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Abstract— In this paper, we propose a novel unified frame-
work for unsupervised object individuation from RGB-D im-
age sequences. The proposed framework integrates existing
location-based and feature-based object segmentation methods
to achieve both computational efficiency and robustness in
unstructured and dynamic situations. Based on the infant’s
object indexing theory, the newly proposed ambiguity graph
plays as a key component of the framework to detect falsely
segmented objects and rectify them by using both location
and feature information. In order to evaluate the proposed
method, three table-top multiple object manipulation scenarios
were performed: stacking, unstacking, and occluding tasks. The
results showed that the proposed method is more robust than
the location-only method and more efficient than the feature-
only method.

I. INTRODUCTION

How can a robot distinguish individual objects from the
visual sensor data? This is an important question for a robot
to manipulate unknown objects in cluttered environments and
understand human activities with various objects in indoor
environments. Object individuation is a cognitive process of
identifying each object as distinguished from others. In order
to implement the process from visual sensor data, previous
research broadly falls into two categories: individuation-
by-location and individuation-by-feature. Individuation-by-
location identifies each object by referring to their locations
in one image [16], [10] or in sequential images [1], [20],
while individuation-by-feature utilizes general features such
as edge or color differences to characterize each object [3],
[15] or distinguish each by using specific feature information
defined in the object database [8], [2].

However, there are practical limitations to the existing
approaches for a robot operating in unstructured and dynamic
environment where unknown target objects constantly change
their positions and shapes. First, the unstructured condition
prohibits supervised methods in that a robot cannot obtain
ground-truth information of unknown target objects in ad-
vance. For example, the approach needs prior knowledge of
target objects as specified features [3], pre-defined models
[1], [20], [15] and off-line learning [2]. On the other hand,
unsupervised methods suffer from the dynamic condition in
robustness against dynamic interactions of multiple objects.
As an example, Fig. 1 shows two failed cases of an unsuper-
vised clustering method [16] when a moving object becomes
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(a) Contact (b) Occlusion

Fig. 1. Point-cloud data from typical close-point clustering methods in
the presence of contact and occlusion. Three objects are represented by
segmented point sets, each of which is represented in the same color.

adjacent (contacted) to another or when some parts of the
object are undetected due to occlusion or detection error.

There have been recent noteworthy works that tackle the
robustness problem in unsupervised object individuation-
by-location against unstructured and dynamic situations.
In order to rectify segmentation errors in one point-cloud
image, [13], [14] proposed detecting partial surfaces of
occluded objects and grouping them using a SVM algorithm
with trained object relations. Later, [19] improved real-
time segmentation performance in a model-free manner.
The method uses general features such as edge and surface
normals to represent object hypotheses by using a graph-
cut algorithm, and the occlusion problem is handled by
a coplanarity check and curvature matching. Robustness
problems in dynamic situations have been investigated by
combining unsupervised segmentation and multiple object
tracking (MOT) in point-cloud image sequences. [11] com-
bined video object segmentation (VOS) and particle filtering
based tracking of supervoxels, and their approach considers
spatial-temporal coherent of the segments. [6] proposed a
hierarchical spatiotemporal data association framework to
unify the unsupervised clustering and multiple target tracking
processes.

On the other hand, the robustness problem has been tack-
led by applying individuation-by-feature, which is normally a
robust and supervised method, into an unstructured environ-
ment [7], [5]. Without prior knowledge of the target objects,
multiple objects that move independently are represented as a
adaptive Gaussian Mixture Models (GMM), respectively, and
each model is updated from the feedback point-cloud data
of simultaneous multiple object segmentation and tracking.
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The adaptive object model represents not only location but
also feature information, and the model updated in the
previous time step can be a reference for individuation-
by-feature. Unsupervised individuation-by-feature method,
however, requires expensive computation time to learn each
object model at every time step.

