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Abstract— Human gesture recognition is of importance for
smooth and efficient human robot interaction. One of difficulties
in gesture recognition is that different actors have different
styles in performing even same gestures. In order to move
towards more realistic scenarios, a robot is required to handle
not only different users, but also different view points and noisy
incomplete data from onboard sensors on the robot. Facing
these challenges, we propose a new invariant representation of
rigid body motions, which is invariant to translation, rotation
and scaling factors. For classification, Hidden Markov Models
based approach and Dynamic Time Warping based approach
are modified by weighting the importances of body parts. The
proposed method is tested with two Kinect datasets and it is
compared with another invariant representation and a typical
non-invariant representation. The experimental results show
good recognition performance of our proposed approach.

I. INTRODUCTION

Understanding human intentions is a key aspect in human-
robot interaction. If the robot understands what the human is
doing, then it can select and adapt its behaviours coherently
with human’s needs. The first step to understand human
intentions is to recognise human actions. In [1], [2], for
example, human motion recognition is used to decide which
is the best action the robot should perform.

We aim at making the robot capable of recognizing
actions, performed by several people, in a daily life scenario,
as shown in Fig. 1. Some issues arises from this goal. First,
the same gesture can be performed by different people in
slightly different manners and from different view points.
Thus, it is desirable to have action recognition algorithm
which is coordinate-free and invariant to the body sizes
of actors. Second desirable property is the capability to
handle continuous incoming data, since sensory inputs in
real scenario are not segmented a prior (in other words,
starting and ending points of each gesture is unknown a
prior). Last, although existing commercial motion capturing
systems can provide fast and accurate tracking performance,
they often requires obtrusive settings in the environment
and on the human subject (e.g., markers or special suits).
This artificial setting makes hard to change the target person
among different users in different environments. Thus, in this
work, we use the Microsoft Kinect sensor for human motion
tracking, although its data are less accurate and more noisy.

The main focus of this work is given to a new invariant
representation for user independent gesture recognition. This
problem has been extensively studied during the last decade.
In [3], [4] invariants under affine and projective trans-
formations are proposed. These invariants can be directly
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Fig. 1. Gesture recognition in a daily-life scenario.

computed from the image coordinate, but one has to track
the same needed five points for the duration of the motion.
3D invariants under affine transformations are proposed in
[5], [6]. In this case, the same six points should be tracked
in all the frames. However, continuous tracking of six points
per each rigid body in a full human body is challenging in
a daily life scenario. In our proposed approach we do not
need to keep track of such a large number of same points,
but we just need the position and the orientation of the rigid
body.

A complete set (6 elements) of invariants, computed by
the meaning of Instantaneous Screw Axes is adopted in
[7] to recognise the motions of a rigid body. To make
this representations invariant to linear and angular scale,
one needs to divide the invariants by two scaling factors
depending on the duration of the gesture. On the contrary,
our representation is linear scale invariant independently on
the gesture duration.

In [8] the full-body gestures recognition problem is solved
using the 4D Action Feature Model, consisting of 4D action
shape (sequence of 3D shapes) with spatio-temporal features
attached. Even if it is possible to recognise actions from
a single view, multi-view video sequences are required to
construct the 4D Action Feature Model during the training
procedure. In contrast, our work can be applicable with one
Kinect sensory data for both training and recognition, which
can allow online incremental learning for a robot.

In [9], [10] the authors propose to represent the motion
with the spatio-temporal curvature of the trajectory. The
curvature is useful to detect the so-called dynamic instants,
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points in which there are changes in the direction of motion
and/or in the velocity. Their choice is motivated by some
psychological evidence stating that humans perceive actions
through the atomic units of actions, defined as motion events
due to the significant changes in motion trajectory [11].
They compute the curvature of 2D trajectories and prove
its invariance with respect to the point of view. However the
invariance to linear scaling factors is not proved. Compared
to that, our representation can handle 3D data and it is
invariant to linear scaling factors, translation and rotation.

In [12] a technique to recognise motion from Kinect data
is proposed. First, the distances between all the normalised
positions of the human parts, are computed. Then, the action
is partitioned into a temporal pyramid and the Fourier Trans-
form is computed for each segment at each level. Choosing
the low-frequency Fourier coefficient as features, the authors
obtain a representation that is invariant to the view and to
linear scaling factors, and that is robust to noise and temporal
misalignment. An SVM model is trained on these data and
is used to recognise gestures. Hereinafter we refer to this
approach as Fourier Temporal Pyramid (FTP) features.

