (e1 · e2)x

)
(e3 · e4) t+ c6 (e3 · e4)2 t2 +O(1/t)

∆i1i2(q−, µ
2) = c0 + c9 µ

2 + c1 (e1 · e2)x+ c2 (e1 · e2)2 x2

+
(
c3 + c7 (e1 · e2)x

)
(e3 · e4) t+ c4 (e3 · e4)2 t2 +O(1/t). (4.12)

The coefficients c
(j)
s3,i

of the expansion of the subtractions terms in Eq.s (4.11) are known

parametric functions of the triangle coefficients. Hence, the subtraction of the triangle contri-

butions can be implemented by applying coefficient-level corrections to the terms appearing

in the expansion of the integrand. More explicitly, by inserting Eq.s (4.10), (4.11) and (4.12)

in Eq. (4.9) one gets

c0,9 = n0,9 −
∑

j

c
(j)
s3,0,9

,

c1,3,5 =
1

(e1 · e2)

(
n1,3,5 −

∑

j

c
(j)
s3,1,3,5

)
,

c2,4,6,7,8 =
1

(e1 · e2)2

(
n2,4,6,7,8 −

∑

j

c
(j)
s3,2,4,6,7,8

)
. (4.13)

1-point residues The only non-spurious coefficient c0 of a tadpole residue ∆i1 can be

computed by evaluating the integrand on solutions of the single cut Di1 = 0. For this

purpose, one can consider 4-dimensional solutions of the form

qν+ = −pνi1 + t eν3 +
m2
i1

2 t (e3 · e4)
eν4 , (4.14)
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parametrized by the free variable t. In the asymptotic limit t→∞, only bubble and triangle

subtraction terms are non-vanishing,

N (q+)∏
j 6=i1 Dj

= ∆i1 +
∑

j

∆i1j

Dj
+
∑

jk

∆i1jk

DjDk
+
∑

jkl

∆i1jkl

DjDkDl

= ∆i1 +
∑

j

∆i1j

Dj
+
∑

jk

∆i1jk

DjDk
+O(1/t). (4.15)

Similarly to the case of the 2-point residues, in this limit the integrand and the subtraction

terms exhibit the same polynomial behavior as the residue, i.e.

N (q+)∏
j 6=i1 Dj

= n0 + n4 (e3 · e4) t+O(1/t) (4.16)

∆i1j(q+)

Dj
= c

(j)
s2,0

+ c
(j)
s2,4

(e3 · e4) t+O(1/t) (4.17)

∆i1jk(q+)

DjDk
= c

(jk)
s3,0

+ c
(jk)
s3,4

(e3 · e4) t+O(1/t) (4.18)

∆i1(q+) = c
(i1)
0 + c

(i1)
4 t+O(1/t). (4.19)

Putting everything together, the coefficient of the tadpole integral can be identified with the

corresponding one in the expansion of the integrand, corrected by coefficient-level subtractions

from bubbles and triangles

c0 = n0 −
∑

j

c
(j)
s2,0
−
∑

jk

c
(jk)
s3,0

. (4.20)

The subtraction terms c
(j)
s2,0

and c
(jk)
s3,0

, coming from 2-point and 3-point contributions respec-

tively, are known parametric functions of the coefficients of the corresponding higher-point

residues.

4.1.1 Higher-rank extension

As we pointed out in Ref. [96], the Laurent expansion method can be generalized to non-

renormalizable and effective theories with higher-rank numerators. In a renormalizable theory,

with a proper choice of gauge the rank r can not be greater than the number n of loop

propagators. Ninja can also be used for the computation of integrals with r = n + 1. Here

we describe the generalization of the method to the higher-rank case we presented in [97],

underlining the points where it differs from the renormalizable case.

While the extension of the Laurent expansion method for the computation of higher-rank

3-point and 2-point residues is straightforward, for 4-point and 1-point residues some further

observations are in order. The generalization of the Laurent expansion method described here

allows to efficiently compute the non-spurious coefficients of 4- and 1-point residues without

spoiling the nice features of the algorithm, such as the simplified subtractions of higher-point

contributions and the diagonal systems of equations.
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4-point residues The coefficient c0 can be computed exactly as in the renormalizable case.

For the coefficient c4, one needs instead to keep also the next-to-leading term in the µ2

expansion described before, so that the d-dimensional solutions of a quadruple cut, given in

Eq. (4.1), in the asymptotic limit become

qν± = −pνi1 + aν ±
√
µ2 + β vν⊥

µ2→∞
= −pνi1 + aν ±

√
µ2 vν⊥ +O

(
1√
µ2

)
, (4.21)

where it is worth noticing that aν can be obtained as the average of the two solutions of the

corresponding four-dimensional quadruple cut. In this limit, the expansion of the integrand

reads

N (q, µ2)∏
j 6=i1,i2,i3,i4 Dj

∣∣∣∣∣
q=
√
µ2v⊥+a+O(µ−1)

= c5 v
2
⊥ µ

5 + c4µ
4 +O(µ3), (4.22)

hence the leading term is now the spurious coefficient c5, but c4 can still be obtained as the

next-to-leading term. This can be implemented semi-numerically, by keeping the two leading

terms of the expansion of the numerator and performing a polynomial division with respect

to the two leading terms in the expansion of the uncut denominators which have the form

Dh6=i1,i2,i3,i4 |q=q+ = dh,0
√
µ2 + dh,1 +O

(
1√
µ2

)
. (4.23)

Given the very limited number of terms involved, the division can be implemented very

efficiently in a small number of operations (more details are given in Section 4.2.1). We

observe that the computation and the subtraction of pentagons is not needed in the higher-

rank case either.

1-point residues On higher-rank 1-point residues ∆i1 we consider d-dimensional solutions

of the corresponding single cut of the form

qν+ = −pνi1 + t eν1 +
m2
i1

+ µ2

2 t (e1 · e2)
eν2 , qν− = −pνi1 + t eν3 +

m2
i1

+ µ2

2 t (e3 · e4)
eν4 , (4.24)

in terms of the free variables t and µ2. By taking the t → ∞ limit of the integrand and the

subtraction terms evaluated on these solutions, we obtain an asymptotic polynomial expansion

of the form

N (q±, µ
2)∏

j 6=i1 Dj
= n±0 + n±1 t+ n±2 t

2 + n±3 µ
2 +O(1/t) (4.25)

∆i1j(q±, µ
2)

Dj
= c
±(j)
s2,0

+ c
±(j)
s2,1

t+ c
±(j)
s2,2

t2 + c
±(j)
s2,3

µ2 +O(1/t) (4.26)

∆i1jk(q±, µ
2)

DjDk
= c
±(jk)
s3,0

+ c
±(jk)
s3,1

t+ c
±(jk)
s3,2

t2 + c
±(jk)
s3,3

µ2 +O(1/t). (4.27)
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One can check that the non-spurious coefficients of the tadpole are given in terms of the ones

of the expansions above by

c0 = n+
0 −

∑

j

c
+(j)
s2,0
−
∑

jk

c
+(jk)
s3,0

,

c14 = n+
3 −

∑

j

c
+(j)
s2,3
−
∑

jk

c
+(jk)
s3,3

,

c15 =
2

(e3 · e4)

(
n−3 −

∑

j

c
−(j)
s2,3
−
∑

jk

c
−(jk)
s3,3

− c14

)
. (4.28)

4.2 Implementation in the C++ library Ninja

The C++ library Ninja provides a semi-numerical implementation of the Laurent expansion

method described in Section 4.1. The Laurent series expansion is typically an analytic opera-

tion, but since a one-loop integrand is a rational function of the loop variables, its expansion

can be obtained via a partial fraction decomposition between the numerator and the denom-

inators. This is implemented in Ninja via a simplified polynomial-division algorithm, which

takes as input the coefficients of a parametric expansion of the numerator N and computes

the leading terms of the quotient of the polynomial division with respect to the uncut denom-

inators. In this section we give further details about the implementation of the reduction.

The usage of the library and its input are described in Appendix C.

4.2.1 Reduction via polynomial division

For every phase-space point, Ninja at run-time computes the parametric solutions of the

multiple cuts corresponding to each residue. The Laurent expansion of the integrand on

these solutions is performed via a simplified polynomial division between the expansion of

the numerator and the set of the uncut denominators. The coefficients of this expansion are

corrected by the coefficient-level subtractions appearing in Eq. (4.13) and (4.20). The non-

spurious coefficients are finally multiplied by the corresponding Master Integrals in order to

obtain the integrated result as in Eq. (3.29).

Ninja takes as input the numerator and three parametric expansions of the same, which

roughly correspond to the ones described in Eq. (4.1) (or (4.21) for the higher-rank case),

(4.3) and (4.8) respectively. No new expansion is needed for the tadpoles, where we can

use a special case of the parametric expansion we defined for the triangles. A more detailed

definition of the input is given in Appendix C.3.1. The coefficients of the expansions of the

numerator are written on a contiguous array. The Laurent expansion of the integrand is thus

obtained via a simplified polynomial division between these and the uncut denominators.

This division is performed in-place on the same array, keeping only the elements which are

needed for the final result. A possible implementation for an univariate expansion, with a
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numerator

N = num[0] tr + num[1] tr−1 + . . .+ num[nterms-1] tr−nterms+1 +O(tr−nterms)

and denominator

D = d[0] t+ d[1] + d[2]
1

t
,

would have the form

void division(Complex num[], int nterms , Complex den [3])

{

for (int i=0; i<nterms; ++i) {

num[i] /= den [0];

if (i+1<nterms) {

num[i+1] -= den [1]* num[i];

if (i+2<nterms)

num[i+2] -= den [2]* num[i];

}

}

}

One can check that this routine correctly replaces the first nterms elements of the array

num with the first nterms leading elements of the Laurent expansion of N/D. The actual

implementation in Ninja, having to deal with multivariate expansions, is significantly more

involved than the division procedure presented here. Nevertheless, it qualitatively follows

the same algorithm.

In the case of the µ2-expansion needed for the higher-rank case (defined from Eq. (4.21)),

the implementation can however be even simpler. Indeed every expansion only needs to

contain the two leading terms. More in detail, if num and den are arrays of length two

containing the leading and next-to-leading terms in the expansion of the numerator and a

denominator respectively, we can perform the division in place with the commands

num [0] /= den [0];

num [1] -= den [1]* num [0];

num [1] /= den [0];

which will have the effect of replacing the entries of num with the ones of the expansion of

N/D.

The coefficients obtained by the division are then corrected by the coefficient-level sub-

tractions and thus identified with the corresponding coefficients of the residues, as explained

in Section 4.1. Once the reduction is complete, the non-spurious coefficients are multiplied

by the corresponding Master Integrals.
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4.2.2 Master Integrals

Ninja calls the routines implementing the Master Integrals through a generic interface which,

as in the case of the numerator (see Appendix C), is defined in the C++ code via an abstract

class. This allows one to use any integral library which can be specified at run-time. More

details on the implementation of this interface are given in Appendix C. The current version

of Ninja already implements it for two integral libraries.

The first built-in interface is a C++ wrapper of the routines of the OneLoop library

[45, 129]. This wrapper caches every computed integral allowing constant-time lookup of

their values from their arguments. The caching of the integrals can significantly speed up the

computation, especially for complex processes. Every instance of the class has an independent

cache of Master Integrals (hence, one may safely use it in multi-threaded applications by using

one instance of the class per thread).

The second implementation of the interface uses instead the LoopTools library [44],

which already has an internal cache of computed integrals.

By implementing a suitable interface, the user can specify any other library to be used,

without the need of compiling Ninja again. This interface should provide implementations of

the Master Integrals appearing in Eq. (3.29), except those whose numerator is proportional

to µ2, which contribute to the rational part of the amplitude and are already implemented in

Ninja.

Rational integrals The integrals of Eq. (3.29) whose numerator is proportional to pow-

ers of µ2 are finite and contribute to the so-called rational part of the amplitude, while the

other contributions are known, for historical reasons, with the name of cut-constructible part.

As we stated, only the integrals contributing to the cut-constructible part need to be imple-

mented by the libraries of Master Integrals, while the others are computed by Ninja using

the formulas [23]

Ii1i2i3i4 [µ4] = − 1

6
+O(ε) (4.29)

Ii1i2i3 [µ2] =
1

2
+O(ε) (4.30)

Ii1i2 [µ2] = − si1i2
6

+
m2
i1

+m2
i2

2
+O(ε), (4.31)

where sij is defined by

sij ≡ (pi − pj)2 (4.32)

in terms of the momenta pi appearing in the denominators, as in Eq. (3.14). In the higher-

rank case, as one can see from Eq. (3.31), three new kinds of rational integrals appear. They
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have been all computed in Ref. [96] and they read

Ii1i2i3 [µ4] =
1

6

(
si2i1 + si3i2 + si1i3

4
−m2

i1 −m2
i2 −m2

i3

)
+O(ε) (4.33)

Ii1i2 [µ2 ((q + pi1) · v)] =
((pi2 − pi1) · v)

12

(
si2i1 − 2m2

i1 − 4m2
i2

)
+O(ε) (4.34)

Ii1 [µ2] =
m4
i1

2
+O(ε), (4.35)

where v is an arbitrary momentum.

Other higher-rank integrals The libraries which implement Master Integrals interfaced

with Ninja do not need to provide implementations of the higher-rank integrals appearing in

Eq. (3.31), because the library has a default implementation of them in terms of lower point

integrals. Specifying an alternative implementation is however possible. The only additional

higher-rank integrals which contribute to the cut-constructible part of an amplitude are a

bubble integral of rank 3 and a tadpole integral of rank 2. The latter can be written as a

function of the scalar tadpole integral Ii1 as follows [96]

Ii1 [((q + pi1) · e3) ((q + pi1) · e4)] = m2
i1

(e3 · e4)

4

(
Ii1 +

m2
i1

2

)
+O(ε). (4.36)

As for the former, since the vector e2 in the bubble integral of rank 3 appearing in Eq. (3.31)

is massless, the corresponding integral is simply proportional to the form factor B111,

Ii1i2 [((q + pi1) · e2)3] = ((pi2 − pi1) · e2)3B111(si2i1 ,m
2
i1 ,m

2
i2). (4.37)

The form factor can be computed using the formulas of Ref. [130], as a function of form factors

of scalar integrals B0. In the special case with si2i1 = 0 we use Eq. (A.6.2) and (A.6.3) of that

reference. For the general case si2i1 6= 0 we implement instead the following formula [97],

B111(si2i1 ,m
2
i1 ,m

2
i2) =

1

4 s3
i2i1

{
si2i1

(
m2
i1 Ii1 + Ii1 [µ2]−m2

i2 Ii2 − Ii2 [µ2]

− 4 Ii1i2 [µ2 ((q + pi1) · (pi2 − pi1))]

− 4m2
i1 Ii1i2 [(q + pi1) · (pi2 − pi1)]

)

+ 4 (m2
i2 −m2

i1 − si2i1) Ii1i2 [((q + pi1) · (pi2 − pi1))2]

}
.

(4.38)



Chapter 5

Phenomenological applications of

Ninja and GoSam

In this chapter we describe several results obtained using the one-loop package GoSam and

the Ninja library. Ninja can be interfaced to any one-loop generator capable of providing the

input it needs, and in particular to packages which can reconstruct the analytic dependence

of the numerators on the loop momentum. This allows to achieve a complete automation of

the computation of one-loop amplitudes and to fully exploit the advantages of the algorithm

implemented in the library for phenomenological applications. An interface between Ninja

and the one-loop package GoSam [49] is already built in the library. Ninja is indeed the

default reduction library used by GoSam since version 2.0 [98]. An interface with the package

FormCalc [44] is currently under development.

In Section 5.1 we give a general description of the one-loop package GoSam and its

interface with the Ninja library, showing the computation of several six-, seven- and eight-

point amplitudes involving massive particles as either external states or internal states of

the loop. We give several benchmarks and we also perform an assessment of the numerical

stability of the computations. In Section 5.2 and 5.3 we present phenomenological results

obtained with Ninja and GoSam, by using available interfaces between the latter and Monte

Carlo generators. These are examples of fully automated predictions at next-to-leading order

in perturbation theory for physical observables in high-energy physics.

5.1 Multi-leg massive amplitudes with Ninja and GoSam

In this section we describe the one-loop package GoSam and its interface with the library

Ninja. We assess the performance and numerical stability of this computational framework

(which we will refer to as GoSam+Ninja) on a selection of challenging calculations of scat-

tering amplitudes with massive bosons and quarks, involving six, seven, and eight external

legs.
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5.1.1 The one-loop package GoSam

GoSam [49] is a Python package for the automated computation of one-loop amplitudes. It

takes as an input a process run card defining the process to be computed and some options.

Alternatively, it can be used as a One-Loop Provider (OLP) interfaced to Monte Carlo pro-

grams according to the standards defined in [131, 132], for the fully automated computation

of physical observables.

The generation of the integrands performed by GoSam is based on Feynman diagrams,

which are generated using QGraf [133]. Analytic expressions for tree-level amplitudes and

one-loop integrands are produced with the computer algebra system Form [124], using the

package Spinney [134] for the spinor algebra. The parts of the analytic expressions which

do not depend on the loop momentum q̄ are factored out and substituted by global abbre-

viations. This makes the resulting formulas suited for integrand reduction methods, where

several evaluations of the integrand at different values of q̄ are required. The integrands are

thus cast in a suitable form for the reduction (depending on the reduction libraries to be

used) and written into Fortran90 code optimized for fast numerical evaluation, using either

Haggies [135] or the recent features of Form-4 [124,136,137].

The Fortran code is then compiled and used as input for reduction libraries. GoSam

is currently interfaced to three reduction libraries: Samurai [43, 138], Golem95 [139–141]

and Ninja [97]. Within GoSam, one can switch between the three reduction libraries at run

time. The first version of GoSam used Samurai as default reduction library and Golem95 as

rescue system for points detected as numerically unstable (more details on numerical stability

will be given later). The current version of the code, namely GoSam-2.0, uses instead Ninja

as default reduction library.

In Fig. 5.1 we show the schematic workflow of GoSam, both as a standalone generator of

one-loop amplitudes (on the left) and as a OLP in combination with a Monte Carlo program

(on the right). As mentioned above, in the standalone case the user fills out a process run-

card where the process is defined and some options can be tuned. Once the run card is filled,

GoSam can be invoked with the command

gosam.py process.in

where process.in is the name of the run-card file. This creates a directory (whose path

can be specified in the card) with all the files needed for the generation of the amplitude,

including all the Feynman diagrams of the process obtained with QGraf. The command

make source

in this directory computes the analytic expression of the loop integrands and writes the

corresponding source code. The latter can then be compiled with

make compile
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and the integrals are computed thanks to interfaces to the reduction libraries Ninja, Golem95

and Samurai.

Among the options which can be activated during the generation of the amplitudes, there

is a new feature of GoSam-2.0 called diagsum, which sums loop diagrams characterized (up

to a shift in the integration variables) by the same set of loop momenta. Diagrams being

summed could share the same loop propagators but differ by tree parts external to the loop,

as shown in the example of Fig. 5.2. Another case where the diagsum option takes effect is

when different diagrams have the same loop denominators but with different particle content,

as shown in the example of Fig. 5.3.

When GoSam is used as OLP, this mechanism is stirred by the Monte Carlo program in

use. In this case the input for GoSam is an order file generated by the Monte Carlo, with the

details about the partonic sub-processes whose scattering amplitudes are needed. GoSam

reads this and creates a contract file, which contains details about how the OLP will provide

the scattering amplitudes asked for in the order file. This allows the Monte Carlo program to

communicate at run-time with OLPs such as GoSam and provide full NLO predictions for

physical observables.

5.1.2 Interfacing Ninja and GoSam

The interface between Ninja and GoSam was presented in [99]. Ninja, as mentioned in

Section 4.2.1, takes as input the numerator and three parametric expansions of the same.

The analytic generation of the integrands implemented in GoSam makes the computation of

the expansions needed by Ninja straightforward. Moreover, since the q̄-independent part of

the numerator is factored out into abbreviations, the generation of such expansions is very fast

and efficient, compared to the time needed for the generation of the integrands themselves.

These expansions are described in detail in Appendix C.3.1.

Within Ninja, an integrand is defined by an instance of a C++ class derived from the

abstract class ninja::Numerator, with methods for the evaluation of the numerator expres-

sion and its expansions. In the GoSam interface built in Ninja, we define a numerator class

of this form (called GoSamNumerator) as a generic wrapper of subroutines of the same type as

the ones generated by GoSam. We also define routines which can be used by the Fortran90

code and wrap the calls of the C++ methods performing the computation of the integrals.

The internal options of Ninja can, to some degree, be controlled from the code generated

by Gosam, by importing the Fortran90 module ninjago module (details on its usage are

given in Appendix C.4.4).

5.1.3 Precision tests

In this subsection, we asses the problem of estimating the numerical accuracy of a result

computed within GoSam using a reduction algorithm such as the one implemented in Ninja.
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Figure 5.1: On the left, the basic work-flow of GoSam. On the right, the schematic setup

for GoSam as an OLP in combination with a Monte Carlo program.
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4.1 Group 9 (5-Point)

General Information

The maximum effective rank in this group is 5.
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Figure 5.2: Example of diagrams sharing loop propagators but differing for their tree parts.

This diagrams are automatically summed by GoSam when the diagsum option is set to

diagsum=true.

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

u

u

(A)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

ug

ug

(B)

d(k1)

d(k2)

µ−(k3)

µ+(k4)

d(k5)

d(k6)

γ

g

d

g

g

g

(C)

5

Figure 5.3: Example of diagrams sharing common loop denominators, but with different

particle content in the loop. They are automatically summed by GoSam when the diagsum

option is set to diagsum=true.



62 5 Phenomenological applications of Ninja and GoSam

Having a reliable method for the determination of the precision of the numerical computation

is of primary importance. During a phase-space integration, for every phase-space point, if

the (estimated) quality of the result falls below a certain threshold of accuracy, either the

point is discarded or the evaluation of the amplitude is repeated by means of a numerically

more stable, albeit less efficient, procedure. Examples of such methods involve the use of

higher precision routines or, in the case of GoSam, the use of traditional tensor reduction of

the amplitude, provided by Golem95.

Here we mention three methods for the estimation of the accuracy of the computed am-

plitude at a given phase-space point. They are commonly known as pole check, scaling test

and rotation test respectively.

The pole check is a simple and widely adopted strategy, which consists in testing whether

the pole of the numerically computed amplitude agrees, after UV renormalization, with the

analytic result obtained from the known universal behavior of the infrared singularities. The

main drawback of this method is that the number of contributions to the finite part of an

amplitude is often higher than the one of the contribution to its poles. Therefore, the pole

check very often results in an overestimate of the precision of the computation, since it doesn’t

take into account all the sources of error.

The scaling test, proposed in Ref. [51], is instead a more reliable method, which comes at

the price of a double evaluation of the amplitude. It consists in comparing the value of the

computed amplitude with the one of an analogous computation where all the momenta and

physical scales are multiplied by a constant factor x. As shown in [51], this method provides

a very good correlation between the estimated precision, and the actual precision of the finite

parts.

In the following, we will focus on the third method we mentioned, i.e. the rotation test.

Similarly to the scaling test, also the rotation test consists in comparing two different evalua-

tions of the amplitude. As the name suggests, in the second evaluation we rotate the external

kinematics along a given axis (typically the z axis). Since a scattering amplitude is invariant

under rotation, the obtained result can be directly compared with the one obtained with the

original kinematics, and their difference can be used as an estimate of the numerical error.

We tested that the choice of the angle of rotation does not affect the estimate, as long as this

angle is not too small.

In order to study the correlation of the error estimated by the rotation test and the exact

error, we follow the strategy of Ref. [51]. In particular, we generated 104 points for the

process ud̄ → Wbb̄g with massive bottom quarks. We define the “exact” amplitude Aex as

the one obtained by a computation in quadruple precision for the finite part and from the

analytic expression for the poles1. We simply denote as A the amplitude computed in double

1The word “exact” is obviously not to be taken literally. The only important property we will use is that,

with these definitions, the difference |Aex −A| is, for the purposes of our analysis, a very close approximation

of the exact error of the computed amplitude A.
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Figure 5.4: Correlation plot based on 104 points for the process ud̄ → Wbb̄g with massive

bottom quarks.

precision and Arot the same amplitude computed after a rotation of the external kinematics.

The choice of the process is motivated by the fact that, while being non-trivial and containing

several mass scales, it is also simple enough to be evaluated on several phase-space points in

quadruple precision. Hence, we define the “exact” error δex as

δex =

∣∣∣∣
Aex −A
Aex

∣∣∣∣ , (5.1)

and the estimated error δrot as

δrot = 2

∣∣∣∣
Arot −A
Arot +A

∣∣∣∣ . (5.2)

In Fig. 5.4, we plot the distribution of the quantity

C =
log10(δrot)

log10(δex)
− 1, (5.3)

evaluated for each phase space point. The good correlation between δrot and δex is confirmed

by the narrow distribution peaked at C = 0. We observe a similar behavior between the

rotation test and the scaling test.

In the following, we will employ the rotation test for the estimation of the precision of

the finite part of each renormalized virtual matrix element. If we call δ0 the error at any

given phase space point and calculate it according to Eq. (5.2), we can define the precision

of the finite part as P0 = log10(δ0). Concerning the precision of the double and single poles,

P−2 = log10(δ−2) and P−1 = log10(δ−1), we simply use the formula in Eq. (5.1), where the

poles of Aex are computed, after renormalization, from the infrared (IR) divergencies, whose

expressions are well known [142].
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Figure 5.5: Precision Plot for gg → tt̄Hg: the distributions are obtained using 5·104 randomly

distributed phase space points.

In order to statistically assess the precision of the results obtained with GoSam+Ninja,

in Fig. 5.5 and 5.6, we plot the distributions of P−2 (precision of the double pole), P−1

(single pole) and P0 (finite part) for two challenging virtual amplitudes with massive internal

and external particles, namely gg → tt̄Hg (tt̄Hj) and uū → Huūgg (H + 4j) in VBF. By

selecting an upper bound on the value of P0, we can set a rejection criterion for phase space

points in which the quality of the calculated scattering amplitudes falls below the requested

precision. This also allows to estimate the percentage of points which would be discarded

(or recomputed by the rescue system). This value, as expected by analyzing the shape of

the various distributions, is strongly process dependent and should be selected according to

the particular phenomenological analysis at hand. As a benchmark value, in Ref. [51] the

threshold for rejection was set to P0 = −3. In a similar fashion, in Table 5.1, we provide

the percentages of bad points, which are points whose precision falls below the threshold, for

increasing values of the rejection threshold.

The distributions in the two plots refer to sets of 5 · 104 and 1 · 105 phase space points,

for gg → tt̄Hg and uū → Huūgg (VBF) respectively, where the random external kinematic

is generated using Rambo [143]. The use of the algorithm implemented in Ninja yields

significant improvements both in the accuracy of results and in reduction of the computational

time, due to a more efficient reduction and less frequent calls to the rescue system. These

features make GoSam+Ninja an extremely competitive framework for massive, as well as

massless, one-loop calculations.
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Figure 5.6: Precision plot for uū→ Huūgg in VBF: the distributions are obtained using 105

randomly distributed phase space points.

P0 uū→ Huūgg gg → tt̄Hg

−3 0.02% 0.06%

−4 0.04% 0.16%

−5 0.08% 0.56%

Table 5.1: Percentage of bad points as a function of the rejection threshold P0, for the most

complex partonic sub-processes of pp→ H + 4j in VBF and pp→ tt̄H + 1j respectively.

Precision tests within GoSam-2.0

Since version 2.0, GoSam has an automated built-in implementation of the rotation test we

presented above, in addition to the pole check which was already available in the previous

version of the code. The new version also allows a more flexible and refined assessment of the

accuracy of the results, which in turn determines when the rescue system is called (if present).

More in detail, the trigger for the rescue system is a hybrid method, that takes advantage of

the computational speed of the pole test, combined with the higher reliability of the rotation

test. This hybrid method requires setting three different thresholds, namely Phigh, Pset and

Plow (with Phigh > Plow). The assessment of the precision is done as follows:

• after computing the matrix elements, GoSam checks the precision −P−1 of the single

pole with the pole test, and if −P−1 > Phigh the point is automatically accepted as

stable

• if −P−1 < Plow the point is either rejected or sent to the rescue system
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• if Phigh > −P−1 > Plow, the computation of the amplitude is repeated with rotated

kinematics and the rotation check will determine whether the point should be accepted

or not, using the threshold Pset for the comparison.

The motivation behind this mechanism can be stated as follows. If the pole is extremely

accurate, then we can also expect the finite part to be acceptably good. If instead the

accuracy of the pole is very low and falls below the lower threshold Plow, we cannot even

expect the finite part – whose computation has more sources of numerical instabilities – to be

acceptable. Finally, if the accuracy of the pole is good but not excellent, we cannot rely on

this check alone and the rotation test is triggered, giving the final answer. Also notice that

one can disable the rotation check by setting Phigh = Plow.

5.1.4 Application to Massive Amplitudes

In Table 5.2 we give a list of processes computed using GoSam and Ninja, showing the

number of diagrams and the timing for the calculation of a full color- and helicity-summed

amplitude on one phase-space point. Each of these processes involve six, seven or eight

external legs, and at least one massive particle either in the final state or running in the

loop. While some of the considered processes had already been studied in the literature, the

virtual NLO QCD contributions to pp → Wbb̄ + n jets (n = 1, 2), pp → Zbb̄j, pp → Ztt̄j,

pp → V V V j (with V = W,Z), pp → ZZZZ, and pp → H + n jets (n = 4, 5) in VBF have

been presented in Ref. [99] for the first time. When occurring in the final state, the bottom

quark is treated as massive. In Appendix D we provide results for a phase space point and a

detailed list of the input parameters for each process listed in Table 5.2.
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Benchmarks: GoSam + Ninja

Process # NLO diagrams ms/event

W + 3 j dū→ ν̄ee
−ggg 1 411 226

Z + 3 j dd̄→ e+e−ggg 2 928 1 911

Z Z Z + 1 j uū→ ZZZg 915 *12 000

W W Z + 1 j uū→W+W−Zg 779 *7 050

W Z Z + 1 j ud̄→W+ZZg 756 *3 300

W W W + 1 j ud̄→W+W−W+g 569 *1 800

Z Z Z Z u ū→ Z Z Z Z 408 *1 070

W W W W uū→W+W−W+W− 496 *1 350

tt̄bb̄ (mb 6= 0)
dd̄→ tt̄bb̄ 275 178

gg → tt̄bb̄ 1 530 5 685

tt̄+ 2 j gg → tt̄gg 4 700 13 827

Z b b̄+ 1 j (mb 6= 0) dug → ue+e−bb̄ 708 *1 070

W b b̄+ 1 j (mb 6= 0) ud̄→ e+νebb̄g 312 67

W b b̄+ 2 j (mb 6= 0)

ud̄→ e+νebb̄ss̄ 648 181

ud̄→ e+νebb̄dd̄ 1 220 895

ud̄→ e+νebb̄gg 3 923 5387

W W b b̄ (mb 6= 0)
dd̄→ νee

+ν̄µµ
−bb̄ 292 115

gg → νee
+ν̄µµ

−bb̄ 1 068 *5 300

W W b b̄+ 1 j (mb = 0) uū→ νee
+ν̄µµ

−bb̄g 3 612 *2 000

H + 3 j in GF

dd→ Hgdd 868 135

dd̄→ Hguū 467 56

dd̄→ Hggg 2 519 842

gg → Hggg 9 325 8 706

t t̄ Z + 1 j
uū→ tt̄e+e−g 1408 1 220

gg → tt̄e+e−g 4230 19 560

t t̄ H + 1 j
uū→ Htt̄g 320 76

gg → tt̄Hg 1 517 1 505

H + 3 j in VBF uū→ Hguū 432 101

H + 4 j in VBF uū→ Hgguū 1 176 669

H + 5 j in VBF uū→ Hggguū 15 036 29 200

Table 5.2: A summary of results obtained with GoSam+Ninja. Timings refer to full color-

and helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40GHz, compiled with

ifort. The timings indicated with an (*) are obtained with an Intel(R) Xeon(R) CPU E5-

2650 0 @ 2.00GHz, compiled with gfortran. The C++ source code of Ninja was compiled

with g++.
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5.2 Higgs boson production plus a top quark pair and a jet

In this section we present the calculation of the cross section for Higgs boson production in

association with a top quark pair plus one jet, at next-to-leading-order (NLO) accuracy in

QCD. Besides the cross section, we show several distributions of physical observables, such as

the invariant mass of the top quark pair, the transverse momentum and the pseudorapidity

of the Higgs boson.