Both individuation-by-location and individuation-by-
feature have trade-off relations between efficiency and
robustness, which in turn necessitates proper choice of
the method depending on the given conditions such as
the number of objects, shapes, and their spatial relations,
e.g, stacking, occlusion, and adjacency. In unstructured
and dynamic situations, in particular, the situation changes
constantly, and one specific individuation method cannot
achieve optimal performance in terms of robustness and
computational efficiency in general. In order to achieve
both aims, in this paper, we propose a unified framework
for unsupervised object individuation where location and
feature information of unknown objects are selected to be
used depending on the situation changes. This framework is
theoretically based on the human infants’ object indexing
mechanism, which has been proved in the area of cognitive
science on the basis of the observation that an infant
deploys two types of information for object individuation
by cases [9]. The proposed framework provides an efficient
information flow by adopting various existing methods as
components of individuation-by-location, individuation-
by-feature, and multiple object indexing. In addition,
an ambiguity graph is proposed as a core bridge of the
components, and it determines an individuation strategy
depending on the object situation.

The rest of this paper is organized as follows. The next
chapter introduces the theoretical background of the infants’
object indexing theory. In chapter III, details of the pro-
posed method are presented, and it is evaluated through
experimental results in chapter IV. Finally, we conclude with
discussions of further work in chapter V.

II. OBJECT INDIVIDUATION FRAMEWORK

In this chapter, we propose a framework for an unsuper-
vised object individuation process from a point-cloud image
sequence. The framework unifies individuation-by-location
and individuation-by-feature methods based on the infants’
object indexing theory, which is described in the following
section.

A. Infants’ object indexing theory

In the cognitive science area, the mechanism of the human
object individuation process has been unveiled through sev-
eral theories and observations regarding infant behavior. One
finding is that an infant individuates objects by their locations
not by features. For example, when two individual toys with
different colors and shapes have been attached to each other
and just one object moves independently, an infant shows
very surprised action because of this unexpected situation
[22]. However, there has been other evidence showing that
an infant can distinguish independent moving objects by

Fig. 2. A framework of the mature object indexing system by [9]

their features while excluding the location-difference effects.
In the experiment in [21], a screen is introduced and two
different shaped toys are brought out from the screen and
returned in series, so that just one object is shown to an
infant at a time. The infant shows expectation of two objects
behind the screen [21]. These observations are evidence of
infants’ developmental steps for object individuation ability
by using objects’ locations and feature information in cases.

Based on the observations of the infant’ object individ-
uation process, [9] proposed an integrated mechanism by
combining an adult object indexing theory, called the mature
object indexing system. They suggested a combination of fea-
ture and location information to describe object individuation
and object indexing processes as shown in Fig. 2. Basically
‘where’ information takes a primary role in individuating
objects located in different positions. When object location
is ambiguous because of occlusion or contact, the feature
information that gives ‘what’ information of objects can play
a significant role for individuation. However, in the cases of
dynamically deformable and articulated objects where the
feature information changes over time, the location history,
which can be constructed by indexing each object in a time
series, still plays a primary role in estimating existences and
locations of individual objects. FINST (Fingers on INSTan-
siation), a theory of tracking multiple targets by introducing
a ‘finger pointing’ metaphor to indicate on each object, is
used for assigning an index on each object by only using the
object’s location information [12], [18] . In this manner, the
mutual complementary relation between ‘what’ and ‘where’
information and object indexing allows robust and efficient
individuation of dynamic and unknown objects.

B. Overview of the proposed system

Based on the infant’s object indexing theory, an unsuper-
vised object individuation framework that uses both location
and feature information is proposed, as shown in Fig. 3. The
observed point-cloud sensor data, Pk = {p1, ...,pn}, wherein
each point, pi ∈R6, contains RGB color and 3-d position, is
first individuated by only using location data; this entails a
process of segmenting the initial point set data into several
candidates of objects, Ok, using the Euclidean clustering
algorithm [17], [16]. It produces a set of pairs of each
point and corresponding ID, {pi,oi}. An individual object
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Fig. 3. A framework of object individuation process

candidate, O j, consists of points with the same IDs.

