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 Abstract 
  Objective:  The human serum metabolite profile is reflective of metabolic processes, including 
pathophysiological changes characteristic of diseases. Therefore, investigation of serum me-
tabolite concentrations in obese children might give new insights into biological mechanisms 
associated with childhood obesity.  Methods:  Serum samples of 80 obese and 40 normal-
weight children between 6 and 15 years of age were analyzed using a mass spectrometry-
based metabolomics approach targeting 163 metabolites. Metabolite concentrations and 
metabolite ratios were compared between obese and normal-weight children as well as be-
tween children of different pubertal stages.  Results:  Metabolite concentration profiles of 
obese children could be distinguished from those of normal-weight children. After correction 
for multiple testing, we observed 14 metabolites (glutamine, methionine, proline, nine phos-
pholipids, and two acylcarnitines,  p   !  3.8  !  10 –4 ) and 69 metabolite ratios ( p   !  6.0  !  10 –6 ) 
to be significantly altered in obese children. The identified metabolite markers are indicative 
of oxidative stress and of changes in sphingomyelin metabolism, in  � -oxidation, and in path-
ways associated with energy expenditure. In contrast, pubertal stage was not associated with 
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metabolite concentration differences.  Conclusion:  Our study shows that childhood obesity 
influences the composition of the serum metabolome. If replicated in larger studies, the al-
tered metabolites might be considered as potential biomarkers in the generation of new hy-
potheses on the biological mechanisms behind obesity. 

 Copyright © 2012 S. Karger GmbH, Freiburg 

 Introduction 

 The prevalence of childhood obesity has been increasing dramatically worldwide over 
the past three decades   [1]  . The underlying cause is a complex interaction between predis-
posing genetic factors and the change of environmental factors such as nutritional habits   [2, 
3]  . This trend is of great concern, considering the manifold consequences of obesity on chil-
dren’s health. These include metabolic disturbances such as insulin resistance, dyslipidemia, 
and hypertension, which in turn promote the development of cardiovascular diseases in 
childhood as well as in later life   [2, 4]  .

  For the development of appropriate treatment strategies, a good understanding of 
obesity-related pathophysiological mechanisms is inevitable. In recent years, advanced 
laboratory techniques and data processing tools have been developed, allowing for large-
scale, simultaneous investigation of a large number of metabolites in human biofluids or 
tissues   [5–7]  . The human serum metabolite profile is reflective of metabolic processes 
including disease-related changes   [8]  . Therefore, investigation of serum metabolite concen-
trations in obese children might give new insights into biological mechanism associated 
with childhood obesity. Few studies have already examined obesity-associated changes in 
the serum metabolome in adults   [9–12]   and adolescents   [13]  .

  In the present study, we applied a targeted metabolomics approach to identify serum 
metabolites associated with childhood obesity. The foremost aims of this study were i) to 
investigate whether the concentration profile of serum metabolites differed between 
obese and normal-weight children, ii) to identify potential obesity-associated metabolite 
biomarkers, and iii) to analyze the association of pubertal stage with the metabolite 
profile. 

  Material and Methods 

 Study Population and Anthropometric Measures 
 In the years 2008–2009, 80 obese children and adolescents aged 6–15 years from the outpatient clinic 

for obesity in the Vestische Kinder- und Jugendklinik Datteln, Germany, and 40 normal-weight children 
with a similar age and sex distribution were examined. All children were born in Germany. Children with 
syndromal obesity as well as psychiatric or endocrine disorders including type 2 diabetes mellitus were 
excluded. The Ethics Committee of the University of Witten/Herdecke approved this study. Written 
informed consent was obtained from all subjects and their parents.