The production rate for a Higgs boson associated with a top-antitop pair (tt̄H) is particu-

larly interesting for the determination of the nature of the new boson observed at LHC [1,2],

since it is directly proportional to the SM Yukawa coupling of the Higgs boson to the top

quark. As mentioned in Section 2.2, accurate predictions are necessary and will play a crucial

role for the complete determination of the properties of such boson [110], and in particular

to shed light on the structure of its couplings to the other particles. The study of differ-

ential observables and distributions involving a quark top pair and a Higgs as a final state

will bring useful information for the determination of the couplings and the parity of the

particle [144,145].

The difficulties related to the analysis of the tt̄H channel are well known. This channel has

small production rates, due to strongly suppressed parton distribution functions at the high

center-of-mass energy required for the initial partons in order to produce the tt̄H final state.

Additional difficulties are represented by the presence of various backgrounds and by the

complexity of the final state, which make its kinematic reconstruction quite challenging [146].

At the parton level, the tt̄H production at next-to-leading order (NLO) in QCD has been

known for some time [147–151]. More recently, this process has been employed in a number

of studies, motivated by the new analyses performed at the LHC [144–146,152].

Here we present the complete NLO QCD corrections to the process pp → tt̄H + 1 jet

(tt̄Hj) at the LHC. In Fig. 5.7 we show examples of diagrams contributing to the amplitudes

for the two main sub-processes, namely

q q̄ → t t̄ H g, g g → t t̄ H g.

All the other sub-processes can be obtained by crossings from these two. We illustrate the

outcome of our calculation by showing the total cross section, and a selection of differential

distributions.

The considered process can be important for the phenomenological analyses at the LHC,

in particular in the high-pT region, where the presence of the additional jet can be sensibly

relevant. This also constitutes the first application of the Laurent series expansion method

implemented in Ninja for the evaluation of one-loop amplitudes. Because of the presence

of two mass scales and the top mass inside the loop, this process seriously compromises the

numerical stability of traditional integrand-reduction algorithms, hence using Ninja for the

reduction has been particularly important for both the performance and the accuracy of the
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Figure 5.7: Sample of one-loop diagrams contributing to the NLO corrections to gg → tt̄Hg

and qq̄ → tt̄Hg.

computation. Indeed, as noted in the precision tests reported in Table 5.1, for the highly

non-trivial process under consideration only a small set of phase-space points, of the order of

few per mill, were detected as unstable. All these points have been recovered using the tensor

reduction provided by Golem95 [139,140], which is the default rescue system for GoSam.

In order to compare the processes pp → tt̄H and pp → tt̄Hj at NLO QCD accuracy, we

also used the this framework for the computation of the cross section for tt̄H production. We

found excellent agreement with the results presented in Ref.s [48,144].

5.2.1 Numerical computation and results

Cross sections and differential distributions are obtained with an automated framework, using

Gosam as One-Loop Provider (OLP) and the Monte Carlo Sherpa [153]. For the virtual con-

tributions computed with Gosam, we used Ninja as reduction library. While GoSam+Ninja

provides the virtual corrections, the Born and the real emission matrix elements – necessary for

the NLO cross section and distributions – are computed using Sherpa [153] with the library

Amegic [154], which implements the Catani-Seymour dipole formalism [155, 156]. Sherpa

also performs the integration over the phase space and the analysis. The code generated

by Gosam is linked to Sherpa by means of the Binoth Les Houches Accord (BLHA) [131]

interface, as we briefly explained in Section 5.1.1.

The ultraviolet, the infrared, and the collinear singularities are regularized using dimen-

sional reduction. The renormalization conditions are fixed along the lines of [148,150], where

the top mass is renormalized on-shell, while the strong coupling is renormalized in the MS

scheme, decoupling the top quark from the running. The wave functions of the gluon and of

the quarks are renormalized on-shell, i.e. the corresponding renormalization constants cancel
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the external self-energy corrections exactly. We use the running of the strong coupling con-

stant with one-loop and two-loop accuracy, for the computation of LO and NLO contributions

respectively.

The values of double and the single poles, for each individual sub-process, have been

checked to agree with the universal singular behavior of dimensionally regulated one-loop

amplitudes [142]. The results fulfill gauge invariance, verified through the vanishing of the

amplitudes when substituting the polarization vector of one or more gluons with the corre-

sponding momentum.

In the following, we present numerical results for the integrated cross section and distri-

butions. The masses of the particles involved and the parameters of the electroweak sector

are shown in the following tables

Parameter Value
√
s 8 TeV

mH 126 GeV

mt 172.5 GeV

Parameter Value

mW 80.419 GeV

mZ 91.1876 GeV

α−1
EW 132.50698

The jets are clustered using the antikt-algorithm implemented in FastJet [116, 157, 158]

with radius R = 0.5, a minimum transverse momentum of pT,jet > 15 GeV and pseudo-

rapidity |η| < 4.0. The LO cross sections are computed with the LO parton-distribution

functions cteq6L1 [159], whereas at NLO we use CT10 [160]. In order to study the scale

dependence of the total cross section, we employ two different choices for the renormalization

and factorization scales µR = µF = µ0, namely µ0 = HT and µ0 = 2×GAT with

HT =
∑

final

states f

|pT,f | , (5.4)

GAT = 3

√
mT,H mT,tmT,t̄ +

∑

jets j

|pT,j | . (5.5)

Within this setup, for the two scale choices, we obtain the following total LO and NLO

cross sections

Central Scale σLO [fb] σNLO [fb]

2×GAT 80.03+35.64
−23.02 100.6+0.00

−9.43

HT 88.93+41.41
−26.13 102.3+0.00

−15.82

The scale dependence of the total cross section, depicted in Fig. 5.8, is strongly reduced by the

inclusion of the NLO contributions. We notice that the two choices for the renormalization

and factorization scales give very similar results.

In Fig. 5.9, we compare the distributions for the invariant mass of the top quark pair in

pp→ tt̄Hj at LO and NLO with the NLO curve for pp→ tt̄H. For tt̄Hj, going from LO to
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Figure 5.8: Scale dependence of the total cross section at LO and NLO.

NLO accuracy, we observe an increase in the distribution by 20–35% over the full kinematic

range. On the other hand, when comparing the NLO tt̄H prediction with the NLO tt̄Hj

curve, the cross section decreases due to the presence of the additional jet which takes away

energy from the tt̄ system. This is particularly evident near the tt̄ production threshold, while

for high values of the tt̄ invariant mass the two NLO curves get closer.

In Fig. 5.10 and Fig. 5.11, we display the distributions of the transverse momentum pT and

the pseudorapidity η of the Higgs boson, respectively. Each plot contains the distributions at

LO and NLO accuracy. The NLO corrections are particularly important for high values of

the pT , which are the kinematic regions involved in the boosted analyses [152,161].

In Appendix D.18 we give, as a reference, benchmark points for the scattering amplitudes

of the two independent partonic sub-processes we mentioned above.

The results we showed are a very non-trivial example of automated NLO calculation of

physical observables using a framework which combines the one-loop generator GoSam, the

reduction library Ninja and the Monte Carlo Sherpa. This shows that this framework

is capable of making physical predictions at NLO for multi-leg processes involving massive

particles, both as final states and inside the loop of the virtual contribution. Moreover, with

this computation we assessed the impact of further jet activity in pp → tt̄H, one of the

most important channels for the direct determination of the coupling of the Higgs boson to

fermions. We performed the computation for two different choices of renormalization and

factorization scale, showing that they yield very similar results. The NLO QCD corrections

reduce the scale uncertainty and their numerical impact can be sizable on the shapes of the

distributions. Therefore they could be helpful for an accurate simulation of the signal in the

experimental searches looking for Higgs production in association with a top-antitop pair at

the LHC.
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Figure 5.9: Invariant mass distributions of the tt̄-pairs for tt̄Hj at LO and NLO with the two

scale choices µ = 2GAT (left) and µ = HT (right). On the left, we also show the comparison

with Htt̄.
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Figure 5.10: Transverse momentum distribution of the Higgs boson at LO and NLO accuracy

for tt̄Hj with the two scale choices µ = 2GAT (left) and µ = HT (right). On the left, we also

show the comparison with Htt̄.
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Figure 5.11: Pseudorapidity η of the Higgs boson at LO and NLO accuracy for tt̄Hj with

the two scale choices µ = 2GAT (left) and µ = HT (right). On the left, we also show the

comparison with Htt̄.

5.3 Higgs boson production plus two and three jets in gluon

fusion

The production mechanism of the Higgs boson with the largest cross section at LHC is Gluon

Fusion (GF). As we mentioned in Section 2.2, in this channel the Higgs couples with the

gluons via a top-quark loop. In this section we describe the computation of NLO corrections

for Higgs boson production in GF in association with two and three jets.

Accurate theoretical predictions for Higgs boson plus jets production can be important

for several reasons. The GF channel, while being the dominant one for Higgs production at

LHC, is also characterized by a large QCD background. This background can be reduced

by applying jet vetoes (i.e. constraints on the observed jets in the final states). A correct

estimation of the theoretical uncertainty, when a jet veto is applied, relies in turn on the

knowledge of the cross section of Higgs boson production with jets. Another important

reason is that Higgs plus jets production in the GF channel is the main background to Higgs

production in Vector Boson Fusion (VBF). The latter is particularly important, because it

allows to measure the couplings of the Higgs with the electroweak bosons.

The leading order (LO) contribution to the production of a Higgs boson in association

with two jets (H + 2j) and three jets (H + 3j), have been computed in Ref.s [162, 163] and

Ref. [164] respectively. These computations retain the full dependence on the top-mass mt

and showed that the top-mass approximation (mt → ∞) is valid whenever the mass of the

Higgs particle and the pT of the jets are not significantly larger than the mass of the top



74 5 Phenomenological applications of Ninja and GoSam

g
g

H
g

g

g

g

H

g

g

g

Figure 5.12: Example of diagrams contributing to H + 2j (left) and H + 3j (right) in the

all-gluon partonic subprocess. In the infinite to-mass approximation, the Higgs couples with

the gluons via an effective vertex.

quark. In this approximation, the top-quark loop which couples the Higgs and the gluons is

replaced by an effective local interaction, as described more in detail in the Subsection 5.3.1.

The results presented in this thesis will use this approximation.

The NLO corrections for H+2-jets in GF at LHC were first computed in Ref. [165, 166]

using amplitudes computed in Ref.s [167–178]. We more recently repeated the computation in

Ref. [102], using for the first time an automated tool for the evaluation of both tree-level and

loop amplitudes. In this computation we used GoSam and Sherpa, while the reduction was

performed using an extended version [138] of the library Samurai, which uses the higher-rank

polynomials computed in Ref. [96] and in Eq. (3.28) of this thesis.

In Ref. [103] we computed, for the first time, NLO corrections to H+3-jets in GF. This

calculation has been particularly challenging due to the complexity of both the real and the

virtual contributions. Results for the cross section have been obtained with a hybrid setup

which combines the features of two different Monte Carlo tools. For the generation and

integration of the Born and of the virtual contributions, we used an automated framework

for fixed order NLO QCD calculations, based on the interplay of GoSam+Samurai and

Sherpa [153], where the tree-level matrix elements are obtained with the Amegic [154]

library. For the integration of the real-radiation terms, the dipole-subtraction terms, and

the integrated dipoles, we used a combination of MadGraph [179, 180] (matrix elements),

MadDipole [181,182] (subtraction terms), and MadEvent [183] (numerical integration).

More recently, we presented some new results for H + 2j and H + 3j [101] applying a set

of ATLAS-like cuts. For this computation, more recent features of GoSam were available,

including the interface with the C++ library Ninja which has been used for the computa-

tion of the one-loop integrals, yielding a significant improvement in both performance and

numerical accuracy. As we showed in Section 4.1.1, Ninja can be used for the computation
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of higher-rank integrals such as the ones appearing in the processes involving the effective

gluon-gluon-Higgs interaction.

5.3.1 The large top-mass limit

As mentioned, the computations for H + 2j and H + 3j are performed in the effective theory

defined by the infinite top mass limit (mt → ∞). In this limit, the coupling between the

gluons and the Higgs, which in the Standard Model is mediated by a massive quark loop, is

described by an effective local interaction [184]

Leff = −geff

4
H Tr (GµνG

µν) (5.6)

which couples the gluons and the Higgs boson directly. The effective Feynman rules of this

interaction involve couplings between the Higgs and 2, 3 or 4 gluons. They are

H

g1

g2

= −igeffFµ1µ2
a1a2

H

g1

g2

g3

= −igeffFµ1µ2µ3
a1a2a3

H

g1

g2

g3

g4

= −igeffFµ1µ2µ3µ4
a1a2a3a4

where

Fµ1µ2
a1a2

= δa1a2 (kµ2
1 kµ1

2 − (k1 · k2) gµ1µ2)

Fµ1µ2µ3
a1a2a3

= fa1a2a3

[
gµ1µ2 (kµ3

1 − kµ3
2 )

+ gµ2µ3 (kµ1
2 − kµ1

3 )

+ gµ3µ1 (kµ2
3 − kµ2

1 )
]

Fµ1µ2µ3µ4
a1a2a3a4

= fa1a2bfa3a4b[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fa1a3bfa2a4b[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fa1a4bfa2a3b[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ]. (5.7)

The value of the effective coupling, which can be found e.g. from the mt → ∞ limit of the

gg → H scattering amplitude, in the MS scheme is given by [185,186]

geff = − αs
3πv

(
1 +

11

4π
αs

)
+O(α3

s). (5.8)
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As one can see from Eq. (5.7), the Hgg 3-point vertex has rank 2 with respect to the momenta

of the interacting particles. This yields loop integrands whose rank is higher than the number

of loop denominators.

5.3.2 Numerical computation and results

For H+2j, as in the case of tH̄+1j, the computation has been performed with an automated

framework which uses GoSam for the one-loop amplitudes and Sherpa as Monte Carlo

program. As we stated, the two are interfaced using the standard Binoth-Les-Houces Accord.

For H + 3j, as we mentioned, the very high complexity of the process required a combination

of Monte Carlo tools, namely GoSam+Sherpa for Born and Virtual contributions, and

MadGraph/MadDipole/MadEvent for the real emission and subtraction terms. We

verified the independence of our result under the variation of the so called α-parameter that

fixes the amount of subtractions around the divergences of the real corrections. We first

proved the consistency of our hybrid MC integration on H + 2j, verifying that the full cross

section at NLO agrees with the one obtained using Sherpa and GoSam alone. Moreover,

we found excellent agreement between MadGraph and Sherpa for the LO cross section of

H + 3j as well.

The results have been computed for proton-proton collisions at LHC with center-of-mass

energy
√
s = 8 TeV and the following values of the coupling constants

Parameter Value

GF 1.16639 · 10−5 GeV−2

αLOs (mZ) 0.129783

αNLOs (mZ) 0.117981

where αLOs (mZ) and αNLOs (mZ) are the initial values of αs at the scale mZ used for LO

and NLO computations respectively. The couplings are thus evolved to the chosen scales of

the process using the running coupling equations at one- and two-loop accuracy for LO and

NLO respectively. The ultraviolet, the infrared, and the collinear singularities are regularized

using dimensional reduction. UV divergencies are renormalized in the MS scheme. The jets

are clustered using the antikt-algorithm implemented in FastJet [116,157,158].

In Appendix D.16 we give, as a reference, benchmarks points for the scattering amplitudes

of H + 3j, choosing a set of independent partonic subprocesses (from which all the others

can be found by crossing or relabeling of quark flavors), obtained using Ninja as reduction

library.

In the following we give more details about each specific computation mentioned above.

H + 2 jets

Here we give more details about the NLO corrections to H + 2j presented in Ref. [102].

The mass of the Higgs boson is set at mH = 125 GeV. GoSam automatically identified and
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generated the following minimal set of subprocesses

g g → H g g, g g → H q q̄, q q̄ → H q q̄, q q̄ → H q′ q̄′,

while all the others can be obtained from crossing and proper relabeling of q, q̄, q′, q̄′ with the

correct quark flavors.

We use the cteq6L1 and cteq6mE parton distribution functions for the LO and NLO

respectively, and the following cuts are applied to the anti-kt jet algorithm

R = 0.5, pt,jet > 20GeV, |ηjet| < 4.0. (5.9)

The central value for the renormalization and factorization scales µR and µF is chosen as µ0

defined by

µ0 = ĤT =
√
m2
H + p2

t,H +
∑

jets j

|pt,j |. (5.10)

The theoretical uncertainty is thus estimated by varying µR and µF from µ0/2 to 2µ0.

Within this framework, we find the following total cross sections

σLO[pb] = 1.90+0.58
−0.41, σNLO[pb] = 2.90+0.05

−0.20.

The LO distributions have been computed using 2.5 × 107 phase space points, whereas all

NLO distributions have been obtained using 4.0 × 106 phase space points for the Born and

the virtual corrections and 5.0× 108 points for the real radiation for each scale.

In Fig. 5.13, we present the distribution of the transverse momentum pT of the Higgs

boson and its pseudorapidity η, respectively. Both of them show a K-factor between the LO

and the NLO distribution of about 1.5− 1.6, which is almost flat over a large fraction of the

kinematic range. Furthermore both plots show a decrease of the scale uncertainty of about

50%. Fig. 5.14 displays the transverse momentum of the first and second jet, whereas their

pseudorapidity is shown in Fig. 5.15. The previous considerations are also true for these plots.

For the transverse momentum distributions, however, we observe a slight change of shapes.

In the case of the leading jet, increasing the pT , the K-factor decreases from 1.6 to 1.4. For

the second leading jet, it increases from 1.4 to 1.6.

H + 3 jets

Here we give more details about the setup and the results for H + 3j presented in Ref. [103].

The minimal set of subprocesses identified by GoSam is

g g → H g g g, g g → H q q̄ g, q q̄ → H q q̄ g, q q̄ → H q′ q̄′ g.

We used the same PDFs as in the H + 2j case, as well as the same cuts given in Eq. (5.9).

The central scale for renormalization and factorization has here been chosen as

µ0 =
ĤT

2
=

1

2

(√
m2
H + p2

t,H +
∑

jets j

|pt,j |
)
. (5.11)
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Figure 5.13: Transverse momentum pT (left) and pseudorapidity η (right) of the Higgs boson

in H + 2j.

The strong coupling is evaluated at different scales according to

α5
s → α2

s(mH)α3
s(µR).

As usual, the theoretical uncertainty is estimated by varying µR and µF from µ0/2 to 2µ0.

Within this setup we obtain the following total cross section at LO and NLO:

σLO[pb] = 0.962+0.51
−0.31, σNLO[pb] = 1.18+0.01

−0.22.

The scale dependence of the total cross section, depicted in Fig. 5.16, is strongly reduced by

the inclusion of the NLO contributions.

In Fig. 5.17, we show the pT distributions of the three jets and of the Higgs boson. The

NLO corrections enhance all distributions for pT values lower than 150 − 200 GeV, whereas

their contribution is negative at higher pT . This behavior is explicitly shown in the lower part

of the distribution on the right of Fig. 5.17 for the case of the Higgs boson.

H + 2 and H + 3 jets with ATLAS-like cuts

In Ref. [101] some new analysis for H + 2j and H + 3j were presented. The main difference

with the setup described above is the choice of ATLAS-like cuts,

R = 0.4, pt,jet > 30GeV, |ηjet| < 4.4. (5.12)

Moreover, since this calculation is more recent, it could use the interface between GoSam

and the Ninja library for the computation of one-loop integrals. This resulted in a reduction

of the computational time of about 50% for the computation of a scattering amplitude in a



5.3 Higgs boson production plus two and three jets in gluon fusion 79

Figure 5.14: Transverse momentum pT of the first (left) and the second (right) jet in H + 2j.

single phase-space point. The stability also improved, giving a rate of unstable points below

one per mill, which in turn yields a further increase in performance because of a less frequent

call of the rescue system. The Higgs mass is set to mH = 126 GeV and central scale µ0 for

µR and µF is chosen according to Eq. (5.11).

With this setup we obtain the following total cross sections

σ
(H+2j)
LO ([pb]) = 1.23+37%

−24%, σ
(H+3j)
LO ([pb]) = 0.381+53%

−32%,

σ
(H+2j)
NLO ([pb]) = 1.590−4%

−7%, σ
(H+3j)
NLO ([pb]) = 0.485−3%

−13%.

In Ref. [101] we also show several preliminary distribution. As an example, we plot in Fig. 5.18

the rapidity distribution of the Higgs for H + 3j.



80 5 Phenomenological applications of Ninja and GoSam

Figure 5.15: Pseudorapidity η of the first (left) and the second (right) jet in H + 2j.
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Figure 5.16: Scale dependence for H + 3j of the total cross section at LO and NLO.
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Figure 5.17: Distributions for H + 3j. On the left, the transverse momentum (pT ) of the

first, second, and third leading jet. On the right, the transverse momentum (pT ) of the Higgs

boson.
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Figure 5.18: Higgs rapidity distribution for H + 3j, using ATLAS-like cuts.



82 5 Phenomenological applications of Ninja and GoSam



Chapter 6

Integrand reduction at higher loops

In this chapter, we show some applications of the general integrand reduction method de-

scribed in Chapter 3 to higher-loop diagrams. In Section 6.1 we show explicit two-loop applica-

tions of the fit-on-the-cut approach described in Section 3.3.1. In Section 6.2 we use instead the

divide-and-conquer approach to perform the reduction of several higher-loop integrands, some

of which cannot be treated with other unitarity-based approaches and integrand-reduction

methods, because of the presence of higher powers of loop denominators in the integrands.

6.1 Fit on the cut at two loops

In this section we consider two-loop amplitudes in four dimensions. In this case, as we observed

in Section 3.2, the irreducible polynomial residues entering the integrand decomposition can

have a maximum of eight denominators, as a consequence of the reducibility criterion1. Hence,

the most general decomposition of an integrand is a special case of Eq. (3.6), namely

Ii1···in ≡
Ni1···in

Di1 · · ·Din

=
8∑

k=0

∑

{j1,...,jk}

∆j1···jk
Dj1 · · ·Djk

, (6.1)

or equivalently the numerator can be written as

Ni1···in(q1, q2) =

8∑

k=0

∑

{j1···jk}

∆j1···jk
∏

h∈{i1···in}\{j1···jk}

Dh. (6.2)

The fit-on-the-cut approach can be applied once the parametric form of the residues is known.

This can be found as the most general remainder of a polynomial division modulo a Gröbner

basis of the ideal generated by the denominators of each residue.

1A potential ambiguity on the application of the reducibility criterion may arise in topologies with nine

denominators two of which are degenerate, so that only eight are actually independent. However, in this

case the one-loop sub-topology contains at least six denominators, yielding thus a system of equations for the

corresponding cut with no solution, and the criterion still applies.
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For each sub-set {j1, . . . , jk} of denominators corresponding to a residue to be computed,

we proceed as follows:

1. We decompose the two loop momenta q1 and q2 in terms of suitably chosen four-

dimensional bases {ei}4i=1 and {τi}4i=1 respectively as

qµ1 = − rµ1 + x1 e
µ
1 + x2 e

µ
2 + x3 e

µ
3 + x4 e

µ
4

qµ2 = − rµ2 + y1 τ
µ
1 + y2 τ

µ
2 + y3 τ

µ
3 + y4 τ

µ
4 , (6.3)

so that N = N (z), with z = (z1, . . . , z8) = (x1, x2, x2, x4, y1, y2, y3, y4) up to a choice of

order of the variables.

2. We define the ideal Jj1···jk and a Gröbner basis Gj1···jk generated by the loop denomi-

nators Dj1 , Dj2 , . . . , Djk as in Eq. (3.5).

3. We fix a maximum rank rmax and we consider the most general numerator allowed by

the theory

Nj1···jk(z) =
∑

~r∈R(rmax)

α~r

(
8∏

i=1

zrii

)
, R(rmax) ≡

{
~r ∈ N8 :

8∑

i=1

ri ≤ rmax

}
. (6.4)

The parametric form of the residue ∆j1···jk is thus the most general remainder of a

generic numerator of the form of Eq. (6.4) and the Gröbner basis Gj1···jk .

4. For every phase-space point, we compute the coefficients which parametrize each residue

by evaluating Eq. (6.2) on the solutions of the multiple cut Dj1 = · · · = Djk and solving

the resulting system of equations.

It is worth noticing that, depending on the rank of the numerator, one may also have a

term ∆∅ in Eq. (6.1), which is the sum of the quotients of the last step of the reduction.

This term is spurious and does not need to be computed. It can however be determined by

evaluating the integrand outside the solutions of the multiple cuts. In the examples presented

in this thesis, this kind of terms are never present in the decomposition.

After integration, some terms of the integrand decomposition vanish, while the others give

Master Integrals.

6.1.1 Integrands and parametric residues

The integrands we consider for these examples are contributions to 5-point amplitudes in

N = 4 Super YangMills (SYM) and N = 8 Supergravity (SUGRA). The integrand reduction

of these examples was first addressed in Ref. [91] and then in Ref. [187] using a formalism

closer to the one presented in this thesis. The integrands of these theories are particularly

simple and are therefore suited to be used as examples and first applications of new methods.
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In this thesis, we do not intend to discuss the details of such theories, whose integrands are

only used as toy examples for the reduction methods we illustrated.

The five-point amplitudes in N = 4 SYM and N = 8 SUGRA can be expressed in

terms of six diagrams [188]. The color-ordered amplitude is given by a sum over the cyclic

permutations of the external momenta. We apply the integrand reduction only to the three

diagrams depicted in Fig. 6.1, which are the only ones with a non-trivial reduction. The

other three diagrams are instead already expressed in terms of scalar integrals, since their

numerator is independent of the loop momenta. Each diagram in Fig. 6.1 will be reduced

using the fit-on-the-cut approach, following the strategy outlined above.

In the case ofN = 4 SYM, the integrands of the three diagrams in Fig. 6.1, with kinematics

k1, k2, k3, k4, k5 → 0, can be written as [188]

I(4,a)
1···8 (q1, q2) =

N (4,a)
1···8 (q1, q2)

D1 · · ·D8
, N (4,a)

1···8 (q1, q2) = 2 q1 · v1 + β1, (6.5)

I(4,b)
1···8 (q1, q2) =

N (4,b)
1···8 (q1, q2)

D1 · · ·D8
, N (4,b)

1···8 (q1, q2) = 2 q1 · v1 + β1, (6.6)

I(4,c)
1···8 (q1, q2) =

N (4,c)
1···8 (q1, q2)

D1 · · ·D8
, N (4,c)

1···8 (q1, q2) = 2 q1 · v2 + 2 q2 · v3 + β2 + β3, (6.7)

respectively, where the vectors vµi and the constants βi are defined as

vµ1 =
1

4

(
γ35124(kµ5 − kµ3 ) + γ34125(kµ4 − kµ3 ) + γ45123(kµ5 − kµ4 ) + 2 γ12345(kµ2 − kµ1 )

)
(6.8)

vµ2 =
1

4

(
γ23145(kµ2 − kµ3 ) + γ24135(kµ2 − kµ4 ) + γ34125(kµ3 − kµ4 ) + 2 γ15234(kµ1 − kµ5 )

)
(6.9)

vµ3 =
1

4

(
γ12345(kµ1 − kµ2 ) + γ25134(kµ2 − kµ5 ) + γ15234(kµ1 − kµ5 ) + 2 γ34125(kµ3 − kµ4 )

)
(6.10)

β1 =
1

4

(
γ35124(s34 + s12 + s35) + 2 γ34125 s12 + γ45123(s34 + s12 + s35)

+ 2 γ12345(s23 − s13)
)

(6.11)

β2 =
1

4

(
− (γ23145 + γ24135) s23 + γ34125(s15 + s34 + 2 s23)− 2 γ15234(s13 − s35)

)
(6.12)

β3 =
1

4

(
(γ12345 − γ25134) s12 + γ15234(s34 + s15 + 2 s12)− 2 γ34125(s13 − s14)

)
. (6.13)

The kinematic invariants sij and the functions γ are defined as

sij ≡ (ki + kj)
2 = 2 (ki · kj) (6.14)

γ12345 ≡
(

[1 2][2 3][3 4][4 5][5 1]

[1 4][2 3]〈1 2〉〈3 4〉 − [1 2][3 4]〈1 4〉〈2 3〉

)
− (1↔ 2) , (6.15)

in terms of spinor products (see Appendix A) built from the massless external momenta ki.

In N = 4 SYM, given the simple form of the numerators, the multi-pole decomposition

of the integrands only requires one iteration. The numerators can be decomposed as

N (4,x)
1···8 (q, k) = ∆12345678 +

7∑

i=1

∆1···(i−1)(i+1)···8Di, x = a, b, c. (6.16)
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One can easily check that, given the simple form of the numerator expressions, the number of

7-ple residues of the integrands N (4,a) and N (4,b) is almost halved since ∆1···(i−1)(i+1)···8 = 0

for i 6= 4, 5, 6, 7.

In N = 8 SUGRA, the numerator of each integrand is obtained by squaring the corre-

sponding numerator in N = 4 SYM, as shown in [188]. The numerators are of rank two in

the loop momenta. One can easily show that their decomposition can be expressed in terms

of 8-, 7-, and 6-denominator integrands,

N (8,x)
1···8 (q1, q2) = ∆12345678 +

8∑

i=1

∆1···(i−1)(i+1)···8Di

+

8∑

ij

∆1···(i−1)(i+1)···(j−1)(j+1)···8DiDj , x = a, b, c. (6.17)

The corresponding decomposition for the integrands I(4,a)
1···8 , I(4,b)

1···8 and I(4,c)
1···8 reads

I(4,x)
1···8 (q1, q2) =

∆12345678

D1 · · ·D8
+

8∑

i=1

∆1···(i−1)(i+1)···8∏8
h6=iDh

+

8∑

ij

∆1···(i−1)(i+1)···(j−1)(j+1)···8∏8
h6=i,j Dh

, x = a, b, c. (6.18)

Since the numerators N (8,a)
1···8 and N (8,b)

1···8 are of rank two in q and independent of k, their

decomposition is significantly simplified. Indeed in these cases ∆1···(i−1)(i+1)···8 = 0 for i 6=
4, 5, 6, 7 and ∆1···(i−1)(i+1)···(j−1)(j+1)···8 = 0 for i, j 6= 4, 5, 6, 7. Since the rank of the numerator

is equal to 2, one can easily check that all the 6-point residues are constants

∆i1···i6 = ci1···i6,0. (6.19)

In the following, we list the parametrization of the residues entering our computation,

namely the of 8-ple and 7-ple cuts. All the residues of 8-ple cuts are related to maximum

cuts. According to the maximum-cut theorem (see Section 3.2), the number of coefficients

needed to parametrize these residues is finite and equal to the number of the solutions of the

corresponding cut. For each diagram, we found the most general parametrization of the 8-ple

cut residue, which is process-independent and valid for numerators of any rank in both q1

and q2. The parametrization of the 7-ple residues is also process-independent and it is given

for the case of renormalizable numerators of rank six at most, which is more than we need for

the applications presented in this section, although extending them to arbitrarily high ranks

is straightforward. Since, as we already observed in Chapter 3, the parametric form of the

residues is universal, the same can be used for both N = 4 SYM and N = 8 SUGRA.