Ok = {O1, ...,Omk},
O j = {pi|oi = j, j ∈ {1, ...,mk}}n

i=1
(1)

The initially constructed individuals are then modified in
the rectification process which detects the false individuals
and correct them by estimating true IDs of points involved in
the false individual objects. Without any prior information of
the objects from outside, the past objects in the previous time
step

∗
Ok−1 can be good references to estimate points involved

in the false individual objects by comparing their features in
a time sequence as long as the following assumption holds:
an object does not change substantially in terms of its shape
and position. In a real-time tracking task, this assumption
can be thought of as valid, even for moving objects with a
fast sampling rate. The ambiguity graph classifies the input
object individuals Ok into the following three categories:
clear individuals Oc

k , falsely separated individuals O f s
k , and

falsely merged individuals O f m
k . They are modified to be

a set of true individuals by separation, Oms
k and mergence,

Omm
k . The rectification process will be described in the next

chapter in detail.
A set of clear individuals and modified individuals then

undergo the object indexing process. There are commonly
occurring issues pertaining to assigning track indexes on
multiple objects, such as different numbers of tracks, tempo-
rally missing points, and mismatched temporal associations.
These issues arise mainly due to occlusion, objects moving
in/out of a scene, and objects situated in densely populated
environments [23]. In order to assign a track index to
each object at every time step, the improved multi-frame
tracking (IMFT) method is used to handle the typical tracking
problems of generating a new track, deleting an old track,
and correcting false matches due to noise and occlusions [6],
[4].

The similarity measure between two objects must be
defined to determine multi-object spatial associations in the
ambiguity graph and temporal associations in IMFT. Here,
each object individual consists of its point-cloud, O j =
{p j,i}

n j
i=1, and the distribution of the point-cloud in 3-d

space can be approximately represented by a 3-d normal

distribution, p j,i|O j ∼ φ(x|µµµ j,ΣΣΣ j), where

φ(x|µµµ,ΣΣΣ) = 1√
(2π)d |ΣΣΣ|

exp
(
−1

2
(x−µµµ)T

ΣΣΣ
−1(x−µµµ)

)
.

(2)
The 3-dimensional mean µµµ j ∈R3 and covariance matrix ΣΣΣ j ∈
R3×3 are calculated from the point-cloud data in the object
O j. The similarity between two probability density functions
can be calculated by using KL divergence and L2 distance
representatively. For a single Gaussian case, both distances
can be expressed by a closed-form solution as follows.

dL2(O1,O2) =
∫
(p(x|O1)− p(x|O2))

2dx

= 2−2φ(0|µµµ1−µµµ2,ΣΣΣ1 +ΣΣΣ2),
(3)

dKL(O1||O2) =
1
2
(tr(ΣΣΣ−1

2 ΣΣΣ1)+(µµµ2−µµµ1)
T

ΣΣΣ
−1
2 (µµµ2−µµµ1)

− ln
(
|ΣΣΣ1|
|ΣΣΣ2|

)
−d)

(4)

The weight function between the objects in IMFT is
characterized by the symmetric KL distance between two
objects.

dKL(O1,O2) = dKL(O1||O2)+dKL(O2||O1) (5)

Because the KL distance presents a smaller number with
greater closeness of the two objects, the weight function
is defined by (6), which has a value between 0 and 1 by
introducing the maximum value of the distances in the all
possible associations among the objects.

weight(O1,O2) = 1− dKL(O1,O2)

maxi, j(dKL(O1,O2))
(6)

III. RECTIFICATION OF FALSE INDIVIDUALS

This chapter explains the main part of the proposed sys-
tem: constructing an ambiguity graph to detect false object
individuals by using graph theory, and rectifying them by
using individuation-by-feature.

A. Ambiguity graph construction

Ambiguity graph is a directed graph whose nodes are
grouped by true individual objects in

∗
Ok−1 and object can-

didates in Ok. When there exist falsely separated or merged
objects in the two time frames, the graph shows the relations
between an merged object and their segments by constructing
directed edges. Here, we represent the parent-child relation
as an edge heading from an original object (parent) to its
segment (child).