Our main contribution is to propose a new compact
representation of a 3D motion, which is invariant to rotations,
translations and linear scaling factors. This invariant repre-
sentation, computed from the position and the orientation of
a rigid body, is used to create a set of features useful to
recognise articulated whole-body gestures. The 3D motion
representation is tested with two classification algorithms.
The classification methods take the weight of body parts into
consideration, in order to actively evaluate the motions of
relevant and irrelevant body parts. We tested our approach
on a continuous dataset in which the gestures segmentation
is unknown. Further it is compared with the FTP features
approach [12] on the MSR-Action3D dataset used in [12]
and a typical non-invariant representation.

The rest of the paper is organised as follows. Section
II describes the set of invariant features proposed in our
approach. Section III gives some details about data collec-
tion and filtering. Section IV explains how Dynamic Time
Warping and Hidden Markov Models are used to classify
human gestures. Section V presents the experimental results.
Section VI states the conclusions and the future works.

II. INVARIANT REPRESENTATION OF RIGID MOTIONS

According to [9], [10] curvature is useful to detect the
dynamic instants that characterise a gesture. We propose a
new representation, which is view and linear scale invariant,
and capable of capturing changes in the direction of motion
and/or in the velocity of a 3D motion. Invariance to roto-
translation of the reference frame (or of the user pose)
helps us to recognise the motion independently of the initial
relative poses of the actor with respect to the robot sensor.
Invariance to linear scaling factors helps us to cope with
kinematics differences between different users. The proposed
representation is also compact, because 3D positions and

orientations1 are represented with two scalar values for each
time instant.

A. Invariant representation of translation

Given the position of a rigid body during the time rrr(t) =
[x(t) y(t) z(t)]T , we define an invariant representation of
the translation as

γ(t) =
‖ṙrr(t)× r̈rr(t)‖
‖ṙrr(t)‖2

= κ(t) ‖ṙrr(t)‖ , (1)

where ṙrr(t) and r̈rr(t) represents respectively the first and
second order time derivatives of rrr(t), and κ is the curva-
ture. This representation is invariant under constant rotation,
translation and linear scale.

Proof: Let’s assume that rrr(t) is transformed using a
constant transformation T = (αRRR,ttt), where α 6= 0 is a
scaling factor, ttt = [tx ty tz]

T is a translation and RRR is
a rotation matrix. We have rrrT (t) = αRRRrrr(t) + ttt, ṙrrT (t) =
αRRRṙrr(t) and r̈rrT (t) = αRRRr̈rr(t). Recalling that, given two
vectors vvv,www ∈ R3, (RRRvvv)× (RRRwww) = RRR(vvv ×www), ‖RRRvvv‖ = ‖vvv‖
and ‖vvv ×www‖ = ‖vvv‖ ‖www‖ sin(θ), it is easy to verify that:

γT (t) =
‖ṙrrT (t)× r̈rrT (t)‖
‖ṙrrT (t)‖2

=

∥∥α2RRR[ṙrr(t)× r̈rr(t)]
∥∥

‖αRRRṙrr(t)‖2
= γ(t).

B. Invariant representation of rotation

An invariant representation of the rotation is defined by

ξ(t) =
‖ωωω(t)× ω̇ωω(t)‖
‖ωωω(t)‖2

, (2)

where ωωω(t) = [ωx(t) ωy(t) ωz(t)]
T represents the angular

velocity trajectory of the rigid body, expressed in a fixed
frame, and ω̇ωω(t) its time derivative. We can prove this
proposed representation (2) is invariant to roto-translations,
since translation does not affect the angular velocity and
rotation affects neither the norm of a vector nor the angle
between two vectors, similarly to Sec. II-A. However, the
invariance to the scaling in the orientation is not proved yet.
It is because the mapping between the time derivative of
the orientation and the angular velocity is non-linear. For
example, the relationship between the Euler angles time
derivative ėee = [φ̇ θ̇ ψ̇]T and the angular velocity ωωω is
ωωω = TTT (φ, θ, ψ)ėee, where the matrix TTT depends on the set
of Euler angles used (see [13] for further details).