In Table 6.1 and 6.2 we show the parametrization of the residues of the diagrams in

Fig. 6.1a and 6.1b respectively. For each multiple cut {j1, . . . , jk}, the corresponding para-

metric residue is a generic linear combinations of the monomials Sj1···jk listed there, in terms
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cut bases z Monomials in the residue

(12345678) Eq. (6.20) (y4, y3, y2, y1, x4, x3, x2, x1) S12345678 = {1, x1, y1, y2}
(1234568) Eq. (6.20) (y4, y3, y2, y1, x4, x3, x2, x1) S1234568 = {1, x1, x21, x31, x41, x2, x1x2,

x21x2, x
3
1x2, y1, x1y1, x

2
1y1, x

3
1y1, x

4
1y1,

x2y1, x1x2y1, x
2
1x2y1, x

3
1x2y1, y

2
1 , x1y

2
1 ,

x2y
2
1 , y

3
1 , x1y

3
1 , x2y

3
1 , y

4
1 , x1y

4
1 , x2y

4
1 , y2,

x1y2, y1y2, y
2
1y2, y

3
1y2}

(1234678) Eq. (6.20) (y4, y3, y2, y1, x4, x3, x2, x1) S1234678 = S1234568
(1234578) Eq. (6.21) (y4, y3, y2, y1, x4, x3, x2, x1) S1234578 = {1, x2, x22, x32, x42, x4, x2x4,

x22x4, x
3
2x4, y1, x2y1, x

2
2y1, x

3
2y1, x

4
2y1, x4y1,

x2x4y1, x
2
2x4y1, x

3
2x4y1, y

2
1 , x2y

2
1 , x4y

2
1 , y

3
1 , x2y

3
1 ,

x4y
3
1 , y

4
1 , x2y

4
1 , x4y

4
1 , y4, x2y4, y1y4,

y21y4, y
3
1y4}

(1235678) Eq. (6.22) (y4, y3, y2, y1, x4, x3, x2, x1) S1235678 = {1, x1, x21, x31, x41, x2,
x1x2, x

2
1x2, x

3
1x2, y1, x1y1, x

2
1y1,

x31y1, x
4
1y1, x2y1, x1x2y1, x

2
1x2y1, x

3
1x2y1,

y21 , x1y
2
1 , x2y

2
1 , y

3
1 , x1y

3
1 , x2y

3
1 ,

y41 , x1y
4
1 , x2y

4
1 , y3, x1y3, y1y3, y

2
1y3, y

3
1y3}

Table 6.1: Set of monomials which parametrize the residues entering the decomposition of the

five-point pentabox diagram in Fig. 6.1. They have all been found using degree lexicographic

monomial ordering. For each cut the bases and the chosen ordering for loop variables are

shown as well.
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cut bases z Monomials in the residue

(12345678) Eq. (6.20) (x4, x3, x2, y3, y4, x1, y2, y1) S12345678 = {1, x1, y1, y2}
(1234568) Eq. (6.20) (y4, y3, y2, y1, x4, x3, x2, x1) S1234568 = {1, x1, x21, x31, x41, x51, x61, x2,

x1x2, x
2
1x2, x

3
1x2, x

4
1x2, x

5
1x2,

y1, x1y1, x
2
1y1, x

3
1y1, x

4
1y1, x

5
1y1, x2y1,

x1x2y1, x
2
1x2y1, x

3
1x2y1, x

4
1x2y1, y

2
1 , x1y

2
1 ,

x2y
2
1 , y

3
1 , x1y

3
1 , x2y

3
1 , y

4
1 , x1y

4
1 , x2y

4
1 , y2,

x1y2, y1y2, y
2
1y2, y

3
1y2}

(1234678) Eq. (6.20) (y4, y3, y2, y1, x4, x3, x2, x1) S1234678 = S1234568
(1234578) Eq. (6.21) (y4, y3, y2, y1, x4, x3, x2, x1) S1234578 = {1, x2, x22, x32, x42, x52, x62, x4,

x2x4, x
2
2x4, x

3
2x4, x

4
2x4, x

5
2x4, y1, x2y1,

x22y1, x
3
2y1, x

4
2y1, x

5
2y1, x4y1, x2x4y1, x

2
2x4y1,

x32x4y1, x
4
2x4y1, y

2
1 , x2y

2
1 , x4y

2
1 , y

3
1 , x2y

3
1 ,

x4y
3
1 , y

4
1 , x2y

4
1 , x4y

4
1 , y4, x2y4, y1y4, y

2
1y4, y

3
1y4}

(1235678) Eq. (6.22) (y4, y2, y3, y1, x4, x3, x2, x1) S1235678 = {1, x1, x21, x31, x41, x51, x61, x2,
x1x2, x

2
1x2, x

3
1x2, x

4
1x2, x

5
1x2, y1,

x1y1, x
2
1y1, x2y1, x1x2y1, y

2
1 , x1y

2
1 , x

2
1y

2
1 ,

x2y
2
1 , x1x2y

2
1 , y

3
1 , x1y

3
1 , x

2
1y

3
1 , x2y

3
1 , x1x2y

3
1 ,

y41 , x1y
4
1 , x

2
1y

4
1 , x2y

4
1 , x1x2y

4
1 , y3, x1y3,

y1y3, y
2
1y3, y

3
1y3}

Table 6.2: The same as Table 6.1, but for the five-point crossed pentabox diagram in Fig. 6.1.
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cut bases z Monomials in the residue

(12345678) Eq. (6.24) (y4, y3, y2, y1, x4, x3, x1, x2) S12345678 = {1, y1, x2, y1x2, x22, x32, x1, x2x1}
(1345678) Eq. (6.24) (x4, x3, x2, x1, y4, y3, y2, y1) S1345678 = {1, y1, y21 , y31 , y41 , y51 , y61 , y2, y1y2,

y21y2, y
3
1y2, y

4
1y2, y

5
1y2, x1,

y1x1, y
2
1x1, y

3
1x1, y

4
1x1, y

5
1x1,

y2x1, y1y2x1, y
2
1y2x1, y

3
1y2x1,

y41y2x1, x
2
1, y1x

2
1, y2x

2
1, x

3
1, y1x

3
1,

y2x
3
1, x

4
1, y1x

4
1, y2x

4
1,

x2, y1x2, x1x2, x
2
1x2, x

3
1x2}

(1245678) Eq. (6.24) (x4, x3, x2, x1, y4, y3, y2, y1) S1245678 = S1345678
(2345678) Eq. (6.25) (x1, x3, x2, x4, y3, y4, y2, y1) S2345678 = {1, y1, y21 , y31 , y41 , y51 , y61 , y4, y1y4,

y21y4, y
3
1y4, y

4
1y4, y

5
1y4, x2, y1x2,

x4, y1x4, y
2
1x4, y

3
1x4, y

4
1x4, y

5
1x4,

y4x4, y1y4x4, y
2
1y4x4, y

3
1y4x4,

y41y4x4, x2x4, x
2
4, y1x

2
4, y4x

2
4,

x2x
2
4, x

3
4, y1x

3
4, y4x

3
4, x2x

3
4, x

4
4, y1x

4
4, y4x

4
4

}
,

(1234567) Eq. (6.24) (x4, x3, x2, x1, y4, y3, y2, y1) S123567 = {1, y1, y21 , y31 , y41 , y2, y1y2, y21y2, y31y2,
x1, y1x1, y

2
1x1, y

3
1x1, y

4
1x1, y2x1, y1y2x1,

y21y2x1, y
3
1y2x1, x

2
1, y1x

2
1, y2x

2
1, x

3
1,

y1x
3
1, y2x

3
1, x

4
1, y1x

4
1, y2x

4
1, x2, y1x2,

x1x2, x
2
1x2, x

3
1x2}

Table 6.3: The same as Table 6.1, but for the five-point double pentagon diagram in Fig. 6.1.
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of the parametrization of the loop momentum given in Eq. (6.3) and the following bases





rµ1 = 0, eµ1 = kµ3 , eµ2 = kµ4 , eµ3 =
〈3|γµ|4]

2
, eµ4 =

〈4|γµ|3]

2
,

rµ2 = 0, τµ1 = kµ2 , τµ2 = kµ1 , τµ3 =
〈2|γµ|1]

2
, τµ4 =

〈1|γµ|2]

2
,

x1 = (q1·k1)
(k1·k2) , x2 = (q1·k2)

(k1·k2) , y1 = (q2·k4)
(k3·k4) , y2 = (q2·k3)

(k3·k4) ;

(6.20)





rµ1 = 0, eµ1 = kµ1 , eµ2 = kµ3 , eµ3,4 =
〈3|2|1]〈1|γµ|3]± 〈1|2|3]〈3|γµ|1]

4
,

rµ2 = 0, τµ1 = kµ1 , τµ2 = kµ3 , τµ3,4 =
〈3|2|1]〈1|γµ|3]± 〈1|2|3]〈3|γµ|1]

4
,

x1 = (q1·k3)
(k1·k3) , x4 = (q1·τ4)

τ2
4

, y1 = (q2·k3)
(k1·k3) , y4 = (q2·e4)

e24
;

(6.21)





rµ1 = 0, eµ1,4 =
〈3|2|1]〈1|γµ|3]∓ 〈1|2|3]〈3|γµ|1]

4
, eµ2 = kµ3 , eµ3 = kµ1 ,

rµ2 = −kµ4 , τµ1,4 =
〈3|2|1]〈1|γµ|3]∓ 〈1|2|3]〈3|γµ|1]

4
, τµ2 = kµ3 , τµ3 = kµ1 ,

x1 = ((q1−k4)·e1)
e21

, x2 = ((q1−k4)·k1)
(k1·k3) , y1 = (q2·τ1)

τ2
1

, y3 = (q2·k3)
(k1·k3) .

(6.22)

The integrand of the double pentagon diagram in Fig. 6.1c is symmetric under the trans-

formation

kµ1 ↔ kµ3 , kµ4 ↔ kµ5 , qµ1 ↔ qµ2 . (6.23)

Therefore, we limit ourselves to list the parametrization of the 8-ple cuts and the 7-ple residues

given in Table 6.3, with the bases for the loop momentum defined as





rµ1 = 0, eµ1 = kµ4 , eµ2 = kµ3 , eµ3 =
〈4|γµ|3]

2
, eµ4 =

〈3|γµ|4]

2
,

rµ2 = 0, τµ1 = kµ5 , τµ2 = kµ1 , τµ3 =
〈5|γµ|1]

2
, τµ4 =

〈1|γµ|5]

2
,

x1 = (q1·k1)
(k5·k1) , x2 = (q1·k5)

(k5·k1) , y1 = (q2·k3)
(k3·k4) , y2 = (q2·k4)

(k3·k4) ;

(6.24)





rµ1 = 0, eµ1 = kµ1 , eµ2 = kµ3 , eµ3,4 =
〈1|4|3]〈3|γµ|1]± 〈3|4|1]〈1|γµ|3]

4
,

rµ2 = −kµ3 , τµ1 = kµ1 , τµ2 = kµ3 , τµ3,4 =
〈1|4|3]〈3|γµ|1]± 〈3|4|1]〈1|γµ|3]

4
,

x2 = ((q1−k3)·k1)
(k1·k3) , x4 = ((q1−k3)·τ4)

τ2
4

, y1 = (q2·k3)
(k1·k3) , y4 = (q2·e4)

e24
.

(6.25)

All the others 7-ple cuts can be easily obtained from the ones we listed, using the transfor-

mation in Eq. 6.23.
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6.1.2 Semi-numerical reduction

Once the general structure of the residues has been determined, we can numerically perform

the integrand reduction to extract the values of all process-dependent coefficients which appear

in their parametric form. The decomposition can be checked by verifying the identity between

the original numerator and its reconstruction, i.e. between l.h.s. and r.h.s. of Eq. (6.2), for

arbitrary values of the integration momenta qi. This procedure is known as global N = N
test of the integrand reduction. Using the same universal parametrization of the residues, we

will perform the reduction of the integrands in N = 4 SYM and N = 8 SUGRA.

Reduction in N = 4 SYM

We will first consider the integrands of N = 4 SYM, given in Eq. (6.5), (6.6) and (6.7) for

the three diagrams in Fig. 6.1 respectively.

The 8-ple cut of the pentabox integrand of Eq. (6.5) can be parametrized using the mono-

mials in Table 6.1,

∆12345678 = c12345678,0 + c12345678,1(q1 · k1) + c12345678,2(q2 · k3) + c12345678,3(q2 · k4) . (6.26)

The number of solutions equals the number of coefficients, in accordance with the maximum-

cut theorem. Therefore the four coefficients appearing in Eq. (6.26) can be obtained by

sampling the numerator on the four solutions of the 8-ple cut, where the decomposition

becomes

N (4,a)
1···8 = ∆12345678. (6.27)

In our case we find that only c12345678,0 and c12345678,1 are non-vanishing. The residue ∆i1···i7 of

the generic 7-ple cut can be parametrized using the results listed in Table 6.1. For the process

at hand, the simple structure of the numerator ensures that the residue can be parametrized

just by a constant term,

∆i1···i7 = ci1···i7,0. (6.28)

The value of ci1···i7,0 is obtained by sampling the numerator and the residue of the 8-ple cut

in correspondence of one solution of the 7-ple cut, where

∆i1···i7 =
N (4,a)

1···8 (q1, q2)−∆12345678∏
h6=i1,...,i7 Dh

. (6.29)

The multi-pole decomposition of the integrand I(4,a)
1···8 thus becomes

I(4,a)
1···8 (q1, q2) =

c12345678,0 + c12345678,1(q1 · k1)

D1 · · ·D)8
+

7∑

i=4

c1···(i−1)(i+1)···8,0∏8
h6=iDh

. (6.30)

This result also shows the decomposition of the integral as linear combination of two Master

Integrals with eight denominators and four Master Integrals with seven denominators.
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The integrand I(b)
1···8 of the crossed pentagon of Eq. (6.6) has the same numerator as the

integrand I(a)
1···8. One can proceed with the same method we used for the latter obtaining an

identical decomposition for the numerator. The multi-pole decomposition will therefore have

the same form as Eq. (6.30).

The third integrand, whose expression is given in Eq. (6.7), can be similarly decomposed

in terms of 8- and 7-point residues. The parametrization of the residue of the 8-ple cut is

given in Table 6.3 and can be written as

∆12345678 = c12345678,0 + c12345678,1(q2 · k3) + c12345678,2(q1 · k5)

+ c12345678,3(q1 · k1) + c12345678,4(q1 · k5)2 + c12345678,5(q1 · k5)(q1 · k1)

+ c12345678,6(q2 · k3)(q1 · k5) + c12345678,7(q1 · k5)3. (6.31)

The 8-ple cut is a maximum cut. Its eight solutions allow one to determine the coefficients

in Eq. (6.31) using the relation

N (4,b)
1···8 = ∆12345678 (6.32)

which holds at values of qi such that D1 = · · · = D8. The non-vanishing coefficients are

c12345678,i for i ≤ 4. Since the numerator has rank one, one can easily see that the generic

7-ple residue ∆i1···i7 entering Eq. (6.16) can be parametrized by a constant term, i.e.

∆i1···i7 = ci1···i7,0. (6.33)

The value of ci1···i7,0 is obtained by sampling the numerator and the residue of the 8-ple cut

at a solution of the cut Di1 = · · · = Di7 , where the relation

∆i1···i7 =
N (4,c)

1···8 (q1, q2)−∆12345678∏8
h6=i1...i7 Dh

(6.34)

holds. The multi-pole decomposition of the integrand of the double pentagon reads as follows

I(4,c)
1···8 (q1, q2) =

c12345678,0 + c12345678,1(q2 · k3) + c12345678,2(q1 · k5) + c12345678,3(q1 · k1)

D1 · · ·D8

+
8∑

i=1

c1···(i−1)(i+1)···8,0∏8
h6=iDh

. (6.35)

The corresponding decomposition of the integral is a linear combination of four Master Inte-

grals with eight denominators and eight Master Integrals with seven denominators.

Reduction in N = 8 SUGRA

We will now repeat the reduction for N = 8 SUGRA. This requires more operations, because

the rank is higher and also 6-ple cuts are needed, besides 8-ple and 7-ple cuts, as shown in

Eq. (6.17).
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We first consider the pentabox diagram in Fig. 6.1a. The computation of the residue

of the 8-ple cut ∆12345678 follows the same pattern as the N = 4 SYM planar pentabox,

described above. The non-vanishing coefficients are c12345678,0 and c12345678,1. The residue

of the generic 7-ple cut Di1 = · · · = Di7 in Eq. (6.17) can be parametrized in terms of the

monomials collected in Table 6.1. The structure of the numerator guarantees that the residue

contains rank-one terms at most:

∆i1···i7 = ci1···i7,0 + ci1···i7,1(q + w0) · w1 + ci1···i7,2(q + w0) · w2

+ ci1···i7,3(k + w3) · w4 + ci1···i7,4(k + w3) · w5. (6.36)

The momenta wµi depend on the cut (i1 · · · i7) and can be read from Table 6.1. The actual

value of the coefficients can be obtained by sampling the numerator on five independent

solutions of the 7-ple cut, where

∆i1···i7 =
N (8,a)

1···8 (q1, q2)−∆12345678∏8
h6=i1,...,i7 Dh

. (6.37)

In this case, all the coefficients but ci1···i7,0, ci1···i7,1, and ci1···i7,2 vanish. The numerator N (8,a)
1···8

has rank two in q and is independent of k. The only non-vanishing term in the residue of the

generic 6-pole cut Di1 = · · · = Di6 in (6.17) is the constant. Hence, we have

∆i1···i6 = ci1···i6,0. (6.38)

The actual value of the constant can be obtained evaluating the decomposition (6.17) at one

solution of the 6-ple cut, where

∆i1···i6 =
N (8,a)

1···8 (q1, q2)−∆12345678∏8
h6=i1,...,i6 Dh

−
7∑

h=4
h 6=i1,...i6,

∆i1···h···i6
Dh

. (6.39)

After polynomial fitting of ∆12345678, ∆i1···i7 and ∆i1···i6 , the resulting multi-pole decomposi-

tion of Eq. (6.18) contains 20 non-vanishing coefficients two of which are spurious (i.e. their

contribution vanishes upon integration) while the others give rise to Master Integrals, namely

two with eight denominators, ten with seven denominators and six with six denominators.

As in the N = 4 SYM case, the crossed pentabox in Fig 6.1b has the same numerator and

the same decomposition as the planar pentabox. Therefore the coefficients of the former are

exactly the same as the coefficients of the latter.

Finally, we address the reduction of the double pentagon in Fig. 6.1c. The computation

of the residue of the 8-ple cut of the double pentagon follows the same lines of the N = 4

SYM double pentagon. The parametrization of the residue is given in Eq. (6.31). In this

case the only vanishing coefficient is c12345678,7. A 7-point residue ∆i1···i7 of the generic cut

Di1 = · · · = Di7 can be parametrized using Eq. (6.36). At the 7-ple cut Di1 = · · · = Di7 the



94 6 Integrand reduction at higher loops

decomposition (6.17) reduces to

∆i1···i7 =
N (8,c)

1···8 (q1, q2)−∆12345678∏8
h6=i1,...,i7 Dh

. (6.40)

The coefficients are then computed by sampling Eq. (6.40) at five solutions of the 7-ple cut.

The non-vanishing ones are those multiplying constant or linear terms in the loop momenta.

The residue ∆i1···i6 of the generic 6-ple cut Di1 = · · · = Di6 can be parametrized by a

constant, as in Eq. (6.38). The constant is computed using one solution of the 6-ple cut and

the expression of the decomposition (6.17) at the 6-ple cut,

∆i1···i6 =
N (8,a)

1···8 (q1, q2)−∆12345678∏8
h6=i1,...,i6 Dh

−
8∑

h6=i1,...,i6

∆i1···h···i6
Dh

. (6.41)

We find that ∆123456 = 0, while the residues of all the other 6-ple cuts are non-vanishing. After

polynomial fitting of ∆12345678, ∆i1···i7 and ∆i1···i6 , the resulting multi-pole decomposition of

Eq. (6.18) contains in this case 74 non-vanishing coefficients, four of which are spurious. The

integral can be decomposed as a linear combination of seven Master Integrals with eight

denominators, 36 Master Integrals with seven denominators and 27 Master Integrals with six

denominators.

6.1.3 Analytic computation

In this section we perform the reduction of the five-point diagrams analytically. In order to

make the computation simpler, we apply a two-loop generalization of the integrand reduction

via Laurent expansion we presented in Chapter 4. As in the one-loop case, the Laurent

expansion allows one to find simpler formulas for the coefficients entering the decomposition.

Moreover, the subtraction of higher-point residues can be performed at the coefficient level

rather than at the integrand level. Indeed, in the asymptotic limit defined by the Laurent

expansion, both the integrand and the subtraction terms are polynomial (while, in general,

only their difference is polynomial). Therefore the subtraction can be implemented at the

coefficient level, i.e. by correcting the terms of the Laurent expansion of the integrands with

suitable counter-terms which are functions of higher-point residues, similarly to the one-loop

case. For simplicity, we will focus on the rank-one numerators in the five-point integrands of

N = 4 SYM. The method can, however, be extended to numerators where the rank is higher,

such as the ones of N = 8 SUGRA, as we will briefly show at the end of the section.

Pentabox diagram

We will first show the analytic decomposition of the pentabox diagram of Fig. 6.1a. We will

actually perform a more general computation, valid for any numerator of the type in Eq. (6.5),

i.e. for any rank-one numerator depending on q1 only. The results for N = 4 SYM will be

recovered at the very end, using Eq. (6.8) and (6.11).
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The four solutions of the 8-ple cut D1 = · · · = D8 = 0 are
(
qµ1,(1), q

µ
2,(1)

)
=

(〈4 5〉
〈3 5〉

〈3|γµ|4]

2
,
〈3 2〉
〈1 3〉

〈1|γµ|2]

2

)

(
qµ1,(2), q

µ
2,(2)

)
=

(〈4 5〉
〈3 5〉

〈3|γµ|4]

2
,
〈1 5〉
〈2 5〉

〈2|γµ|1]

2

)

(
qµ1,(3), q

µ
2,(3)

)
=

(
[4 5]

[3 5]

〈4|γµ|3]

2
,

[1 5]

[2 5]

〈1|γµ|2]

2

)

(
qµ1,(4), q

µ
2,(4)

)
=

(
[4 5]

[3 5]

〈4|γµ|3]

2
,

[3 2]

[1 3]

〈2|γµ|1]

2

)
.

The general parametrization of the residue ∆12345678 is given in Eq. (6.26). The simple form

of the numerator N (4,a)
1···8 implies that the coefficients c12345678,2 and c12345678,3 vanish. The

non-vanishing coefficients can be obtained by sampling at the solutions (qµ1,(1), q
µ
2,(1)) and

(qµ1,(3), q
µ
2,(3)) only. The outcome is

c12345678,0 = − 1

〈5 4〉〈3 1〉[5 3][4 1]− 〈5 3〉〈4 1〉[5 4][3 1]

×
(
〈5 4〉〈4 1〉〈3|v1|4][5 4][3 1]− 〈5 4〉〈3 1〉〈4|v1|3][5 4][4 1]

− β1〈5 4〉〈3 1〉[5 3][4 1] + β1〈5 3〉〈4 1〉[5 4][3 1]
)

(6.42)

c12345678,1 = − 2
〈5 4〉〈3|v1|4][5 3]− 〈5 3〉〈4|v1|3][5 4]

〈5 4〉〈3 1〉[5 3][4 1]− 〈5 3〉〈4 1〉[5 4][3 1]
. (6.43)

One can show that all the 7-ple cuts Di1 = · · · = Di7 = 0 of the diagram in Fig. 6.1a have

solutions of the form

(qµ1 , q
µ
2 ) = (aµ1 t+ aµ0 , b

µ
0 ) , (6.44)

where aµ0 , aµ1 , and bµ0 are momenta which are independent from the loop coordinates, while t is

a variable which is not fixed by the cut conditions. An easy way to find the only non-vanishing

coefficient of ∆i1···i7 is evaluating Eq. (6.29) on these solutions and take the asymptotic limit

t→∞. In general, neither of the two contributions on the r.h.s. of Eq. (6.29) is polynomial

in t, but only their difference is. However, similarly to the one-loop case, when taking the

limit t→∞ both contributions are constant,

N (4,a)
1···8
Di8

∣∣∣∣∣
t→∞

= ni1···i7,0 +O
(

1

t

)
,

∆12345678

Di8

∣∣∣∣
t→∞

= c
(s,i8)
i1···i7,0 +O

(
1

t

)
.

Therefore the coefficients ni1···i7,0 and c
(s,i8)
i1···i7,0 can be computed separately, obtaining the

coefficient ci1···i7,0 as their difference

ci1···i7,0 = ni1···i7,0 − c
(s,i8)
i1···i7,0 (6.45)

Moreover, the known structure of ∆12345678 allows one to compute the coefficient c
(s,i8)
i1···i7,0 once

and for all as a parametric function of 8-ple cut coefficients. Its expression is given by

c
(s,i8)
i1···i7,0 =

c12345678,1(k1 · a1)

2(pi8 + a0) · a1
, (6.46)
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where pi8 is the momentum appearing in the uncut denominator, defined in Eq. (3.4). The

coefficients ni1···i7,0 read as follows

n1234568,0 = − v1 · a1

k5 · a1
with aµ1 =

〈3|γµ|4]

2
,

n1234678,0 =
v1 · a1

k3 · a1
with aµ1 =

〈5|γµ|4]

2
,

n1234578,0 = − v1 · a1

k4 · a1
with aµ1 =

〈3|γµ|K345]

2
,

n1235678,0 = − v1 · a1

k4 · a1
with aµ1 =

〈5|γµ|K543]

2
, (6.47)

where the massless momentum Kabc is defined as

Kµ
ijl ≡ k

µ
j + kµl −

sjl
2(kj + kl) · ki

kµi . (6.48)

As already stated, the foregoing discussion applies to any numerator of the form given in

Eq. (6.5). By using the explicit expressions of v1 and β1 given in Eq.s (6.8) and (6.11), we can

write down the results for the coefficients in N = 4 SYM in terms of the functions γ defined

in Eq (6.15)

c12345678,0 =
1

2
(γ12345(s23 − s13 − s45) + s12(γ34125 + γ35124 + γ45123))

c12345678,1 = − 2 γ12345

c1234568,0 =
1

4
(−γ35124 − γ45123 + 2 γ12345)

c1234578,0 =
1

4
(−γ34125 + γ35124 + 2 γ45123)

c1234678,0 =
1

4
(−γ35124 − γ34125 − 2 γ12345)

c1235678,0 =
1

4
(−γ45123 + γ35124 + 2 γ34125). (6.49)

The complete integrand decomposition is obtained plugging the coefficients of Eq. (6.49) in

Eq. (6.30). These results are in agreement with the ones found in the numerical computation.

Crossed pentabox diagram

As already noticed in the discussion of the numerical computation, the numerators of the

crossed pentabox of Fig. 6.1b and the planar pentabox of Fig. 6.1a have the same decompo-

sition and the same coefficients in the residues.

Double pentagon diagram

The numerator N (4,c)
1···8 , as already noted, is invariant upon the transformation of Eq. (6.23).

This can be exploited in order to simplify the computation. Indeed, we can rewrite the



6.1 Fit on the cut at two loops 97

numerator as

N (4,c)
1···8 (q1, q2) = N̂ (4,c)

1···8 (q1)−
[
kµ1 ↔ kµ3 , k

µ
4 ↔ kµ5 , q

µ
1 ↔ qµ2

]
, (6.50)

where

N̂ (4,c)
1···8 (q1) ≡ 2q1 · v2 + β2. (6.51)

Therefore, we can perform the reduction of (6.51) and then use Eq. (6.50) in order to get the

final result. Since N̂ (4,c)
1···8 depends only on one of the two loop momenta, its decomposition is

simpler, involving fewer residues and coefficients. More in detail, we have

N̂ (4,c)
1···8 = ∆12345678 +

3∑

i=1

∆1···(i−1)(i+1)···8Di. (6.52)

Similarly to the previous case, we will first perform the reduction of a generic numerator of

the form of Eq. (6.51) and then we will use the definitions in Eq. (6.9) and (6.12), as well as

Eq. (6.50), in order to get the result for N = 4 SYM.

As in the previous cases, we start from the maximum cut, which is an 8-ple cut. The

solutions of the system D1 = · · · = D8 = 0 are eight and they can be used to compute the

eight coefficients of the residue

∆12345678 = ĉ12345678,0 + ĉ12345678,1(q2 · k3) + ĉ12345678,2(q1 · k5)

+ ĉ12345678,3(q1 · k1) + ĉ12345678,4(q1 · k5)2 + ĉ12345678,5(q1 · k5)(q · k1)

+ ĉ12345678,6(q2 · k3)(q1 · k5) + ĉ12345678,7(q1 · k5)3 (6.53)

The rank of N̂ (4,c)
1···8 implies that c12345678,i = 0 for i ≥ 4. The simplicity of the numerator

simplifies the computation even further. Indeed decomposing uµ2 in the basis {ki}i=1,··· ,4, and

using the conditions D1 = D2 = D3 = 0 one gets

ĉ12345678,0 = β2, ĉ12345678,1 = 0. (6.54)

The two remaining coefficients can be obtained by sampling the numerator on two solutions

of the 8-ple cut, e.g.

(qµ1,(1), q
µ
2,(1)) =

(〈3 5〉
〈4 5〉

〈4|γµ|3]

2
,
〈4 1〉
〈4 5〉

〈5|γµ|1]

2

)
,

(qµ1,(2), q
µ
2,(2)) =

(
[3 5]

[4 5]

〈3|γµ|4]

2
,
[4 1]

[4 5]

〈1|γµ|5]

2

)
,

The value of the two remaining non-vanishing coefficients of the 8-ple-cut are thus found to

be

ĉ12345678,2 = −2
〈4|1|3]〈3|u2|4]− 〈3|1|4]〈4|u2|3]

〈4|5|3]〈3|1|4]− 〈3|5|4]〈4|1|3]
,

ĉ12345678,3 = 2
〈4|5|3]〈3|u2|4]− 〈3|5|4]〈4|u2|3]

〈4|5|3]〈3|1|4]− 〈3|5|4]〈4|1|3]
. (6.55)
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At the next step of the reduction, we consider the generic 7-ple cut residue ∆i1···i7 appearing

in the decomposition of the numerator, as in Eq. (6.52). The solutions of the cut depend on

one free variable t. In particular, each cut has a set of solutions which have the following

asymptotic behavior for t→∞

(qµ1 , q
µ
2 ) =

(
aµ1 t+ aµ0 +O

(
1

t

)
, bµ1 t+ bµ0 +O

(
1

t

))
. (6.56)

We compute the coefficient ĉ1345678,0 by evaluating the decomposition (6.52) on these para-

metric solutions in the asymptotic limit, where

[
N̂

(4,c)
1···8
Di8

− ∆12345678

Di8

]

t→∞

= ĉi1···i7,0, (6.57)

Similarly to the case of the planar diagram, the t→∞ limit makes both

N̂
(4,c)
1···8
Di8

and
∆12345678

Di8

polynomial in t, and in this special case constant, namely

N̂
(4,c)
1···8
Di8

∣∣∣∣∣
t→∞

= n̂i1···i7,0 +O
(

1

t

)
,

∆12345678

Di8

∣∣∣∣
t→∞

= ĉ
(s,i8)
i1···i7,0 +O

(
1

t

)
. (6.58)

The coefficients n̂i1···i7,0 and ĉ
(s,i8)
i1···i7,0 can be computed separately, and

ĉi1···i7,0 = n̂i1···i7,0 − ĉ
(s,i8)
i1···i7,0. (6.59)

Therefore the subtraction can be performed at the coefficient level via the universal function

ĉ
(s,i8)
i1···i7,0 =

ĉ12345678,2(a1 · k5) + ĉ12345678,3(a1 · k1)

2(a0 + pi8) · a1
. (6.60)

The coefficients n̂i1···i7,0 are given by

n̂1345678,0 = −v2 · a1

p3 · a1
, with vµq1 = η1

〈4|γµ|3]

2
+ η2p

µ
4 ,

n̂1245678,0 =
v2 · a1

p4 · a1
, with vµq1 = η3

〈4|γµ|3]

2
+ η4p

µ
3 ,

n̂1234578,0 =
v2 · a1

p3 · a1
, with vµq1 = η5(pµ3 − pµ4 ) + η6

〈3|γµ|4]

2
+ η7

〈4|γµ|3]

2
, (6.61)
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where

η1 = −〈5 2〉[4 1]

〈4 2〉[3 4]
,

η2 =
〈5 2〉[3 1]

〈4 2〉[3 4]
,

η3 =
〈3 5〉[1 2]

〈3 4〉[3 2]
,

η4 = −〈4 5〉[1 2]

〈3 4〉[3 2]
,

η5 =
−σ1 +

√
σ2

1 − 4σ2σ3

2σ2
,

η6 =
2σ2σ8 − σ1σ4 + σ4

√
σ2

1 − 4σ2σ3

2σ2σ5
,

η7 = −2σ2σ7 − σ1σ6 + σ6

√
σ2

1 − 4σ2σ3

2σ2σ5
, (6.62)

in terms of

σ1 = − 4(σ7σ4 + σ6σ8)(p1 · p2),

σ2 = − 4(σ6σ4 − σ2
5)(p1 · p2),

σ3 = − 4σ7σ8(p1 · p2),

σ4 = 2(p1 · p5)〈4 5〉[3 1]− 2(p2 · p5)〈4 5〉[3 1] + 〈3 5〉〈4 2〉[3 1][3 2]− 〈4 5〉〈4 2〉[3 2][4 1],

σ5 = − 〈3 5〉〈4 2〉[3 2][4 1] + 〈3 2〉〈4 5〉[3 1][4 2],

σ6 = 2(p2, ·p3)〈3 5〉[4 1]− 2(p2 · p5)〈3 5〉[4 1] + 〈3 5〉〈3 2〉[3 1][4 2]− 〈3 2〉〈4 5〉[4 1][4 2],

σ7 = 〈3 5〉〈5 2〉[4 1][1 2],

σ8 = 〈4 5〉〈5 2〉[3 1][1 2]. (6.63)

This completes the reduction of a generic numerator N̂ (4,c)
1···8 of the form given in Eq. (6.51).