Fig. 4 shows an example of the ambiguity graph and the
rectification process for the object individuals at time k, Ok =
{Ok

1,O
k
2,O

k
3,O

k
4,O

k
5}, with the previous objects at time k−1,

∗
Ok−1 = {Ok−1

1 ,Ok−1
2 ,Ok−1

3 ,Ok−1
4 ,}. The objects Ok

1 and Ok
5

are clear individuals because there exists a clearly similar
object of Ok

1 (Ok−1
1 ) and no similar object of Ok

5 at time
k−1. The objects Ok

2 and Ok
3 are separated individuals from

Ok−1
2 by a certain occlusion or sensor noise, while the object
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(a) Object individuals at time t
and t−1

(b) Calculating weight values
between the individuals

(c) Classified object individuals
at time t

(d) Modified object individuals

Fig. 4. A simplified example of the ambiguity test

Ok
4 is composed of two merged objects Ok−1

3 and Ok−1
4 by

their contact. As a result of the ambiguity test in Fig. 4(b),
the three categories can be constructed as follows.

Oc
k = {Ok

1,O
k
5},

O f s
k = {{Ok−1

2 ,(Ok
2,O

k
3)}},

O f m
k = {{Ok

4,(O
k−1
3 ,Ok−1

4 )}}
(7)

In the falsely segmented case, a parent object is Ok−1
2 ,

and Ok
2,O

k
3 are child objects. In the falsely merged case,

similarly, Ok
4 is a parent object, and Ok−1

3 ,Ok−1
4 are child

objects.
Constructing the ambiguity graph can be illustrated as

a combinatorial optimization problem to obtain a directed
graph in Fig. 4(c), with which the three categories can be
easily distinguished. In order to construct the directed graph,
initially, all objects between

∗
Ok−1 and Ok are fully connected

with certain weight values on all arcs as in Fig. 4(b). Each
weight value describes how similar two object individuals
are, and the optimization problem is maximizing the sum of
the constructed weights with following constraints.

• constraint 1: An object does not change substantially in
terms of its shape and position.

• constraint 2: A segment of an object is not generated
from more than two objects. (A child object only has
one parent object.)

• constraint 3: A segment of an object cannot generate
other object segments. (A child object cannot be a
parent object, or vice versa.)

The first constraint results in defining the weight function
between two objects, and the second and third conditions
elicit the proposed optimization algorithm to generate the
modified object individuals as shown in Fig. 4(d).

Because the tail and the head of an edge represent a parent
object, Op, and a child object, Oc, respectively, the value of
an edge should reflect the relation of a parent and a child
properly. In order to examine the effects of two distances
in Eq. (3) and Eq. (5) for the parent-child relation, Fig. 5
shows an example of the distances between a fixed scene
Gaussian distribution and a moving model Gaussian distri-
bution. Let’s assume that a scene distribution with a wide
variance (σ = 5) is a parent object and a model distribution
(σ = 1) is a child object. Figs. 5(b) and 5(c) show the change
of each distance value when a model is moving from 0
to 60 in x direction. The similarity value of the ordered
pair of two parent and child objects should represent the
degree of belongingness of the child object into the parent
object. The L2 distance in Fig. 5(b) remarkably indicates
the similarity of two objects when their distributions are
overlapped enough. This is a good measure for comparing
closely-located two distributions locally, but cannot show the
relative differences with other distributions globally. On the
other hand, the unsymmetric two KL distances, dKL(Om||Os)
and dKL(Os||Om), show the monotonic distance change in
global area. In addition, the unsymmetric two distances show
the relation of dKL(Om||Os)< dKL(Os||Om), which is useful
to represent the parent-child relation. Because the similar
relation of two objects shows the smaller value of the KL
distance, dKL(Oc||Op) represents the value of the directed
arc from parent node to child node, apc.

weight(ai j) = weight(Oi,O j) = dKL(O j||Oi) (8)

With the constraint 1: an object does not change substan-
tially in terms of its shape and position; the fully connected
directed graph in Fig. 4(b) is simplified by cutting weak
edges, each of which has a smaller weight value than a
certain threshold value. The threshold can be defined by
using L2 distance in Fig. 5(b) because of its local effect
and the bounded maximum value, 2.

dL2(Oi,O j)/2 > α =⇒ erase ai j, 0 < α < 1 (9)

The constraint 2 and constrain 3 describing the relation
of a child and a parent object are applied to derive a second
graph cut algorithm. The process inspects the result graph
of the first graph cut, and finds and deletes all false edges
breaking the two conditions, as shown in Fig. 6(a), which
results in the true edges remaining, as shown in Fig. 6(b).
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(a) A model Gaussian distribution with a small variance and a
scene Gaussian distribution with a wide variance.