  Height was measured to the nearest centimeter using a rigid stadiometer. Undressed weight was 
measured to the nearest 0.1 kg using a calibrated balance scale. Obesity was defined as BMI above the 97th 
percentile of German population-specific data  [14] . All obese children met obesity criteria of the Interna-
tional Task Force of Obesity, being above the population-, age-, and sex-specific percentile translating to a 
BMI of 30 kg/m 2  at the age of 18  [15] . BMI percentiles and standard deviation scores (SDS-BMI) were calcu-
lated based on Cole’s LMS method  [16] . Pubertal stage was assessed according to Marshall and Tanner  [17, 
18]  and categorized into three stages based on pubic hair and genital stages: prepubertal = boys/girls with 
pubic hair stage I and gonadal/breast stage I, pubertal = boys/girls with pubic hair stage  6  II and gonadal/
breast stage  6  II and late/postpubertal = boys with change of voice and girls with menarche. 
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  Sampling and Metabolite Measurement 
 Blood samples were taken at 8 a.m. after overnight fasting for at least 10 h. Following coagulation at 

room temperature, blood samples were centrifuged for 10 min at 8,000 rpm. Aliquoted serum samples 
were stored at –80 °   C and thawed at room temperature for the metabolomics assay.

  We used the metabolomics Absolute IDQ  TM  kit p150 (Biocrates Life Sciences AG, Innsbruck, Austria) 
for the quantification of 163 metabolites, following the instructions described in the manufacturer’s 
manual. Liquid handling of serum samples was performed with a Hamilton Micro Lab Star robot (Hamilton 
Bonaduz AG, Bonaduz, Switzerland). Samples were analyzed on an API4000 LC/MS/MS System (AB Sciex 
Deutschland GmbH, Darmstadt, Germany) equipped with an HTC PAL autosampler (CTC Analytics, 
Zwingen, Switzerland) and an electrospray ionization (ESI) source which was used in both positive and 
negative mode. MS/MS analysis was run in Multiple Reaction Monitoring (MRM) mode. The entire 
analytical process was controlled by the Analyst 1.4 software and the MetIQ TM  software package, the latter 
being an integral part of the Absolute IDQ  kit. Metabolite concentrations were determined with the MetIQ 
software. 

  Measurements took place in two separate batches. For data quality assessment, 43 of the samples of 
the first batch were remeasured in the second one. Also, a reference sample   was measured five times on 
each of the two batches. We excluded metabolites from the analysis that failed to meet two or more of the 
following quality criteria: 

  i) The concentration of the metabolite should be above the limit of detection (LOD) specified by the 
manufacturer in at least 60% of the samples. 

  ii) The Pearson’s correlation coefficient of the metabolite concentrations in the 43 repeatedly 
measured samples should be at least 0.5 between the two batches. 

  iii) For each batch, the coefficient of variation (CV) for the metabolite concentration in the reference 
samples should not be higher than 0.2. 

  In total, 130 metabolites passed the quality control. Most of the 33 excluded metabolites were char-
acterized by concentrations below or marginally above the LOD. As a consequence, measurement stability 
was assumably affected in these cases. In accordance with the kit instruction all measurements were 
multiplied by a metabolite- and batch-specific correction factor to further correct for a potential batch 
effect.

  The metabolite spectrum targeted by the used kit is shown in supplementary table 1 (see supple-
mentary material). The 130 metabolites included in our analysis comprised 24 conjugated carnitines 
(acylcarnitines (Cx:y), hydroxylacylcarnitines (C(OH)x:y) and dicarboxylacylcarnitines (Cx:y-DC), free 
carnitine (C0), 14 amino acids, hexose (H1), 32 diacyl phosphatidylcholines (PC aa Cx:y), 35 acyl-alkyl 
phosphatidylcholines (PC ae Cx:y), 9 lysophosphatidylcholines (LPC a Cx:y) as well as 14 sphingomyelins 
(SM Cx:y) and hydroxysphingomyelins (SM (OH) Cx:y), where Cx:y abbreviates the lipid side chain compo-
sition, x and y denoting the number of carbons and double bonds, respectively. As a point to note, the 
analytical technique applied here is not capable of determining the precise position of the double bonds 
and – in the case of PCs – the distribution of carbon atoms between the two fatty acid side chains. We report 
all metabolite concentrations in  � mol/l. In the following, we refer to metabolite concentrations simply as 
metabolites, and to metabolite concentration ratios as metabolite ratios.