Although the invariance of (2) is not proven for orientation
scale, it hardly affects the gesture recognition performance
since the orientations of the human links are very similar
among different people. The scaling to the orientation is
almost negligible, unlike the linear scaling which is crucial
to cope with kinematic differences between different users.

Since the proposed representation is singular if ‖ṙrr(t)‖ = 0
or if ‖ωωω(t)‖ = 0, in our implementation we simply set the
invariant to zero when it is close to singularity.

1In our representation we use angular velocity and acceleration vectors
that belong to the 3D space.
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Fig. 2. (a) Human shape (blue) extracted from the depth map provided by
the Kinect sensor. (b) Human skeleton model in which the circles and the
squares represent the tracked human parts. Parts marked with the circles are
effectively used in the Continuous Motion dataset of Sec. V-B.

III. DATA COLLECTION AND FILTERING

A. Whole body motion features extraction

As mentioned in Sec. I, we are interested in recognizing
gestures from different people and/or poses, using the Mi-
crosoft Kinect sensor. By using the OpenNI library2, we can
track different people from a depth map. The human body
is represented by a skeleton model, consisting of 20 parts.
For each body part we get the position and the orientation,
with respect to a fixed frame attached to the Kinect sensor,
updated at 30 fps. Fig. 2 shows a depth map obtained from
Kinect sensor, and the skeleton model adopted.

Linear velocity and acceleration are simply computed
using numerical differentiation. The orientation is described
using a unit quaternion Q = (η, εεε). The equation relating
the angular velocity to the time derivative of the quaternion
Q̇ = (η̇, ε̇εε) is given by ωωω = 2SSS(εεε)ε̇εε + 2ηε̇εε − 2η̇εεε, where
SSS(·) is a skew-symmetric operator [13]. Then the angular
acceleration is computed using numerical differentiation.
Starting from this data, two invariants in eq. (1) and (2)
are computed for each time instant and used as input for a
classification algorithm.

B. Anisotropic diffusion

The proposed representation needs to compute numerically
the first and second order derivatives of positions and ori-
entations. Since it is well known that derivation is highly
sensitive to the noise, we filter the noisy Kinect data using
the Anisotropic Diffusion [14], saving at the same time the
peaks in the trajectory.

This method iteratively smooths the data with a Gaussian
kernel, but adaptively changes the variance of the Gaussian
using the gradient of the signal sss at the current time i as
follows:

sj+1
i = sji + α(cjN∇Ns

j
i + cjS∇Ss

j
i ),

where 0 ≤ α ≤ 1
4 is the control parameter, j the iteration

number, cN and cS the conduction parameters, ∇Nsji =

2http://openni.org
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Fig. 3. Model (black solid line) of one of the invariant features obtained
from five training features (blue dashed lines).

sji−1−s
j
i , and ∇Ssji = sji+1−s

j
i . The conduction parameters

are updated at each iteration as:

cjN = e−(‖∇Ns
j
i‖/k)2

cjS = e−(‖∇Ss
j
i‖/k)2

,

where k is the noise estimator. The iterations number, α and
k are chosen empirically.

The effectiveness of this technique is shown in Fig. 3,
depicting the original Kinect data (blue dashed line) and the
smoothed trajectory (red solid line) of the height of the right
hand with respect to the ground during the handover gesture.
Herein, the used parameters are α = 0.2, k = 40 and 10
iterations of the algorithm.3

IV. CLASSIFICATION ALGORITHMS

As stated in [9], an action can be recognised simply
counting the number of dynamic instants, i.e. the local
maxima of the curvature and their sign, however this simple
solution is sensitive to noise in the data. In order to cope with
uncertainties of different actors’ motions, two classification
algorithms based on Dynamic Time Warping (DTW) and
Hidden Markov Model (HMM) are adopted.

A. DTW-based recognition

1) Training: Dynamic Time Warping (DTW) [15] is an
algorithm often used to non-linearly align two sequences of
different lengths. The DTW distance is a measure of the
similarity of the two sequences. Since the standard DTW
works only on one dimensional vectors, we modified the
algorithm for the multi dimensional case for articulated
human motion. Given two M dimensional motion sequences
A and B, the distance matrix D is computed according to4

D(i, j) =
∑M
m=1(A(m, i) − B(m, j))2, where i and j are

the time index of each sequence. Using this distance matrix,
the best alignment is found which results from the smallest
cumulative distance between two sequences. We refer to this
algorithm as M-DTW.