(b) L2 distance between the fixed scene Gaussian distribution
and the moving model Gaussian distribution from 0 to 60 in
x.

(c) Two KL distances between the fixed scene Gaussian dis-
tribution and the moving model Gaussian distribution from 0
to 60 in x.

Fig. 5. An example of the L2 distance and KL distance between a
fixed wide scene Gaussian distribution and a moving small model Gaussian
distribution.

The second graph cut has multiple solutions from the results
of the first graph cut as input. For example, Figs. 7(b) to
7(d) show possible solutions by deleting false edges of the
graph in Fig. 7(a). In order to find the optimal solution, the
summation of all weight values on the optimal true edge set
should be minimal among all possible solutions. The greedy
algorithm is proposed according to the following steps as
illustrated in Fig. 8.
• Step 1: Finding all problematic nodes (red circle) and

the related problematic arcs.
• Step 2: If there is no problematic node, the ambiguity

graph is constructed.
• Step 3: If not, selecting a minimum valued problematic

arc (black bold dotted arrow), and other problematic
arcs that cause the minimum valued arc be problematic
(red dotted arrow).

• Step 4: Deleting the selected problematic arcs and
remaining the selected minimum valued arc to be true
(black bold arrow).

(a) False edges. (b) True edges.

Fig. 6. Examples of the false and true edges according to the constraint 2
and 3 of the parent and child relations.

(a) Input graph (b) Solution 1 (c) Solution 2 (d) Solution 3

Fig. 7. Examples of possible multiple solutions of the second graph cut.

• Step 5: Go to step 1.

B. Rectification

Among the results of the ambiguity test, the separated
individuals, O f s

k , and the merged individuals, O f m
k , must be

manipulated to generate the modified individuals, Omm
k and

Oms
k , respectively. For the cases of separated individuals, O f s

k ,
the modified individuals can be constructed by a merging
process which integrates all points in the false segments at
time k−1.

The modification of the merged individuals, O f m
t ,

is processed by the individuation-by-feature process.
Individuation-by-feature refers to the process of separating
an falsely merged object individual, Ok, by using shape
and/or color information of their true object parts at time
k− 1, {

∗
Ok−1

i }n
i=1, where n is the number of object parts

of Ok. Because a point cloud measured from an object

(a) Input graph (b) Step 1 (c) Step 3 (d) Step 4

(e) Step 1 and 3 (f) Step 4 (g) Step 1 and 3 (h) Step 4

Fig. 8. Examples of greedy algorithm for the second graph cut process
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reflects its shape and color information, the individuation-by-
feature process performs point-level likelihood evaluation of
all points in the merged object, pk

j ∈Ok, into the estimation
of true object parts at time k, {Ôk

i }n
i=1, thus producing new

ID of each point to be modified, ok
j.

ok
j = argmax

i
L(Ôk

i |pk
j) (10)

In dynamic situations, the estimation of Ok
i can be predicted

by using filtering-based tracking or robust 3D registration
methods such as [1], [20], [11], [15], [3]. In this research,
GMM-based robust 3-d registration with Gaussian Sum
Filtering (GSF) method is used, which is proposed in the
authors’ previous work in [5], with considering many outliers
which are points belonging to another object as in the contact
case of Fig. 1(a).

IV. EXPERIMENTS AND RESULTS

The proposed object individuation framework aims to
achieve both computational efficiency and robustness. In this
chapter, the performance of the framework in these two
aspects has been investigated with following three cases
involving manipulating objects on a table-top. These cases
frequently happen and cause difficulties in object individua-
tion to understand human demonstrations.

1) Stacking objects: A human hand approach to and
grasps one object and stack it up on another object.

2) Unstacking objects: After all objects are piled up, they
are unstacked in series by the hand.

3) Human hand occluding objects: A human hand moves
over other objects to partially and completely occlude them
from the camera view.