As previously stated, the reduction of the full numerator N (4,c)
1···8 of N = 4 SYM can be

recovered from the one discussed in this section, by means of Eq.s (6.50) and (6.50). To that

purpose, we observe that the substitutions in Eq. (6.23) give the one-to-one mapping between

denominators

D1 ↔ D4, D2 ↔ D6, D3 ↔ D5, D7 ↔ D8.

Putting everything together and using the definitions of v2 and β2 of Eq. (6.9) and (6.12) we



100 6 Integrand reduction at higher loops

recover the full multi-pole decomposition of Eq. (6.35), with coefficients

c12345678,0 =
1

4

(
γ34125(2s13 − 2s35 + 2s23 + s15 + s34)

− γ15234(2s13 − 2s35 + 2s12 + s15 + s34)

− (γ23145 + γ24135) s23 − (γ25134 − γ12345)(s35 − s14 − s12)
)
,

c12345678,1 = −2 γ34125 ,

c12345678,2 =
1

2
(2γ34125 − γ23145 − γ24135 − 2γ15234 + γ25134 − γ12345),

c12345678,3 =
1

2
(2γ34125 − γ23145 − γ24135 + 2γ15234 + γ25134 − γ12345),

c2345678,0 =
1

4
(2γ34125 − γ23145 + γ24135),

c1345678,0 =
1

4
(−3γ34125 + 2γ23145 + γ24135 − γ25134 + γ12345),

c1245678,0 =
1

4
(γ34125 − γ23145 − 2γ24135 + γ25134 − γ12345),

c1235678,0 =
1

4
(−2γ15234 − γ25134 − γ12345),

c1234678,0 =
1

4
(−2γ34125 + γ15234 + γ25134),

c1234578,0 =
1

4
(2γ34125 + γ15234 + γ12345),

c1234568,0 =
1

4
(2γ34125 + γ25134 − γ12345),

c1234567,0 =
1

4
(−2γ34125 − γ25134 + γ12345). (6.64)

The coefficients of Eq. (6.64) enter the integrand decomposition of Eq. (6.35). These results

are in agreement with the semi-numerical computation.

Higher-rank integrands

The analytic reduction can also be used for numerators of higher rank. As an example we

perform the computation of the 7-ple cut residues for the N = 8 SUGRA two-loop five-points

planar pentabox, whose numerator has rank two in the loop momentum q1.

The most general parametrization of the generic 7-point residue ∆i1···i7 is

∆i1···i7 = ci1···i7,0 + ci1···i7,1(q1 + w0) · w1 + ci1···i7,2(q1 + w0) · w2. (6.65)

The momenta wµ0 , wµ1 , and wµ2 are a linear combination of the external momenta and depend

on the cut (i1 · · · i7). Their actual form is not relevant for this discussion but can be read

from Table 6.1. We consider two t-dependent solutions of the 7-ple cut:

(qµ1,(i), q
µ
2,(i)) =

(
aµ(i),1t+ aµ(i), b

µ
(i)

)
with i = 1, 2. (6.66)
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The coefficients in Eq. (6.65) can be computed evaluating the numerator at the solutions in

Eq. (6.66), where the decomposition becomes

N (8,a)
1···8 −∆12345678

Di8

= ∆i1···i7

= ci1···i7,0 + ci1···i7,1(a(i),0 + w0) · w1

+ ci1···i7,2(a(i),0 + w0) · w2 + ci1···i7,1(a(i),1 · w1)t

+ ci1···i7,2(a(i),1 · w2)t, (6.67)

where Di8 is the uncut denominator. The Laurent expansion around t = ∞ simplifies the

computation. Indeed in this limit both

N (8,a)
1···8 (q1,(i), q2,(i))

Di8(q1,(i), q2,(i))
and

∆12345678(q1,(i), q2,(i))

Di8(q1,(i), q2,(i))

have the same polynomial structure of the residue:

N (8,a)
1···8
Di8

∣∣∣∣∣
t→∞

= n
(i)
i1···i7,0 + n

(i)
i1···i7,1t+O

(
1

t

)

∆12345678

Di8

∣∣∣∣
t→∞

= c
(s,i8,i)
i1···i7,0 +O

(
1

t

)
. (6.68)

The expression of the coefficients is obtained by plugging the expansions (6.68) in Eq. (6.67)

and by comparing both sides. In particular ci1···i7,1 and ci1···i7,2 are the solution of the system





ci1···i7,1(a(1),1 · w1) + ci1···i7,2(a(1),1 · w2) = n
(1)
i1···i7,1

ci1···i7,1(a(2),1 · w1) + ci1···i7,2(a(2),1 · w2) = n
(2)
i1···i7,1

. (6.69)

The coefficient ci1···i7,0 is given by

ci1···i7,0 = n
(1)
i1···i7,0 − c

(s,i8,1)
i1···i7,0 − ci1···i7,1(a(1),0 + w0) · w1 − ci1···i7,2(a(1),0 + w0) · w2

= n
(2)
i1···i7,0 − c

(s,i8,2)
i1···i7,0 − ci1···i7,1(a(2),0 + w0) · w1 − ci1···i7,2(a(2),0 + w0) · w2, (6.70)

in terms of the functions

c
(s,i8,i)
i1···i7,0 =

c12345678,1(p1 · a(i),1)

2(a(i),0 + pi8) · a(i),1
. (6.71)

Eq. (6.70) shows that the coefficient ci1···i7,0 can be written as the constant term n
(i)
i1···i7,0 of

the Laurent expansion of the integrand, corrected by two kinds of contributions. The first,

c
(s,i8,i)
i1···i7,0, implements the 8-ple-cut subtraction as a correction at the coefficient level. The

other terms are proportional to the higher-rank coefficients of the same cut found as solutions

of the system in Eq. (6.69).



102 6 Integrand reduction at higher loops

q1

q2

1

2
3

4

5

D1 = q22

D2 = (q2 + k2)
2

D3 = (q2 − k1)
2

D4 = q21

D5 = (q1 + k3)
2

D6 = (q1 − k4)
2

D7 = (q1 − k4 − k5)
2

D8 = (q1 + q2 + k2 + k3)
2

(a) Pentabox diagram

q1

q2

1

2
3

4

5

D1 = q22

D2 = (q2 + k2)
2

D3 = (q2 + q1 − k4 − k5)
2

D4 = q21

D5 = (q1 + k3)
2

D6 = (q1 − k4)
2

D7 = (q1 − k4 − k5)
2
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2

(b) Crossed pentabox diagram
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D2 = (q1 − k3)
2

D3 = (q1 + k4)
2

D4 = q22
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(c) Double pentagon diagram

Figure 6.1: Five-point diagrams entering the amplitudes in N = 4 SYM and N = 8 SUGRA.

For each diagram, the definition of the denominators is shown as well.
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Figure 6.2: First row: diagrams leading to the two-loop QED corrections to the photon self

energy. Second row: two-loop diagrams entering the QCD corrections to gg → H in the heavy

top mass approximation.

6.2 Algebraic multi-loop reduction via polynomial division

In Section 3.3.2 we explained that the whole reduction of a loop integrand can be carried out

using purely algebraic operations, by means of the recursive formula of Eq. (3.9). This allows

to address the problem of the reduction of any loop amplitude without the need of computing

the solutions of the multiple cuts or the parametric form of the residues. In particular, it can

also be applied to cases where the presence of higher powers of loop denominators prevents

one to use other methods such as the fit-on-the-cut approach.

In the examples which follow, the computation has been performed using the implemen-

tation of the iterative algorithm described in Section 3.4. The diagrams we used in these

examples are depicted in Fig. 6.2. Despite their simplicity, these show the broadness of ap-

plicability of the method which is not affected by the presence of massive propagators, non

planar diagrams, higher powers of loop denominators or higher-rank contributions in the

numerator.

6.2.1 Photon vacuum polarization

As a first example we consider the two-loop contributions to the transverse part Π(k2) of

the vacuum polarization in QED with a massive fermion [189]. The integrand of Π(k2) gets

contributions from the three self-energy diagrams in the first row of Figure 6.2. As we showed

in Eq. (3.2), the d-dimensional loop momenta q̄i are split into a 4-dimensional and (−2 ε)-

dimensional part, q̄i = qi + ~µi, with qi · ~µj = 0 and ~µi · ~µj ≡ µij . In this case the variables z

are µ11, µ22, µ12 and the components of qi in the basis {k, k⊥, e3, e4}, such that

k · k⊥ = k · ej = k⊥ · ej = e2
j = 0.
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The integrand of the diagram (a) is

I(a)
12345 =

1

3− 2 ε

N (a)
12345

D1D2D3D4D5
, (6.72)

while its denominators are

D1 = q̄2
1 −m2

D2 = (q̄1 + k)2 −m2

D3 = q̄2
2 −m2

D4 = (q̄2 + k)2 −m2

D5 = (q̄1 − q̄2)2. (6.73)

The first step of the reduction requires the division N (a)
12345/G12345, i.e. the multivariate polyno-

mial division of the numerator with respect to the Gröbner basis defined by the ideal J12345.

The result reads

N (a)
12345 = ∆12345 +N1235D4 +N2345D1 +N1345D2 +N1245D3 +N1234D5, (6.74)

where ∆12345 is the remainder of the division, while the quotient, which belongs to the ideal

J12345, is written as a combination of loop denominators (see definition in Eq. (3.5). In the sec-

ond step, the (sub-)numerators Ni1i2i3i4 are reduced performing the division Ni1i2i3i4/Gi1i2i3i4 ,

N (a)
12345 = ∆12345 + ∆1235D4 + ∆2345D1 + ∆1345D2 + ∆1245D3 + ∆1234D5

+N123D4D5 +N124D3D5 +N134D2D5 +N234D1D5 +N125D3D4

+N135D2D4 +N245D1D3 +N345D1D2 +N145D2D3 +N235D1D4. (6.75)

The complete decomposition of N (a)
12345 is obtained by iterating the procedure twice,

N (a)
12345 = ∆12345 + ∆1235D4 + ∆2345D1 + ∆1345D2 + ∆1245D3 + ∆1234D5

+ ∆123D4D5 + ∆124D3D5 + ∆134D2D5 + ∆234D1D5 + ∆125D3D4

+ ∆135D2D4 + ∆245D1D3 + ∆345D1D2 + ∆145D2D3 + ∆235D1D4

+ ∆13D2D4D5 + ∆24D1D3D5 + ∆14D2D3D5 + ∆23D1D4D5. (6.76)
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The residues in Eq. (6.76) read as follows:

∆12345 = 8
(
4m4 − k4 + k2 (k2 − 2m2) ε

)

∆1234 = − 4

[ (
4m2 + k2(3− ε− 2 ε2)

)

+ 4 (1− ε)
(
µ12 −

(q1 · k⊥) (q2 · k⊥)

k2
⊥

− (q1 · e3) (q2 · e4)

(e3 · e4)
− (q1 · e4) (q2 · e3)

(e3 · e4)

)]

∆1235 = ∆2345 = ∆1345 = ∆1245 = 8
(
m2 + k2(1− ε)

)

∆123 = ∆124 = ∆134 = ∆234 = 4 (1− ε)
∆125 = ∆135 = ∆245 = ∆345 = −8 (1− ε)
∆145 = ∆235 = 8 ε (1− ε)

∆13 = ∆24 = −∆14 = −∆23 =
4 (1− ε)

k2
. (6.77)

The diagram (b) contains a double propagator,

I(b)
11234 =

1

3− 2 ε

N (b)
11234

D2
1D2D3D4

, (6.78)

where the denominators are

D1 = q̄2
1 −m2

D2 = (q̄1 − k)2 −m2

D3 = q̄2
2

D4 = (q̄1 + q̄2)2 −m2.

The first step of the reduction requires the division N (b)
11234/G11234 (note that G112345 ≡ G1234)

which yields

N (b)
11234 = ∆11234 +N1234D1 +N1123D4 +N1134D2 +N1124D3. (6.79)

In the second step we perform the divisions Ni1i2i3i4/Gi1i2i3i4 , obtaining

N11234 = N234D
2
1 +N134D1D2 +N124D1D3 +N123D1D4 +N114D2D3 +N113D2D4

+ ∆1234D1 + ∆1134D2 + ∆1124D3 + ∆1123D4 +

+ ∆11234 (6.80)

The reduction is completed by performing the divisions Ni1i2i3/Gi1i2i3 , along the lines of the

previous steps, obtaining

N (b)
11234 = ∆11234 + ∆1234D1 + ∆1123D4 + ∆1134D2 + ∆1124D3

+ ∆113D2D4 + ∆114D2D3 + ∆234D
2
1 (6.81)
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in terms of the residues

∆11234 = 16m2
(
k2 + 2m2 − k2ε

)

∆1234 = 16
[
(q2 · k)(1− ε)2 +m2

]

∆1124 = −∆1123 = 8 (1− ε)
[
k2(1− ε) + 2m2

]

∆1134 = − 16m2 (1− ε)
∆113 = −∆114 = ∆234 = 8 (1− ε)2 . (6.82)

The integrand of the diagram (c) and its decomposition are obtained by performing the

replacement k → −k in the ones of the diagram (b).

We observe that the residues can also be expressed in terms of normal forms (see Ap-

pendix B.2, in particular Eq. (B.9)). For instance, in the case of I(b), ∆1123 and ∆113 can be

written as

∆1123 =

⌊
N (b)

11234 −∆11234

⌋
J123

bD4cJ123

∆113 =

⌊
N (b)

11234 −∆11234 −∆1123D4 −∆1134D2

⌋
J13

bD2D4cJ13

In other words, evaluating the integrand an a multiple cut Dj1 = · · · = Djk = 0 is equivalent

to the algebraic operation of performing a reduction modulo the ideal Jj1···jk .

6.2.2 Diagrams for Higgs production via gluon fusion

We also consider the three-point diagrams in the second row of Figure 6.2, which enter the two-

loop QCD corrections to Higgs boson production via gluon fusion in the heavy top limit [190].

In this case, the variables z are µ11, µ22, µ12 and the components of the four-vectors qi in

the basis of massless vectors {k1, k2, e3, e4}, such that ki · ej = 0 and e3 · e4 6= 0. Within the

divide-and-conquer approach, the integrand of the generic diagram is decomposed as

I(x) =

6∑

k=2

∑

{i1···ik}

∆i1···ik
Di1 · · ·Dik

x = d, e, f . (6.83)

For the diagram (d) the second sum runs over the multisubsets of {1, 1, 2, 3, 4, 5}, while for

the diagram (e) and (f) it runs over the subsets of {1, . . . , 6}.
The expressions for the residues are lengthy and they are omitted, but they are available

upon request.



Chapter 7

Integrand Reduction and

independent Master Integrals

The general integrand reduction method presented in Chapter 3, and applied in this thesis to

several examples both at one-loop (in Chapter 5) and higher-loops (in Chapter 6), rewrites

scattering amplitudes as linear combination of Master Integrals, which we may call the Master

Integrals of the integrand reduction, or more briefly Master Integrands. These are indeed

irreducible contributions which are independent at the integrand level, but further identities

might be valid between the corresponding integrals. In this chapter we propose a new way of

finding these identities which consists in the combination of integrand reduction techniques

with relations between integrals in different dimensions.

The traditional method for finding these identities is Integration by Parts (IBP) [53, 54],

which consists in working out differentiation in expressions of the form
∫
ddq̄

∂

∂q̄µ
Iµ = 0, (7.1)

where Iµ could be any loop integrand with a free Lorentz index. This integral vanishes in

dimensional regularization because of the boundary conditions. After computing the deriva-

tives explicitly, it becomes a linear combination of integrals and thus the equation yields

an identity (also known as IBP identity) between different integrals. This method can be

applied using systematic ways for choosing the integrands Iµ, among which the most well

known is the Laporta algorithm [55]. IBP algorithms have been implemented in several pub-

lic codes [191–194] and the method has been so far the most successful for the reduction of

higher-loop amplitudes with non-trivial complexity to a minimal set of independent Master

Integrals. The application of IBP becomes however increasingly complicated when dealing

with integrals with many external legs. A possible solution would be using integrand reduc-

tion methods, which would reduce the multiplicity or the rank of higher-point integrands,

followed IBP, whose application to lower-point or lower-rank integrals would be easier. This

approach was followed e.g. in Ref.s [92,195,196].
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In this Chapter we propose an alternative approach, where integrand reduction plays an

important role also in finding these identities which are valid at the integral (but not nec-

essarily at the integrand) level. With the divide-and-conquer technique (see Chapter 3, in

particular Section 3.3.2) for the reduction, this approach also allows to re-use (some of) the

Gröbner basis and polynomial divisions computed for the reduction in order to obtain addi-

tional identities between the integrals. The idea behind the method is combining integrand

reduction with recurrence relations on the dimension of the integrals. As we shall see shortly,

given an ` loop integral I with external legs k1, . . . , kn, one can derive identities of the form

I[S(2 ε; ~µ1, · · · , ~µ`] α I(d+2) (7.2)

I[S(4; q1, . . . , q`, k1, . . . , kn−1)] α I(d+2), (7.3)

I[S(d; q̄1, . . . , q̄`, k1, . . . , kn−1)] α I(d+2), (7.4)

where S(D; v1, . . .) is a function of a number of dimensions D and the momenta vi, called

Shouten polynomial [197], which we will formally define in Eq. 7.5. The notation I(D)[N ]

stands for the same loop integral as I[N ] (with I(D) ≡ I(D)[1]) but with the loop momentum

taken to be D-dimensional. Note that the dimensional shift only involves the components of

the loop momenta, while external legs are still four-dimensional. We will omit the superscript

of the integral when it is evaluated in the usual number d = 4 − 2ε of dimensions (i.e.

I[N ] ≡ I(d)[N ]). The relation in Eq. (7.2) is an identity between integrals with the extra-

dimensional variables µij in the numerator, and the corresponding scalar integral in a number

of dimensions shifted by two. Eq. (7.3) is instead a relation between an integrand with a

specially chosen four-dimensional numerator and the same integral in d + 2, while Eq. (7.4)

is a similar relation with a d-dimensional numerator at the l.h.s. In all cases the coefficient of

proportionality between l.h.s. and r.h.s. is very easy to find. As we shall see, by performing

an integrand reduction of the l.h.s. of Eq. (7.3) or Eq. (7.4) and combining the result with

Eq. (7.2) and other recurrence relations, one can obtain identities where only integrals in

a given number D of dimensions appear, with D = d + 2 ds and ds integer. With the shift

d→ d−ds one thus obtains identities between integrals in d = 4−2ε dimensions. A systematic

application of this method (similarly to IBP algorithms) requires a bottom-up approach, where

relations for lower point integrals are computed first and then substituted into the ones of

higher point integrals.

The analytic results presented in this chapter have been obtained with the help of the

implementation of the divide-and-conquer algorithm described in Section 3.4.
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7.1 Shouten polynomials, orthogonal vectors and orthogonal

tensors

Here we give the formal definition of a Shouten polynomial. For a set of n momenta k1, . . . , kn,

we define1

S(D; k1, . . . , kn) ≡
(
ε(D)(k1, . . . , kn)

)2
(7.5)

where ε
(D)
µ1···µn is an anti-symmetric Levi-Civita tensor whose indexes formally live in D di-

mensions. The r.h.s. of the formula can be written as a combination of D-dimensional scalar

products (ki · kj) by means of the identity

ε
(D)
µ1···µn ε

(D)
ν1···νn = det




g
(D)
µ1ν1 g

(D)
µ1ν2 · · · g

(D)
µ1νn

g
(D)
µ2ν1 g

(D)
µ2ν2 · · · g

(D)
µ2νn

...
...

. . .
...

g
(D)
µnν1 g

(D)
µnν2 · · · g

(D)
µnνn



, (7.6)

where g
(D)
µ1ν1 is the D-dimensional metric tensor. These are also known as Gram determinants

and the Computer Algebra System Form [124] can compute them very efficiently.

The Shouten polynomial on the l.h.s. of Eq. (7.2) is thus a polynomial in the variables

µij defined in Eq. (3.2). Also notice that S(−2ε; q̄1, . . . , q̄`) = S(−2ε; ~µ1, . . . , ~µ`). As for the

Shouten polynomials on the l.h.s. of Eq. (7.3), we can give a very useful interpretation of

them in terms of orthogonal vectors or orthogonal tensors. This interpretation would in turn

allow us to find, at any loop order, the correct factors in the equation. In the one-loop case

the four-dimensional Shouten polynomial in Eq. (7.3) reads

S(4; q, k1, . . . , kn−1) =
(
ε(4)(q, k1, . . . , kn−1)

)2
. (7.7)

We can define a vector vµ⊥
v⊥µ = ε

(4)
µν1···νn−1k

ν1
1 · · · k

νn−1

n−1 (7.8)

which, because of the anti-symmetric properties of the Levi-Civita tensor, is orthogonal to all

the external legs ki of the loop diagram. The Shouten polynomial can thus be written as

S(4; q, k1, . . . , kn−1) = (q · v⊥)2. (7.9)

We can proceed similarly at ` loops, by defining an anti-symmetric orthogonal tensor tµ1···µ`
⊥

as

t⊥µ1···µ` = ε
(4)
µ1···µ`ν1···νn−1k

ν1
1 · · · k

νn−1

n−1 . (7.10)

1We use here the so-called SCHOONSHIP notation. For any tensor Tµ1···µn and vectors kµ1 , . . . , k
µ
n we

define

T (k1, . . . , kn) ≡ Tµ1···µn k
µ1
1 · · · k

µn
n .
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This tensor is completely anti-symmetric and vanishes if any of its indexes is contracted with

an external leg of the diagram. The `-loop four-dimensional Shouten polynomial can thus be

written as

S(4; q1, . . . , q`, k1, . . . , kn−1) =
(
t⊥(q1, . . . , q`)

)2
. (7.11)

Similarly, we can also define d-dimensional orthogonal vectors and tensors

v(d)⊥µ = ε
(d)
µν1···νn−1k

ν1
1 · · · k

νn−1

n−1 (7.12)

t(d)⊥µ1···µ` = ε
(d)
µ1···µ`ν1···νn−1k

ν1
1 · · · k

νn−1

n−1 . (7.13)

which are related to d-dimensional Shouten polynomials by

S(d; q̄, k1, . . . , kn−1) = (q̄ · v(d)⊥)2 (7.14)

S(d; q̄1, . . . , q̄`, k1, . . . , kn−1) =
(
t(d)⊥(q̄1, . . . , q̄`)

)2
. (7.15)

7.2 Dimensionally shifted integrals via Schwinger parametriza-

tion

In this section we show how to find the recurrence relations of the form of Eq. (7.2) at

every loop order, following the method proposed in Ref. [198] for the two-loop case. The

corresponding identities of Eq. (7.3) and (7.4) can then be easily derived from the first, as

we will explicitly show for the one- and two-loop cases in the next sections.

We use the following definition for loop integrals

I[N ] =

∫ ( l∏

i=1

ddq̄i

πd/2

)
N

Dα1
1 · · ·Dαn

n
, I ≡ I[1]. (7.16)

All the identities which are homogeneous in the number of dimensions are obviously indepen-

dent of the choice of the normalization factor 1/πd/2. Also note that here we assume to have

n distinct denominators raised to some power αi ≥ 1. Using the identity

(
− 1

Di

)αi
=

1

(αi − 1)!

∫ ∞

0
dx xαi−1 exp(xD), (7.17)

one gets the well known representation of loop integrals in terms of Schwinger parameters xi,

I = (−)α
∫ ( l∏

i=1

ddq̄i

πd/2

)∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
exp

(
n∑

i=1

xiDi

)

= (−)α
∫ ( l∏

i=1

ddq̄i

πd/2

)∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
exp




l∑

i,j=1

Aij(q̄i · q̄j) + 2
∑

i

(qi ·Bi) + C0


 ,

(7.18)
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where α ≡∑i αi. The last equality defines the symmetric `× ` matrix Aij = Aij(x1, . . . , xn),

the 4-dimensional vectors Bi = Bi(x1, . . . , xn) for i = 1, . . . , n, and the constant C0 =

C0(x1, . . . , xn). This parametrization of the exponent holds because the loop denominators

are quadratic polynomials in the components of the loop momenta.

We perform the (4-dimensional) change of variables

q′i = qi +
∑

j

A−1
ij Bj

and Eq. (7.18) becomes, after relabeling q′i → qi,

I = (−)α
∫ ( l∏

i=1

ddq̄i

πd/2

)∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
exp




l∑

i,j=1

Aij(q̄i · q̄j) + C


 , (7.19)

with C = C0 −
∑

ij A
−1
ij (Bi · Bj). Because Aij is real and symmetric, it can be diagonalized

by a unitary change of variables

Q̄i =

l∑

j=1

Uij q̄j

and the integral becomes

I = (−)α
∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
exp(C)

∫ ( l∏

i=1

ddQ̄i

πd/2

)
exp

(
l∑

i=1

λiQ̄
2
i

)

= (−)α
∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
exp(C)∆−d/2, (7.20)

where the λi are the eigenvalues of Aij and

∆ =
∏

i

λi = det(Aij). (7.21)

In the last step of Eq. (7.20) we switched to euclidean coordinates ddQi → ddQE,i with

Q2
E,i = −Q2

i , using a Wick rotation, and we used the well-known Gaussian integral

∫
ddx exp(−ax2) =

(π
a

)d/2
. (7.22)

We can also repeat the procedure with an integrand of the form

I[N (µij)] =

∫ ( l∏

i=1

ddq̄i

πd/2

)
N (µij)

Dα1
1 · · ·Dαn

n
, (7.23)

i.e. an integrand whose numerator is a function of the (−2ε)-dimensional components of the

loop momenta q̄i. It is easy to check that, with trivial modifications, everything is still valid
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until Eq. (7.19), which now we formally rewrite by splitting the 4- and (−2ε)-dimensional

integration as

I[N (µij)] = (−)α
∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)∫ ( l∏

i=1

d4qi
π2

)
exp




l∑

i,j=1

Aij(qi · qj) + C




×
∫ ( l∏

i=1

d−2ε ~µi
π−ε

)
N (µij) exp


−

l∑

i,j=1

Aijµij




= (−)α
∫ ( n∏

i=1

dxi xi
αi−1

(αi − 1)!

)
eC ∆−2

∫ ( l∏

i=1

d−2ε ~µi
π−ε

)
N (µij) exp


−

l∑

i,j=1

Aijµij


 .

(7.24)

The special case N = 1 is recovered by using

∫ ( l∏

i=1

d−2ε ~µi
π−ε

)
exp


−

l∑

i,j=1

Aijµij


 = ∆ε. (7.25)

Therefore, in order to find a recursion relation of the form of Eq. (7.2), we can proceed

at any loop order as suggested in Ref. [198] for the two-loop case. We use Eq. (7.25) and we

take ` derivatives with respect to the matrix elements Aij . On one the l.h.s. this generates a

factor N [µij ],

∆ε ` derivatives ∂/∂Aij−−−−−−−−−−−−−−→ (−)`N [µij ] ∆ε, (7.26)

which can be interpreted as a numerator according to Eq. (7.24) (we conventionally pull out

a (−)` which takes into account the minus sign in the exponent). On the r.h.s., for a proper

combination of derivatives, the effect is a shift in the exponent ε→ ε−1 and the multiplication

by an ε-dependent factor c(ε),

∆ε ` derivatives ∂/∂Aij−−−−−−−−−−−−−−→ c(ε) ∆ε−1. (7.27)

When inserted in Eq. (7.20), this gives a dimensionally shifted scalar integral I(d+2) by chang-

ing ∆−d/2 → ∆−d/2∆−1 = ∆−(d+2)/2. Putting everything together we end up with

I[N (µij)] = c(ε) I(d+2). (7.28)

The only issue is now finding the right combination of derivatives which has the effect de-

scribed by Eq. (7.27). This is however quite easy considering that ∆, as a function of the

elements Aij , is nothing else than the determinant of a symmetric matrix. By following the

discussion of Section 7.1, it is straightforward to see that this is in turn a Shouten polynomial

of rank `, defined by Eq. (7.5) followed the substitution (ki ·kj)→ Aij . Since, with the trivial

exception of the one-loop case, taking ` derivatives of ∆ε will generate several terms propor-

tional to ∆ε−1,∆ε−2, . . . ,∆ε−`, as well as to the matrix elements Aij , we need a combination
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of derivatives which generates other factors ∆ in order to get an expression of the form of the

r.h.s. of Eq. (7.27), where everything is proportional to ∆ε−1. It turns out that one can do

this by taking a combination of derivatives which has also the form of a Shouten polynomial.

Putting everything together, motivated by the (heuristic) arguments of the previous para-

graph, we come up with the following algorithm

• write down the explicit expression for

∆ = det(Aij) (7.29)

as a function of the generic matrix elements Aij (in other words, this is the determinant

of a generic `× ` symmetric matrix)

• the expression for N [µij ], which is proportional to a (−2ε)-dimensional Shouten poly-

nomial, is thus given by the substitution

N [µij ] = (−)` ∆
∣∣∣
Aij→2µij

(7.30)

• the right combination of derivatives is in turn the differential operator D which is

formally obtained from the algebraic expression of ∆ using the substitutions

D = (−)` ∆ with Aij →





∂

∂Aij
if i 6= j

2
∂

∂Aij
if i = j,

(7.31)

where the extra factor 2 for i = j compensates the missing factor two in the exponent∑
ij Aijµij which is only present for non-diagonal elements

• with these definitions, the recurrence relation is thus given by

I[N (µij)] =
1

∆ε−1
(D∆ε) I(d+2). (7.32)

In the last equation, (D∆)/∆ε−1 = c(ε), i.e. it only depends on ε and not on the matrix

elements Aij . This is a necessary and sufficient condition for the algorithm to work, which

we verified up to 4 loops.

The algorithm has been implemented in a small Mathematica code which we used to

find the recurrence relation from one to four loops. Here are the results

• one loop

I[µ11] = −ε I(d+2) (7.33)

• two loops

4 I[µ11µ22 − µ2
12] = 2ε(1 + 2ε)I(d+2) (7.34)
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• three loops

8 I[µ2
13µ22−2µ12µ13µ23 +µ11µ

2
23 +µ2

12µ33−µ11µ22µ33] = 4ε(1+ ε)(1+2ε)I(d+2) (7.35)

• four loops

16 I[µ2
14µ

2
23 − 2µ13µ14µ23µ24 + µ2

13µ
2
24 − µ2

14µ22µ33 + 2µ12µ14µ24µ33

− µ11µ
2
24µ33 + 2µ13µ14µ22µ34 − 2µ12µ14µ23µ34 − 2µ12µ13µ24µ34

+ 2µ11µ23µ24µ34 + µ2
12µ

2
34 − µ11µ22µ

2
34 − µ2

13µ22µ44 + 2µ12µ13µ23µ44

− µ11µ
2
23µ44 − µ2

12µ33µ44 + µ11µ22µ33µ44]

= 4ε(1 + ε)(1 + 2ε)(3 + 2ε) I(d+2). (7.36)

In the following sections, we will use these recurrence relations at one and two loops

in order to find the corresponding ones with the form of Eq. (7.3) and (7.4). Then, by

performing an integrand reduction of the numerator

S(4; q1, . . . , q`, k1, . . . , kn−1) or S(d; q̄1, . . . , q̄`, k1, . . . , kn−1)

we will find, in several examples, identities which so far have been traditionally computed

with IBP methods or tensor decomposition of integrals.

7.3 One-loop relations

At one loop we should use the recurrence relation in Eq. (7.33), which using the common

notation µ2 ≡ µ11 reads

I[µ2] = −ε I(d+2). (7.37)

In order to find a similar relation for a four-dimensional numerator, we can use the following

tensor decomposition which is valid for any number of external legs

I[q̄µ q̄ν ] = gµν(d)A00 +O(k)µν , (7.38)

where we introduced the notation O(k)µ1···µr which denotes a rank-r tensor proportional to at

least one external momentum k
µj
i . As shown in Ref. [199], by contracting this decomposition

with gµν−2ε one finds

I[µ2] = (2ε)A00, (7.39)

which combined with Eq. (7.33) gives

A00 = −1

2
I(d+2). (7.40)

If we instead contract the tensor decomposition with vµ⊥v
ν
⊥, where vµ⊥ is any orthogonal vector

such that (v⊥ · ki) = 0, we obtain

I[(q · v⊥)2] = v2
⊥A00, (7.41)
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which combined with Eq. (7.40) gives

I[(q · v⊥)2] = −v
2
⊥
2
I(d+2). (7.42)

A particularly convenient choice of v⊥ is the one of Eq. (7.8), which using Eq. (7.9) gives

I[S(4; q, k1, . . . , kn−1)] = −v
2
⊥
2
I(d+2). (7.43)

In this case the computation of v2
⊥ can be performed by means Eq. (7.6) or by using a Com-

puter Algebra System such as Form which has an efficient implementation of the contraction

appearing in the same equation. Equivalently, we can choose the d-dimensional v(d)⊥ defined

by Eq. (7.12), which using Eq. (7.14) gives

I[S(d; q̄, k1, . . . , kn−1)] = −
v2

(d)⊥

2
I(d+2). (7.44)

Notice that, in general, while v2
⊥ only depends on the kinematic invariants, v2

(d)⊥ also depends

on d.