  Statistical Analysis 
 All calculations were performed in the statistical environment  R , version 2.10.1  [19] . Anthropometric 

characteristics of obese and normal-weight children were compared using Wilcoxon signed-rank and 
Pearson’s chi-square tests. 

  To examine the degree to which the serum metabolite profiles of obese and normal-weight children 
and of children of different pubertal stages were separated, Partial Least Squares (PLS) analysis with 
10-fold cross-validation was conducted on the scaled and centered matrix of metabolite concentrations 
using the  R  package  pls   [20] . Data were visualized by plotting the cross-validated scores of the first two 
components in a scores plot where each point represents an individual serum sample. 

  To determine whether single metabolite concentrations differed between obese and normal-weight 
children, we performed logistic regression analyses with weight status (obese vs. normal-weight) as the 
dependent variable and the natural logarithm of single metabolite concentrations and the covariates age, 
sex, and pubertal stage as the independent variables. A similar analysis was performed to investigate asso-
ciations between pubertal stage (prepubertal vs. pubertal/postpubertal) and metabolite concentrations, 
adjusted for age and sex and for sex only. 
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  In a subsequent step, we repeated the analysis for obesity with ratios of all possible pairs of metabo-
lites, allowing for the discovery of differences between obese and normal-weight children that are 
otherwise masked by a large intra-group variability in the single metabolite concentrations  [21, 22] . In 
addition, changes in metabolite ratios might reflect biological situations such as changes in enzyme activ-
ities or imbalances in metabolic pathways. For all regression analyses, we considered an experiment-wise 
type I error of 0.05 as statistically significant. Correction for multiple testing using the Bonferroni 
correction resulted in a significance level of p = 0.05/130 = 3.8  !  10 –4  and p = 0.05/8 385 = 6.0  !  10 –6  for 
single metabolites and metabolite ratios, respectively. In the case of metabolite ratios, we calculated the 
p gain, defined as the minimum of the two p values for the single metabolite analyses divided by the p value 
for the metabolite ratio  [21] . The higher the p gain for a metabolite ratio, the more a low p value for the 
metabolite ratio is due to a change in the ratio rather than to a strong change in one of the single metabo-
lites alone. In this study, we focused on metabolite ratios with a p gain of at least 1.0  !  10 3 . 

  Results 

 Characteristics of the Study Population 
 Anthropometric characteristics of the children are presented in  table 1 . Obese and 

normal-weight children did not differ significantly in terms of sex, age, and pubertal stage 
distribution. By design, body weight, BMI, and SDS-BMI were significantly higher in the 
group of obese children (p  !  0.001).

  The Serum Metabolite Profile in Obesity 
 The associations of obesity and pubertal stage with the metabolite profile were first 

investigated by means of PLS analysis. We observed a distinct separation of obese and 
normal-weight children by the first two components, which accounted for 22.1% and 29.7% 
of the total variance in the metabolite data, respectively ( fig. 1 ). In contrast, we could not 
observe a separation of children of different pubertal stages.

  After correction for multiple testing, concentrations of 14 metabolites differed signifi-
cantly between obese and normal-weight children ( table 2 ). Concentrations of two acylcar-
nitines (C12:   1 and C16:   1) were significantly increased in obese compared to normal-weight 
children, while concentrations of the remaining 12 metabolites (glutamine, methionine, 
proline, PC ae C34:   1, C34:   2, C34:   3, C36:   2, C36:   3 and C38:   2, LPC a C18:   1, C18:   2 and C20:   4) 
were significantly decreased in obese children. Logistic regression results for all 130 metab-
olites are shown in supplementary table 2 (see supplementary material). Performing a 
similar analysis for pubertal stage, we did not identify any significant associations with 
metabolite concentrations, neither with nor without adjustment for age (data not shown).