To create a model that abstracts a gesture from mul-
tiple demonstrations we follow the iterative procedure in

3The filtering step (with unoptimised C++ implementation) takes about
1ms per each frame in the on-line recognition scenario of Sec. V-B.

4Because of the different scale it is necessary to normalise each dimension
to a zero mean and unit variance.
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Fig. 4. Trained model (black solid line) of one of the invariant features
obtained from five training demonstrations (blue dot-dashed lines).

[7] as follows. Consider N training demonstrations, i.e.
N repetitions of the same gesture, each one consisting of
M dimensional vectors of features. First, for each training
demonstration i, the average M-DTW distance to all other
training demonstrations, dav,i, is computed. Then an expo-
nential probability density function is fitted through these
distances5:

wi = P (dav,i|α) = αexp−αdav,i , i = 1, . . . , N

where α−1 = 1
N

∑N
i=1 dav,i. The N dimensional vector

www = [w1, ..., wN ]T is used to weight the contribution of
each demonstration to the model of each training trial.

First, the two demonstrations with the lowest dav,i are
aligned using M-DTW. As a result, the two demonstrations
will have the same length: sss∗1 = [s∗11, ..., s

∗
1K ]T , and sss∗2 =

[s∗21, ..., s
∗
2K ]T . Then, these vectors are fused together using

a weighted average of the corresponding values in the two
training trials:

s∗k =
w1s

∗
1k + w2s

∗
2k

w1 + w2
, k = 1, . . . ,K

where w1 and w2 are the corresponding elements in the vec-
tor www. The procedure is repeated between sss∗ = [s∗1, ..., s

∗
K ]T

and the other training trials until all the demonstrations are
considered. In this way, the trained model becomes robust
to the outliers. For example, a demonstration exhibiting high
dissimilarity to the others is weighted differently and affects
less to the final model. The result of this procedure is shown
in Fig. 4, in which the blue dot-dashed lines represent five
training demonstrations6 and the black solid line the obtained
model.

2) Gesture recognition: We define a model cp for each
different motion, using the procedure described in Sec.
IV-A.1. Then, for each model p and each feature j, the
DTW distances d∗av,jp between the new gesture and each
of the gesture models are calculated. The log-likelihood
P (d∗av,jp, j = 1, . . . ,M |cp), where M is the number of
features, is computed for each motion model cp using an

5Notice that it is possible to choose other distributions to fit through
dav,i.

6The invariants of the right hand positions during the come gesture.

exponential distribution:

P (d∗av,jp, j = 1, . . . ,M |cp) =

M∑
j=1

θjplog
(
P (d∗av,jp|cp)

)
,

where θjp is used to select the features really involved in
the gesture. The motion is then assigned to the model with
the biggest probability if the difference between the first two
bigger log-likelihood is over a certain empirically chosen
threshold.

The weights θjp are set automatically from the gesture
models. If the maximum of the j-th feature vector, in the p-
th model, is bigger than a threshold, then θjp = 1, otherwise
θjp = 0.1. This threshold is empirically set to 10.

B. HMM-based recognition
1) Hidden Markov Models: HMMs are widely used in

the analysis of temporal sequence in several areas such as
speech recognition [16], and gesture recognition [1], [2]. An
HMM represents a Markov process which cannot be directly
observed. In this paper Left-To-Right continuous HMMs
(CHMMs) are adopted. The CHMM is described by the set
of parameters λλλ containing:
• The set of the L hidden states SSS = {si}, 1 ≤ i ≤ L.

Hereinafter qt denotes the state at time t.
• The set of M observable output symbolsOOO = {ooot}, 1 ≤
t ≤ T , where ooot is the observation at time t.

• The initial state probability vector. πππ = {πi}, 1 ≤ i ≤
L, where πi = P (q1 = si).

• The state transition probability matrix AAA = {aij}, 1 ≤
i, j ≤ L, where aij is P (qt+1 = sj |qt = si).