Similar relations can also be found for higher-rank (i.e. non-scalar) integrals. From the

decomposition

I[q̄µ q̄ν q̄ρ q̄σ] = A0000

(
gµν(d) g

ρσ
(d) + gµρ(d) g

νσ
(d) + gµσ(d) g

νρ
(d)

)
+O(k)µνρσ, (7.45)

we can easily derive

2ε v2
⊥,2A0000 = In[µ2 (q · v⊥)2] (7.46)

v2
⊥A0000 = − 1

2
I(d+2)
n [(q · v⊥)2], (7.47)

where v⊥ could either be the Shouten vector defined in Eq. (7.8) or any other four-dimensional

vector orthogonal to the external momenta ki. Alternatively, one can shift in d+4 using twice

Eq. (7.37), which yields

−ε (1− ε)I(d+4)
n = In[µ4] (7.48)

−4 ε (1− ε)A0000 = In[µ4] (7.49)

A0000 =
1

4
I(d+4)
n . (7.50)

By comparison of Eq. (7.47) and (7.50) we have

I(d+2)
n [(q · v⊥,2)2] = −

v2
⊥,2
2
I(d+4) (7.51)

or

In[(q · v⊥)2] = −v
2
⊥
2
I(d+2), (7.52)
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which is valid for any four-dimensional vector vµ⊥ orthogonal to the external legs ki of the

loop diagram.

In the following we will apply this strategy to the Master Integrals of the one-loop in-

tegrand reduction, finding suitable recurrence relations. The recurrence relations for scalar

integrals were already computed in Ref. [23] with a different method. We will then show

how this new technique can also be used to find further relations, such as those involving

higher-rank integrals. Next we will show some more specific examples where we reproduce

known IBP identities with the method outlined in this chapter. In the one-loop case, this

consists in performing an integrand reduction of S(4; q, k1, . . . , kn−1) and combine the result

with the basic recurrence relations above.

7.3.1 Recurrence relations for 1-point integrals

For tadpoles

I0[N ] =
N
D0

(7.53)

we have no external leg, hence we take vµ⊥ = εµ(4) and v2
⊥ = 4. The Shouten polynomial is

S(q) = q2 (7.54)

which is trivially decomposed as

S(q) = D0 + µ2 +m2
0. (7.55)

After integration, using Eq. (7.37) and (7.42) one gets

− 2 I(d+2)
0 =

d− 4

2
I(d+2)

0 +m2
0 I0. (7.56)

Hence, the recurrence relation for scalar tadpoles is

− 2m2
0 I0 = d I(d+2)

0 . (7.57)

The same result could have been obtained using Eq. (7.44) and v2
(d)⊥ = d.

We can also work out rank-2 tadpoles, which will be useful later. Since there are no

external legs, Eq. (7.52) is valid for a generic vector vµ,

I0[(q · v)2] = −v
2

2
I(d+2)

0 =
v2m2

0

d
I0. (7.58)

A more general case can be derived from this by replacing v → v + w, which combined with

the previous one yields

I0[(q · v)(q · w)] =
(v · w)m2

0

d
I0 = −(v · w)

2
I(d+2)

0 . (7.59)

The first equality is the same relation one would get from a Passarino-Veltman decomposition.
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7.3.2 Recurrence relations for 2-point integrals

We consider the most general bubble

I01[N ] =
N

D0D1
, with D0 = q̄2 −m2

0, D1 = (q̄ + k)2 −m2
1. (7.60)

The recursion relation of Eq. (7.43) becomes

I01[S(4; q, k)] = −3k2

2
I(d+2)

01 , (7.61)

with

S(4; q, k) = q2 k2 − (q · k)2. (7.62)

In the following we distinguish the general case k2 6= 0 from the degenerate cases k2 = 0,m0 6=
m1 and k2 = 0,m0 = m1. In particular, if k2 = 0 we will no longer have a dimensional

recurrence from the previous equation, but in these cases the scalar bubbles are known to

be reducible to tadpoles and we will show how to find the corresponding identities with our

method.

Case k2 6= 0

We choose a basis {k,E2, e3, e4} with

k · E2 = k · e3 = k · e4 = E2 · e3 = E2 · e4 = e2
3 = e2

4 = 0.

The integrand reduction via polynomial division of S(4; q, k) yields the decomposition

S(4; q, k) =
(
− 1

4
k4 +

1

2
m2

1 k
2 − 1

4
m4

1 +
1

2
m2

0 k
2 +

1

2
m2

0m
2
1 −

1

4
m4

0

)

+ (k2)µ2

+
(1

2
((q + k) · k) +

1

4
(k2 +m2

1 −m2
0)
)
D0

+
(
− 1

2
(q · k) +

1

4
(k2 −m2

1 +m2
0)
)
D1, (7.63)

which integrated (using also Eq. (7.59)) gives the general recurrence relation for scalar bubbles

−(d− 1) k2

2
I(d+2)

01 =
(
− 1

4
k4 +

1

2
m2

1 k
2 − 1

4
m4

1 +
1

2
m2

0 k
2 +

1

2
m2

0m
2
1 −

1

4
m4

0

)
I01

+
1

4
(k2 +m2

1 −m2
0) I1

+
1

4
(k2 −m2

1 +m2
0) I0. (7.64)

With this choice of basis, the only non-spurious term in the 2-point residue for a renor-

malizable theory is the quadratic bubble (q · E2)2. Using Eq. (7.52), we simply have

I01[(q · E2)2] = −E
2
2

2
I(d+2)

01 , (7.65)

where the r.h.s. can be directly read from Eq. (7.64) in terms of scalar bubbles and tadpole

integrals in d dimensions only.
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Case k2 = 0 and m0 6= m1

If k2 = 0 the previous choice of basis is not valid anymore (we cannot find three independent

vectors which are orthogonal to a massless vector). Therefore we replace the orthogonal vector

E2 with a reference vector e2 such that e2
2 = 0 but k · e2 6= 0.

We can first observe that Eq. (7.64), which is valid in the general case, is smooth in the

limit k2 → 0. In this limit however the dependence on I(d+2)
01 drops out and we will no longer

have a recurrence relation, but an homogeneous relation in the number d of dimensions which

reduces the scalar bubble to tadpoles

I01 =
1

m2
1 −m2

0

(
I1 − I0

)
. (7.66)

If a recurrence relation is needed, the r.h.s. can be shifted in d+2 or d−2 using the recurrence

relation for tadpoles in Eq. (7.57).

For the linear term q · e2 in the 2-point residue, we can start from a different relation. We

derive it from

I01[qµqνqρ] = (gµνkρ + gµρkν + gνρkµ)B001 +O(k)µνρ (7.67)

Assuming k2 = e2
2 = 0, one can see that also the Shouten vector v2

⊥ = 0 and we get

I01[S(4; q, k)(q · e2)] = 0. (7.68)

The integrand reduction reads

S(4; q, k) = −1

4
(q · e2)m4

1 +
1

2
(q · e2)m2

0m
2
1 −

1

4
(q · e2)m2

0 + ∆0D1 + ∆1D0. (7.69)

where the tadpole residues ∆0 and ∆1 have rank 2 and can be integrated using relations we

already found, namely

Ii[(q · e3)(q · e4)] =
(e3 · e4)m2

i

d
Ii, Ii[µ2] =

d− 4

2
I(d+2)
i = −d− 4

d
m2
i Ii. (7.70)

Putting everything together we get

(m2
1 −m2

0)2 I01[(q · e2)] = (e2 · k)
(2

d
m2

1 −m2
1 +m2

0

)
I1 + (e2 · k)

(
− 2

d
m2

0

)
I0. (7.71)

For the quadratic term (q · e2)2 in the 2-point residue, we use instead the recurrence

relation

I[S(4; q, k)(q · e2)2] = −(k · e2)2

2
I(d+4), (7.72)

which can be derived from Eq. (7.50) and (e2 · v⊥)2 = S(4; e2, k) = −(e2 · k)2. By performing

an integrand reduction of the l.h.s. and integrating with same formulas we used in the previous

cases, we get

−(k · e2)2

2
I(d+4) = I[S(4; q, k)(q · e2)2]

= − 1

4
(m2

1 −m2
0)2 I01[(q · e2)2] +

(e2 · k)2

4

(
− 4

d
m2

1 +m2
1 −m2

0

)
I1.

(7.73)
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The result is therefore

1

4
(m2

1 −m2
0)2 I01[(q · e2)2] =

(k · e2)2

2
I(d+4) +

(e2 · k)2

4

(
− 4

d
m2

1 +m2
1 −m2

0

)
I1. (7.74)

The integral I(d+4) cannot be shifted back into d directly, but we can use Eq. (7.66) to reduce

it to tadpoles, which then can be easily shifted using

d I(d+2)
i = −2m2

i Ii ⇒ d (d+ 2) I(d+4)
i = 4m4

i I (7.75)

hence

I(d+4) =
1

m2
1 −m2

0

(
I(d+4)

1 − I(d+4)
0

)
=

4

d(d+ 2)(m2
1 −m2

0)

(
m4

1 I1 −m4
0 I0

)
, (7.76)

which plugged back into Eq. (7.74) expresses the quadratic bubble in terms of tadpoles, in

the same number of dimensions.

Case k2 = 0 and m0 = m1

As one can see, most of the formulas we derived for k2 = 0 break down if m0 = m1 due to a

division by zero. However, Eq. (7.74) above is also valid in this case and becomes

I(d+4)
01 =

2

d
m2

1 I1. (7.77)

Using Eq. (7.75) we get an homogeneous equation in d+ 4

I(d+4)
01 =

d+ 2

2m2
1

I(d+4)
1 , (7.78)

which after d→ d− 4 becomes

I01 =
d− 2

2m2
1

I1. (7.79)

Higher rank terms can in principle be computed starting from recurrence relations of rank 3

or higher.

7.3.3 Recurrence relations for 3-, 4- and 5-point integrals

A 3-point one-loop integrand has the form

I012[N ] =
N

D0D1D2
, (7.80)

By performing the integrand reduction of I[(q · v⊥)2] = I[S(4; k1, k2)], where k1 and k2 are,

as usual, two of the external legs, we get a decomposition of the form

1

v2
⊥
S(4; k1, k2) = c

(012)
0 +

1

2
µ2 + subdiagrams. (7.81)
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After integration, using the formulas in the previous subsections for the linear bubbles, we

find that all the tadpole contributions drop out and we get a relation of the form

1

4
(2− d) I(d+2)

012 = c
(012)
0 I012 +

∑

ij

cijIij , (7.82)

which is the recurrence relation for scalar triangles.

The 4-point integrals

I0123[N ] =
N

D0D1D2D3
, (7.83)

can be treated in a similar way, using N = S(q, k1, k2, k3) as integrand, whose decomposition

reads

1

v2
⊥
S(q, k1, k2, k3) = c

(0123)
0 + µ2

+
(
c

(0123)
0 + c

(012)
1 (q · e(012)

3 ) + c
(012)
4 (q · e(012)

4 )
)
D3

+
(
c

(013)
0 + c

(013)
1 (q · e(013)

3 ) + c
(013)
4 (q · e(013)

4 )
)
D2

+
(
c

(023)
0 + c

(023)
1 (q · e(023)

3 ) + c
(023)
4 (q · e(023)

4 )
)
D1

+
(
c

(123)
0 + c

(123)
1 (q · e(123)

3 ) + c
(123)
4 (q · e(123)

4 )
)
D0. (7.84)

Integrating we get the recurrence relation for scalar box integrals

1

2
(3− d) I(d+2)

0123 = c
(0123)
0 I0123 +

∑

ijk

c
(ijk)
0 Iijk. (7.85)

Finally, for 5-point integrals,

I01234[N ] =
N

D0D1D2D3D4
, (7.86)

there is no orthogonal vector (since in general we have 4 independent external legs), but we

can directly use µ2 for the integrand reduction. Indeed, the polynomial division of µ2 reads

µ2 = c
(01234)
0

+
(
c

(0123)
0 + c

(0123)
1 (q · v(0123)

⊥ )
)
D4

+
(
c

(0124)
0 + c

(0124)
1 (q · v(0124)

⊥ )
)
D3

+
(
c

(0134)
0 + c

(0134)
1 (q · v(0134)

⊥ )
)
D2

+
(
c

(0234)
0 + c

(0234)
1 (q · v(0234)

⊥ )
)
D1

+
(
c

(1234)
0 + c

(1234)
1 ((q + p1) · v(1234)

⊥ )
)
D0 (7.87)



7.3 One-loop relations 121

k

k1

k2

Figure 7.1: Two- and three-point one-loop diagrams in QED, which can be reduced at the

integral level when the external fermion legs are on-shell.

which integrated gives the recurrence relation for pentagon integrals

d− 4

2
I(d+2)

01234 = c
(01234)
0 I01234

+ c
(0123)
0 I0123 + c

(0124)
0 I0124 + c

(0134)
0 I0134

+ c
(0234)
0 I0234 + c

(1234)
0 I1234. (7.88)

One can easily see, by power counting, that I(d+2)
01234 is finite and therefore the l.h.s. of the

previous equation vanishes for d → 4. For this reason, for one-loop calculations in d =

4 − 2ε dimensions the pentagons can be reduced to boxes. As we have already seen in

Section 3.5, this also implies that we can choose ∆i1···ik = c0 µ
2 instead of ∆i1···ik = c0 for

the parametric form of the residue of the pentagons. In this case, pentagons are spurious,

i.e. they don’t give contributions to the final term of one-loop scattering amplitudes. Within

the Laurent expansion method for the integrand reduction implemented in the library Ninja

(see Chapter 4), this is further exploited by completely skipping the computation of 5-point

residues during the reduction.

7.3.4 Examples with QED kinematics

In this Section we reproduce two known one-loop IBP relations, involving the diagrams in

Fig. 7.1, by combining recurrence relations found with the method described above.

We start from a 2-point integral I01 with the following kinematics

D0 = q2, D1 = q2 + 2(q · k), (i.e. m2
0 = 0, k2 = m2

1 = m2). (7.89)

We can use Eq. (7.64), which in this case reads

− (d− 1)m2

2
I(d+2)

01 =
m2

2
I1 (7.90)

Using Eq. (7.57) to shift the tadpole integral in d+ 2 we get

(d− 1) I(d+2)
01 =

d

2m2
I(d+2)

1 . (7.91)



122 7 Integrand Reduction and independent Master Integrals

After the shift d→ d− 2 we obtain

(d− 3) I01 =
1

2m2
(d− 2) I1. (7.92)

This is the same relation one would get by using IBP on the integrands I01[q̄µ] and I1[q̄µ].

Similarly, the rank-2 relation can be obtained from Eq. (7.65) and (7.90),

(d− 1) I01[(q · E2)2] =
E2

2

2
I1. (7.93)

Next we consider the three-point integral I012 with kinematics corresponding to a QED

vertex with on-shell fermions,

D0 = q̄2, D1 = (q̄ + k1)2 −m2, D1 = (q̄ − k2)2 −m2,

with m2
0 = 0, k2

1 = k2
2 = m2

1 = m2
2 = m2, (k1 + k2)2 = s. (7.94)

The recurrence relations for the scalar triangle I012 and the bubble subdiagram I01 are par-

ticularly simple

(2− d) I(d+2)
012 = I12 (7.95)

(1− d) I(d+2)
12 =

4m2 − s
2

I12 + I1. (7.96)

We adopt a bottom up approach. We first use the recurrence relation of Eq. (7.57) for

tadpoles and we plug it into Eq. (7.96), which then expresses I12 in terms of integrals in

d+2. The result is then substituted in Eq. (7.95) which becomes homogeneous in the number

of dimensions,

(2− d) I(d+2)
012 =

2

4m2 − s
(

(1− d) I(d+2)
12 +

d

2m2
I(d+2)

1

)
.

After the shifty d→ d− 2 we get,

(4− d) I012 =
2

4m2 − s
(

(3− d) I12 +
d− 2

2m2
I1

)
, (7.97)

which is also a relation which can be obtained as an IBP identity.

7.4 Two-loop relations

For any two-loop topology, we define the form factors A and B

I[q̄µ1 q̄
ν
1 q̄
ρ
2 q̄
σ
2 ] = A ḡµν ḡρσ +B(ḡµρḡνσ + ḡµσ ḡνρ) +O(ki)

µνρσ. (7.98)

By contracting this with 4g
(−2ε)
µρ g

(−2ε)
νσ − 4g

(−2ε)
µν g

(−2ε)
ρσ we get

I[4µ2
12 − 4µ11µ22] = 8ε(1 + 2ε)(B −A). (7.99)
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We recall the basic two-loop recurrence relation of Eq. (7.34)

4 I[µ11µ22 − µ2
12] = 2ε(1 + 2ε) I(d+2), (7.100)

which combined with Eq. (7.99) gives

B −A = −1

4
I(d+2). (7.101)

In order to find an analogous relation for four-dimensional numerators, we use an anti-

symmetric, orthogonal tensor tµν⊥ which satisfies

tµν⊥ = −tνµ⊥ , t⊥µν k
µ
i = t⊥µν k

ν
i = 0, (7.102)

for every external leg ki of the diagram. A particularly convenient choice of tµν⊥ is the one

based on the Shouten polynomials (see Section 7.1) defined in Eq. (7.10) which at two-loops

reads

t⊥µν = ε
(4)
µνρ1···ρn−1k

ρ1
1 · · · k

ρn−1

n−1 , , (7.103)

or its d-dimensional version

t(d)⊥µν = ε
(d)
µνρ1···ρn−1k

ρ1
1 · · · k

ρn−1

n−1 . (7.104)

If we contract Eq. (7.98) with t⊥µσt⊥νρ we obtain

I[t⊥(q1, q2)2] = −t2⊥ (B −A), (7.105)

where

t2⊥ ≡ tµν⊥ t⊥µν = −tµν⊥ t⊥νµ. (7.106)

Hence, by combining Eq. (7.105) and (7.101), we get the following recurrence relation

I[t⊥(q1, q2)2] =
t2⊥
4
I(d+2), (7.107)

which with the choices of Eq. (7.103) and Eq. (7.104) reads

I[S(4; q1, q2, k1, . . . , kn−1)] =
t2⊥
4
I(d+2) (7.108)

and

I[S(d; q̄1, q̄2, k1, . . . , kn−1)] =
t2(d)⊥

4
I(d+2). (7.109)

respectively.

Similarly, starting from

I[q̄µi q̄
ν
j ] = A

(ij)
00 ḡµν +O(kl)

µν (7.110)

and using a vector vµ⊥ orthogonal to the external legs ki, we get

I[µij ] =
2 ε

v2
⊥
I[(qi · v⊥)(qj · v⊥)]. (7.111)

Notice that with the (Shouten) choice of Eq. (7.8) for vµ⊥, the integrand on the r.h.s. of

Eq. (7.111) can also be worked out by means of Eq. (7.6).
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Figure 7.2: Two-loop vacuum diagram in QED, which can be reduced to a product of one-loop

tadpoles.

7.4.1 A simple example

As a simple example, we consider the two-loop vacuum topology of I123 with

I123[N ] =
N

D1D2D3

and loop denominators

D1 = q̄2
1 −m2 = q2

1 −m2 − µ11

D2 = q̄2
2 −m2 = q2

2 −m2 − µ22

D3 = (q̄1 − q̄2)2 = (q1 − q2)2 − µ11 − µ22 + 2µ12, (7.112)

which is represented by the diagram in Fig. 7.2.

Since in this case t2⊥ = 12 and v2
⊥ = 4, Eq. (7.108), (7.100) and (7.111) become

I[S(4; q1, q2)] = 3 I(d+2) (7.113)

I[4µ2
12 − 4µ11µ22] = − (d− 4)(d− 5) I(d+2) (7.114)

I[µij ] =
4− d

4
I[(qi · v⊥)(qj · v⊥)], (7.115)

respectively, with

S(4; q1, q2) = q2
1q

2
2 − (q1 · q2)2. (7.116)

We start from the integrand reduction of I[S(4; q1, q2)], which integrated gives

3I(d+2)
123 = I123[S(4; q1, q2)] (7.117)

= − 1

4
I123[4µ2

12 − 4µ11µ22]−m2I123[2µ12 − µ11 − µ22] +
m2

2
I12. (7.118)

Since I12 is the product of two one-loop tadpoles, we can use Eq. (7.57) twice which yields

d2I(d+2)
12 = 4m4I(d)

12 . (7.119)
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Hence, the only missing recurrence relation needed to bring all the integrals in Eq. (7.118) in

d+ 2 dimensions is the one of I123[2µ12 − µ11 − µ22]. Using Eq. (7.115) we have

I123[2µ12 − µ11 − µ22] =
4− d

4
I123[2 (q1 · v⊥)(q2 · v⊥)− (q1 · v⊥)2 − (q2 · v⊥)2]

=
4− d

4
I123[2 (q1 · q2)− q2

1 − q2
2]. (7.120)

After an (easy) integrand reduction of the r.h.s., we get

I123[2µ12 − µ11 − µ22] =
4− d

4

(
I123[2µ12 − µ11 − µ22]− I12

)
. (7.121)

hence

− d I123[2µ12 − µ11 − µ22] = (4− d) I12. (7.122)

Plugging all the recursion relations in Eq. (7.118) we finally get

I(d+2)
123 =

d

2m2(d− 1)
I(d+2)

12 . (7.123)

which after the shift d→ d− 2 becomes

I123 =
d− 2

2m2(d− 3)
I12. (7.124)

This is a two-loop IBP identity, which we calculated here with our new method.

Alternatively, one can use I[S(d; q̄1, q̄2)] which satisfies Eq. (7.109), that in this case reads

I[S(d; q̄1, q̄2)] =
d(d− 1)

4
I(d+2)

123 (7.125)

and with a similar computation one gets, after integrand reduction and integration of the

l.h.s.
d(d− 1)

4
I(d+2)

123 = I123[S(d; q̄1, q̄2)] =
m2

2
I12 =

d2

8m2
I(d+2)

12 , (7.126)

which after d→ d− 2 yields again Eq. (7.124). Using I[S(d; q̄1, q̄2)] is therefore more conve-

nient in this case, since quadratic terms in µij do not appear in the reduction.
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Chapter 8

Conclusions

Scattering amplitudes describe the probability of the fundamental interactions between ele-

mentary particles involved in physical processes, and they can be regarded as the main point

of contact between a theoretical model and the related phenomenology. They are an essen-

tial ingredient for obtaining theoretical predictions needed by modern experiments in particle

physics, especially the ones at colliders such as LHC. For this reason, the development of

general methods for their computation at higher-orders in perturbation theory has become

increasingly important in recent years.

In this thesis, we presented several new developments on the topic of the integrand reduc-

tion of loop amplitudes, focusing on semi-analytic and algebraic techniques. The main goal

of this techniques is the computation of loop integrals contributing to scattering amplitudes

by reducing the respective integrands to a linear combination of fundamental, irreducible

contributions. We dealt with the improvement and the extension of one-loop integrand re-

duction techniques, providing several phenomenological applications, as well as with their

generalization to higher loops.

We built a general framework for the integrand decomposition of Feynman diagrams which

is based on simple concepts of algebraic geometry and can be applied at all orders in perturba-

tion theory. We derived a recursive formula which allows to find the integrand decomposition

of any Feynman integral, by iterating the application of the multivariate polynomial divi-

sion algorithm to integrands with a lower and lower number of loop denominators. This

formula correctly reproduces the known one-loop integrand decomposition and provides a

recipe for extending the result to any higher-loop topology. It also allows to extend one- and

higher-loop results to theories allowing higher-rank integrands, such as non-renormalizable

and effective theories. We showed how the fit-on-the-cut approach for the reduction, which

consists in performing the reduction by cutting – i.e. putting on-shell – loop propagators,

can also be systematically extended to higher-loop amplitudes, assessing its advantages and

limits. We also developed an alternative and purely algebraic reduction technique, called

divide-and-conquer, which consists in the recursive application of the polynomial division to
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the integrand of the diagram and its sub-topologies. This method, being based on the same

concepts used to prove the generalization of the integrand decomposition to all loop orders,

can be applied to any integrand in any theory and it always yields the integrand decomposition

in a finite number of well-defined algebraic operations.

In the one-loop case, we developed a novel method for the integrand reduction, based on

the systematic application of the Laurent series expansion to the integrand. The algorithm

has been implemented in a C++ library called Ninja, which we made publicly available.

The library has been interfaced with the one-loop package GoSam and has been used for the

computation of several complex one-loop amplitudes with up to eight external legs, and for

producing phenomenological results, such as NLO corrections to Higgs boson production in

association with a top quark pair and a jet, and more recently for new analysis on Higgs pro-

duction plus two and three jets in gluon fusion. We expect that Ninja, interfaced with either

GoSam or other one-loop packages, will be useful for future phenomenological computations

at one-loop involving complex processes.

In the higher-loop case, we showed examples of the application of both the fit-on-the-

cut and the divide-and-conquer techniques, discussing also a preliminary semi-automated

implementation of the latter. We also showed how to use the integrand reduction combined

with identities on dimensionally shifted integrals in order to find additional relations among

integrals which are independent at the integrand level, such as identities traditionally found

via Integration-by-Parts or Passarino-Veltman methods.

The one-loop techniques proposed in this thesis have already been, and are likely to be in

the future, very useful for phenomenological studies in particle physics. Our study on the pos-

sibility to generalize integrand reduction techniques at higher-loops produced very promising

results which could allow in the future to extend the possibilities of making phenomenological

predictions with high-precision for more complex processes.



Appendix A

Spinor-helicity formalism

In this appendix we give a brief description of the spinor-helicity formalism which has been

used in several points of this thesis. This is particularly useful, among many other things, for

the construction of four-dimensional bases of momenta or polarization vectors. Here we will

focus on massless spinors. Further details on the topic can be found in pedagogical reviews

such as Ref.s [118,119] and references therein. A simple numerical library for massless spinors

is distributed with the library Ninja (see e.g. the example described in Section C.5.2).

The Dirac equation for a massless spinor u with momentum k is

/k u(k) = 0. (A.1)

This equation has two solutions u− and u+, for left- and right-handed fermions respectively.

These satisfy

P±u±(k) ≡ 1

2
(1± γ5)u±(k) = u±(k) (A.2)

The spinors v for anti-particles, in the massless case, obey the same equation. One can thus

choose them to be equal to the ones for particles, namely v±(k) = u∓(k).

From these one defines the square and angle brackets

|k〉 ≡ u+(k) = v−(k), |k] ≡ u−(k) = v+(k),

〈k| ≡ ū−(k) = v̄+(k), [k| ≡ ū+(k) = v̄−(k). (A.3)

These allow to define, for any set of momenta ki the anti-symmetric spinor products

〈i j〉 ≡ 〈ki kj〉, [i j] ≡ [ki kj ] (A.4)

and the Lorentz vectors
〈i γµj]

2
≡ 〈ki γ

µkj ]

2
. (A.5)

Notice that, as a consequence of the Dirac equation, the vector in Eq. (A.5) is orthogonal to

the momenta ki and kj which defined them. Eq. (A.5) can also be read as a way to define a



130 A Spinor-helicity formalism

Lorentz vector from its square and angle brackets. As a special case, a massless momentum

k can be rewritten as

kµ =
〈k γµk]

2
. (A.6)

One can prove the following relations

〈ki kj〉[kj ki] = 2 (ki · kj) (A.7)

〈ki γµkj ]
2

〈kl γµkm]

2
=

1

2
〈ki kl〉[km kj ] (A.8)

and the so-called Shouten identity

〈ki kj〉〈kl km〉+ 〈ki kl〉〈km kj〉+ 〈ki km〉〈kj kl〉 = 0

[ki kj ][kl km] + [ki kl][km kj ] + [ki km][kj kl] = 0. (A.9)

One can also define polarization vectors for right-handed (R) and left-handed (L) massless

gauge bosons as

εµR(k, r) =
1√
2

〈r γµ k]

〈r k〉 , εµL(k, r) =
1√
2

〈k γµ r]
[k r]

, (A.10)

where k is the momentum of the incoming boson and r is an arbitrary reference vector. For

outgoing particles, these formulas still hold but the helicity should be reversed.

If k1 and k2 are two independent massless momenta, the following defines a four-dimensional

basis E of massless Lorentz vectors

E = {e1, e2, e3, e4}, eµ1 = kµ1 , eµ2 = kµ2 , eµ3 =
〈e1 γ

µe2]

2
, eµ4 =

〈e2 γ
µe1]

2
, (A.11)

which satisfies the following normalization relations

e2
i = e1 · e3 = e1 · e4 = e2 · e3 = e2 · e4 = 0, (e3 · e4) = −(e1 · e2), (A.12)

where the last identity follows from Eq. (A.7) and (A.8). Any four-dimensional (real or

complex) vector k can be decomposed in terms of this basis as

kµ = x1 e
µ
1 + x2 e

µ
2 + x3 e

µ
3 + x4 e

µ
4 , (A.13)

where

x1 =
k · e2

e1 · e2
, x2 =

k · e1

e1 · e2
, x3 =

k · e4

e3 · e4
, x4 =

k · e3

e3 · e4
. (A.14)

Moreover, if k is massless one can define its angle and square brackets from the ones of the

vectors e1 and e2. If, for instance, x3 6= 0, we can define

|k〉 = x3 |e1〉+ x2 |e2〉, |k] =
x1

x3
|e1] + |e2]. (A.15)

If, instead, x4 6= 0, we can use

|k〉 = x1 |e1〉+ x4 |e2〉, |k] = |e1] +
x2

x4
|e2]. (A.16)
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If x3 = x4 = 0, the massless condition implies that either k = x1e1 or k = x2e2 and one can

simply choose

|k〉 = x1 |e1〉, |k] = |e1] or |k〉 = x2 |e2〉, |k] = |e2] (A.17)

respectively. In all these cases, one can check that Eq. (A.6) reproduces the correct expression

for kµ (notice that the massless condition k2 = 0 implies x1 x2 = x3 x4).

For numerical evaluations, one can use an explicit representation of the Dirac matrices,

e.g.

γµ =

(
0 σµ

σ̄µ 0

)
, (A.18)

with

(σµ) = (12×2, σ1, σ2, σ3), (σ̄µ) = (12×2,−σ1,−σ2,−σ3), (A.19)

where σi are the Pauli matrices. In this representation, the matrix γ5 reads

γ5 =

(
−12×2 0

0 12×2

)
. (A.20)

One can choose

|k〉 = u+(k) = v−(k) =




0

0

k+

k− e+iφk



, |k] = u−(k) = v+(k) =




k− e−iφk

−k+

0

0



, (A.21)

where

k± =
√
k0 ± k3, k− e±iφk =

k1 ± i k2

k+
.

These formulas are strictly valid for positive-energy and real momenta. Using this assump-

tion, one can work out the analytic expressions for spinor products, as well as the ones for the

orthogonal momenta defined by Eq.(A.5) and the polarization vectors of Eq. (A.10). The re-

sults can thus be extended by analytic continuation to negative-energy or complex momenta.

As we stated, numeric formulas for spinors, spinor products, orthogonal momenta and polar-

ization vectors have been implemented in the Ninja library. They are used internally for the

computation of four-dimensional bases, but they can also be useful for the numerical definition

of spinors and polarization vectors appearing in the expression of scattering amplitudes.
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Appendix B

Basic concepts of algebraic

geometry

In this appendix we collect some basic concepts of algebraic geometry we used in Chapters 3

and 6. We make no attempt to be completely general or mathematically rigorous, but we

limit ourselves to give a brief review of some notions needed for understanding the contents

of this thesis. A more comprehensive treatment of these subjects can be found on several

textbooks, such as Ref.s [200,201].

B.1 Polynomial ideals

With P [z] = P [z1, . . . , zn] we denote the ring of all polynomials in the variables z ≡ (zi)

over a properly chosen field. In this thesis, the latter is typically assumed to be the field

of complex numbers or, in algebraic computations, the field of rational functions of a set of

kinematic invariants.