Table 1. A nthropometric characteristics of normal-weight and obese childrena

Parameter Normal-weight 
(n = 40)

Obese 
(n = 80)

p value

Age, years 11.1 8 2.8 10.9 8 2.1 0.700
Sex (% male/female) 62.5/37.5 52.5/47.5 0.338
Pubertal stage (% prepubertal/pubertal/postpubertal) 47.5/35.0/17.5 51.3/36.3/12.5 0.706
Weight, kg 36.5 8 14.2 65.2 8 17.6 <0.001
BMI, kg/m2 17.2 8 2.1 27.7 8 4.0 <0.001
SDS-BMIb -0.4 8 0.8 2.4 8 0.4 <0.001

aAll values are presented as mean 8 SD if not indicated otherwise.
bStandard deviation score of BMI.
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  Fig. 1.  PLS analysis results. Cross-validated scores plot of the first two components. Outcome was A, obe-
sity, and B, pubertal stage. Percentages in parentheses represent the % variance in the metabolite data 
accounted for by the respective component. 

Table 2. M etabolites with concentrations differing significantly between normal-weight and obese 
children

Metabolite Normal-weight (n 
= 40)a

Obese (n = 80)a � Obese – normal-
weightb

OR (95% CI)c p value

Acylcarnitines
C12:1 0.10 8 0.03 0.13 8 0.04 32.3% 3.62 (2.09, 6.98) 2.6 ! 10-5

C16:1 0.03 8 0.01 0.04 8 0.01 20.8% 2.74 (1.64, 4.98) 3.3 ! 10-4

Amino acids
Glutamine 638.62 8 109.94 509.43 8 114.91 –20.2% 0.20 (0.09, 0.38) 7.0 ! 10-6

Methionine 35.09 8 8.76 27.55 8 6.81 –21.5% 0.28 (0.15, 0.49) 3.4 ! 10-5

Proline 258.91 8 91 180.88 8 63.23 –30.1% 0.27 (0.14, 0.46) 1.3 ! 10-5

Acyl-alkyl phosphatidylcholines
PC ae C34:1 10.26 8 3.20 8.26 8 2.07 –19.5% 0.34 (0.18, 0.59) 3.0 ! 10-4

PC ae C34:2 12.70 8 4.07 9.32 8 2.69 –26.6% 0.29 (0.15, 0.50) 4.1 ! 10-5

PC ae C34:3 9.22 8 3.31 6.95 8 2.02 –24.6% 0.39 (0.23, 0.62) 2.3 ! 10-4

PC ae C36:2 13.63 8 3.69 10.25 8 2.55 –24.8% 0.24 (0.12, 0.43) 1.1 ! 10-5

PC ae C36:3 8.51 8 2.52 6.61 8 1.86 –22.2% 0.33 (0.17, 0.56) 2.0 ! 10-4

PC ae C38:2 1.96 8 0.51 1.55 8 0.48 –21.0% 0.36 (0.20, 0.59) 1.8 ! 10-4

Lysophosphatidylcholines
LPC a C18:1 17.13 8 4.59 12.73 8 3.96 –25.7% 0.29 (0.15, 0.49) 1.8 ! 10-5

LPC a C18:2 36.37 8 11.44 18.09 8 5.07 –50.3% 0.05 (0.01, 0.13) 5.7 ! 10-8

LPC a C20:4 5.82 8 1.77 4.4 8 1.21 –24.4% 0.36 (0.20, 0.58) 1.2 ! 10-4

Cx:y = acyl-group with chain length x and y double bonds; PC ae = acyl-alkyl phosphatidylcholine;
LPC a = lysophosphatidylcholine with acyl chain.