• The observation symbol probability distribution BBB =
{bi(ooot)}, 1 ≤ i ≤ L, where bi(ooot) is P (ooot|qt = si).

2) Training and recognition: In order to use HMMs to
recognise motion we define an HMM for each different mo-
tion. The model parameters λλλ are estimated using the Baum-
Welch algorithm [16], taking as input N sets of invariant
features extracted from N repetitions of the same gesture.
Once the parameters of HMMs are trained, gesture recogni-
tion for an observation sequence OOOu = {ooou1, . . . , ooout} can
be performed. For each HMM, the probability P (OOOu|λλλ) is
computed by using the Forward-Backward procedure [16].
The motion is then assigned to the model with the biggest
probability if the difference between the first two bigger
likelihood is over a certain empirically chosen threshold.

To represent bi(ooot) we used a modified version of the
mixture of G Gaussian distributions:

bi(ooot) =

G∑
g=1

cig

[
exp

(
− 1

2 (ooot −µµµig)TΘΘΘΣΣΣ−1ig (ooot −µµµig)
)

(2π)G/2|ΣΣΣ|1/2

]
where cig is the mixture coefficient, µµµig and ΣΣΣjg are re-
spectively the mean vector and the covariance matrix for the
gth Gaussian component in state si. The diagonal matrix
ΘΘΘ = diag(θ1, θ2, . . . , θM ) weights the contribution of each
feature. Its entries are chosen as described in Sec. IV-A.2.

In the experiments, we used 12 states and 1 Gaussian
for each state. The increase of the number of states, or the
number of Gaussian, does not affect the classification.
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Fig. 5. The comparison between the recognition rates for MSR-Action3D
dataset.

V. EXPERIMENTAL RESULTS

The proposed approach is tested on two different datasets:
the MSR-Action3D dataset7 [12] and a Continuous Motion
(CM) dataset. Both datasets are challenging: the first contains
many similar actions, the second is a continuous stream of
data in which the starting and the ending points of each
gesture are unknown. The classification algorithms take as
input the proposed invariants of human motion in Sec. II. We
call them respectively Invariant DTW and Invariant HMM.

A. MSR-Action3D dataset

MSR-Action3D dataset contains twenty actions captured
by a depth camera: highArmWave, horizontalArmWave,
hammer, handCatch, forwardPunch, highThrow, drawX,
drawTick, drawCircle, handClap, twoHandWave, sideBoxing,
bend, forwardKick, sideKick, jogging, tennisSwing, tennis-
Serve, golfSwing, pickUp&Throw. Each action is performed
by ten subjects three times. The frame rate is 15 fps. The
skeleton model is that in Fig. 2(b).

In order to compare our results with the FTP features
approach [12], we consider only the positions of the twenty
skeleton parts. Furthermore, we test our algorithm on the
cross-subject test setting [12], using half of the samples as
a training set, and the rest as a test set.

As shown in Fig. 5, the proposed invariant approach
outperforms FTP features based method. In fact, the average
recognition rate with FTP features is 88.2%, with Invariant
HMM is 93.2% and with Invariant DTW is 95.3%.

B. Continuous Motion dataset

The CM dataset consists of a continuous sequence of six
actions performed by four different users: come, handover
left, handover right, pick up, stop and rest. Each gesture
is performed twice by each person. Altogether, the dataset
consists of 48 actions. Every time the user arbitrarily changes
his pose with respect to the Kinect sensor. All the users
perform come, handover, stop with the right hand, and
handover with the left hand. Like in an on-line recognition

7http://research.microsoft.com/en-us/um/
people/zliu/actionrecorsrc/default.htm

scenario, the gesture segmentation is unknown. This dataset
was created during the AUTOMATICA fair in 2012 8.

Data are collected at 30 fps using the OpenNI 1.3.2.1
library. The skeleton model adopted is shown in Fig. 2(b).
The tracking algorithm, implemented in OpenNI 1.3.2.1,

TABLE I
SET OF INVARIANT FEATURES USED IN THE CM DATASET

Body Part Inv. Position (γ) Inv. Orientation (ξ)
Hand (Left and Right) yes no
Elbow (Left and Right) yes yes

Shoulder (Left and Right) yes yes
Torso yes yes

frequently fails in tracking the lower part of the human body.
Moreover, the orientation estimation of both hands was not
provided by the tracking algorithm. Since the purpose of
this paper is not to realise a robust tracking technique, we
simply ignore the contribution of these parts. The complete
set of invariant features, consisting of 12 elements, is shown
in Tab. I, while the skeleton parts used to create this set are
represented as green circles in Fig. 2(b). We also decided to
ignore the contributions of the Head and Neck motion, since
they do not affect the performed gestures.