The proposed method was evaluated based on the point-
cloud data sequence in the tasks. A RGB-D camera (ASUS
Xtion) established at a height of 90cm on a table captured
the point-cloud data sequence at 30Hz. In order to reduce
the data size, a workspace was defined as a half sphere
with 50cm radius on the table. The captured point-cloud
was down-sampled with 10mm sampling distance by using
VoxelGrid filter, and the surface of the table was excluded
by using plane extraction in [17]. All experiments were
performed using an Intel i7-3770 3.4GHz CPU, and the
software was implemented based on ROS (Robot Operating
System) platform1.

A. Qualitative evaluation

Fig. 9 shows the point-cloud image sequences of the
object individuation results for the given three tasks. The task
involves the problems of one object coming into contact with
others and moving together in contact. In particular, multiple
contacts and partial occlusions arise between objects at the
same time in the stacking and unstacking tasks. As shown in
the second rows in Figs. 9(a) and 9(b), the individuation-by-
location process results in falsely merged segments which

1The proposed algorithm was implemented based on ROS, and
the open source code written in C++ and dataset can be found in
http://www.hri.ei.tum.de

Fig. 10. Performance comparison in the two-object stacking case.

are represented with same colored point-clouds. The results
of the proposed method, bottom rows in each figure, show
the robust object individuation and assigned track IDs in
the multiple-contact cases and even dynamic changes of the
objects’ shapes, positions and orientations. In the occlusion
cases, the partially and completely occluded object segments
in the second rows in Fig. 9(c) can be recovered as the result
of the proposed method, as shown in the bottom rows.

B. Quantatitive evaluation

In order to evaluate the performance of the proposed
method, the individuation accuracy and the computation
time were measured and compared with the individuation-
by-location [16] and individuation-by-feature [7] methods.
The accuracy is computed as PMOTA (Point-level Multiple
Object Tracking Accuracy) in [6]. In order to obtain the
ground-truth data, the stacking and unstacking task were
performed again with distinct colored two objects (white and
black). The test algorithms used only 3d position data.

PMOTA = 1− ∑t ∑
Ot
i mt

i + f pt
i +mmet

i

∑t ∑
Ot
i nt

i

(11)

Table I and Fig. 10 show the results. The proposed method
performes better than individuation-by-location in terms of
accuracy in two-object contacts (frame 97 to 129, frame 205
to 231) and three-object contacts (frame 130 to 205), and
efficiently computes more than individuation-by-feature in
no contact and two-object contacts.

TABLE I
PMOTA OF THREE METHODS FOR THE STACKING CASE

Method Accuracy Computation time
mean std mean std

Proposed method 0.9034 0.0526 0.2346 0.1989
Individuation-by-location 0.5995 0.3305 0.0062 0.0005
Individuation-by-feature 0.9042 0.0474 0.4532 0.0056

V. CONCLUSION

In this paper, we proposed a novel framework for unsu-
pervised object individuation with an RGB-D camera. The
method contributes to providing a theoretical background
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(a) Stacking three objects

(b) Unstacking three objects

(c) Occluding objects

Fig. 9. Object individuation results of the three table-top manipulation tasks. The first rows show original captured RGB-D image sequence, the second
rows show the point-cloud image sequence of the individuation-by-location results, and the bottom rows show the results of the proposed method. Each
color shows each object individual and the numbers on the objects represent the track ID of the objects.

from infant’s cognitive developmental theory and integrating
diverse algorithms to achieve two trade-off objectives: effi-
ciency and robustness. The newly proposed ambiguity graph
plays a key component as a bridge between two different in-
dividuation methods by evaluating the given multiple object
situations.

Although the result showed the feasibility and efficiency
of the method, the performance of robustness is limited due
to the two-frame ambiguity test and the constraint 1. When
a object moves fast enough to break the constraint 1 or
the ambiguity graph is falsely constructed due to the noise
at a certain frame, the graph cannot have a chance to be
recovered after that frame. In further work, this problem will
be investigated and the ambiguity graph will be improved
in multiple time frames. In addition, the method can be
expanded to learning human demonstrations in multiple
object manipulation tasks by using dynamic spatial relations

of the multiple objects represented in the ambiguity graph.
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