aAll values are presented as mean 8 SD of serum metabolite concentration in �mol/l.
bPercentage (%) difference between values for obese and normal-weight children. 
cOR of logistic regression analysis with respective 95 % CI; age, sex and pubertal stage were included 

as covariates; only metabolites whose concentrations differed significantly after adjustment for multiple 
testing (p ≤ 3.8 ! 10–4) were included.
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  Metabolite Ratios 
 Comparing metabolite ratios between obese and normal-weight children in logistic 

regression analyses revealed significant differences in 69 ratios after correction for multiple 
testing ( p   ̂   6.0  !  10 –6 ) and applying a p   gain cutoff at  6  1.0  !  10 3  (supplementary table 3; 
see supplementary material). Results for selected representative ratios are shown in  table 3 . 
Ratios between saturated and unsaturated LPCs, between saturated LPCs and PCs and 
between SMs and PCs were increased in obese compared to normal-weight children. As an 
example, the odds ratio for being in the obese group of the LPC a C18:   0 / LPC a C20:   4 ratio 
was 8.4 (4.1, 20.1) with a p value of 1.1  !  10 –7  and a p gain of 1.1  !  10 3 . 

  Discussion 

 This study compared serum metabolite concentrations of obese and normal-weight 
children in a systematic metabolomics approach. 14 metabolites and 69 metabolite ratios 
were significantly different in obese compared to normal-weight children. 

  Metabolite Changes Associated with Obesity 
 The observed higher concentrations of the acylcarnitines C12:   1 and C16:   1 in obese 

compared to normal-weight children are consistent with findings in adults. In a study 
comparing acylcarnitine species of 12 lean and 14 obese adults, serum concentrations of 
several medium- to long-chain acylcarnitines were increased in the obese compared to the 
non-obese participants  [9] . Acylcarnitines are formed from acyl-coenzyme A (CoA) by the 
outer mitochondrial enzyme carnitine palmitoyltransferase 1 (CPT1) as a prerequisite to 

Table 3. S election of metabolite concentration ratios differing significantly between normal-weight and 
obese children

Metabolite ratio OR (95 % CI)a p value p gain

Saturated / unsaturated lysophosphatidylcholine ratios
LPC a C16:0 / LPC a C20:3 6.0 (3.3, 12.2) 6.3 ! 10–8 1.3 ! 105

LPC a C18:0 / LPC a C20:3 9.6 (4.5, 24.6) 1.3 ! 10–7 6.1 ! 104

LPC a C16:0 / LPC a C20:4 6.5 (3.5, 13.8) 1.0 ! 10–7 1.1 ! 103

LPC a C18:0 / LPC a C20:4 8.4 (4.1, 20.1) 1.1 ! 10–7 1.1 ! 103

Lysophosphatidylcholine / phosphatidylcholine ratios
LPC a C18:0 / PC aa C36:2 8.3 (4.2, 19.6) 6.5 ! 10–8 1.2 ! 105

LPC a C18:0 / PC aa C36:1 5.7 (3.1, 12.0) 4.4 ! 10–7 2.0 ! 104

LPC a C16:0 / PC aa C32:0 5.3 (2.9, 10.7) 3.3 ! 10–7 2.5 ! 103

LPC a C16:0 / PC aa C36:2 3.8 (2.2, 6.9) 3.3 ! 10–6 2.3 ! 103

Sphingomyelin / phosphatidylcholine ratios
SM (OH) C22:1 / PC ae C38:4 5.1 (2.9, 10.3) 4.8 ! 10–7 1.1 ! 104

SM C24:0 / PC aa C36:2 4.2 (2.4, 7.8) 1.3 ! 10–6 6.0 ! 103

SM C16:1 / PC ae C32:1 3.7 (2.2, 6.7) 3.2 ! 10–6 4.9 ! 103

SM C18:1 / PC ae C38:4 5.8 (3.0, 13.0) 1.6 ! 10–6 3.2 ! 103

Cx:y = acyl-group with chain length x and y double bonds; LPC a = lysophosphatidylcholine with acyl 
chain; PC aa = diacyl phosphatidylcholine; PC ae = acyl-alkyl phosphatidylcholine; SM = sphingomyelin; SM 
(OH) = hydroxysphingomyelin.