In this experiment, training procedure was done offline.
A user who is not included in the CM dataset performed
five demonstrations for each gesture from arbitrary poses.
This data was used for training models for DTW and HMM.
With the trained models, we tested online recognition with
the CM dataset. As mentioned above, in this case the data
segmentation is unknown. This becomes challenging for
recognition because the starting or ending parts of some ges-
tures can be similar, for example come, stop, and handover
right gestures. During the online recognition, we analyse
data using a sliding window of length V . The recognition
procedure starts after the arrival of the first V frames of
poses. When a new data arrives every time frame, the window
slides one frame and the recognition procedure is performed
with the observation within the sliding window. If the same
gesture is found F times, not necessarily consecutively, then
the gesture is classified.

The results, obtained choosing L = 50 and F = 15, are
shown in Fig. 6. As expected, errors occur among come,
stop, and handover right gestures. The average recognition
rate using the Invariant DTW algorithm is 91.67% and the
minimum rate is 75% (stop gesture). Using Invariant HMM
the average recognition rate is 87.5% and the minimum is
62.5% (handover right gesture). It is clear that the unknown
segmentation significantly reduces the recognition rate. The
adoption of a sophisticated segmentation technique certainly
will improve the performance.

C. Discussion
Experiments in Sec. V-A and Sec. V-B show the effec-

tiveness of our approach both on segmented and continuous

8http://www.automatica-munich.com
The proposed algorithm was tested further with more than 4 subjects during
the whole fair period and showed reliable recognition rates.
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Fig. 6. The comparison between the recognition rates for the CM dataset.

motions, stating the importance of having an invariant rep-
resentation of motion. In support of this, we tested another
motion representation, which is the link positions in the torso
frame. This representation is invariant to torso rotation and
translation but not invariant to scaling factors. When using
this representation, the average recognition rates drop to 65%
for DTW and to 63% for HMM with the CM dataset.

The comparison with the FTP features shows that our
method achieved good results with very similar gestures such
as bend and pickUp&Throw. This is probably due to the fact
that FTP features only use position information together with
a technique to select involved features. On the other hand, our
approach combines velocity and acceleration informations
with a features selection technique. This combination makes
gestures more distinctive in many cases. The worst result
with our technique is the 57% of correct recognition on
the drawCircle gesture. This is due to the way in which
the drawX and the drawCircle are performed. The right
hand trajectory in the drawX is in practise drawing a letter
‘8’. The right hand trajectory in the drawCircle consists
of: a straight line, a circle, and another straight line to
come back in the initial position. Since the gestures are
performed continuously, the velocity profiles are similar, and
misclassification occur.

The Invariant DTW algorithm usually outperforms the
HMM approach. We believe that it is caused mainly from
two aspects. First, the technique used to construct the DTW
models weight differently trials that have high dissimilarities.
So the resulting models are less sensitive to outliers in
the training set. Second, as shown in Fig. 4, the invariant
representation results in a very spiky signal. Some of the
states in the HMM have a big variance in order to model
this spikes. As a result, when two gestures are very similar,
some states in the HMMs are partially overlapped, increasing
the number of misclassified or unclassified gestures.9

VI. CONCLUSION

In this paper we present a new invariant representation
in order to recognise motions performed by different people
from different point of view. The proposed 3D human motion

9For example, stop and handOverRight in the CM dataset are very similar,
especially considering that the used OpenNI library did not provide the hand
orientation.

representation is invariant to rotations, translations and linear
scaling factors. This representation is combined with two
classification algorithms: modified HMM- and DTW- based
classification algorithms. The proposed approach is tested
with segmented and unsegmented datasets, and compared
with another invariant representation and with non-invariant
representation. Experimental results show the effectiveness
of our approach. As future research we will focus on under-
standing human complex behaviours by integrating gesture
recognition with other sensory information, which come
from speech recognition and environment reconstruction.
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