For any set of polynomials {p1, . . . , pm} in the variables z, one can define the ideal J
generated by {p1, . . . , pm} as

J ≡ 〈p1, . . . , pm〉 =

{
m∑

k=1

hk(z)pk(z) : hk(z) ∈ P [z]

}
, (B.1)

i.e. as the set of polynomials which can be written as a combination of the generators pk.

One can observe that all the elements of J vanish on the solutions of the system of

equations defined by its generators pk, namely p1(z) = · · · = pm(z) = 0. On the other hand,

if a polynomial vanish on all solutions of this system of equations, it does not necessarily

belong to the ideal J . More formally, for every ideal J one can define the algebraic variety

V(J )

V(J ) = {z : p(z) = 0 ∀p ∈ J }. (B.2)
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One can prove that the set of polynomials which identically vanish on an algebraic variety is

an ideal, which we denote as I(V),

I(V) = {p ∈ P [z] : p(z) = 0 ∀z ∈ V}. (B.3)

It is straightforward to see that, for any ideal J ,

J ⊆ I(V(J )), (B.4)

while the equality between the two sides of the previous equation is in general not true.

The radical of an ideal J is denoted as
√
J and defined as

√
J = {p ∈ P [z] : pk ∈ J for some integer k > 0} (B.5)

An ideal J is said to be radical if
√
J = J . One can prove the following

Theorem. Hilbert’s Nullstellensatz. Let J be a polynomial ideal of the ring P [z]. If p is a

polynomial in P [z] such that p(z) = 0 for all z in the variety V(J ), then pk ∈ J for some

positive integer k. In other words

I(V(J )) =
√
J .

For the special case where J is a radical ideal, we have the following

Corollary. Let J be a radical ideal (i.e.
√
J = J ) of P [z]. If p ∈ P [z] is a polynomial such

that p(z) = 0 for all z ∈ V(J ), then p ∈ J .

Another special case is the one where V(J ) = ∅, i.e. when the system of equations

p1(z) = · · · = pm(z) = 0 defined by the ideal J has no solution. In that case, one can prove

a weak version of Hilbert’s Nullstellensatz, namely

Corollary. Hilbert’s weak Nullstellensatz. The system of polynomial equations defined by

the generators of an ideal J is impossible if and only if 1 ∈ J . In other words,

V(J ) = ∅ ⇔ ∃h1, . . . , hm ∈ P [z] : 1 =

m∑

k=1

hk(z)pk(z).

It is worth observing that if the conditions of Hilbert’s weak Nullstellensatz are satisfied,

then J = P [z], i.e. the ideal coincides with the whole ring and any polynomial can be written

as a combination of the generators of J .

B.2 Polynomial division, Gröbner bases and quotient rings

Given a ring of polynomials P [z], a monomial order (or monomial ordering) is a total order

in the set of the monomials of the ring, which satisfies
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• if m1 < m2 then m1m3 < m2m3, for m1, m2, m3 monomials in P [z],

• for any monomial m1, if m1 6= 1 then m1 > 1.

In the univariate case, the only monomial order satisfying these conditions is 1 < z < z2 <

z3 < · · · , but in the multivariate case several orderings can be defined. For the purposes of

this thesis, we only need to mention two of them, namely the lexicographical and the degree

reverse lexicographical orderings. Given an ordered set of coordinates z1 > z2 > · · · > zn

and two monomials m1 = zα1
1 · · · zαnn and m2 = zβ1

1 · · · zβnn , we build the vectors of exponents

~α = (α1, . . . , αn) and ~β = (β1, . . . , βn). Then we can define the two monomial orders as

lexicographical order m1 > m2 if the leftmost nonzero entry of the vector ~α−~β is positive,

degree reverse lexicographical order m1 > m2 if
∑

k αk >
∑

k βk, or if
∑

k αk =
∑

k βk

and the rightmost non nonzero entry of the vector ~α− ~β is negative.

Unless specified otherwise, in the computations presented in this thesis we use the degree

reverse lexicographical order. This has the advantages of being more practical and compu-

tationally more efficient. Moreover, when this ordering is used, a reduction via polynomial

division (see below) will either lower or leave invariant the total degree of the polynomials.

Given a set of polynomials p1, . . . , pm in the variables z and a monomial order, the

polynomial-division algorithm allows to decompose any polynomial f ∈ P [z] as

f(z) = Q(z) +R(z), Q(z) =
m∑

k=1

qk(z)pk(z), (B.6)

where the polynomials Q and R are the quotient and remainder of the division respectively.

In this case we say that f is reduced to R modulo the polynomials pk, or

f(z) = R(z) mod {pk}. (B.7)

The main downside of such a decomposition is that it is generally not unique. In particular,

R and Q can depend on the order in which the polynomials pk are taken, and R could be

different from zero even if f belongs to the ideal J = 〈p1, . . . , pm〉. These issues are however

not present when Gröbner bases are used.

Let J be a polynomial ideal such as the one defined in Eq. (B.1). A Gröbner basis is a

set of polynomials GJ = {g1, . . . , gl} which generates J , i.e.

〈g1, . . . , gl〉 = 〈p1, . . . , pm〉 = J , (B.8)

such that the remainder of a polynomial division modulo the gk is always unique, once the

monomial order has been fixed. More in detail, the remainder RGJ of a polynomial division

modulo GJ only depends on the ideal J and the dividend f . In particular, RGJ (z) = 0 if
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and only if f ∈ J . One can show that every ideal has a Gröbner basis1. Notice that in

general l 6= m, i.e. the number of polynomials in a Gröbner basis can differ from the one of

the original generators which defined the ideal.

The properties of Gröbner bases allow us to define the reduction modulo a polynomial ideal.

Given a polynomial ring P [z], an ideal J and a Gröbner basis GJ of this ideal, a polynomial

f(z) is said to be reduced to R(z) modulo J , if R is the remainder of a polynomial division

modulo a Gröbner basis of J . Since for Gröbner bases the remainder of a polynomial division

is unique, this definition is unambiguous. We use the notation bfcJ to denote the reduced

polynomial R, i.e.

bfcJ = f mod GJ . (B.9)

In this case we say that bfcJ is the normal form of f with respect to the ideal J .

One can also define, for any ideal J , an equivalence relation ∼J in P [z] as

p ∼J q iff p− q ∈ J , (B.10)

i.e. two polynomials are equivalent if their difference belongs to the ideal J . This is the

case when the difference p− q is reduced to zero modulo (the Gröbner basis GJ of) J . The

equivalence classes [p]J contain polynomials whose difference is an element of J . One can

easily show that the set of all equivalence classes defined by such equivalence relation is a

polynomial ring, called quotient ring and denoted by P [z]/J . More explicitly

P [z]/J ≡ {[p]J : p ∈ P [z]}. (B.11)

Algebraic operations between equivalence classes can be defined from algebraic operations

in the original ring P [z] by choosing a representative for each class. One can check that

these definitions are well formed, being independent of the choice of representative in each

equivalence class.

In general, one can identify in a natural way any equivalence class in P [z]/J with one

of its representatives in P [z], thanks to the properties of Gröbner bases, namely with the

assignment

[p]J ↔ bpcJ . (B.12)

More verbosely, each equivalence class is identified with the remainder of a representative p

modulo a Gröbner basis of the ideal J . Since bpcJ = 0 if and only if p ∈ J (or equivalently

bpcJ = bqcJ if and only if p − q ∈ J ), this definition is independent of the choice of the

1With the definition we gave, a Gröbner basis for an ideal is not unique. Indeed, one could easily check that

if {gk} is a Gröbner basis, then {λgk} is one as well, for any constant λ 6= 0. One can introduce the concept of

reduced Gröbner basis and show that every ideal has a unique reduced Gröbner basis. However we will omit

this definition, since it is not needed for understanding the contents of this thesis, although the algorithms

implemented in computer algebra systems generally return reduced Gröbner bases, and in the literature one

often understands Gröbner bases to be reduced and therefore unique.
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representative p in [p]. Hence, we can think of any element of P [z]/J as an element of

P [z] by performing a reduction modulo J on one of its representatives. Gröbner bases

thus allow to perform algebraic operations in quotient rings following the same principles

of modular arithmetic. Indeed, one can perform arithmetic operations in Z/n by mapping

them into operations in Z combined with the operation “mod n”. Likewise, one can perform

algebraic operations in quotient rings P [z]/J by mapping them to operations in P [z] on their

representatives and combining them with the operation “mod GJ ”.

B.3 Zero-dimensional ideals

In this section we collect some results about zero-dimensional ideals that we used to prove

the maximum-cut theorem in Section 3.2. Here we will assume to work with polynomials over

the field of complex numbers.

Before giving the definition of a zero-dimensional ideal, we enunciate the following

Theorem. Finiteness. Let J be an ideal in P [z]. The following conditions are equivalent

• P [z]/J is a finite-dimensional space,

• V(J ) is a finite set.

If the conditions of the Finiteness Theorem are satisfied, the ideal J is said to be zero-

dimensional.

A second result we used in Section 3.2, is the following Proposition, which can be found

e.g. in Ref. [200] (Corollary 2.6, Chapter 4),

Proposition. Let J be a zero-dimensional ideal. The ideal is radical (
√
J = J ) if and only

if every solution in V(J ) has multiplicity 1.

Finally, we recall the Shape Lemma, which is the most important ingredient for the proof

of the maximum-cut theorem given in Section 3.2.

Theorem. Shape Lemma. Let J be a zero-dimensional radical ideal in P [z] such that the

last coordinates zn of every z ∈ V(J ) are distinct from each other. Let GJ be the Gröbner

basis of this ideal with respect to lexicographical order with zn as last variable. Then, the

following conditions are satisfied

• if V(J ) has ns points, then the monomials 1, zn, z
2
n, . . . , z

ns−1
n are linearly independent

and are a basis of P [z]/J ,
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• GJ consists in n monomials g1, . . . , gn of the form

g1 = z1 + h1(zn)

...

gn−1 = zn−1 + hn−1(zn)

gn = znsn + hn(zn)

where the maximum degree of the polynomials hk is ns.



Appendix C

Usage of the C++ library Ninja

In this appendix we describe the usage of the public C++ library Ninja, which implements

the integrand reduction via Laurent expansion method for the computation of one-loop inte-

grals (described in Chapter 4).

C.1 Installation

Ninja can be obtained at the url http://ninja.hepforge.org. The library is distributed

with its source code using the GNU build system (also known as Autotools). It can be

compiled and installed with the shell commands

./ configure

make

make install

This will typically install the library and the header files in sub-directories of /usr/local.

The --prefix option can be used in order to specify a different installation path. In this case,

you might need to update your LD LIBRARY PATH (or DYLD LIBRARY PATH on Mac OS) envi-

ronment variable accordingly. In order to use Ninja for the production of phenomenological

results, one must interface it with a library of Master Integrals. Interfaces to the OneLoop

and LoopTools libraries are already provided with the distribution (see Section C.7 for

interfacing a different library). These can be enabled by passing to the configure script the

options --with-avholo[=FLAGS] and --with-looptools[=FLAGS]. For instance, the follow-

ing commands

./ configure --prefix=$HOME/ninja \

--with -avholo=’-L/path/to/avh_olo/lib -lavh_olo ’ \

FCINCLUDE=-I/path/to/avh_olo/include

make install
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will install all the files in sub-directories of $HOME/ninja and build the interface with the

OneLoop library, which will be supposed to be already installed and linkable with the flags

specified with the --with-avholo option. We also specified the FCINCLUDE variable with

the flags which are needed to find Fortran-90 modules when they are not installed in a

default directory. A full list of optional arguments for the configure script can be obtained

with the command ./configure --help. While most of them are common to every package

distributed with the GNU build system, some are instead specific to the Ninja library and

they are described in Table C.1. In most of the cases, only the options for interfacing the

integral libraries should be needed.

The user can also optionally install the Python package NinjaNumGen, which allows

one to easily generate the input needed by Ninja from an analytic expression of the numerator

of the integrand. The package can be used both as a script and as a Python module, and

it could also be useful for interfacing Ninja to existing one-loop packages. In order to install

the package, move in the utils folder and type

python setup.py install

where, as usual, an installation prefix can be specified using --prefix. In this case one might

need to update the PATH and PYTHONPATH environment variables accordingly. The package

needs Form-4 [136, 137] in order to compute the expansions which are needed and for the

generation of the corresponding source code.

Further information about the installation procedure can be found in the README file of

the distribution.
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Option Description

--with-avholo[=FLAGS] Include an interface with the OneLoop integral library [45,

129], specifying the corresponding flags for dynamic linking.

If the Fortran module avh olo is not in a standard path,

one should add its directory to the FCINCLUDE variable when

using this option.

--with-looptools[=FLAGS] Include an interface with the LoopTools library [44]

(needs LoopTools version 2.9 or higher), specifying the

coresponding flags for static linking. If the header file

clooptools.h is not in a standard path, one should add its

directory to the CPPFLAGS variable when using this option.

--with-quadruple[=FLAGS] Compile the library in quadruple precision. This requires the

GCC libquadmath library and one can specify the corre-

sponding flags for the linker (-lquadmath by default). With

this option, the types ninja::Real and ninja::Complex

will be quadruple precision floating point numbers, and in-

cluding any public header file of the library will define the

macro NINJA QUADRUPLE to 1 (it will not be defined other-

wise). The user should also make sure, when using this op-

tion, that the libraries of Master Integrals used by Ninja are

compiled in quadruple precision, with floating point types

compatible with the ones of GCC.

--enable-higher rank Enable support for higher-rank numerators. This is not

needed for renormalizable theories.

--disable-gosam Do not include GoSam interface.

--disable-avholo cache Do not include a cache of Master Integrals in the interface

with the OneLoop library.

Table C.1: Options and environment flags for the configure script. Only the options which

modify the default behaviour of Ninja are listed.
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C.2 Basic types and namespaces

All the types, classes and functions provided by the Ninja library are defined inside the

ninja namespace. In particular, the types Real and Complex are aliases for double and

std::complex<double>, unless the library was compiled in quadruple precision. Classes for

real and complex momenta are defined as RealMomentum and ComplexMomentum respectively.

They are wrappers of four-dimensional arrays of the corresponding floating-point types, which

overload arithmetic and subscript operators. More in detail, an instance p of one of these

classes represents a momentum p according to the representation

p = {p[0], p[1], p[2], p[3]} = {Ep, xp, yp, zp},

i.e. with the energy in the zeroth component, followed by the spatial components.

C.3 Writing the integrand

The inputs needed by the reduction algorithm implemented in Ninja are the momenta pi and

the masses mi of the loop denominators defined in Eq. (3.14), and the numerator N (q, µ2) of

the integrand. The latter must be cast in four different forms (one of which is optional). The

C++ implementation requires the numerator to be an instance of a class inherited from the

abstract class ninja::Numerator. The latter is defined as

class Numerator {

public:

virtual Complex evaluate(const ninja:: ComplexMomentum & q,

const ninja :: Complex & µ2,

int cut ,

const ninja :: PartitionInt partition [])

= 0;

virtual void muExpansion(const ninja:: ComplexMomentum v[],

const ninja :: PartitionInt partition [],

ninja :: Complex c[]) {}

virtual void t3Expansion(const ninja:: ComplexMomentum & v0,

const ninja :: ComplexMomentum & v3,

const ninja :: ComplexMomentum & v4,

const ninja :: Complex & β,

int mindeg ,

int cut ,

const ninja :: PartitionInt partition [],
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ninja :: Complex c[]) = 0;

virtual void t2Expansion(const ninja:: ComplexMomentum & v1,

const ninja :: ComplexMomentum & v2,

const ninja :: ComplexMomentum & v3,

const ninja :: ComplexMomentum & v4,

const ninja :: Complex β[],

int mindeg ,

int cut ,

const ninja :: PartitionInt partition [],

ninja :: Complex c[]) = 0;

virtual ~Numerator () {}

};

The input parameters cut and partition are common to more methods and give infor-

mation about the multiple cut where Ninja is currently evaluating the numerator. Although

this information is not always necessary, there might be occasions where it could be useful

for an efficient evaluation of the numerator. The integer cut is equal to k if the numer-

ator is being evaluated on a k-ple cut, with k = 1, 2, 3, 4. This parameter is not given

in the method muExpansion because the latter is always evaluated on quadruple cuts (i.e.

cut = 4). The parameter partition points to an array of integers (namely of integer type

ninja::PartitionInt), with length equal to cut, containing the indexes of the cut numer-

ators. If the user asks to perform a global test (see Section C.4), the numerator will also

be evaluated outside the solutions of the multiple cuts, in which case the parameter cut will

be set to zero. As an example, if the method t3Expansion is evaluated on the 3-ple cut

D0 = D2 = D5 = 0 for the determination of the 3-point residue ∆025, we will have cut = 3,

partition[0] = 0, partition[1] = 2, and partition[2] = 5. The returned expansion

only needs to be valid for the cut specified (e.g. D0 = D2 = D5 = 0 in the previous example).

In Section C.3.1 we give a detailed description of each method of the class ninja::Numerator,

for a generic numerator of an n-point integrand of rank r. If the analytic expression of the

integrand is available, all these methods can be more easily generated with the help of the

simple Python package NinjaNumGen, which is distributed with the library and whose

usage is described in Section C.3.2 and C.6.

C.3.1 Definition of the input

In this subsection we give a detailed description of each method of the class ninja::Numerator,

for a generic numerator of an n-point integrand of rank r. As already mentioned, this is only

needed to those who prefer to provide an alternative implementation of the required methods

without using the script NinjaNumGen, which otherwise can automatically generate the
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input for Ninja.

The method Numerator::evaluate(q,µ2,cut,partition)

It must return the value of the numerator N (q, µ2) evaluated at the (complex) values of q

and µ2 given as input.

The method Numerator::muExpansion(v,partition,c)

This is used for the computation of the Laurent expansion in µ2 required to obtain the

coefficient c4 of the boxes. In the renormalizable case, this method should compute the

leading term of a parametric expansion in t of the integrand defined by

qν → t vν⊥, µ2 → t2 v2
⊥ (C.1)

where v⊥ is given by v[0], i.e. by the zeroth entry of the array of momenta v. For renormal-

izable theories this array will therefore only contain at most one element. The method should

write the leading coefficient of the expansion in the zeroth entry of the array pointed by the

parameter c, i.e.

c[0] = N [tr];

In the higher-rank case r = n + 1, which might appear in non-renormalizable and effective

theories, this method should instead compute both the leading and the next-to-leading terms

of the expansion in t of the numerator, defined by

qν → t vν0 t+ vν1 , µ2 → t2 v2
0 (C.2)

with vi ≡ v[i], where v is the array of momenta passed as input parameter. The two leading

terms of the expansion should be written in the first two entries of the array pointed by the

parameter c, ordered by decreasing powers of t, i.e.

c[0] = N [tr];

c[1] = N [tr−1];

The implementation of this method is only required when r ≥ n. It is also not needed if

the user chooses to disable the µ2-expansion method for the boxes, but in that case more

evaluations of the numerator will be needed and the computation of the pentagons will not

be skipped.

The method Numerator::t3Expansion(v0,v3,v4,β,mindeg,partition,c)

This method is used for the computation of the coefficients of the residues of both the triangles

and the tadpoles. It is supposed to compute the coefficients of the terms tjµ2k for j ∈
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{r, r − 1, r − 2, . . . , r − mindeg}, given by substituting into the numerator the parametric

expansion of the loop momentum defined by

qν → vν0 + t vν3 +
β + µ2

t
vν4 , v2

3 = v2
4 = 0, (v3 · v4) =

1

2
, (C.3)

as a function of the momenta vνi and the constant β which are passed as parameters. The

maximum value of the parameter mindeg is r−n+3. Since in a renormalizable theory r ≤ n,

and by definition of rank we have j+2k ≤ r, in this case at most 6 terms can be non-vanishing

in the specified range of j. Similarly, one can check that in the higher-rank case with r = n+1

there will be at most 9 terms. The method should write these terms in the entries of the array

pointed by c, ordered by decreasing powers of t. Terms with the same power of t should be

ordered by increasing powers of µ2. A pseudo-implementation will therefore look like

int idx = 0;

for (int j=r; j>=r-mindeg; --j)

for (int k=0; 2*k<=r-j; ++k)

c[idx++] = N [tjµ2k];

The method Numerator::t2Expansion(v1,v2,v3,v4,β,mindeg,partition,c)

In the current version of Ninja, this method is called during the computation of the coef-

ficients of the bubbles. It is supposed to compute the coefficients of the terms tjxlµ2k for

j ∈ {r, r − 1, . . . , r − mindeg}, given by the expansion

qν → vν1 + x vν2 + t vν3 +
β0 + β1 x+ β2 x

2 + µ2

t
vν4 ,

v2 · v3 = v2 · v4 = v2
3 = v2

4 = 0, (v3 · v4) =
1

2
(C.4)

as a function of the momenta vνi and the constants βi ≡ β[i], which are passed as parameters

to the method. The maximum value of mindeg is r − n+ 2. In a renormalizable theory, this

implies that one can have at most 7 non-vanishing terms in this range of j. In the higher-rank

case with r = n + 1 we can have instead up to 13 non-vanishing terms in that range. It is

worth observing that the expansion in Eq. (C.4) can be obtained from the previous one in

Eq. (C.3) by means of the substitutions

vν0 → vν1 + x vν2 , β → β0 + β1 x+ β2 x
2, v2 · v3 = v2 · v4 = 0.

The terms of the expansion must be stored in the entries of the array pointed by c, ordered

by decreasing powers of t. Terms with the same power of t should be ordered from the

lowest to the highest with respect to the lexicographical order in the variables (x, µ2). A

pseudo-implementation will have the form
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int idx = 0;

for (int j=r; j>=r-mindeg; --j)

for (int l=0; l<=r-j; ++l)

for (int k=0; 2*k<=r-j-l; ++k)

c[idx++] = N [tjxlµ2k];

C.3.2 Using NinjaNumGen

In this subsection we briefly describe, with the help of a simple example, how to generate the

numerator methods, with the help of the Python package NinjaNumGen. NinjaNumGen

can be both used as a command-line script and within Python by importing the ninjanumgen

module. Here we describe its usage as a script, with a simple example. A more detailed list

of options, allowing to fine-tune the output according to the user’s needs, as well as the usage

of the package as a Python module, are described in Appendix C.6.

Let us define, as an example, the following 4-point one-loop integrand, with kinematics

k0, k1 → k2, k3

I =
N (q, µ2)

D0D1D2D3
=

(q · v1)(q · v2)(q · v3)(q · v4) + µ4

D0D1D2D3

D0 = q̄2 −m2
0

D1 = (q̄ + k0)2 −m2
1

D2 = (q̄ + k0 + k1)2 −m2
2

D3 = (q̄ + k3)2 −m2
3. (C.5)

where vi are arbitrary reference vectors. In order to generate the methods declared in the

ninja::Numerator class, we first create a file mynum.frm containing a Form [124] expression

for the numerator

* mynum.frm

V v1,v2,v3,v4;

V Q;

S Mu2;

L Diagram = (Q.v1)*(Q.v2)*(Q.v3)*(Q.v4) + Mu2^2;

and we run the script with the command

ninjanumgen mynum.frm --nlegs 4 --rank 4 -o mynum.cc

which creates the source file mynum.cc with the definition of the methods, optimized for fast

numerical evaluation using the recent features of Form-4. The command also creates an
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header file mynum.hh, unless already present, which is supposed to contain the declaration of

the numerator class. The latter will have the following form (where for brevity we replaced

the parameters of each method with ellipses),

class Diagram : public ninja :: Numerator {

public:

virtual ninja:: Complex evaluate (...);

virtual void muExpansion (...);

virtual void t3Expansion (...);

virtual void t2Expansion (...);

public:

// Add other public methods and data here

private:

// Add other private methods and data here

};

If the numerator expression depends on other momenta or parameters, these should be

visible inside the definitions of the methods. In our example, the numerator depends on

the reference vectors vi which appear in its Form expression. One possibility would be

declaring these vectors as global variables, but a better alternative could be defining them as

data members of the numerator class. In this example we will declare them as public data

members by inserting the following code inside the class definition

public:

ninja:: ComplexMomentum v1 ,v2,v3,v4;

which defines the vectors as complex Lorentz momenta. This completes the generation of the

input, which will allow Ninja to compute the integral.

C.4 Running the reduction

In this subsection we describe the usage of Ninja for the reduction of a generated integrand,

such as the one in the example of the previous subsection. With the help of simple examples,

we show how to specify the input and how to control the run-time behavior of the procedures

of the library. All the public header files of the library are installed in the sub-directory ninja

of the include path in the installation directory.

C.4.1 A simple example

Here we show the contents of a file simple test.cc which illustrates the basic usage of Ninja

for computing the integral defined in Eq. (C.5).
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// simple_test.cc

#include <iostream >

#include <ninja/ninja.hh>

#include <ninja/rambo.hh>

#include "mynum.hh"

using namespace ninja;

int main()

{

// External legs of the loop

const int N_LEGS = 4;

// Center of mass energy

const Real ENERGY_CM = 50;

// Invariant s

const Real S = ENERGY_CM*ENERGY_CM;

// Rank of the numerator

const int RANK = 4;

// Declare an instance of the numerator

Diagram num;

// Assign numerical values to the reference vectors

num.v1 = ComplexMomentum (1.0 ,1.1 ,1.2 ,1.3);

num.v2 = ComplexMomentum (1.4 ,1.5 ,1.6 ,1.7);

num.v3 = ComplexMomentum (1.8 ,1.9 ,2.0 ,2.1);

num.v4 = ComplexMomentum (2.2 ,2.3 ,2.4 ,2.5);

// Define external momenta

RealMomentum k[N_LEGS ];

// Get a random phase -space point

Rambo phase_space(S,N_LEGS );

phase_space.getMomenta(k);

// Define the internal momenta of the loop

RealMomentum pi[N_LEGS ];

pi[0] = RealMomentum (0,0,0,0);

pi[1] = k[0];

pi[2] = k[0]+k[1];
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pi[3] = k[3];

// Define the square of the internal masses

Real msq[N_LEGS] = {1. ,2. ,3. ,4.};

// Create an amplitude object

Amplitude <RealMasses > amp(N_LEGS ,RANK ,pi ,msq);

// Evaluate the integral

amp.evaluate(num);

// Print the result

std::cout << amp [0] // or amp.eps0(), finite part

<< amp [1] // or amp.epsm1(), single -pole

<< amp [2] // or amp.epsm2(), double -pole

<< std::endl;

return 0;

}

In the example above, after specifying some constants, we declare an instance num of the

user-defined class Diagram, which we constructed in Section C.3.2. Then we give numerical

values to the reference vectors vi appearing in the numerator definition of Eq. (C.5) as well as

in the analytic expression given in the corresponding Form file. This defines our numerator.

Next we randomly generate a phase-space point, by creating a Rambo object and calling its

method getMomenta which fills the array k of external momenta. The phase space generation

is a translation in C++ of the corresponding GoSam implementation, which in turn is

based on the one of Ref. [143]. It is meant to provide an easy way to generate phase-

space points in tests which use the library Ninja. Every call of the method getMomenta on

the same Rambo object randomly generates a different phase-space point. The code above

assumes the external legs to be massless. If the external legs were massive, with masses

{MASS 0, MASS 1, MASS 2, MASS 3}, we should have generated the phase-space point by passing

an array of external masses as third argument to the constructor of the Rambo object, i.e.

Real external_masses[N_LEGS] = {MASS_0 ,MASS_1 ,

MASS_2 ,MASS_3 };

Rambo phase_space(S,N_LEGS ,external_masses );

phase_space.getMomenta(k);

The method getMomenta can optionally take a second parameter, namely a pointer to a Real,

into which the weight of the generated phase-space point will be written. In the output, the

momenta k[0] and k[1] are taken as incoming, while all the others are taken as outgoing. In

order to get reproducible results, one can set the random seed with the class method setSeed,
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which takes an integer as input.

The momenta pi are then defined according to Eq. (C.5). Arithmetic operations between

momentum types work as one would expect. After specifying the square of the internal

masses, we create an Amplitude<RealMasses> object amp, whose method evaluate computes

the integral with the numerator specified in its argument. This adds the computed integral to

the total result stored internally by amp, which can then be accessed either with the methods

eps0,epsm1,epsm2 or with the subscript operator “[]” as the example shows.

C.4.2 The Amplitude class

The Amplitude template class is the main class of the Ninja library and its method evaluate

computes a one-loop integral. The method takes as input an object of a class derived from

ninja::Numerator, which provides a generic interface to the methods defined by each Laurent

expansion. The template parameter of the Amplitude class is the type of the internal masses.

Allowed types are: RealMasses, ComplexMasses and Massless. The methods needed for the

evaluation of the amplitude are instantiated for all these three types in the compiled code of

the library.

Instantiation In the example above, we showed how to instantiate an Amplitude object

passing to its constructor the number of external legs, the rank of the numerator, the momenta

pi and the squared masses m2
i of the loop denominators (Eq. (3.14)). There we assumed the

internal masses to be real. For the complex-masses case and the massless case, the relevant

part of the source would have looked like

// Complex masses

Complex msq[N_LEGS] = {...};

Amplitude <ComplexMasses > amp(N_LEGS ,RANK ,pi ,msq);

amp.evaluate(num);

and

// Massless (msq does not need to be specified here)

Amplitude <Massless > amp(N_LEGS ,RANK ,pi);

amp.evaluate(num);

respectively. The Amplitude class also has a default constructor, as well as methods which

allow to set or change the kinematics, the (squared) internal masses, the number of legs or

the rank of the numerator to be evaluated, as in the following

Amplitude <RealMasses > amp;

amp.setN(N_LEGS );

amp.setRank(RANK);
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amp.setKinematics(pi);

amp.setInternalMasses(msq);

More in detail, the methods setKinematics and setInternalMasses set a data member

which is a pointer to the array of momenta (pi) and internal masses (msq) to be used respec-

tively. A call of one of these methods copies the pointer given as input into the corresponding

data member. The user should thus make sure that the pointed data will exist in memory

until the end of the execution of the evaluate method.

Renormalization scale Another important setting is the renormalization scale µ2
R to be

used. This is equal to 1 by default, and it only affects the computation of the Master Integrals.

It can be set as in the following example

// takes the square of the scale

amp.setRenormalizationScale (50*50);

The S-matrix An optional parameter which can be set by the user is a matrix of kinematic

invariants, which we call S-matrix. This is defined in Ninja by

sij = (pi − pj)2 (C.6)

where pi are the momenta appearing in Eq. (3.14). When this is specified by the user, the

computation of the Master Integrals might be more accurate. This can be particularly useful

in the presence of infrared singularities, which otherwise might not be detected by the integral

library in use. The S-matrix can be declared either by an SMatrix object or by a simple n2-

dimensional array, where n is the number of loop denominators. In the simple example given

in Section C.4.1, using the definitions of Eq. (C.5) in Eq. (C.6), for massless external momenta

ki we could have specified the following S-matrix

(sij) =




0 0 2(k0 · k1) 0

0 0 0 −2(k0 · k3)

2(k0 · k1) 0 0 0

0 −2(k0 · k3) 0 0




(C.7)

either with

SMatrix s_mat;

s_mat.allocate(N_LEGS ); // allocate the matrix

s_mat.fill (0); // fill the entries with zeros

s_mat (0,2) = s_mat (2,0) = 2*mp(k[0],k[1]);

s_mat (1,3) = s_mat (3,1) = -2*mp(k[0],k[3]);

amp.setSMatrix(s_mat);
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or with

Real s_mat[N_LEGS*N_LEGS] = {0, 0, 2*mp(k[0],k[1]), 0,

0, 0, 0, -2*mp(k[0],k[3]),

2*mp(k[0],k[1]), 0, 0, 0,

0, -2*mp(k[0],k[3]), 0, 0};

amp.setSMatrix(s_mat);

We recommend to specify the S-Matrix whenever possible, and in particular when infrared

singularities are present. As an alternative to writing it explicitly, one could use the method

SMatrix &

SMatrix :: fillFromKinematics(const RealMomentum pi[],

Real ir_threshold = 0);

before each call of evaluate. This will automatically compute the matrix from the momenta

pi, but it will set to zero all the matrix elements which are smaller than ir threshold.

It can be worth pointing out that an Amplitude object, similarly to the case of the internal

masses and the kinematics, only stores as data member a pointer to the data of the S-matrix

(s mat) to be used.

Stopping the reduction earlier There are cases where lower-point residues do not con-

tribute to the final result for the integral (see e.g. the example in Section C.5.3). If the

user knows that k-point residues with k < MIN CUT will not contribute to an amplitude, this

information can be passed to Ninja through the setCutStop method, as in this example

amp.setCutStop(MIN_CUT );

which will tell Ninja to stop the reduction right after the evaluation of the residues of k-ple

cuts with k = MIN CUT.