aOR of logistic regression analysis with respective 95 % CI; age, sex and pubertal stage were included 
as covariates; only metabolites pairs whose concentration ratios differed significantly after adjustment 
for multiple testing (p ≤ 6.0 ! 10–6) and had a p-gain ≥ 1.0 ! 103 were included in the table.

http://dx.doi.org/10.1159%2F000343204


666Obes Facts 2012;5:660–670

 DOI: 10.1159/000343204 
 Published online: October 4, 2012   

 Wahl et al.: Childhood Obesity Is Associated with Changes in the Serum Metabolite 
Profile 

www.karger.com/ofa
© 2012 S. Karger GmbH, Freiburg

acyl transport into mitochondria where  � -oxidation takes place  [23] . Elevated free fatty 
acid (FFA) concentrations, as have been observed in the serum of obese children  [24] , may 
exceed the capacity of  � -oxidation and downstream pathways such as the mitochondrial 
electron transport chain, the activities of which have been shown to be reduced in obese 
subjects  [25, 26] . As a consequence, incompletely oxidized fatty acid products such as acyl-
carnitines might accumulate, exit the cell, and are found increased in the blood  [9, 27] . A 
recent study in obese and normal-weight adolescents reported unchanged longer-chain 
acylcarnitines and decreased concentrations of medium- to short-chain acylcarnitine 
species  [13] . They explain the inconsistency with findings in adults with the existence of 
adaptive mitochondrial mechanisms in youth. Our results do not support such a hypothesis.

  We found significantly reduced glutamine, methionine and proline concentrations in 
obese compared to normal-weight children. Thus, we replicated the findings of an earlier 
study reporting reduced levels of methionine and proline in extremely obese children  [28] . 
To our knowledge, no study on obese children has shown a reduction of glutamine. However, 
findings of other studies point towards an obesity-associated activation of the hexosamine 
pathway  [29–31] . Glucosamine and hexosamines are known to contribute to the devel-
opment of insulin resistance  [29, 32] . In addition, activation of the hexosamine pathway 
reduces energy expenditure  [30] . 

  Our study confirmed that acyl-alkyl PC concentrations are significantly lower in the 
obese state  [10] . A subclass of acyl-alkyl PCs are the so-called plasmalogens which have anti-
oxidant properties  [33] . The observed decrease in acyl-alkyl PCs in obese children may 
reflect a consumption of plasmalogens during oxidative stress, which is known to play a role 
in childhood obesity  [34] . 

  We observed significantly increased ratios between saturated LPCs (C16:   0, C18:   0) and 
PCs in obese children. Saturated LPC concentrations were also marginally increased. LPCs 
are derived from PCs during LDL oxidation via either the lecithin-cholesterol acyltrans-
ferase (LCAT) or the lipoprotein-associated phospholipase A2 (LpPLA2) pathway  [35] . In 
fact, LpPLA2 activity has been reported to be increased in obese children  [36] . As a major 
component of oxidized LDL, saturated LPCs exert pro-atherogenic and pro-inflammatory 
effects and impair insulin signaling  [35, 37] .

  Obese children demonstrated significantly decreased concentrations of the unsatu-
rated LPCs C18:   1, C18:   2 and C20:   4. Furthermore, ratios between saturated and unsaturated 
LPCs were significantly increased. Our findings are in line with a recent metabolomics study 
in overweight/obese and normal-weight men showing significantly reduced concentrations 
of LPC C18:   1 and increased concentrations of LPC C18:   0 along with a reduced ratio of dietary 
polyunsaturated to saturated fatty acid intake  [12] . The arising assumption that fatty acid 
composition of serum (lyso-)phospholipids partly reflects an individual’s medium-term 
dietary fatty acid intake is supported by the reported correlations between dietary and 
plasma phospholipid fatty acids  [38, 39] . So far, there is little evidence for a role of specific 
dietary characteristics, including fatty acid balance, in childhood obesity risk  [40] . 

  Our observation that SM/PC ratios were significantly increased in obese children may 
reflect an increased rate of the sphingomyelin synthase (SMS) reaction  [41] . We did not 
observe a significant increase in single SM concentrations. This may depict the equilibrium 
of SM synthesis and metabolism. Synthesized SMs are immediately subject to hydrolysis by 
sphingomyelinase (SMase), yielding ceramides, which have been shown to play a role in the 
development of insulin resistance and cardiovascular disorders  [42, 43] . 

  Pubertal Stage Subanalysis 
 In our study, pubertal stage was not associated with serum metabolite concentrations. 

There are, to our knowledge, no studies published which have investigated the association 
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between metabolites and pubertal stage in a similar way, making a direct comparison to our 
results difficult. Both cross-sectional and longitudinal studies of pubertal stage indicate a 
decrease in insulin sensitivity during pubertal development, which is accompanied by 
increased fatty acid oxidation  [51, 52] . Further, decreased proteolysis and protein oxidation 
during puberty as compared to prepuberty was reported  [53] . The fact that we did not 
observe pubertal stage-related changes in serum acylcarnitine or amino acid concentra-
tions might indicate that these changes occur within a physiological and compensatable 
range, or are not captured by the metabolite panel targeted in this study.

  Comparison with Studies in Adults 
 Data from adults and children are difficult to compare, since growth might have an 

impact on metabolism. Still, it is interesting to see that there is consistency as well as incon-
sistency concerning metabolomic changes related to obesity. Our findings of obesity-asso-
ciated changes in acylcarnitine, acyl-alkyl PC, LPC and SM concentrations are largely in 
concordance with earlier studies in adults  [9, 10, 12, 44, 45] . In contrast, the results 
concerning amino acid concentrations in our study of obese children deviate from findings 
in adults. For instance, branched-chain amino acids (BCAAs) and related metabolites have 
been consistently found increased in obese compared to lean adults  [11, 12, 46–48] , whereas 
we as well as Mihalik et al.  [13]  did not observe the same in children. In adults, one of the 
proposed mechanisms for the increased BCAA levels in obese and insulin-resistant subjects 
is reduced adipose tissue BCAA oxidation  [49, 50] . Arguing in line with Mihalik et al.  [13] , 
children may exhibit early adaptive mechanisms preserving a normal BCAA metabolism in 
the presence of obesity and disturbed insulin sensitivity.

  Strengths and Limitations 
 Our study has some potential limitations. Its sample size was only moderate so that 

the study was underpowered to detect smaller effects. Furthermore, as a cross-sectional 
study, it does not allow us to conclude causality from the observed differences between 
the weight groups. In this regard, longitudinal and interventional studies might provide 
further insights. Moreover, we lack information concerning diet and physical activity of 
the children. However, in contrast to using questionnaires, which have a very high 
measurement error, serum metabolite concentrations are possibly more reliable surro-
gates for dietary intake.

  A strength of our study is that we applied a systematic metabolomics approach to 
compare the serum metabolome of obese children to that of normal-weight children. 
Furthermore, the study of metabolomics in children might lead to larger and in particular 
more ‘true’ effects than in adults, as children usually do not suffer from other diseases, take 
medications or smoke – factors that could influence the metabolite concentration profile  [5] . 

  In conclusion, our data provides evidence for obesity-related changes of the serum 
metabolite profile in children. If replicated in larger studies, the identified metabolites and 
metabolite ratios might be considered as potential biomarkers in the generation of new 
hypotheses on obesity-related pathophysiological processes.
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