Master Integrals Each instance of an Amplitude object can in principle use a differ-

ent library of Master Integrals. The library to be used can be specified with the method

setIntegralLibrary as in the following example

Amplitude <RealMasses > amp;

amp.setIntegralLibrary(loop_tools );

If an integral library is not set explicitly for an amplitude object, the instance will use the

one which is the default at the time of its creation. The default library will be OneLoop if

enabled during configuration, otherwise it will be LoopTools. If none of the two is enabled,

Ninja can still be used, but a different library of Master Integrals should be specified at

run-time (more details about the implementation of the corresponding interface are given
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in Appendix C.7). The function setDefaultIntegralLibrary can be used to change the

default integral library. Assuming both OneLoop and LoopTools have been enabled, the

user can change the default as in the following example

#include <ninja/ninja.hh>

#include <ninja/avholo.hh>

#include <ninja/looptools.hh>

using namespace ninja;

int main()

{

setDefaultIntegralLibrary(loop_tools );

// Amplitude objects defined here will use LoopTools

setDefaultIntegralLibrary(avh_olo );

// Amplitude objects defined here will use OneLoop

return 0;

}

Disabling the µ2 expansion The user can choose to avoid using the µ2 expansion for the

boxes with

amp.useMuExpansion(false);

In this case the method muExpansion of the numerator class does not need to be provided.

However, this would increase the number calls of the numerator method evaluate and it

would also require the computation of pentagons. Given the simplicity of the µ2 expansion,

disabling it is therefore not recommended, unless it is done for debugging purposes.

Evaluation of the integrals As already explained, integrals are computed by calling the

method evaluate. This has the following prototype

template <typename MassType >

int Amplitude <MassType >:: evaluate(Numerator & num);

and takes as input the numerator of the integrand, which must be an instance of a class

inherited from ninja::Numerator. It returns an integer value which depends on the results

of the internal tests which Ninja can optionally perform during the computation (see Sec-

tion C.4.3). By default no test is performed and the return value can be safely ignored. In

general, the return value will be equal to

Amplitude<MassType>::TEST FAILED if any of the performed tests failed
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Amplitude<MassType>::SUCCESS otherwise.

Each call of the method evaluate adds the computed integral to the total result stored

internally by the instance. It can then be accessed either with the methods eps0,epsm1,epsm2

or with the subscript operator “[]” as we illustrated in the simple test described in this section.

The result can be quickly reset to zero, by calling the reset method,

amp.reset ();

The finite term is given by the sum of the cut-constructible part and the rational part, but

the two can also be accessed separately with

Complex cut_constr_part = amp.getCutConstructiblePart ();

Complex rational_part = amp.getRationalPart ();

C.4.3 Global settings

By default Ninja tries to compute a minimal set of coefficients during the reduction, i.e. those

which are needed for the determination of the final integrated result. These are only a subset

of the ones which are required for the full reconstruction of the integrand decomposition of

Eq. (3.17). Indeed the computation of spurious coefficients is skipped whenever possible, i.e.

whenever these do not enter the coefficient-level subtractions needed for lower-point residues,

as in the case of spurious coefficients of pentagons, boxes and tadpoles. Ninja also entirely

skips the computation of residues whose non-spurious coefficients would multiply scaleless

integrals.

For debugging purposes, the user can however ask Ninja to perform some tests on the

quality of the reconstruction of the integrand, or print some information about the ongoing

computation. These operations might require the computation of a larger set of coefficients.

There are two kinds of tests which Ninja can perform: global tests and local tests. The

global N = N test [40,202] checks that the following equality, which follows from Eq. (3.17),

is valid

N (q, µ2) =

5∑

k=1

∑

{j1,...,jk}

∆i1···ik
∏

h6=i1,...,ik

Dh. (C.8)

Another global test, which can be performed when the rank r of the numerator is equal to the

number of external legs n, is the so-called power-test introduced in Ref. [43]. This consists in

checking that the sum of all the spurious tadpole coefficients is vanishing,

n−1∑

i1=0

4∑

k=0

c
(i1)
k = 0. (C.9)

Finally, Ninja can perform local N = N tests on quadruple, triple, double and single cuts.

These will check the validity of Eq. (C.8) on values of the loop momenta corresponding to a
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given k-ple cut, and they can be useful in order to pinpoint the multiple cut where an error

or an instability has occurred.

By default Ninja does not perform any internal test. The tests to be performed during

the execution of the method evaluate can be set using the function

void setTest(unsigned flag);

where the parameter flag can be any of the following:

Test::NONE no test is performed

Test::ALL all tests are performed

Test::GLOBAL global tests are performed

Test::LOCAL k with k ∈ {1, 2, 3, 4}, local tests on k-ple cuts are performed

Test::LOCAL all local tests are performed

or any combination of these. Different flags can be combined with the bitwise OR operator

“|”. For instance, the following command will ask Ninja to perform global tests and local

tests on double cuts

setTest(Test:: GLOBAL | Test:: LOCAL_2 );

The N = N tests will check whether the numerator Nrec reconstructed by evaluating the

r.h.s. of Eq. (C.8) is equal to the numerator Neva, obtained by a direct evaluation through

the evaluate method of the numerator class, up to a given tolerance. More explicitly, it

checks if ∣∣∣∣
Nrec −Neva
Neva

∣∣∣∣ < δtol (C.10)

where the threshold δtol is 10−5 by default, but it can specified by the user through the

function

void setTestTolerance(Real test_tolerance );

As explained in Section C.4.2, the return value of the method evaluate of the Amplitude

class can be used in order to check whether any performed test has failed. These tests have

been implemented for debugging purposes, and they are not meant as an estimate of the

accuracy of the total result. Indeed, there are cases where a numerical instability might cause

a test to fail while having negligible effects on the total amplitude. The accuracy of the result

can be better estimated by means of the scaling test proposed in Ref. [51] or the rotation test

described in Ref. [99] and Section 5.1.3 of this thesis.

Another global option which can be set is the verbosity, i.e. the amount of information

printed during the evaluation of an integral. By default nothing is printed during a compu-

tation. The setting can be controlled by calling the function
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void setVerbosity(unsigned flag);

where possible values of the parameter flag can be

Verbose::NONE nothing is printed

Verbose::ALL everything is printed (equivalent to the combination of all the other options)

Verbose::GLOBAL TEST the result of global tests are printed, when performed

Verbose::LOCAL TEST k with k ∈ {1, 2, 3, 4}, the result of local tests on k-ple cuts are printed

when performed

Verbose::LOCAL TESTS the result of all performed local tests is printed

Verbose::TESTS the result of all performed tests is printed

Verbose::Ck with k ∈ {1, 2, 3, 4, 5}, the value of the coefficients of the computed k-point

residues is printed

Verbose::COEFFS the value of all the computed coefficients is printed

Verbose::RESULT the partial result of every call of the evaluate method is printed

Verbose::INTEGRALS the value of the Master Integrals is printed.

Similarly to the options controlling the performed tests, any combination of the flags above

can be specified using the bitwise OR operator “|”. As an example, the following instruction

will ask Ninja to print the value of the triangle coefficients, and the result of the current

integral

setVerbosity(Verbose ::C3 | Verbose :: RESULT );

When not specified otherwise, Ninja will print everything to standard output. Any other

output stream can be set, as in the following example

#include <fstream >

#include <ninja/ninja.hh>

using namespace ninja;

int main()

{

std:: ofstream f;

f.open("my_file.out");

setOutputStream(f);
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// from now on everything will be printed

// by Ninja on the file "myfile.out"

// ...

return 0;

}

C.4.4 Controlling the settings from GoSam

As explained in Section 5.1, Ninja is the default reduction library used by the one-loop

package GoSam (since version 2.0 of the package) for the computation of one-loop amplitudes.

Most of the settings of Ninja can be controlled from the Fortran90 code generated by

GoSam as well. All the routines and the flags defined in the interface between the two, which

is included in the Ninja distribution, can be used by importing the Fortran90 module

ninjago module.

A first option which can be set is the library of Master Integrals to be used by Ninja

when called by GoSam. This can be specified with the call

call ninja_set_integral_library(libflag)

where libflag is an integer flag associated to the library and can be equal to

NINJA ONELOOP for the OneLoop library

NINJA LOOPTOOLS for the LoopTools library.

If the OneLoop library is chosen, Ninja will add to it (if configured with the default options)

a cache of integrals, as explained in Section 4.2.2 and C.7.1. The cache of integrals can be

cleared with the command

call ninja_clear_integral_cache

which will reset the cache while keeping some memory allocated for efficient use in later calls

(see also Section C.7.1 for more details). If one wishes to completely free all the allocated

memory, this can be done with the command

call ninja_free_integral_cache

although the former should in general be preferred. The command ninja clear integral cache

also clears the internal cache of the LoopTools library, when the latter is used. When

GoSam is used as One Loop Provider for Monte Carlo programs, it will automatically call

ninja clear integral cache once per phase-space point.
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As we described in Section C.4.3, for debugging purposes Ninja can optionally perform

some internal test or print some information on the ongoing computation. The local and

global tests to be performed (which have been described in Section C.4.3) can be selected

with the command

call ninja_set_test(val)

where the parameter val is an integer which can have the following values

NINJA TEST NONE no test is performed

NINJA TEST ALL all tests are performed

NINJA TEST GLOBAL global tests are performed

NINJA TEST LOCAL k with k ∈ {1, 2, 3, 4}, local tests on k-ple cuts are performed

NINJA TEST LOCAL all local tests are performed

or any combination of these. Different flags can be combined using the bitwise logical “OR”

operation, which in Fortran is available as the function IOR. For instance, the command

call ninja_set_test(IOR(NINJA_TEST_GLOBAL , &

& NINJA_TEST_LOCAL_2 ));

asks Ninja to perform global tests and local tests on double cuts. The tolerance of the tests

can be set with

call ninja_set_test_tolerance(val)

where val is the maximum relative error.

Another option which can be set is the verbosity of Ninja. By default nothing is printed

during a computation, but this setting can be changed with the command

call ninja_set_verbosity(verbosity)

The information which is asked to be printed with this command is appended to the file

ninja gosam.out. Possible values of the parameter verbosity are

NINJA OUTPUT NONE nothing is printed

NINJA OUTPUT ALL everything is printed (equivalent to the combination of all the other op-

tions)

NINJA OUTPUT GLOBAL TEST the result of global tests are printed, when performed

NINJA OUTPUT LOCAL TEST k with k ∈ {1, 2, 3, 4}, the result of local tests on k-ple cuts are

printed when performed
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NINJA OUTPUT LOCAL TESTS the result of all performed local tests is printed

NINJA OUTPUT TESTS the result of all performed tests is printed

NINJA OUTPUT Ck with k ∈ {1, 2, 3, 4, 5}, the value of the coefficients of the computed k-point

residues is printed

NINJA OUTPUT COEFFS the value of all the computed coefficients is printed

NINJA OUTPUT RESULT the partial result of every call of the evaluate method is printed

NINJA OUTPUT INTEGRALS the value of the Master Integrals is printed,

where, as in previous case, different flags can be combined with the bitwise “OR” operation.

The precision of the printed floating point numbers can be modified with the command

call ninja_set_output_precision(val)

The other subroutines defined in the module are not supposed to be called directly by

the users, but they are called by the code automatically generated by GoSam during the

computation of the amplitudes.

C.5 Built-in examples

In this Section we give a description of the examples which are distributed with the library.

In order to compile the corresponding executables, one can use the command

make examples

either in the root directory or in the examples directory. These examples are meant to

provide a more detailed description of the usage of the library in several kinds of problems

which involve the computation of one-loop integrals. More involved computations performed

with the help of Ninja have been presented in Ref.s [99,100] and in Chapter 5 of this thesis.

Every example presented in this section has been generated with the help of the package

NinjaNumGen, which is distributed with Ninja and is described in Appendix C.6. The

package can be used both as a script and as a Python module. For each example, we include

in the distribution

• the Form file (with extension .frm) containing the analytic expression of the numerator

which is used as input

• a Shell script (with extension .sh) with the command we used for the generation of

the numerator class methods

• a Python script (with extension .py) which achieves the same by importing the

ninjanumgen module
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• the C++ source files (with extension .cc) and headers files (with extension .hh) defin-

ing the numerator and its methods, as well as a test program.

C.5.1 Simple Test

The first simple example has already been extensively described above, in order to illustrate

the basic usage of the library. The numerator class is defined in the header file mynum.hh,

the source file generated by NinjaNumGen is mynum.cc, while the source file with the main

function is simple test.cc.

C.5.2 Four-photon helicity amplitudes

In this example we consider a four-photon amplitude [203, 204] and we describe the usage of

Ninja for the definition of polarization vectors and other spinor objects which are needed for

the evaluation of the numerator.

The integrand of a diagram contributing to a four-photon amplitude is given by

I =
N (q, µ2)

D0D1D2D3

N (q, µ2) = − Tr
(

( /̄l1 +mf ) /ε1( /̄l2 +mf ) /ε2( /̄l3 +mf ) /ε3( /̄l0 +mf ) /ε0

)

Di = l̄2i −m2
f (C.11)

where mf is the mass of the fermion propagating in the loop, and the momenta l̄i are defined

by

l̄0 = q̄, l̄1 = q̄ + k0, l̄2 = q̄ + k0 + k1, l̄3 = q̄ − k4. (C.12)

For simplicity we have assumed the four photons to be all incoming, i.e. k0, k1, k2, k3 → 0.

The extra-dimensional components ~µ of the loop momentum satisfy the (anti-)commutation

relations

{/p, /µ} = 0, {/µ, /µ} = −µ2, (C.13)

for any four-dimensional momentum p. This allows to work out the extra-dimensional algebra

and rewrite the numerator in terms of four-dimensional spinor products between the polar-

ization vectors εi, such as 〈εiεj〉 and [εiεj ], and scalar products involving the four-dimensional

momenta q, ki, and momenta eij defined by

eij ≡
〈εiγµεj ]

2
. (C.14)

The Form package Spinney [134] can help in this kind of algebraic operations. The final

expression can be found in the Form file 4photons.frm of the directory examples of the

distribution.
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Ninja includes a small library for massless spinors, which is used internally for building

the bases of momenta corresponding to each residue. This can also be useful for defining

polarization vectors and other spinor-related objects. The spinor library can be used by

including the header file ninja/spinors.hh in the source and linking the program with the

Ninja library. Polarization vectors can be defined with

// Positive helicity (right -handed)

ComplexMomentum epsilon_r = polarizationVectorR(r,k);

// Negative helicity (left -handed)

ComplexMomentum epsilon_l = polarizationVectorL(r,k);

where r is an arbitrary reference momentum and k is the momentum of the corresponding

photon (or gluon). These functions assume the momenta to be incoming, while for outgoing

momenta the helicity should be reversed. Angle-bracket and square-bracket spinor products

can be computed with the functions spaa and spbb respectively. If k is a (real or complex)

massless momentum, the corresponding spinor spinor k can be defined as

Spinor spinor_k = Spinor(k);

and can be used as input parameter for the functions described above. This turns out to

be more efficient when several spinor-related operations need to be performed on the same

momentum. Instances of the class Spinor can also be used in order to define vectors as in

Eq. (C.14), using the following function

// this returns 〈pγµq]/2
ComplexMomentum

momentumFromSpinors(const Spinor & p, const Spinor & q);

In the header file 4photons num.hh we define a numerator class FourPhotons containing,

as private data members, the values of all the momenta and spinor products appearing in the

integrand. The numerator methods have been generated with NinjaNumGen and written

in the file 4photons num.cc. The file 4photons init.cc contains the implementation of an

init method which initializes the data members using the spinor-related operations described

above, while 4photons.cc contains a simple test. In this test, the mass of the fermion is

complex, thus it can have a width. The results have been compared with the ones in Ref [204]

as well as with a similar computation performed with Samurai for several choices of the

external helicity states and the fermion mass. In Figure C.1 we show a typical output for this

example.
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C.5.3 Six-photon helicity amplitudes

In this example we consider six incoming photons [202, 205–210]. This is a non-trivial case

where the setCutStop method of an Amplitude class can make the computation more efficient

when lower point cuts do not contribute to the total result.

A generic six-photon diagram has an integrand of the form

I =
N (q, µ2)

D0D1D2D3D4D5

N (q, µ2) = − Tr
(
/̄l1 /ε1 /̄l2 /ε2 /̄l3 /ε3 /̄l4 /ε4 /̄l5 /ε5 /̄l0 /ε0

)

Di = l̄2i (C.15)

where we assumed the fermion running in the loop to be massless. The momenta l̄i are defined

by

l̄0 = q̄, l̄1 = q̄ + k0, l̄2 = q̄ + k0 + k1,

l̄3 = q̄ + k0 + k1 + k2, l̄2 = q̄ − k4 − k5, l̄3 = q̄ − k5. (C.16)

One can work out the algebra, define the corresponding spinor products and vectors, and

generate the input for Ninja in the same way as for the four-photons case. One can also

check that the terms proportional to µ2 in the final expression for the integral vanish upon

integration. Therefore, we can perform the simplification l̄i → li, or equivalently µ2 → 0,

in the numerator. Moreover, one can exploit the knowledge that only the cut-constructible

contributions of boxes and triangles contribute to the total result, hence we can ask Ninja

to stop the reduction at triple cuts with

amp.setCutStop (3);

and remove the rational part from the result with

amp.onlyCutConstructible ();

which will make the computation more efficient (in the example implemented here, the run-

time is reduced by about 33%).

In the file 6photons.cc we call the method evaluate on all the independent permutations

of the external legs, generated at run-time with the function std::next permutation of the

C++ standard library. The results have been compared with the ones in Ref.s [209, 210] as

well as with a similar computation performed with Samurai for several helicity choices.

C.5.4 Five-point diagram of gg → Htt̄

With this example, we discuss a possible strategy for the generation of the input needed by

Ninja which can be suited for more complex computations where an efficient evaluation of

the numerator methods at run-time can be important.
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We consider the one-loop integral defined by the diagram depicted in Figure C.2, con-

tributing to the 5-point helicity amplitude g(k1,−), g(k2,−) → H(k3), t(k4,+), t̄(k5,−).

The analytic expression for the integrand of this example, which can be worked out from

the Feynman rules of the Standard Model, has been generated with the help of the package

GoSam and can be found in the Form file ttbarh.frm. This already contains some abbre-

viations which are independent of the loop momentum q̄ of the diagram. At run-time, these

q̄-independent abbreviations are computed only once per phase space point, making thus the

evaluation of the numerator and its expansions more efficient. This analytic expression is

processed by NinjaNumGen which produces the numerator expansions. We also add to the

numerator class TTbarHDiagram an init method which uses the spinor library described in

Section C.5.2 in order to compute the relevant spinor products and polarization vectors, as

well as the abbreviations which do not depend on the loop momentum. These are stored as

private data members of the class. For simplicity, our result neglects the coupling constants

and an overall color factor.

Even though we considered a single diagram and a specific helicity choice, this example

illustrates a general strategy for the generation of an analytic numerator expression which is

suited for the numerical evaluations performed by integrand-reduction algorithms like the one

implemented in the library Ninja. The full amplitude for this process has been computed in

Ref.s [147–151], while an additional jet has recently been added to the final state in Ref.s [99,

100] and Section 5.2 of this thesis, where Ninja has been used for the reduction of the

corresponding integrands generated by GoSam.

C.5.5 Higher-rank example

In this example we show how Ninja can be used in order to compute integrals whose rank

is higher than the number of loop denominators. This simple test is similar to the example

presented in Section C.3.2 and C.4.1, hence we will describe each step as in the previous case.

We define a 5-point amplitude of rank 6, with kinematics k0, k1 → k2, k3, k4, k5 and integrand

I =
N (q, µ2)

D0D1D2D3D4

N (q, µ2) =

2∏

i=0

(
(q · v2i)(q · v2i+1) + µ2 (v2i · v2i+1)

)

Di = l̄2i −m2
i (C.17)

in terms of the reference vectors vi (i = 0, . . . , 5) and the momenta l̄i running into the loop

l̄0 = q̄, l̄1 = q̄ + k0, l̄2 = q̄ + k0 + k1, l̄3 = q̄ + k3 + k4, l̄4 = q̄ + k4. (C.18)

We follow the same steps outlined in Section C.3.2. With NinjaNumGen we generate

the methods for Ninja. After writing the integrand in the Form file mynumhr.frm we call

the script with the command
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ninjanumgen mynumhr.frm --nlegs 5 --rank 6 -o mynumhr.cc

which creates the file mynumhr.cc and a template for the header mynumhr.hh. Once again,

we define the vectors vi as public members of the numerator class Diagram, by inserting

public:

ninja:: ComplexMomentum v0 ,v1,v2,v3,v4,v5;

in the class definition. A possible test program can be almost identical to the one we showed in

Section C.4.1, with obvious changes in the definition of the rank, the number of external legs

and the reference vectors vi. This is implemented in the file simple higher rank test.cc. In

order to run this example, the user must compile the library with the --enable-higher rank

option, otherwise a call to the evaluate method of an Amplitude object will cause a run-time

error.

As one can see, when NinjaNumGen is used for the generation of the expansions, the

higher-rank case is handled automatically without any intervention by the user. Besides, the

internal higher-rank routines of Ninja will be automatically called whenever the rank r is

equal to n+ 1 (where n is the number of loop propagators), while in the public programming

interface there is no difference with respect to the normal-rank case.

C.5.6 Usage in multi-threaded applications

In the last examples, we wish to illustrate the possibility of using Ninja in a multi-threaded

application. These examples are implemented using POSIX threads, which are a standard

in Unix-like operating systems, but adapting them to different programming interfaces for

threads (such as OpenMP) should be straightforward.

In order to implement a thread-safe application, one should avoid race conditions which

might occur if different threads try to write on the same variables. In particular, one should

avoid accessing global variables for writing from different threads. The only global variables

used directly by Ninja are those controlling the global options described in Section C.4.3.

As explained in that section, these options are only meant to change the general behavior of

the library for debugging purposes (e.g. for checking that the provided numerator methods

are correct), while in general the default options should not be changed during a phase-space

integration, especially when performance is important. Hence, on the side of the Ninja

library, there should be no issue and one can safely call the evaluate method from different

Amplitude objects in different threads.

During a call of the evaluate method on an Amplitude object, issues might however arise

from global variables used by the chosen library of Master Integrals or the numerator methods.

As for the numerator methods, all the examples distributed with Ninja define a thread-

safe numerator class (more specifically, one can safely call numerator methods from different
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instances of the class in different threads). This is simply done by using data members of the

class instead of global variables, making thus different instances of the same class completely

independent.

If the procedures implemented by libraries of Master Integrals are thread-safe, one can

therefore use Ninja in multi-threaded applications. As an example, one can use the class

AvHOneLoop which, as explained in Section C.7, wraps routines of the OneLoop library and

adds a cache of computed integrals. The cache is a non-static data member of the class. One

can therefore create one instance of this class per thread and assign it accordingly to the

Amplitude objects to be evaluated in the same thread. As an example, with

avh_olo.init (1);

AvHOneLoop my_lib[N_THREADS ];

Amplitude <RealMasses > amp[N_THREADS ];

for (int i=0; i<N_THREADS; ++i)

amp[i]. setIntegralLibrary(my_lib[i]);

we create N THREADS amplitude objects whose evaluate method can be safely called in a

separate thread (in the first line, we called the init method on the global instance avh olo

defined in the library, in order to allow OneLoop to perform its global initialization). In

this way, different threads will also have an independent cache of Master Integrals. This

strategy allows to build a multi-threaded application which uses Ninja for the reduction of

one-loop integrals. Recent versions of LoopTools (namely LoopTools-2.10 or later) can

also be used in threaded applications, since they have a mutex regulating writing access to

the internal cache of integrals.

In the following we discuss the possibility to build a multi-threaded application with Ninja

and any other (not necessarily thread-safe) library of Master Integrals. Indeed, even though

Ninja has obviously no control over possible issues arising from routines of external libraries,

we offer an easy way to work around any potential problem. In this case, there is no general

way to ensure that calling routines of the same integral library from different threads will not

cause conflicts. However, one can avoid these conflicts by scheduling the calls of the external

procedures in such a way that they are never evaluated at the same time from two or more

threads. If the computation of the Master Integrals takes only a small fraction of the total

run time (which is usually the case when a cache of integrals is present), the effects of this on

the performance will in general be reasonably small.

Within Ninja, implementing a scheduled access on the routines used by a library of Master

Integrals is straightforward. As explained more in detail in Appendix C.7, the generic interface

used by Ninja in order to call Master Integral procedures has two methods called init and

exit which are evaluated exactly once in each call of the evaluate method, immediately

before the computation of the first Master Integral and after the computation of the last

Master Integral respectively. Therefore we can use mutexes (such as the ones present the
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POSIX standard for threads) in order to lock the calls to the Master Integrals in the init

method and unlock them in the exit method. This makes sure that, between the calls of the

init and exit methods, no other thread will use the Master Integral routines, hence avoiding

any possible conflict.

In order to make a library of Master Integrals thread-safe, we use the template class

ThreadSafeIntegralLibrary, which is included in the distribution. This automatically

wraps an existing class derived from IntegralLibrary and adds to it a mutex that schedules

the calls to the Master Integrals as explained above. As an example, defining a thread-safe

version of a generic library BaseLibrary can be simply achieved with

#include <ninja/thread_safe_integral_library.hh>

using namespace ninja;

ThreadSafeIntegralLibrary <BaseLibrary > my_lib;

which defines a new interface my lib that can be made the default by calling

setDefaultIntegralLibrary(my_lib );

before any thread is created (alternatively, we could call the setIntegralLibrary method

on each Amplitude object, either outside or inside the threads).

In the files thread 4photons.cc and thread 6photons.cc we repeat the examples of

the four- and six-photons amplitudes, but this time we compute several phase-space points

in parallel on different threads. As mentioned before, we do not need to implement other

numerator classes, since the ones described in Sections C.5.2 and C.5.3 can be safely used in

multi-threaded applications. In the source files, we implement both the approaches described

in this section. The preprocessor will select the former if the OneLoop interface has been

enabled and the latter otherwise. The multi-threaded examples can be compiled with

make thread -examples

if at least one between the OneLoop and LoopTools libraries was enabled during configu-

ration and your system supports POSIX threads.

A complete discussion on the implementation of multi-threaded applications for doing

phenomenology at one-loop is beyond the purposes of this thesis. Moreover, a detailed as-

sessment of possible advantages of this approach would generally depend on the generator

of the integrands and the phase space integration. In these examples we showed that the

methods implementing the reduction via Laurent expansion in Ninja can be safely used in

multi-threaded programs.
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particle E px py pz

k0 7.0000000000000000 0.0000000000000000 0.0000000000000000 7.0000000000000000

k1 7.0000000000000000 0.0000000000000000 0.0000000000000000 -7.0000000000000000

k2 -6.9999999999999964 -6.1126608202785198 0.8284979592001092 -3.3089226083172685

k3 -7.0000000000000027 6.1126608202785278 -0.8284979592001093 3.3089226083172703

+----------------------------------------------------------------+

| |

| Ninja - version 1.0.0 |

| |

| Author: Tiziano Peraro |

| |

| Based on: |

| |

| P. Mastrolia , E. Mirabella and T. Peraro , |

| "Integrand reduction of one -loop scattering amplitudes |

| through Laurent series expansion ," |

| JHEP 1206 (2012) 095 [arXiv :1203.0291 [hep -ph]]. |

| |

| T. Peraro , |

| "Ninja: Automated Integrand Reduction via Laurent |

| Expansion for One -Loop Amplitudes ," |

| arXiv :1403.1229 [hep -ph] |

| |

+----------------------------------------------------------------+

Finite: ( -0.184034 , -0.16765)

Abs. val.: 0.248948

Single pole: ( -3.73035e -13 ,3.98348e-13)

Double pole: (0,0)

Figure C.1: Phase space point and output for the example in 4photons.cc. It shows the

computed finite part and poles of an all-plus four-photon helicity amplitude, using a complex

fermion mass mf = 10.0− 1.0i.
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Figure C.2: Diagram contributing to gg → Htt̄. This picture has been generated using

GoSam.
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C.6 The Python package NinjaNumGen

The reduction procedures implemented in Ninja take as input a class derived from the ab-

stract class ninja::Numerator. This must implement the required expansions in the corre-

sponding methods. If the analytic expression of the numerator can be provided by the user,

the source code for the methods can be automatically generated with the help of the simple

Python package NinjaNumGen, which is distributed with the library and can be installed

as explained in Section C.1. The package can be used both as a script or as a module within

Python.

In Section C.3.2 we already gave a simple example of its usage as a script. As explained

there, the user is supposed to create a file containing a Form expression of the numerator

of the integrand. The package uses Form-4 in order to generate the expansions which are

needed and produce a C++ source file with the definitions of the corresponding methods.

If not already present, an header file with a sketch of the definition of the class will also be

created. The user can complete it by adding data members and methods which are specific of

this class. Form allows one to define symbols between square brackets (e.g. [symbol name]),

containing characters which otherwise would not be permitted in a declaration. NinjaNum-

Gen also allows the usage of such symbols in the expression of the numerator, and it will

remove the brackets (which would produce illegal C++ code) when writing the final source

files. This gives the user a wider range of possibilities, for instance using symbols which cor-

respond to variable names containing underscores or data members of structures (e.g. with

[structure instance.data member]).

We first give a few more details about the usage of the package as a script. It is invoked

with the command

ninjanumgen --nlegs NLEGS optional-arguments file

where file is the name of the file which contains the numerator expression and NLEGS is the

number of external legs of the loop, which is equal to the number of loop denominators. A

description of all the allowed arguments can be obtained with the command

ninjanumgen --help

and the most important ones are:

--rank RANK, -r RANK rank of the numerator, by default it will be assumed to be equal to

the number of external legs of the loop

--diagname DIAGNAME, -d DIAGNAME name of the numerator expression in the Form file, by

default it will be assumed to be Diagram

--cdiagname CDIAGNAME name of the numerator class in the generated C++ files, by default

it will be the same as the Form expression
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--formexec FORMEXEC the Form executable, the default is form

--qvar QVAR name of the loop momentum variable q defined in Eq. (3.16), the default is Q

--mu2var MU2VAR name of the loop variable µ2 defined in Eq. (3.16), the default is Mu2

--output OUTPUT, -o OUTPUT name of the output source file, the default is ninjanumgen.cc

--header HEADER C++ header file containing the definition of the numerator class: if the

file does not exists, one will be created. By default it will have the same name as the

output but with .hh extension.

As mentioned, one can also use the package as a Python module (ninjanumgen). This

contains a class DiagramExpansion which can be used for the generation of the source code

which implements the numerator methods. The input parameters of the constructor of this

class roughly correspond to the arguments which can be used in the script. A detailed

description can be obtained, after installation, by invoking Python in interactive mode

(usually done with the command python) and typing

import ninjanumgen

help(ninjanumgen.DiagramExpansion)

The method writeSource generates the source files. As a simple example, the source for the

integrand we defined in Section C.3.2 could have been generated within Python with the

commands

# import the module

import ninjanumgen

# define the mandatory arguments for the constructor

n_legs = 4

input_file = ’mynum.frm’

output_file = ’mynum.cc’

# define an instance of the class DiagramExpansion

mynum = ninjanumgen.DiagramExpansion(input_file ,

output_file ,

n_legs ,rank =4)

# generate the source

mynum.writeSource ()

We suggest to look at the Python files in the examples directory for other basic examples.
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C.7 Interfaces to Integral Libraries

Ninja already implements interfaces for the OneLoop and the LoopTools integral libraries.

These libraries have been used in a large number of computations and provide very reliable

results, hence they should suffice for most purposes. However, Ninja has been designed

considering the possibility of using any other library of Master Integrals.

The Master Integrals are computed by calling virtual methods of the abstract class

ninja::IntegralLibrary, which is defined in the header file ninja/integral library.hh.

Therefore, any library of Master Integrals can be interfaced by implementing a class derived

from IntegralLibrary. Each method of the library corresponds to a different Master Inte-

gral appearing in Eq. (3.29), which should be implemented for both real and complex internal

masses (and optionally for the massless case). An implementation of higher-rank integrals

can also be provided but it is not needed, since Ninja has a default implementation of them

in terms of lower rank integrals. There are two further methods, namely init and exit. The

former is called inside the method Amplitude::evaluate just before the computation of the

first needed Master Integral, while the latter is called after the last Master Integral has been

computed. The method init

virtual void init(Real muRsq) = 0;

takes as input the square of the renormalization scale to be used in the subsequent calls of

the methods implementing the Master Integrals. It can also be used in order to perform any

other initialization the library might need before computing the integrals. The exit method

instead, does not need to be implemented and by default it will not perform any action. In

Section C.5.6 we gave an example of a case where a non-trivial implementation of the exit

method could be useful.

The other methods should compute the finite part and the poles of the corresponding

Master Integrals. As an example, the methods for the box integrals have the following decla-

rations

// - real masses

virtual void

getBoxIntegralRM(Complex rslt[3],

Real s21 , Real s32 , Real s43 ,

Real s14 , Real s31 , Real s42 ,

Real m1sq , Real m2sq ,

Real m3sq , Real m4sq) = 0;

// - complex masses

virtual void

getBoxIntegralCM(Complex rslt[3],
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Real s21 , Real s32 , Real s43 ,

Real s14 , Real s31 , Real s42 ,

const Complex & m1sq ,

const Complex & m2sq ,

const Complex & m3sq ,

const Complex & m4sq) = 0;

and they are supposed to write the O(ε−i) term of the result in the i-th entry of the array

rslt, for i ∈ {0, 1, 2}. The arguments are the invariants sij and the squared masses m2
i .

Similar methods need to be provided for 3-point, 2-point and 1-point Master Integrals, as

described in detail in the comments inside the header file ninja/integral library.hh.

C.7.1 Built-in interfaces

Examples of implementation of this interface for the libraries OneLoop and LoopTools

can be found in the source code. More in detail, we define the instances ninja::avh olo and

ninja::loop tools of the classes ninja::AvHOneLoop and ninja::LoopTools respectively,

which implement the methods described above as wrappers of the corresponding routines in

each integral library.

The OneLoop interface also implements a cache of Master Integrals on top of these

routines. The cache is implemented similarly to a hash table, which allows constant-time

look-up of each computed integral from its arguments. Hence, the methods of the AvHOneLoop

class will call the routines of the OneLoop library only if a Master Integral is not found in the

cache. The cache can be cleared with the class method AvHOneLoop::clearIntegralCache.

During a phase-space integration, we suggest calling this method once per phase space point,

especially for more complex processes. This method does not completely free the allocated

memory, but keeps the buckets of the hash table available in order to store the integrals more

efficiently in subsequent calls of the respective methods. If the user wishes to completely free

the allocated memory, the method AvHOneLoop::freeIntegralCache can be used, although

in general clearIntegralCache should be preferred. As already mentioned, every instance of

AvHOneLoop has a cache of Master Integrals as data member. This can be useful for building

multi-threaded applications, as discussed in the examples of Section C.5.6.

Since LoopTools already has an internal cache of Master Integrals, the implementation

of its interface is much simpler and only consists in a wrapper of its routines. We implemented

a clearIntegralCache method in the LoopTools class as well, which in this case simply calls

the routine which clears the cache of integrals in LoopTools.



Appendix D

Benchmarks of Ninja and GoSam

In this appendix we collect some benchmarks for several processes computed with the compu-

tational framework GoSam+Ninja, as described in Section 5.1. For each process, we include

the kinematics and a detailed list of the input parameters.

The coefficients ai are which appear in the various tables are defined as follows:

a−2

ε2
+
a−1

ε
+ a0 ≡

2Re {Mtree-level∗Mone-loop}
(αs/2π) |Mtree-level|2

,

where the finite part a0 is computed in the dimensional reduction scheme if not stated oth-

erwise. The reconstruction of the renormalized pole has been checked against the value of

a−1 and a−2 obtained by the universal singular behavior of the dimensionally regularized

one-loop amplitudes [142], while the precision of the finite parts is estimated by re-evaluating

the amplitudes for a set of momenta rotated by an arbitrary angle about the axis of collision,

as described in Section 5.1.3. The accuracy of the results obtained with GoSam+Ninja is

indicated by the underlined digits.
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D.1 p p→ W + 3 jets

Partonic process: dū→ ν̄ee
−ggg

The finite part for this process is given in the conventional dimensional regularization (CDR)

scheme and was compared with NJet [52]. We also find agreement in the phase space point

given by the BlackHat collaboration [211].

particle E px py pz

p1 500.0000000000000000 0.0000000000000000 0.0000000000000000 500.0000000000000000

p2 500.0000000000000000 0.0000000000000000 0.0000000000000000 -500.0000000000000000

p3 414.1300683745429865 232.1455649459389861 332.7544367808189918 -82.9857518524426041

p4 91.8751521026383955 -43.3570226791010995 -24.0058236140056991 77.3623460793434958

p5 86.3540681437814044 -15.2133893202618005 37.6335512949163018 -76.2187226821854011

p6 280.1181818093759830 -83.1261116505822031 -263.2038567586509998 47.7490851160265990

p7 127.5225295696610033 -90.4490412959934957 -83.1783077030789002 34.0930433392580028

parameter value

mW 80.419 GeV

wW 2.0476 GeV

Nf 5

µ 1000.0 GeV

dū→ ν̄ee
−ggg Ref. [52]

a0 -91.1772093904611438 -91.17720939055536

a−1 -57.6891244440692361 -57.68912444409629

a−2 -11.6666666666668277 -11.66666666666660

Table D.1: Benchmark point for the subprocess d(p1)ū(p2)→ ν̄e(p3)e−(p4)g(p5)g(p6)g(p7).
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D.2 p p→ Z + 3 jets

Partonic process: dd̄→ e+e−ggg

The finite part for this process is given in CDR and was compared with NJet [52]. We also

find agreement in the phase space point given by the BlackHat Collaboration [212].

particle E px py pz

p1 500.0000000000000000 0.0000000000000000 0.0000000000000000 500.0000000000000000

p2 500.0000000000000000 0.0000000000000000 0.0000000000000000 -500.0000000000000000

p3 414.1300683745429865 232.1455649459389861 332.7544367808189918 -82.9857518524426041

p4 91.8751521026383955 -43.3570226791010995 -24.0058236140056991 77.3623460793434958

p5 86.3540681437814044 -15.2133893202618005 37.6335512949163018 -76.2187226821854011

p6 280.1181818093759830 -83.1261116505822031 -263.2038567586509998 47.7490851160265990

p7 127.5225295696610033 -90.4490412959934957 -83.1783077030789002 34.0930433392580028

parameter value

mW 80.419 GeV

mZ 91.188 GeV

wZ 2.4414 GeV

Nf 5

µ 1000.0 GeV

dd̄→ e+e−ggg Ref. [52]

a0 -91.0463291277814761 -91.04632919538757

a−1 -57.6876717480941892 -57.68767174883881

a−2 -11.6666666666669485 -11.66666666666667

Table D.2: Benchmark point for the subprocess d(p1)d̄(p2)→ e+(p3)e−(p4)g(p5)g(p6)g(p7).
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D.3 p p→ Z Z Z + 1 jet

Partonic process: uū→ ZZZg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 98.2984277476074197 25.7992145382080409 -12.3240263933454042 23.0200218627010820

p4 178.4558180449861595 -120.4664227955374400 -73.7638561773535599 -59.8166791207833768

p5 142.0905125919531145 50.7287365223860434 91.2424257480069656 -31.2402050144644221

p6 81.1552416154533205 43.9384717349430645 -5.1545431773078745 68.0368622725466565

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

uū→ ZZZg

a0 -18.2274687669522883

a−1 -22.3832348831861125

a−2 -5.6666666666670755

Table D.3: Benchmark point for the subprocess u(p1)ū(p2)→ Z(p3)Z(p4)Z(p5)g(p6).
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D.4 p p→ W W Z + 1 jet

Partonic process: uū→W+W−Zg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 89.1058761118447791 27.0348198946258513 -12.9142626969235721 24.1225229592474193

p4 179.7207629659015140 -126.2359378733789299 -77.2966387614043384 -62.6814876216509802

p5 146.1313400758695593 53.1582949292336409 95.6123118862003167 -32.7363964816230890

p6 85.0420208463841476 46.0428230495191357 -5.4014104278722739 71.2953611440265860

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

uū→W+W−Zg

a0 -18.0050305906438837

a−1 -22.1025452011781987

a−2 -5.6666666666666661

Table D.4: Benchmark point for the subprocess u(p1)ū(p2)→W+(p3)W−(p4)Z(p5)g(p6).
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D.5 p p→ W Z Z + 1 jet

Partonic process: ud̄→W+ZZg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 88.8514948513947331 26.6180234830689777 -12.7151632255396141 23.7506254934495686

p4 182.6577199093957518 -124.2897556491134168 -76.1049547854528043 -61.7151257515301381

p5 144.7598590943426586 52.3387523298249846 94.1382547757718982 -32.2316987387113372

p6 83.7309261448668849 45.3329798362191525 -5.3181367647793465 70.1961989967918498

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

ud̄→W+ZZg

a0 -16.6719638614981740

a−1 -22.1957678011010735

a−2 -5.6666666666670213

Table D.5: Benchmark point for the subprocess u(p1)d̄(p2)→W+(p3)Z(p4)Z(p5)g(p6).
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D.6 p p→ W W W + 1 jet

Partonic process: ud̄→W+W−W+g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 89.4258007278425993 27.5517039326065500 -13.1611730250244197 24.5837262194154818

p4 182.4747913234621421 -128.6494675939613614 -78.7744883983191500 -63.8799073098456347

p5 141.4314519821789986 54.1746388235997784 97.4403424793774207 -33.3622900835894285

p6 86.6679559665162316 46.9231248377547274 -5.5046810560337240 72.6584711740195104

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

ud̄→W+W−W+g

a0 -15.8859769338002099

a−1 -21.9889128719035618

a−2 -5.6666666666864467

Table D.6: Benchmark point for the subprocess u(p1)d̄(p2)→W+(p3)W−(p4)W+(p5)g(p6).
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D.7 p p→ Z Z Z Z

Partonic process: u ū→ Z Z Z Z

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 96.3863867610220666 21.9480082963376795 -10.4843437432888980 19.5836826767025762

p4 159.2027435644542095 -102.4836644941604078 -62.7526750844588079 -50.8874782857443790

p5 130.0351856078737001 43.1561483551038094 77.6221118797800074 -26.5767889104262487

p6 114.3756840666499812 37.3795078427186667 -4.3850930520321931 57.8805845194680018

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

uū→ ZZZZ

a0 10.0010268560339206

a−1 -3.9999999999613696

a−2 -2.6666666666665884

Table D.7: Benchmark point for the subprocess u(p1)ū(p2)→ Z(p3)Z(p4)Z(p5)Z(p6).
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D.8 p p→ W W W W

Partonic process: uū→W+W−W+W−

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 87.7920438094441096 24.8207950462383629 -11.8566452013738353 22.1470015595954024

p4 168.0494737136866092 -115.8978071108833205 -70.9664068759461202 -57.5481680112689915

p5 132.1031656516532848 48.8048800986569518 87.7821123452778238 -30.0554392738635485

p6 112.0553168252159821 42.2721319659877182 -4.9590602679577351 65.4566057255370879

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

Nf 5

µ 500.0 GeV

uū→W+W−W+W−

a0 7.8556327396245011

a−1 -3.9999999999981126

a−2 -2.6666666666669747

Table D.8: Benchmark point for the subprocess u(p1)ū(p2) →
W+(p3)W−(p4)W+(p5)W−(p6).



182 D Benchmarks of Ninja and GoSam

D.9 p p→ t t̄ b b̄

Partonic process: dd̄→ tt̄bb̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 213.1527786548405459 -26.8458616570582116 -117.8628562648380296 -38.8884799556846303

p4 220.5509350311838546 61.9684848664477599 92.5635212096267281 83.2176445698946168

p5 42.2714703981682263 -16.8075489037092431 24.9923105627744704 -29.3620149548096769

p6 24.0248159158073982 -18.3150743056803300 0.3070244924368429 -14.9671496594002438

parameter value

mt 171.2 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

dd̄→ tt̄bb̄

a0 154.6475673006605973

a−1 2.7409050914577211

a−2 -2.6666666666666683

Table D.9: Benchmark point for the subprocess d(p1)d̄(p2)→ t(p3)t̄(p4)b(p5)b̄(p6).

Partonic process: gg → tt̄bb̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 194.0670578462199387 -60.6594324624948058 -47.3641590248774236 -49.2915067154802884

p4 172.4499944124030151 -15.6689752760792977 -7.1446619651393677 -11.5324581958636152

p5 61.9093840678718479 12.0715208460656545 23.6785835371366993 55.7560301833003820

p6 71.5735636735052054 64.2568868925084331 30.8302374528801408 5.0679347280435243

parameter value

mt 171.2 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

gg → tt̄bb̄

a0 165.1250038552732349

a−1 -3.4472725930136989

a−2 -6.0000000000001563

Table D.10: Benchmark point for the subprocess g(p1)g(p2)→ t(p3)t̄(p4)b(p5)b̄(p6).
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D.10 p p→ t t̄ + 2 jets

Partonic process: gg → tt̄gg

The finite part for this process is given in CDR and was compared with Ref. [213].

particle E px py pz

p1 2424.7465026975200999 0.0000000000000000 0.0000000000000000 2424.7465026975200999

p2 2424.7465026975200999 0.0000000000000000 0.0000000000000000 -2424.7465026975200999

p3 881.9042263139403985 -715.3340594013137661 -475.1625187999429158 101.1925816377931966

p4 343.4841188963524132 -24.1478321960174789 -6.3283366075706340 295.5085181344487069

p5 1673.4634600426329598 21.8782679485017297 1000.4115637957629588 1341.3344089052341133

p6 1950.6412001421140303 717.6036236488295117 -518.9207083882492952 -1738.0355086774759457

parameter value

mt 173.3 GeV

Nf 5

µ 173.3 GeV

gg → tt̄gg Ref. [213]

a0 -93.9825428068626394 -93.98254280655584

a−1 47.0991735298819236 47.0991735300671

a−2 -11.9999999999947171 -11.999999999999874

Table D.11: Benchmark point for the subprocess g(p1)g(p2)→ t(p3)t̄(p4)g(p5)g(p6).
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D.11 p p→ Z b b̄ + 1 jet

Partonic process: ug → ue+e−bb̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 34.5908278264605187 21.2091909896352142 -9.4555401980608202 25.6376353599131122

p4 166.7223525775519022 -156.7623134542972991 -48.7827423195217946 -29.0200617028515602

p5 111.6942046513332798 30.9750523871488710 106.1302756897373314 -15.8904394000814051

p6 84.2714416207739418 35.0918815486497024 1.4231216042880672 76.4890217424595988

p7 102.7211733238803646 69.4861885288632521 -49.3151147764427051 -57.2161559994397777

parameter value

mW 80.376 GeV

wW 2.124 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

ug → ue+e−bb̄

a0 145.3708954680396630

a−1 -8.3679512693708471

a−2 -5.6666666666675392

Table D.12: Benchmark point for the subprocess u(p1)g(p2)→ u(p3)e+(p4)e−(p5)b(p6)b̄(p7).
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D.12 p p→ W b b̄ + 1 jet

Partonic process: ud̄→ e+νebb̄g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 93.4300963683620580 -16.6492363753179085 -37.4579803162897420 -83.9576413803095818

p4 119.9994454272237192 4.7053605726301706 -100.6826015733804809 65.1209660949429150

p5 57.9859979994296282 9.1381348721238638 -4.6735873988293006 56.9156220722767259

p6 104.9559149323387999 87.3260122226470514 54.3049824548373437 -20.5728109201014071

p7 123.6285452726457805 -84.5202712920831658 88.5091868336622554 -17.5061358668087337

parameter value

mW 80.376 GeV

wW 2.124 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

ud̄→ e+νebb̄g

a0 129.9538554864771243

a−1 -5.3385683701189715

a−2 -5.6666666666668695

Table D.13: Benchmark point for the subprocess u(p1)d̄(p2)→ e+(p3)νe(p4)b(p5)b̄(p6)g(p7).
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D.13 p p→ W b b̄ + 2 jets

Partonic process:ud̄→ e+νebb̄dd̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 125.6965187314100234 -17.0943040170214537 -113.3597903541534748 51.5456838370753374

p4 72.1993434263444129 25.0205029393394440 42.4573677065765622 52.7644913865970722

p5 130.5494441454287085 -59.2470822889473183 116.2307891878907924 -2.3883575291830641

p6 52.9433261580396106 45.1283306603629413 -14.5296908876010313 -23.1878769876905828

p7 99.1517346871049057 -5.9484899951818377 -31.1690273964595583 -93.9370730297576273

p8 19.4596328516722785 12.1410427014482281 0.3703517437466808 15.2031323229588882

parameter value

mW 80.376 GeV

wW 2.124 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

ud̄→ e+νebb̄dd̄

a0 148.2499564138260837

a−1 -7.7272995122163879

a−2 -5.3333333333331892

Table D.14: Benchmark point for the subprocess u(p1)d̄(p2) →
e+(p3)νe(p4)b(p5)b̄(p6)d(p7)d̄(p8).
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Partonic process: ud̄→ e+νebb̄ss̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 1.8312125180161738 1.2481975210878733 -0.3016228634824342 -1.3055136470806736

p4 132.0663362603577298 -16.6607423420677527 94.8432229336175965 -90.3808602603960196

p5 121.6089450080674226 -63.6699664483805989 -102.6429343577717077 13.4780898076629523

p6 51.8272368161295987 -33.3143054988286877 -36.6615737768635270 -14.6461098360448521

p7 124.2305315458477253 116.2047315474863467 -2.8413585495376918 43.8361952698163435

p8 68.4357378515813224 -3.8079147792972257 47.6042666140377335 49.0181986660422169

parameter value

mW 80.376 GeV

wW 2.124 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

ud̄→ e+νebb̄ss̄

a0 161.1656361677729592

a−1 -1.3276262260753209

a−2 -5.3333333333332735

Table D.15: Benchmark point for the subprocess u(p1)d̄(p2) →
e+(p3)νe(p4)b(p5)b̄(p6)s(p7)s̄(p8).

Partonic process: ud̄→ e+νebb̄gg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 118.4116290336479551 49.7302976872290259 -105.1432905838027665 -22.2058512007951201

p4 9.9876328289379046 7.4336546931814604 4.5250271451401858 4.9007873616352553

p5 113.2724870353399353 -8.8682847027615033 110.4231681698792471 23.2614225044082019

p6 50.3648230617062964 -38.8899369624844553 -31.0689344437605435 -6.4241355543198972

p7 105.2876197360011901 -28.2113391151385819 10.7916624062129962 100.8620009592996638

p8 102.6758083043666687 18.8056083999740657 10.4723673063308507 -100.3942240702281055

parameter value

mW 80.376 GeV

wW 2.124 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

ud̄→ e+νebb̄gg

a0 64.8935770569783301

a−1 -35.9610562256753425

a−2 -8.6666666666670285

Table D.16: Benchmark point for the subprocess u(p1)d̄(p2) →
e+(p3)νe(p4)b(p5)b̄(p6)g(p7)g(p8).



188 D Benchmarks of Ninja and GoSam

D.14 p p→ W W b b̄

Partonic process: dd̄→ νee
+ν̄µµ

−bb̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 25.6649135887983881 15.7119189648809563 -7.6256852614994211 18.8061776088085644

p4 154.5064489409292605 -136.9768135536888565 -46.2042967903236104 -54.5413446032057010

p5 96.1603526761926730 22.3143342117606984 88.8440473781699325 -29.2509685474019605

p6 61.0731578730670606 23.2528867537403734 2.3717946919774544 56.4234743714476039

p7 93.6199892430268648 58.9397665353324101 -43.8226058551382351 -57.9028973600646211

p8 68.9751376779857708 16.7579070879743455 6.4367458368138966 66.4655585304161036

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

mt 171.2 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

dd̄→ νee
+ν̄µµ

−bb̄

a0 118.3990066409585751

a−1 8.5574384926230991

a−2 -2.6666666666666492

Table D.17: Benchmark point for the subprocess d(p1)d̄(p2) →
νe(p3)e+(p4)ν̄µ(p5)µ−(p6)b(p7)b̄(p8).
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Partonic process: gg → νee
+ν̄µµ

−bb̄

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 25.6649135887983881 15.7119189648809563 -7.6256852614994211 18.8061776088085644

p4 154.5064489409292605 -136.9768135536888565 -46.2042967903236104 -54.5413446032057010

p5 96.1603526761926730 22.3143342117606984 88.8440473781699325 -29.2509685474019605

p6 61.0731578730670606 23.2528867537403734 2.3717946919774544 56.4234743714476039

p7 93.6199892430268648 58.9397665353324101 -43.8226058551382351 -57.9028973600646211

p8 68.9751376779857708 16.7579070879743455 6.4367458368138966 66.4655585304161036

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

mt 171.2 GeV

mb 4.2 GeV

Nf 4

µ 500.0 GeV

gg → νee
+ν̄µµ

−bb̄

a0 27.4387494492212056

a−1 -7.9555523940773458

a−2 -5.9999999999999885

Table D.18: Benchmark point for the subprocess g(p1)g(p2) →
νe(p3)e+(p4)ν̄µ(p5)µ−(p6)b(p7)b̄(p8).
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D.15 p p→ W W b b̄ + 1 jet

Partonic process: uū→ νee
+ν̄µµ

−bb̄g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 18.1435357791203664 10.6794732394995044 -3.3652659935279523 14.2762644514536543

p4 132.6867460765342059 -121.1435093670056773 -5.2844663256145745 -53.8711159925087628

p5 92.9820970636741606 17.2946496492191066 87.0024013115393018 -27.8773677719967203

p6 46.6813566690488102 14.7875289839330328 9.6031823094958089 43.2233378690595345

p7 69.5794003816978091 41.1619960772432023 -24.4397402957503331 -50.4943772185567497

p8 53.6926389028252160 9.1521313351918430 14.4565277002773502 50.8934845655482206

p9 86.2342251270994211 28.0677300819189206 -77.9726387064195876 23.8497740970007897

parameter value

mW 80.376 GeV

mZ 91.1876 GeV

mt 171.2 GeV

mb 0.0 GeV

Nf 5

µ2 500.0 GeV

uū→ νee
+ν̄µµ

−bb̄g

a0 -38.5591246673060795

a−1 -32.4828496060584442

a−2 -8.3333333333334405

Table D.19: Benchmark point for the subprocess u(p1)ū(p2) →
νe(p3)e+(p4)ν̄µ(p5)µ−(p6)b(p7)b̄(p8)g(p9).
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D.16 p p→ H + 3 jets (GF)

Partonic process: dd→ Hgdd

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 144.2726812297522656 26.1871426153409317 -66.9976759414063139 3.8924965402436307

p4 135.5632052379070274 5.8338195550562180 26.5129120011233681 -132.8172227574218596

p5 75.6651361325424006 -19.2292152047334604 -65.8505932559228597 31.9241206051040152

p6 144.4989773997982923 -12.7917469656637373 106.3353571962057913 97.0006056120742102

parameter value

mH 125.0 GeV

Nf 5

µ 500 GeV

dd→ Hgdd

a0 45.0406751589844419

a−1 -38.5795131098704047

a−2 -8.3333333333337265

Table D.20: Benchmark point for the subprocess d(p1)d(p2)→ H(p3)g(p4)d(p5)d(p6).

Partonic process: dd̄→ Hguū

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 144.2726812297522656 26.1871426153409317 -66.9976759414063139 3.8924965402436307

p4 135.5632052379070274 5.8338195550562180 26.5129120011233681 -132.8172227574218596

p5 75.6651361325424006 -19.2292152047334604 -65.8505932559228597 31.9241206051040152

p6 144.4989773997982923 -12.7917469656637373 106.3353571962057913 97.0006056120742102

parameter value

mH 125.0 GeV

Nf 5

µ 500 GeV

dd̄→ Hguū

a0 -4.0311565363569581

a−1 -38.5799895715348669

a−2 -8.3333333333335418

Table D.21: Benchmark point for the subprocess d(p1)d̄(p2)→ H(p3)g(p4)u(p5)ū(p6).
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Partonic process: dd̄→ Hggg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 144.2726812297522656 26.1871426153409317 -66.9976759414063139 3.8924965402436307

p4 135.5632052379070274 5.8338195550562180 26.5129120011233681 -132.8172227574218596

p5 75.6651361325424006 -19.2292152047334604 -65.8505932559228597 31.9241206051040152

p6 144.4989773997982923 -12.7917469656637373 106.3353571962057913 97.0006056120742102

parameter value

mH 125.0

Nf 5

µ2 500 GeV

dd̄→ Hggg

a0 -8.8224441195131735

a−1 -48.7670278783515414

a−2 -11.6666666666666785

Table D.22: Benchmark point for the subprocess d(p1)d̄(p2)→ H(p3)g(p4)g(p5)g(p6).

Partonic process: gg → Hggg

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 144.2726812297522656 26.1871426153409317 -66.9976759414063139 3.8924965402436307

p4 135.5632052379070274 5.8338195550562180 26.5129120011233681 -132.8172227574218596

p5 75.6651361325424006 -19.2292152047334604 -65.8505932559228597 31.9241206051040152

p6 144.4989773997982923 -12.7917469656637373 106.3353571962057913 97.0006056120742102

parameter value

mH 125.0 GeV

Nf 5

µ 500.0 GeV

gg → Hggg

a0 23.4307927578718953

a−1 -56.3734964424517315

a−2 -15.0000000000008757

Table D.23: Benchmark point for the subprocess g(p1)g(p2)→ H(p3)g(p4)g(p5)g(p6).
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D.17 p p→ Z t t̄ + 1 jet

Partonic process: uū→ tt̄e+e−g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 183.2414081421947287 -30.2337217736484156 32.1314578860740667 48.1815850690226029

p4 199.0327070603159996 74.5268539046026035 -40.9270527537185629 -55.4554134393922311

p5 70.1181125436057044 -63.0760999348447697 21.5315800178266556 21.7794946135846281

p6 20.7607087314536756 -7.2430664321972609 -7.1983324871256098 -18.0756472939650585

p7 26.8470635224299627 26.0260342360878454 -5.5376526630565506 3.5699810507501222

parameter value

mZ 91.1876 GeV

mt 171.2 GeV

Nf 5

µ 500.0 GeV

uū→ tt̄e+e−g

a0 -20.4367763710913373

a−1 -25.9078542815554513

a−2 -5.6666666665792098

Table D.24: Benchmark point for the subprocess u(p1)ū(p2)→ t(p3)t̄(p4)e+(p5)e−(p6)g(p7).

Partonic process: gg → tt̄e+e−g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 174.2203895522303014 -25.0977827305029138 -19.5610151031829993 5.5472629175473589

p4 186.7123996976260685 -14.0800163072181022 56.3619207264196902 -46.6601246640355427

p5 60.3016377245591073 38.1795332240129639 22.1553968884492853 41.0822241824339116

p6 18.6184873501163182 5.2347824612577458 -1.6661313271933778 -17.7895792583830961

p7 60.1470856754682259 -4.2365166475497116 -57.2901711844925998 17.8202168224373914

parameter value

mZ 91.1876 GeV

mt 171.2 GeV

Nf 5

µ 500.0 GeV

gg → tt̄e+e−g

a0 9.2826425323344441

a−1 -26.2816094048822784

a−2 -9.0000000000005702

Table D.25: Benchmark point for the subprocess g(p1)g(p2)→ t(p3)t̄(p4)e+(p5)e−(p6)g(p7).
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D.18 p p→ H t t̄ + 1 jet

Partonic process: uū→ Htt̄g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 126.3747891763443505 6.8355633672742222 -3.2652801590882752 6.0992096455298030

p4 177.2234233286846745 -31.9178657717747534 -19.5439094615872051 -15.8485716665707326

p5 174.8995128490773538 13.4406996200208031 24.1748981179500326 -8.2771667589629576

p6 21.5022746458936318 11.6416027844796517 -1.3657084972745175 18.0265287800038720

parameter value

mH 126.0 GeV

mt 172.5 GeV

Nf 5

µ2 500 GeV

uū→ Htt̄g

a0 -80.4023340755848750

a−1 -32.6902910205892141

a−2 -5.6666666666679379

Table D.26: Benchmark point for the subprocess u(p1)ū(p2)→ H(p3)t(p4)t̄(p5)g(p6).

Partonic process: gg → Htt̄g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 126.3747891763443505 6.8355633672742222 -3.2652801590882752 6.0992096455298030

p4 177.2234233286846745 -31.9178657717747534 -19.5439094615872051 -15.8485716665707326

p5 174.8995128490773538 13.4406996200208031 24.1748981179500326 -8.2771667589629576

p6 21.5022746458936318 11.6416027844796517 -1.3657084972745175 18.0265287800038720

parameter value

mH 126.0 GeV

mt 172.5 GeV

Nf 5

µ 500.0 GeV

gg → Htt̄g

a0 -45.6979334407767297

a−1 -35.9217497445515619

a−2 -8.9999999999990887

Table D.27: Benchmark point for the subprocess g(p1)g(p2)→ H(p3)t(p4)t̄(p5)g(p6).



D.19 p p→ H + 3 jets (VBF) 195

D.19 p p→ H + 3 jets (VBF)

Partonic process: uu→ gHuu (VBF)

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 40.1603071333660182 -14.0012702315405289 0.4395613413056457 37.6380324509251736

p4 127.7084583092647421 -23.4171446211731009 -10.8486559189339324 4.2888607196847408

p5 145.0573545181100599 -109.8833468186949176 -94.5094823127907233 5.9366610719649477

p6 187.0738800392591656 147.3017616714085705 104.9185768904190468 -47.8635542425748710

parameter value

mH 125.0 GeV

mZ 91.1876 GeV

wZ 2.4952 GeV

Nf 5

µ 500.0 GeV

uu→ gHuu

a0 -94.6818287259862359

a−1 -40.8904107779583796

a−2 -8.3333333333336821

Table D.28: Benchmark point for the subprocess u(p1)u(p2)→ g(p3)H(p4)u(p5)u(p6).
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D.20 p p→ H + 4 jets (VBF)

Partonic process: uu→ ggHuu (VBF)

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 77.8540004794647871 -42.9509851388533761 6.0812524321357140 -64.6488718781321126

p4 179.6868495846460405 66.2917119993839208 -68.8295351006103004 152.1685510599341171

p5 140.8511015083574875 -29.7530986170501173 2.6554844463192953 -57.6344889901617350

p6 81.8035523206006161 2.3404081739038114 78.3533883805051659 -23.3899591949725902

p7 19.8044961069310155 4.0719635826157594 -18.2605901583498813 -6.4952309966676500

parameter value

mH 125.0 GeV

mZ 91.1876 GeV

wZ 2.4952 GeV

Nf 5

µ 500.0 GeV

uu→ ggHuu

a0 -85.2117220498222565

a−1 -54.2263214854450339

a−2 -11.3333333333333464

Table D.29: Benchmark point for the subprocess u(p1)u(p2)→ g(p3)g(p4)H(p5)u(p6)u(p7).

Partonic process: uu→ uūHuu

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 30.3977507329956786 18.6382269943320686 -8.3093459176077840 22.5298582897146815

p4 146.5123801227517504 -137.7596903034009301 -42.8693308104768249 -25.5022691658345515

p5 158.9318930425956466 27.2202771824319179 93.2652344091314376 -13.9642109273819610

p6 73.9640816926485911 30.8380670569460271 1.2506117519626909 67.2170735086997695

p7 90.1938944090082799 61.0631190696906998 -43.3371694330094499 -50.2804517051979616

parameter value

mH 125.0 GeV

mZ 91.1876 GeV

wZ 2.4952 GeV

Nf 5

µ 500.0 GeV

uu→ uūHuu

a0 -36.9909931379802686

a−1 -35.2029797282532968

a−2 -8.0000000000000533

Table D.30: Benchmark point for the subprocess u(p1)u(p2)→ u(p3)ū(p4)H(p5)u(p6)u(p7).
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D.21 p p→ H + 5 jets (VBF)

Partonic process: uu→ gggHuu (VBF)

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000

p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000

p3 24.3265597158113103 9.0293044031657743 17.9817135111430346 -13.6715452237514459

p4 74.2975116145394878 11.5035704263332619 29.2267551012052458 -67.3319009520241991

p5 97.6019108689663568 -72.1835660496625877 4.7127971252997813 -65.5244636825316746

p6 136.6365204371290929 23.6483158828115840 -47.1886774719599131 -16.0786999325225715

p7 120.9034677660200998 23.6253257672831865 -14.6581830826285433 117.6632065216435592

p8 46.2340295975336915 4.3770495700687935 9.9255948169403965 44.9434032691863266

parameter value

mH 125.0 GeV

mZ 91.1876 GeV

wZ 2.4952 GeV

Nf 5

µ 500.0 GeV

uu→ gggHuu

a0 -164.8823178520154897

a−1 -81.4472715794169630

a−2 -14.3333333333333570

Table D.31: Benchmark point for the subprocess u(p1)u(p2) →
g(p3)g(p4)g(p5)H(p6)u(p7)u(p8).
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